

January 18, 2022

Vertex Project #: 21E-00087-020

Spill Closure Report:

Colonel R Howard 2 (Section 23, Township 23 South, Range 27 East)

API: 30-015-42272 County: Eddy

Incident Report: nAPP2131555241

Prepared For:

Matador Production Company

5400 Lyndon B. Johnson Freeway

Dallas, Texas 75240

New Mexico Oil Conservation Division - District 2

811 South 1st Street Artesia, New Mexico 88210

Matador Production Company (Matador) retained Vertex Resource Services Inc. (Vertex) to conduct a Spill Assessment for a release of crude oil into the secondary containment when a firetube on a heater treater failed at Colonel R Howard 2, API 30-015-42272, Incident nAPP2131555241 (hereafter referred to as "Colonel Howard"). Matador provided spill notification to New Mexico Oil Conservation Division (NMOCD) District 2 and the private landowner, who owns the property, via submission of an initial C-141 Release Notification (Attachment 1) on November 10, 2021. This letter provides a description of the Spill Assessment and includes a request for Spill Closure. The spill area is located at N 32.29347, W -104.16846.

Background

The site is located approximately 4.29 miles west-northwest of Loving, New Mexico. The legal location for the site is Section 23, Township 23 South and Range 27 East in Eddy County, New Mexico. This location is within the Permian Basin in southeast New Mexico and has been historically used for oil and gas exploration and production.

The Geological Map of New Mexico (New Mexico Bureau of Geology and Mineral Resources, 2022) indicates the site's surface geology is comprised primarily of Qp — Piedmont alluvial deposits (Holocene to lower Pleistocene). The Natural Resources Conservation Service Web Soil Survey characterizes the predominant soil texture on the site is karro loam and reeves loam. It tends to be well drained with medium runoff and high available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2022).

The surrounding landscape is associated with ridges, plains, hills and alluvial fans at elevations of 1,250 to 5,300 feet above sea level. The climate is semi-arid, with average annual precipitation ranging between 10 to 25 inches. Historically, the plant community is dominated by western wheatgrass and predominant vegetation consists of sideoats grama, New Mexico feathergrass, needle and thread, blue grama, galleta and black grama. Other species of forbs and brushes consist of fourwing saltbrush, Bigelow sagebrush, rabbitbrush, spineless horsebrush, cholla and yucca.

2022 Spill Assessment and Closure January 2022

Incident Description

The spiil occurred on November 10, 2021, due to a firetube on the heater treater leaking and involved the release of approximately 20 barrels (bbl.) of produced oil into the secondary lined containment. All fluids were contained with the lined Spill Prevention Control and Countermeasures (SPCC) containment and no oil was released into undisturbed areas or waterways. Approximately 20 bbl. of free fluid was removed during initial spill clean-up. The NMOCD C-141 Report: nAPP2131555241 is included in Attachment 1. The Daily Field Report (DFR) and site photographs are included in Attachment 2.

Closure Criteria Determination

The depth to groundwater was determined using information from Oil and Gas Drilling records and the New Mexico Office of the State Engineer Water Column/Average Depth to Water report. A 0.5-mile search radius was used to determine groundwater depth. The closest recorded depth to groundwater was determined to be 122 feet below ground surface (bgs) and 0.17 miles from the site. Documentation used in Closure Criteria Determination research is included in Attachment 3.

Clos	ure Criteria Worksheet		
Site	Name: Colonel R Howard 2	<u> </u>	
Spil	Coordinates:	X: 32.29347	Y: -104.16846
Site	Specific Conditions	Value	Unit
1	Depth to Groundwater	122	feet
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	22,379	feet
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	42,913	feet
4	Within 300 feet from an occupied residence, school, hospital, institution or church	855	feet
5	i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or	911	feet
	ii) Within 1000 feet of any fresh water well or spring	911	feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	(Y/N)
.7	Within 300 feet of a wetland	13,675	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
9	Within an unstable area (Karst Map)	Medium	Critical High Medium Low
10	Within a 100-year Floodplain	500	year
11	Soil Type	Kr, Rl	_
12	Ecological Classification	Limy	
13	Geology	Qр	

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

Matador Production Company Colonei R Howard 2, nAPP2131555241 2022 Spill Assessment and Closure January 2022

NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50	<50' 51-100' >100'	
---	-----	--------------------------	--

The closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 1.

Table 1. Closure Criteria for Soils Impacted b	y a Release	
Minimum depth below any point within the horizontal boundary of the release to groundwater less than 10,000 mg/l TDS	Constituent	Limit
less than 10,000 high 103	Chloride	600 mg/kg
	TPH (GRO+DRO+MRO)	100 mg/kg
< 50 feet	BTEX	50 mg/kg
	Benzene	10 mg/kg

Remedial Actions Taken

An initial site inspection of the spill area was completed on January 7, 2022, which identified the area of the spill specified in the initial C-141 Report. The DFR associated with the site inspection is included in Attachment 2.

Notification that a liner inspection was scheduled to be completed was provided to the NMOCD on January 5, 2022, as required by Subparagraph (a) of Paragraph (5) of Subsection A 19.15.29.11 NMAC. Visual observation of the liner was completed on all sides and the base of the containment, around equipment, and of all seams in the liner and was completed on January 7, 2022. As evidenced in the DFR (Attachment 2) liner integrity was confirmed, and the Liner Inspection Notification email is presented in Attachment 4.

Closure Request

Vertex recommends no remediation action to address the release at Colonel Howard. The secondary containment liner appeared to be intact and had the ability to contain the release, as shown in the inspection photographs included with the DFR (Attachment 2). There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

Vertex requests that incident nAPP2131555241 be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. Matador certifies that all information in this report and the attachments is correct, and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NMOCD requirements to obtain closure on the open release at Colonel Howard.

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 575.361.9880 or mpeppin@vertex.ca.

Matador Production Company Colonel R Howard 2, nAPP2131555241

2022 Spill Assessment and Closure January 2022

M

01/18/2022

Date

Date

Monica Peppin

SR. ENVIRONMENTAL TECHNICIAN, REPORTING

01/21/2022

Dhugal Hayton, B.Sc., SR/WA, P. Biol VICE PRESIDENT, REPORT REVIEW

Attachments

Attachment 1. NMOCD C-141 Report

Attachment 2. Daily Field Report with Pictures

Attachment 3. Closure Criteria Research

Attachment 4. Required 48 Hour Liner Inspection Notification

References

- Water Column/Average Depth to Water Report. New Mexico Water Rights Reporting System, (2019). Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html
- Assessed and Impaired Waters of New Mexico. New Mexico Department of Surface Water Quality Bureau, (2019). Retrieved from https://gis.web.env.nm.gov/oem/?map=swqb
- Interactive Geologic Map. New Mexico Bureau of Geology and Mineral Resources, (2022). Retrieved from http://geoinfo.nmt.edu
- Measured Distance from the Subject Site to Residence. Google Earth Pro, (2019). Retrieved from https://earth.google.com
- Point of Diversion Location Report. New Mexico Water Rights Reporting System, (2019). Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/wellSurfaceDiversion.html
- Measured Distance from the Subject Site to Municipal Boundaries. Google Earth Pro, (2021). Retrieved from https://earth.google.com
- National Wetland Inventory Surface Waters and Wetland. United State Fish and Wildlife Service, (2021). Retrieved from https://www.fws.gov/wetlands/data/mapper.html
- Coal Mine Resources in New Mexico. NM Mining and Minerals Division, (2021). Retrieved from http://www.emnrd.state.nm.us/MMD/gismapminedata.html
- New Mexico Cave/Karsts. United States Department of the Interior, Bureau of Land Management, (2019) Retrieved from https://www.blm.gov/programs/recreation/recreation-programs/caves/new-mexico
- Flood Map Number 35015C1875D. United States Department of Homeland Security, FEMA Flood Map Service Center, (2010). Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga%20new%20mexico#searchresultsanchor
- Well Log/Meter Information Report. NM Office of the State Engineer, New Mexico Water Rights Reporting System. (2019). Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/meterReport.html
- Natural Resources and Wildlife Oil and Gas Releases. New Mexico Oil Conservation Division, (2019). Santa Fe, New Mexico.
- Soil Survey, New Mexico. United States Department of Agriculture, Soil Conservation Service in Cooperation with New Mexico Agricultural Experiment Station. (1971). Retrieved from http://www.wipp.energy.gov/library/Information_Repository_A/Supplemental_Information/Chugg%20et%20al% 201971%20w-map.pdf

Matador Production Company Colonel R Howard 2, nAPP2131555241

2022 Spill Assessment and Closure January 2022

Limitations

This report has been prepared for the sole benefit of Matador Production Company. This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and Matador Production Company. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

ATTACHMENT 1

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2131555241
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

	Responsible Party: Matador Production Company			OGRID: 228	28937
Contact Name: Arsenio Jones			Contact Tele	lephone:575-361-4333	
Contact email: Arsenio.jones@matadorresources.com				Incident # (a	(assigned by OCD) nAPP2131555241
Contact mailing address			Dallas Tx	75240	
Site Name: Colonel R H Date Release Discovered Unit Letter Section 3 23	Ioward 2 d: 11-10-2021 Township	Locatio	n of R	Longitude grees to 5 decime Site Type: C API# 30015	-104.16846 nal places) Oil 1542272
23	238	27E 	Eddy		
		Nature a	mu vo	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IN C 11 . ZI. N.
Mate. Crude Oil	rial(s) Released (Select all	that apply and att	tach calcula		viustification for the volumes provided below) Volume Recovered (bbls) 20
Mater Crude Oil Produced Water	rial(s) Released (Select all Volume Released Volume Released	d (bbls) 20	tach calcula		justification for the volumes provided below)
X Crude Oil	Volume Released Volume Released Is the concentrat	d (bbls) 20 d (bbls) ion of dissolve	tach calcula	utions or specific	Volume Recovered (bbls) Volume Recovered (bbls) Volume Recovered (bbls) Volume Recovered (bbls)
X Crude Oil	Volume Release	d (bbls) 20 d (bbls) ion of dissolve >10,000 mg/l?	tach calcula	utions or specific	Volume Recovered (bbls) Volume Recovered (bbls) Volume Recovered (bbls)
Crude Oil Produced Water	Volume Released Volume Released Is the concentrate produced water	d (bbls) 20 d (bbls) ion of dissolve >10,000 mg/l? d (bbls)	tach calcula	utions or specific	Volume Recovered (bbls) Volume Recovered (Mcf)
☐ Crude Oil ☐ Produced Water ☐ Condensate	Volume Released Volume Released Is the concentrate produced water of Volume Released	d (bbls) 20 d (bbls) ion of dissolve >10,000 mg/l? d (bbls) d (Mcf)	ed chlorid	tions or specific	Volume Recovered (bbls)

State of New Mexico
Oil Conservation Division

Page 2

Incident ID	nAPP2131555241	
District RP		
Facility ID		
Application ID		

release as defined by	11 1.25, for what reason(s) does the responsible party consider this a major release?	
19.15.29.7(A) NMAC?		
Yes X No		
If YES, was immediate no	notice given to the OCD? By whom? To whom? When and by what means (phone, em-	ail, etc)?
	Initial Response	
The responsible p	e party must undertake the following actions immediately unless they could create a safety hazard that would	result in injury
The source of the rele	lease has been stopped.	
The impacted area has	as been secured to protect human health and the environment.	
Released materials ha	nave been contained via the use of berms or dikes, absorbent pads, or other containment	t devices.
X All free liquids and re	recoverable materials have been removed and managed appropriately.	
If all the actions described	ed above have not been undertaken, explain why:	
has begun, please attach a	MAC the responsible party may commence remediation immediately after discovery of a narrative of actions to date. If remedial efforts have been successfully completed ent area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for clo	or if the release occurred
I hereby certify that the infor	ormation given above is true and complete to the best of my knowledge and understand that purs	suant to OCD rules and
public health or the environm	e required to report and/or file certain release notifications and perform corrective actions for rel pagent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability sho	ould their operations have
failed to adequately investigated	gate and remediate contamination that pose a threat to groundwater, surface water, human health of a C-141 report does not relieve the operator of responsibility for compliance with any other fe	or the environment. In
and/or regulations.	Leave the report aloes not remove and operator of responsionity for compliance with any other ke	decial, state, of local laws
Printed Name: Arsenio Jon	ones Title: RES Specailist	
	Date: 1/20/22	
Signature:	Date: 1/20/2	
email: arsenio.jones@mat	atadorresources.com Telephone: <u>575-361-4333</u>	
	·	
OCD Only		-
Received by:	Date:	

(ft bgs)

<50

Form C-141 Page 3

State of New Mexico Oil Conservation Division

What is the shallowest depth to groundwater beneath the area affected by the release?

Incident ID	nAPP2131555241
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Did this release impact groundwater or surface water?	Yes X No			
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes X No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	Yes X No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes X No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes X No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	X Yes No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes X No			
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes X No			
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☒ No			
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No			
Are the lateral extents of the release within a 100-year floodplain?				
Did the release impact areas not on an exploration, development, production, or storage site?	Yes X No			
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.				
Characterization Report Checklist: Each of the following items must be included in the report.				
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well is Field data	s.			
Data table of soil contaminant concentration data Depth to water determination				
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs				
Photographs including date and GIS information				
Topographic/Aerial maps Laboratory data including chain of custody				

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141

State of New Mexico Oil Conservation Division

Page 4

		1 18 1
Incident ID	nAPP2131555241	
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release noting public health or the environment. The acceptance of a C-141 report by the C failed to adequately investigate and remediate contamination that pose a three addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	offications and perform corrective actions for releases which may endanger of the operation of liability should their operations have the groundwater, surface water, human health or the environment. In
Printed Name:Arsenio_ones Signature:	Title: RES Specialist Date: 1/24/22 Telephone: 575-361-4333
OCD Only Received by:	Date:

Received by OCD: 1/26/2022 2:26:59 PM Form C-141 State of New Mexico

Page 12 of 5

State of New Mexico
Oil Conservation Division

Page 6

Incident ID	nAPP2131555241
District RP	1
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following item	ns must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11 N	NMAC
X Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC D	District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain re may endanger public health or the environment. The acceptance of a C should their operations have failed to adequately investigate and remed human health or the environment. In addition, OCD acceptance of a C compliance with any other federal, state, or local laws and/or regulation restore, reclaim, and re-vegetate the impacted surface area to the conditaccordance with 19.15.29 13 NMAC including notification to the OCD Printed Name: Associo Jones Signature: Demail:arsenio.jones@matadorresou/ces.com Teal	C-141 report by the OCD does not relieve the operator of liability diate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for ms. The responsible party acknowledges they must substantially itions that existed prior to the release or their final land use in D when reclamation and re-vegetation are complete. Title: RES Specialist
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the responsible party of l remediate contamination that poses a threat to groundwater, surface wat party of compliance with any other federal, state, or local laws and/or r	liability should their operations have failed to adequately investigate and ter, human health, or the environment nor does not relieve the responsible regulations.
Closure Approved by:	Date: 01/31/2022
Printed Name: Jennifer Nobui	Title:Environmental Specialist A

ATTACHMENT 2

Daily Site Visit Report

	1/7/2022	1/7/2022 6:09 PM				Monica Peppin		rimes
100	Inspection Date:	Report Run Date:	API#:		Project Owner:	Project Manager:		Summary of Times
	Matador Resources	Colonel R Howard 2	Arsenio Jones	(575)361-4333				
•	Client:	Site Location Name:	Client Contact Name:	Client Contact Phone #:	Unique Project ID	Project Reference #	,	

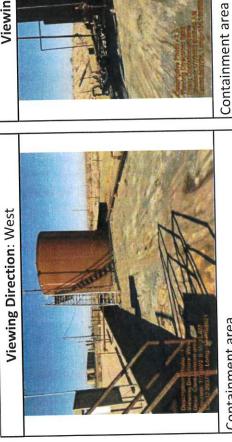
Field Notes

1/7/2022 9:47 AM 1/7/2022 10:45 AM

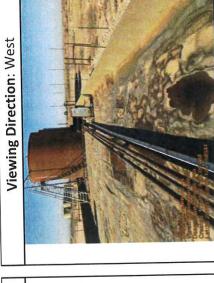
Arrived at Site Departed Site 9:51 Conduct a liner inspection

10:45 Upon completion of the liner inspection, no tears or imperfections where found.

Next Steps & Recommendations


,

Powered by www.krinkleldar.com



Site Photos

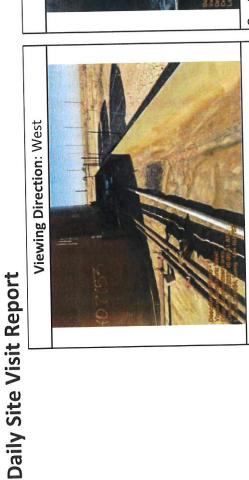
Viewing Direction: East

Containment area

Containment area

Containment area

Daily Site Visit Report



Containment area

Liner between tanks

Containment area

Liner between tanks

Powered by www.krinkleldar.com

Powered by www.krinkleldar.com

Daily Site Visit Report

Daily Site Visit Signature

Inspector: John Ramirez

Signature:

ATTACHMENT 3

Colonel R Howard 2 DTGW and Nearest Well

Unofficial Online Magae Magae Marranty of any kind.

These maps are distributed "as is" without warranty of any kind.

Esri, HERE, iPC, U.S. Department of Energy Office of Legacy Management, Esri, HERE, Garmin, iPC, Maxar

SiteBoundaries

GIS WATERS PODs New Mexico State Trust Lands

Both Estates

Pending Active

Conveyances - Ditch

OSE District Boundary

Override 1

Unofficial Online Map These maps are distributed "as is" without warranty of any kind.

New Mexico Office of the State Engineer Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

POD Number Well Tag

C 03488 POD1

Q64 Q16 Q4 Sec Tws Rng 23 23S 27E

X

3573023

Driller License:

578430

1348

Driller Company:

TAYLOR WATER WELL SERVICE

Driller Name:

TAYLOR, CLINTON E.

Drill Start Date:

05/08/2011

Drill Finish Date:

05/10/2011

Plug Date:

Log File Date:

PCW Rcv Date:

Pipe Discharge Size:

Source:

Shallow

Pump Type:

05/31/2011 **SUBMER**

Estimated Yield:

100 GPM

Casing Size:

4.50

Depth Well:

217 feet

Depth Water:

122 feet

Water Bearing Stratifications:

Top Bottom Description

Limestone/Dolomite/Chalk

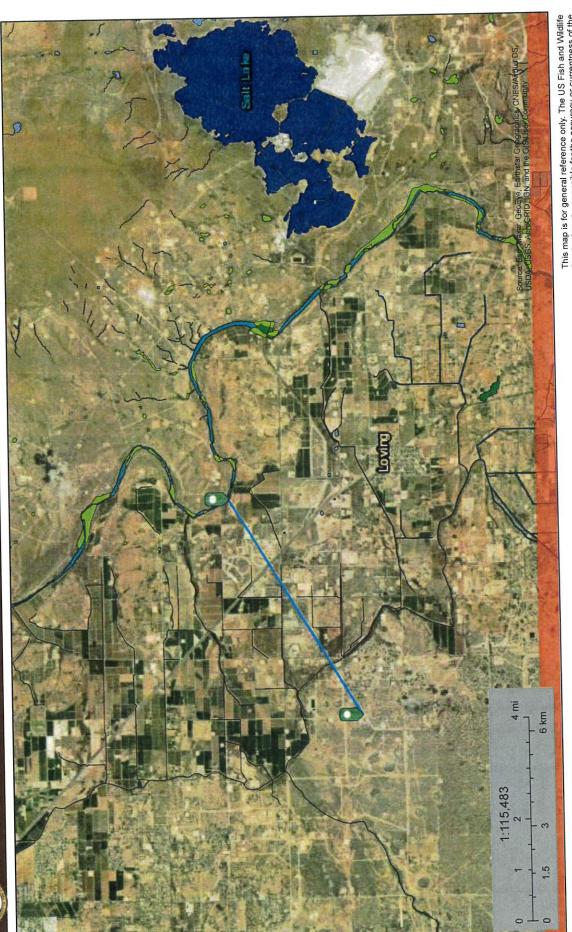
202 210

197

Sandstone/Gravel/Conglomerate

Casing Perforations:

Top


Bottom

217

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/13/22 2:51 PM

POINT OF DIVERSION SUMMARY

Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

January 13, 2022 Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Pond

Freshwater Forested/Shrub Wetland Freshwater Emergent Wetland

Lake

Other

Riverine

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Colonel R Howard 2 Lakebed

National Wetlands Inventory

U.S. Fish and Wildlife Service

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the bese data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

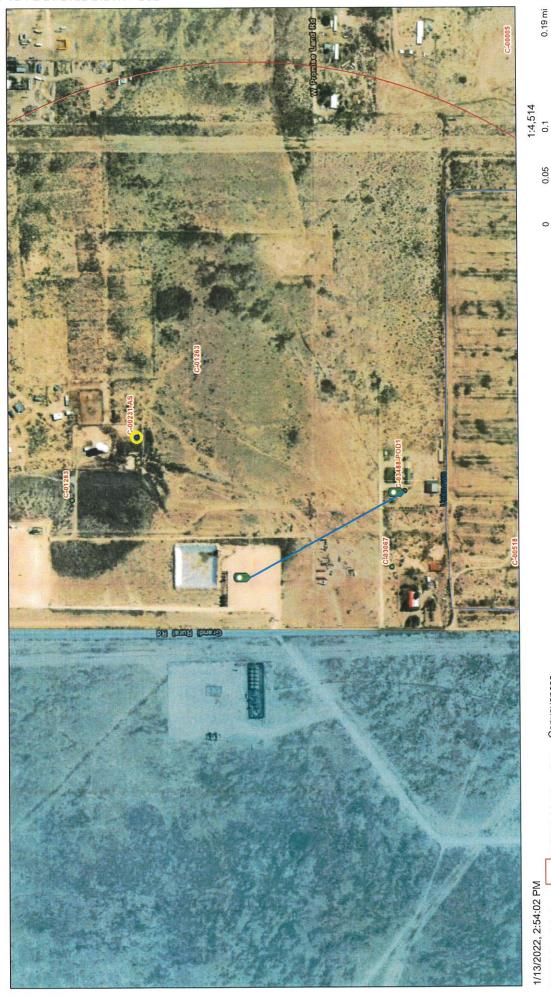
January 13, 2022 Wetlands

Estuarine and Marine Deepwater Estuarine and Marine Wetland

Freshwater Forested/Shrub Wetland Freshwater Emergent Wetland

Other

Lake


Riverine

Freshwater Pond

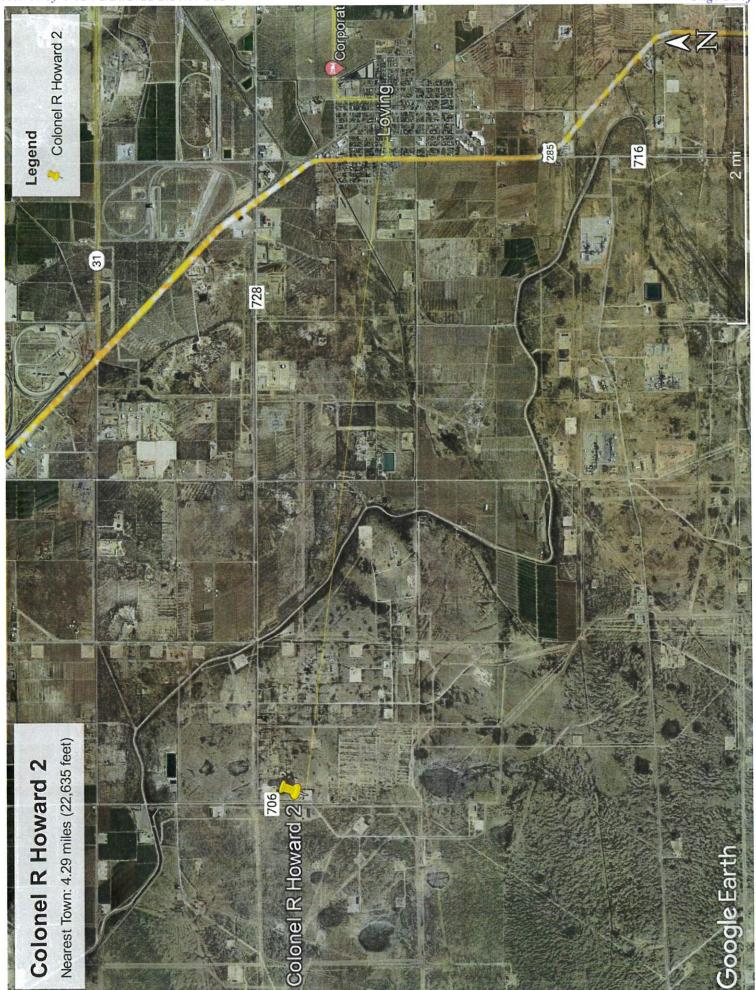
National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Colonel R Howard 2 DTGW and Nearest Well

0.05

SiteBoundaries

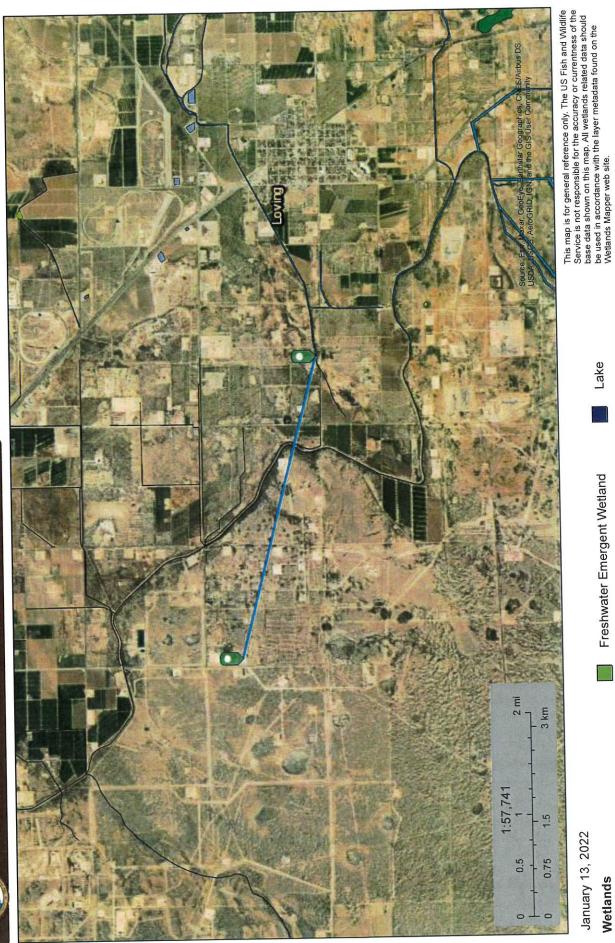
Ditch


GIS WATERS PODs New Mexico State Trust Lands

Override 1

Both Estates

Pending Active


OSE District Boundary Conveyances

Colonel R Howard 2 Wetlands

National Wetlands Inventory

U.S. Fish and Wildlife Service

Wetlands

Estuarine and Marine Deepwater

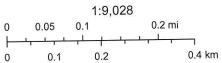
Estuarine and Marine Wetland

Freshwater Forested/Shrub Wetland Freshwater Emergent Wetland

Freshwater Pond

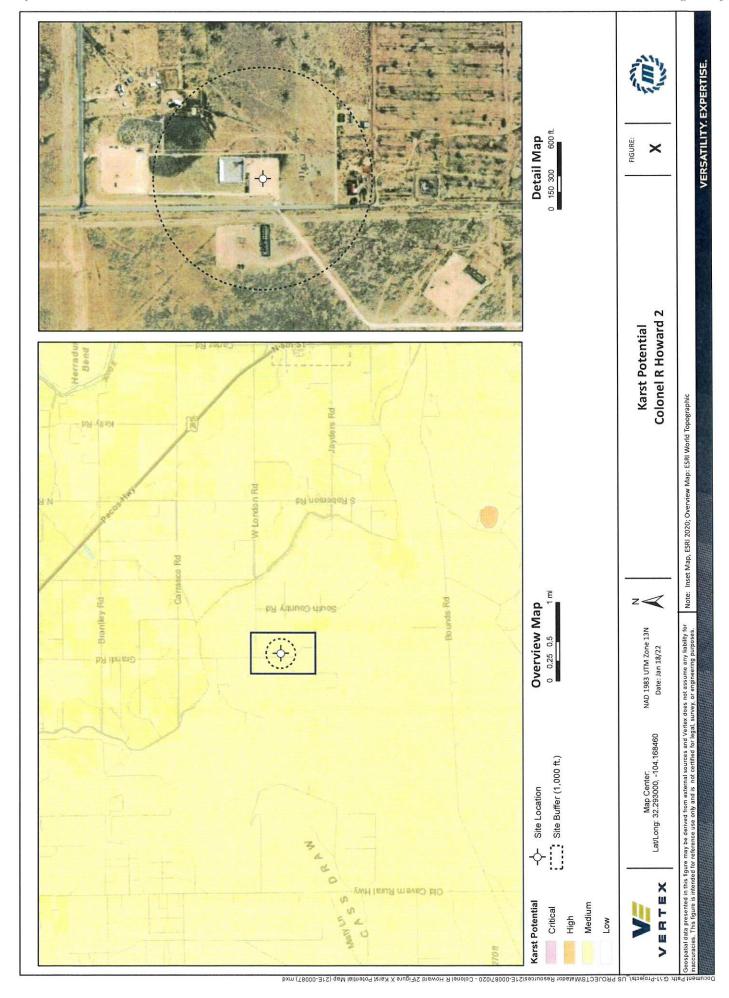
Lake

Other


Riverine

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Colonel R Howard 2


1/13/2022, 2:22:08 PM

Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, © OpenStreetMap, Microsoft, CONANP, Esri, HERE, Garmin, SafeGraph, INCREMENT P, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, Maxar

EMNRD MMD GIS Coordinator

NM Energy, Minerals and Natural Resources Department (http://nm-emnrd.maps.arcgis.com/apps/webappbuilder/index.html?id=7ebfa3c432db42978d66c99a9cc8311a)

SPECIAL FLOOD HAZARD AREAS

Levee. See Notes, Zone X

Area with Flood Risk due to Levee Zon

Levee. See Notes. Zone X

OTHER AREAS OF FLOOD HAZARD

No screen Area of Minimal Flood Hazard Zone

Effective LOMRs

OTHER AREAS

Area of Undetermined Flood Hazard Zone D

- - - Channel, Culvert, or Storm Sewer STRUCTURES | 1111111 Levee, Dike, or Floodwall

Cross Sections with 1% Annual Chance

Base Flood Elevation Line (BFE) Water Surface Elevation Coastal Transect www. SFE wow

Limit of Study

Coastal Transect Baseline Jurisdiction Boundary

Profile Baseline

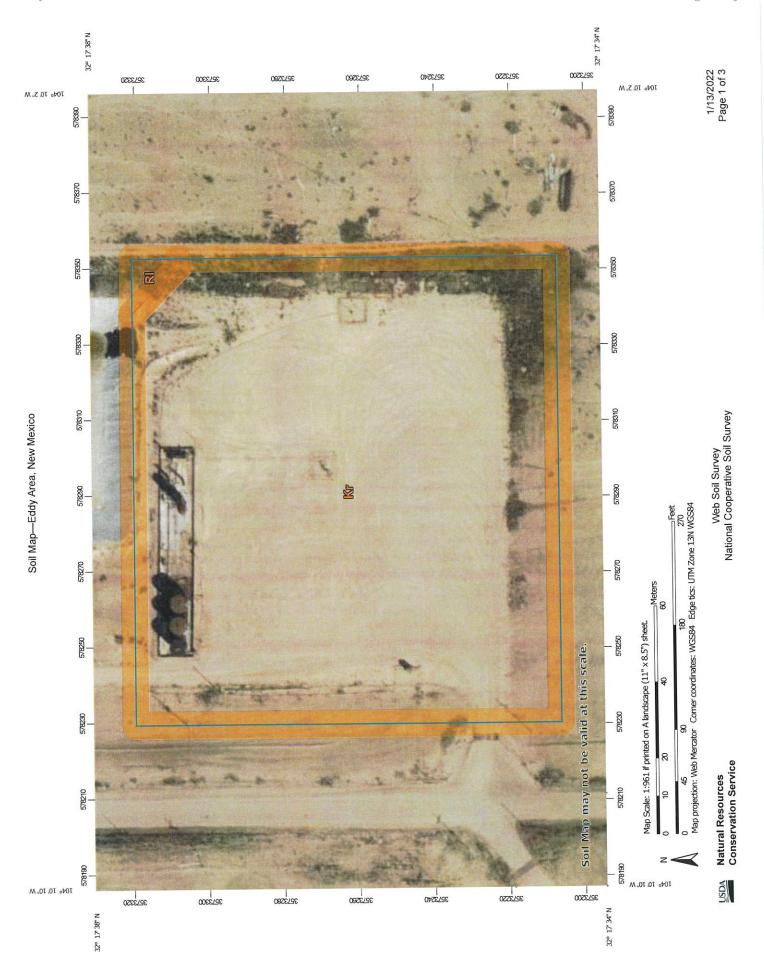
Hydrographic Feature

OTHER FEATURES

Digital Data Available

No Digital Data Available Unmapped

MAP PANELS


The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or The flood hazard information is derived directly from the was exported on 1/13/2022 at 3:53 PM and does not become superseded by new data over time.

Ints map mages is volar if the one of mote or the following map legend, scale bar, map creation date, community identifiers, so FIRM panel number, and FIRM effective date. Map images for a unmapped and unmodernized areas cannot be used for regulatory purposes. This map image is void if the one or more of the following map

USDA

MAP LEGEND

Soil Map-Eddy Area, New Mexico

Area of Interest (AOI)

Stony Spot Spoil Area W Area of Interest (AOI)

Very Stony Spot Wet Spot Other 8 Đ.

Soil Map Unit Polygons

Soils

Soil Map Unit Points Soil Map Unit Lines

Special Point Features

Blowout

9 Ø

Special Line Features

Water Features

Streams and Canals Rails **Fransportation** ŧ

> Borrow Pit Clay Spot

Interstate Highways Major Roads US Routes

Gravelly Spot

Gravel Pit

Closed Depression

Local Roads

Aerial Photography

Background

Marsh or swamp

Lava Flow

Landfill

Mine or Quarry

Miscellaneous Water Perennial Water

0

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot Sinkhole Ŷ 0

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil Enlargement of maps beyond the scale of mapping can cause line placement. The maps do not show the small areas of scale.

Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Coordinate System: Web Mercator (EPSG:3857)

Albers equal-area conic projection, should be used if more

This product is generated from the USDA-NRCS certified data as accurate calculations of distance or area are required. of the version date(s) listed below.

Survey Area Data: Version 17, Sep 12, 2021 Eddy Area, New Mexico Soil Survey Area:

Soil map units are labeled (as space allows) for map scales

Feb 27, 2020—Feb Date(s) aerial images were photographed: 1:50,000 or larger.

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Kr	Karro loam, 0 to 1 percent slopes	3.4	99.3%
RI	Reeves loam, 0 to 1 percent slopes	0.0	0.7%
Totals for Area of Interest	***************************************	3.5	100.0%

Eddy Area, New Mexico

Kr—Karro loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 1w4v Elevation: 2,500 to 5,300 feet

Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 57 to 64 degrees F

Frost-free period: 200 to 230 days

Farmland classification. Farmland of statewide importance

Map Unit Composition

Karro and similar soils: 99 percent Minor components: 1 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Karro

Setting

Landform: Plains, alluvial fans

Landform position (three-dimensional): Riser, talf, rise

Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 10 inches: loam H2 - 10 to 90 inches: clay loam

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)

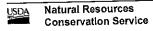
Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 60 percent Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0

mmhos/cm)

Sodium adsorption ratio, maximum: 1.0


Available water supply, 0 to 60 inches: High (about 10.5 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C

Ecological site: R042XC030NM - Limy

Hydric soil rating: No

Minor Components

Reeves

Percent of map unit: 1 percent Ecological site: R042XC007NM - Loamy Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021

Eddy Area, New Mexico

RI—Reeves loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 1w5p Elevation: 1,250 to 4,800 feet

Mean annual precipitation: 10 to 25 inches
Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 120 to 225 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Reeves and similar soils: 98 percent Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Reeves

Setting

Landform: Ridges, plains, hills

Landform position (two-dimensional): Shoulder, backslope,

footslope, toeslope

Landform position (three-dimensional): Side slope, crest, nose

slope, head slope Down-slope shape: Convex Across-slope shape: Linear

Parent material: Residuum weathered from gypsum

Typical profile

Ap - 0 to 8 inches: loam H2 - 8 to 32 inches: clay loam

H3 - 32 to 60 inches: gypsiferous material

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 25 percent

Gypsum, maximum content: 80 percent

Maximum salinity: Very slightly saline to moderately saline (2.0 to

8.0 mmhos/cm)

Sodium adsorption ratio, maximum: 4.0

Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): 3s
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: B
Ecological site: R042XC007NM - Loamy
Hydric soil rating: No

Minor Components

Cottonwood

Percent of map unit: 1 percent Ecological site: R042XC006NM - Gyp Upland Hydric soil rating: No

Karro

Percent of map unit: 1 percent Ecological site: R042XC030NM - Limy Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021

UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE

ECOLOGICAL SITE DESCRIPTION

ECOLOGICAL SITE CHARACTERISTICS

Site Type: Rangeland			 	
Site ID: R036XB129NM			 	
Site Name: Limy			 	
Precipitation or Climate Zone:	10-16"		 	
Phase:		<u> </u>	 	

PHYSIOGRAPHIC FEATURES

Narrative:		
This site occurs on level to mesas. Slopes average five perce range from 5,500 to 7,300 feet. A		ge to 10 percent. Elevations
Land Form: 1. Fan piedmont		
2. plains		
3. piedmont slopes	VII. 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
Aspect: 1. not significant		
	Minimum	Maximum
Elevation (feet)	5500	7300
Slope (percent)	0	10
Water Table Depth (inches)		
Flooding:	Minimum	Maximum
Frequency		
Duration		
Ponding:	Minimum	Maximum
Depth (inches)		
Frequency	and last	
Duration	FA	-
Runoff Class:		
Medium Hydrologic gro		

CLIMATIC FEATURES

Narrative:

Average annual precipitation varies from about 10 inches to just over 16 inches. Fluctuations ranging from about 5 inches to 25 inches are not uncommon. The overall climate is characterized by cold dry winters in which winter moisture is less than summer. As much as half or more of the annual precipitation can be expected to come during the period of July through September. Thus, fall conditions are often more favorable for good growth of cool-season perennial grasses, shrubs, and forbs than are those of spring.

The average frost-free season is about 120 days and extends from approximately mid-May to early or mid-September. Average annual air temperatures are 50 degrees F or lower, and summer maximums rarely exceed 100 degrees F. Winter minimums typically approach or go below zero. Monthly mean temperatures exceed 70 degrees F for the period of July and August.

Rainfall patterns generally favor warm-season perennial vegetation, while the temperature regime tends to favor cool-season vegetation. This creates a somewhat complex community of plants on a given range site, which is quite susceptible to disturbance and is at or near its productive potential only when both the natural warm-and cool-season dominants are present.

	Minimum	Maximum
Frost-free period (days):	51	171
Freeze-free period (days):	130	252
Mean annual precipitation (inches):	10	16

Monthly moisture (inches) and temperature (⁰F) distribution:

	Precip. Min.	Precip. Max.	Temp. Min.	Temp. Max.
January	.40	.91	12.9	47.0
February	.43	.65	16.6	51.2
March	.47	1.10	20.9	57.1
April	.30	.49	26.1	65.3
May	.46	.98	33.4	74.2
June	.51	.57	41.4	84.2
July	2.15	3.45	50.4	85.1
August	2.28	3.03	48.7	82.4
September	1.29	1.68	41.4	77.9
October	.81	1.12	29.4	69.2
November	.38	.71	19.1	57.3
December	.53	.95	13.1	48.9

Climate Stat	ions:						
	10110.	••			Perio	nd	:
Station ID	290640	Location	Augustine 2E	From:	05/01/ 26	To	07/31/ 00
Station ID	296812	Location	Pietown 19NE	From:	09/01/ 88		07/31/ 00
Station ID	297180	 Location	Quemado	From:	Perio 08/01/		07/31/ 00
	<u> </u>			_	Peri	od.	
Narrative: This	site is not influence	ed by water fr	om a wetland or st	ream.			

Wetland description:		
System	Subsystem	Class
N/A		

If Riverine Wetland System enter Rosgen Stream Type:
N/A

REPRESENTATIVE SOIL FEATURES

N	arra	ıtıv <i>e</i>	,

The soils of this site are well drained and moderately deep to deep. The surface textures range from loams to clay loams. Water-holding capacity is moderate to high and permeability is moderate. These soils are typically slightly effervescent on the surface with effervescence increasing with depth. There is a calcareous horizon within 20 inches of the surface that may be weakly cemented. This may affect the rooting depth of the vegetation. These soils are highly susceptible to wind and water erosion.

Characteristic taxonomic units are: Harvey loam, Flaco cobbly loam, loam

Parent Material Kind:	Eolian and alluvial	
Parent Material Origin:	basalt	

Surface Texture:

- Clay loam
 Sandy clay loam, Sandy loam
 Very fine sandy loam
- Surface Texture Modifier:

1	
2	
3	

Subsurface Texture Group: Clay loam

Surface Fragments <= 3" (% Volume): -
Surface Fragments > 3" (% Volume): 5-19

Subsurface Fragments >= 3" (% Volume): 1-3

	Minimum	Maximum
Drainage Class:	well	well
Permeability Class:	slow	Moderately rapid
Depth (inches):	20	>72
Electrical Conductivity (mmhos/cm):	0.00	4.00
Sodium Absorption Ratio:	0.00	5.00
Soil Reaction (1:1 Water):	7.4	8.4
Soil Reaction (0.1M CaCl2):		
Available Water Capacity (inches):	2	5
Calcium Carbonate Equivalent (percent):	MM	

PLANT COMMUNITIES

Ecological Dynamics of the Site:

Overview

This site occurs on piedmont slopes, plains, and mesa tops. The soils are moderately deep to deep with a horizon high in calcium carbonate within twenty inches of the surface. This site is often associated with Loamy and Malpais sites. Loamy sites often occur adjacent to, or as inclusions interspersed within Limy sites. On basalt-capped mesas, Malpais sites are occasionally associated with Limy sites. The historic plant community of the Limy site is a grassland characterized by a mixture of cool-and warm-season grasses with occasional shrubs and forbs. Western wheatgrass is the dominant grass, and winterfat is the key shrub species. Overgrazing can reduce grass cover and effect a change in grass species dominance. The loss of grass cover can reduce the competitive influence of grasses and may facilitate the transition to the Woody-Encroached state.

Plant Communities and Transitional Pathways (diagram)

MLRA 36, WP-2 Limy

Woody-Encroached

1a. Loss of grass cover, resource competition.

1b. Brush control, prescribed grazing.

Plant Community Name: <u>Historic Climax Plant Community</u>	ınity	
Plant Community Sequence Number: 1 Narr	rative Label:	НСРС
Plant Community Narrative: State Containing Historic Plant Community Grassland: Western wheatgrass is the dominant grass of the important grasses that occur in significant amounts include feathergrass, needle and thread, blue grama, galleta, and bla (usually greater than 6,800 feet), black grama is typically or wheatgrass and blue grama may increase in percent composs species for this site. Other species include fourwing saltbush spineless horsebrush, cholla and yucca. Piñon and juniper a this site, but may be found at greater densities at higher elev Overgrazing can cause a decrease in western wheatgrass an grama, winterfat, and fourwing saltbush. Communities dom wheatgrass or galleta as the sub-dominant may result.	sideoats grama, lack grama. At highly a minor complition. Winterfat the Bigelow sagestre typically minoration within the dother cool-seas	New Mexico gher elevations ponent while western is the key woody brush, rabbitbrush, or components on Land Resource Unit. son grasses, sideoats
<u>Diagnosis</u> : Grass and litter cover are uniform with few larg erosion such as pedestalling of plants, rills, and gullies are i		sent. Evidence of
Ground Cover (Average Percent of Surface Area). Grasses & Forbs Bare ground Surface gravel Surface cobble and stone Litter (percent) Litter (average depth in cm.)	15-20 45-55 5-20 10-15 2	

Plant Community Annual Production (by plant type):

Surface Gravel (% cover)

	.,						_					
Δ	nn	11:	a1	$\mathbf{p_r}$	nd	hi	ct	ic	m	(lhs	/ac	1

	1 11111111111 1 1 1 1 1 1	(10.11.0.1)	programme and the second control of the seco
Plant Type	Low	RV	High
Grass/Grasslike	300	530	760
Forb	28	50	71
Tree/Shrub/Vine	47	83	119
Lichen			
Moss			
Microbiotic Crusts			
Totals	375	662.5	950

Plant Community Composition and Group Annual Production:

Plant	Type -	Grass/Grasslike
	• I	

Group	Scientific		Species	Group
Number	Plant	Common Name	Annual	Annual
	Symbol		Production	Production
1	ELLAL	Thickspike wheatgrass	66-133	66-133
	PASM	Western wheatgrass		
2	BOGR2	Blue grama	66-99	66-99
	BOHI2	Hairy grama		
3	HENE5	NM Feathergrass	66-133	66-133
	HECO26	Needle-and-Thread		
4	PLJA	Galleta	33-66	33-66
5	SPAI	Alkali sacaton	20-33	20-33
6	ACHY	Indian ricegrass	20-33	20-33
7	ELEL5	Bottlebrush squirreltail	20-33	20-33
8	SPCR	Sand dropseed	20-33	20-33
	SPCO4	Spike dropseed		
	LYPH	Wolftail		
9	BOCU	Sideoats grama	66-99	66-99
10	BOER4	Black grama	33-66	33-66
			1	

Plant Type - Tree/Shrub/Vine

riant Type	- Tree/Shrub	v me		
Group	Scientific		Species	Group
Number	Plant	Common Name	Annual	Annual
	Symbol		Production	Production
11	KRLA2	Winterfat	33-66	33-66
12	ATCA2	Fourwing saltbush	7-33	7-33
13	EPHED	Ephedra spp.	7-20	7-20
14	ARBI	Bigelow sagebrush	7-33	7-33
15	ERNAN5	Rabbitbrush	7-20	7-20
	TECA2	Spineless horsebrush		
	GUSA2	Broom snakeweed		
16	PIED	Pinyon	7-20	7-20
	JUNIP	Juniper		
17	Various	Other shrubs	20-33	20-33

Plant Type - Forb

18	2PF	Perennial forbs	7-53	7-53
19	2AF	Annual forbs	7-33	7-33
Plant Type	- Lichen	· · · · · · · · · · · · · · · · · · ·	r. 122 - 4 - 1 - 1	
Group	Scientific		Species	Group Annual
Number	Plant	Common Name	Annual	Annual Production
	Symbol		Production	Production
Plant Type		 A production of the state of th	Species	Group
Group	Scientific	Cimmon Name	Annual	Annual
Number	Plant	Common Name	Production	Production
	Symbol		Troduction	11000
Plant Type	e - Microbioti	ic Crusts		
Group	Scientific		Species	Group
Number	Plant	Common Name	Annual	Annual
1,4411041	Symbol		Production	Production
	1			
				<u> </u>
Plant Gro	wth Curves			
	wth Curves	M 0319		
Growth C	urve ID <u>N</u>			
Growth C	urve ID <u>Ni</u> urve Name:	HCPC		
Growth C	urve ID <u>Ni</u> urve Name:	HCPC tion: WP-2 Limy HCPC		
Growth C Growth C Growth C	urve ID <u>Ni</u> urve Name:	HCPC	Oct. Nov. 5 0	Dec.

Additional States:

Woody-Encroached: This state is characterized by an increase in woody species, typically spineless horsebrush and or rabbitbrush, and in some instances at higher elevations, piñon and juniper. Blue grama is the dominant grass and galleta and threeawns are sub-dominants. Grass cover decreases as shrub/tree canopy increases.

Diagnosis: Grass production and species composition have decreased relative to the Grassland State. Grass and litter cover range from fairly uniform, to patchy with large bare areas present. Evidence of erosion including pedestalling of grasses, elongated water flow patterns, and rills may be common.

Transition to Woody-Encroached (1a) Loss of grass cover due to overgrazing and the associated reduced competition by grasses may facilitate woody encroachment.³

Key indicators of approach to transition:

- Decrease or change in composition or distribution of grass cover, such as dominance by blue grama.
- Increase in size and frequency of bare patches.
- Increase in amount of rabbitbrush, horsebrush, or juniper/piñon seedlings.

Transition back to Grassland (2b) Brush control is necessary to reduce the competitive influence of shrubs. Some positive results have been reported in controlling rabbitbrush with herbicides.^{2,4} Root plowing and other mechanical control methods that sever the plant below the sprouting zone may reduce horsebrush and rabbitbrush densities. Horsebrush and rabbitbrush are fire-adapted species and can quickly increase or occupy a site following fire. Mechanical¹, chemical, or a combination can be effective in reducing piñon/juniper densities. Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover.

ECOLOGICAL SITE INTERPRETATIONS

Animal Community:	
This range site provides a habitat, which support pronghorn antelope, blacktailed jackrabbit, badg prairie rattlesnake, and American bison. The cohunt over this site. Mule deer feed on the site.	ger, Gunnison's prairie dog, mourning dove,
Hydrology Functions:	
The runoff curve numbers are determined by fie conditions and hydrologic soil groups.	ld investigations using hydrologic cover
Hydrologic I	nterpretations
Soil Series	Hydrologic Group
Harvey	В
Falco	С
	and the second s
1411	

1,	ecreationa	Lilana

This site offers fair to good potential for hiking, horseback riding, nature observation, and photography. Camping is limited due to the lack of water and shade. Hunting for antelope and small game is good. During years of abundant rainfall, the natural beauty is enhanced by an array of colorful wildflowers.

Wood Products:

Under the potential vegetative community, this site has little potential for wood products. However, in areas where pinyon and juniper have increased there is a limited potential for fencing material and fuelwood.

Other Products:

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year but is poorly suited to continuous yearlong use. Species such as Western wheatgrass, New Mexico feathergrass, Sideoats grama, Winterfat, and Fourwing saltbush will decrease. They will be replaced by blue grama, broom snakeweed, yucca, and cholla. Continued deterioration of the site can cause severe erosion. This site responds best to a system of grazing that rotates the season of use. In some areas, pinyon and juniper have increased on this site and may appear as even-aged, long-lived stands.

Other Information:	
Guide to Suggested Initial S	tocking Rate Acres per Animal Unit Month
Similarity Index	Ac/AUM
100 - 76	3.3-4.6
75 – 51	4.4-6.8
50 – 26	6.5-11.0
25 – 0	11.0+

Plant Preference by Animal Kind:

	Code	Species Preference	Code
Stems	S	None Selected	N/S
Leaves	L	Preferred	P
Flowers	F	Desirable	D
Fruit/Seeds	F/S	Undesirable	U
Entire Plant	EP	Not Consumed	NC
Underground Parts	UP	Emergency	
Immun —		Toxic	T

Animal Kind: Livestock

Animal Type:	Cattle													
		Plant					Fora	ge Pr	efere	nces	<u> </u>	18 4 8 3		1, 3, 14
Common	Scientific	Part	J	F	M	Α	M	J	J	Α	S	О	N	D
Name	Name			**										* 4
Western wheatgrass	Pascopyrum smithii	EP	D	D	Р	P	P	D	D	D	D	D	D	D
Needle andThread	Hesperostipa comata	EP	D	D	Р	P	P	D	D	D	D	D	D	D
NM Feathergrass	Hesperostipa neomexicana	Еp	D	D	P	P	P	D	D	D	D	D	D	D
Indian ricegrass	Achnatherum hymenoides	Ер	P	P	Р	P	P	P	P	P	P	P	Р	P
Bottlebrush squirreltail	Elymus elymoides	Ер	Ŭ	U	D	D	D	U	U	υ	D	D	D	U
Bigelow sagebrush	Artemisia bigelovii	Ер	D	D	D	D	D	D	D	D	D	D	D	D
Fourwing saltbush	Atriplex canescens	EP	P	P	Р	Р	P	D	D	D	D	D	D	P
Winterfat	Krascheninniko via lanata	Ер	D	D	P	P	P	P	P	Р	D	D	D	D
Black grama	Bouteloua eriopoda	Ер	P	P_	P	D	D	D	D	D	D	D	P	P
Sideoats grama	Bouteloua curtipendula	Ер	D	D	D	D	D	D	D	D	D	D	D	D

Supporting Information

Associated Sites:

Site Name

Site ID

Site Narrative

Similar Sites:

Site Name

Site ID

Site Narrative

State Correlation:

This site has been correlated with the following states:

Inventory Data References:

Number of

Data Source

Records

Sample Period

State

County

Type Locality:

Relationship to Other Established Classifications:

Other References:

- 1. Brockway, D.G., R.G. Gatewood, and R.B. Paris. 2002. Restoring grassland savannas from degraded pinyon-juniper woodlands: effects of mechanical overstory reduction and slash treatment alternatives. Journal of Environmental Management. 64: 179-197.
- 2. Cluff, G.J., B.A. Roundy, R.A. Evans, and J.A. Young. 1983. Herbicidal control of greasewood (Sarcobatus vermiculatus) and salt rabbitbrush (Chrysothamnus nauseosus ssp. consimilis). Weed Science. 31: 275-279.
- 3. Johnsen, T.N., Jr. 1962. One-seeded juniper invasion of northern Arizona grasslands. Ecological Monographs. 32:187-207.
- 4. Whisenant, S.G. 1988. Control of threadleaf rubber rabbitbrush with herbicides. Journal of Range Management. 41: 470-472

Data collection for this site was done in conjunction with the progressive soil surveys within the New Mexico and Arizona Plateaus & Mesas Major Land Resource Area of New Mexico. This site has been mapped and correlated with soils in the following soil surveys: McKinley, Catron, Cibola, Socorro and Sandoval. Characteristic Soils Are:

	-		
Other Soils included are:			
Site Description Approval: Author Don Sylvester	<u>Date</u> 05/15/84	Approval Don Sylvester	<u>Date</u> 05/15/84
Site Description Revision: Author Brenda Simpson David Trujillo	<u>Date</u> 07/23/02 06/10/05	Approval George Chavez	<u>Date</u> 06/10/05

ATTACHMENT 4

Monica Peppin

From: Dhugal Hanton <vertexresourcegroupusa@gmail.com>

Sent: Wednesday, January 5, 2022 10:37 AM

To: Monica Peppin

Subject: Fwd: 48 Hour Notifification nAPP2131555241 Colonel R Howard 2 Liner Inspection

----- Forwarded message ------

From: Dhugal Hanton < vertexresourcegroupusa@gmail.com >

Date: Wed, Jan 5, 2022 at 10:33 AM

Subject: 48 Hour Notifification nAPP2131555241 Colonel R Howard 2 Liner Inspection

To: Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us >

Cc: Arsenio Jones <arsenio.jones@matadorresources.com>, <csnow@matadorresources.com>

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled a liner inspection to be conducted at Colonel R Howard 2 for the following releases:

nAPP2131555241 DOR: 11/10/2021

This work will be completed on behalf of Matador Production Company.

On Friday, January 7, 2022 at approximately 9:00 a.m., John Ramirez, will be onsite to conduct a liner inspection. He can be reached at 575-725-1809. If you need directions to the site, please do not hesitate to contact him. If you have any questions or concerns regarding this notification, please give me a call at 575-361-9880.

Thank you,

Monica Peppin

Sr. Environmental Technician

Vertex Resource Services Inc. 3101 Boyd Drive, Carlsbad, NM 88220

P 575.725.5001 Ext. 711 C 575.361.9880 F

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 75604

CONDITIONS

Operator:	OGRID:
MATADOR PRODUCTION COMPANY	228937
One Lincoln Centre	Action Number:
Dallas, TX 75240	75604
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	None	1/31/2022