District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Responsible Party: Centennial Resource Production, Inc

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

	2132339581
Incident ID	nAPP2116049360 NW
District RP	NAPP2132339581
Facility ID	
Application ID	

Release Notification

Responsible Party

OGRID: 372165

Contact Nam	ne: Montgon	nery Floyd			Contact Telephone: 432-315-0123					
Contact ema	il: Montgom	ery.floyd@cdevin	ic.com		Incident # nAPP2132339581					
Contact mail Texas 79705		500 W. Illinois A	ve, Suite 500, Mi	dland						
			Location	of R	elease So	ource				
Latitude 32:3	56256 32	357295	(NAD 83 in de	ecimal de	Longitude -	103.4 0202200 407184 NM				
Site Name: W	/innehago C	TR			Site Type:	Production Facility				
Date Release	Discovered	: 11-18-21			API# (if app	licable) 30025485720000				
Unit Letter Section Township Range County										
PN	30	22S	35E	Lea						
Crude Oi	Materia	l(s) Released (Select a	Nature and	d Vo	lume of F	Release justification for the volumes provided below) Volume Recovered (bbls)0				
Produced		Volume Release				Volume Recovered (bbls)				
			tion of dissolved	chloride	e in the	Yes No				
Condensa	ite	Volume Release				Volume Recovered (bbls)				
☐ Natural C	as	Volume Release	ed (Mcf)			Volume Recovered (Mcf)				
Other (de	Other (describe) Volume/Weight Released (provide units) Volume/Weight Recovered (provide units)									
extinguished	k pressure re due to low		f fuel. All equipm	ent has	been repaire	are line causing a small flare fire. The fire was self ed and is back in service. Site will be remediated to state				

State of New Mexico Oil Conservation Division

	NAPP2132339581
Incident ID	nAPP213233958
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release? Fire on location
19.15.29.7(A) NMAC?	1-ire on tocation
⊠ Yes □ No	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? ed OCDOnline & Mike Bratcher on 11-19-21 at 11:00am CST.
wionigomery i loyd eman	ed deboliline & Wike Blateller on 11-19-21 at 11.00am ed1.
	Initial Response
The responsible p	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
☐ The source of the rele	pase has been stonned
	s been secured to protect human health and the environment.
_	we been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions described	d above have not been undertaken, explain why:
Per 10 15 20 8 R (4) NM	AC the responsible party may commence remediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and
	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger nent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have
	ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	Ta C-141 report does not reneve the operator of responsionity for compnance with any other reactar, state, or local laws
Printed Name: Montgome	Floyd Title: Sr. Environmental Analyst
Signature: 11//	Date: 11-24-21
-, -, -, -	
email: Montgomery.floyd	Micki Mishler 2/16/22 Mills Mishler
KUUISEA KAY	10155 111131161 - 110132 Juliu - 11110111
OCD Only	
Received by: Ramo	ona Marcus Date:

State of New Mexico Oil Conservation Division

Incident ID	nAPP2132339581
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>78.75</u> (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☒ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☒ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☒ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☑ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data	ls.
Data table of soil contaminant concentration data Depth to water determination	
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release	
Boring or excavation logs	
Photographs including date and GIS information Topographic/Aerial maps	
Laboratory data including chain of custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

State of New Mexico Oil Conservation Division

Incident ID	nAPP2132339581
District RP	
Facility ID	
Application ID	

regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the Gailed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name: Nikk, Mishler	Title: Sr. En vironment al Reperentativ
Signature: Milli Misher	Date: 2 16 22
email: Nikki. Mishlere Cdevinc.com	Telephone: 432-634-8722
OCD Only	
Received by:	Date:

State of New Mexico Oil Conservation Division

Incident ID	nAPP2132339581	
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated.
Contamination does not cause an imminent risk to human health, the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
Printed Name: Nikki Mishler Title: Sr. Environental Regresentative
Signature:
email: Nikki Mishler Colevin Lom Telephone: 432-634-8722
OCD Only
Received by: Ramona Marcus Date: 2/17/2022
☐ Approved ☐ Approved with Attached Conditions of Approval ☐ Denied ☐ Deferral Approved
Signature: Chad Hensley Date: 02/18/2022

February 16, 2022

Chad Hensley
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
811 First Street
Artesia, NM 88210
PH #: 575-748-1283
Chad.Hensley@state.nm.us

Re: Remediation Workplan and Extension Request Winnebago CTB Flare Release (nAPP2132339581) GPS: N 32.357295° W 103.407784° Unit Letter "N", Section 30, Township 22 South, Range 35 East Lea County, New Mexico

Dear Mr. Hensley,

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Centennial Resource Development, Inc. (Centennial), has prepared this Remediation Workplan and Extension Request for the Winnebago CTB Flare Release Site (Release Site). The purpose of this document is to request an extension for remediation activities designed to advance the Winnebago CTB Flare Release Site toward a New Mexico Oil and Conservation District (NMOCD) approved Site Closure Status. The legal description of the Release Site is Unit Letter "N", Section 30, Township 22 South, Range 35 East, in Lea County, New Mexico. The GPS coordinates for the site are N 32.357295° W 103.407784°. A Site Location Map and Soil Sample Location Map are provided as Figure 1 and Figure 2, respectively.

On November 18, 2021, a crude oil release occurred at the Winnebago CTB. The release was the result of a back pressure regulator failure from the heater treater which spilled over into the flare line causing a small flare fire. The fire was self-extinguished due to low volume and lack of fuel. On November 19, 2021, Centennial reported the release to the NMOCD District 1 Office located in Hobbs, New Mexico and the release was assigned the incident number nAPP2132339581. A Release Notification and Corrective Action Form (Form C-141) was subsequently submitted to the NMOCD on November 24, 2021. The release was reported as approximately two (2) barrels of crude oil released with approximately zero (0) barrels of crude oil recovered, resulting in a net loss of approximately two (2) barrels of crude oil. A revised copy of the NMOCD Release Notification and Corrective Action Form C-141 is attached to this documentation.

A search of the groundwater database maintained by the United States Geological Survey (USGS) did not identify any registered water wells within a quarter (1/4) mile of the Winnebago CTB Flare Release Site. A further search of the USGS database identified the closest registered water well is USGS Well #: 322238103225201 located approximately two (2) miles northeast of the Release Site. The average depth to groundwater for USGS Well #: 322238103225201 should be encountered at approximately seventy-eight (78) feet below ground surface (bgs). No water wells were observed within one-thousand feet of the Release Site. No surface water was observed within one thousand (1,000) feet of the release. Based on the NMOCD site classification system, the following soil remediation levels will be assigned to the Release Site as a result of this criterion.

Based on the NMOCD Site Classification criteria, the Release Site remediation levels are 10 mg/Kg for benzene, 50 mg/Kg for benzene, toluene, ethylbenzene and xylenes (BTEX), 100 mg/Kg for total petroleum hydrocarbons (TPH), and 600 mg/Kg for chloride concentrations.

Etech was assigned management responsibilities for excavation, soil sampling, site restoration, and reporting activities by Centennial. Temporary field equipment was not removed from the release area until early December which obstructed the completion of remediation activities.

On December 15, 2021, Etech commenced excavation activities at the Release Site utilizing heavy equipment and manual means. Excavation activities were conducted in a manner that protected the integrity of the production equipment. Etech hand spotted around all surface equipment and excavated by hand all impacted material within two (2) feet of any production equipment. During excavation activities, a secondary (non-reportable) release occurred in the vicinity of the flare during flare troubleshooting activities (please reference Table 2 and Figure 2 for analytical results and soil sample locations). Excavated soil was stockpiled on site and remediated utilizing blending and aerating techniques. Excavation and confirmation sampling activities continued through January 6, 2022. Confirmation soil samples were submitted to Permian Basin Environmental Lab, LP. in Midland, Texas for determination of concentrations of BTEX using Method SW 846-8021B, TPH using Method SW 846-8015M and Chloride using Method E-300.0. The analytical results are provided as an attachment (Table 1 and Table 2 Concentrations of Benzene, BTEX, TPH, and Chloride in Soil). Based on the initial confirmation sampling activities, it was determined that Benzene and total BTEX were not constituents of concern for the Release Site.

On January 13, 2022, Etech and Centennial representatives met at the Release Site to conduct a sampling event with the landowner representative. Following the on-site meeting, the landowner representative requested further investigation activities at the Release Site.

On January 19, 2022, Etech utilized a hand auger to collect seventy-four (74) delineation soil samples at varying depths based on field observations from within the release area. The soil samples were submitted to Permian Basin Environmental Lab, LP. in Midland, Texas for determination of concentrations of TPH using Method SW 846-8015M and Chloride using Method E-300.0. The analytical results are provided as an attachment (Table 1 Concentrations of Benzene, BTEX, TPH, and Chloride in Soil).

Based on the analytical results of the soil samples collected on January 19, 2022, Etech began the following field activities designed to remediate the Winnebago CTB Flare Release on February 9, 2022:

- The areas represented by sample points East Surface 5AH @ 2-5", East Berm Surface 2AH @ 3-6", West Surface 1AH @ 4-7", West Surface 2AH @ 0-3", West Surface 2AH @ 3-6", West Surface 3AH @ 0-3", West Surface 4AH @ 0-3", South Surface 2AH @ 2-5", South Surface 2AH @ 5-8", South Surface 3AH @ 0-3", P-7AH @ 0-3", P-7AH @ 3-6", P-8AH @ 0-3", P-9AH @ 0-3", and P-10AH @ 2-5" will be excavated to depths consistent with the delineation data and/or visual and olfactory assessment due to TPH concentrations in excess of 100 mg/Kg. Excavated soil will be stockpiled on site and remediated utilizing blending and aerating techniques with bioremediation agents. Based on the analytical results and field observations, approximately three hundred (300) cubic yards of excavated soil will require remediation activities. The remediated stockpiled soil will either be utilized as backfill material or disposed of dependent upon achievement of TPH concentrations below NMOCD regulatory limits and/or landowner permission.
- The areas represented by sample points East Surface 6AH @ 2-5", P-6AH @ 4-7", and P-6AH @ 7-10", will be excavated to depths based on field screening results and/or confirmation sampling activities due to chloride concentrations in excess of 600 mg/Kg. Excavated soil from the chloride impacted areas will be stockpiled separately awaiting disposal.
- Confirmation soil samples will be collected every two hundred (200) square feet from the base and sidewalls of the excavated areas. Samples will be submitted for TPH and/or chloride analysis.
- Composite soil samples will be collected for every fifty (50) cubic yards from the remediated stockpiled soil. Samples will be submitted for BTEX, TPH and chloride analysis.
- Upon receipt of analytical results below NMOCD remediation levels, Etech will backfill the
 excavation with locally purchased non-impacted "like" soil or caliche. Some areas may be
 backfilled with the remediated stockpiled soil dependent upon achievement of TPH
 concentrations below NMOCD regulatory limits and/or landowner permission. In addition,
 impacted soil will be transported under proper manifest to an NMOCD approved disposal
 facility.
- Prepare and submit a "Remediation Summary and Site Closure Request" to the NMOCD.

Etech is currently conducting the activities outlined in this Remediation Workplan and Extension Request. Etech, on behalf of Centennial requests a sixty (60) day extension to complete remediation activities and to submit a "Remediation Summary and Site Closure Request" to the NMOCD.

If you have any questions, or if additional information is required, please feel free to call me at 432-563-2200 (office) or 432-653-6248 (cell).

Thank you,

Wesley A. Desilets Project Manager

Etech Environmental & Safety Solutions, Inc.

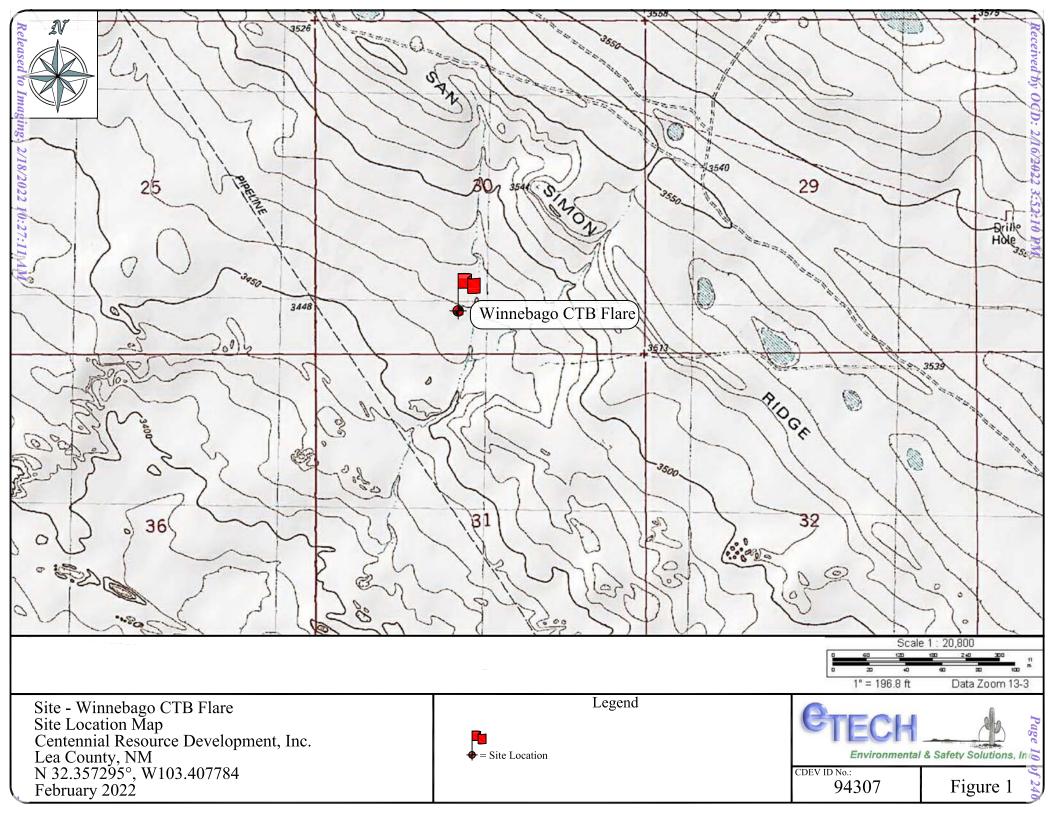
Mesty A. Dinte

Attachments:

Figure 1 - Site Location Map

Figure 2 - Soil Sample Location Map

Table 1 - Concentrations of Benzene, BTEX, TPH and Chloride in Soil


Table 2 - Concentrations of Benzene, BTEX, TPH and Chloride in Soil

Photographic Documentation

Laboratory Analytical Results

Release Notification and Corrective Action (Form C-141)

cc: File

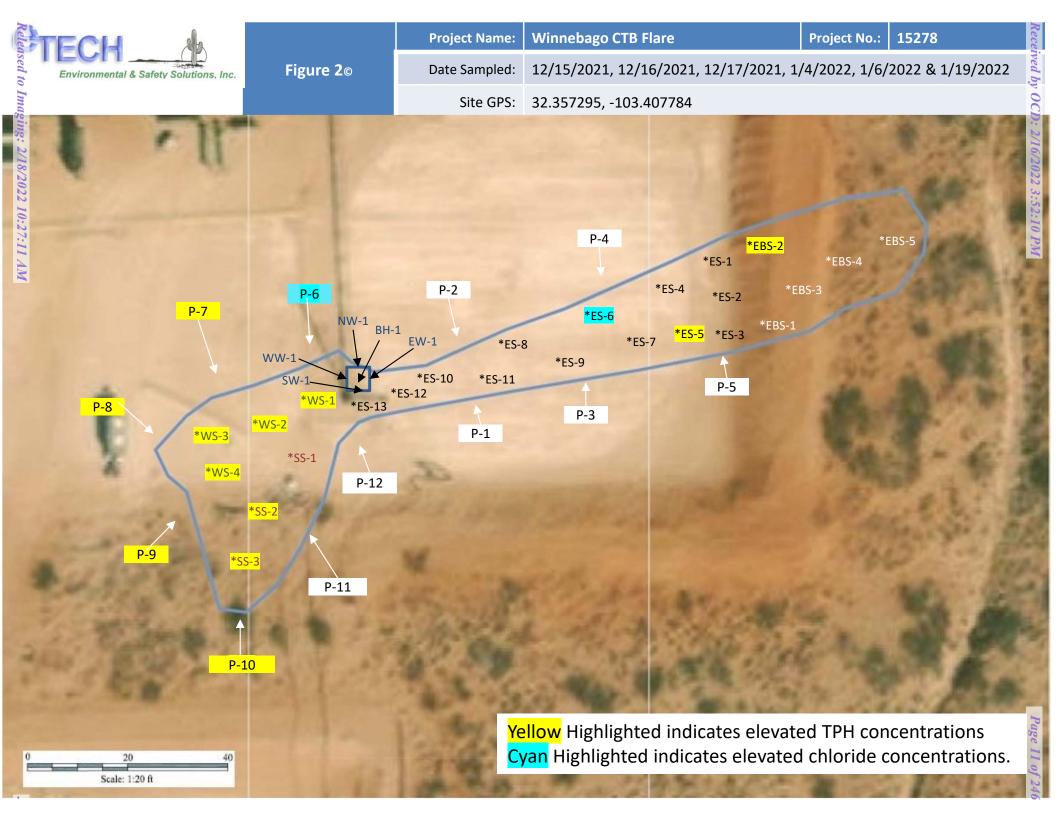


TABLE 1

CENTENNIAL RESOURCE DEVELOPMENT, INC.

WINNEBAGO CTB FLARE RELEASE SITE

			:	METHODS:	SW 846-80211	aranons are repo	5 5		M	ETHOD: SW 801	METHOD: SW 8015M					
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE			
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg			
East Surface Sample Results																
East Surface - 1	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	295	77.6	372.6	517			
East Surface - 1A	1/4/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	-			
East Surface - 1AH @ 2-5"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	135			
East Surface - 1AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	81.5			
East Surface - 2	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	587	150	737	165			
East Surface - 2A	1/4/2022	-	-	-	-		-	-	ND	ND	ND	ND	-			
East Surface - 2AH @ 2-5"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	71.0			
East Surface - 2AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	ND	44.3	ND	44.3	48.8			
East Surface - 3	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	198			
East Surface - 3AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	200			
East Surface - 3AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	183			
East Surface - 4	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	39.3	ND	39.3	663			
East Surface - 4A	1/4/2022	-	-	-	-	-	-	-	-	-	-	-	37.5			
East Surface - 4AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	41.5	ND	41.5	63.5			
East Surface - 4AH @ 6-9"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	40.1			
East Surface - 5	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	154	ND	154	253			
East Surface - 5A	1/4/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	-			
East Surface - 5AH @ 2-5"	1/19/2022	-	1	-	-	1	-	1	ND	110	ND	110	82.3			
East Surface - 5AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	62.4			
East Surface - 6	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	132	ND	132	76.6			
East Surface - 6A	1/4/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	-			
East Surface - 6AH @ 2-5"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	2,130			
East Surface - 6AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	75.3			
East Surface - 7	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	33.9			
East Surface - 7AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	70.1			
East Surface - 7AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	35.5			
East Surface - 8	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	114			
East Surface - 8AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	63.4			
East Surface - 8AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	41.5			
to Imaging: 2/18/2022	10.4/.11/1/	98														

TABLE 1

CENTENNIAL RESOURCE DEVELOPMENT, INC.

WINNEBAGO CTB FLARE RELEASE SITE

				METHODS:		aranons are repo 3	3 3		M	ETHOD: SW 801	5M		E 300.0
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
East Surface - 9	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	79.5
East Surface - 9AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	11.1
East Surface - 9AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	57.3
East Surface - 10	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50.9
East Surface - 10AH @ 0-3"	1/19/2022	-	1	-	1	-	-	-	ND	ND	ND	ND	69.1
East Surface - 10AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	30.6
East Surface - 11	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	65.7
East Surface - 11AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	48.9
East Surface - 11AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	19.8
East Surface - 12	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	69.8
East Surface - 12AH @ 0-3"	1/19/2022	-	1	-	1	-	-	-	ND	ND	ND	ND	37.8
East Surface - 12AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	28.3
East Surface - 13	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	88.0	ND	88.0	149
East Surface - 13AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	129
East Surface - 13AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	74.4
	12/15/2021	MD	ND	NID		m Surface Sa	•	NID	NE	20.7	ND	20.7	6.02
East Berm Surface - 1	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	29.7	ND	29.7	6.92
East Berm Surface - 1AH @ 0-3" East Berm Surface - 1AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND ND	33.2 ND	ND ND	33.2 ND	17.9 3.97
East Berm Surface - 2	1/10/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND 60.0	ND	ND 60.0	8.26
East Berm Surface - 2AH @ 0-3" East Berm Surface - 2AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND ND	60.0	ND 54.9	60.0 264.9	15.4 23.4
East Berm Surface - 3	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	4.63 3.99
East Berm Surface - 3AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND ND	ND ND	ND ND	ND ND	2.80
East Berm Surface - 3AH @ 3-6"								ND					
East Berm Surface - 4	1/10/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	7.57
East Berm Surface - 4AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND ND	ND ND	ND ND	ND ND	13.2 5.22
East Berm Surface - 4AH @ 3-6"	1/19/2022		-		-	-	_	-	ND	MD	ND	מאו	3.22

TABLE 1

CENTENNIAL RESOURCE DEVELOPMENT, INC.

WINNEBAGO CTB FLARE RELEASE SITE

		All concentrations are reported in mg/Kg METHODS: SW 846-8021B METHOD: SW 8015M										E 300.0	
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
East Berm Surface - 5	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.48
East Berm Surface - 5AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	5.09
East Berm Surface - 5AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	3.76
		1	1		West S	Surface Samp	le Results						
West Surface - 1	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	646	132	778	157
West Surface - 1A	1/4/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	-
West Surface - 1AH @ 4-7"	1/19/2022	-	-	-	-	-	-	-	43.9	66.1	ND	110.0	83.6
West Surface - 1AH @ 7-11"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	49.6
West Surface - 2	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	301
West Surface - 2AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	585	1,100	191	1,876	139
West Surface - 2AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	839	1,780	402	3,021	191
West Surface - 3	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	52.3	ND	52.3	278
West Surface - 3AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	246	43.3	289.3	161
West Surface - 3AH @ 3-6"	1/19/2022	-	-	-	-	-	-		ND	61.9	ND	61.9	170
West Surface - 4	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	38.4	ND	38.4	264
West Surface - 4AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	109	ND	109	200
West Surface - 4AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	31.9	ND	31.9	106.0
					South	Surface Samp	le Results						
South Surface - 1	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	521	116	637	243
South Surface - 1A	1/4/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	-
South Surface - 1AH @ 2-5"	1/19/2022	-	-	-	-	-	-	-	25.3	ND	ND	25.3	29.6
South Surface - 1AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	27.2	ND	ND	27.2	34.1
South Surface - 2	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	194	47.7	241.7	58.1
South Surface - 2A	1/4/2022	-	-	-	-	-	-	-	ND	60.9	ND	60.9	-
South Surface - 2AH @ 2-5"	1/19/2022	-	-	-	-	-	-		ND	258	37.0	295.0	115
South Surface - 2AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	ND	122	ND	122	82.1
South Surface - 3	12/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	83.2	ND	83.2	23.8
South Surface - 3AH @ 0-3"	1/19/2022	-	-	-	-	1	-	-	27.6	118	ND	145.6	38.4
South Surface - 3AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	53.5	ND	53.5	19.2

TABLE 1

CENTENNIAL RESOURCE DEVELOPMENT, INC.

WINNEBAGO CTB FLARE RELEASE SITE

LEA COUNTY, NEW MEXICO

	All concentrations are reported in mg/Kg METHODS: SW 846-8021B METHOD: SW 8015M												E 300.0
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL-	m, p - XYLENES	0 -	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
					Peri	meter Sample	Results						
P-1	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	278
P-1AH @ 0-3"	1/19/2022	-	-	1	-	-	-	1	ND	ND	ND	ND	69.9
P-1AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	36.8	ND	ND	36.8	47.9
P-2	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	54.7
P-2AH @ 0-3"	1/19/2022	-	-	•	-	-	-	•	49.9	ND	ND	49.9	164
P-2AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	27.5	ND	ND	27.5	46.2
P-3	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50.2
P-3AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	26.7	ND	ND	26.7	56.2
P-3AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	25.8	ND	ND	25.8	48.0
P-4	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	96.6
P-4AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	31.7	ND	ND	31.7	148
P-4AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	26.9	ND	ND	26.9	79.0
P-5	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	200
P-5AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	63.0
P-5AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	46.9
P-6	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,100
P-6A	1/4/2022	-	-	1	-	-	-	1	-	-	-	-	282
P-6AH @ 4-7"	1/19/2022	-	-	•	-	-	-	•	ND	ND	ND	ND	998
P-6AH @ 7-10"	1/19/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	621
P-7	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	31.9	ND	31.9	560
P-7AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	647	67.4	714.4	298
P-7AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	174	ND	174	240
P-8	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	503
P-8AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	131	ND	131	79.9
P-8AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	92.2	ND	92.2	88.1
P-9	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	52.4
P-9AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	398	50.3	448.3	61.8
Р-9АН @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	77.8	ND	77.8	13.2

Released to Imaging: 2/18/2022 10:27:11 AM

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL PRIMARY RELEASE CONFIRMATION SAMPLE RESULTS

CENTENNIAL RESOURCE DEVELOPMENT, INC.

WINNEBAGO CTB FLARE RELEASE SITE

LEA COUNTY, NEW MEXICO

]	METHODS:	SW 846-8021	В			M	ETHOD: SW 801	5M		E 300.0
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDI
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
P-10	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	115	31.7	146.7	33.6
P-10A	1/4/2022	-	-	-	-	-	-	-	ND	ND	ND	ND	-
P-10AH @ 2-5"	1/19/2022	-	-	-	-	-	-	-	ND	156	25.6	181.6	29.2
P-10AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	ND	43.4	ND	43.4	17.0
P-11	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	107	ND	107	47.8
P-11A	1/4/2022	-	-	-	-	-	-		32.1	622	121	775.1	1
P-11B	1/6/2022	-	-	-	-	1	-	•	ND	ND	ND	ND	1
P-11AH @ 5-8"	1/19/2022	-	-	-	-	-	-	-	ND	48.8	ND	48.8	37.8
P-11AH @ 8-11"	1/19/2022	-	-	-	-	-	-	-	ND	32.0	ND	32.0	33.5
P-12	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.0
P-12AH @ 0-3"	1/19/2022	-	-	-	-	-	-	-	ND	69.5	ND	69.5	22.3
P-12AH @ 3-6"	1/19/2022	-	-	-	-	-	-	-	ND	38.6	ND	38.6	25.8
					Stoc	kpile Sample	Results						
Stockpile	1/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	90.5	ND	90.5	24.5

Bold and Yellow Highlighted indicates Analyte Above NMOCD Regulatory Limit

[&]quot;ND" denotes analyte not detected above laboratory method detection limit.

[&]quot;-" denotes analyte not analyzed.

TABLE 2

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL SECONDARY RELEASE CONFIRMATION SAMPLE RESULTS

CENTENNIAL RESOURCE DEVELOPMENT, INC.

WINNEBAGO CTB FLARE RELEASE SITE

						centrations are re	0 0						
	G. M. F.			METHODS:	SW 846-8021I	В			M	ETHOD: SW 801	5M		E 300.0
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
					Bot	tom Hole Sam	ple Results						
Bottom Hole 1 @ 1' 12/17/2021 ND												159	
					Si	de Wall Samp	le Results						
NW-1	12/17/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	59.3
SW-1	12/17/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.8
EW-1	12/17/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	51.8
WW-1	12/17/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11.3
					St	ockpile Samp	le Results						
Stockpile-1	12/17/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27.5

Bold and Yellow Highlighted indicates Analyte Above NMOCD Regulatory Limit

[&]quot;ND" denotes analyte not detected above laboratory method detection limit.

[&]quot;-" denotes analyte not analyzed.

Project Name: Winnebago CTB Flare Release

Project No: 15278

Photo No:

Direction Taken:

Southwest

Description:

View of the release area.

Photo No:

2.

Direction Taken:

Northeast

Description:

View of the release area.

Project Name: Winnebago CTB Flare Release

Project No: 15278

Photo No:

Direction Taken:

West

Description:

View of the release area.

Photo No:

Direction Taken:

Northwest

Description:

View of the release area.

Project Name: Winnebago CTB Flare Release

Project No: 15278

Photo No: 5.

Direction Taken:

Northeast

Description:

View of the excavation activities.

Photo No:

Direction Taken:

Northwest

Description:

View of the excavation activities.

Project Name: Winnebago CTB Flare Release

Project No: 15278

Photo No: 7.

Direction Taken:

North

Description:

View of the excavation activities.

Photo No:

Direction Taken:

Southeast

Description:

View of the excavation activities.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Tim McMinn
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Winnebago CTB Flare Project Number: 15278

Location: Lea County, NM

Lab Order Number: 1L17007

Current Certification

Report Date: 12/22/21

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
East Surface - 1	1L17007-01	Soil	12/15/21 09:00	12-17-2021 10:38
East Surface - 2	1L17007-02	Soil	12/15/21 09:15	12-17-2021 10:38
East Surface - 3	1L17007-03	Soil	12/15/21 09:30	12-17-2021 10:38
East Surface - 4	1L17007-04	Soil	12/15/21 09:45	12-17-2021 10:38
East Surface - 5	1L17007-05	Soil	12/15/21 09:55	12-17-2021 10:38
East Surface - 6	1L17007-06	Soil	12/15/21 10:05	12-17-2021 10:38
East Surface - 7	1L17007-07	Soil	12/15/21 10:25	12-17-2021 10:38
East Surface - 8	1L17007-08	Soil	12/15/21 10:35	12-17-2021 10:38
East Surface - 9	1L17007-09	Soil	12/15/21 10:42	12-17-2021 10:38
East Surface - 10	1L17007-10	Soil	12/15/21 10:50	12-17-2021 10:38
East Surface - 11	1L17007-11	Soil	12/15/21 11:00	12-17-2021 10:38
East Surface - 12	1L17007-12	Soil	12/15/21 11:10	12-17-2021 10:38
East Surface - 13	1L17007-13	Soil	12/15/21 11:20	12-17-2021 10:38
East Berm Surface - 1	1L17007-14	Soil	12/15/21 12:00	12-17-2021 10:38
East Berm Surface - 2	1L17007-15	Soil	12/15/21 13:00	12-17-2021 10:38
East Berm Surface - 3	1L17007-16	Soil	12/15/21 13:10	12-17-2021 10:38
East Berm Surface - 4	1L17007-17	Soil	12/15/21 13:20	12-17-2021 10:38
East Berm Surface - 5	1L17007-18	Soil	12/15/21 13:30	12-17-2021 10:38
West Surface - 1	1L17007-19	Soil	12/15/21 14:10	12-17-2021 10:38
West Surface - 2	1L17007-20	Soil	12/15/21 14:00	12-17-2021 10:38
West Surface - 3	1L17007-21	Soil	12/15/21 13:50	12-17-2021 10:38
West Surface - 4	1L17007-22	Soil	12/15/21 13:40	12-17-2021 10:38
South Surface - 1	1L17007-23	Soil	12/15/21 11:30	12-17-2021 10:38
South Surface - 2	1L17007-24	Soil	12/15/21 11:40	12-17-2021 10:38
South Surface - 3	1L17007-25	Soil	12/15/21 11:50	12-17-2021 10:38
P-1	1L17007-26	Soil	12/16/21 13:00	12-17-2021 10:38
P-2	1L17007-27	Soil	12/16/21 13:05	12-17-2021 10:38
P-3	1L17007-28	Soil	12/16/21 13:10	12-17-2021 10:38
P-4	1L17007-29	Soil	12/16/21 13:15	12-17-2021 10:38
P-5	1L17007-30	Soil	12/16/21 13:20	12-17-2021 10:38
P-6	1L17007-31	Soil	12/16/21 13:25	12-17-2021 10:38
P-7	1L17007-32	Soil	12/16/21 13:30	12-17-2021 10:38
P-8	1L17007-33	Soil	12/16/21 13:35	12-17-2021 10:38
P-9	1L17007-34	Soil	12/16/21 13:40	12-17-2021 10:38

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P-10	1L17007-35	Soil	12/16/21 13:45	12-17-2021 10:38
P-11	1L17007-36	Soil	12/16/21 13:50	12-17-2021 10:38
P-12	1L17007-37	Soil	12/16/21 13:55	12-17-2021 10:38

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 1 1L17007-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 06:57	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 06:57	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 06:57	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 06:57	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 06:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.7 %	80-120		P1L1704	12/17/21 12:48	12/18/21 06:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.7 %	80-120		P1L1704	12/17/21 12:48	12/18/21 06:57	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	517	5.10	mg/kg dry	5	P1L2001	12/20/21 08:03	12/20/21 12:55	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 16:20	TPH 8015M	
>C12-C28	295	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 16:20	TPH 8015M	
>C28-C35	77.6	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 16:20	TPH 8015M	
Surrogate: 1-Chlorooctane		133 %	70-130		P1L1707	12/17/21 16:39	12/18/21 16:20	TPH 8015M	S-GC1
Surrogate: o-Terphenyl		141 %	70-130		P1L1707	12/17/21 16:39	12/18/21 16:20	TPH 8015M	S-GC1
Total Petroleum Hydrocarbon C6-C35	373	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 16:20	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 2 1L17007-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-	Result	Limit	Omo	Diration	Dutell	Tropured			11010.
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:00	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:00	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:00	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:00	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:00	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.0 %	80-120		P1L1704	12/17/21 12:48	12/18/21 08:00	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.4 %	80-120		P1L1704	12/17/21 12:48	12/18/21 08:00	EPA 8021B	
General Chemistry Parameters by	FPA / Stanc	lard Mat	hods						
Chloride	165	1.02	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 13:14	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 16:44	TPH 8015M	
>C12-C28	587	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 16:44	TPH 8015M	
>C28-C35	150	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 16:44	TPH 8015M	
Surrogate: 1-Chlorooctane		141 %	70-130		P1L1707	12/17/21 16:39	12/18/21 16:44	TPH 8015M	S-GC1
Surrogate: o-Terphenyl		153 %	70-130		P1L1707	12/17/21 16:39	12/18/21 16:44	TPH 8015M	S-GC1
Total Petroleum Hydrocarbon C6-C35	737	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 16:44	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 3 1L17007-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:22	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:22	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:22	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:22	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:22	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.9 %	80-120		P1L1704	12/17/21 12:48	12/18/21 08:22	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P1L1704	12/17/21 12:48	12/18/21 08:22	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	198	5.10	mg/kg dry	5	P1L2001	12/20/21 08:03	12/21/21 08:58	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 17:53	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 17:53	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 17:53	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-130		P1L1707	12/17/21 16:39	12/18/21 17:53	TPH 8015M	
Surrogate: o-Terphenyl		126 %	70-130		P1L1707	12/17/21 16:39	12/18/21 17:53	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 17:53	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 4 1L17007-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:43	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:43	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:43	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:43	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 08:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P1L1704	12/17/21 12:48	12/18/21 08:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P1L1704	12/17/21 12:48	12/18/21 08:43	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	663	10.2	mg/kg dry	10	P1L2001	12/20/21 08:03	12/20/21 14:30	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 18:17	TPH 8015M	
>C12-C28	39.3	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 18:17	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 18:17	TPH 8015M	
Surrogate: 1-Chlorooctane		144 %	70-130		P1L1707	12/17/21 16:39	12/18/21 18:17	TPH 8015M	S-GC
Surrogate: o-Terphenyl		154 %	70-130		P1L1707	12/17/21 16:39	12/18/21 18:17	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	39.3	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 18:17	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 5 1L17007-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Result	Lillit	Cints	Dilution	Datell	ricparcu	1 mary zea	zenou	11010.
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:04	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:04	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:04	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:04	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:04	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.4 %	80-120		P1L1704	12/17/21 12:48	12/18/21 09:04	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P1L1704	12/17/21 12:48	12/18/21 09:04	EPA 8021B	
General Chemistry Parameters by 1	EPA / Stand	lard Met	hods						
Chloride	253	5.10	mg/kg dry	5	P1L2001	12/20/21 08:03	12/20/21 15:27	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 18:40	TPH 8015M	
>C12-C28	154	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 18:40	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 18:40	TPH 8015M	
Surrogate: 1-Chlorooctane		121 %	70-130		P1L1707	12/17/21 16:39	12/18/21 18:40	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-130		P1L1707	12/17/21 16:39	12/18/21 18:40	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	154	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 18:40	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 6 1L17007-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-	Result	Lillin	Omis	Dilution	Daten	Перагси	7 mary 200	111cmod	110103
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:26	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:26	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:26	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:26	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P1L1704	12/17/21 12:48	12/18/21 09:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P1L1704	12/17/21 12:48	12/18/21 09:26	EPA 8021B	
General Chemistry Parameters by	FPA / Stand	lard Metl	hods						
Chloride	76.6	1.02	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 15:46	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:03	TPH 8015M	
>C12-C28	132	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:03	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:03	TPH 8015M	
Surrogate: 1-Chlorooctane		131 %	70-130		P1L1707	12/17/21 16:39	12/18/21 19:03	TPH 8015M	S-GC1
Surrogate: o-Terphenyl		139 %	70-130		P1L1707	12/17/21 16:39	12/18/21 19:03	TPH 8015M	S-GC1
Total Petroleum Hydrocarbon C6-C35	132	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 19:03	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 7 1L17007-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	resurt	2		2 Hation	Duten	. Toparou	,		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:47	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:47	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:47	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:47	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 09:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P1L1704	12/17/21 12:48	12/18/21 09:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.1 %	80-120		P1L1704	12/17/21 12:48	12/18/21 09:47	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	33.9	1.02	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 16:05	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons Co	5-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:26	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:26	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:26	TPH 8015M	
Surrogate: 1-Chlorooctane		140 %	70-130		P1L1707	12/17/21 16:39	12/18/21 19:26	TPH 8015M	S-GC1
Surrogate: o-Terphenyl		146 %	70-130		P1L1707	12/17/21 16:39	12/18/21 19:26	TPH 8015M	S-GC1
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 19:26	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 8 1L17007-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	resure		- CIMIS	Bildion	- Duten	Trepulea	,		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:08	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:08	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:08	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:08	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P1L1704	12/17/21 12:48	12/18/21 10:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.4 %	80-120		P1L1704	12/17/21 12:48	12/18/21 10:08	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	114	1.02	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 16:24	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons Co	5-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:50	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:50	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 19:50	TPH 8015M	
Surrogate: 1-Chlorooctane		129 %	70-130		P1L1707	12/17/21 16:39	12/18/21 19:50	TPH 8015M	
Surrogate: o-Terphenyl		135 %	70-130		P1L1707	12/17/21 16:39	12/18/21 19:50	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 19:50	cale	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 9 1L17007-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	resure						,		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:30	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:30	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:30	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:30	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.5 %	80-120		P1L1704	12/17/21 12:48	12/18/21 10:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P1L1704	12/17/21 12:48	12/18/21 10:30	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	79.5	1.02	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 16:43	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:13	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:13	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:13	TPH 8015M	
Surrogate: 1-Chlorooctane		132 %	70-130		P1L1707	12/17/21 16:39	12/18/21 20:13	TPH 8015M	S-GC
Surrogate: o-Terphenyl		142 %	70-130		P1L1707	12/17/21 16:39	12/18/21 20:13	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 20:13	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 10 1L17007-10 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envii	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00120	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:51	EPA 8021B	
Toluene	ND	0.00120	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:51	EPA 8021B	
Ethylbenzene	ND	0.00120	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:51	EPA 8021B	
Xylene (p/m)	ND	0.00241	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:51	EPA 8021B	
Xylene (o)	ND	0.00120	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 10:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P1L1704	12/17/21 12:48	12/18/21 10:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P1L1704	12/17/21 12:48	12/18/21 10:51	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	<u>10ds</u>						
Chloride	50.9	1.20	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 17:02	EPA 300.0	
% Moisture	17.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
otal Petroleum Hydrocarbons C6	-C35 by EPA	4 Method	8015M						
C6-C12	ND	30.1	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:36	TPH 8015M	
>C12-C28	ND	30.1	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:36	TPH 8015M	
>C28-C35	ND	30.1	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:36	TPH 8015M	
Surrogate: 1-Chlorooctane		119 %	70-130		P1L1707	12/17/21 16:39	12/18/21 20:36	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P1L1707	12/17/21 16:39	12/18/21 20:36	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	30.1	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 20:36	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 11 1L17007-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 11:12	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 11:12	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 11:12	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 11:12	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P1L1704	12/17/21 12:48	12/18/21 11:12	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.6 %	80-120		P1L1704	12/17/21 12:48	12/18/21 11:12	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8 %	80-120		P1L1704	12/17/21 12:48	12/18/21 11:12	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	65.7	1.03	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 17:21	EPA 300.0	
% Moisture	3.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:59	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:59	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 20:59	TPH 8015M	
Surrogate: 1-Chlorooctane		119 %	70-130		P1L1707	12/17/21 16:39	12/18/21 20:59	TPH 8015M	
Surrogate: o-Terphenyl		127 %	70-130		P1L1707	12/17/21 16:39	12/18/21 20:59	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 20:59	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 12 1L17007-12 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:03	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:03	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:03	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:03	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P1L1708	12/17/21 14:56	12/18/21 14:03	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.5 %	80-120		P1L1708	12/17/21 14:56	12/18/21 14:03	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Metl	hods						
Chloride	69.8	1.06	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 17:40	EPA 300.0	
% Moisture	6.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 21:22	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 21:22	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P1L1707	12/17/21 16:39	12/18/21 21:22	TPH 8015M	
Surrogate: 1-Chlorooctane		158 %	70-130		P1L1707	12/17/21 16:39	12/18/21 21:22	TPH 8015M	S-GC
Surrogate: o-Terphenyl		167 %	70-130		P1L1707	12/17/21 16:39	12/18/21 21:22	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	12/17/21 16:39	12/18/21 21:22	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 13 1L17007-13 (Soil)

Analyte		Reporting						36.4.1	3.7 .
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:24	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:24	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:24	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:24	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.4 %	80-120		P1L1708	12/17/21 14:56	12/18/21 14:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P1L1708	12/17/21 14:56	12/18/21 14:24	EPA 8021B	
General Chemistry Parameters by 1	EPA / Stand	lard Met	hods						
Chloride	149	1.03	mg/kg dry	1	P1L2001	12/20/21 08:03	12/20/21 17:59	EPA 300.0	
% Moisture	3.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 06:41	TPH 8015M	
>C12-C28	88.0	25.8	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 06:41	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 06:41	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-130		P1L1709	12/17/21 16:43	12/18/21 06:41	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P1L1709	12/17/21 16:43	12/18/21 06:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	88.0	25.8	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 06:41	calc	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface - 1 1L17007-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:46	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:46	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:46	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:46	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 14:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	80-120		P1L1708	12/17/21 14:56	12/18/21 14:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P1L1708	12/17/21 14:56	12/18/21 14:46	EPA 8021B	
General Chemistry Parameters by 1	EPA / Stanc	lard Metl	hods						
Chloride	6.92	1.01	mg/kg dry	1	P1L2002	12/20/21 08:14	12/20/21 13:13	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:04	TPH 8015M	
>C12-C28	29.7	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:04	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:04	TPH 8015M	
Surrogate: 1-Chlorooctane		120 %	70-130		P1L1709	12/17/21 16:43	12/18/21 07:04	TPH 8015M	
Surrogate: o-Terphenyl		127 %	70-130		P1L1709	12/17/21 16:43	12/18/21 07:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	29.7	25.3	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 07:04	cale	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface - 2 1L17007-15 (Soil)

A14		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:07	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:07	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:07	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:07	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:07	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P1L1708	12/17/21 14:56	12/18/21 15:07	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.4 %	80-120		P1L1708	12/17/21 14:56	12/18/21 15:07	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.26	1.01	mg/kg dry	1	P1L2002	12/20/21 08:14	12/20/21 13:28	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	18015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:27	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:27	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:27	TPH 8015M	
Surrogate: 1-Chlorooctane		124 %	70-130		P1L1709	12/17/21 16:43	12/18/21 07:27	TPH 8015M	
Surrogate: o-Terphenyl		133 %	70-130		P1L1709	12/17/21 16:43	12/18/21 07:27	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 07:27	calc	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface - 3 1L17007-16 (Soil)

Analyte		Reporting						36.4.1	37.
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:28	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:28	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:28	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:28	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:28	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P1L1708	12/17/21 14:56	12/18/21 15:28	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P1L1708	12/17/21 14:56	12/18/21 15:28	EPA 8021B	
General Chemistry Parameters by	FPA / Stand	lard Metl	hods						
Chloride	4.63	1.01	mg/kg dry	1	P1L2002	12/20/21 08:14	12/20/21 14:14	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:51	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:51	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 07:51	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-130		P1L1709	12/17/21 16:43	12/18/21 07:51	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P1L1709	12/17/21 16:43	12/18/21 07:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 07:51	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface - 4 1L17007-17 (Soil)

Analyte		Reporting						36.4.1	3.7
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:50	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:50	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:50	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:50	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 15:50	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P1L1708	12/17/21 14:56	12/18/21 15:50	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.7 %	80-120		P1L1708	12/17/21 14:56	12/18/21 15:50	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	7.57	1.01	mg/kg dry	1	P1L2002	12/20/21 08:14	12/20/21 15:00	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	18015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 08:14	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 08:14	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 08:14	TPH 8015M	
Surrogate: 1-Chlorooctane		130 %	70-130		P1L1709	12/17/21 16:43	12/18/21 08:14	TPH 8015M	
Surrogate: o-Terphenyl		135 %	70-130		P1L1709	12/17/21 16:43	12/18/21 08:14	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 08:14	calc	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface - 5 1L17007-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B						,			
Benzene	ND	0.00100	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:11	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:11	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:11	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:11	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.5 %	80-120		P1L1708	12/17/21 14:56	12/18/21 16:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P1L1708	12/17/21 14:56	12/18/21 16:11	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	2.48	1.00	mg/kg dry	1	P1L2002	12/20/21 08:14	12/20/21 15:15	EPA 300.0	
% Moisture	ND	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 08:37	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 08:37	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 08:37	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-130		P1L1709	12/17/21 16:43	12/18/21 08:37	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-130		P1L1709	12/17/21 16:43	12/18/21 08:37	TPH 8015M	S-GO
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 08:37	calc	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 1 1L17007-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-	Result	Lillit	Omis	Dilution	Daten	Trepared	1 mary 2.cd	memou	
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:32	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:32	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:32	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:32	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.0 %	80-120		P1L1708	12/17/21 14:56	12/18/21 16:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P1L1708	12/17/21 14:56	12/18/21 16:32	EPA 8021B	
General Chemistry Parameters by 1	EPA / Stanc	lard Met	hods						
Chloride	157	1.02	mg/kg dry	1	P1L2002	12/20/21 08:14	12/20/21 15:30	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 09:46	TPH 8015M	
>C12-C28	646	25.5	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 09:46	TPH 8015M	
>C28-C35	132	25.5	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 09:46	TPH 8015M	
Surrogate: 1-Chlorooctane		120 %	70-130		P1L1709	12/17/21 16:43	12/18/21 09:46	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-130		P1L1709	12/17/21 16:43	12/18/21 09:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	779	25.5	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 09:46	calc	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 2 1L17007-20 (Soil)

A14-		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:54	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:54	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:54	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:54	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L1708	12/17/21 14:56	12/18/21 16:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P1L1708	12/17/21 14:56	12/18/21 16:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.1 %	80-120		P1L1708	12/17/21 14:56	12/18/21 16:54	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	301	5.05	mg/kg dry	5	P1L2002	12/20/21 08:14	12/20/21 15:46	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 10:09	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 10:09	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L1709	12/17/21 16:43	12/18/21 10:09	TPH 8015M	
Surrogate: 1-Chlorooctane		110 %	70-130		P1L1709	12/17/21 16:43	12/18/21 10:09	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P1L1709	12/17/21 16:43	12/18/21 10:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	12/17/21 16:43	12/18/21 10:09	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 3 1L17007-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envir	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:28	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:28	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:28	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:28	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:28	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P1L2003	12/20/21 11:07	12/20/21 14:28	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.9 %	80-120		P1L2003	12/20/21 11:07	12/20/21 14:28	EPA 8021B	
General Chemistry Parameters by l	EPA / Stand	lard Metl	hods						
Chloride	278	5.10	mg/kg dry	5	P1L2002	12/20/21 08:14	12/20/21 16:01	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
otal Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 18:42	TPH 8015M	
>C12-C28	52.3	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 18:42	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 18:42	TPH 8015M	
Surrogate: 1-Chlorooctane		83.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 18:42	TPH 8015M	
Surrogate: o-Terphenyl		92.5 %	70-130		P1L2007	12/20/21 12:00	12/20/21 18:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	52.3	25.5	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 18:42	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 4 1L17007-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	result		J		Duten	Tropulou	,		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:49	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:49	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:49	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:49	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 14:49	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	ļ	97.6 %	80-120		P1L2003	12/20/21 11:07	12/20/21 14:49	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P1L2003	12/20/21 11:07	12/20/21 14:49	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	264	5.10	mg/kg dry	5	P1L2002	12/20/21 08:14	12/21/21 09:35	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:04	TPH 8015M	
>C12-C28	38.4	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:04	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:04	TPH 8015M	
Surrogate: 1-Chlorooctane		79.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 19:04	TPH 8015M	
Surrogate: o-Terphenyl		88.3 %	70-130		P1L2007	12/20/21 12:00	12/20/21 19:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	38.4	25.5	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 19:04	calc	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 1 1L17007-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dramanad	Analyzed	Method	Note
	Kesuit	Limit	Units	Dilution	ваисп	Prepared	Anaryzed	MEHIOU	note
		P	ermian B	asin Envii	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:10	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:10	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:10	EPA 8021B	
Xylene (p/m)	0.00248	0.00202	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:10	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P1L2003	12/20/21 11:07	12/20/21 15:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P1L2003	12/20/21 11:07	12/20/21 15:10	EPA 8021B	
General Chemistry Parameters by	v EPA / Stand	lard Metl	hods						
Chloride	243	1.01	mg/kg dry	1	P1L2002	12/20/21 08:14	12/21/21 09:50	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:26	TPH 8015M	
>C12-C28	521	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:26	TPH 8015M	
>C28-C35	116	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:26	TPH 8015M	
Surrogate: 1-Chlorooctane		85.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 19:26	TPH 8015M	
Surrogate: o-Terphenyl		96.4 %	70-130		P1L2007	12/20/21 12:00	12/20/21 19:26	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	637	25.3	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 19:26	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 2 1L17007-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:32	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:32	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:32	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:32	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.0 %	80-120		P1L2003	12/20/21 11:07	12/20/21 15:32	EPA 8021B	-
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P1L2003	12/20/21 11:07	12/20/21 15:32	EPA 8021B	
General Chemistry Parameters by 1	EPA / Stand	ard Metl	10ds_						
Chloride	58.1	1.01	mg/kg dry	1	P1L2002	12/20/21 08:14	12/21/21 10:05	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Octal Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:49	TPH 8015M	
>C12-C28	194	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:49	TPH 8015M	
>C28-C35	47.7	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 19:49	TPH 8015M	
Surrogate: 1-Chlorooctane		87.3 %	70-130		P1L2007	12/20/21 12:00	12/20/21 19:49	TPH 8015M	
Surrogate: o-Terphenyl	!	97.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 19:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	242	25.3	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 19:49	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 3 1L17007-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
2	Result	Lillit	Omis	Dilution	Datell	ricpared	7 maryzed	wichiod	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:53	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:53	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:53	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:53	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 15:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P1L2003	12/20/21 11:07	12/20/21 15:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P1L2003	12/20/21 11:07	12/20/21 15:53	EPA 8021B	
General Chemistry Parameters by 1	FPA / Stand	lard Mati	hods						
Chloride	23.8	1.01	mg/kg dry	1	P1L2002	12/20/21 08:14	12/21/21 10:21	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	18015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 20:11	TPH 8015M	
>C12-C28	83.2	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 20:11	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 20:11	TPH 8015M	
Surrogate: 1-Chlorooctane		90.4 %	70-130		P1L2007	12/20/21 12:00	12/20/21 20:11	TPH 8015M	
Surrogate: o-Terphenyl		99.9 %	70-130		P1L2007	12/20/21 12:00	12/20/21 20:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	83.2	25.3	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 20:11	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-1 1L17007-26 (Soil)

Australia		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:14	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:14	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:14	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:14	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.1 %	80-120		P1L2003	12/20/21 11:07	12/20/21 16:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P1L2003	12/20/21 11:07	12/20/21 16:14	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	278	5.10	mg/kg dry	5	P1L2010	12/20/21 14:24	12/21/21 11:53	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 21:19	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 21:19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 21:19	TPH 8015M	
Surrogate: 1-Chlorooctane		84.7 %	70-130		P1L2007	12/20/21 12:00	12/20/21 21:19	TPH 8015M	
Surrogate: o-Terphenyl		95.2 %	70-130		P1L2007	12/20/21 12:00	12/20/21 21:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 21:19	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-2 1L17007-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dronorad	Analyzed	Method	Notes
Thatye	Kesuit	Limit	Units	Dilution	Batch	Prepared	Allalyzeu	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:36	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:36	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:36	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:36	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1L2003	12/20/21 11:07	12/20/21 16:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P1L2003	12/20/21 11:07	12/20/21 16:36	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	54.7	1.02	mg/kg dry	1	P1L2010	12/20/21 14:24	12/22/21 10:35	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 21:41	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 21:41	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 21:41	TPH 8015M	
Surrogate: 1-Chlorooctane		86.1 %	70-130		P1L2007	12/20/21 12:00	12/20/21 21:41	TPH 8015M	
Surrogate: o-Terphenyl		94.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 21:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 21:41	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-3 1L17007-28 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:57	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:57	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:57	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:57	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 16:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.5 %	80-120		P1L2003	12/20/21 11:07	12/20/21 16:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P1L2003	12/20/21 11:07	12/20/21 16:57	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	50.2	1.01	mg/kg dry	1	P1L2010	12/20/21 14:24	12/21/21 12:54	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	18015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:04	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:04	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:04	TPH 8015M	
Surrogate: 1-Chlorooctane		81.9 %	70-130		P1L2007	12/20/21 12:00	12/20/21 22:04	TPH 8015M	
Surrogate: o-Terphenyl		90.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 22:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 22:04	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-4 1L17007-29 (Soil)

Analyte	D 1	Reporting	T T:4	Dilatian	D-4-h	D	Analyzed	Method	Notes
Thatye	Result	Limit	Units	Dilution	Batch	Prepared	Allalyzeu	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:18	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:18	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:18	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:18	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P1L2003	12/20/21 11:07	12/20/21 17:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1L2003	12/20/21 11:07	12/20/21 17:18	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	96.6	5.10	mg/kg dry	5	P1L2010	12/20/21 14:24	12/21/21 13:09	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:26	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:26	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:26	TPH 8015M	
Surrogate: 1-Chlorooctane		81.0 %	70-130		P1L2007	12/20/21 12:00	12/20/21 22:26	TPH 8015M	
Surrogate: o-Terphenyl		91.0 %	70-130		P1L2007	12/20/21 12:00	12/20/21 22:26	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 22:26	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-5 1L17007-30 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:39	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:39	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:39	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:39	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 17:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.9 %	80-120		P1L2003	12/20/21 11:07	12/20/21 17:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P1L2003	12/20/21 11:07	12/20/21 17:39	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	200	1.01	mg/kg dry	1	P1L2010	12/20/21 14:24	12/21/21 13:24	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	18015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:49	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:49	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 22:49	TPH 8015M	
Surrogate: 1-Chlorooctane		87.4 %	70-130		P1L2007	12/20/21 12:00	12/20/21 22:49	TPH 8015M	
Surrogate: o-Terphenyl		96.9 %	70-130		P1L2007	12/20/21 12:00	12/20/21 22:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 22:49	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-6 1L17007-31 (Soil)

		D .:							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 18:43	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 18:43	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 18:43	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 18:43	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 18:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.7 %	80-120		P1L2003	12/20/21 11:07	12/20/21 18:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P1L2003	12/20/21 11:07	12/20/21 18:43	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	2100	10.1	mg/kg dry	10	P1L2010	12/20/21 14:24	12/21/21 13:40	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:12	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:12	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:12	TPH 8015M	
Surrogate: 1-Chlorooctane		85.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 23:12	TPH 8015M	
Surrogate: o-Terphenyl		94.8 %	70-130		P1L2007	12/20/21 12:00	12/20/21 23:12	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 23:12	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-7 1L17007-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:04	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:04	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:04	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:04	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:04	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P1L2003	12/20/21 11:07	12/20/21 19:04	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.1 %	80-120		P1L2003	12/20/21 11:07	12/20/21 19:04	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	560	5.05	mg/kg dry	5	P1L2010	12/20/21 14:24	12/21/21 13:55	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:34	TPH 8015M	
>C12-C28	31.9	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:34	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:34	TPH 8015M	
Surrogate: 1-Chlorooctane		81.6 %	70-130		P1L2007	12/20/21 12:00	12/20/21 23:34	TPH 8015M	
Surrogate: o-Terphenyl		90.0 %	70-130		P1L2007	12/20/21 12:00	12/20/21 23:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	31.9	25.3	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 23:34	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-8 1L17007-33 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:26	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:26	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:26	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:26	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P1L2003	12/20/21 11:07	12/20/21 19:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.9 %	80-120		P1L2003	12/20/21 11:07	12/20/21 19:26	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	503	1.02	mg/kg dry	1	P1L2010	12/20/21 14:24	12/21/21 14:10	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:57	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:57	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/20/21 23:57	TPH 8015M	
Surrogate: 1-Chlorooctane		84.5 %	70-130		P1L2007	12/20/21 12:00	12/20/21 23:57	TPH 8015M	
Surrogate: o-Terphenyl		94.7 %	70-130		P1L2007	12/20/21 12:00	12/20/21 23:57	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/20/21 12:00	12/20/21 23:57	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-9 1L17007-34 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:47	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:47	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:47	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:47	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 19:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.1 %	80-120		P1L2003	12/20/21 11:07	12/20/21 19:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P1L2003	12/20/21 11:07	12/20/21 19:47	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	52.4	1.02	mg/kg dry	1	P1L2010	12/20/21 14:24	12/21/21 14:26	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 00:19	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 00:19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 00:19	TPH 8015M	
Surrogate: 1-Chlorooctane		88.7 %	70-130		P1L2007	12/20/21 12:00	12/21/21 00:19	TPH 8015M	
Surrogate: o-Terphenyl		98.0 %	70-130		P1L2007	12/20/21 12:00	12/21/21 00:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/20/21 12:00	12/21/21 00:19	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-10 1L17007-35 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Kesult	LIIIII	Units	Dilution	Datcii	riepaieu	Anaryzed	Method	11010
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:08	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:08	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:08	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:08	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.7 %	80-120	·	P1L2003	12/20/21 11:07	12/20/21 20:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P1L2003	12/20/21 11:07	12/20/21 20:08	EPA 8021B	
General Chemistry Parameters by I	EPA / Stand	ard Metl	hods						
Chloride	33.6	1.00	mg/kg dry	1	P1L2010	12/20/21 14:24	12/21/21 14:41	EPA 300.0	
% Moisture	ND	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 00:42	TPH 8015M	
>C12-C28	115	25.0	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 00:42	TPH 8015M	
>C28-C35	31.7	25.0	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 00:42	TPH 8015M	
Surrogate: 1-Chlorooctane		89.5 %	70-130	·	P1L2007	12/20/21 12:00	12/21/21 00:42	TPH 8015M	
Surrogate: o-Terphenyl	9	97.4 %	70-130		P1L2007	12/20/21 12:00	12/21/21 00:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	146	25.0	mg/kg dry	1	[CALC]	12/20/21 12:00	12/21/21 00:42	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-11 1L17007-36 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
,	Result	LIIIII	Units	Dilution	Баісп	riepaied	Analyzeu	ivictilou	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:30	EPA 8021B	
Toluene	0.00830	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:30	EPA 8021B	
Ethylbenzene	0.00353	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:30	EPA 8021B	
Xylene (p/m)	0.00574	0.00200	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:30	EPA 8021B	
Xylene (o)	0.00161	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P1L2003	12/20/21 11:07	12/20/21 20:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.6 %	80-120		P1L2003	12/20/21 11:07	12/20/21 20:30	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	47.8	1.00	mg/kg dry	1	P1L2010	12/20/21 14:24	12/21/21 15:27	EPA 300.0	
% Moisture	ND	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 01:04	TPH 8015M	
>C12-C28	107	25.0	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 01:04	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1L2007	12/20/21 12:00	12/21/21 01:04	TPH 8015M	
Surrogate: 1-Chlorooctane		87.2 %	70-130		P1L2007	12/20/21 12:00	12/21/21 01:04	TPH 8015M	
Surrogate: o-Terphenyl		91.1 %	70-130		P1L2007	12/20/21 12:00	12/21/21 01:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	107	25.0	mg/kg dry	1	[CALC]	12/20/21 12:00	12/21/21 01:04	cale	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-12 1L17007-37 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:51	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:51	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:51	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:51	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1L2003	12/20/21 11:07	12/20/21 20:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.6 %	80-120		P1L2003	12/20/21 11:07	12/20/21 20:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P1L2003	12/20/21 11:07	12/20/21 20:51	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	10.0	1.00	mg/kg dry	1	P1L2010	12/20/21 14:24	12/21/21 16:12	EPA 300.0	
% Moisture	ND	0.1	%	1	P1L2103	12/21/21 08:43	12/21/21 08:48	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	\ Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1L2009	12/20/21 14:08	12/21/21 05:11	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1L2009	12/20/21 14:08	12/21/21 05:11	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1L2009	12/20/21 14:08	12/21/21 05:11	TPH 8015M	
Surrogate: 1-Chlorooctane		87.9 %	70-130		P1L2009	12/20/21 14:08	12/21/21 05:11	TPH 8015M	
Surrogate: o-Terphenyl		98.6 %	70-130		P1L2009	12/20/21 14:08	12/21/21 05:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	12/20/21 14:08	12/21/21 05:11	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1L1704 - *** DEFAULT PREP *	**									
Blank (P1L1704-BLK1)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/18/21			
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.0959		"	0.0979		98.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.0985		"	0.0979		101	80-120			
LCS (P1L1704-BS1)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/18/21			
Benzene	0.0823	0.00100	mg/kg wet	0.0826		99.6	70-130			
Toluene	0.0767	0.00100	"	0.0826		92.8	70-130			
Ethylbenzene	0.0789	0.00100	"	0.0826		95.5	70-130			
Xylene (p/m)	0.163	0.00200	"	0.165		98.3	70-130			
Xylene (o)	0.0733	0.00100	"	0.0826		88.6	70-130			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.0992		103	80-120			
Surrogate: 1,4-Difluorobenzene	0.0974		"	0.0992		98.2	80-120			
LCS Dup (P1L1704-BSD1)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/18/21			
Benzene	0.0705	0.00100	mg/kg wet	0.0726		97.1	70-130	2.57	20	
Toluene	0.0655	0.00100	"	0.0726		90.2	70-130	2.83	20	
Ethylbenzene	0.0674	0.00100	"	0.0726		92.8	70-130	2.84	20	
Xylene (p/m)	0.139	0.00200	"	0.145		95.4	70-130	2.97	20	
Xylene (o)	0.0619	0.00100	"	0.0726		85.3	70-130	3.88	20	
Surrogate: 4-Bromofluorobenzene	0.0886		"	0.0871		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.0848		"	0.0871		97.4	80-120			
Calibration Blank (P1L1704-CCB1)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/18/21			
Benzene	0.00		mg/kg wet			<u> </u>				
Toluene	0.00		"							
Ethylbenzene	0.150		"							
Xylene (p/m)	0.250		"							
Xylene (o)	0.200		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.8	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	resuit	Limit	Omto	20101	resuit	/UKLC	Liiiits	мь	Dillit	110103
Batch P1L1704 - *** DEFAULT PREP ***										
Calibration Blank (P1L1704-CCB2)				Prepared: 1	12/17/21 Aı	nalyzed: 12	2/18/21			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.140		"							
Xylene (p/m)	0.220		"							
Xylene (o)	0.120		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		95.9	80-120			
Calibration Blank (P1L1704-CCB3)				Prepared: 1	12/17/21 Aı	nalyzed: 12	2/18/21			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.100		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.120		"							
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		95.6	80-120			
Calibration Check (P1L1704-CCV1)				Prepared: 1	12/17/21 Aı	nalyzed: 12	2/18/21			
Benzene	0.113	0.00100	mg/kg wet	0.100		113	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.0997	0.00100	"	0.100		99.7	80-120			
Xylene (p/m)	0.219	0.00200	"	0.200		109	80-120			
Xylene (o)	0.101	0.00100	"	0.100		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	75-125			
Calibration Check (P1L1704-CCV2)				Prepared:	12/17/21 Aı	nalyzed: 12	2/18/21			
Benzene	0.110	0.00100	mg/kg wet	0.100		110	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.0969	0.00100	"	0.100		96.9	80-120			
Xylene (p/m)	0.211	0.00200	"	0.200		106	80-120			
Xylene (o)	0.0977	0.00100	"	0.100		97.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		101	75-125			
G . 1 4 D: 0 . 1	0.116					0 = 0				

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

97.0

75-125

0.120

0.116

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Prepared:			Reporting		Spike	Source		%REC		RPD	
Selection Sele	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Benzene	Batch P1L1704 - *** DEFAULT PREP ***										
Toluene 0.0853 0.00100 " 0.1000 85.3 80-120 Elbiylbenzene 0.0868 0.00100 " 0.1000 88.8 80-120 Nyslene (p/m) 0.176 0.00200 " 0.1000 88.8 80-120 Nyslene (p/m) 0.0812 0.00100 " 0.1000 88.8 80-120 Nyslene (p/m) 0.0812 0.00100 " 0.1000 87.9 80-120 Nyslene (p/m) 0.0812 0.00100 " 0.1000 87.9 80-120 Nyslene (p/m) 0.0812 0.00100 " 0.1000 88.8 80-120 Nyslene (p/m) 0.1166 " 0.120 1.000 1.000 75-223 Nurrogate: 4-Bromofluorobenzene 0.1166 " 0.00101 88.8 80-120 Nyslene (p/m) 1.000 ND 94.6 75-223 Nurrogate: 4-Bromofluorobenzene 0.0946 0.00101 88.8 80-120 Nyslene (p/m) 1.000 ND 84.4 80-120 ND 84.8 80-120 Nyslene (p/m) 0.162 0.00202 " 0.1000 ND 88.8 80-120 Nyslene (p/m) 0.162 0.00202 " 0.1000 ND 88.8 80-120 Nyslene (p/m) 0.162 0.00202 " 0.1000 ND 88.8 80-120 Nyslene (p/m) 0.162 0.00202 " 0.1000 ND 88.8 80-120 Nyslene (p/m) 0.162 0.00202 " 0.1000 ND 88.8 80-120 Nyslene (p/m) 0.00101 " 0.1000 ND 88.8 80-120 Nyslene (p/m) ND 88.8 80-120 ND 88.8 ND NYslene (p/m) ND 88.8 ND NYSlene (p/m	Calibration Check (P1L1704-CCV3)				Prepared: 1	2/17/21 A	nalyzed: 12	/18/21			
National Content	Benzene	0.0936	0.00100	mg/kg wet	0.100		93.6	80-120			
Nativa Spike (pfin)	Toluene	0.0853	0.00100	"	0.100		85.3	80-120			
Surrogate: 4-Bromofluorobenzene	Ethylbenzene	0.0808	0.00100	"	0.100		80.8	80-120			
Native Spike (PIL1704-MS1) Source: IL17004-1 Prepared: 12/17/21 Analyzed: 12/18/21	Xylene (p/m)	0.176	0.00200	"	0.200		87.9	80-120			
Matrix Spike (P1L1704-MS1) Source: 1L17004-14 Prepared: 12/17/2 Analyzed: 12/18/2 Source: 12/18/2 Source: 1L17004-14 Prepared: 12/17/2 Analyzed: 12/18/2 Source: 12/18/2	Xylene (o)	0.0812	0.00100	"	0.100		81.2	80-120			
Matrix Spike (PIL1704-MS1) Source: IL1704-14 Prepared: 12/17/2 Analyzed: 12/18/2	Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		100	75-125			
Benzene 0,0946 0,00101 mg/kg dry 0,100 ND 94,6 80-120 Toluene 0,0844 0,00101 " 0,100 ND 84,4 80-120 Ethylbenzene 0,0808 0,00101 " 0,100 ND 84,4 80-120 Ethylbenzene 0,0808 0,00101 " 0,100 ND 80,8 80-120 Ethylbenzene 0,0162 0,0002 " 0,200 ND 80,8 80-120 Exylene (o) 0,0719 0,00101 " 0,100 ND 80,8 80-120 Exyrogate: 1,4-Difluorobenzene 0,117 " 0,120 97,5 80-120 Exyrogate: 4-Bromofluorobenzene 0,124 " 0,120 1/13 80-120 Matrix Spike Dup (PIL1704-MSD1) Source: 1L1704-14 Perpared: 12/17/21 Analyzed: 12/18/21 Benzene 0,0948 0,00101 " 0,100 ND 94,5 80-120 0,106 20 Toluene 0,0851 0,00101 " 0,100 ND 84,8 80-120 0,520 20 Extlylbenzene 0,0819 0,00101 " 0,100 ND 84,8 80-120 0,520 20 Exylene (p/m) 0,164 0,00202 " 0,201 ND 81,8 80-120 0,520 20 Exyrogate: 4-Bromofluorobenzene 0,125 " 0,201 ND 81,8 80-120 1,19 20 Exyrogate: 4-Bromofluorobenzene 0,125 " 0,201 ND 81,8 80-120 1,19 20 Exyrogate: 4-Bromofluorobenzene 0,125 " 0,201 ND 81,8 80-120 1,19 20 Exyrogate: 4-Bromofluorobenzene 0,125 " 0,201 ND 81,8 80-120 1,19 20 Expragate: 1,4-Difluorobenzene 0,125 " 0,201 ND 81,8 80-120 1,60 20 (C) Expragate: 4-Bromofluorobenzene 0,125 " 0,201 ND 81,8 80-120 1,60 20 (C) Expragate: 4-Bromofluorobenzene 0,118 " 0,120 ND 97,5 80-120 ND 1,00 ND 7,00 ND	Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			
Toluene	Matrix Spike (P1L1704-MS1)	Sou	ırce: 1L17004	-14	Prepared: 1	2/17/21 A	nalyzed: 12	/18/21			
Surveyate: 4-Bromofluorobenzene 0.0816 0.00101 " 0.100 ND 80.8 80-120	Benzene	0.0946	0.00101	mg/kg dry	0.100	ND	94.6	80-120			
National Color Nati	Toluene	0.0844	0.00101	"	0.100	ND	84.4	80-120			
Sylene (pn 0.0010	Ethylbenzene	0.0808	0.00101	"	0.100	ND	80.8	80-120			
Surrogate: 1,4-Diffluorobenzene 0.117 " 0.120 97.5 80-120 103 80-120 104 105	Xylene (p/m)	0.162	0.00202	"	0.200	ND	80.8	80-120			
Matrix Spike Dup (PIL1704-MSD1) Source: IL17004-14 Prepared: 12/17/21 Analyzed: 12/18/21	Xylene (o)	0.0719	0.00101	"	0.100	ND	71.9	80-120			QM-0
Matrix Spike Dup (P1L1704-MSD1) Source: 1L17004-14 Prepared: 12/17/21 Analyzed: 12/18/21	Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	80-120			
Benzene 0.0948 0.00101 mg/kg dry 0.100 ND 94.5 80-120 0.106 20 Toluene 0.0851 0.00101 " 0.100 ND 84.8 80-120 0.520 20 Ethylbenzene 0.0819 0.00101 " 0.100 ND 81.6 80-120 0.986 20 Xylene (p/m) 0.164 0.00202 " 0.201 ND 81.8 80-120 1.19 20 Xylene (o) 0.0734 0.00101 " 0.100 ND 73.1 80-120 1.60 20 (C Surrogate: 4-Bromofluorobenzene 0.125 " 0.120 104 80-120 Surrogate: 1,4-Difluorobenzene 0.118 " 0.120 97.5 80-120 Batch P1L1708 - *** DEFAULT PREP *** Blank (P1L1708-BLK1) Prepared: 12/17/21 Analyzed: 12/18/21 Benzene ND 0.00100 " Ethylbenzene ND 0.00100 " Surrogate: 4-Bromofluorobenzene ND 0.00100 " Stylene (p/m) ND 0.00100 " Stylene (p/m) ND 0.00200 " Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene ND 0.00100 " Surrogate: 4-Bromofluorobenzene ND 0.00100 " Surrogate: 4-Bromofluorobenzene ND 0.00100 "	Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		103	80-120			
Toluene 0.0851 0.00101 " 0.100 ND 84.8 80-120 0.520 20 Ethylbenzene 0.0819 0.00101 " 0.100 ND 81.6 80-120 0.986 20 Xylene (p/m) 0.164 0.00202 " 0.201 ND 81.8 80-120 1.19 20 Xylene (o) 0.0734 0.00101 " 0.100 ND 73.1 80-120 1.60 20 C Surrogate: 4-Bromofluorobenzene 0.125 " 0.120 104 80-120 Surrogate: 1,4-Difluorobenzene 0.118 " 0.120 97.5 80-120 Prepared: 12/17/21 Analyzed: 12/18/21 Banzene ND 0.00100 mg/kg wet Toluene ND 0.00100 " Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00200 " Xylene (p/m) ND 0.00200 " Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene 0.0047 " 0.0090 95.6 80-120	Matrix Spike Dup (P1L1704-MSD1)	Sou	ırce: 1L17004	-14	Prepared: 1	2/17/21 A	nalyzed: 12	/18/21			
Ethylbenzene 0.0819 0.00101 " 0.100 ND 81.6 80-120 0.986 20 Xylene (p/m) 0.164 0.00202 " 0.201 ND 81.8 80-120 1.19 20 Xylene (p/m) 0.164 0.00202 " 0.100 ND 73.1 80-120 1.60 20 C Surrogate: 4-Bromofluorobenzene 0.125 " 0.120 104 80-120 Surrogate: 1,4-Difluorobenzene 0.118 " 0.120 97.5 80-120	Benzene	0.0948	0.00101	mg/kg dry	0.100	ND	94.5	80-120	0.106	20	
No.	Toluene	0.0851	0.00101	"	0.100	ND	84.8	80-120	0.520	20	
Xylene (o) 0.0734 0.00101 " 0.100 ND 73.1 80-120 1.60 20 Controgate: 4-Bromofluorobenzene 0.125 " 0.120 104 80-120	Ethylbenzene	0.0819	0.00101	"	0.100	ND	81.6	80-120	0.986	20	
Surrogate: 4-Bromofluorobenzene 0.125 " 0.120 104 80-120	Xylene (p/m)	0.164	0.00202	"	0.201	ND	81.8	80-120	1.19	20	
Surrogate: 1,4-Diffuorobenzene 0.118 " 0.120 97.5 80-120	Xylene (o)	0.0734	0.00101	"	0.100	ND	73.1	80-120	1.60	20	QM-07
Batch P1L1708 - *** DEFAULT PREP *** Blank (P1L1708-BLK1) Prepared: 12/17/21 Analyzed: 12/18/21	Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		104	80-120			
Prepared: 12/17/21 Analyzed: 12/18/21	Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		97.5	80-120			
ND	Batch P1L1708 - *** DEFAULT PREP ***										
Toluene ND 0.00100 " Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00200 " Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene 0.0947 " 0.0990 95.6 80-120	Blank (P1L1708-BLK1)				Prepared: 1	2/17/21 A	nalyzed: 12	/18/21			
Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00200 " Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene 0.0947 " 0.0990 95.6 80-120	Benzene	ND	0.00100	mg/kg wet							
Xylene (p/m) ND 0.00200 " Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene 0.0947 " 0.0990 95.6 80-120	Toluene	ND	0.00100	"							
Xylene (o) ND 0.00100 " Surrogate: 4-Bromofluorobenzene 0.0947 " 0.0990 95.6 80-120	Ethylbenzene	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene 0.0947 " 0.0990 95.6 80-120	Xylene (p/m)	ND	0.00200	"							
5.077 5.0 00-120	Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene 0.0942 " 0.0990 95.1 80-120	Surrogate: 4-Bromofluorobenzene	0.0947		"	0.0990		95.6	80-120			
	Surrogate: 1,4-Difluorobenzene	0.0942		"	0.0990		95.1	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	UIIIIS	Level	Result	70KEC	LIMITS	KLD	Limit	ivotes
Batch P1L1708 - *** DEFAULT PREP ***										
LCS (P1L1708-BS1)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/18/21			
Benzene	0.0768	0.00100	mg/kg wet	0.0859		89.4	70-130			
Toluene	0.0704	0.00100	"	0.0859		81.9	70-130			
Ethylbenzene	0.0718	0.00100	"	0.0859		83.6	70-130			
Xylene (p/m)	0.146	0.00200	"	0.172		85.2	70-130			
Xylene (o)	0.0691	0.00100	"	0.0859		80.4	70-130			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.103		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.104		"	0.103		101	80-120			
LCS Dup (P1L1708-BSD1)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/18/21			
Benzene	0.0808	0.00100	mg/kg wet	0.0804		100	70-130	11.6	20	
Toluene	0.0737	0.00100	"	0.0804		91.7	70-130	11.2	20	
Ethylbenzene	0.0758	0.00100	"	0.0804		94.3	70-130	12.1	20	
Xylene (p/m)	0.154	0.00200	"	0.161		95.9	70-130	11.7	20	
Xylene (o)	0.0694	0.00100	"	0.0804		86.3	70-130	7.05	20	
Surrogate: 4-Bromofluorobenzene	0.102		"	0.0965		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.0976		"	0.0965		101	80-120			
Calibration Blank (P1L1708-CCB1)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/18/21			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.100		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.120		"							
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		95.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.5	80-120			
Calibration Blank (P1L1708-CCB3)				Prepared: 1	2/17/21 Ar	nalyzed: 12	/20/21			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L1708 - *** DEFAULT PREP ***										
Calibration Check (P1L1708-CCV1)				Prepared: 1	12/17/21 A	nalyzed: 12	/18/21			
Benzene	0.0936	0.00100	mg/kg wet	0.100		93.6	80-120			
Toluene	0.0853	0.00100	"	0.100		85.3	80-120			
Ethylbenzene	0.0808	0.00100	"	0.100		80.8	80-120			
Xylene (p/m)	0.176	0.00200	"	0.200		87.9	80-120			
Xylene (o)	0.0812	0.00100	"	0.100		81.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		100	75-125			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			
Calibration Check (P1L1708-CCV2)				Prepared: 1	12/17/21 A	nalyzed: 12	/18/21			
Benzene	0.0976	0.00100	mg/kg wet	0.100		97.6	80-120			
Toluene	0.0891	0.00100	"	0.100		89.1	80-120			
Ethylbenzene	0.0843	0.00100	"	0.100		84.3	80-120			
Xylene (p/m)	0.183	0.00200	"	0.200		91.4	80-120			
Xylene (o)	0.0855	0.00100	"	0.100		85.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		102	75-125			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.7	75-125			
Calibration Check (P1L1708-CCV3)				Prepared: 1	12/17/21 A	nalyzed: 12	/20/21			
Benzene	0.116	0.00100	mg/kg wet	0.100		116	80-120			
Toluene	0.111	0.00100	"	0.100		111	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.236	0.00200	"	0.200		118	80-120			
Xylene (o)	0.111	0.00100	"	0.100		111	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	75-125			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.4	75-125			
Matrix Spike (P1L1708-MS1)	Sou	ırce: 1L17007	-12	Prepared: 1	12/17/21 Aı	nalyzed: 12	/20/21			
Benzene	0.0740	0.00106	mg/kg dry	0.106	ND	69.9	80-120			QM-0
Toluene	0.0370	0.00106	"	0.106	ND	35.0	80-120			QM-0
Ethylbenzene	0.00148	0.00106	"	0.106	ND	1.40	80-120			QM-0
Xylene (p/m)	0.00924	0.00213	"	0.211	ND	4.37	80-120			QM-0
Xylene (o)	0.0533	0.00106	"	0.106	ND	50.4	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.130		"	0.127		102	80-120			
Surrogate: 4-Bromofluorobenzene	0.139		"	0.127		110	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

	1 (111	nan basin	Liivii Vi			•				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1L1708 - *** DEFAULT PREP ***										
Matrix Spike Dup (P1L1708-MSD1)	Sou	ırce: 1L17007	'-12	Prepared: 1	12/17/21 A	nalyzed: 12	/20/21			
Benzene	0.0778	0.00106	mg/kg dry	0.106	ND	73.6	80-120	5.09	20	QM-0
Toluene	0.0398	0.00106	"	0.106	ND	37.7	80-120	7.32	20	QM-0
Ethylbenzene	0.00111	0.00106	"	0.106	ND	1.05	80-120	28.6	20	QM-0
Xylene (p/m)	0.0150	0.00213	"	0.211	ND	7.07	80-120	47.2	20	QM-0
Xylene (o)	0.0514	0.00106	"	0.106	ND	48.6	80-120	3.62	20	QM-07
Surrogate: 4-Bromofluorobenzene	0.139		"	0.127		110	80-120			
Surrogate: 1,4-Difluorobenzene	0.129		"	0.127		102	80-120			
Batch P1L2003 - *** DEFAULT PREP ***										
Blank (P1L2003-BLK1)				Prepared &	Analyzed:	12/20/21				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.118		96.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.118		101	80-120			
LCS (P1L2003-BS1)				Prepared &	α Analyzed:	12/20/21				
Benzene	0.0778	0.00100	mg/kg wet	0.0792		98.2	70-130			
Toluene	0.0737	0.00100	"	0.0792		93.0	70-130			
Ethylbenzene	0.0780	0.00100	"	0.0792		98.5	70-130			
Xylene (p/m)	0.162	0.00200	"	0.158		102	70-130			
Xylene (o)	0.0696	0.00100	"	0.0792		87.9	70-130			
Surrogate: 4-Bromofluorobenzene	0.0951		"	0.0951		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.0905		"	0.0951		95.2	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2003 - *** DEFAULT PREP ***										
LCS Dup (P1L2003-BSD1)				Prepared &	Analyzed:	12/20/21				
Benzene	0.0771	0.00100	mg/kg wet	0.0859		89.7	70-130	9.02	20	
Toluene	0.0722	0.00100	"	0.0859		84.1	70-130	10.1	20	
Ethylbenzene	0.0765	0.00100	"	0.0859		89.1	70-130	10.0	20	
Xylene (p/m)	0.159	0.00200	"	0.172		92.3	70-130	10.1	20	
Xylene (o)	0.0688	0.00100	"	0.0859		80.1	70-130	9.29	20	
Surrogate: 4-Bromofluorobenzene	0.107		"	0.103		104	80-120			
Surrogate: 1,4-Difluorobenzene	0.101		"	0.103		98.3	80-120			
Calibration Check (P1L2003-CCV1)				Prepared &	: Analyzed:	12/20/21				
Benzene	0.105	0.00100	mg/kg wet	0.100		105	80-120			
Toluene	0.0988	0.00100	"	0.100		98.8	80-120			
Ethylbenzene	0.0965	0.00100	"	0.100		96.5	80-120			
Xylene (p/m)	0.214	0.00200	"	0.200		107	80-120			
Xylene (o)	0.0952	0.00100	"	0.100		95.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.5	75-125			
Calibration Check (P1L2003-CCV2)				Prepared &	: Analyzed:	12/20/21				
Benzene	0.112	0.00100	mg/kg wet	0.100		112	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120			
Xylene (p/m)	0.223	0.00200	"	0.200		112	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		103	75-125			
Calibration Check (P1L2003-CCV3)				Prepared &	Analyzed:	12/20/21				
Benzene	0.116	0.00100	mg/kg wet	0.100		116	80-120			
Toluene	0.109	0.00100	"	0.100		109	80-120			
Ethylbenzene	0.104	0.00100	"	0.100		104	80-120			
Xylene (p/m)	0.227	0.00200	"	0.200		114	80-120			
Xylene (o)	0.105	0.00100	"	0.100		105	80-120			
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765

Surrogate: 4-Bromofluorobenzene

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2003 - *** DEFAULT PREP ***										
Matrix Spike (P1L2003-MS1)	Sou	rce: 1L17007	-21	Prepared &	Analyzed:	12/20/21				
Benzene	0.0803	0.00102	mg/kg dry	0.101	ND	79.1	80-120			QM-0:
Toluene	0.0725	0.00102	"	0.101	ND	71.5	80-120			QM-0:
Ethylbenzene	0.0696	0.00102	"	0.101	ND	68.6	80-120			QM-05
Xylene (p/m)	0.143	0.00204	"	0.203	ND	70.7	80-120			QM-05
Xylene (o)	0.0642	0.00102	"	0.101	ND	63.3	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.137		"	0.122		113	80-120			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.122		101	80-120			
Matrix Spike Dup (P1L2003-MSD1)	Sou	rce: 1L17007	-21	Prepared &	Analyzed:	12/20/21				
Benzene	0.0968	0.00102	mg/kg dry	0.102	ND	95.2	80-120	18.5	20	
Toluene	0.0897	0.00102	"	0.102	ND	88.3	80-120	21.0	20	QM-05
Ethylbenzene	0.0881	0.00102	"	0.102	ND	86.7	80-120	23.3	20	QM-05
Xylene (p/m)	0.180	0.00204	"	0.203	ND	88.7	80-120	22.6	20	QM-03
Xylene (o)	0.0809	0.00102	"	0.102	ND	79.6	80-120	22.8	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.124		"	0.122		101	80-120			

0.122

113

80-120

0.138

13000 West County Road 100Project Number: 15278Odessa TX, 79765Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2001 - *** DEFAULT PREP ***										
Blank (P1L2001-BLK1)				Prepared &	Analyzed:	12/20/21				
Chloride	ND	1.00	mg/kg wet							
LCS (P1L2001-BS1)				Prepared &	Analyzed:	12/20/21				
Chloride	44.0		mg/kg	40.0		110	90-110			
LCS Dup (P1L2001-BSD1)				Prepared &	Analyzed:	12/20/21				
Chloride	43.7		mg/kg	40.0		109	90-110	0.618	10	
Calibration Blank (P1L2001-CCB1)				Prepared &	Analyzed:	12/20/21				
Chloride	0.0550		mg/kg wet							
Calibration Blank (P1L2001-CCB2)				Prepared &	Analyzed:	12/20/21				
Chloride	0.0580		mg/kg wet							
Calibration Check (P1L2001-CCV1)				Prepared &	Analyzed:	12/20/21				
Chloride	21.6		mg/kg	20.0		108	90-110			
Calibration Check (P1L2001-CCV2)				Prepared &	Analyzed:	12/20/21				
Chloride	20.7		mg/kg	20.0		103	90-110			
Calibration Check (P1L2001-CCV3)				Prepared &	Analyzed:	12/20/21				
Chloride	20.8		mg/kg	20.0	-	104	90-110			
Matrix Spike (P1L2001-MS1)	Sou	rce: 1L17006	5-03	Prepared &	Analyzed:	12/20/21				
Chloride	516	1.03	mg/kg dry	515	3.74	99.4	80-120			
Matrix Spike (P1L2001-MS2)	Sou	rce: 1L17007	7-04	Prepared &	Analyzed:	12/20/21				
Chloride	1700	10.2	mg/kg dry	1020	663	101	80-120			

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278
Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analysis	D14	Reporting	I I:4-	Spike	Source	0/DEC	%REC	DDD	RPD	N-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2001 - *** DEFAULT PREP ***										
Matrix Spike Dup (P1L2001-MSD1)	Sou	rce: 1L17006	-03	Prepared &	Analyzed:	12/20/21				
Chloride	436	1.03	mg/kg dry	515	3.74	83.9	80-120	16.9	20	
Matrix Spike Dup (P1L2001-MSD2)	Sou	rce: 1L17007	-04	Prepared &	Analyzed:	12/20/21				
Chloride	1690	10.2	mg/kg dry	1020	663	101	80-120	0.350	20	
Batch P1L2002 - *** DEFAULT PREP ***										
Blank (P1L2002-BLK1)				Prepared &	Analyzed:	12/20/21				
Chloride	ND	1.00	mg/kg wet							
LCS (P1L2002-BS1)				Prepared &	Analyzed:	12/20/21				
Chloride	42.4		mg/kg	40.0		106	90-110			
LCS Dup (P1L2002-BSD1)				Prepared &	Analyzed:	12/20/21				
Chloride	42.5		mg/kg	40.0		106	90-110	0.304	10	
Calibration Blank (P1L2002-CCB1)				Prepared &	Analyzed:	12/20/21				
Chloride	0.131		mg/kg wet							
Calibration Blank (P1L2002-CCB2)				Prepared &	: Analyzed:	12/20/21				
Chloride	0.141		mg/kg wet							
Calibration Check (P1L2002-CCV1)				Prepared &	Analyzed:	12/20/21				
Chloride	21.1		mg/kg	20.0		106	90-110			
Calibration Check (P1L2002-CCV2)				Prepared &	Analyzed:	12/20/21				
Chloride	21.5		mg/kg	20.0	*	108	90-110			

13000 West County Road 100 Project Number: 15278

Odessa TX, 79765 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2002 - *** DEFAULT PREP ***										
Calibration Check (P1L2002-CCV3)				Prepared:	12/20/21 A	nalyzed: 12	/21/21			
Chloride	21.5		mg/kg	20.0		107	90-110			
Matrix Spike (P1L2002-MS1)	Sour	ce: 1L17012	3-01	Prepared &	Analyzed:	12/20/21				
Chloride	1960	5.32	mg/kg dry	532	1380	108	80-120			
Matrix Spike (P1L2002-MS2)	Sour	ce: 1L17007	'-16	Prepared &	Analyzed:	12/20/21				
Chloride	522	1.01	mg/kg dry	505	4.63	102	80-120			
Matrix Spike Dup (P1L2002-MSD1)	Sour	ce: 1L17012	-01	Prepared &	Analyzed:	12/20/21				
Chloride	1960	5.32	mg/kg dry	532	1380	109	80-120	0.193	20	
Matrix Spike Dup (P1L2002-MSD2)	Sour	ce: 1L17007	'-16	Prepared &	Analyzed:	12/20/21				
Chloride	522	1.01	mg/kg dry	505	4.63	102	80-120	0.101	20	
Batch P1L2010 - *** DEFAULT PREP ***										
Blank (P1L2010-BLK1)				Prepared: 1	12/20/21 A	nalyzed: 12	/21/21			
Chloride	ND	1.00	mg/kg wet							
LCS (P1L2010-BS1)				Prepared: 1	12/20/21 A	nalyzed: 12	/21/21			
Chloride	44.2		mg/kg	40.0		110	90-110			
Calibration Blank (P1L2010-CCB1)				Prepared: 1	12/20/21 A	nalyzed: 12	/21/21			
Chloride	0.194		mg/kg wet							
Calibration Blank (P1L2010-CCB2)				Prepared:	12/20/21 A	nalyzed: 12	/21/21			
Chloride	0.167		mg/kg wet							

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2010 - *** DEFAULT PREP ***										
Calibration Check (P1L2010-CCV1)				Prepared:	12/20/21 A	nalyzed: 12	2/21/21			
Chloride	21.5		mg/kg	20.0		107	90-110			
Calibration Check (P1L2010-CCV2)				Prepared:	12/20/21 A	nalyzed: 12	2/21/21			
Chloride	21.5		mg/kg	20.0		108	90-110			
Calibration Check (P1L2010-CCV3)				Prepared:	12/20/21 A	nalyzed: 12	2/21/21			
Chloride	22.0		mg/kg	20.0		110	90-110			
Matrix Spike (P1L2010-MS1)	Sou	rce: 1L17007	-26	Prepared:	12/20/21 A	nalyzed: 12	2/21/21			
Chloride	823	5.10	mg/kg dry	510	278	107	80-120			
Matrix Spike (P1L2010-MS2)	Sour	rce: 1L17007	'-36	Prepared:	12/20/21 A	nalyzed: 12	2/21/21			
Chloride	566	1.00	mg/kg dry	500	47.8	104	80-120			
Matrix Spike Dup (P1L2010-MSD1)	Sou	rce: 1L17007	'-26	Prepared:	12/20/21 A	nalyzed: 12	2/21/21			
Chloride	833	5.10	mg/kg dry	510	278	109	80-120	1.20	20	
Matrix Spike Dup (P1L2010-MSD2)	Sou	rce: 1L17007	'-36	Prepared:	12/20/21 A	nalyzed: 12	2/21/21			
Chloride	562	1.00	mg/kg dry	500	47.8	103	80-120	0.796	20	
Batch P1L2103 - *** DEFAULT PREP ***										
Blank (P1L2103-BLK1)				Prepared &	& Analyzed:	12/21/21				
% Moisture	ND	0.1	%							
Blank (P1L2103-BLK2)				Prepared &	& Analyzed:	12/21/21				
% Moisture	ND	0.1	%							

13000 West County Road 100Project Number: 15278Odessa TX, 79765Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

	-	Reporting		Spike	Source	0/755	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2103 - *** DEFAULT PREP ***										
Blank (P1L2103-BLK3)				Prepared &	Analyzed:	12/21/21				
% Moisture	ND	0.1	%							
Blank (P1L2103-BLK4)				Prepared &	Analyzed:	12/21/21				
% Moisture	ND	0.1	%							
Duplicate (P1L2103-DUP1)	Sou	rce: 1L17004-	04	Prepared &	Analyzed:	12/21/21				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Duplicate (P1L2103-DUP2)	Sou	rce: 1L17004-	14	Prepared &	Analyzed:	12/21/21				
% Moisture	2.0	0.1	%		1.0			66.7	20	R3
Duplicate (P1L2103-DUP3)	Sou	rce: 1L17007-	06	Prepared &	Analyzed:	12/21/21				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Duplicate (P1L2103-DUP4)	Sou	rce: 1L17007-	16	Prepared &	Analyzed:	12/21/21				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P1L2103-DUP5)	Sou	rce: 1L17007-	31	Prepared &	Analyzed:	12/21/21				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P1L2103-DUP6)	Sou	rce: 1L17011-	04	Prepared &	z Analyzed:	12/21/21				
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P1L2103-DUP7)	Sou	rce: 1L17011-	19	Prepared &	Analyzed:	12/21/21				
% Moisture	15.0	0.1	%	-	16.0			6.45	20	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	0/855	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L1707 - TX 1005										
Blank (P1L1707-BLK1)				Prepared:	12/17/21 Ar	nalyzed: 12	/18/21			
C6-C12	ND	25.0	mg/kg wet							
·C12-C28	ND	25.0	"							
·C28-C35	ND	25.0	"							
'urrogate: 1-Chlorooctane	84.5		"	100		84.5	70-130			
urrogate: o-Terphenyl	44.2		"	50.0		88.4	70-130			
LCS (P1L1707-BS1)				Prepared:	12/17/21 Ar	nalyzed: 12	/18/21			
C6-C12	942	25.0	mg/kg wet	1000		94.2	75-125			
·C12-C28	878	25.0	"	1000		87.8	75-125			
'urrogate: 1-Chlorooctane	110		"	100		110	70-130			
urrogate: o-Terphenyl	49.9		"	50.0		99.8	70-130			
CCS Dup (P1L1707-BSD1)				Prepared:	12/17/21 Aı	nalyzed: 12	/18/21			
C6-C12	958	25.0	mg/kg wet	1000		95.8	75-125	1.68	20	
·C12-C28	890	25.0	"	1000		89.0	75-125	1.29	20	
'urrogate: 1-Chlorooctane	102		"	100		102	70-130			
urrogate: o-Terphenyl	50.2		"	50.0		100	70-130			
Calibration Check (P1L1707-CCV1)				Prepared:	12/17/21 Aı	nalyzed: 12	/18/21			
C6-C12	543	25.0	mg/kg wet	500		109	85-115			
·C12-C28	537	25.0	"	500		107	85-115			
'urrogate: 1-Chlorooctane	105		"	100		105	70-130			
urrogate: o-Terphenyl	45.6		"	50.0		91.3	70-130			
Calibration Check (P1L1707-CCV2)				Prepared:	12/17/21 Aı	nalyzed: 12	/18/21			
C6-C12	530	25.0	mg/kg wet	500		106	85-115			
C12-C28	529	25.0	"	500		106	85-115			
urrogate: 1-Chlorooctane	103		"	100		103	70-130			
urrogate: o-Terphenyl	44.7		"	50.0		89.3	70-130			
'urrogate: o-Terphenyl	44.7		"	50.0		89.3	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L1707 - TX 1005										
Calibration Check (P1L1707-CCV3)				Prepared:	12/17/21 A	nalyzed: 12	/18/21			
C6-C12	558	25.0	mg/kg wet	500		112	85-115			
>C12-C28	563	25.0	"	500		113	85-115			
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	46.2		"	50.0		92.4	70-130			
Matrix Spike (P1L1707-MS1)	Sou	rce: 1L17007	'-12	Prepared:	12/17/21 A	nalyzed: 12	/18/21			
C6-C12	1230	26.6	mg/kg dry	1060	21.3	114	75-125			
>C12-C28	1150	26.6	"	1060	22.3	106	75-125			
Surrogate: 1-Chlorooctane	138		"	106		130	70-130			
Surrogate: o-Terphenyl	68.2		"	53.2		128	70-130			
Matrix Spike Dup (P1L1707-MSD1)	Sou	rce: 1L17007	'-12	Prepared:	12/17/21 A	nalyzed: 12	/18/21			
C6-C12	1100	26.6	mg/kg dry	1060	21.3	102	75-125	11.3	20	
>C12-C28	1010	26.6	"	1060	22.3	93.2	75-125	12.7	20	
Surrogate: 1-Chlorooctane	117		"	106		110	70-130			
Surrogate: o-Terphenyl	65.7		"	53.2		124	70-130			
Batch P1L1709 - TX 1005										
Blank (P1L1709-BLK1)				Prepared:	12/17/21 A	nalyzed: 12	/18/21			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	88.2		"	100		88.2	70-130			
Surrogate: o-Terphenyl	45.3		"	50.0		90.5	70-130			
LCS (P1L1709-BS1)				Prepared:	12/17/21 A	nalyzed: 12	/18/21			
C6-C12	924	25.0	mg/kg wet	1000		92.4	75-125			
>C12-C28	868	25.0	"	1000		86.8	75-125			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	49.3		"	50.0		98.6	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 152/8
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L1709 - TX 1005										
LCS Dup (P1L1709-BSD1)				Prepared:	12/17/21 Aı	nalyzed: 12	/18/21			
C6-C12	940	25.0	mg/kg wet	1000		94.0	75-125	1.76	20	
>C12-C28	887	25.0	"	1000		88.7	75-125	2.19	20	
Surrogate: 1-Chlorooctane	126		"	100		126	70-130			
Surrogate: o-Terphenyl	49.0		"	50.0		98.0	70-130			
Calibration Check (P1L1709-CCV1)				Prepared:	12/17/21 Aı	nalyzed: 12	/18/21			
C6-C12	555	25.0	mg/kg wet	500		111	85-115			
>C12-C28	536	25.0	"	500		107	85-115			
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	46.3		"	50.0		92.7	70-130			
Calibration Check (P1L1709-CCV2)				Prepared:	12/17/21 Aı	nalyzed: 12	/18/21			
C6-C12	554	25.0	mg/kg wet	500		111	85-115			
>C12-C28	551	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	45.7		"	50.0		91.3	70-130			
Duplicate (P1L1709-DUP1)	Sou	rce: 1L17018	3-05	Prepared:	12/17/21 Aı	nalyzed: 12	/18/21			
C6-C12	20.9	25.5	mg/kg dry		306			174	20	
>C12-C28	26.9	25.5	"		1390			192	20	
Surrogate: 1-Chlorooctane	137		"	102		134	70-130			S-GC
Surrogate: o-Terphenyl	70.6		"	51.0		138	70-130			S-GC
Batch P1L2007 - TX 1005										
Blank (P1L2007-BLK1)				Prepared &	Analyzed:	12/20/21				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	87.5		"	100		87.5	70-130			
Surrogate: o-Terphenyl	49.5		"	50.0		99.1	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2007 - TX 1005										
LCS (P1L2007-BS1)				Prepared &	Analyzed:	12/20/21				
C6-C12	1050	25.0	mg/kg wet	1000		105	75-125			
>C12-C28	1080	25.0	"	1000		108	75-125			
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	55.6		"	50.0		111	70-130			
LCS Dup (P1L2007-BSD1)				Prepared &	Analyzed:	12/20/21				
C6-C12	1080	25.0	mg/kg wet	1000		108	75-125	2.60	20	
>C12-C28	1130	25.0	"	1000		113	75-125	4.02	20	
Surrogate: 1-Chlorooctane	105		"	100		105	70-130			
Surrogate: o-Terphenyl	61.7		"	50.0		123	70-130			
Calibration Check (P1L2007-CCV1)				Prepared &	Analyzed:	12/20/21				
C6-C12	574	25.0	mg/kg wet	500		115	85-115			
>C12-C28	560	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	58.0		"	50.0		116	70-130			
Calibration Check (P1L2007-CCV2)				Prepared &	Analyzed:	12/20/21				
C6-C12	572	25.0	mg/kg wet	500	<u> </u>	114	85-115			<u> </u>
>C12-C28	568	25.0	"	500		114	85-115			
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	53.5		"	50.0		107	70-130			
Calibration Check (P1L2007-CCV3)				Prepared: 1	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	549	25.0	mg/kg wet	500		110	85-115			
>C12-C28	561	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	51.2		"	50.0		102	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2007 - TX 1005										
Matrix Spike (P1L2007-MS1)	Sour	ce: 1L17007	-36	Prepared: 1	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	860	25.0	mg/kg dry	1000	11.0	84.9	75-125			
>C12-C28	939	25.0	"	1000	107	83.3	75-125			
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	44.9		"	50.0		89.7	70-130			
Matrix Spike Dup (P1L2007-MSD1)	Sour	ce: 1L17007	-36	Prepared: 1	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	832	25.0	mg/kg dry	1000	11.0	82.1	75-125	3.31	20	
>C12-C28	909	25.0	"	1000	107	80.3	75-125	3.70	20	
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	42.9		"	50.0		85.7	70-130			
Batch P1L2009 - TX 1005										
Blank (P1L2009-BLK1)				Prepared: 1	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	81.1		"	100		81.1	70-130			
Surrogate: o-Terphenyl	45.2		"	50.0		90.4	70-130			
LCS (P1L2009-BS1)				Prepared: 1	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	863	25.0	mg/kg wet	1000		86.3	75-125			
>C12-C28	914	25.0	"	1000		91.4	75-125			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	48.0		"	50.0		95.9	70-130			
LCS Dup (P1L2009-BSD1)				Prepared:	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	892	25.0	mg/kg wet	1000		89.2	75-125	3.26	20	
>C12-C28	928	25.0	"	1000		92.8	75-125	1.57	20	
Surrogate: 1-Chlorooctane	118		"	100		118	70-130			
Surrogate: o-Terphenyl	46.7		"	50.0		93.4	70-130			

Permian Basin Environmental Lab, L.P.

Project Number: 15278
Project Manager: Tim McMinn

13000 West County Road 100 Odessa TX, 79765

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

	D 16	Reporting	TI '	Spike	Source	0/DEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2009 - TX 1005										
Calibration Check (P1L2009-CCV1)				Prepared:	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	565	25.0	mg/kg wet	500		113	85-115	·		
>C12-C28	556	25.0	"	500		111	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	51.6		"	50.0		103	70-130			
Calibration Check (P1L2009-CCV2)				Prepared:	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	565	25.0	mg/kg wet	500		113	85-115	·		
>C12-C28	560	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	52.0		"	50.0		104	70-130			
Calibration Check (P1L2009-CCV3)				Prepared:	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	555	25.0	mg/kg wet	500		111	85-115			
>C12-C28	549	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	118		"	100		118	70-130			
Surrogate: o-Terphenyl	55.8		"	50.0		112	70-130			
Matrix Spike (P1L2009-MS1)	Sour	ce: 1L17011	-01	Prepared:	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	876	28.4	mg/kg dry	1140	17.7	75.6	75-125			
>C12-C28	885	28.4	"	1140	27.2	75.5	75-125			
Surrogate: 1-Chlorooctane	109		"	114		96.3	70-130			
Surrogate: o-Terphenyl	44.4		"	56.8		78.1	70-130			
Matrix Spike Dup (P1L2009-MSD1)	Sour	ce: 1L17011	-01	Prepared:	12/20/21 Aı	nalyzed: 12	/21/21			
C6-C12	905	28.4	mg/kg dry	1140	17.7	78.1	75-125	3.26	20	
>C12-C28	930	28.4	"	1140	27.2	79.5	75-125	5.11	20	
Surrogate: 1-Chlorooctane	105		"	114		92.7	70-130			
Surrogate: o-Terphenyl	41.6		"	56.8		73.2	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Winnebago CTB Flare

13000 West County Road 100Project Number:15278Odessa TX, 79765Project Manager:Tim McMinn

Notes and Definitions

S-GC1 Surrogate recovery outside of control limits. A second analysis confirmed the original results..

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL C(Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Winnebago CTB Flare

13000 West County Road 100Project Number: 15278Odessa TX, 79765Project Manager: Tim McMinn

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

26.0

100 Rankin Hwy

Project Manager:

Tim McMinn

(unterria)

Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions	14	<u>0</u>	a	=	0	0	æ.	- ا	6	0	€ (w	2	-	LAB#(lab use only)		ORDER #: 1	(lab use only)		Sampler Signature:	City/State/Zip:	Company Name: Company Address:	Project Manager
Date Time	bate Tin		Centennia	East Bernsust -		East Surf 72			2006	East Surt -8	5.00 /	suct,	St Surt	Surf-	SWIF	اما	East Surt - 1	FIELD CODE		LONG			email:	Mid	ss: P.O. Box 62228	
<u>в</u>	त	×% *	Vied	Г														Start Depth	$\ \ $						lutio	
The same	Recei	Rece		十														End Depth	اچ[ns, Ir	
Thy Su	Received by:	Received by:	results	+					2							1	12//5/21	Date Sampled	Preservation & # of Containers				Tim@etechenv.com		15.	
dypa	The second section of the second sections and		by	1700	1120	1110	1160	1050	1042	5801	1825	1005	955	246	930	915	000	Time Sampled	Containers				env.con			
1				^	-	-	-	-	=	-	1	-	_	-	-	-	-	No. of Containers					ı			
			2	6								0	0	Ф		0	X	lce		13						
			-															HNO ₃								
	1,000		6															HCI	1							
			4				<u>-</u>											H ₂ SO ₄	+							
			2/27/2		12	片	片							1				NaOH Na ₂ S ₂ O ₃	+							
Z			-	H		片	片	屵	片									N	+						ı	
70	0			분	片													None Other (Specify)	+			Repo	' [\Box	Area: Len	5
200	Date	Calc	5		10		10			-	_	_		-				Other (Specify) DW=Drinking Water SL=Sludge	+			ž Ž	;	Rill Ftach	a:/	5
				4	+	+	+	\vdash	+	-	_	-	-	-	_	-	IN	GW = Groundwater S=Soil/Solid	Matrix			orma	ŗ	Ţ	\$ F	‡
0'38	=	-		L	_	1	1	\vdash	_	_	_	_		_	_	_		NP=Non-PotableSpecify Other				<u></u>		2	2	
3% me	lime	1	3	1													X	TPH: 418.1 8015M 1005 1	006			ANU			entennia	63
Te	SS	SOS	SS S															Cations (Ca, Mg, Na, K)			П	Report Format: STANDARD:L		5000		20
mpe	Sar by Sampler/ Sar by Courier?	Custody seals on coole Sample Hand Delivered	SOC Imple															Anions (Cl, SO4, CO3, HCO3)	TOTAL	TCLP:]	8	MN	
ratu	Cou	ly se	Free	ator														SAR / ESP / CEC		1	ָּיק.	=	1 (1	F 1	0
re U	pler rier?	als als	ntain of P	္ဂ်														Metals: As Ag Ba Cd Cr Pb Hg	Se			- - - - - - - - - - - - - - - - - - -				3
on	Clie	on c elive	ers															Volatiles]	6	PO#:	2
Temperature Upon Receipt:	Sar by Sampler/Client Rep. ? Sar by Courier? UPS	Custody seals on cooler(s) Sample Hand Delivered	Sample Containers Intact? VOCs Free of Headspace?	aboratory Comments:														Semi volatiles				Analyze For:	= 9	Cert	PO#: '	5
pipt:	S ep.	r(s)	to te?	is E						0		O		0	0		X	BTEX 8021B/5030 or BTEX 82	260			e Fo		7	0	?
1/2	星	3	c)															RCI			_	e For:	Ü		2	1
0				Ę														N.O.R.M.			_		J		30	
	Fede		_	>KE	1					1				1	1	F	X	Chlorides			_				4	
7	>_	**	< <u> </u>	15		_		+			1	12	1		1	1-	+			\vdash					1	2
35	1/8 -	zz	,,,	L					-	-								RUSH TAT(Pre-Schedule) 24,	48 7	2 hre					1 1	*
0 -	one Star			L	1 -					1	닏		-				-		, /	5						8
					11	11 -][11 _		ПП				1				STANDARD TAT				Ш				Link

Company Name: Project Manager:

Etech Environmental & Safety Solutions, Inc.

Tim McMinn

Company Address: P.O. Box 62228

400 Rankin Hwy Permian Basin Environmental Lab, LP

Midland Texas 79701

Phone: 432-686-7235

	1	is Cont	Dill Etach Tallolle Cont
	94307	PO#:	Area: (entenna) NM PO#:
かっか	ten Cour	Project Loc:	Project #: 15278 Project Loc: Lea County of
	18 Flore	ubaso (Project Name: Winnubaso (18 Flore
		(controver	Centr

Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions:	26	2	2	26	24		90				8			7	LAB # (lab use only)		ORDER#: -	(lab use only)		Campic Objects	Sampler Signature:
Date	Date	Dane N	o (internial	P-3	P-2	-	South Surf-3	F	towth surf - 1			1/15+ Surt -2	31737	Rerm SWF-	RIM	Burm	East Burm Surf -2	FIELD CODE		7007				e e
Time	Time		Need	\vdash	-													Start Depth						email:
3	Rec	Z	8	\vdash	+	\vdash							- V					End Depth	٦					
ewed by:	Received by:	Neceived by.	results	12 11 121	12/16/2	12/16/21	-									-	12/15/21	Date Sampled	Preservation & # o	7				Tim@etechenv.com
ancha	Applications of Representation of Advantages (1997)		5 69	11310			1150	1140	1130	1340	1350	1460	1410	1330	1320	1310	1300	Time Sampled	of Containers					env.con
				F	-	-	-	-	-	-	-	-	-	-	=	-	-	No. of Containers]"					13
	N NOT COME AND COME		12			10	10	0	0	0			0		0	0	1	lce	1					
			2															HNO ₃	1					
			7		_													HCI	1					
			12/27/2											-		무	10	H₂SO₄ NaOH	+					
			10	=		1		12	무	12								Na ₂ S ₂ O ₃	+					
5	+			늗	1 -			무	片	片	片	片	1			뉴			1					ï
30	0	,		늗	1	1		片	님	 				<u>-</u>		1		Other (Specify)	1			-	Repo	ļ
2 ate	Date		Date	F	1		1		+-	1-	-			+-	٢	۲	+-	DW=Drinking Water SL=Sludge	+	1			π Fo	
				4	ϥ	+	+	+	+	+	-	\vdash	-	\vdash	\vdash	+	-12	GW = Groundwater S=Soil/Solid	Matrix				rmat	
Z_	-		_	L	_	\perp	\perp	1	\perp	1	_	_	-	-	\vdash	\perp	_	NP=Non-PotableSpecify Other	_	\vdash	П	\neg	TS	
沿	Time		me l	4	4	45	10		10	10	10	10		10		1	×	TPH: 418.1 8015M 1005	.006	-	П		Å D	
	SS	SO	Q < Ø															Cations (Ca, Mg, Na, K)		١.,	П		Report Format: STANDARD:□	-
mpe	Sar by Sampler/Client Rep. Sar by Courier? UPS	Custody seals on cooler(s) Sample Hand Delivered	Sample Containers Intact? VOCs Free of Headspace? Custody seals on container(s)	Laboratory Comments:														Anions (CI, SO4, CO3, HCO3	3)	TOTAL	TCLP:			
ratu	San	y see Ha	Free fy se	at [SAR / ESP / CEC		F	.P		Ŧ	
re U	mpler rier	als	ntain of I	S [] [Metals: As Ag Ba Cd Cr Pb Hg	Se				ſRRP:□	
Temperature Upon Receipt:	/Clie	on c	ers lead	3 [Volatiles				An	П	
Rece	ort Rep	oole	Intac Ispa onta	en] [] [Semi volatiles				Analyze For:		
eipt:	S ep.	(s)	t? ce?	ts:	6	3 E	3 E) [1	10	10	10	E	10	HE	HE	H ×		260			e Fc	NPD	
4	SE.		(s)										F				_			\vdash	_	ä	NPDES:□	
2																	_			+		1		
	FedE				4	1	+	#E	+=	#=	1						_	M Particular of the Control of the C		+	_	1		
	ν ×	1	~~~			_		-	-	-		1 =	+	_					_	+		1		
Zi,	Lone Star		zzz] [. 48	72 hrs				
0	-10 2	- 22	222	l] [1					I L] [10011 1A I(FIE-Octionale) 24	,			1		
, -	Sta						¬!-	71-		71 -			11 -		ılr	חור		STANDARD TAT				1	1	

Pane Cot

Project Manager:

Tim McMinn

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

Project #: Project Name: Wennebago CTB Flate Project Loc: Low County

las (ent

☐Bill Etech

Area (entenna

NM PO#: 94307

Page 64 of 65

udge Watts	Preservation & # of Containers Preservation & # of Containers Matrix ODS 1006 Ida, K) Pb Hg Se [email: Tim@etechenv.com Report Format STANDARD: TRP: Analyz TCLP:
Watrix 066	Preservation & # of Containers Matrix 66	nature: A Gor CV email: Tim@etechenv.com Report Format: STANDARD: TRRP: Analyz TCLP:
DO06	Preservation & # of Containers Matrix 06 Se	nature: A Gar CV email: Tim@etechenv.com Report Format: STANDARD: TRRP: Analyz TCLP:
		nature: A Ger CV email: Tim@etechenv.com Report Format: STANDARD: TRRP: Analyz TOTAL:
		email: Tim@etechenv.com Report Format: STANDARD: TRRP: Analyz
		email: Tim@etechenv.com Report Format: STANDARD: TRRP:
TCLP:		email: Tim@etechenv.com
Report Format: STANDARD: IRRP: Analyz	CLP:	email: Tim@etechenv.com
Report Format: STANDARD: TRRP: Analyz	Report Format: STANDARD: TRRP: Analyz TCLP:	Time to change com
nature: A Yer CV email: Illinguetechenv.com Report Format: STANDARD: TRRP: Analyz TCLP:	Report Format: STANDARD: TRRP: Analyz TCLP:	

PBEL_SAMPLE_CHECKLIST_2021_1

EFFECTIVE DATE: 10/30/2021 **REVISION Date: 10/30/2021** REVISION #: PBEL_2021_1

DOC #: PBEL_SAMPLE_CHECKLIST

Sample Receipt Checklist

Notes

< Sufficient sample volume for indicated test? Samples in proper container/bottle? Samplers name present on COC? Chain of custody signed/dated/time when relinquished and Analysis requested for all samples submitted? Custody seals intact on sample bottles? Sample containers intact? Chain of Custody agrees with sample labels? Sample date/time present on COC for all samples? Custody seals intact on shipping container/cooler? Samples received within appropriate femp? All samples received within holding time? Shipping container/cooler in good condition? 111007

PBEL_SAMPLE_CHECKLIST_2021_1

Page 1 of 2

Page 2 of 2

DOC #: PBEL_SAMPLE_CHECKLIST **REVISION Date: 10/30/2021** REVISION #: PBEL_2021_1

SAMPLE VARIANCE/NON-CONFORMANCE

esolution:			ariance/Discrepancy:
AND THE PROPERTY OF THE PROPER		-	ancy:
AND THE PARTY OF T		=	
			2
			s [™]
	9		

Approved by:

Client Contacted

Date/Time: Name:

NC Initiated by:

EFFECTIVE DATE: 10/30/2021

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Tim McMinn
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Winnebago CTB Flare
Project Number: 15278
Location: Lea County, NM

Lab Order Number: 1L20012

Current Certification

Report Date: 12/27/21

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole -1 @ 1'	1L20012-01	Soil	12/17/21 09:00	12-20-2021 10:41
NW-1	1L20012-02	Soil	12/17/21 09:20	12-20-2021 10:41
SW-1	1L20012-03	Soil	12/17/21 09:38	12-20-2021 10:41
EW-1	1L20012-04	Soil	12/17/21 09:42	12-20-2021 10:41
WW-1	1L20012-05	Soil	12/17/21 10:00	12-20-2021 10:41
Stockpile -1	1L20012-06	Soil	12/17/21 10:15	12-20-2021 10:41

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

Bottom Hole -1 @ 1' 1L20012-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Kesuit	LIIIII	Omis	Dilution	Dattii	ricpaicu	7 Hidiy 2cd	Method	11010
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:10	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:10	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:10	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:10	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.9 %	80-120		P1L2104	12/21/21 09:42	12/21/21 14:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P1L2104	12/21/21 09:42	12/21/21 14:10	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	159	1.06	mg/kg dry	1	P1L2211	12/22/21 14:34	12/22/21 22:15	EPA 300.0	
% Moisture	6.0	0.1	%	1	P1L2106	12/21/21 15:15	12/22/21 10:26	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 21:41	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 21:41	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 21:41	TPH 8015M	
Surrogate: 1-Chlorooctane		88.0 %	70-130		P1L2210	12/22/21 13:00	12/23/21 21:41	TPH 8015M	
Surrogate: o-Terphenyl		89.1 %	70-130		P1L2210	12/22/21 13:00	12/23/21 21:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	12/22/21 13:00	12/23/21 21:41	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

NW-1 1L20012-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:32	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:32	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:32	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:32	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.9 %	80-120		P1L2104	12/21/21 09:42	12/21/21 14:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.9 %	80-120		P1L2104	12/21/21 09:42	12/21/21 14:32	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	59.3	1.02	mg/kg dry	1	P1L2211	12/22/21 14:34	12/22/21 23:12	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2106	12/21/21 15:15	12/22/21 10:26	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:05	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:05	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:05	TPH 8015M	
Surrogate: 1-Chlorooctane		83.7 %	70-130		P1L2210	12/22/21 13:00	12/23/21 22:05	TPH 8015M	
Surrogate: o-Terphenyl		87.6 %	70-130		P1L2210	12/22/21 13:00	12/23/21 22:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/22/21 13:00	12/23/21 22:05	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

SW-1 1L20012-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
	resuit			Bildion	Button	Tropulou	,		
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:53	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:53	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:53	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:53	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 14:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.2 %	80-120		P1L2104	12/21/21 09:42	12/21/21 14:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.5 %	80-120		P1L2104	12/21/21 09:42	12/21/21 14:53	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	10.8	1.02	mg/kg dry	1	P1L2211	12/22/21 14:34	12/22/21 23:31	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2106	12/21/21 15:15	12/22/21 10:26	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	l 8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:29	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:29	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:29	TPH 8015M	
Surrogate: 1-Chlorooctane		98.5 %	70-130		P1L2210	12/22/21 13:00	12/23/21 22:29	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P1L2210	12/22/21 13:00	12/23/21 22:29	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/22/21 13:00	12/23/21 22:29	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

EW-1 1L20012-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:14	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:14	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:14	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:14	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.9 %	80-120		P1L2104	12/21/21 09:42	12/21/21 15:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P1L2104	12/21/21 09:42	12/21/21 15:14	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	51.8	1.02	mg/kg dry	1	P1L2211	12/22/21 14:34	12/22/21 23:50	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2106	12/21/21 15:15	12/22/21 10:26	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:53	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:53	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 22:53	TPH 8015M	
Surrogate: 1-Chlorooctane		85.5 %	70-130		P1L2210	12/22/21 13:00	12/23/21 22:53	TPH 8015M	
Surrogate: o-Terphenyl		89.8 %	70-130		P1L2210	12/22/21 13:00	12/23/21 22:53	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/22/21 13:00	12/23/21 22:53	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

WW-1 1L20012-05 (Soil)

		D							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:35	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:35	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:35	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:35	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 15:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P1L2104	12/21/21 09:42	12/21/21 15:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.8 %	80-120		P1L2104	12/21/21 09:42	12/21/21 15:35	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	11.3	1.02	mg/kg dry	1	P1L2211	12/22/21 14:34	12/23/21 00:09	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1L2106	12/21/21 15:15	12/22/21 10:26	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 23:17	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 23:17	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 23:17	TPH 8015M	
Surrogate: 1-Chlorooctane		84.2 %	70-130		P1L2210	12/22/21 13:00	12/23/21 23:17	TPH 8015M	
Surrogate: o-Terphenyl		87.7 %	70-130		P1L2210	12/22/21 13:00	12/23/21 23:17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	12/22/21 13:00	12/23/21 23:17	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

Stockpile -1 1L20012-06 (Soil)

Analyte		Reporting						36.4.4	3.1
Alialyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 16:39	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 16:39	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 16:39	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 16:39	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1L2104	12/21/21 09:42	12/21/21 16:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.3 %	80-120		P1L2104	12/21/21 09:42	12/21/21 16:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.9 %	80-120		P1L2104	12/21/21 09:42	12/21/21 16:39	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	27.5	1.00	mg/kg dry	1	P1L2211	12/22/21 14:34	12/23/21 00:28	EPA 300.0	
% Moisture	ND	0.1	%	1	P1L2106	12/21/21 15:15	12/22/21 10:26	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	1 8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 23:41	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 23:41	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1L2210	12/22/21 13:00	12/23/21 23:41	TPH 8015M	
Surrogate: 1-Chlorooctane		85.4 %	70-130		P1L2210	12/22/21 13:00	12/23/21 23:41	TPH 8015M	
Surrogate: o-Terphenyl		87.8 %	70-130		P1L2210	12/22/21 13:00	12/23/21 23:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	12/22/21 13:00	12/23/21 23:41	calc	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1L2104 - *** DEFAULT PREP **	·*									
Blank (P1L2104-BLK1)				Prepared &	: Analyzed:	12/21/21				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.120		90.3	80-120			
LCS (P1L2104-BS1)				Prepared &	: Analyzed:	12/21/21				
Benzene	0.0955	0.00100	mg/kg wet	0.100	-	95.5	70-130			
Toluene	0.0896	0.00100	"	0.100		89.6	70-130			
Ethylbenzene	0.0963	0.00100	"	0.100		96.3	70-130			
Xylene (p/m)	0.199	0.00200	"	0.200		99.7	70-130			
Xylene (o)	0.0853	0.00100	"	0.100		85.3	70-130			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	80-120			
LCS Dup (P1L2104-BSD1)				Prepared &	Analyzed:	12/21/21				
Benzene	0.103	0.00100	mg/kg wet	0.100		103	70-130	7.72	20	
Toluene	0.0981	0.00100	"	0.100		98.1	70-130	9.10	20	
Ethylbenzene	0.105	0.00100	"	0.100		105	70-130	8.32	20	
Xylene (p/m)	0.217	0.00200	"	0.200		108	70-130	8.41	20	
Xylene (o)	0.0936	0.00100	"	0.100		93.6	70-130	9.34	20	
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.4	80-120			
Calibration Blank (P1L2104-CCB1)				Prepared &	Analyzed:	12/21/21				
Benzene	0.100	<u> </u>	mg/kg wet				<u> </u>	<u> </u>		
Гoluene	0.120		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.480		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.106		"	0.120		88.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.5	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1L2104 - *** DEFAULT PREP ***										
Calibration Blank (P1L2104-CCB2)				Prepared &	Analyzed:	12/21/21				
Benzene	0.00		mg/kg wet							
Toluene	0.140		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.480		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	80-120			
Calibration Check (P1L2104-CCV1)				Prepared &	Analyzed:	12/21/21				
Benzene	0.103	0.00100	mg/kg wet	0.100		103	80-120			
Toluene	0.0969	0.00100	"	0.100		96.9	80-120			
Ethylbenzene	0.0958	0.00100	"	0.100		95.8	80-120			
Xylene (p/m)	0.212	0.00200	"	0.200		106	80-120			
Xylene (o)	0.0921	0.00100	"	0.100		92.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.1	75-125			
Calibration Check (P1L2104-CCV2)				Prepared &	Analyzed:	12/21/21				
Benzene	0.115	0.00100	mg/kg wet	0.100		115	80-120			
Toluene	0.109	0.00100	"	0.100		109	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.234	0.00200	"	0.200		117	80-120			
Xylene (o)	0.107	0.00100	"	0.100		107	80-120			
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		102	75-125			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		100	75-125			
Calibration Check (P1L2104-CCV3)				Prepared &	Analyzed:	12/21/21				
Benzene	0.115	0.00100	mg/kg wet	0.100		115	80-120			
Γoluene	0.109	0.00100	"	0.100		109	80-120			
Ethylbenzene	0.105	0.00100	"	0.100		105	80-120			
Xylene (p/m)	0.230	0.00200	"	0.200		115	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	75-125			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

0.120

0.119

13000 West County Road 100 Odessa TX, 79765

Surrogate: 1,4-Difluorobenzene

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P1L2104 - *** DEFAULT PREP ***

Matrix Spike (P1L2104-MS1)	Sour	ce: 1L21001	-01	Prepared &	Analyzed:	12/21/21				
Benzene	0.0754	0.00108	mg/kg dry	0.108	ND	70.2	80-120			
Toluene	0.0651	0.00108	"	0.108	ND	60.5	80-120			
Ethylbenzene	0.0594	0.00108	"	0.108	ND	55.2	80-120			
Xylene (p/m)	0.120	0.00215	"	0.215	ND	55.9	80-120			
Xylene (o)	0.0535	0.00108	"	0.108	ND	49.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.134		"	0.129		104	80-120			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.129		102	80-120			
Matrix Spike Dup (P1L2104-MSD1)	Sour	ce: 1L21001	-01	Prepared &	Analyzed:	12/21/21				
Benzene	0.0839	0.00108	mg/kg dry	0.108	ND	78.1	80-120	10.7	20	
Toluene	0.0737	0.00108	"	0.108	ND	68.5	80-120	12.4	20	
Ethylbenzene	0.0684	0.00108	"	0.108	ND	63.6	80-120	14.1	20	
Xylene (p/m)	0.139	0.00215	"	0.215	ND	64.5	80-120	14.4	20	
Xylene (o)	0.0612	0.00108	"	0.108	ND	56.9	80-120	13.4	20	
Surrogate: 4-Bromofluorobenzene	0.133		"	0.129		103	80-120			

0.129

102

80-120

0.131

Project: Winnebago CTB Flare
Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 15278
Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1L2106 - *** DEFAULT PREP ***										
Blank (P1L2106-BLK1)				Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	ND	0.1	%							
Blank (P1L2106-BLK2)				Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	ND	0.1	%							
Blank (P1L2106-BLK3)				Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	ND	0.1	%							
Blank (P1L2106-BLK4)				Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	ND	0.1	%							
Blank (P1L2106-BLK5)				Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	ND	0.1	%							
Blank (P1L2106-BLK6)				Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	ND	0.1	%							
Duplicate (P1L2106-DUP1)	Sour	ce: 1L17019-0	02	Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	16.0	0.1	%		17.0	-		6.06	20	
Duplicate (P1L2106-DUP2)	Sour	ce: 1L17020-0	07	Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	6.0	0.1	%	-	6.0			0.00	20	
Duplicate (P1L2106-DUP3)	Sour	rce: 1L20005-0	03	Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	14.0	0.1	%	-	13.0	-		7.41	20	
Duplicate (P1L2106-DUP4)	Sour	ce: 1L20006-0	05	Prepared: 12	2/21/21 Aı	nalyzed: 12/	22/21			
% Moisture	7.0	0.1	%	*	7.0	_ •		0.00	20	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 15278
Odessa TX, 79765 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control
Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2106 - *** DEFAULT PREP ***										
Duplicate (P1L2106-DUP5)	Sou	rce: 1L20007-	07	Prepared: 1	2/21/21 A	analyzed: 12	/22/21			
% Moisture	4.0	0.1	%		5.0			22.2	20	R
Duplicate (P1L2106-DUP6)	Sou	rce: 1L20008-	09	Prepared: 1	2/21/21 A	analyzed: 12	/22/21			
% Moisture	9.0	0.1	%		9.0			0.00	20	
Duplicate (P1L2106-DUP7)	Sou	rce: 1L20008-	24	Prepared: 1	2/21/21 A	nalyzed: 12	/22/21			
% Moisture	9.0	0.1	%		10.0	-		10.5	20	
Duplicate (P1L2106-DUP8)	Sou	rce: 1L20009-	01	Prepared: 1	2/21/21 A	analyzed: 12	/22/21			
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P1L2106-DUP9)	Sou	rce: 1L20014-	02	Prepared: 1	2/21/21 A	analyzed: 12	/22/21			
% Moisture	1.0	0.1	%	·	ND	·	·	200	20	R
Duplicate (P1L2106-DUPA)	Sou	rce: 1L21001-	02	Prepared: 1	2/21/21 A	analyzed: 12	/22/21			
% Moisture	6.0	0.1	%		5.0			18.2	20	
Batch P1L2211 - *** DEFAULT PREP ***										
Blank (P1L2211-BLK1)				Prepared &	Analyzed	: 12/22/21				
Chloride	ND	1.00	mg/kg wet	•						
LCS (P1L2211-BS1)				Prepared &	Analyzed	: 12/22/21				
Chloride	39.9		mg/kg	40.0		99.8	90-110			
LCS Dup (P1L2211-BSD1)					Prepared & Analyzed: 12/22/21					
Chloride	40.1		mg/kg	40.0		100	90-110	0.587	10	

13000 West County Road 100 Project Number: 15278 Odessa TX, 79765

Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2211 - *** DEFAULT PREP ***										
Calibration Check (P1L2211-CCV1)				Prepared &	ኔ Analyzed:	12/22/21				
Chloride	21.3		mg/kg	20.0		107	90-110			
Calibration Check (P1L2211-CCV2)				Prepared &	ኔ Analyzed:	12/22/21				
Chloride	21.4		mg/kg	20.0		107	90-110			
Matrix Spike (P1L2211-MS1)	Sour	ce: 1L20008	-24	Prepared &	ኔ Analyzed:	12/22/21				
Chloride	1750	5.56	mg/kg dry	556	1170	104	80-120			
Matrix Spike (P1L2211-MS2)	Sour	ce: 1L20012	-01	Prepared &	ኔ Analyzed:	12/22/21				
Chloride	224	1.06	mg/kg dry	532	159	12.2	80-120			QM-05
Matrix Spike Dup (P1L2211-MSD1)	Sour	ce: 1L20008	-24	Prepared &	ኔ Analyzed:	12/22/21				
Chloride	1760	5.56	mg/kg dry	556	1170	105	80-120	0.326	20	
Matrix Spike Dup (P1L2211-MSD2)	Sour	ce: 1L20012	-01	Prepared &	ኔ Analyzed:	12/22/21				
Chloride	209	1.06	mg/kg dry	532	159	9.28	80-120	7.08	20	QM-05

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	0/275	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1L2210 - TX 1005										
Blank (P1L2210-BLK1)				Prepared:	12/22/21 Ar	nalyzed: 12	/23/21			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	78.2		"	100		78.2	70-130			
Surrogate: o-Terphenyl	38.8		"	50.0		77.7	70-130			
LCS (P1L2210-BS1)				Prepared:	12/22/21 Ar	nalyzed: 12	/23/21			
C6-C12	926	25.0	mg/kg wet	1000		92.6	75-125			
>C12-C28	887	25.0	"	1000		88.7	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	44.4		"	50.0		88.9	70-130			
LCS Dup (P1L2210-BSD1)				Prepared:	12/22/21 Ar	nalyzed: 12	/23/21			
C6-C12	935	25.0	mg/kg wet	1000		93.5	75-125	0.913	20	
>C12-C28	900	25.0	"	1000		90.0	75-125	1.46	20	
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	45.3		"	50.0		90.7	70-130			
Calibration Check (P1L2210-CCV1)				Prepared:	12/22/21 Ar	nalyzed: 12	/23/21			
C6-C12	501	25.0	mg/kg wet	500		100	85-115			
>C12-C28	498	25.0	"	500		99.5	85-115			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	42.5		"	50.0		85.0	70-130			
Calibration Check (P1L2210-CCV2)				Prepared:	12/22/21 Ar	nalyzed: 12	/23/21			
C6-C12	475	25.0	mg/kg wet	500		95.0	85-115			
>C12-C28	449	25.0	"	500		89.8	85-115			
Surrogate: 1-Chlorooctane	100		"	100		100	70-130			
Surrogate: o-Terphenyl	42.6		"	50.0		85.3	70-130			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1L2210 - TX 1005										
Matrix Spike (P1L2210-MS1)	Source	ce: 1L20012	-06	Prepared:	12/22/21 A	nalyzed: 12	/24/21			
C6-C12	750	25.0	mg/kg dry	1000	18.4	73.1	75-125			QM-05
>C12-C28	730	25.0	"	1000	22.4	70.8	75-125			QM-05
Surrogate: 1-Chlorooctane	105		"	100		105	70-130			
Surrogate: o-Terphenyl	42.0		"	50.0		84.1	70-130			
Matrix Spike Dup (P1L2210-MSD1)	Source	ce: 1L20012	-06	Prepared:	12/22/21 A	nalyzed: 12	/24/21			
C6-C12	718	25.0	mg/kg dry	1000	18.4	69.9	75-125	4.49	20	QM-05
>C12-C28	700	25.0	"	1000	22.4	67.8	75-125	4.30	20	QM-05
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	41.4		"	50.0		82.8	70-130			

13000 West County Road 100

Odessa TX, 79765

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

Notes and Definitions

ROI Received on Ice

R2 The RPD exceeded the acceptance limit.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 12/27/2021

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Winnebago CTB Flare

13000 West County Road 100 Project Number: 15278
Odessa TX, 79765 Project Manager: Tim McMinn

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Relinquished by:

elinquished by

Special Instructions

entennia

Project Manager:

Tim McMinn

Company Name:

Etech Environmental & Safety Solutions, Inc.

Permian Basin Environmental Lab, LP

Midland Texas 79701

Phone: 132-686-7235

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Flare	CTB	Project Name: W. nnubago	Project Na
	-	Contina. a	

Area: Project #: 120 Project Loc: PO#: 40546

☐Bill Etech

ORDER #: (lab use only)

1120012

LAB # (lab use only)

FIELD CODE

City/State/Zip:

Midland, Texas 79711

email:

Tim@etechenv.com

Company Address: P.O. Box 62228

Sampler Signature:

Ō	Ō	Z	е												-					
Time	Time	10:41	Time							200					0/					
מ	77			A												Start Depth				
Received by:	Received by:		Received by:	1												End Depth	Pro			
ed by:	ed by:		ed by:	leed Ru						12/17/21	12/17/21	12/17/21	12/17/21	12/41/21	12/17/21	Date Sampled	Preservation & # of Containers			
	And the second section of the second section of the second section sec			Rush/ts						1015	1000	942	938	920	900	Time Sampled	f Containers			
										-	1	1	1	1	-	No. of Containers				
				64						X	K	K	R	×	₽	Ice				
			I	•												HNO ₃				
																HCI				
			1	2						<u>-</u>						H₂SO₄				
			1	177												NaOH				
5			\dashv	4												Na ₂ S ₂ O ₃				
12	D		D	12	<u> </u>											None				
	Date		Date	~	_	_		ш						Ш		Other (Specify) DW=Drinking Water SL=Sludge	H			
							- , -			5	5	S	5	S	5	GW = Groundwater S=Soil/Solid	Matrix			
5-	=				_											NP=Non-PotableSpecify Other	×.			_
)Te	Time		Time							M	图	×	×	R	×	TPH: 418.1 8015M 1005 10	06		П	
Te	SSS	Sign	Ω	< % L												Cations (Ca, Mg, Na, K)			П	
Temperature Upon Receipt:	Sar by Sampler/Client Rep. Sar by Courier? UPS	Custody seals on cooler(s) Sample Hand Delivered	Custody seals on container(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?												Anions (CI, SO4, CO3, HCO3)		TOTAL		
ratu	San	y see Ha	y se	ator Free												SAR / ESP / CEC		P	TCLP:	
re ∪	mpler	als	eals	ntair of												Metals: As Ag Ba Cd Cr Pb Hg S	e			
oon	/Clie	on c	on c	ners Head												Volatiles				Þ
Reco	urs LPS	oole	onta	nen Intac Ispa												Semi volatiles				Analyze For:
eipt:	ep.?	r(s)	iner	ts:						X	×	×	×	X	Ø.	BTEX 8021B/5030 or BTEX 826	0			/ze I
	P.		(s)													RCI				or:
																N.O.R.M.				
	Fed		~							×	×	图	M	R	松	Chlorides				
	本人	36	وك	B,																
	Lone																			
റ്	N Lone Star	zz	Z	ZZ												RUSH TAT(Pre-Schedule) 24, 4	8, 72	hrs		
	=									K	X	1	1	£	×	STANDARD TAT				

9

6

Stockpile -

EW-1 I-MM

2M-NW-1

Cu

Bottom Hole

PBEL_SAMPLE_CHECKLIST_2021_1

Joz Jar

PLADOIA

NC Initiated by:

0

Approved by:

EFFECTIVE DATE: 10/30/2021

Sample Receipt Checklist

Custody seals intact on shipping container/cooler? Shipping container/cooler in good condition? Samples received within appropriate temp? All samples received within holding time? Sufficient sample volume for indicated test? Analysis requested for all samples submitted? Samples in proper container/bottle? Custody seals intact on sample bottles? Sample containers intact? Chain of Custody agrees with sample Samplers name present on COC? Sample date/time present on COC for all samples? Chain of custody signed/dated/time when relinquished and

Page 1 of 2

PBEL_SAMPLE_CHECKLIST_2021_1

Page 2 of 2

DOC #: PBEL_SAMPLE_CHECKLIST

REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

SAMPLE VARIANCE/NON-CONFORMANCE

temp 4.0	Variance/Discrepancy:	
3	MATERIAL BANKS AND STATES	
ce	_	
	THE PERSON NAMED IN COLUMN 1	

Notes

	\eso
	Ē
-	- Ei
	2
1	

Client Contacted 100 Name: Date/Time:	
8	

DOC #: PBEL_SAMPLE_CHECKLIST EFFECTIVE DATE: 10/30/2021 **REVISION Date: 10/30/2021** REVISION #: PBEL_2021_1

Page 20 of 20

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Tim McMinn
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Winnebago CTB Flare
Project Number: 15278
Location: Lea County, NM

Lab Order Number: 2A05004

Current Certification

Report Date: 01/06/22

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
East Surface - 1A	2A05004-01	Soil	01/04/22 12:00	01-05-2022 10:35
East Surface - 2A	2A05004-02	Soil	01/04/22 13:25	01-05-2022 10:35
East Surface - 4A	2A05004-03	Soil	01/04/22 13:45	01-05-2022 10:35
East Surface - 5A	2A05004-04	Soil	01/04/22 14:15	01-05-2022 10:35
East Surface - 6A	2A05004-05	Soil	01/04/22 14:45	01-05-2022 10:35
West Surface - 1A	2A05004-06	Soil	01/04/22 15:35	01-05-2022 10:35
South Surface - 1A	2A05004-07	Soil	01/04/22 10:00	01-05-2022 10:35
South Surface - 2A	2A05004-08	Soil	01/04/22 10:30	01-05-2022 10:35
P-6A	2A05004-09	Soil	01/04/22 14:00	01-05-2022 10:35
P-10A	2A05004-10	Soil	01/04/22 11:45	01-05-2022 10:35
P-11A	2A05004-11	Soil	01/04/22 12:00	01-05-2022 10:35

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 1A 2A05004-01 (Soil)

	I	Reporting													
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes						
	Permian Basin Environmental Lab, L.P.														
eneral Chemistry Parameters by EPA / Standard Methods															
% Moisture	6.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216							
Total Petroleum Hydrocarbons C6-	Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M														
C6-C12	ND	26.6	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 14:49	TPH 8015M							
>C12-C28	ND	26.6	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 14:49	TPH 8015M							
>C28-C35	ND	26.6	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 14:49	TPH 8015M							
Surrogate: 1-Chlorooctane	9	1.4 %	70-130		P2A0501	01/05/22 12:00	01/05/22 14:49	TPH 8015M							
Surrogate: o-Terphenyl	9	2.2 %	70-130		P2A0501	01/05/22 12:00	01/05/22 14:49	TPH 8015M							
Total Petroleum Hydrocarbon	ND	26.6	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 14:49	calc							

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 2A 2A05004-02 (Soil)

									1
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by EPA / Standard Methods														
% Moisture	5.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216						
otal Petroleum Hydrocarbons C6-C35 by EPA Method 8015M														
C6-C12	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:12	TPH 8015M						
>C12-C28	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:12	TPH 8015M						
>C28-C35	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:12	TPH 8015M						
Surrogate: 1-Chlorooctane	Ģ	00.5 %	70-130		P2A0501	01/05/22 12:00	01/05/22 15:12	TPH 8015M						
Surrogate: o-Terphenyl	8	89.8 %	70-130		P2A0501	01/05/22 12:00	01/05/22 15:12	TPH 8015M						
Total Petroleum Hydrocarbon	ND	26.3	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 15:12	calc						

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278
Project Manager: Tim McMinn

East Surface - 4A 2A05004-03 (Soil)

		Reporting							l
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods

Chloride	37.5	1.08	mg/kg dry	1	P2A0506	01/05/22 16:39	01/06/22 09:29	EPA 300.0
% Moisture	7.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 5A 2A05004-04 (Soil)

	1	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		_			_				

General Chemistry Parameters by EPA / Standard Methods															
% Moisture	5.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216							
Total Petroleum Hydrocarbons C6-C	Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M														
C6-C12	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:36	TPH 8015M							
>C12-C28	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:36	TPH 8015M							
>C28-C35	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:36	TPH 8015M							
Surrogate: 1-Chlorooctane	8	8.1 %	70-130		P2A0501	01/05/22 12:00	01/05/22 15:36	TPH 8015M							
Surrogate: o-Terphenyl	8	9.5 %	70-130		P2A0501	01/05/22 12:00	01/05/22 15:36	TPH 8015M							
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 15:36	calc							

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface - 6A 2A05004-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by EPA / Standard Methods														
% Moisture	6.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216						
otal Petroleum Hydrocarbons C6-C35 by EPA Method 8015M														
C6-C12	ND	26.6	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:59	TPH 8015M						
>C12-C28	ND	26.6	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:59	TPH 8015M						
>C28-C35	ND	26.6	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 15:59	TPH 8015M						
Surrogate: 1-Chlorooctane	8	5.2 %	70-130		P2A0501	01/05/22 12:00	01/05/22 15:59	TPH 8015M						
Surrogate: o-Terphenyl	8	6.5 %	70-130		P2A0501	01/05/22 12:00	01/05/22 15:59	TPH 8015M						
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 15:59	calc						

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 1A 2A05004-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by EPA / Standard Methods													
% Moisture	3.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216					
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M										
C6-C12	ND	25.8	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 16:22	TPH 8015M					
>C12-C28	ND	25.8	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 16:22	TPH 8015M					
>C28-C35	ND	25.8	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 16:22	TPH 8015M					
Surrogate: 1-Chlorooctane		87.9 %	70-130		P2A0501	01/05/22 12:00	01/05/22 16:22	TPH 8015M					
Surrogate: o-Terphenyl		89.0 %	70-130		P2A0501	01/05/22 12:00	01/05/22 16:22	TPH 8015M					
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 16:22	calc					

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 1A 2A05004-07 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

% Moisture	5.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 16:46	TPH 8015M
>C12-C28	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 16:46	TPH 8015M
>C28-C35	ND	26.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 16:46	TPH 8015M
Surrogate: 1-Chlorooctane	8	3.8 %	70-130		P2A0501	01/05/22 12:00	01/05/22 16:46	TPH 8015M
Surrogate: o-Terphenyl	8	35.0 %	70-130		P2A0501	01/05/22 12:00	01/05/22 16:46	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 16:46	calc

13000 West County Road 100 Odessa TX, 79765

Surrogate: 1-Chlorooctane

Total Petroleum Hydrocarbon

Surrogate: o-Terphenyl

C6-C35

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 2A 2A05004-08 (Soil)

	1	Reporting											
Analyte	Result	Limit Units		Dilution	Batch	Prepared	Analyzed	Method	Notes				
									<u>'</u>				
		P	ermian B	asin Envi	ronmental I	ab, L.P.							
General Chemistry Parameters	by EPA / Standa	ard Met	hods										
% Moisture	2.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216					
Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M													
C6-C12	ND	25.5	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 17:09	TPH 8015M					
>C12-C28	60.9	25.5	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 17:09	TPH 8015M					
>C28-C35	ND	25.5	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 17:09	TPH 8015M					

P2A0501

P2A0501

[CALC]

01/05/22 12:00

01/05/22 12:00

01/05/22 12:00

01/05/22 17:09

01/05/22 17:09

01/05/22 17:09

TPH 8015M

TPH 8015M

calc

87.8 %

87.7 %

25.5

60.9

70-130

70-130

mg/kg dry

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

> P-6A 2A05004-09 (Soil)

									1
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods

Chloride	282	1.03	mg/kg dry	1	P2A0506	01/05/22 16:39	01/05/22 18:50	EPA 300.0
% Moisture	3.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216

13000 West County Road 100 Odessa TX, 79765

C6-C35

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-10A 2A05004-10 (Soil)

	F	Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		P	ermian B	asin Envi	ronmental L	ab, L.P.				
General Chemistry Parameters by E	EPA / Standa	ırd Metl	hods							
% Moisture	1.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216		
Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M										
C6-C12	ND	25.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 17:33	TPH 8015M		
>C12-C28	ND	25.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 17:33	TPH 8015M		
>C28-C35	ND	25.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 17:33	TPH 8015M		
Surrogate: 1-Chlorooctane	8	6.6 %	70-130		P2A0501	01/05/22 12:00	01/05/22 17:33	TPH 8015M		
Surrogate: o-Terphenyl	8	6.8 %	70-130		P2A0501	01/05/22 12:00	01/05/22 17:33	TPH 8015M		
Total Petroleum Hydrocarbon	ND	25.3	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 17:33	calc		

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-11A 2A05004-11 (Soil)

	I	Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		D	ormian R	osin Envi	ronmental L	ah I D					
		Г	eriiiaii d	asın envi	ronnientai L	au, L.F.					
General Chemistry Parameters by 1	EPA / Standa	ard Met	hods								
% Moisture	1.0	0.1	%	1	P2A0505	01/05/22 14:56	01/05/22 15:00	ASTM D2216			
Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M											
C6-C12	32.1	25.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 18:46	TPH 8015M			
>C12-C28	622	25.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 18:46	TPH 8015M			
>C28-C35	121	25.3	mg/kg dry	1	P2A0501	01/05/22 12:00	01/05/22 18:46	TPH 8015M			
Surrogate: 1-Chlorooctane	8	4.3 %	70-130		P2A0501	01/05/22 12:00	01/05/22 18:46	TPH 8015M			
Surrogate: o-Terphenyl	8	7.0 %	70-130		P2A0501	01/05/22 12:00	01/05/22 18:46	TPH 8015M			
Total Petroleum Hydrocarbon	775	25.3	mg/kg dry	1	[CALC]	01/05/22 12:00	01/05/22 18:46	calc			
C6-C35											

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2A0505 - *** DEFAULT PREP ***										
Blank (P2A0505-BLK1)				Prepared &	Analyzed:	01/05/22				
% Moisture	ND	0.1	%							
Duplicate (P2A0505-DUP1)	Sou	rce: 2A04002-	09	Prepared &	Analyzed:					
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P2A0505-DUP2)	Sou	rce: 2A04004-	09	Prepared &	Analyzed:	01/05/22				
% Moisture	13.0	0.1	%		13.0			0.00	20	
Duplicate (P2A0505-DUP3)	Sou	rce: 2A04004-	24	Prepared &	Analyzed:	01/05/22				
% Moisture	16.0	0.1	%		16.0			0.00	20	
Duplicate (P2A0505-DUP4)	Sou	rce: 2A04006-	02	Prepared &	Analyzed:	01/05/22				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P2A0505-DUP5)	Sou	rce: 2A04004-	08	Prepared &	Analyzed:	01/05/22				
% Moisture	2.0	0.1	%		17.0			158	20	R3
Batch P2A0506 - *** DEFAULT PREP ***										
Blank (P2A0506-BLK1)				Prepared &	: Analyzed:	01/05/22				
Chloride	ND	1.00	mg/kg wet	•						
LCS (P2A0506-BS1)				Prepared &	: Analyzed:	01/05/22				
Chloride	40.1		mg/kg	40.0		100	90-110			
LCS Dup (P2A0506-BSD1)				Prepared &	Analyzed:	01/05/22				
Chloride	39.8	-	mg/kg	40.0		99.5	90-110	0.781	10	

13000 West County Road 100 Project Number: 15278 Odessa TX, 79765

Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Liiiit	Omb	Level	resuit	/WILLO	Limito	III D	Dillit	110003
Batch P2A0506 - *** DEFAULT PREP ***										
Calibration Blank (P2A0506-CCB1)				Prepared &	ረ Analyzed:	01/05/22				
Chloride	0.135		mg/kg wet							
Calibration Blank (P2A0506-CCB2)				Prepared &	ኔ Analyzed:	01/05/22				
Chloride	0.174		mg/kg wet							
Calibration Check (P2A0506-CCV1)				Prepared &	ኔ Analyzed:	01/05/22				
Chloride	19.3		mg/kg	20.0		96.3	90-110		·	
Calibration Check (P2A0506-CCV2)				Prepared &	ኔ Analyzed:	01/05/22				
Chloride	18.3		mg/kg	20.0		91.4	90-110			
Calibration Check (P2A0506-CCV3)				Prepared: (01/05/22 A	nalyzed: 01	/06/22			
Chloride	19.2		mg/kg	20.0		96.0	90-110			
Matrix Spike (P2A0506-MS1)	Sou	rce: 2A05004	1-03	Prepared &	ኔ Analyzed:	01/05/22				
Chloride	506	10.8	mg/kg dry	538	37.5	87.2	80-120			
Matrix Spike (P2A0506-MS2)	Sou	rce: 2A04005	5-06	Prepared &	ኔ Analyzed:	01/05/22				
Chloride	17500	62.5	mg/kg dry	3120	13200	138	80-120			QM-0:
Matrix Spike Dup (P2A0506-MSD1)	Sou	rce: 2A05004	I-03	Prepared &	ኔ Analyzed:	01/05/22				
Chloride	505	10.8	mg/kg dry	538	37.5	87.0	80-120	0.191	20	
Matrix Spike Dup (P2A0506-MSD2)	Sou	rce: 2A04005	5-06	Prepared &	t Analyzed:	01/05/22				
Chloride	17400	62.5	mg/kg dry	3120	13200	135	80-120	0.572	20	QM-0:

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2A0501 - *** DEFAULT PREP ***										
Blank (P2A0501-BLK1)				Prepared &	ኔ Analyzed:	01/05/22				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	88.2		"	100		88.2	70-130			
Surrogate: o-Terphenyl	44.7		"	50.0		89.5	70-130			
LCS (P2A0501-BS1)				Prepared &	ኔ Analyzed:	01/05/22				
C6-C12	909	25.0	mg/kg wet	1000		90.9	75-125			
>C12-C28	852	25.0	"	1000		85.2	75-125			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	49.5		"	50.0		99.0	70-130			
LCS Dup (P2A0501-BSD1)				Prepared &	ኔ Analyzed:	01/05/22				
C6-C12	886	25.0	mg/kg wet	1000		88.6	75-125	2.52	20	
>C12-C28	830	25.0	"	1000		83.0	75-125	2.58	20	
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	48.2		"	50.0		96.5	70-130			
Calibration Check (P2A0501-CCV1)				Prepared &	ኔ Analyzed:	01/05/22				
C6-C12	499	25.0	mg/kg wet	500		99.8	85-115			
>C12-C28	471	25.0	"	500		94.1	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	49.7		"	50.0		99.3	70-130			
Calibration Check (P2A0501-CCV2)				Prepared &	ኔ Analyzed:	01/05/22				
C6-C12	472	25.0	mg/kg wet	500		94.4	85-115			
>C12-C28	459	25.0	"	500		91.9	85-115			
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	46.2		"	50.0		92.4	70-130			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

Notes and Definitions

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 1/6/2022

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Winnebago CTB Flare

13000 West County Road 100Project Number: 15278Odessa TX, 79765Project Manager: Tim McMinn

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Special Instructions:

South Su

East

₹elinquished by:

ORDER #: 34 0 5004

LAB # (lab use only)

(lab use only)

Sampler Signature: City/State/Zip: Company Address: Company Name: Project Manager:

email:

Tim@etechenv.com

Demnian Basin l	

Etech Environmental & Safety Solutions, Inc.

Tim McMinn

P.O. Box 62228 Midland, Texas 79711

lidland Texas 79701 Phone: 132-686-7235

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: Winnubago CTB Flure

Area: Project #: □Bill Etech 15278 Project Loc: Lea Count PO#: 94307

Date Time Recovery (A)	Date Time Received by:	115/20 10:36	Received by:	_				P-11A	P-10 A	-6 A	-2A	-/A	West Surface - 1A	East Surface - 6A 14	East Surface - SA	East Surface - UA 1	# # # # # # # # # # # # # # # # # # #	East Surface - 1A 1/4/22 11	Start Depth End Depth Date Sampled
	Company and who was proper		No. of the second	Devulogonent				1200	shi!	1400	1030	1000	1535	1445	5141	134	1325	1200	Time Sampled
	a la company de la company		**************************************	*****				_	5	Ξ			=		=	_	=	_	No. of Containers
	The second secon				片	片		X	X.	X	2	Z	<u>R</u>		<u> </u>	Z	≥	<u>×</u>	lce HNO₃
	9 6 4 1 1				1	片	H	H	 	片	H	片	片	౼	片	片	片	片	HCI
	The state of the s				片		뉴	片	片	분		片	片	片	H	片	片	片	H ₂ SO ₄
	angeles and				片	F	旨	苊	ī	Ħ	H	冒	ᆸ	H		H		븁	NaOH
	i,					Ī		<u> </u>			1				Ī			<u> </u>	Na ₂ S ₂ O ₃
	1																		None
7	Date		Date								Ġ								Other (Specify)
D	Ō		Ф					T -	<u> </u>								_		DW=Drinking Water SL=Sludge
1		-						M	M	Y	N	N	M	M	N	u	N	M	GW = Groundwater S=Soil/Solid
7	Time		Ime			П		12	杈	\vdash	1	X	No			_	>	1997	NP=Non-PotableSpecify Other
	đ		Ø		H	<u> </u>	-	×		1	×	7	X	X	X		X.	Z	TPH: 418. 8015M 1005 10
	Sar Sar	Se C	Ω;		1	느		ᆜ		Н	<u> </u>		브			Ш	Ш	닏	Cations (Ca, Mg, Na, K)
	Sar by Sampler/Client Rep. Sar by Courier? UPS	Custody seals on cooler(s) Sample Hand Delivered	Custody seals on container(s)	Sample Containers Intact? VOCs Free of Headspace?	L	ᆜ	닏		Ш	Ш	Ш	ᆜ	Ш		Ш	Ш		Ш	Anions (Cl, SO4, CO3, HCO3)
	Sam; Sour	Han 'sea	sea	g & g															SAR / ESP / CEC
	er. 7		is o	of lain of											Ш				Metals: As Ag Ba Cd Cr Pb Hg S
	. <u>Q</u>	n co	n co	eads															Volatiles
	22	e e	ntai	ntaci Spac															Semi volatiles
	•	(S)	ner(ĕ, 5 ¢							Ф								BTEX 8021B/5030 or BTEX 826
<i>\</i>	₽ .	l.	s)																RCI
																			N.O.R.M.
	Feð	<u> </u>		1						X						X			Chlorides
	収≺	≺≺	₹	₹₹															
	\sim			14年 漢語															
ニアメー	ر) ا				_							W	J-1	45.3					DIGUTATION OF THE CO
) [0]	zz	z	zz	回			Z\	X	×	Æ.	×	(XI	X	×	Ø	×	Z	RUSH TAT(Pre-Schedule 24.)

PBEL_SAMPLE_CHECKLIST_2021_1

402 Jar

2A05004

All samples received within holding time?

Samples in proper container/bottle?

Sample containers intact?

Resolution:

Samplers name present on COC?

Chain of custody signed/dated/time when relinquished and

Notes

Variance/Discrepancy:

received?

Analysis requested for all samples submitted?

Custody seals intact on shipping container/cooler?

DOC #: PBEL_SAMPLE_CHECKLIST

Sample Receipt Checklist

EFFECTIVE DATE: 10/30/2021 REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

DOC #: PBEL_SAMPLE_CHECKLIST EFFECTIVE DATE: 10/30/2021 REVISIDN Date: 10/30/2021 REVISION #: PBEL_2021_1

SAMPLE VARIANCE/NON-CONFORMANCE

Name: NC Initiated by: Date/Time:

Approved by:

Client Contacted

PBEL_SAMPLE_CHECKLIST_2021_1

Page 1 of 2

Page 2 of 2

Page 20 of 20

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Tim McMinn
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Winnebago CTB Flare
Project Number: 15278
Location: Lea County, NM

Lab Order Number: 2A07002

Current Certification

Report Date: 01/10/22

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P-11B	2A07002-01	Soil	01/06/22 14:00	01-07-2022 09:48
Stockpile	2A07002-02	Soil	01/06/22 13:45	01-07-2022 09:48

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-11B 2A07002-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by E	EPA / Standa	ard Metl	hods						
% Moisture	2.0	0.1	%	1	P2A1005	01/10/22 08:40	01/10/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A0703	01/07/22 13:20	01/07/22 20:51	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A0703	01/07/22 13:20	01/07/22 20:51	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A0703	01/07/22 13:20	01/07/22 20:51	TPH 8015M	
Surrogate: 1-Chlorooctane	8	37.1 %	70-130		P2A0703	01/07/22 13:20	01/07/22 20:51	TPH 8015M	
Surrogate: o-Terphenyl	8	39.2 %	70-130		P2A0703	01/07/22 13:20	01/07/22 20:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/07/22 13:20	01/07/22 20:51	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

Stockpile 2A07002-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2A0707	01/07/22 14:50	01/07/22 20:56	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2A0707	01/07/22 14:50	01/07/22 20:56	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2A0707	01/07/22 14:50	01/07/22 20:56	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2A0707	01/07/22 14:50	01/07/22 20:56	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2A0707	01/07/22 14:50	01/07/22 20:56	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P2A0707	01/07/22 14:50	01/07/22 20:56	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.4 %	80-120		P2A0707	01/07/22 14:50	01/07/22 20:56	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	24.5	1.01	mg/kg dry	1	P2A0706	01/07/22 14:28	01/07/22 18:33	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A1005	01/10/22 08:40	01/10/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A0703	01/07/22 13:20	01/07/22 21:15	TPH 8015M	
>C12-C28	90.5	25.3	mg/kg dry	1	P2A0703	01/07/22 13:20	01/07/22 21:15	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A0703	01/07/22 13:20	01/07/22 21:15	TPH 8015M	
Surrogate: 1-Chlorooctane		91.9 %	70-130		P2A0703	01/07/22 13:20	01/07/22 21:15	TPH 8015M	
Surrogate: o-Terphenyl		92.9 %	70-130		P2A0703	01/07/22 13:20	01/07/22 21:15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	90.5	25.3	mg/kg dry	1	[CALC]	01/07/22 13:20	01/07/22 21:15	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Amelista	Dogult	Reporting	Linita	Spike	Source	%REC	%REC	RPD	RPD	Not
Analyte	Result	Limit	Units	Level	Result	%KEC	Limits	KPD	Limit	Notes
Batch P2A0707 - *** DEFAULT PREP ***										
Blank (P2A0707-BLK1)				Prepared &	Analyzed:	01/07/22				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.120		90.2	80-120			
LCS (P2A0707-BS1)				Prepared &	Analyzed:	01/07/22				
Benzene	0.104	0.00100	mg/kg wet	0.100		104	70-130			
Toluene	0.104	0.00100	"	0.100		104	70-130			
Ethylbenzene	0.112	0.00100	"	0.100		112	70-130			
Xylene (p/m)	0.222	0.00200	"	0.200		111	70-130			
Xylene (o)	0.0999	0.00100	"	0.100		99.9	70-130			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	80-120			
LCS Dup (P2A0707-BSD1)				Prepared &	Analyzed:	01/07/22				
Benzene	0.104	0.00100	mg/kg wet	0.100		104	70-130	0.0483	20	
Toluene	0.104	0.00100	"	0.100		104	70-130	0.173	20	
Ethylbenzene	0.112	0.00100	"	0.100		112	70-130	0.206	20	
Xylene (p/m)	0.221	0.00200	"	0.200		110	70-130	0.687	20	
Xylene (o)	0.0991	0.00100	"	0.100		99.1	70-130	0.784	20	
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	80-120			
Calibration Blank (P2A0707-CCB1)				Prepared &	Analyzed:	01/07/22				
Benzene	0.230		mg/kg wet		-					
Toluene	0.00		"							
Ethylbenzene	0.200		"							
Xylene (p/m)	0.480		"							
Xylene (o)	0.300		"							
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.8	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

87.0

80-120

0.120

0.104

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A0707 - *** DEFAULT PREP **	*									
Calibration Blank (P2A0707-CCB2)				Prepared &	& Analyzed:	01/07/22				
Benzene	0.00		mg/kg wet							
Toluene	0.160		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.110		"							
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		99.7	80-120			
Calibration Check (P2A0707-CCV1)				Prepared &	& Analyzed:	01/07/22				
Benzene	0.101	0.00100	mg/kg wet	0.100		101	80-120			
Toluene	0.0995	0.00100	"	0.100		99.5	80-120			
Ethylbenzene	0.100	0.00100	"	0.100		100	80-120			
Xylene (p/m)	0.211	0.00200	"	0.200		105	80-120			
Xylene (o)	0.0945	0.00100	"	0.100		94.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.110		"	0.120		91.5	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.5	75-125			
Calibration Check (P2A0707-CCV2)				Prepared &	& Analyzed:	01/07/22				
Benzene	0.105	0.00100	mg/kg wet	0.100	•	105	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120			
Xylene (p/m)	0.211	0.00200	"	0.200		106	80-120			
Xylene (o)	0.0982	0.00100	"	0.100		98.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.1	75-125			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	75-125			
Matrix Spike (P2A0707-MS1)	Sou	rce: 2A07002	2-02	Prepared:	01/07/22 An	alyzed: 01	1/08/22			
Benzene	0.0689	0.00101	mg/kg dry	0.101	ND	68.2	80-120			QM-0
Toluene	0.0557	0.00101	"	0.101	0.000515	54.6	80-120			QM-0
Ethylbenzene	0.0345	0.00101	"	0.101	ND	34.2	80-120			QM-0
Xylene (p/m)	0.0635	0.00202	"	0.202	ND	31.4	80-120			QM-0
Xylene (o)	0.0321	0.00101	"	0.101	ND	31.8	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.124		"	0.121		102	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

104

80-120

0.121

0.126

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2A0707 - *** DEFAULT PREP ***

Matrix Spike Dup (P2A0707-MSD1)	Sour	rce: 2A07002	Prepared:	01/07/22 An	alyzed: 0					
Benzene	0.0827	0.00101	mg/kg dry	0.101	ND	81.9	80-120	18.3	20	
Toluene	0.0728	0.00101	"	0.101	0.000515	71.5	80-120	26.8	20	QM-07
Ethylbenzene	0.0517	0.00101	"	0.101	ND	51.2	80-120	39.8	20	QM-07
Xylene (p/m)	0.0959	0.00202	"	0.202	ND	47.4	80-120	40.7	20	QM-07
Xylene (o)	0.0470	0.00101	"	0.101	ND	46.5	80-120	37.6	20	QM-07
Surrogate: 1,4-Difluorobenzene	0.124		"	0.121		102	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.121		98.4	80-120			

Project: Winnebago CTB Flare Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 15278
Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
maye	ACSUIT	Lillit	Omts	LCVCI	Result	70KEC	Lillits	KI D	Liiiit	TNOICS
Batch P2A0706 - *** DEFAULT PREP ***										
Blank (P2A0706-BLK1)				Prepared &	Analyzed:	01/07/22				
Chloride	ND	1.00	mg/kg wet							
LCS (P2A0706-BS1)				Prepared &	: Analyzed:	01/07/22				
Chloride	40.5		mg/kg	40.0		101	90-110			
LCS Dup (P2A0706-BSD1)				Prepared &	: Analyzed:	01/07/22				
Chloride	41.8		mg/kg	40.0		105	90-110	3.22	10	
Calibration Blank (P2A0706-CCB1)				Prepared &	Analyzed:	01/07/22				
Chloride	0.139		mg/kg wet							
Calibration Blank (P2A0706-CCB2)				Prepared &	Analyzed:	01/07/22				
Chloride	0.116		mg/kg wet							
Calibration Check (P2A0706-CCV1)				Prepared &	Analyzed:	01/07/22				
Chloride	19.0		mg/kg	20.0		94.9	90-110			
Calibration Check (P2A0706-CCV2)				Prepared &	: Analyzed:	01/07/22				
Chloride	19.4		mg/kg	20.0		97.0	90-110			
Calibration Check (P2A0706-CCV3)				Prepared &	: Analyzed:	01/07/22				
Chloride	19.4		mg/kg	20.0		96.8	90-110			
Matrix Spike (P2A0706-MS1)	So	urce: 2A07001	-01	Prepared &	: Analyzed:	01/07/22				
Chloride	568	1.02	mg/kg dry	255	329	93.5	80-120			
Matrix Spike (P2A0706-MS2)	So	urce: 2A06002	2-13	Prepared &	: Analyzed:	01/07/22				
Chloride	235	1.01	mg/kg dry	253	15.1	87.2	80-120			

Project Number: 15278 Odessa TX, 79765 Project Manager: Tim McMinn

13000 West County Road 100

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2A0706 - *** DEFAULT PREP ***										
Matrix Spike Dup (P2A0706-MSD1)	Soui	ce: 2A07001	-01	Prepared &	: Analyzed:	01/07/22				
Chloride	566	1.02	mg/kg dry	255	329	92.9	80-120	0.308	20	
Matrix Spike Dup (P2A0706-MSD2)	Soui	ce: 2A06002	-13	Prepared &	Analyzed:	01/07/22				
Chloride	228	1.01	mg/kg dry	253	15.1	84.5	80-120	2.98	20	
Batch P2A1005 - *** DEFAULT PREP ***										
Blank (P2A1005-BLK1)				Prepared &	: Analyzed:	01/10/22				
% Moisture	ND	0.1	%	*	•					
Blank (P2A1005-BLK2)				Prepared &	: Analyzed:	01/10/22				
% Moisture	ND	0.1	%							
Blank (P2A1005-BLK3)				Prepared &	: Analyzed:	01/10/22				
% Moisture	ND	0.1	%		-					
Duplicate (P2A1005-DUP1)	Sour	ce: 2A06009	-01	Prepared &	: Analyzed:	01/10/22				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P2A1005-DUP2)	Sour	ce: 2A06010	-02	Prepared &	: Analyzed:	01/10/22				
% Moisture	ND	0.1	%		1.0			200	20	R3
Duplicate (P2A1005-DUP3)	Sour	ce: 2A07002	-01	Prepared &	: Analyzed:	01/10/22				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Duplicate (P2A1005-DUP4)	Sour	ce: 2A07007	-03	Prepared &	: Analyzed:	01/10/22				
% Moisture	2.0	0.1	%		2.0			0.00	20	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278
Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2A1005 - *** DEFAULT PREP ***

Duplicate (P2A1005-DUP5)	Source: 2A	A 07015-0	2	Prepared & Analyzed: 01/10/22		
% Moisture	6.0	0.1	%	7.0	15.4	20

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A0703 - *** DEFAULT PREP ***										
Blank (P2A0703-BLK1)				Prepared &	Analyzed:	01/07/22				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	90.8		"	100		90.8	70-130			
Surrogate: o-Terphenyl	46.2		"	50.0		92.5	70-130			
LCS (P2A0703-BS1)				Prepared &	Analyzed:	01/07/22				
C6-C12	967	25.0	mg/kg wet	1000		96.7	75-125			
>C12-C28	877	25.0	"	1000		87.7	75-125			
Surrogate: 1-Chlorooctane	93.5		"	100		93.5	70-130			
Surrogate: o-Terphenyl	53.3		"	50.0		107	70-130			
LCS Dup (P2A0703-BSD1)				Prepared &	Analyzed:	01/07/22				
C6-C12	990	25.0	mg/kg wet	1000		99.0	75-125	2.35	20	
>C12-C28	895	25.0	"	1000		89.5	75-125	2.09	20	
Surrogate: 1-Chlorooctane	96.3		"	100		96.3	70-130			
Surrogate: o-Terphenyl	52.4		"	50.0		105	70-130			
Calibration Check (P2A0703-CCV1)				Prepared &	Analyzed:	01/07/22				
C6-C12	489	25.0	mg/kg wet	500	-	97.9	85-115			
>C12-C28	469	25.0	"	500		93.8	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	50.1		"	50.0		100	70-130			
Calibration Check (P2A0703-CCV2)				Prepared &	Analyzed:	01/07/22				
C6-C12	495	25.0	mg/kg wet	500		99.0	85-115			
>C12-C28	479	25.0	"	500		95.9	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	50.6		"	50.0		101	70-130			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2A0703 - *** DEFAULT PREP ***

Duplicate (P2A0703-DUP1)	Source	: 2A07009-01	Prepared: 01/07/22 Analyz	zed: 01/08/22	
C6-C12	374	291 mg/kg dry	377	0.9	960 20
>C12-C28	2300	291 "	2320	1.3	25 20
Surrogate: 1-Chlorooctane	108	"	116	93.1 70-130	
Surrogate: o-Terphenyl	56.0	"	58.1	96.4 70-130	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Winnebago CTB Flare

13000 West County Road 100Project Number:15278Odessa TX, 79765Project Manager:Tim McMinn

Notes and Definitions

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Dien	Devou C		
Report Approved By:			Date:	1/10/2022

P AR

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

e 14	10 of 2
I 100 Rankin Hwy	
Midland	AIB Parmi
Midland Texas 79701	ian Basin En
	vironmental
.Tel	(al Lab. LP

Relinquished by:	Relinquished	4	Reimouis	Special													<u> </u>	3	LAB#(lab use only)		(lab use only ORDER #:		City/State/Zip: Sampler Signat	Compar	Project	1400 R	
ned by:	ned by:	N N	red by	Special Instructions													7				当の子		City/State/Zip: Sampler Signature:	Company Address:	Project Manager:	1400 Rankin Hwy	
American de la compressa de marco de la compressa de la compre		ike		B.													Stockpile	P-11B	FIELD CODE	2234	SA01002		Midland, Texas 79711	P.O. Box 62228	Tim McMinn Etech Environmental & Safety Solutions, Inc.		JAN 13 Pe
Date Time	Date Time	1-72 9:49	Date Time	Centennial													6		. H				<u>9711</u> email:		ntal & Safety Solu	Midland Texas 79701	Permian Basin Environmental Lab. LP
	Z	ļ		B															Start Depth	4			••		ution		viro
Receive	eceive		eceiv	501															End Depth	Pres				,	s, In		эши
Spy (Received by:		Received by:	ì													1/6/22	1/6/22	Date Sampled	Preservation & # of Containers			Tim <u>@etechenv.com</u>		lio		ntal Lab. I
t t	11			Development													1345	1400	Time Sampled	Containers			env.com			Phone: 132-686-7235	₩
				2							L					_		-	No. of Containers	4			,_			32-6	
1		1		7	-								<u>_</u>				K J	K	lce HNO₃	-						900-	
				Ì ,		片	片									片			HCI	┨						723	
0			500		占	ī													H ₂ SO ₄	1						Ŭ1	,
11																			NaOH								
)	ļ.,				旦													Na ₂ S ₂ O ₃	4							
S			_																None	_		Re		<u>P</u>	Pro	D 3	
7	i a	2	Date														5	<u> </u>	Other (Specify) DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	Matrix		Report Format: STANDARD:	Bill Etech	Area:	Project #: 15	riect N.	- Alyera al
\$2 \$2	1 12		Ħ		F		 -						_	_	H		J21		NP=Non-PotableSpecify Other			ΤË	ဌ			3	Į.
	ā		THE S	l	분										H		X]	X	TPH: 418.1 8015M 1005	100		₹			5778		legen
Temperature Upon Receipt(0). S	Sar	San	Sign	Sample Containers Intact? VOCs Free of Headspace?															Cations (Ca, Mg, Na, K)] #			8		Z.
pera	Sar by Courier? UPS I	ple c	tody	SET (aboratory	1_	片	쁜] [片	-	-] [片		1_	Anions (CI, SO4, CO3, HCO	73)	TOTAL					-	6
ture	our a	danc	sea	ee o Ont∶		片	片				片	片	1		片	片	片		SAR / ESP / CEC		 	1 #			밀	•	7
Цро	2, 2		S O	alne.	င္ခါ	분	片]	屵	1			쁜		片	쁜	믬	믐	Metals: As Ag Ba Cd Cr Pb H	g se		╣ 🖁		-0		•	i
ž Z	_ <u>a</u>	Ver	8	rs In	☐ ☐ ☐	냳	닏	닏	<u> </u>	<u> </u>			Ц	브		닏	닏		Volatiles					PO#:		F1	
Jeog	2	D g S	ntain	tact' pace	77 L	빌	븯	닏	ᆜ		분					닏	별	쁜	Semi volatiles	22.60		Analyze For:		••	Project Loc:	<u>,</u>	
Ĕ		ن د	er(s	``````````````````````````````````````	" <u> </u>		片		븐	븜	무				무	片	M		BTEX 8021B) 5030 or BTEX 8	3260	<u> </u>			2	ار	1	
\approx	呈		ľ		╠	무	H		片	片		믐				片	 		N.O.R.M.		+-	 		49307	6)	
\mathcal{I}	Ţ				片	12	片			H		믐			片	片			Chlorides		+	┧ [60	2		,
=	FedEx	< 1°	\ _	(XIX)	۱H	냶	片	片	片	片	뭄	片	믐	片	H	片		H	Cincilaci	***	1	┤		14	Cours		
\prec		L		S)	情			<u> </u>			<u> </u>					Ī	1				1	1			12		
് റ്	Lone S	zz	Į z	2 Z Z							<u> </u>						×	R	RUSH TAT(Pre-Schedule)(24	4,48,	1 72 hrs			-	7		
7.7	U)	100 10 10 10	61 6	医抗海绵菌 医石		1 7			. —		100				1										•		

STANDARD TAT

PBEL_SAMPLE_CHECKLIST_2021_1

EFFECTIVE DATE: 10/30/2021 REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

DOC #: PBEL_SAMPLE_CHECKLIST

All samples received within holding time? Samples in proper container/bottle? Sample containers intact? Samplers name present on COC? Chain of custody signed/dated/time when relinquished and Sample Receipt Checklist Notes

Resolution:

received?

<

Custody seals intact on shipping container/cooler?

Analysis requested for all samples submitted?

Date/Time: Name: Client Contacted

NC Initiated by:

Approved by:

DOC #: PBEL_SAMPLE_CHECKLIST EFFECTIVE DATE: 10/30/2021 REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

SAMPLE VARIANCE/NON-CONFORMANCE

Variance/Discrepancy:

ш
Γ
·'n.
≥
≤
-
,Б
١_
꿏
丽
♀
₽
- 15
1
\simeq
\approx
دسن
4.5

PB

Page 1 of 2

Page 2 of 2

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Tim McMinn
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Winnebago CTB Flare
Project Number: 15278
Location: Lea County, NM

Lab Order Number: 2A21009

Current Certification

Report Date: 02/01/22

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
East Surface-1AH @ 2-5"	2A21009-01	Soil	01/19/22 11:00	01-21-2022 14:00
East Surface-1AH @ 5-8"	2A21009-02	Soil	01/19/22 11:04	01-21-2022 14:00
East Surface-2AH @ 2-5"	2A21009-03	Soil	01/19/22 11:08	01-21-2022 14:00
East Surface-2AH @ 5-8"	2A21009-04	Soil	01/19/22 11:12	01-21-2022 14:00
East Surface-3AH @ 0-3"	2A21009-05	Soil	01/19/22 11:16	01-21-2022 14:00
East Surface-3AH @ 3"-6"	2A21009-06	Soil	01/19/22 11:20	01-21-2022 14:00
East Surface-4AH @ 3"-6"	2A21009-07	Soil	01/19/22 11:24	01-21-2022 14:00
East Surface-4AH @ 6"-9"	2A21009-08	Soil	01/19/22 11:28	01-21-2022 14:00
East Surface-5AH @ 2-5"	2A21009-09	Soil	01/19/22 11:32	01-21-2022 14:00
East Surface-5AH @ 5-8"	2A21009-10	Soil	01/19/22 11:36	01-21-2022 14:00
East Surface-6AH @ 2-5"	2A21009-11	Soil	01/19/22 11:40	01-21-2022 14:00
East Surface-6AH @ 5-8"	2A21009-12	Soil	01/19/22 11:44	01-21-2022 14:00
East Surface-7AH @ 0-3"	2A21009-13	Soil	01/19/22 11:48	01-21-2022 14:00
East Surface-7AH @ 3"-6"	2A21009-14	Soil	01/19/22 11:52	01-21-2022 14:00
East Surface-8AH @ 0-3"	2A21009-15	Soil	01/19/22 11:56	01-21-2022 14:00
East Surface-8AH @ 3"-6"	2A21009-16	Soil	01/19/22 12:00	01-21-2022 14:00
East Surface-9AH @ 0-3"	2A21009-17	Soil	01/19/22 12:04	01-21-2022 14:00
East Surface-9AH @ 3"-6"	2A21009-18	Soil	01/19/22 12:08	01-21-2022 14:00
East Surface-10AH @ 0-3"	2A21009-19	Soil	01/19/22 12:12	01-21-2022 14:00
East Surface-10AH @ 3"-6"	2A21009-20	Soil	01/19/22 12:16	01-21-2022 14:00
East Surface-11AH @ 0-3"	2A21009-21	Soil	01/19/22 12:20	01-21-2022 14:00
East Surface-11AH @ 3"-6"	2A21009-22	Soil	01/19/22 12:24	01-21-2022 14:00
East Surface-12AH @ 0-3"	2A21009-23	Soil	01/19/22 12:28	01-21-2022 14:00
East Surface-12AH @ 3"-6"	2A21009-24	Soil	01/19/22 12:32	01-21-2022 14:00
East Surface-13AH @ 0-3"	2A21009-25	Soil	01/19/22 12:36	01-21-2022 14:00
East Surface-13AH @ 3"-6"	2A21009-26	Soil	01/19/22 12:40	01-21-2022 14:00
East Berm Surface-1AH @ 0-3"	2A21009-27	Soil	01/19/22 10:40	01-21-2022 14:00
East Berm Surface-1AH @ 3"-6"	2A21009-28	Soil	01/19/22 10:45	01-21-2022 14:00
East Berm Surface-2AH @ 0-3"	2A21009-29	Soil	01/19/22 10:30	01-21-2022 14:00
East Berm Surface-2AH @ 3"-6"	2A21009-30	Soil	01/19/22 10:35	01-21-2022 14:00
East Berm Surface-3AH @ 0-3"	2A21009-31	Soil	01/19/22 10:20	01-21-2022 14:00
East Berm Surface-3AH @ 3"-6"	2A21009-32	Soil	01/19/22 10:25	01-21-2022 14:00
East Berm Surface-4AH @ 0-3"	2A21009-33	Soil	01/19/22 10:10	01-21-2022 14:00
East Berm Surface-4AH @ 3"-6"	2A21009-34	Soil	01/19/22 10:15	01-21-2022 14:00

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
East Berm Surface-5AH @ 0-3"	2A21009-35	Soil	01/19/22 10:00	01-21-2022 14:00
East Berm Surface-5AH @ 3"-6"	2A21009-36	Soil	01/19/22 10:05	01-21-2022 14:00
West Surface - 1AH @ 4"-7"	2A21009-37	Soil	01/19/22 12:46	01-21-2022 14:00
West Surface - 1AH @ 7"-10"	2A21009-38	Soil	01/19/22 12:50	01-21-2022 14:00
West Surface - 2AH @ 0"-3"	2A21009-39	Soil	01/19/22 12:54	01-21-2022 14:00
West Surface - 2AH @ 3"-6"	2A21009-40	Soil	01/19/22 12:58	01-21-2022 14:00
West Surface - 3AH @ 0"-3"	2A21009-41	Soil	01/19/22 13:02	01-21-2022 14:00
West Surface - 3AH @ 3"-6"	2A21009-42	Soil	01/19/22 13:06	01-21-2022 14:00
West Surface - 4AH @ 0"-3"	2A21009-43	Soil	01/19/22 13:10	01-21-2022 14:00
West Surface - 4AH @ 3"-6"	2A21009-44	Soil	01/19/22 13:14	01-21-2022 14:00
South Surface - 1AH @ 2"-5"	2A21009-45	Soil	01/19/22 13:18	01-21-2022 14:00
South Surface - 1AH @ 5"-8"	2A21009-46	Soil	01/19/22 13:22	01-21-2022 14:00
South Surface - 2AH @ 2"-5"	2A21009-47	Soil	01/19/22 13:26	01-21-2022 14:00
South Surface - 2AH @ 5"-8"	2A21009-48	Soil	01/19/22 13:30	01-21-2022 14:00
South Surface - 3AH @ 0"-3"	2A21009-49	Soil	01/19/22 13:34	01-21-2022 14:00
South Surface - 3AH @ 3"-6"	2A21009-50	Soil	01/19/22 13:38	01-21-2022 14:00
P-1AH @ 0"-3"	2A21009-51	Soil	01/19/22 13:42	01-21-2022 14:00
P-1AH @ 3"-6"	2A21009-52	Soil	01/19/22 13:46	01-21-2022 14:00
P-2AH @ 0"-3"	2A21009-53	Soil	01/19/22 13:50	01-21-2022 14:00
P-2AH @ 3"-6"	2A21009-54	Soil	01/19/22 13:54	01-21-2022 14:00
P-3AH @ 0"-3"	2A21009-55	Soil	01/19/22 13:58	01-21-2022 14:00
P-3AH @ 3"-6"	2A21009-56	Soil	01/19/22 14:02	01-21-2022 14:00
P-4AH @ 0"-3"	2A21009-57	Soil	01/19/22 14:06	01-21-2022 14:00
P-4AH @ 3"-6"	2A21009-58	Soil	01/19/22 14:10	01-21-2022 14:00
P-5AH @ 0"-3"	2A21009-59	Soil	01/19/22 14:14	01-21-2022 14:00
P-5AH @ 3"-6"	2A21009-60	Soil	01/19/22 14:18	01-21-2022 14:00
P-6AH @ 4"-7"	2A21009-61	Soil	01/19/22 14:22	01-21-2022 14:00
P-6AH @ 7"-10"	2A21009-62	Soil	01/19/22 14:26	01-21-2022 14:00
P-7AH @ 0"-3"	2A21009-63	Soil	01/19/22 14:30	01-21-2022 14:00
P-7AH @ 3"-6"	2A21009-64	Soil	01/19/22 14:34	01-21-2022 14:00
P-8AH @ 0"-3"	2A21009-65	Soil	01/19/22 14:38	01-21-2022 14:00
P-8AH @ 3"-6"	2A21009-66	Soil	01/19/22 14:42	01-21-2022 14:00
P-9AH @ 0"-3"	2A21009-67	Soil	01/19/22 14:46	01-21-2022 14:00
P-9AH @ 3"-6"	2A21009-68	Soil	01/19/22 14:50	01-21-2022 14:00

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P-10AH @ 2"-5"	2A21009-69	Soil	01/19/22 14:54	01-21-2022 14:00
P-10AH @ 5"-8"	2A21009-70	Soil	01/19/22 14:58	01-21-2022 14:00
P-11AH @ 5"-8"	2A21009-71	Soil	01/19/22 15:02	01-21-2022 14:00
P-11AH @ 8"-11"	2A21009-72	Soil	01/19/22 15:06	01-21-2022 14:00
P-12AH @ 0"-3"	2A21009-73	Soil	01/19/22 15:10	01-21-2022 14:00
P-12AH @ 3"-6"	2A21009-74	Soil	01/19/22 15:14	01-21-2022 14:00

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-1AH @ 2-5" 2A21009-01 (Soil)

		Reporting	•	•					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	135	1.03	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 18:27	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 16:36	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 16:36	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 16:36	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2A2301	01/23/22 13:00	01/23/22 16:36	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2A2301	01/23/22 13:00	01/23/22 16:36	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 16:36	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-1AH @ 5-8" 2A21009-02 (Soil)

	_	Donortino			_				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by E	PA / Stand	lard Metl	ıods						
Chloride	81.5	1.05	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 18:42	EPA 300.0	
% Moisture	5.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	C35 by EPA	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 16:57	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 16:57	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 16:57	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P2A2301	01/23/22 13:00	01/23/22 16:57	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P2A2301	01/23/22 13:00	01/23/22 16:57	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 16:57	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-2AH @ 2-5" 2A21009-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	71.0	1.02	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 18:58	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 17:18	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 17:18	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 17:18	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P2A2301	01/23/22 13:00	01/23/22 17:18	TPH 8015M	
Surrogate: o-Terphenyl		123 %	70-130		P2A2301	01/23/22 13:00	01/23/22 17:18	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 17:18	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-2AH @ 5-8" 2A21009-04 (Soil)

		D .:							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
							<u> </u>		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Stand	ard Metl	nods						
Chloride	48.8	1.04	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 19:13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 17:39	TPH 8015M	
>C12-C28	44.3	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 17:39	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 17:39	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P2A2301	01/23/22 13:00	01/23/22 17:39	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-130		P2A2301	01/23/22 13:00	01/23/22 17:39	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	44.3	26.0	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 17:39	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-3AH @ 0-3" 2A21009-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by El	PA / Stand	lard Metl	hods						
Chloride	200	1.02	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 19:28	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:00	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:00	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:00	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-130		P2A2301	01/23/22 13:00	01/23/22 18:00	TPH 8015M	
Surrogate: o-Terphenyl		130 %	70-130		P2A2301	01/23/22 13:00	01/23/22 18:00	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 18:00	calc	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

East Surface-3AH @ 3"-6" 2A21009-06 (Soil)

]	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	ard Met	hods						
Chloride	183	1.03	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 20:14	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:21	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:21	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:21	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P2A2301	01/23/22 13:00	01/23/22 18:21	TPH 8015M	
Surrogate: o-Terphenyl		127 %	70-130		P2A2301	01/23/22 13:00	01/23/22 18:21	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 18:21	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-4AH @ 3"-6" 2A21009-07 (Soil)

		D							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
							<u> </u>		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Stand	lard Metl	hods						
Chloride	63.5	1.02	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 21:00	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:42	TPH 8015M	
>C12-C28	41.5	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:42	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 18:42	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-130		P2A2301	01/23/22 13:00	01/23/22 18:42	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-130		P2A2301	01/23/22 13:00	01/23/22 18:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	41.5	25.5	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 18:42	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-4AH @ 6"-9" 2A21009-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	40.1	1.05	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 21:15	EPA 300.0	
% Moisture	5.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:03	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:03	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:03	TPH 8015M	
Surrogate: 1-Chlorooctane		111 %	70-130		P2A2301	01/23/22 13:00	01/23/22 19:03	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-130		P2A2301	01/23/22 13:00	01/23/22 19:03	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.3	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 19:03	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-5AH @ 2-5" 2A21009-09 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Stand	ard Metl	hods						
Chloride	82.3	1.02	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 21:31	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2402	01/24/22 10:56	01/24/22 10:57	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:24	TPH 8015M	
>C12-C28	110	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:24	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:24	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-130		P2A2301	01/23/22 13:00	01/23/22 19:24	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-130		P2A2301	01/23/22 13:00	01/23/22 19:24	TPH 8015M	
Total Petroleum Hydrocarbon	110	25.5	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 19:24	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-5AH @ 5-8" 2A21009-10 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Stand	ard Metl	ıods						
Chloride	62.4	1.04	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 21:46	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:45	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:45	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 19:45	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P2A2301	01/23/22 13:00	01/23/22 19:45	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P2A2301	01/23/22 13:00	01/23/22 19:45	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 19:45	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-6AH @ 2-5" 2A21009-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	2130	5.15	mg/kg dry	5	P2A2405	01/24/22 12:17	01/24/22 22:01	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 20:47	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 20:47	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 20:47	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-130		P2A2301	01/23/22 13:00	01/23/22 20:47	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-130		P2A2301	01/23/22 13:00	01/23/22 20:47	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 20:47	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-6AH @ 5-8" 2A21009-12 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		D	D	Fi		-L T D			
		r	ermian B	asın Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	75.3	1.33	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 22:17	EPA 300.0	
% Moisture	25.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	33.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:08	TPH 8015M	
>C12-C28	ND	33.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:08	TPH 8015M	
>C28-C35	ND	33.3	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:08	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P2A2301	01/23/22 13:00	01/23/22 21:08	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P2A2301	01/23/22 13:00	01/23/22 21:08	TPH 8015M	
Total Petroleum Hydrocarbon	ND	33.3	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 21:08	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-7AH @ 0-3" 2A21009-13 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	70.1	1.02	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 22:32	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:29	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:29	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:29	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P2A2301	01/23/22 13:00	01/23/22 21:29	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2A2301	01/23/22 13:00	01/23/22 21:29	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 21:29	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-7AH @ 3"-6" 2A21009-14 (Soil)

Analyte		Reporting	TT 11	D.1. (1	D. (1	D 1	A 1 J	M-4k- d	Ni-t
7 than yet	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by E	EPA / Standa	ard Metl	nods						
Chloride	35.5	1.04	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 22:47	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:50	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:50	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 21:50	TPH 8015M	
Surrogate: 1-Chlorooctane	9	9.4 %	70-130		P2A2301	01/23/22 13:00	01/23/22 21:50	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P2A2301	01/23/22 13:00	01/23/22 21:50	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 21:50	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-8AH @ 0-3" 2A21009-15 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	63.4	1.02	mg/kg dry	1	P2A2405	01/24/22 12:17	01/24/22 23:03	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:10	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:10	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:10	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P2A2301	01/23/22 13:00	01/23/22 22:10	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P2A2301	01/23/22 13:00	01/23/22 22:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 22:10	calc	

Project: Winnebago CTB Flare
Project Number: 15278

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

East Surface-8AH @ 3"-6" 2A21009-16 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	41.5	1.03	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 16:22	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:31	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:31	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:31	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-130		P2A2301	01/23/22 13:00	01/23/22 22:31	TPH 8015M	
Surrogate: o-Terphenyl		138 %	70-130		P2A2301	01/23/22 13:00	01/23/22 22:31	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 22:31	calc	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

East Surface-9AH @ 0-3" 2A21009-17 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	11.1	1.22	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 17:08	EPA 300.0	
% Moisture	18.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	30.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:52	TPH 8015M	
>C12-C28	ND	30.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:52	TPH 8015M	
>C28-C35	ND	30.5	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 22:52	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2A2301	01/23/22 13:00	01/23/22 22:52	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2A2301	01/23/22 13:00	01/23/22 22:52	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	30.5	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 22:52	calc	

13000 West County Road 100

Project Number: 15278 Odessa TX, 79765 Project Manager: Tim McMinn

East Surface-9AH @ 3"-6" 2A21009-18 (Soil)

Project: Winnebago CTB Flare

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods			•			
Chloride	57.3	1.04	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 17:23	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 23:13	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 23:13	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 23:13	TPH 8015M	
Surrogate: 1-Chlorooctane		110 %	70-130		P2A2301	01/23/22 13:00	01/23/22 23:13	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-130		P2A2301	01/23/22 13:00	01/23/22 23:13	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.0	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 23:13	calc	

C6-C35

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765

Project Number: 15278 Project Manager: Tim McMinn

> East Surface-10AH @ 0-3" 2A21009-19 (Soil)

Project: Winnebago CTB Flare

Analyzed 0 01/25/22 17:38 0 01/24/22 16:03	Method EPA 300.0 ASTM D2216	Notes
01/25/22 17:38	EPA 300.0	100
01/24/22 16:02	A CTM D2216	
01/24/22 10.03	ASTM D2210	
01/23/22 23:34	TPH 8015M	
01/23/22 23:34	calc	
)))	01/23/22 23:34 01/23/22 23:34 01/23/22 23:34	01/23/22 23:34 TPH 8015M 01/23/22 23:34 TPH 8015M 01/23/22 23:34 TPH 8015M

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-10AH @ 3"-6" 2A21009-20 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Stand	lard Metl	hods						
Chloride	30.6	1.03	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 17:54	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 23:55	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 23:55	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2301	01/23/22 13:00	01/23/22 23:55	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-130		P2A2301	01/23/22 13:00	01/23/22 23:55	TPH 8015M	
Surrogate: o-Terphenyl		130 %	70-130		P2A2301	01/23/22 13:00	01/23/22 23:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:00	01/23/22 23:55	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-11AH @ 0-3" 2A21009-21 (Soil)

					•				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ah, L.P.			
	ED. (C)			ugiii Eiivi	ommentar E	, ב			
General Chemistry Parameters by	EPA / Stand	ard Meti	nods						
Chloride	48.9	1.02	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 18:09	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 16:49	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 16:49	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 16:49	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2A2302	01/23/22 13:02	01/23/22 16:49	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P2A2302	01/23/22 13:02	01/23/22 16:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 16:49	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-11AH @ 3"-6" 2A21009-22 (Soil)

Analyte		Reporting	T I:4-	Diletien	D-4-h	D 4	Analyzed	Method	Note
	Result	Limit	Units	Dilution	Batch	Prepared	Allalyzeu	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	ard Met	hods						
Chloride	19.8	1.04	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 18:24	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:10	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:10	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:10	TPH 8015M	
Surrogate: 1-Chlorooctane		108 %	70-130		P2A2302	01/23/22 13:02	01/23/22 17:10	TPH 8015M	
Surrogate: o-Terphenyl		126 %	70-130		P2A2302	01/23/22 13:02	01/23/22 17:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 17:10	calc	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

East Surface-12AH @ 0-3" 2A21009-23 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	37.8	1.03	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 18:39	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:32	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:32	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:32	TPH 8015M	
Surrogate: 1-Chlorooctane		108 %	70-130		P2A2302	01/23/22 13:02	01/23/22 17:32	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P2A2302	01/23/22 13:02	01/23/22 17:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 17:32	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Surface-12AH @ 3"-6" 2A21009-24 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	28.3	1.03	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 18:55	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:53	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:53	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 17:53	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P2A2302	01/23/22 13:02	01/23/22 17:53	TPH 8015M	
Surrogate: o-Terphenyl		127 %	70-130		P2A2302	01/23/22 13:02	01/23/22 17:53	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 17:53	calc	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

East Surface-13AH @ 0-3" 2A21009-25 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Stand	lard Metl	hods						
Chloride	129	1.02	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 19:10	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:15	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:15	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:15	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-130		P2A2302	01/23/22 13:02	01/23/22 18:15	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-130		P2A2302	01/23/22 13:02	01/23/22 18:15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 18:15	calc	

ety Solutions, Inc. [1] Project: Winnebago CTB Flare
Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 15278
Project Manager: Tim McMinn

East Surface-13AH @ 3"-6" 2A21009-26 (Soil)

	I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		n				-L T D			
		r	егинан Б	asın Envi	ronmental L	ab, L.F.			
General Chemistry Parameters by	EPA / Standa	ard Met	hods						
Chloride	74.4	1.04	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 19:56	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:36	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:36	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:36	TPH 8015M	
Surrogate: 1-Chlorooctane	9	9.6 %	70-130		P2A2302	01/23/22 13:02	01/23/22 18:36	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P2A2302	01/23/22 13:02	01/23/22 18:36	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.0	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 18:36	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-1AH @ 0-3" 2A21009-27 (Soil)

Analyte		Reporting	**	75.11 ct	D . 1	D 1	A1	M-dld	NI-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	17.9	1.01	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 20:42	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:58	TPH 8015M	
>C12-C28	33.2	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:58	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 18:58	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P2A2302	01/23/22 13:02	01/23/22 18:58	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P2A2302	01/23/22 13:02	01/23/22 18:58	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	33.2	25.3	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 18:58	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-1AH @ 3"-6" 2A21009-28 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	3.97	1.02	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 20:57	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 19:19	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 19:19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 19:19	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-130		P2A2302	01/23/22 13:02	01/23/22 19:19	TPH 8015M	
Surrogate: o-Terphenyl		130 %	70-130		P2A2302	01/23/22 13:02	01/23/22 19:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 19:19	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-2AH @ 0-3" 2A21009-29 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Stand	ard Metl	hods						
Chloride	15.4	1.01	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 21:12	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 19:40	TPH 8015M	
>C12-C28	60.0	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 19:40	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 19:40	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P2A2302	01/23/22 13:02	01/23/22 19:40	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-130		P2A2302	01/23/22 13:02	01/23/22 19:40	TPH 8015M	S-GC
Total Petroleum Hydrocarbon	60.0	25.3	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 19:40	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-2AH @ 3"-6" 2A21009-30 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
General Chemistry Parameters by	EPA / Stanc	lard Metl	hods						
Chloride	23.4	1.01	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 21:28	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 20:02	TPH 8015M	
>C12-C28	210	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 20:02	TPH 8015M	
>C28-C35	54.9	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 20:02	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-130		P2A2302	01/23/22 13:02	01/23/22 20:02	TPH 8015M	
Surrogate: o-Terphenyl		135 %	70-130		P2A2302	01/23/22 13:02	01/23/22 20:02	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	265	25.3	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 20:02	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-3AH @ 0-3" 2A21009-31 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	3.99	1.02	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 21:43	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:06	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:06	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:06	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P2A2302	01/23/22 13:02	01/23/22 21:06	TPH 8015M	
Surrogate: o-Terphenyl		133 %	70-130		P2A2302	01/23/22 13:02	01/23/22 21:06	TPH 8015M	S-GC
Total Petroleum Hydrocarbon	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 21:06	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-3AH @ 3"-6" 2A21009-32 (Soil)

Augliete		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by E	PA / Stand	lard Metl	nods						
Chloride	2.80	1.03	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 21:58	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:27	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:27	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:27	TPH 8015M	
Surrogate: 1-Chlorooctane		116 %	70-130		P2A2302	01/23/22 13:02	01/23/22 21:27	TPH 8015M	
Surrogate: o-Terphenyl		135 %	70-130		P2A2302	01/23/22 13:02	01/23/22 21:27	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 21:27	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-4AH @ 0-3" 2A21009-33 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Stand	lard Metl	hods						
Chloride	13.2	1.01	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 22:14	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:48	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:48	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 21:48	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-130		P2A2302	01/23/22 13:02	01/23/22 21:48	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-130		P2A2302	01/23/22 13:02	01/23/22 21:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 21:48	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-4AH @ 3"-6" 2A21009-34 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	5.22	1.02	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 22:29	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:10	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:10	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:10	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P2A2302	01/23/22 13:02	01/23/22 22:10	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-130		P2A2302	01/23/22 13:02	01/23/22 22:10	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 22:10	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-5AH @ 0-3" 2A21009-35 (Soil)

A 1.		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	5.09	1.01	mg/kg dry	1	P2A2505	01/25/22 13:36	01/25/22 22:44	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:31	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:31	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:31	TPH 8015M	
Surrogate: 1-Chlorooctane		111 %	70-130		P2A2302	01/23/22 13:02	01/23/22 22:31	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-130		P2A2302	01/23/22 13:02	01/23/22 22:31	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 22:31	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

East Berm Surface-5AH @ 3"-6" 2A21009-36 (Soil)

]	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		D.	armian R	acin Envi	ronmental L	ah I D			
		1	Ci illian D	asiii Liivi	i oninientai L	au, 1.1.			
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	3.76	1.02	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 00:16	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:52	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:52	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 22:52	TPH 8015M	
Surrogate: 1-Chlorooctane		111 %	70-130		P2A2302	01/23/22 13:02	01/23/22 22:52	TPH 8015M	
Surrogate: o-Terphenyl		128 %	70-130		P2A2302	01/23/22 13:02	01/23/22 22:52	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 22:52	calc	

s, Inc. [1] Project: Winnebago CTB Flare
Project Number: 15278

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

West Surface - 1AH @ 4"-7" 2A21009-37 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Stand	ard Met	hods						
Chloride	83.6	1.02	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 01:02	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	43.9	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:14	TPH 8015M	
>C12-C28	66.1	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:14	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:14	TPH 8015M	
Surrogate: 1-Chlorooctane		115 %	70-130		P2A2302	01/23/22 13:02	01/23/22 23:14	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P2A2302	01/23/22 13:02	01/23/22 23:14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	110	25.5	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 23:14	calc	

Project: Winnebago CTB Flare
Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 15278
Project Manager: Tim McMinn

West Surface - 1AH @ 7"-10" 2A21009-38 (Soil)

Analyte	Dagult	Reporting	Units	Dilution	Dotah	Dranarad	Analyzed	Method	Notes
- mary to	Result	Limit	Units	Dilution	Batch	Prepared	Anaryzeu	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by E	PA / Stand	lard Metl	nods						
Chloride	49.6	1.01	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 01:18	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:35	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:35	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:35	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-130		P2A2302	01/23/22 13:02	01/23/22 23:35	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-130		P2A2302	01/23/22 13:02	01/23/22 23:35	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 23:35	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 2AH @ 0"-3" 2A21009-39 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	ıods						
Chloride	139	1.03	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 01:33	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	585	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:56	TPH 8015M	
>C12-C28	1100	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:56	TPH 8015M	
>C28-C35	191	25.8	mg/kg dry	1	P2A2302	01/23/22 13:02	01/23/22 23:56	TPH 8015M	
Surrogate: 1-Chlorooctane		132 %	70-130		P2A2302	01/23/22 13:02	01/23/22 23:56	TPH 8015M	S-GC1
Surrogate: o-Terphenyl		144 %	70-130		P2A2302	01/23/22 13:02	01/23/22 23:56	TPH 8015M	S-GC1
Total Petroleum Hydrocarbon C6-C35	1880	25.8	mg/kg dry	1	[CALC]	01/23/22 13:02	01/23/22 23:56	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 2AH @ 3"-6" 2A21009-40 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	191	1.09	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 01:48	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	839	27.2	mg/kg dry	1	P2A2302	01/23/22 13:02	01/24/22 00:18	TPH 8015M	
>C12-C28	1780	27.2	mg/kg dry	1	P2A2302	01/23/22 13:02	01/24/22 00:18	TPH 8015M	
>C28-C35	402	27.2	mg/kg dry	1	P2A2302	01/23/22 13:02	01/24/22 00:18	TPH 8015M	
Surrogate: 1-Chlorooctane		128 %	70-130		P2A2302	01/23/22 13:02	01/24/22 00:18	TPH 8015M	
Surrogate: o-Terphenyl		136 %	70-130		P2A2302	01/23/22 13:02	01/24/22 00:18	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	3020	27.2	mg/kg dry	1	[CALC]	01/23/22 13:02	01/24/22 00:18	calc	

1 100

Project Number: 15278
Project Manager: Tim McMinn

13000 West County Road 100 Odessa TX, 79765

West Surface - 3AH @ 0"-3" 2A21009-41 (Soil)

Project: Winnebago CTB Flare

Analyta		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by l	EPA / Stand	ard Metl	hods						
Chloride	161	1.03	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 02:03	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 15:22	TPH 8015M	
>C12-C28	246	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 15:22	TPH 8015M	
>C28-C35	43.3	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 15:22	TPH 8015M	
Surrogate: 1-Chlorooctane	g	93.7 %	70-130		P2A2403	01/24/22 12:14	01/24/22 15:22	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P2A2403	01/24/22 12:14	01/24/22 15:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	289	25.8	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 15:22	calc	

Project: Winnebago CTB Flare
Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 152/8
Project Manager: Tim McMinn

West Surface - 3AH @ 3"-6" 2A21009-42 (Soil)

Analyte		Reporting	** **	D11 - (1	D. J	D 1	A 1 d	Madead	N-4-
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Standa	ard Metl	hods						
Chloride	170	1.04	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 02:19	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 15:44	TPH 8015M	
>C12-C28	61.9	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 15:44	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 15:44	TPH 8015M	
Surrogate: 1-Chlorooctane	9	5.4 %	70-130		P2A2403	01/24/22 12:14	01/24/22 15:44	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P2A2403	01/24/22 12:14	01/24/22 15:44	TPH 8015M	
Total Petroleum Hydrocarbon	61.9	26.0	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 15:44	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 4AH @ 0"-3" 2A21009-43 (Soil)

	I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	ard Metl	hods						
Chloride	200	1.02	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 02:34	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:05	TPH 8015M	
>C12-C28	109	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:05	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:05	TPH 8015M	
Surrogate: 1-Chlorooctane	9	5.6 %	70-130		P2A2403	01/24/22 12:14	01/24/22 16:05	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P2A2403	01/24/22 12:14	01/24/22 16:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	109	25.5	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 16:05	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

West Surface - 4AH @ 3"-6" 2A21009-44 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
3	Result	Lillin	Onits	Dilution	Daten	Trepared	rmaryzea	Wethou	110103
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	ard Metl	hods						
Chloride	106	1.06	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 02:49	EPA 300.0	
% Moisture	6.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:26	TPH 8015M	
>C12-C28	31.9	26.6	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:26	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:26	TPH 8015M	
Surrogate: 1-Chlorooctane	9	6.0 %	70-130		P2A2403	01/24/22 12:14	01/24/22 16:26	TPH 8015M	
Surrogate: o-Terphenyl	i	108 %	70-130		P2A2403	01/24/22 12:14	01/24/22 16:26	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	31.9	26.6	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 16:26	calc	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278 Project Manager: Tim McMinn

South Surface - 1AH @ 2"-5" 2A21009-45 (Soil)

	I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by F	EPA / Standa	ard Metl	hods						
Chloride	29.6	1.01	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 03:04	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	25.3	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:48	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:48	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 16:48	TPH 8015M	
Surrogate: 1-Chlorooctane	9	3.4 %	70-130		P2A2403	01/24/22 12:14	01/24/22 16:48	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P2A2403	01/24/22 12:14	01/24/22 16:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	25.3	25.3	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 16:48	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 1AH @ 5"-8" 2A21009-46 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Resuit	LIIIII	Ullits	Dilution	Batch	riepaieu	Allalyzeu	Wictiou	TVOICE
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	34.1	1.02	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 03:50	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	27.2	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:09	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:09	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:09	TPH 8015M	
Surrogate: 1-Chlorooctane	9	3.1 %	70-130		P2A2403	01/24/22 12:14	01/24/22 17:09	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P2A2403	01/24/22 12:14	01/24/22 17:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	27.2	25.5	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 17:09	calc	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

South Surface - 2AH @ 2"-5" 2A21009-47 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 	EPA / Stand	ard Metl	hods						
Chloride	115	1.01	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 04:36	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:30	TPH 8015M	
>C12-C28	258	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:30	TPH 8015M	
>C28-C35	37.0	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:30	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P2A2403	01/24/22 12:14	01/24/22 17:30	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P2A2403	01/24/22 12:14	01/24/22 17:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	296	25.3	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 17:30	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 2AH @ 5"-8" 2A21009-48 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	ard Metl	hods						
Chloride	82.1	1.01	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 04:51	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:51	TPH 8015M	
>C12-C28	122	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:51	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 17:51	TPH 8015M	
Surrogate: 1-Chlorooctane	9	4.8 %	70-130		P2A2403	01/24/22 12:14	01/24/22 17:51	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P2A2403	01/24/22 12:14	01/24/22 17:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	122	25.3	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 17:51	calc	

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

South Surface - 3AH @ 0"-3" 2A21009-49 (Soil)

	I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by l	EPA / Standa	ard Metl	hods						
Chloride	38.4	1.01	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 05:07	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	27.6	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 18:55	TPH 8015M	
>C12-C28	118	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 18:55	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 18:55	TPH 8015M	
Surrogate: 1-Chlorooctane	9	3.8 %	70-130		P2A2403	01/24/22 12:14	01/24/22 18:55	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P2A2403	01/24/22 12:14	01/24/22 18:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	146	25.3	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 18:55	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

South Surface - 3AH @ 3''-6'' 2A21009-50 (Soil)

	_								
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Result	Limit	Cints	Dilution	Daten	Першей	7 11141 / 204	- Inclined	
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	rd Metl	hods						
Chloride	19.2	1.01	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 05:22	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:16	TPH 8015M	
>C12-C28	53.5	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:16	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:16	TPH 8015M	
Surrogate: 1-Chlorooctane	9	3.9 %	70-130		P2A2403	01/24/22 12:14	01/24/22 19:16	TPH 8015M	
Surrogate: o-Terphenyl	i	107 %	70-130		P2A2403	01/24/22 12:14	01/24/22 19:16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	53.5	25.3	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 19:16	calc	

Project: Winnebago CTB Flare 13000 West County Road 100 Project Number: 15278

Odessa TX, 79765 Project Manager: Tim McMinn

> P-1AH @ 0"-3" 2A21009-51 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	rd Metl	hods						
Chloride	69.9	1.03	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 05:37	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:37	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:37	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:37	TPH 8015M	
Surrogate: 1-Chlorooctane	9	6.8 %	70-130		P2A2403	01/24/22 12:14	01/24/22 19:37	TPH 8015M	
Surrogate: o-Terphenyl	Ì	107 %	70-130		P2A2403	01/24/22 12:14	01/24/22 19:37	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 19:37	calc	

Project: Winnebago CTB Flare 13000 West County Road 100 Project Number: 15278

Odessa TX, 79765 Project Manager: Tim McMinn

P-1AH @ 3"-6" 2A21009-52 (Soil)

Analyte		Reporting	** **	Dil di	D I	D 1	A 1 J	Made a	N-4
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by l	EPA / Standa	ırd Metl	hods						
Chloride	47.9	1.03	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 05:52	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	36.8	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:58	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:58	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 19:58	TPH 8015M	
Surrogate: 1-Chlorooctane	6	1.2 %	70-130		P2A2403	01/24/22 12:14	01/24/22 19:58	TPH 8015M	S-GC
Surrogate: o-Terphenyl	7.	2.7 %	70-130		P2A2403	01/24/22 12:14	01/24/22 19:58	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	36.8	25.8	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 19:58	calc	

Project: Winnebago CTB Flare 13000 West County Road 100 Project Number: 15278

Odessa TX, 79765 Project Manager: Tim McMinn

P-2AH @ 0"-3" 2A21009-53 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-	resurt	Limit	Cinto	Dilation	Dutell	Tropured			
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	rd Metl	hods						
Chloride	164	1.02	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 06:08	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	49.9	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 20:19	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 20:19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 20:19	TPH 8015M	
Surrogate: 1-Chlorooctane	9	5.3 %	70-130		P2A2403	01/24/22 12:14	01/24/22 20:19	TPH 8015M	
Surrogate: o-Terphenyl	i	106 %	70-130		P2A2403	01/24/22 12:14	01/24/22 20:19	TPH 8015M	
Total Petroleum Hydrocarbon	49.9	25.5	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 20:19	calc	

13000 West County Road 100 Odessa TX, 79765

C6-C35

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-2AH @ 3"-6" 2A21009-54 (Soil)

					, ,				
Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Standa	ard Met	hods						
Chloride	46.2	1.04	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 06:23	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	27.5	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 20:40	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 20:40	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 20:40	TPH 8015M	
Surrogate: 1-Chlorooctane	8	7.4 %	70-130		P2A2403	01/24/22 12:14	01/24/22 20:40	TPH 8015M	
Surrogate: o-Terphenyl	9	7.9 %	70-130		P2A2403	01/24/22 12:14	01/24/22 20:40	TPH 8015M	
Total Petroleum Hydrocarbon	27.5	26.0	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 20:40	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-3AH @ 0"-3" 2A21009-55 (Soil)

Analyte		Reporting	TT '	D.1 - (1	D 4 1	D 1	Amalyzad	Mathad	No.4-
Maryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by l	EPA / Standa	ard Metl	hods						
Chloride	56.2	1.03	mg/kg dry	1	P2A2508	01/25/22 14:53	01/26/22 06:38	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	26.7	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:01	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:01	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:01	TPH 8015M	
Surrogate: 1-Chlorooctane	7	4.9 %	70-130		P2A2403	01/24/22 12:14	01/24/22 21:01	TPH 8015M	
Surrogate: o-Terphenyl	8	3.2 %	70-130		P2A2403	01/24/22 12:14	01/24/22 21:01	TPH 8015M	
Total Petroleum Hydrocarbon	26.7	25.8	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 21:01	calc	

Project: Winnebago CTB Flare 13000 West County Road 100

Project Number: 15278 Odessa TX, 79765 Project Manager: Tim McMinn

P-3AH @ 3"-6" 2A21009-56 (Soil)

	F	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by F	EPA / Standa	ırd Metl	hods						
Chloride	48.0	1.03	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 15:03	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	25.8	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:22	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:22	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:22	TPH 8015M	
Surrogate: 1-Chlorooctane	8	5.2 %	70-130		P2A2403	01/24/22 12:14	01/24/22 21:22	TPH 8015M	
Surrogate: o-Terphenyl	9	6.1 %	70-130		P2A2403	01/24/22 12:14	01/24/22 21:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	25.8	25.8	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 21:22	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-4AH @ 0"-3" 2A21009-57 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Result	Lillit	Omts	Dilution	Daten	Trepared	rmaryzea	Wichiod	
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by E	EPA / Standa	rd Metl	hods						
Chloride	148	5.15	mg/kg dry	5	P2A2601	01/26/22 09:00	01/26/22 15:48	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	31.7	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:43	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:43	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 21:43	TPH 8015M	
Surrogate: 1-Chlorooctane	9	6.4 %	70-130		P2A2403	01/24/22 12:14	01/24/22 21:43	TPH 8015M	
Surrogate: o-Terphenyl	Î	08 %	70-130		P2A2403	01/24/22 12:14	01/24/22 21:43	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	31.7	25.8	mg/kg dry	1	[CALC]	01/24/22 12:14	01/24/22 21:43	calc	

26.9

mg/kg dry

26.0

13000 West County Road 100 Odessa TX, 79765

Total Petroleum Hydrocarbon

C6-C35

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-4AH @ 3"-6" 2A21009-58 (Soil)

					, ,				
Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters	s by EPA / Standa	ard Metl	hods			,			
Chloride	79.0	1.04	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 16:04	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by EPA	Method	8015M						
C6-C12	26.9	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 22:04	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 22:04	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2A2403	01/24/22 12:14	01/24/22 22:04	TPH 8015M	
Surrogate: 1-Chlorooctane	8	32.6 %	70-130		P2A2403	01/24/22 12:14	01/24/22 22:04	TPH 8015M	
Surrogate: o-Terphenyl	g	36%	70-130		P2A2403	01/24/22 12:14	01/24/22 22:04	TPH 8015M	

[CALC]

01/24/22 12:14

01/24/22 22:04

calc

Total Petroleum Hydrocarbon

C6-C35

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Winnebago CTB Flare 13000 West County Road 100 Project Number: 15278

Odessa TX, 79765 Project Manager: Tim McMinn

ND

25.5

mg/kg dry

P-5AH @ 0"-3" 2A21009-59 (Soil)

Analyte	l Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters	s by EPA / Standa	ard Metl	hods						
Chloride	63.0	1.02	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 16:19	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons	s C6-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 14:46	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 14:46	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 14:46	TPH 8015M	
Surrogate: 1-Chlorooctane	8	37.0 %	70-130		P2A2404	01/24/22 12:15	01/24/22 14:46	TPH 8015M	
Surrogate: o-Terphenyl	Ç	06.6 %	70-130		P2A2404	01/24/22 12:15	01/24/22 14:46	TPH 8015M	

[CALC]

01/24/22 12:15

01/24/22 14:46

calc

Surrogate: o-Terphenyl

C6-C35

Total Petroleum Hydrocarbon

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Winnebago CTB Flare 13000 West County Road 100 Project Number: 15278

Odessa TX, 79765 Project Manager: Tim McMinn

91.0%

25.8

ND

70-130

mg/kg dry

P-5AH @ 3"-6" 2A21009-60 (Soil)

	I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		n	· n		4 1 1	1 T D			
		P	ermian B	asın Envi	ronmental I	Lab, L.P.			
General Chemistry Parameters by	EPA / Standa	ard Met	hods						
Chloride	46.9	1.03	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 16:34	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:08	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:08	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:08	TPH 8015M	
Surrogate: 1-Chlorooctane	7	9.5 %	70-130		P2A2404	01/24/22 12:15	01/24/22 15:08	TPH 8015M	

P2A2404

[CALC]

01/24/22 12:15

01/24/22 12:15

01/24/22 15:08

01/24/22 15:08

TPH 8015M

calc

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-6AH @ 4"-7" 2A21009-61 (Soil)

	F	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	rd Metl	hods						
Chloride	998	5.05	mg/kg dry	5	P2A2601	01/26/22 09:00	01/26/22 16:49	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:29	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:29	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:29	TPH 8015M	
Surrogate: 1-Chlorooctane	8	3.5 %	70-130		P2A2404	01/24/22 12:15	01/24/22 15:29	TPH 8015M	
Surrogate: o-Terphenyl	9	2.5 %	70-130		P2A2404	01/24/22 12:15	01/24/22 15:29	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 15:29	cale	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-6AH @ 7"-10" 2A21009-62 (Soil)

						_			
Analyte		Reporting					A 1 1	M 41 1	NI.
Allalyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by EI	PA / Standa	ard Metl	nods						
Chloride	621	1.02	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 17:05	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-C.	35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:51	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:51	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 15:51	TPH 8015M	
Surrogate: 1-Chlorooctane	8	35.9 %	70-130		P2A2404	01/24/22 12:15	01/24/22 15:51	TPH 8015M	
Surrogate: o-Terphenyl	9	06.8 %	70-130		P2A2404	01/24/22 12:15	01/24/22 15:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 15:51	calc	

13000 West County Road 100 Odessa TX, 79765

C6-C35

Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-7AH @ 0"-3" 2A21009-63 (Soil)

]	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by 1	EPA / Standa	ard Metl	hods						
Chloride	298	5.05	mg/kg dry	5	P2A2601	01/26/22 09:00	01/26/22 17:20	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:13	TPH 8015M	
>C12-C28	647	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:13	TPH 8015M	
>C28-C35	67.4	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:13	TPH 8015M	
Surrogate: 1-Chlorooctane	7	79.2 %	70-130		P2A2404	01/24/22 12:15	01/24/22 16:13	TPH 8015M	
Surrogate: o-Terphenyl	8	89.2 %	70-130		P2A2404	01/24/22 12:15	01/24/22 16:13	TPH 8015M	
Total Petroleum Hydrocarbon	715	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 16:13	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-7AH @ 3"-6" 2A21009-64 (Soil)

	F	Reporting		•					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	rd Metl	hods						
Chloride	240	5.15	mg/kg dry	5	P2A2601	01/26/22 09:00	01/26/22 17:35	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:35	TPH 8015M	
>C12-C28	174	25.8	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:35	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:35	TPH 8015M	
Surrogate: 1-Chlorooctane	8	9.6 %	70-130		P2A2404	01/24/22 12:15	01/24/22 16:35	TPH 8015M	
Surrogate: o-Terphenyl	i	101 %	70-130		P2A2404	01/24/22 12:15	01/24/22 16:35	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	174	25.8	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 16:35	calc	

Project: Winnebago CTB Flare 13000 West County Road 100 Project Number: 15278

Odessa TX, 79765

Project Manager: Tim McMinn

P-8AH @ 0"-3" 2A21009-65 (Soil)

Analyte		Reporting						N. d. d.	37.
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by l	EPA / Standa	ard Metl	hods						
Chloride	79.9	1.01	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 17:51	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:56	TPH 8015M	
>C12-C28	131	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:56	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 16:56	TPH 8015M	
Surrogate: 1-Chlorooctane	8	4.1 %	70-130		P2A2404	01/24/22 12:15	01/24/22 16:56	TPH 8015M	
Surrogate: o-Terphenyl	9	2.8 %	70-130		P2A2404	01/24/22 12:15	01/24/22 16:56	TPH 8015M	
Total Petroleum Hydrocarbon	131	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 16:56	calc	

 $Surrogate: o\hbox{-} Terphenyl$

C6-C35

Total Petroleum Hydrocarbon

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278
Project Manager: Tim McMinn

P-8AH @ 3"-6" 2A21009-66 (Soil)

Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	88.1	1.02	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 18:36	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 17:18	TPH 8015M	
>C12-C28	92.2	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 17:18	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 17:18	TPH 8015M	
Surrogate: 1-Chlorooctane	8	35.1 %	70-130		P2A2404	01/24/22 12:15	01/24/22 17:18	TPH 8015M	

P2A2404

[CALC]

01/24/22 12:15

01/24/22 12:15

01/24/22 17:18

01/24/22 17:18

TPH 8015M

calc

94.8 %

25.5

92.2

70-130 mg/kg dry

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-9AH @ 0"-3" 2A21009-67 (Soil)

	I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	ard Metl	hods						
Chloride	61.8	1.01	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 19:22	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 17:40	TPH 8015M	
>C12-C28	398	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 17:40	TPH 8015M	
>C28-C35	50.3	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 17:40	TPH 8015M	
Surrogate: 1-Chlorooctane	8	6.9 %	70-130		P2A2404	01/24/22 12:15	01/24/22 17:40	TPH 8015M	
Surrogate: o-Terphenyl	9	7.5 %	70-130		P2A2404	01/24/22 12:15	01/24/22 17:40	TPH 8015M	
Total Petroleum Hydrocarbon	448	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 17:40	calc	
C6-C35									

Project: Winnebago CTB Flare 13000 West County Road 100 Project Number: 15278

Odessa TX, 79765 Project Manager: Tim McMinn

P-9AH @ 3"-6" 2A21009-68 (Soil)

	Ę.	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	rd Metl	hods						
Chloride	13.2	1.01	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 19:38	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 18:02	TPH 8015M	
>C12-C28	77.8	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 18:02	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 18:02	TPH 8015M	
Surrogate: 1-Chlorooctane	8	6.4 %	70-130		P2A2404	01/24/22 12:15	01/24/22 18:02	TPH 8015M	
Surrogate: o-Terphenyl	9	6.8 %	70-130		P2A2404	01/24/22 12:15	01/24/22 18:02	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	77.8	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 18:02	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-10AH @ 2"-5" 2A21009-69 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	ırd Metl	nods						
Chloride	29.2	1.00	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 19:53	EPA 300.0	
% Moisture	ND	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:07	TPH 8015M	
>C12-C28	156	25.0	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:07	TPH 8015M	
>C28-C35	25.6	25.0	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:07	TPH 8015M	
Surrogate: 1-Chlorooctane	9	4.1 %	70-130		P2A2404	01/24/22 12:15	01/24/22 19:07	TPH 8015M	
Surrogate: o-Terphenyl	i	104 %	70-130		P2A2404	01/24/22 12:15	01/24/22 19:07	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	181	25.0	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 19:07	calc	

Project: Winnebago CTB Flare 13000 West County Road 100

Odessa TX, 79765

Project Number: 15278 Project Manager: Tim McMinn

> P-10AH @ 5"-8" 2A21009-70 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Trobati		Cinto	Bildion	Duten	Tropulou	.,		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	rd Metl	hods						
Chloride	17.0	1.01	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 20:08	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:28	TPH 8015M	
>C12-C28	43.4	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:28	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:28	TPH 8015M	
Surrogate: 1-Chlorooctane	9.	2.9 %	70-130		P2A2404	01/24/22 12:15	01/24/22 19:28	TPH 8015M	
Surrogate: o-Terphenyl	i	105 %	70-130		P2A2404	01/24/22 12:15	01/24/22 19:28	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	43.4	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 19:28	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

> P-11AH @ 5"-8" 2A21009-71 (Soil)

Analyta		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	37.8	1.00	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 20:24	EPA 300.0	
% Moisture	ND	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:50	TPH 8015M	
>C12-C28	48.8	25.0	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:50	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 19:50	TPH 8015M	
Surrogate: 1-Chlorooctane	8	9.6 %	70-130		P2A2404	01/24/22 12:15	01/24/22 19:50	TPH 8015M	
Surrogate: o-Terphenyl		100 %	70-130		P2A2404	01/24/22 12:15	01/24/22 19:50	TPH 8015M	
Total Petroleum Hydrocarbon	48.8	25.0	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 19:50	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-11AH @ 8"-11" 2A21009-72 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Result	Limit	Omts	Dilution	Daten	Trepared	1111111111111		110103
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	rd Metl	nods						
Chloride	33.5	1.01	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 20:39	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:11	TPH 8015M	
>C12-C28	32.0	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:11	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:11	TPH 8015M	
Surrogate: 1-Chlorooctane	8	7.5 %	70-130		P2A2404	01/24/22 12:15	01/24/22 20:11	TPH 8015M	
Surrogate: o-Terphenyl	9	8.6 %	70-130		P2A2404	01/24/22 12:15	01/24/22 20:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	32.0	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 20:11	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-12AH @ 0"-3" 2A21009-73 (Soil)

Analyte		Reporting	** **	75.11 ct	D . 1	D 1	A	M-41 1	NI-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by l	EPA / Standa	ard Metl	hods						
Chloride	22.3	1.01	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 20:54	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:33	TPH 8015M	
>C12-C28	69.5	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:33	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:33	TPH 8015M	
Surrogate: 1-Chlorooctane	8	8.9 %	70-130		P2A2404	01/24/22 12:15	01/24/22 20:33	TPH 8015M	
Surrogate: o-Terphenyl	9	7.0 %	70-130		P2A2404	01/24/22 12:15	01/24/22 20:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	69.5	25.3	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 20:33	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

P-12AH @ 3"-6" 2A21009-74 (Soil)

Analyte		Reporting	T I:4-	Dilatian	D-4-h	D 1	Analyzed	Method	Notes
, mary te	Result	Limit	Units	Dilution	Batch	Prepared	Allalyzeu	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	25.8	1.02	mg/kg dry	1	P2A2601	01/26/22 09:00	01/26/22 21:10	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2A2406	01/24/22 16:00	01/24/22 16:03	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:54	TPH 8015M	
>C12-C28	38.6	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:54	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2A2404	01/24/22 12:15	01/24/22 20:54	TPH 8015M	
Surrogate: 1-Chlorooctane	9	00.8 %	70-130		P2A2404	01/24/22 12:15	01/24/22 20:54	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P2A2404	01/24/22 12:15	01/24/22 20:54	TPH 8015M	
Total Petroleum Hydrocarbon	38.6	25.5	mg/kg dry	1	[CALC]	01/24/22 12:15	01/24/22 20:54	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2402 - *** DEFAULT PREP ***										
Blank (P2A2402-BLK1)				Prepared &	Analyzed:	01/24/22				
% Moisture	ND	0.1	%							
Duplicate (P2A2402-DUP1)	Sou	rce: 2A21008-	01	Prepared &	Analyzed:	01/24/22				
% Moisture	13.0	0.1	%		13.0			0.00	20	
Duplicate (P2A2402-DUP2)	Sou	rce: 2A21009-	04	Prepared &	Analyzed:	01/24/22				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Batch P2A2405 - *** DEFAULT PREP ***										
Blank (P2A2405-BLK1)				Prepared &	Analyzed:	01/24/22				
Chloride	ND	1.00	mg/kg wet							
LCS (P2A2405-BS1)				Prepared &	Analyzed:	01/24/22				
Chloride	41.5		mg/kg	40.0		104	90-110			
LCS Dup (P2A2405-BSD1)				Prepared &	Analyzed:	01/24/22				
Chloride	42.3		mg/kg	40.0		106	90-110	1.93	10	
Calibration Check (P2A2405-CCV1)				Prepared &	Analyzed:	01/24/22				
Chloride	21.4		mg/kg	20.0	<u> </u>	107	90-110			
Calibration Check (P2A2405-CCV2)				Prepared &	Analyzed:	01/24/22				
Chloride	42.1		mg/kg	40.0		105	90-110			
Calibration Check (P2A2405-CCV3)				Prepared &	Analyzed:	01/24/22				
Chloride	21.1		mg/kg	20.0		106	90-110			

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278
Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2405 - *** DEFAULT PREP ***										
Matrix Spike (P2A2405-MS1)	Sou	rce: 2A19023	-01	Prepared &	& Analyzed:	01/24/22				
Chloride	2330	10.3	mg/kg dry	515	1860	91.8	80-120			
Matrix Spike (P2A2405-MS2)	Sou	rce: 2A21009	-06	Prepared &	& Analyzed:	01/24/22				
Chloride	394	1.03	mg/kg dry	258	183	81.7	80-120			
Matrix Spike Dup (P2A2405-MSD1)	Sou	rce: 2A19023	-01	Prepared &	& Analyzed:	01/24/22				
Chloride	2350	10.3	mg/kg dry	515	1860	94.4	80-120	0.569	20	
Matrix Spike Dup (P2A2405-MSD2)	Sou	rce: 2A21009	-06	Prepared &	& Analyzed:	01/24/22				
Chloride	381	1.03	mg/kg dry	258	183	76.5	80-120	3.51	20	QM-05
Batch P2A2406 - *** DEFAULT PREP ***										
Blank (P2A2406-BLK1)				Prepared &	& Analyzed:	01/24/22				
% Moisture	ND	0.1	%							
Blank (P2A2406-BLK2)				Prepared &	& Analyzed:	01/24/22				
% Moisture	ND	0.1	%	•	•					
Blank (P2A2406-BLK3)				Prepared &	& Analyzed:	01/24/22				
% Moisture	ND	0.1	%							
Duplicate (P2A2406-DUP1)	Sou	rce: 2A21009	-19	Prepared &	& Analyzed:	01/24/22				
% Moisture	1.0	0.1	%		2.0			66.7	20	R.
Duplicate (P2A2406-DUP2)	Sou	rce: 2A21009	-29	Prepared &	& Analyzed:	01/24/22				
% Moisture	1.0	0.1	%		1.0			0.00	20	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278
Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch P2A2406 - *** DEFAULT PREP ***	Result	Limit	Cints	Lever	Result	70ICLC	Limits	КГБ	Limit	TVOICS
Datcii F2A2400 - ***** DEFAULI FREF										
Duplicate (P2A2406-DUP3)	Sou	rce: 2A21009-	-44	Prepared &	ኒ Analyzed:	01/24/22				
% Moisture	5.0	0.1	%		6.0			18.2	20	
Duplicate (P2A2406-DUP4)	Sou	rce: 2A21009-	-54	Prepared &	k Analyzed:	01/24/22				
% Moisture	3.0	0.1	%		4.0			28.6	20	R.
Duplicate (P2A2406-DUP5)	Sou	rce: 2A21009-	-69	Prepared &	k Analyzed:	01/24/22				
% Moisture	ND	0.1	%		ND				20	
Batch P2A2505 - *** DEFAULT PREP ***										
Blank (P2A2505-BLK1)				Prepared &	k Analyzed:	01/25/22				
Chloride	ND	1.00	mg/kg wet							
LCS (P2A2505-BS1)				Prepared &	ኔ Analyzed:	01/25/22				
Chloride	41.6		mg/kg	40.0		104	90-110			
LCS Dup (P2A2505-BSD1)				Prepared &	ኔ Analyzed:	01/25/22				
Chloride	42.0		mg/kg	40.0	-	105	90-110	0.851	10	
Calibration Blank (P2A2505-CCB1)				Prepared &	t Analyzed:	01/25/22				
Chloride	0.00		mg/kg wet							
Calibration Blank (P2A2505-CCB2)				Prepared &	t Analyzed:	01/25/22				
Chloride	0.00		mg/kg wet							
Calibration Check (P2A2505-CCV1)				Prepared &	λ Analyzed:	01/25/22				
Chloride	21.6		mg/kg	20.0		108	90-110			

13000 West County Road 100 Project
Odessa TX, 79765 Project

Project Number: 15278
Project Manager: Tim McMinn

Project: Winnebago CTB Flare

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2505 - *** DEFAULT PREP ***										
Calibration Check (P2A2505-CCV2)				Prepared &	ኔ Analyzed:	01/25/22				
Chloride	21.7		mg/kg	20.0		109	90-110			
Matrix Spike (P2A2505-MS2)	Sour	ce: 2A21009	-26	Prepared &	k Analyzed:	01/25/22				
Chloride	326	1.04	mg/kg dry	104	74.4	242	80-120			QM-4X
Matrix Spike Dup (P2A2505-MSD2)	Sour	ce: 2A21009	-26	Prepared &	ኔ Analyzed:	01/25/22				
Chloride	327	1.04	mg/kg dry	104	74.4	242	80-120	0.102	20	QM-4X
Batch P2A2508 - *** DEFAULT PREP ***										
Blank (P2A2508-BLK1)				Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	ND	1.00	mg/kg wet							
LCS (P2A2508-BS1)				Prepared &	ኔ Analyzed:	01/25/22				
Chloride	41.6		mg/kg	40.0		104	90-110			
LCS Dup (P2A2508-BSD1)				Prepared &	ኔ Analyzed:	01/25/22				
Chloride	41.9		mg/kg	40.0		105	90-110	0.730	10	
Calibration Blank (P2A2508-CCB1)				Prepared &	Analyzed:	01/25/22				
Chloride	0.183		mg/kg wet		-					
Calibration Blank (P2A2508-CCB2)				Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	0.201		mg/kg wet							
Calibration Check (P2A2508-CCV1)				Prepared &	k Analyzed:	01/25/22				
Chloride	21.1		mg/kg	20.0		106	90-110			

13000 West County Road 100

Project Number: 15278 Odessa TX, 79765 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2A2508 - *** DEFAULT PREP ***										
Calibration Check (P2A2508-CCV2)				Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	21.0		mg/kg	20.0		105	90-110			
Calibration Check (P2A2508-CCV3)				Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	21.5		mg/kg	20.0		107	90-110			
Matrix Spike (P2A2508-MS1)	Sour	ce: 2A21009	-36	Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	292	1.02	mg/kg dry	204	3.76	141	80-120			QM-4X
Matrix Spike (P2A2508-MS2)	Sour	ce: 2A21009	-46	Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	282	1.02	mg/kg dry	204	34.1	121	80-120			QM-4X
Matrix Spike Dup (P2A2508-MSD1)	Sour	ce: 2A21009	-36	Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	257	1.02	mg/kg dry	204	3.76	124	80-120	12.6	20	QM-4X
Matrix Spike Dup (P2A2508-MSD2)	Sour	ce: 2A21009	-46	Prepared: (01/25/22 Ar	nalyzed: 01	/26/22			
Chloride	284	1.02	mg/kg dry	204	34.1	123	80-120	0.984	20	QM-4X
Batch P2A2601 - *** DEFAULT PREP ***										
Blank (P2A2601-BLK1)				Prepared &	k Analyzed:	01/26/22				
Chloride	ND	1.00	mg/kg wet	*						
LCS (P2A2601-BS1)				Prepared &	k Analyzed:	01/26/22				
Chloride	41.6		mg/kg	40.0		104	90-110			
Chloride			0 0							
LCS Dup (P2A2601-BSD1)				Prepared &	k Analyzed:	01/26/22				

13000 West County Road 100 Odessa TX, 79765 Project: Winnebago CTB Flare

Project Number: 15278 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2601 - *** DEFAULT PREP ***										
Calibration Blank (P2A2601-CCB1)				Prepared &	& Analyzed:	01/26/22				
Chloride	0.00		mg/kg wet							
Calibration Blank (P2A2601-CCB2)				Prepared &	& Analyzed:	01/26/22				
Chloride	0.00		mg/kg wet							
Calibration Check (P2A2601-CCV1)				Prepared &	& Analyzed:	01/26/22				
Chloride	21.3		mg/kg	20.0		106	90-110			
Calibration Check (P2A2601-CCV2)				Prepared &	& Analyzed:	01/26/22				
Chloride	21.0		mg/kg	20.0		105	90-110			
Calibration Check (P2A2601-CCV3)				Prepared &	& Analyzed:	01/26/22				
Chloride	20.8		mg/kg	20.0		104	90-110			
Matrix Spike (P2A2601-MS1)	Sour	ce: 2A21009	9-56	Prepared &	& Analyzed:	01/26/22				
Chloride	314	1.03	mg/kg dry	258	48.0	103	80-120			
Matrix Spike (P2A2601-MS2)	Sour	ce: 2A21009	9-66	Prepared &	& Analyzed:	01/26/22				
Chloride	334	1.02	mg/kg dry	255	88.1	96.5	80-120			
Matrix Spike Dup (P2A2601-MSD1)	Sour	ce: 2A21009	9-56	Prepared &	& Analyzed:	01/26/22				
Chloride	278	1.03	mg/kg dry	258	48.0	89.4	80-120	12.0	20	
Matrix Spike Dup (P2A2601-MSD2)	Sour	ce: 2A21009	9-66	Prepared &	& Analyzed:	01/26/22				
Chloride	335	1.02	mg/kg dry	255	88.1	97.0	80-120	0.320	20	

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2A2301 - *** DEFAULT PREP ***										
Blank (P2A2301-BLK1)				Prepared &	k Analyzed:	01/23/22				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	127		"	120		106	70-130			
Surrogate: o-Terphenyl	74.2		"	60.0		124	70-130			
LCS (P2A2301-BS1)				Prepared &	k Analyzed:	01/23/22				
C6-C12	1080	25.0	mg/kg wet	1000		108	75-125			
>C12-C28	1210	25.0	"	1000		121	75-125			
Surrogate: 1-Chlorooctane	179		"	120		149	70-130			S-GC1
Surrogate: o-Terphenyl	99.9		"	60.0		167	70-130			S-GC1
LCS Dup (P2A2301-BSD1)				Prepared &	k Analyzed:	01/23/22				
C6-C12	837	25.0	mg/kg wet	1000		83.7	75-125	25.7	20	R
>C12-C28	935	25.0	"	1000		93.5	75-125	26.1	20	R
Surrogate: 1-Chlorooctane	135		"	120		112	70-130			
Surrogate: o-Terphenyl	74.3		"	60.0		124	70-130			
Calibration Check (P2A2301-CCV1)				Prepared &	k Analyzed:	01/23/22				
C6-C12	489	25.0	mg/kg wet	500		97.9	85-115			
>C12-C28	493	25.0	"	500		98.6	85-115			
Surrogate: 1-Chlorooctane	151		"	120		126	70-130			
Surrogate: o-Terphenyl	73.9		"	60.0		123	70-130			
Calibration Check (P2A2301-CCV2)				Prepared &	k Analyzed:	01/23/22				
C6-C12	468	25.0	mg/kg wet	500		93.7	85-115			
>C12-C28	503	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	156		"	120		130	70-130			
Surrogate: o-Terphenyl	75.2		"	60.0		125	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2301 - *** DEFAULT PREP ***										
Calibration Check (P2A2301-CCV3)				Prepared: (01/23/22 A	nalyzed: 01	/24/22			
C6-C12	470	25.0	mg/kg wet	500		94.1	85-115			
>C12-C28	502	25.0	"	500		100	85-115			
Surrogate: 1-Chlorooctane	152		"	120		127	70-130			
Surrogate: o-Terphenyl	74.5		"	60.0		124	70-130			
Duplicate (P2A2301-DUP1)	Sou	rce: 2A21009	0-20	Prepared: (01/23/22 A	nalyzed: 01	/24/22			
C6-C12	13.8	25.8	mg/kg dry		16.0			14.6	20	
>C12-C28	10.9	25.8	"		10.8			1.04	20	
Surrogate: 1-Chlorooctane	138		"	124		112	70-130			
Surrogate: o-Terphenyl	80.6		"	61.9		130	70-130			
Batch P2A2302 - *** DEFAULT PREP ***										
Blank (P2A2302-BLK1)				Prepared &	& Analyzed:	01/23/22				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	122		"	120		101	70-130			
Surrogate: o-Terphenyl	70.0		"	60.0		117	70-130			
LCS (P2A2302-BS1)				Prepared &	& Analyzed:	01/23/22				
C6-C12	1290	25.0	mg/kg wet	1200		108	75-125			
>C12-C28	1300	25.0	"	1200		108	75-125			
Surrogate: 1-Chlorooctane	218		"	120		182	70-130			S-GC
Surrogate: o-Terphenyl	109		"	60.0		182	70-130			S-GC
LCS Dup (P2A2302-BSD1)				Prepared &	& Analyzed:	01/23/22				
C6-C12	1310	25.0	mg/kg wet	1200		109	75-125	1.41	20	
>C12-C28	1070	25.0	"	1200		89.6	75-125	18.7	20	
Surrogate: 1-Chlorooctane	163		"	120		136	70-130			S-GC
Surrogate: o-Terphenyl	80.1		"	60.0		134	70-130			S-GC

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2302 - *** DEFAULT PREP ***										
Calibration Check (P2A2302-CCV1)				Prepared &	Analyzed:	01/23/22				
C6-C12	551	25.0	mg/kg wet	500		110	85-115			
>C12-C28	521	25.0	"	500		104	85-115			
Surrogate: 1-Chlorooctane	147		"	120		122	70-130			
Surrogate: o-Terphenyl	72.1		"	60.0		120	70-130			
Calibration Check (P2A2302-CCV2)				Prepared &	Analyzed:	01/23/22				
C6-C12	555	25.0	mg/kg wet	500		111	85-115			
>C12-C28	523	25.0	"	500		105	85-115			
Surrogate: 1-Chlorooctane	150		"	120		125	70-130			
Surrogate: o-Terphenyl	75.9		"	60.0		127	70-130			
Calibration Check (P2A2302-CCV3)				Prepared: (01/23/22 Ar	nalyzed: 01	/24/22			
C6-C12	526	25.0	mg/kg wet	500		105	85-115			
>C12-C28	559	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	151		"	120		126	70-130			
Surrogate: o-Terphenyl	74.2		"	60.0		124	70-130			
Duplicate (P2A2302-DUP1)	Sou	rce: 2A21009	0-40	Prepared: (01/23/22 Aı	nalyzed: 01	/24/22			
C6-C12	889	27.2	mg/kg dry		839			5.68	20	
>C12-C28	1610	27.2	"		1780			9.91	20	
Surrogate: 1-Chlorooctane	175		"	130		135	70-130			S-GC
Surrogate: o-Terphenyl	94.3		"	65.2		145	70-130			S-GC
Batch P2A2403 - *** DEFAULT PREP ***										
Blank (P2A2403-BLK1)				Prepared &	Analyzed:	01/24/22				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	108		"	120		89.7	70-130			
Surrogate: o-Terphenyl	60.9		"	60.0		102	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 152/8
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Lann	Omto	Level	Resuit	/UKLC	Limits	МЪ	Liiiit	110103
Batch P2A2403 - *** DEFAULT PREP ***										
LCS (P2A2403-BS1)				Prepared &	k Analyzed:	01/24/22				
C6-C12	866	25.0	mg/kg wet	1000		86.6	75-125			
>C12-C28	976	25.0	"	1000		97.6	75-125			
Surrogate: 1-Chlorooctane	154		"	120		129	70-130			
Surrogate: o-Terphenyl	68.6		"	60.0		114	70-130			
LCS Dup (P2A2403-BSD1)				Prepared &	& Analyzed:	01/24/22				
C6-C12	856	25.0	mg/kg wet	1000		85.6	75-125	1.16	20	
>C12-C28	963	25.0	"	1000		96.3	75-125	1.30	20	
Surrogate: 1-Chlorooctane	152		"	120		126	70-130			
Surrogate: o-Terphenyl	65.5		"	60.0		109	70-130			
Calibration Check (P2A2403-CCV1)				Prepared &	& Analyzed:	01/24/22				
C6-C12	487	25.0	mg/kg wet	500		97.4	85-115			
>C12-C28	518	25.0	"	500		104	85-115			
Surrogate: 1-Chlorooctane	132		"	120		110	70-130			
Surrogate: o-Terphenyl	61.1		"	60.0		102	70-130			
Calibration Check (P2A2403-CCV2)				Prepared &	& Analyzed:	01/24/22				
C6-C12	503	25.0	mg/kg wet	500		101	85-115			
>C12-C28	536	25.0	"	500		107	85-115			
Surrogate: 1-Chlorooctane	142		"	120		118	70-130			
Surrogate: o-Terphenyl	64.8		"	60.0		108	70-130			
Calibration Check (P2A2403-CCV3)				Prepared &	& Analyzed:	01/24/22				
C6-C12	493	25.0	mg/kg wet	500	-	98.5	85-115			
>C12-C28	545	25.0	"	500		109	85-115			
Surrogate: 1-Chlorooctane	140		"	120		116	70-130			
Surrogate: o-Terphenyl	64.8		"	60.0		108	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare

13000 West County Road 100 Odessa TX, 79765 Project Number: 15278
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

	D. I	Reporting	TT :	Spike	Source	0/DEC	%REC	DDD	RPD	NI.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2403 - *** DEFAULT PREP ***										
Duplicate (P2A2403-DUP1)	Sou	rce: 2A21009	0-58	Prepared &	Analyzed:	01/24/22				
C6-C12	32.2	26.0	mg/kg dry		26.9			18.1	20	
>C12-C28	ND	26.0	"		9.93				20	
Surrogate: 1-Chlorooctane	99.4		"	125		79.5	70-130			
Surrogate: o-Terphenyl	56.3		"	62.5		90.1	70-130			
Batch P2A2404 - *** DEFAULT PREP ***										
Blank (P2A2404-BLK1)				Prepared &	Analyzed:	01/24/22				
C6-C12	ND	25.0	mg/kg wet	-	-					
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	98.5		"	120		82.1	70-130			
Surrogate: o-Terphenyl	55.8		"	60.0		93.0	70-130			
LCS (P2A2404-BS1)				Prepared &	Analyzed:	01/24/22				
C6-C12	798	25.0	mg/kg wet	1000		79.8	75-125			
>C12-C28	1250	25.0	"	1000		125	75-125			
Surrogate: 1-Chlorooctane	101		"	120		84.2	70-130			
Surrogate: o-Terphenyl	56.6		"	60.0		94.3	70-130			
LCS Dup (P2A2404-BSD1)				Prepared &	Analyzed:	01/24/22				
C6-C12	821	25.0	mg/kg wet	1000		82.1	75-125	2.81	20	
>C12-C28	1220	25.0	"	1000		122	75-125	2.21	20	
Surrogate: 1-Chlorooctane	103		"	120		85.4	70-130			
Surrogate: o-Terphenyl	57.6		"	60.0		96.0	70-130			
Calibration Check (P2A2404-CCV1)				Prepared &	Analyzed:	01/24/22				
C6-C12	453	25.0	mg/kg wet	500		90.6	85-115	·		
>C12-C28	499	25.0	"	500		99.9	85-115			
Surrogate: 1-Chlorooctane	112		"	120		93.0	70-130			
Surrogate: o-Terphenyl	57.9		"	60.0		96.5	70-130			

Permian Basin Environmental Lab, L.P.

Project: Winnebago CTB Flare Project Number: 15278

13000 West County Road 100 Odessa TX, 79765

Project Number: 152/8
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2A2404 - *** DEFAULT PREP ***										
Calibration Check (P2A2404-CCV2)				Prepared &	አ Analyzed:	01/24/22				
C6-C12	476	25.0	mg/kg wet	500		95.2	85-115			
>C12-C28	513	25.0	"	500		103	85-115			
Surrogate: 1-Chlorooctane	107		"	120		89.1	70-130			
Surrogate: o-Terphenyl	59.9		"	60.0		99.9	70-130			
Calibration Check (P2A2404-CCV3)				Prepared &	ኔ Analyzed:	01/24/22				
C6-C12	490	25.0	mg/kg wet	500		97.9	85-115			
>C12-C28	563	25.0	"	500		113	85-115			
Surrogate: 1-Chlorooctane	110		"	120		91.8	70-130			
Surrogate: o-Terphenyl	62.2		"	60.0		104	70-130			
Duplicate (P2A2404-DUP1)	Sou	rce: 2A21009) -74	Prepared &	k Analyzed:	01/24/22				
C6-C12	17.8	25.5	mg/kg dry		17.1			4.44	20	
>C12-C28	31.8	25.5	"		38.6			19.4	20	
Surrogate: 1-Chlorooctane	108		"	122		87.9	70-130			
Surrogate: o-Terphenyl	61.7		"	61.2		101	70-130			

E Tech Environmental & Safety Solutions, Inc. [1] Project: Winnebago CTB Flare

13000 West County Road 100Project Number:15278Odessa TX, 79765Project Manager:Tim McMinn

Notes and Definitions

S-GC1 Surrogate recovery outside of control limits. A second analysis confirmed the original results...

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

R The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater

the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 2/1/2022

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Winnebago CTB Flare

13000 West County Road 100Project Number: 15278Odessa TX, 79765Project Manager: Tim McMinn

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Sampler Signature:

City/State/Zip:

Midland, Texas 79711

email:

Tim@etechenv.com

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

Pa	ge 23	34 of 24
Project Manager	1 100 Rankin Hwy	
Tim McMinn	Midland Texas 79701	AB Permian Basin Environmental Lab
		· 推发"《学园的法理》《 · · · · · · · · · · · · · · · · · · ·

Area:	Project	Project
PC	Project #: 15278 Project	Project Name: Winnebago CTB Flare
PO#:	Project Loc: Lea County, NM	B Flare

⊠Bill Etech Report Format: STANDARD: TRRP. NEDES:

PREED CODE Preservation & # of Containers Preservation & Pre	ie Star CFH	<i>6</i> ≥ ₫	الله (نعرا	6.9	اب ا	Ŵ.,	čelo J	5 70	le Çbi		mper	e Sa	B			، لريا									Received by:	Recei	Market State Communication Com			Relinquished by:
Preservation & # of Containers Preservation & Preservation	Z		إل			•	Rep	Jieni	pler/(Sam	ŋ.	Sa	lime		Date	٦	+		-						ved by:	decei	g -	ate	D	elinguished by:
Title Preservation & # of Containers Title Preservation Title Preservation & # of Containers Title Preservation Title	z z		Ų	^		٣	a cer	Tvere	d De	Han Han	mple	නී																10.2 2.5	What More Ind	
Free Part Surface - 1AH @ 2-5 Free Part Free Par	Z		لا	n		er(s	Tain	8	als o	y se	stod	δ	lime	-	ate		-	2000	2000	7		0.000	-	The same of the same of the	ved by:	Recei		ate Tr		d by∵
FIELD CODE FIE	22		$\langle \cdot \rangle$			٠v	tact?	rs In	itaine of H	eeΩ	ڪ ا ا	\ Sa		!											BTEX			H ₀ H	And the state of t	
Free Notation		ع] ا		×	片	" ¦ =	ents -	3 -	ွဲြ	اق		La	×	V	L				Ē			=	12	115	1/19/2022			ŀ	East Surface -7AH @	tructio
Fig. 2002 1/19/2002 1/19					17	#	 	12	10		10	1	Z –	S	44	1=	12	1-	垣				2	===	1/19/2022)-3"	East Surface -7AH @ 0	
First Surface - JAH @ 3-6				<u></u>	苊	片	분	닏			╚	닏	×	S	낻		냳	12				Ŀ	1		1/19/2022			5-8"	East Surface -6AH @ 5	
### FIED COOR #### FIED COOR ##################################				×	l =	片	분	냳				닏	8	S	┞ᆜ	뜯	븯	<u> </u>				₽	0	111	1/19/2022			2-5"	East Surface -6AH @ 2	
### Preservation & ### Preservat				Z	厅	H	분	닏				빝	×	S	닏	F	븯	므	回				G	1131	1/19/2022			5-8"	East Surface -5AH @ 5	
FIELD CODE PRED CODE PRE				X	F	믐	냳	닏			므	닏	1=	S	Ц			므					7	113	1/19/2022			2-5"	East Surface -5AH @ 2	
### Preservation & ## of Containers Fig.				N N	片	분	片	띹	<u></u>			닏	<u> </u>	S	┞╜	E	닏	므					2 1	117	1/19/2022			5-9"	East Surface -4AH @ 6	
### Preservation & # of Containers East Surface -1AH @ 2-5" Start Depth				×	苊	片	片	냳	무		므	닏	×	S	ᆜ			<u> </u>					13	11.25	1/19/2022			3-6"	East Surface -4AH @ 3	
East Surface - 1AH @ 5-8" East Surface - 1AH @ 5-8" It is a surface - 1AH @ 6 Containers It i			t =	+-	F	片	片	╁═	12	닏	ㅁ	띹	×	S	닏	뜯							_	0211	1/19/2022			3-6"	East Surface -3AH @ 3	
### Preservation & # of Containers Fig.			1=	1 N	苊	片	분	닏	무			냳	×	S	닏			<u> </u>	回				_	1116	1/19/2022)-3"	East Surface -3AH @ 0	
Preservation & #01 Containers 1/19/2022 1/0 C			+=	X	<u> </u>	片	片	닏			口	빝	<u> </u>	S	닏		닏						_	11.112	1/19/2022			5-8"	East Surface -2AH @ 5	
FIELD CODE FIE				$\overline{\mathbf{x}}$	苊	片	분	빝	<u> </u>		므	ᆜ	X	S	ᆜ			垾	回				1	3 0 4 (1/19/2022			2-5"	East Surface -2AH @ 2	
File Preservation & # of Containers Preservation & Preservat				<u>-</u>	片	片	片	냳	4		므	┞ᆜ	X	S	닏	Ë	닏	<u> </u>					1-1	1104	1/19/2022			5-8"	East Surface -1AH @ 5	
### Preservation & ### Preservat			Ī		둒	片	片	닏	 		10	ᆜ	×	S	닏		브	므	回			X	1	1100	1/19/2022			2-5"	East Surface -1AH @ 2	
## TCLP: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □									Metals: As Ag Ba Cd Cr Pb Hg		Anions (Cl, SO4, CO3, HCO3	Cations (Ca, Mg, Na, K)		GW = Groundwater S=Soil/Solid							HNO ₃	lce	No. of Containers	Time Sampled	Date Sampled	End Depth	Start Depth		FIELD CODE	
BOOK HE BOOK HE	48, 7								Se)			Matrix	\sqcup	{]			ers	of Contain	reservation & # c	اح				
	2 hrs			\vdash	一	-	屵	므		-	7107														: 		į		FOODY	
					_	띡	믬	빋		۳.	힏												e .							

Relinquished by:

Special Instructions:

East East ORDER# 2A2100

(lab use only)

Sampler Signature: City/State/Zip: Company Address: Company Name:

P.O. Box 62228 Midland, Texas 79711

Etech Environmental & Safety Solutions, Inc.

	•		Tim McMinn	Project Manager:
Phone: 132-68		Bidland Texas 79791		1 100 Rankin Hwy
e der A. A., e fo., E. A.	·	A B Permian Basin Environmental Lab, LP		

oject Name: Winnebago CTB Flare oject #: 15278 Project Loc: Lea County	278	Winnebago CTB F	
--	-----	-----------------	--

Area:

风Bill Etech

-													Report Format: STANDARD:	끊	rma	<u>-</u> 6	₽	¥	B].	J:ddg		Analyze For:	ž Į		þ	1		1	l	
																	- [ı	ᆈ	짇						٦	┪	\neg	7		\dashv
																			징	TOTAL										hrs	
		٦	Preservation & # of Containers	Containers		П]]	1 1	1	1 1	1	1	ĺ	٦	Matrix	Ľ					Se		T					٦		ا 8, 72	
FIELD CODE	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	Ice	HNO ₃	HCI	H₂SO₄	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge	GW = Groundwater S=Soil/Solid	NP=Non-PotableSpecify Other	TPH: 418. 8015M	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semi volatiles	BTEX 8021B	RCI	N.O.R.M.	Chlorides			RUSH TAT(Pre-Schedule) 24, 4	STANDARD TAT
st Surface -8AH @ 0-3"			1/19/2022	1156	1	ķ						×			S		X										¥				\Box
st Surface -8AH @ 3-6"			1/19/2022	0021	1	ф						 			S	_	X,										X				\Box
st Surface -9AH @ 0-3"			1/19/2022	h021	1	Φ.									S		X,										×				口
st Surface -9AH @ 3-6"			1/19/2022	802 (1										S		X										X				
st Surface -10AH @ 0-3"			1/19/2022	1212	1							中			S		X										X				Ţ,
st Surface -10AH @ 3-6"			1/19/2022	1216	1							-			S		X										X				-
st Surface -11AH @ 0-3"			1/19/2022	1220	1										S		Ø										X				-
st Surface -11AH @ 3-6"			1/19/2022	1224	1										S	Ш	X,										X				耳
st Surface -12AH @ 0-3"			1/19/2022	1228	1	þ						巾			S		V.										X				
st Surface -12AH @ 3-6"			1/19/2022	1232	1	þ									S		刻										X				口
st Surface -13AH @ 0-3"			1/19/2022	1236	1	þ									S		凶										X				司
st Surface -13AH @ 3-6"			1/19/2022	1240	1	ψ									S		×										X				口
3erm Surface -1AH @ 0-3"			1/19/2022	1040	1	Þ									S		蚁										X				口
3erm Surface -1AH @ 3-6"			1/19/2022	1045	1	₹						4			S	Ļ	区										×				M
	!			Hold for BTEX	か	٦ ا	a	-	m'	×		1			j			- 10 F	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	rato Fre	e of	ners Tea	mer Inta	Cey ts:			スコ	≺≺ }]	γ	zz	
***************************************	me	Recei	Received by:	production and the state of the					in the second	4.0000000	200	-	Date	ē	and and	-	Time		Custody		eals	91.0	seals on container(s)	iner	(s)			Ł	/	z	
2	100 Pm																	(0 C)	Custody seals on coole Sample Hand Delivered	e H	eals		seals on cooler(s) land Delivered	(6)			\wedge	(⊰)≺	٧.	zz	
Date Tin	ime	Recei	Received by:	Andrew William Strangers Strangers and Strangers	And State Constraints	· worthware	Albert Constitution (In	9	and own .	April 10 miles		Observable.	Date	ė	- 41		lime	(0 (0	Sar by Sampler/ Sar by Courier?	0 40	mple urier	ું ટૂ ટૂ	mpler/Client Rep urier? UPS	ሌ <u>ኞ</u>	₽``	7	7 g	ダダ	۵,	a e S	tar
Date Tin	ime	Recei	Received by:	N		ΛHI	1111	V					<i>57</i>	Silli.		22		<u> </u>	Temperat	erat	ire t	ğ	Д ec	eipt	Ω	نغ	₹.	رد. در	6.Z	ture Upon Receipt: 5, 2-6, 2, 2,c7	41

B

S

LAB # (lab use only)

CHAIN OF
QF.
CUS
CUSTOD)
_
RECORD
AND,
J A N
ANALYSIS F
~
EQ

vea				/10/20 0	g ve	\$550	gari	1043	25/2/4	L SA	igaes.	Dissil.	See 1	gilas.	<i>(13.8</i> 1)	J. S. S.	gegari Eaget	egg (estado en la compansión de la compansión d	100	െ	_						ge 2.	
xelliquistied by.		Relinquished by:	Relinquished by	Special Instructions:	\$	ψl	ક	39	38	31	36	35	34	- 33	32	3	30	29	LAB # (lab use only)		ORDER#: 1421009	(lab use only)		Sampler Signature:	City/State/Zip:	Company Name:	Project Manager:	A. A. B. D.	
y.		Medi	101	ictions:							E	E:	E;	E	E	E	E	E			14210		,	N				in Hwy	
On concession con extra general constitution.	Children Children and The Moore	Coll	7	e de la constante de la consta	West Surface	West Surface	West Surface -2AH @ 3-6'	West Surface -2AH @ 0-3"	West Surface -1AH @ 7-10"	West Surface -1AH @ 4-7"	East Berm Surface -5AH @ 3-6"	East Berm Surface -5AH @ 0-3"	East Berm Surface	East Berm Surface -4AH @ 0-3"	East Berm Surface -3AH @ 3-6"	East Berm Surface -3AH @ 0-3"	East Berm Surface -2AH @ 3-6"	East Berm Surface -2AH @ 0-3"	10		70		•	N X L	Midland, Texas	Etech Environmental & Safety Solutions, Inc.	Tim McMinn		
A grant agent and decrease and of pages of			0		-3AH	face -3AH	face -2AH	face -2AH	ace -1AH	face -1AH	urface -5,	urface -5,	urface -4,	urface -4,	urface -3,	urface -3,	urface -2,	urface -2,	FIELD CODE	252		Marin			<u>72220</u> Texas 79711	onmen	Minn	Midlan	ž į
Cata	Date:	Date	Date		@ 3-6"	@ 0-3"	@ 3-6"	@ 0-3"	@ 7-10"	@ 4-7"	4H @ 3-6	АН @ 0-3	-4AH @ 3-6"	AH @ 0-3	AH @ 3-6	АН <i>@</i> 0-3	АН <i>@</i> 3-6	АН <i>@</i> 0-3				,			711	tal & Sa		PHeblicanel Texas TOTH	
- 7	Timo	J-00Pn	-		,				_		=	- T) <u>*</u>	-	"	,,,	°i	"		 -				email:		ifety So		10262	
	-		-		L														Start Depth							utio			
A Property of		écelv	eceiv																End Depth] =	,					ns, li			
	and the entitle in territory constructs to the	Received by:	Received by:	•	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	Date Sampled	Preservation & # of Containers				Tim@etechenv.com		is.			
	and the second decimal to			Hold	1306	1302	1258	1254	13 50	1246	1006	1000	1015	1010	520!	10 20	1035	1030	Time Sampled	T Containers				henv.con				Phone: 432-686-7235	
\mathbb{N}				9-	1	1	1	1	1-	1	1	1	1-	1	1	1	1	1 [No. of Containers]				ıs				392	
11			111111111111111111111111111111111111111	ずっ			E	-					Ë	E) [Z.	Ice HNO ₃	-								9486	
				~	片	片			믐	H	믐	片	片	片	믐				HCI	┨	1							72	
			de Pharmaio	8	片	튭	tā	恄	냠	怙	恄	<u> </u>	旨	旨	냠	占	占	占	H ₂ SO ₄	1	ł							÷.	Щ
200			1 Carting Co.	-															NaOH	1	ļ								
	400		CHICAGO AND	11															Na ₂ S ₂ O ₃]									
$\overline{\Lambda}$	1		West, Arri	x	ķ											Í	車	₽	None]	1		ਹ	X	1 ⊅	> <u>-</u>	ם ו		
جھ	3	Date	Date																Other (Specify)	1	1		Report Format:	Bii	L ed	Project #: 152/8	. <u> </u> 2		
83		٩	Ф			Π								Γ	Γ				DW=Drinking Water SL=Sludge	ַן	:		t For	Ξ		ect	ect		
K-7		+	- Section -		S	S	S	S	۸	S	S	S	S	S	S	S	S	S	GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other				mat:	Etech		#	Za		
8	1	me	lime		又	×	X	R	×	X	×	×	×	X	×	×	K	×	TPH: 418.1 8015M		†	П	-G	끍		15	E		
Ŋ	5	70	ď		膏	F		7		F					 _ `		7				1	Ιİ	₽ P			2/8			
Tem	Sar	San	ည္အ	Sam	旨	<u> </u>	 -	<u> </u>		-		-	片		<u> </u>		10		Cations (Ca, Mg, Na, K)		┧ᆲ		STANDARD:C				Project Name: Winnebago CTB Flare		
Temperature Upon Receipt 5.2	Sar by Courier?	Sample Hand Delivered Sar by Sampler/Qlient Rep. ?	Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments Sample Containers Intact? VOCs Free of Headspace	片	<u> -</u>		-	占	냠	 		-	1			10		Anions (CI, SO4, CO3, HCO3	5)	TOTAL:	ICE F	ľ				<u>leb</u>		
fure	ourie 1	tand	seal	onte ee of	H	片		H	片	1	-		H	片	片	10	10	1	SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg	. So		띪	Ħ			Project Loc:	<u> </u>		
등	- 3 (₩ Q	s 9	Te: Con	片	H	1	౼	H	<u> </u>			6	7	占][10			JE	1=	誾	D:d'd'd		-	<u> </u>	ĺΩ		
귷	ِ ا ہے	ent co	con	dspt tuls	片	-		H	片	-	1	H	-	片	 _] [_	-	Volatiles Semi volatiles		片	H	Analyze For:		7 C #		. В		
Çeji.	8	Rå å	itain. Ier(s	act?	片	片	片	片	片	片	片	片	1	屵	片	1	1				Ͱ	밤	ΣZe →			် ကြ	Fla		
ら	п	3	er(s ;)	-5 * ⁷	片	片	믐	屵	믐	屵	片	片	片	片	片	ᆜ		ᆜ	BTEX 8021B RCI			쁘	<u> </u>			Lea	<u> </u>		
الجا	Ŧ		Ŭ		片	片		片	片	片	片	片	屵	片	片	1		1			+-	{							
4	ונ	<u>,</u>		, v	믕	븣			 	X			1 2						N.O.R.M. Chlorides		+-	\dashv	T			County, NM			
ىخ	, D.	<u>بل</u> ا۔	2	(۲. ۲	冷	F	F	旨	后	合		骨	F	r	后	7	骨	<u> </u>	Giloriues		+-	ᅱ	Ì			n,			
6	100	V	الا	\mathcal{C}	片	쁜	片	屵	片	片	븐	쁜	쁜	片	片	ᆜ	브	닏			+-		}		1		.		
	· 17		v60 il 60 v			J [T]	11 1	11 1	11 1	11 1	9 ()	11 '		ш	ΙD	\square	11 1				1					- 1-			

RUSH TAT(Pre-Schedule) 24, 48, 72 hrs STANDARD TAT

Sampler Signature: City/State/Zip: Company Address: Company Name:

Midland, Texas 79711

email:

Tim@etechenv.com

Etech Environmental & Safety Solutions, Inc.

Project #: 15278	Project Name: \
#: 15278	Vame: Winne
Project Loc: Lea County,	Winnebago CTB Flare
Lea County, NM	e

roject Name. Winnebago CIB Flare	ebago CIB Flare	
oroject #: 15278	Project Loc: Lea County, NN	ounty, NN
\rea:	PO#:	
Xβill Etech		
Report Format: STANDARD:DTRRD:D.		:)

Relinquished by:		Relinguished by	The Control of the Co	Relinquished by:	No. (Alberta) Processor - Aur - A	Special In	- 55	2	%	53	- 51	<i>6</i> 6	βħ	₩	足	ሳ ክ	ઝ	一	Z	LAB#(lab use only)		ORDER#:	(lab use only)	
ed by:	33	od by	Ţ	ed by:		6			5									,					10.3	
es y destruction de la projection de la contra application de la destruction de la companyation de la companya	ennet Steine (d. Standal Bertandaria e Standard e Stand	0000	JEMO T	// F	who of the site models were over	P-3AH @ 3	P-3AH @ 0-3"	P-2AH @ 3-6"	P-2AH @ 0-3"	P-1AH @ 3-6"	P-1AH @ 0-3"	South Surface -3AH @	South Surface -3AH @	South Surface -2AH @ 5-8'	South Surface -2AH @ 2-5'	South Surface -1AH @	South Surface -1AH @ 2-5	West Surface -4AH @	West Surface -4AH @ 0-3"	FIELD CODE		2A21009		
Date		- 1	122	Date		3-6"	ည်း	6	3"	6"	-3"	≀Н @ 3-6"	≀н @ 0-3"	\H @ 5-8"	\H @ 2-5"	λH @ 5-8"	λH @ 2-5"	Н@3-6"	H @ 0-3")E				
l me	a je programa i nasta se sporte i nasta se	lime	Mr80'C	Time		-			<u> </u> 	_							 			Start Depth)		
Receive		Recei		Recei				-										-		End Depth	ا ا			
yed by:	and the second second second second second second	Received by:		Received by:		1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	Date Sampled	Preservation & # of Containers			
	West and the second second			and the state of the state of the state of	Hold Ar	1402	1358	1354	1350	1346	1342	1338	1334	1330	1326	122	1318	1214	1310	Time Sampled	Containers]		
1						E		_		_	-	-		_	_	-	_	_	-	No. of Containers				
hII					BTEX		Ħ		H	H	H	H	H		Ë	H	븕	H		Ice HNO ₃]		
M'		1		- Contraction of	$\overline{\omega}$	片	냠	냠	냠	H	H	붑	H	냠	片	붐	냠	H	H	HCI				
1	1	İ				靣	靣			ā						靣				H ₂ SO ₄	ĺ	ĺ		
				duck to the			므		므		旦			므	므	므	므	므		NaOH	}			
H	-	+					무	뜯	뜯			무					냳	냳		Na ₂ S ₂ O ₃				
3		J		d			H		E								H			None (South)				
27		Date	_	Date		1	S	\ \	5	\ <u>\</u>	<u> </u>	S	\ <u>\</u>	5	<u> </u>	\ <u>\</u>	\ \ \	7	u V	Other (Specify) DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other	Matrix			
				ime			-	10					D.						×	TPH: 418.1 (8015M)	_		П	Γ
3		\perp																		Cations (Ca, Mg, Na, K)				l
emp	ar b	a i	Custody seals on coole Sample Hand Delivered	Justo	OC amp															Anions (Cl, SO4, CO3, HCO3)		징		
eratu	88	ູ່ ເຄື່ອ	Fğys Hays	dy s	e δ															SAR / ESP / CEC		LOTAL	ICLP:	ĺ
lre U	Trier		eals and f	eals	e of															Metals: As Ag Ba Cd Cr Pb Hg	Se			
pon.	3		¥ S S S S S S S S S S S S S S S S S S S	on c	Ters															Volatiles				>
Rece	Ş	Sar by Sampler/Client Rep	Custody seals on cooler(s) Sample Hand Delivered	Custody seals on container(s	Sample Containers Intact? VOCs Free of Headspace?															Semi volatiles				Analyze
Jag.	o) {	ร้ ง	(s)	iner(8 t i		旦											垣		BTEX 8021B				Ze F
20	昪			s)		坦								ㅁ	Ш	口				RCI			\Box	ze For:
16	-					旦													旦	N.O.R.M.		_	_	İ
6	-edE	ر	ر د ۵	7	کر						1		ήĮΓ	H		F			**	Chlorides	_	<u> </u>		
	×		X	ブ	\sim	냳	片	片	쁜	분	쁜		벁	片	4	屵	분	片	片			-	\dashv	
7	F				1112000	3- 1 1	1 1 1																	
Temperature Upon Receipt 5, 2- (pi 2 (AcF)	Lone :	z:	zz	z	zz	片	片		片		1	ᆜ][[불		ᆜ		H	片	RUSH TAT(Pre-Schedule) 24, 4	8.7	ļ 2 hrs		1

Sampler Signature:

email:

Tim@etechenv.com

XBill Etech

Project Manager:	1 400 Rankin Hwy	
Tim McMinn	Midland Texas 79701	A B Permian Basin Environmental Lab, LP
	Phone: 432-686-723	aviroumental Lab. LP

Assigning the state of the state of	y Midland Texas 79701 Phone: 132-686-7235		
Project Manager	Project Manager: Tim McWinn	Project Name: Winnebago CTB Flare	ebago CTB Flare
Project Manager.	THE WASTALLE).	
Company Name:	Company Name: Etech Environmental & Safety Solutions, Inc.	Project #: 152/8	Project Loc: Lea County, NM
Company Address:	Company Address: P.O. Box 62228	Area:	PO#:
City/State/Zip:	City/State/Zip: Midland, Texas 79711	WRill Etach	

Relinquished by	Relinquished by		Relinquished by	-	Specia) (1			1							JASUAL NA		ORDER #:	(lab use only)	
shed by	shed by		shed by		Instru	7D	<i>。</i> 4	၁8	61	' فاد	<u>5</u> 5	بلاد	جي	62	61	60	59	<u>58</u>	<u>51</u>	LAB # (lab use only)		(#:	only)	
ter un europea est un est est de la companya de la companya de la companya de la companya de la companya de la		Butch	110		Special Instructions:	P-10AH @ 5-8'	P-10AH @ 2-5"	P-9AH @ 3-6"	P-9AH @ 0-3'	P-8AH @ 3-6"	P-8AH @ 0-3"	P-7AH @ 3-6"	P-7AH @ 0-3"	P-6AH @ 7-10'	P-6AH @ 4-7"	P-5AH @ 3-6"	P-5AH @ 0-3"	P-4AH @ 3-6"	P-4AH @ (FIELD CODE				
Date	Date	2	Date			5-8"	2-5"	}-6")-3"	6")-\a''	3-6")-3"	-10"	I-7"	3-6")-S ₁	3-6"	0-3")∺				
Time	Ime	2:00 pm	Time		,						<u> </u> 		 		 					Start Depth	-			
Rece	Kece		Rece	fold			-	-	-		-		-	-		-	-	\vdash	\vdash	End Depth				
Received by:	Received by:	Matthew and a state of the control o	Received by:	Hold for BTEX)	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	1/19/2022	Date Sampled	Preservation & # of Containers	[
	Annual Control of the Annual Control of the Control	ACTION OF MANAGEMENT COMM		mX X		1458	1454	05111	1446	1442	1438	h2h	1430	1424	1422	1418	1111	1410	9041	Time Sampled	f Containers	i F		
V	and the second second	1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	No. of Containers	1			
	Coppe Care o		-		ı		븐		H				Ë					믇	<u> </u>	lce UNO	1			
	Transaction of the agency			'		ᆜ	片	끈	片	片	片	분	片	片	片	片	片	믄	屵	HNO₃ HCI	1			
	and the state of the			1	1		冒		븁	旹	旨	H	F	급	片	뭄	冒	급	占	H ₂ SO ₄	1			
	and colors		-		1															NaOH	1			
			╝		[Na ₂ S ₂ O ₃				
2						V.													\mathbf{z}	None				
) Pale	Date		Date		ı														旦	Other (Specify)	L			
200						S	S	S	S	S	s	S	S	S	s	s	S	S	S	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other	Matrix) 		
8	lime	To the second	me				中	申		ф		中							2	TPH: 418.1 8015M			Н	
	တ တ	ဖ		< 0	г															Cations (Ca, Mg, Na, K)				
mpe Smpe	ar by ar by	usto: ampl	usto	S and	aboi															Anions (Cl, SO4, CO3, HCO3)	TOTAL	ᅰ	
eratu	ဝီ အီ	dys eHa	dy s	ξe	ato															SAR / ESP / CEC		₽	CLP:	
re C	mple!	eals Ind E	eals	ntair e of	줐															Metals: As Ag Ba Cd Cr Pb Hg	Se			
ğ	, ∂	on c	9	ners Head	3															Volatiles				
Rec	Sar by Sampler/Client Rep.? Sar by Courier? UPS	Custody seals on cooler(s) Sample Hand Delivered	Custody seals on container(s	Sample Containers Intact? VOCs Free of Headspace?	Laboratory Comments:															Semi volatiles				•
eipt:	ω.e	í(s)	Ϊœ	Ce?	īs															BTEX 8021B				ċ
Ď.	呈"		(s)																	RCI				
\sim																				N.O.R.M.				
6.0	Fed /	^	V	1		€						中		中					×	Chlorides				
ربلا	る不	义	*	り		\Box																	_	
Temperature Upon Receipt 52 – 62 $2c$																				the attribute of the control of the				
5	one Star	zz	Z	zz	.[믜														RUSH TAT(Pre-Schedule) 24,	48, 7	2 hrs	\Box	
1	7					包													K	STANDARD TAT				

Sampler Signature: City/State/Zip: Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

Midland, Texas 79711

email:

Tim@etechenv.com

Area:

⊠Bill Etech

Project #: 15278

Project Loc: Lea County, NM

PO#:

Pag Project	ge 23	39 of 2
Project Manager:	and the district	3
Tim McMinn	Bidland Texas 79701	AB Permian Basin Environmental Lab, Ll
	Phone: 432-686-7	ecaetal Lub, LP

Project Name: Winnebago CTB Flare

FIELD CODE P-11AH @ 5-8" P-12AH @ 0-3" P-12AH @ 3-6" P-12AH @ 3-6" Date Date Date	業	ارئ	D	CS.	6	3	Č,	eceir	S T	G	ature	mper	e	\bigcirc	18/⊒	K	83	<u>\</u> \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	=			11			111		Apr.	Receive	20	Time	Date		Relinquished by:
Pattern Patt	' ₩ '	e St	Lo ₂	Ծ -	Fe	·F	ָ כו	28.4	_ E	ier?	Sant	r by (လ္ဆမ္မ	1		<u> </u>	ি	٥	'de Passanda							ese ese Alexada de Alexado de Ale	An a constant of the beautiful and the second of the				Date		walling district by
### P-12AH @ 3-0" P-12AH @ 3-0" P-12AH @		: z :		$\langle\!\!\langle\!\!\!\rangle$	۸ ر		, ') a (lve!	Q C	Han		က္က		1	┼-	5		1	'	1			Į			hy.			1,00%	11.12	MEAN!	K
Apply Print Prin		zz	\sim	$\langle $			er(s	ntain	38	하이	n on	s tod	5 δ	æ	=	3	ē	ធ្ល		A. W	And and the other	and the second	***************************************	1 10 10 10 10 10 10 10 10 10 10 10 10 10			d by:	ceive) Time	Date / // //		Relinquished by:
Part	- 44	ZZ	\vee	$\langle \cdot \rangle$			ઇ ઁ કે	tact?	rs in	of H		SE SE	< Sa 5	l												77	1	+	10/0	1	!	emino not miorologia	
### Prize Schedule 24, 48, 72 brz. Part Part Prize Schedule 24, 48, 72 brz. Part Part Prize Schedule 24, 48, 72 brz. Part Part Part Prize Schedule 24, 48, 72 brz. Part					H	片	-		1			尸		<u> </u>		F			后	H	뭐			_			L	L	-		7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Special last truction	
Postart Depth						片	닏	냳	므					一	_		Ť			恄	븀	무	尸	10	Ļ			_	\vdash	 		1	
P11AH 0 3 0 3						늗	屵	닏							_	,	Ī				片	片	12		<u> </u>			L	 	_			
### P11AH @ 3-11					౼	7	屵		⊢					 _	 _		<u> </u>			盲	片	片	므	10	L			L	-				
Apply Preservation Preservatio							쁜	빝						_	<u> </u>		<u> </u>				卌	무	므		_			L	<u> </u>				
## PELD 800E ## PIJAH @ 3 -6" P 11AH @ 3 -6"						片	끧			Щ	Ш			\vdash	<u> </u>					5	片	님	12		_			L	_	_			NAME OF THE OWNER, WHICH THE OWNER, WHITE OF THE OWNER, WHITE OWNER, W
P11AH @ 8 11					_] [ᆜ	_						-		F			Η=	片	片	므	三	<u> </u>				L				
### ### ### ### ### ### ### ### ### ##						-	ᆜ	냳						H	<u> </u>	l	Ī				片	片	므		_				_	_	ŧ		
P-11AH						片	쁜	닏	ㅁ				\Box	=	_		Ť				片	片			<u> </u>			L	_		 		
##ELD 800E ##ELD					盲	片	쁜	H	므	▐▔		Ш			_		<u> </u>				片	뭐	12		<u> </u>			_	_	 			
### P11AH @ 9-5-8" P-11AH @ 9-5-8" Start Depth						H	쁜	냳						<u></u>	<u> </u>	S	Ē		<u>E</u>	占	片	무	므		—	1514	1/19/2022	L	_	_]	P-12AH @ 3-6	4
P-11AH @ 8-11." Start Depth					Ē		ᆜ	닏	Η_					_	_	S	Ī	_	Ē	后	片	片	무		-	1510	1/19/2022	_	L		=	P-12AH @ 0-3	73
P-11AH						ᄩ	뿟	냳							_	S	Ť		ā	Ī	片	븐			├─	1506	1/19/2022	<u> </u>		_	1"	P-11AH @ 8-11	72
### A2 000 1	X				-	片	쁜									S	Н		Z		-	片	무		├-	1502	1/19/2022	_			311	P-11AH @ 5-8	7)
Analyze For: TCLP:	STANDARD TAT	RUSH TAT(Pre-Schedule) 24, 4	and the second second							Metals: As Ag Ba Cd Cr Pb Hg		Anions (Cl, SO4, CO3, HCO3)	Cations (Ca, Mg, Na, K)	TPH: 418.1 8015M													Date Sampled	End Depth		Charle Dample		FIELD CODE	LAB # (lab use only)
A 2 100 9 TOTAL:		8, 72		∄	\dashv	一	\dashv	\dashv	_	Se	_	Ц	_	4	띡	fatri	2				} }	} }		ļļ	} }	Containers	ervation & # of C	Pres	$ \ $				
		hrs					Ш	빌			ŕ	101/																				3 2 	ORDER#: 1A2
			\neg		\dashv	\dashv	닏	믬			קי	힑																					(lab use only)
							5	alyze	An	1		į	1		<u>-</u> {	į	-	í															

DOC #: PBEL_SAMPLE_CHECKLIST **EFFECTIVE DATE: 10/30/2021** REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

Sample Receipt Checklist

Notes

Yes

Samples in proper container/bottle? Sample containers intact? Samplers name present on COC? received? Custody seals intact on shipping container/cooler? Analysis requested for all samples submitted? All samples received within holding time? Chain of custody signed/dated/time when relinquished and

Page 1 of 2

PBEL_SAMPLE_CHECKLIST_2021_1

Login Notes:

2A21009

Date/Time:

NC Initiated by:

딤

Approved by:

DOC #: PBEL_SAMPLE_CHECKLIST EFFECTIVE DATE: 10/30/2021 REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

SAMPLE VARIANCE/NON-CONFORMANCE

temp 6.2 on Ice	
Resolution:	-
Client Contacted W	

PBEL_SAMPLE_CHECKLIST_2021_1

Page 2 of 2

Page 99 of 99

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 1625 N. French Dr., Hobbs, NM 88240 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Released to Imaging: 2/18/2022 10:27:11 AM

2152359	2 8
nAPP2116049360	NW
	\neg

Release Notification

			Resi	pons	ible Part	ty	
Responsible Party: Centennial Resource Production, Inc OGR			OGRID: 3	372165			
Contact Name: Montgomery Floyd Contact				Contact T	elephone: 432-3	15-0123	
Contact email: Me	lontgom	ery.floyd@cdevir	ic.com			nAPP21323395	
Contact mailing a Texas 79705	address:	500 W. Illinois A	ve, Suite 500, Mi	dland			
			Location	of R	Release S	ource	
Latitude 32.35625	66 <u>32</u>	.357295		cimal de	Longitude -	-103. 40202200 _ mal places)	407784 NM
Site Name: Winnel	bago C	ТВ			Site Type:	Production Faci	lity
Date Release Discovered: 11-18-21 API# (ij)			API# (if app	olicable) 30025485	5720000		
Unit Letter Sec	ction	Township	Range		Coun	nty	
P N 30		22S	35E Lea				
Surface Owner: State Federal Tribal Private (Name: Merchant Nm Livesfock Co. Nature and Volume of Release							
Crude Oil	Material	(s) Released (Select all	that apply and attach	calculat	ions or specific	justification for the	volumes provided below)
☐ Produced Water	3 P	Volume Released (bbls)			Volume Recov		
		Volume Released (bbls)				Volume Recov	
		Is the concentration of dissolved chloride in the produced water >10,000 mg/l?		in the	Yes No		
☐ Condensate		Volume Released (bbls)			Volume Recov	ered (bbls)	
☐ Natural Gas	Volume Released (Mcf)			Volume Recov	ered (Mcf)		
Other (describe) Volume/Weight Released (provide units)			Volume/Weigh	nt Recovered (provide units)			

Cause of Release:

Due to a back pressure regulator failure the heater treater spilled over into the flare line causing a small flare fire. The fire was self extinguished due to low volume and lack of fuel. All equipment has been repaired and is back in service. Site will be remediated to state standards. Volumes were justified by production volume monitoring systems.

Form	C-141
Page 2	

Incident ID	nAPP213233958
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? Fire on location
⊠ Yes □ No	
If YES, was immediate n Montgomery Floyd email	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? led OCDOnline & Mike Bratcher on 11-19-21 at 11:00am CST.
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The source of the rele	ase has been stopped.
The impacted area ha	s been secured to protect human health and the environment.
(managed)	ve been contained via the use of berms or dikes, absorbent pads, or other containment devices.
	coverable materials have been removed and managed appropriately.
	above have not been undertaken, explain why:
Per 10 15 20 9 D (4) NIM	AC 4b
has begun, please attach a	AC the responsible party may commence remediation immediately after discovery of a release. If remediation in narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred that area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
public health or the environmentalled to adequately investigated	mation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and equired to report and/or file certain release notifications and perform corrective actions for releases which may endanger tent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have te and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name: Montgome	Y Floyd Title: Sr. Environmental Analyst
Signature:	Date: 11-24-21
email: Montgomery.floyd(©cdevinc.com Telephone: 432-315-0123
Revised by	Nikki Mishler 2/16/22 philu Mobile
OCD Only	
Received by:	Date:

Form C-141
Page 3

Incident ID	nAPP2132339581
District RP	
Facility ID	
Application ID	

Released to Imaging: 2/18/2022 10:27:11 AM

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☒ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☑ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☒ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- ☐ Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps

Incident ID	nAPP2132339581
District RP	
Facility ID	
Application ID	

regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name: Nikki Mishler Signature: Mikki Mishler & Codevine com	Title: Sr. Environment al Representative Date: 2 16 22 Telephone: 432-634-8722
OCD Only	
Received by:	Date:

Form	C-141
Page 5	

Incident ID	nAPP2132339581
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated.
Contamination does not cause an imminent risk to human health, the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
Printed Name: Nikki Mishler Title: Sr. Environantal Regesentative
Signature: Date: 2 16 202
email: Nikki Mishlere Colevine com Telephone: 432-634-8722
OCD Only
Received by: Date:
Approved Approved with Attached Conditions of Approval Denied Deferral Approved
Signature: Date:

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 82199

CONDITIONS

Operator:	OGRID:
CENTENNIAL RESOURCE PRODUCTION, LLC	372165
1001 17th Street, Suite 1800	Action Number:
Denver, CO 80202	82199
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Crea	ted By		Condition Date
che	ensley	Final Composite samples will follow the OCD guidelines for closure criteria and test for all constituentes.	2/18/2022
che	ensley	Closure report due 04/18/2022	2/18/2022