

SITE INFORMATION

Closure Report ZHU 2331 1-6 Incident ID NAPP2220044012 Eddy County, New Mexico Unit K Sec 24 T26S R31E 32.026666°, -103.733611°

Diesel Release

Point of Release: Fuel spill on the line pump due to vandalism/theft

Release Date: 07/11/2022

Volume Released: 1.137 barrels of Diesel Fuel Volume Recovered: 0 barrels of Diesel Fuel

CARMONA RESOURCES

Prepared for: ConocoPhillips, 600 West Illinois Avenue, Midland, Texas 79701

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 415 Midland, Texas 79701

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURE 3

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC		

APPENDICES

SAMPLE LOCATION FIGURE 4 EXCAVATION

APPENDIX A	TABLES
APPENDIX B	PHOTOS
APPENDIX C	INITIAL AND FINAL C-141 / NMOCD CORRESPONDENCE
APPENDIX D	SITE CHARACTERIZATION AND GROUNDWATER
APPENDIX E	LABORATORY REPORTS

August 10, 2022

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report

ZHU 2331 1-6 ConocoPhillips

Incident ID NAPP2220044012

Site Location: Unit K, S24, T26S, R31E (Lat 32.026666°, Long -103.733611°)

Eddy County, New Mexico

Mr. Bratcher:

On behalf of ConocoPhillips, (COP), Carmona Resources, LLC has prepared this letter to document site activities for ZHU 2331 1-6. The site is located at 32.026666°, -103.733611° within Unit K, S24, T26S, R31E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on July 11, 2022, due to vandalism and theft on the line pump. It resulted in the release of approximately one point one three seven (1.137) barrels of diesel fuel, and zero (0) barrels of diesel fuel were recovered. See figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water source is located within a 0.50-mile radius of the location. The closest well is approximately 2.00 miles Southeast of the site in S31, T26S, R32E and was drilled in 1946. The well has a reported depth to groundwater of 295' feet below ground surface (ft bgs). A copy of the associated Point of Diversion Summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

On July 14, 2022, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of five (5) sample points were advanced to depths ranging from the surface – 1' bgs inside and surrounding the release area to evaluate the vertical and horizontal extent. See Figure 3 for the soil sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E. Refer to Table 1.

5.0 Remediation Activities

Carmona Resources personnel were onsite on August 3, 2022, to supervise the remediation activities and collect confirmation samples. The area was excavated to 1.0' to remove all impacted soils. A total of one (1) confirmation sample was collected (CS-1), and four (4) sidewall samples (SW-1 through SW-4) were collected every 200 square feet to ensure proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chainof-custody documentation are included in Appendix E. The results of the sampling are summarized in Table 2. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

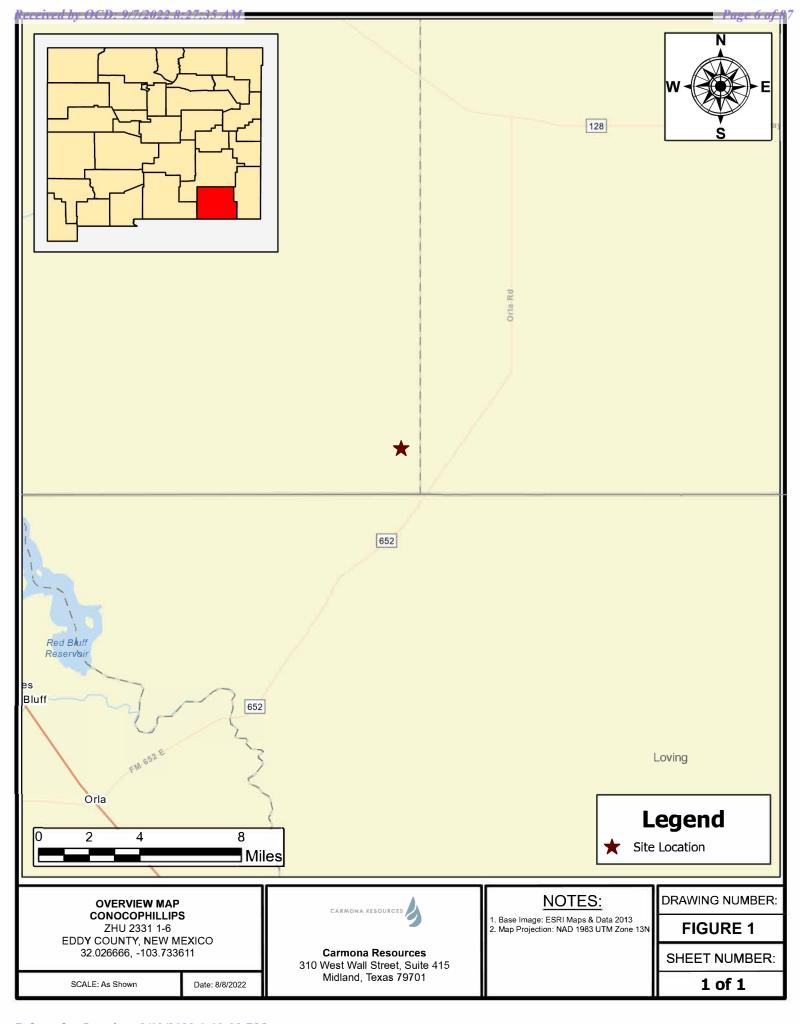
Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 20 cubic yards of material were excavated and transported offsite for proper disposal.

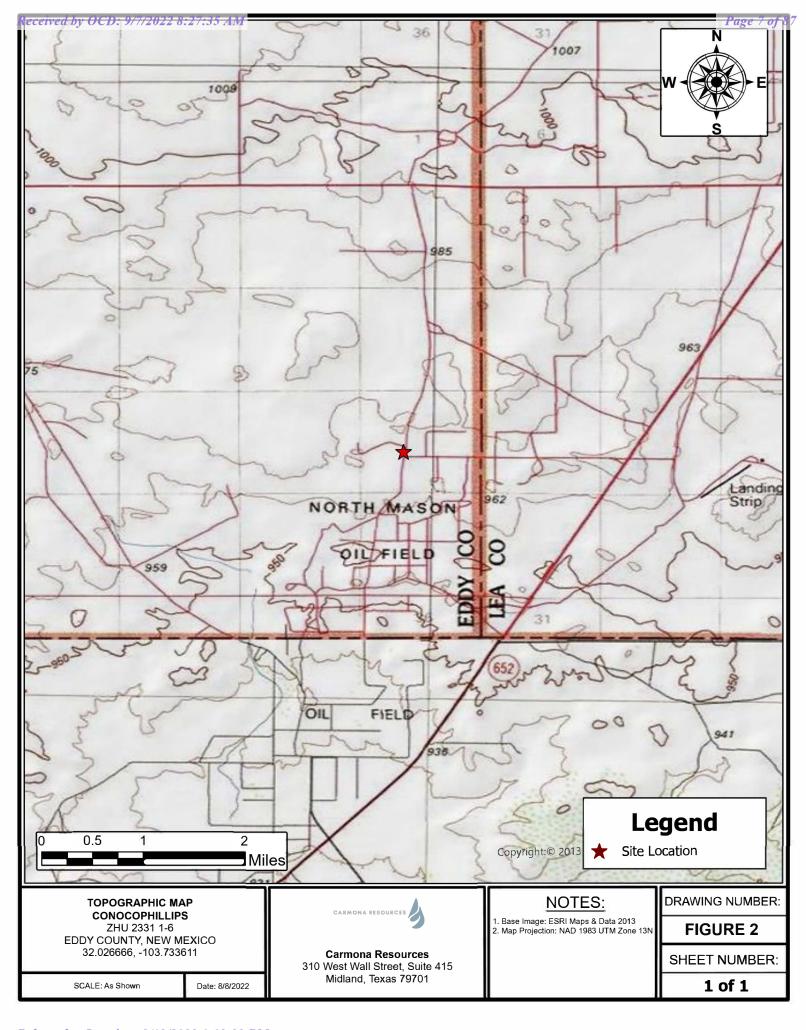
6.0 Conclusions

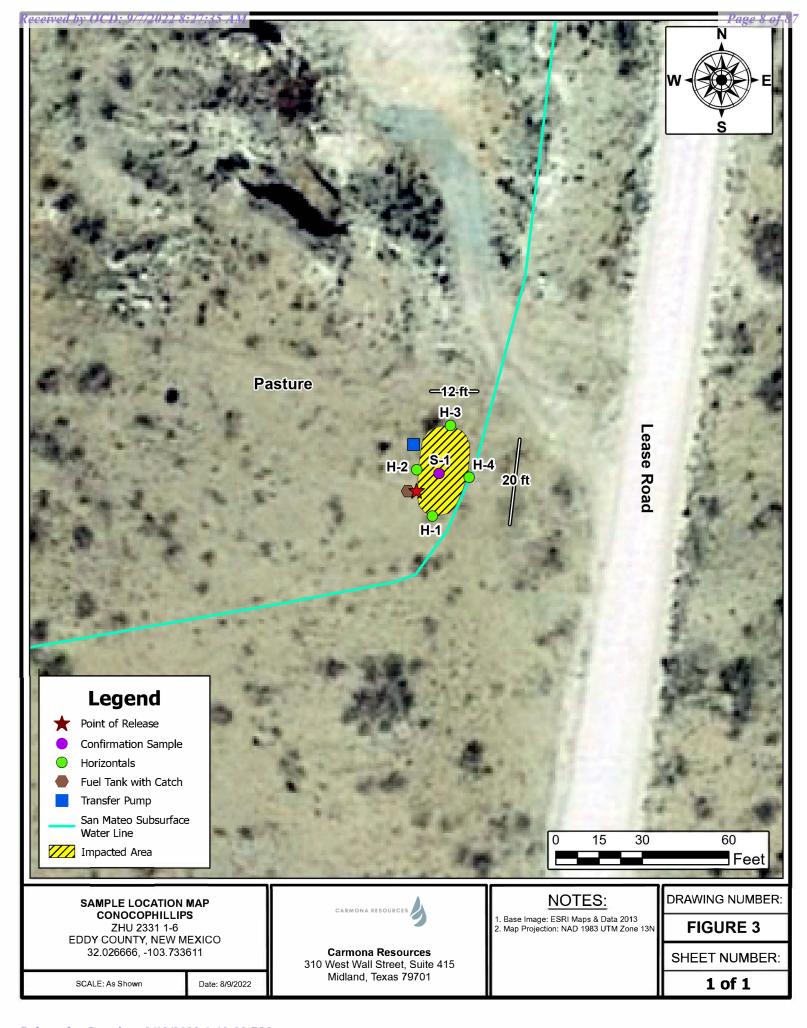
Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COP formally requests closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

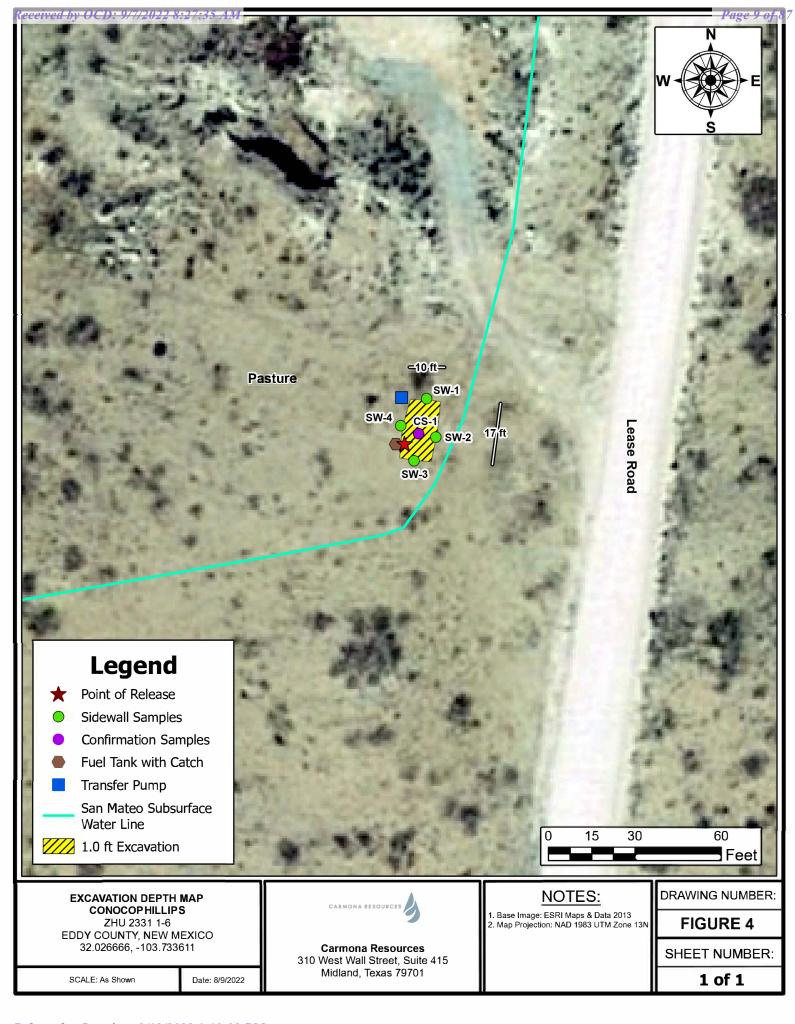
Sincerely,

Carmona Resources, LLC


Conner Moehring


Sr Project Manager


Ashton Thielke Sr Project Manager


FIGURES

CARMONA RESOURCES

APPENDIX A

Table 1 COP ZHU 2331 1-6 Eddy County, New Mexico

0 1 10	D 1	5 (1 (1)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (in)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	7/14/2022	0-3"	1,990	19,100	<250	21,100	<0.0402	1.17	4.43	19.3	26.0	69.1
S-1	"	6"	1,770	21,500	<250	23,300	<0.0401	0.416	1.73	7.25	9.40	48.2
	"	12"	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	289
H-1	7/14/2022	0-6"	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	63.2
H-2	7/14/2022	0-6"	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	864
H-3	7/14/2022	0-6"	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	139
H-4	7/14/2022	0-6"	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	149
	ry Criteria ^A					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

in-inches

(S) Sample Point

(H) Horizontal

Removed

Received by OCD: 9/7/2022 8:27:35 AM

Table 2 COP ZHU 2331 1-6 Eddy County, New Mexico

0 1 10				TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	8/3/2022	1'	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	9.08
SW-1	8/3/2022	1'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	7.07
SW-2	8/3/2022	1'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	10.9
SW-3	8/3/2022	1'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	10.2
SW-4	8/3/2022	1'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	11.3
Regulato	ry Criteria ^A					100 mg/kg	10 mg/kg	-	•	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(CS) Confirmation Sample

(SW) Sidewall Sample

APPENDIX B

CARMONA RESOURCES

PHOTOGRAPHIC LOG

ConocoPhillips

Photograph No. 1

Facility: ZHU 2331 1-6

County: Eddy County, New Mexico

Description:

View East, area of concern.

Photograph No. 2

Facility: ZHU 2331 1-6

County: Eddy County, New Mexico

Description:

View North, area of concern.

Photograph No. 3

Facility: ZHU 2331 1-6

County: Eddy County, New Mexico

Description:

View Northwest, area of confirmation sample (1).

PHOTOGRAPHIC LOG

ConocoPhillips

Photograph No. 4

Facility: ZHU 2331 1-6

County: Eddy County, New Mexico

Description:

View Southwest, area of confirmation sample (1).

Photograph No. 5

Facility: ZHU 2331 1-6

County: Eddy County, New Mexico

Description:

View Northeast, backfilled area.

Photograph No. 6

Facility: ZHU 2331 1-6

County: Eddy County, New Mexico

Description:

View Southwest, backfilled area.

APPENDIX C

CARMONA RESOURCES

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NAPP2220044012
District RP	
Facility ID	fAPP2129428702
Application ID	

Release Notification

Responsible Party

Responsible Party	ConocoPhillips	OGRID	217817			
Contact Name	Justin Carlile	Contact Telephone	(432) 202-4112			
Contact email	Justin.Carlile@ConocoPhillips.com Incident # (assigned by OCD) NAPP2220044012					
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701					

Location of Release Source									
Latitude	32.026	6666			Longitude	103.73	33611		
			(NAD 83 in de	cimal de	grees to 5 decimal pla	ces)			
Site Name		ZHU 2331 1	- 6		Site Type	Tank	Battery		
Date Release	Discovered	July 11, 202	22		API# (if applicable	2)			
Unit Letter	Section	Township	Range		County				
K	24	26S	31E		Eddy				
Surface Owne	r: State	■ Federal □ Tr	ibal Private (A	Name:)	

Nature and Volume of Release

Material	(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the	Yes No
	produced water >10,000 mg/l?	
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
☐ Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Diesel	1.137 bbls	0 bbls
~ 05.1		

Cause of Release

The release was caused by a fuel spill on the line pump due to vandalism/theft.

A vacuum truck was dispatched to remove all freestanding fluids.

Evaluation will be made at the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Page 18 2687

Incident ID	NAPP2220044012
District RP	
Facility ID	fAPP2129428702
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? ☐ Yes ■ No	If YES, for what reason(s) does the respo	nsible party consider this a major release?
· · · · · · · · · · · · · · · · · · ·	otice given to the OCD? By whom? To was given by Justin Carlile via e-m	nom? When and by what means (phone, email, etc)? ail July, 12 2022 at 9:32 pm to
	m.us and blm_nm_cfo_spill@bln	•
	Initial R	esponse
The responsible	party must undertake the following actions immediate	y unless they could create a safety hazard that would result in injury
■ The source of the rele	ease has been stopped.	
■ The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	we been contained via the use of berms or	likes, absorbent pads, or other containment devices.
■ All free liquids and re	ecoverable materials have been removed an	d managed appropriately.
Per 19.15.29.8 B. (4) NM	AC the responsible party may commence i	emediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial	efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investig	required to report and/or file certain release not ment. The acceptance of a C-141 report by the of ate and remediate contamination that pose a through	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name. Brittar	ny N. Esparza	Title: Environmental Technician
Signature:	ny N. Esparza	Date: 7/19/2022
email: Brittany.Espar	za@ConocoPhillips.com	Date: 7/19/2022 Telephone: (432) 221-0398
OCD Only Jocelyn H Received by:	Harimon	07/19/2022 Date:

Bassined by OCD.	0/7/20	0.200	7.225.403.001.0		L	48 Spill Vo	olume Estimate	e Form	DaBa 40 2 6 0 7
Received by OCD:	9/1/202	1 acmy	Name & Number:	ZHU 2331 1-6				NAPE	Page 19 of 87 —
			Asset Area:	Zia Hils					
	Releas	e Disco	very Date & Time:	7/11/2022 11:00					
			Release Type:	Other					
Provide ar	ny know	n details	s about the event:	Deisel fuel from ove	erhead fuel tank				
			.a.		Spill	Calculation	- On Pad Surface	e Pool Spill	la .
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area	Estimated <u>Pool</u> Area (sq. ft.)	Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)
Rectangle A	17.0	9.0	2.00	4	153.000	0.042	1.135	0.002	1.137
Rectangle B					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle C					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle D					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle E					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle F					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle G					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle H					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle I					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Released to Imagin	no: 9/1	2/2022	1:13:32 PM		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	8			80	59. Y.S.		de (i	Total Volume Release:	1.137

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 126847

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	126847
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jharimon	None	7/19/2022

Received by OCD: 9/7/2022 8:27:35 AM State of New Mexico
Page 3 Oil Conservation Division

	Page 21 of 87
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)	
Did this release impact groundwater or surface water?	☐ Yes ☐ No	
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No	
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No	
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No	
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No	
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No	
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No	
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No	
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No	
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No	
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No	
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.		
Characterization Report Checklist: Each of the following items must be included in the report.		
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody		

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/7/2022 8:27:35 AM State of New Mexico
Page 4 Oil Conservation Division

	Page 22 of 87
Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Printed Name:	Title:	
Signature: Carlile email:	Date:	
email:	Telephone:	
OCD Only		
Received by: Jocelyn Harimon	Date: 09/07/2022	

Received by OCD: 9/7/202. Form C-141	2 8:27:35 AM State of New Mexico
Page 6	Oil Conservation Division

	Page 23 of 87
Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.			
☐ A scaled site and sampling diagram as described in 19.15.29.1	☐ A scaled site and sampling diagram as described in 19.15.29.11 NMAC		
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)			
☐ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)		
☐ Description of remediation activities			
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and replaced human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the conformation accordance with 19.15.29.13 NMAC including notification to the Conformation of the Conformation in the Conformation of the Conformation in	ntions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in DCD when reclamation and re-vegetation are complete. Title:		
Signature: Qustin Carlile email:	Date:		
email:	Telephone:		
OCD Only			
Received by: Jocelyn Harimon	Date:09/07/2022		
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.			
Closure Approved by: Sennifer Nobili Company of the company of	Date: 09/12/2022		
Printed Name: Jennifer Nobui	Title: Environmental Specialist A		

From: Mike Carmona

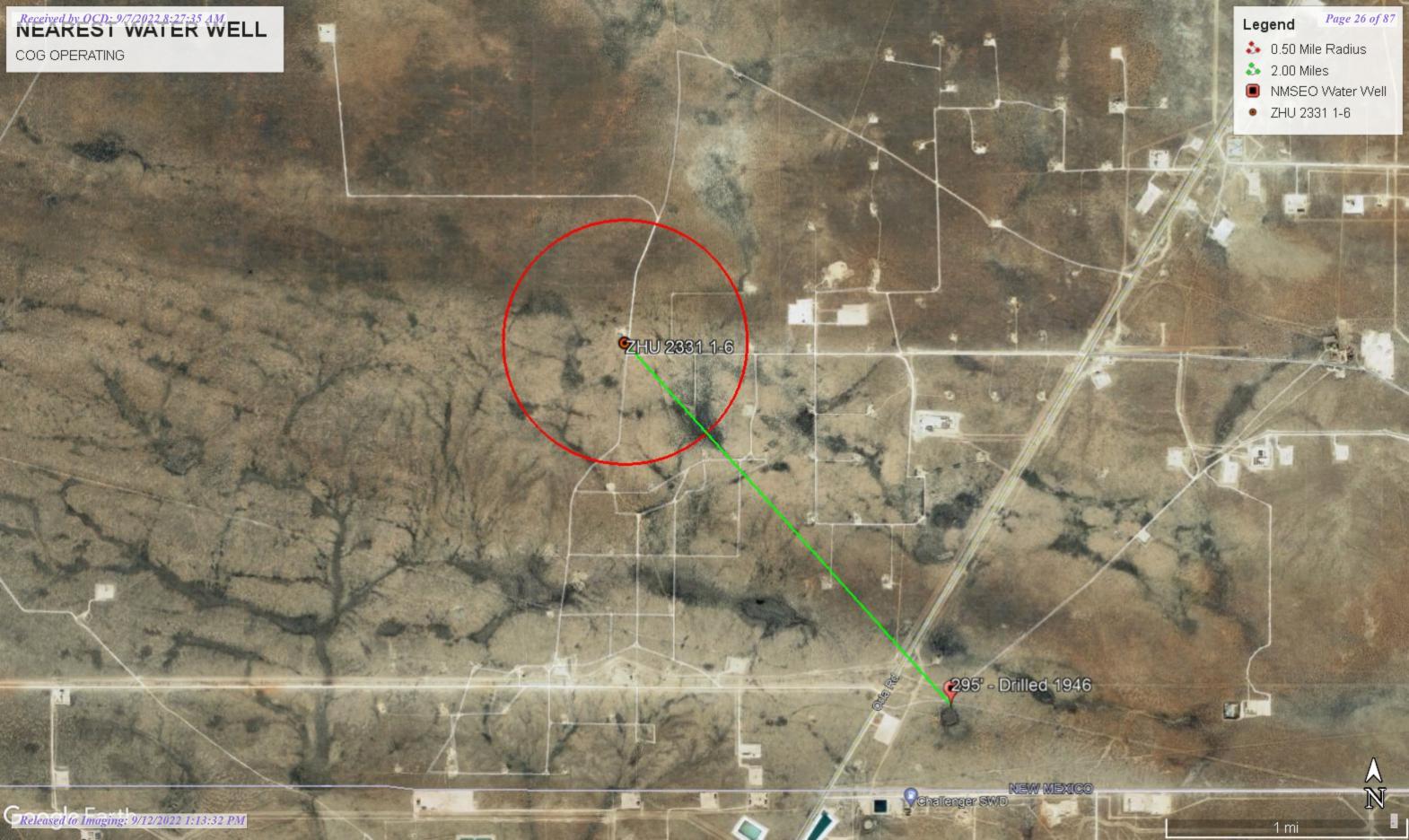
Sent: Monday, August 1, 2022 9:02 AM

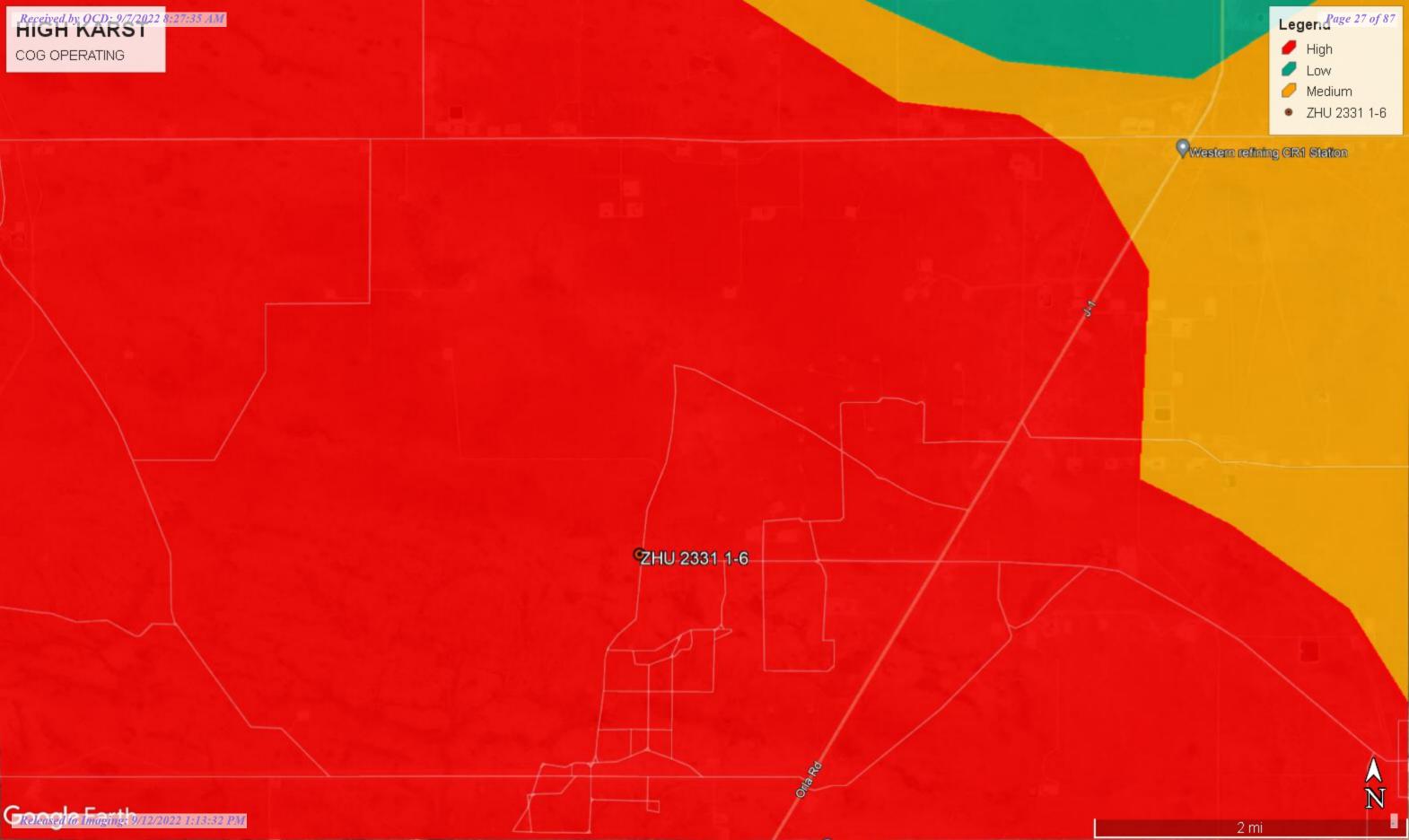
To: OCD.Enviro@state.nm.us

Cc: Carlile, Justin; Conner Moehring; Ashton Thielke **Subject:** COG ZHU 2331-1 Release Sampling Notification

Good Morning,

On behalf of COG, Carmona Resources will be collecting confirmation samples at the below-referenced site for the at-risk remediation on 08/03/22 around 9:00 a.m. Mountain Time. Please let me know if you have any questions.


COG ZHU 2331-1 Release Sec 24 T26S R31E Unit K 32.026764, -103.733837 Eddy County, New Mexico


Mike J. Carmona 310 West Wall Street, Suite 415 Midland TX, 79701 M: 432-813-1992 Mcarmona@carmonaresources.com

APPENDIX D

CARMONA RESOURCES

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

2 1 2 31 26S 32E

(NAD83 UTM in meters)

(In feet)

Depth Depth Water

POD Sub-

Sub- Q Q Q Q Code basin County 64 16 4 Sec Tws Rng

X Y 621742 3541730*

_____L

Distance Well Water Column 3220 300 295 5

Average Depth to Water: 295 feet

Minimum Depth: 295 feet

Maximum Depth: 295 feet

Record Count: 1

POD Number

C 02274

UTMNAD83 Radius Search (in meters):

Easting (X): 619565.4 **Northing (Y):** 3544102.97 **Radius:** 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 1 of 1

WATER COLUMN/ AVERAGE DEPTH TO WATER

7/14/22 2:16 PM

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**

Q64 Q16 Q4 Sec Tws Rng 31 26S 32E

X

621742 3541730*

Driller License:

C 02274

Driller Company:

Driller Name:

Drill Finish Date:

12/31/1946 **Plug Date:**

Drill Start Date: Log File Date:

PCW Rcv Date:

Source:

Pump Type:

Pipe Discharge Size:

Estimated Yield: 6 GPM

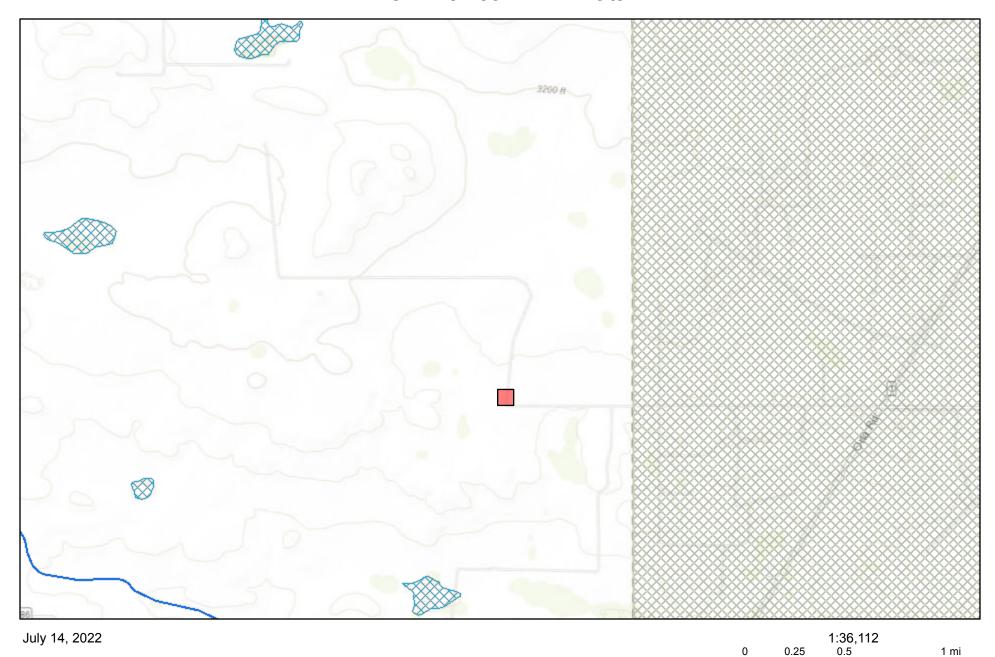
Casing Size:

6.38

UNKNOWN

Depth Well: 300 feet Depth Water:

295 feet


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

7/14/22 2:16 PM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

0.4

8.0

1.6 km

APPENDIX E

CARMONA RESOURCES

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-16938-1

Laboratory Sample Delivery Group: Eddy Co, NM

Client Project/Site: ZHU 2331-1 Release

For:

Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701

Attn: Clint Merritt

RAMER

7/20/2022 11:28:02 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Authorized for release by:

results through EOL **Have a Question?**

------ LINKS ------

Review your project

Visit us at:

www.eurofinsus.com/Env Released to Imaging: 9/12/2022 1:13:32 PM signature is intended to be the legally binding equivalent of a traditionally handwritten

This report has been electronically signed and authorized by the signatory. Electronic

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Carmona Resources
Laboratory Job ID: 880-16938-1
Project/Site: ZHU 2331-1 Release
SDG: Eddy Co, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	20
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Carmona Resources

Job ID: 880-16938-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

2

Qualifiers

00		10	
GC	· V	U	А

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

4

GC Semi VOA

Qualifier

4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
E	Result exceeded calibration range.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

8

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

4 4

Glossary Abbreviation

1:

%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DED	Duplicate Error Batio (no

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
POI Practical Quantitation

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Eurofins Midland

Definitions/Glossary

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources

Job ID: 880-16938-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Job ID: 880-16938-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-16938-1

Receipt

The samples were received on 7/14/2022 3:07 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.7°C

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: S-1 (0-3") (880-16938-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: S-1 (0-3") (880-16938-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The following sample was diluted due to the nature of the sample matrix OR abundance of target analytes OR abundance of non-target analytes: S-1 (0-3") (880-16938-1). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with preparation batch 880-29771 and analytical batch 880-29692 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: S-1 (6") (880-16938-2), (880-16938-A-1-E MS) and (880-16938-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29855 and 880-29855 and analytical batch 880-29880 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

7

10

12

13

1 4

Client: Carmona Resources

Job ID: 880-16938-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Client Sample ID: S-1 (0-3")

Date Collected: 07/14/22 00:00 Date Received: 07/14/22 15:07 Lab Sample ID: 880-16938-1

Matrix: Solid

-
-

6

8

10

12

13

Method: 8021B - Volatile Organic	Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0402	U	0.0402		mg/Kg		07/14/22 16:20	07/15/22 16:29	20
Toluene	1.17		0.0402		mg/Kg		07/14/22 16:20	07/15/22 16:29	20
Ethylbenzene	4.43		0.0402		mg/Kg		07/14/22 16:20	07/15/22 16:29	20
m-Xylene & p-Xylene	14.3		0.0805		mg/Kg		07/14/22 16:20	07/15/22 16:29	20
o-Xylene	6.10		0.994		mg/Kg		07/18/22 15:14	07/19/22 22:07	500
Xylenes, Total	19.3		1.99		mg/Kg		07/18/22 15:14	07/19/22 22:07	500
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	141	S1+	70 - 130				07/14/22 16:20	07/15/22 16:29	20
1,4-Difluorobenzene (Surr)	66	S1-	70 - 130				07/14/22 16:20	07/15/22 16:29	20
- Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	26.0		0.0805		mg/Kg			07/18/22 13:45	1
Total TPH	21100		250		mg/Kg			07/15/22 10:13	1
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
- Method: 8015B NM - Diesel Rang	ne Organics (D	PO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	1990	F1 F2	250		mg/Kg		07/14/22 16:33	07/15/22 07:16	5
(GRO)-C6-C10									
Diesel Range Organics (Over	19100		250		mg/Kg		07/14/22 16:33	07/15/22 07:16	5
C10-C28)	-050		050		0.4		07/44/00 40 00	07/45/00 07 40	_
OII Range Organics (Over C28-C36)	<250	U	250		mg/Kg		07/14/22 16:33	07/15/22 07:16	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				07/14/22 16:33	07/15/22 07:16	5
o-Terphenyl	120		70 - 130				07/14/22 16:33	07/15/22 07:16	_
o-Terphenyi 									5
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							5
		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	5 Dil Fac

Client Sample ID: S-1 (6")

Date Collected: 07/14/22 00:00

Lab Sample ID: 880-16938-2

Matrix: Solid

Date Received: 07/14/22 15:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0401	U	0.0401		mg/Kg		07/14/22 16:20	07/15/22 16:49	20
Toluene	0.416		0.0401		mg/Kg		07/14/22 16:20	07/15/22 16:49	20
Ethylbenzene	1.73		0.0401		mg/Kg		07/14/22 16:20	07/15/22 16:49	20
m-Xylene & p-Xylene	4.40		0.0802		mg/Kg		07/14/22 16:20	07/15/22 16:49	20
o-Xylene	2.85		0.0401		mg/Kg		07/14/22 16:20	07/15/22 16:49	20
Xylenes, Total	7.25		0.0802		mg/Kg		07/14/22 16:20	07/15/22 16:49	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				07/14/22 16:20	07/15/22 16:49	20
1,4-Difluorobenzene (Surr)	78		70 - 130				07/14/22 16:20	07/15/22 16:49	20

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-16938-1

SDG: Eddy Co, NM

Client Sample ID: S-1 (6")

Lab Sample ID: 880-16938-2

Date Collected: 07/14/22 00:00 Matrix: Solid Date Received: 07/14/22 15:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	9.40		0.0802		mg/Kg			07/18/22 13:45	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	23300		250		mg/Kg			07/15/22 10:13	1
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	1770		250		mg/Kg		07/14/22 16:33	07/15/22 07:37	5
(GRO)-C6-C10									
Diesel Range Organics (Over	21500		250		mg/Kg		07/14/22 16:33	07/15/22 07:37	5
C10-C28)									
OII Range Organics (Over C28-C36)	<250	U	250		mg/Kg		07/14/22 16:33	07/15/22 07:37	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				07/14/22 16:33	07/15/22 07:37	5
o-Terphenyl	143	S1+	70 - 130				07/14/22 16:33	07/15/22 07:37	5
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	48.2		5.00		mg/Kg			07/16/22 09:05	1

Client Sample ID: S-1 (1') Lab Sample ID: 880-16938-3

Date Collected: 07/14/22 00:00 **Matrix: Solid** Date Received: 07/14/22 15:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:07	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:07	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:07	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/14/22 16:20	07/15/22 15:07	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:07	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/14/22 16:20	07/15/22 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				07/14/22 16:20	07/15/22 15:07	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/14/22 16:20	07/15/22 15:07	1
Method: Total BTEX - Total BT		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total BT									
Method: Total BTEX - Total BT				MDL	Unit mg/Kg	D	Prepared	Analyzed 07/18/22 13:45	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX	<0.00399	U		MDL		<u>D</u>	Prepared		Dil Fac
Method: Total BTEX - Total BT Analyte	Result <0.00399	U		MDL MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran	Result <0.00399	U O) (GC) Qualifier	0.00399		mg/Kg		<u> </u>	07/18/22 13:45	1 Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	rge Organics (DR Result <50.0	U O) (GC) Qualifier U	0.00399		mg/Kg		<u> </u>	07/18/22 13:45 Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ran	rige Organics (DR) Result <50.0 Ange Organics (DR) Result <50.0	U O) (GC) Qualifier U	0.00399		mg/Kg Unit mg/Kg		<u> </u>	07/18/22 13:45 Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH	rige Organics (DR) Result <50.0 Ange Organics (DR) Result <50.0	O) (GC) Qualifier U RO) (GC) Qualifier	0.00399 RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	07/18/22 13:45 Analyzed 07/15/22 10:13	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte	result Result C0.00399 Result C50.0 Result C50.0 Result Result C50.0 Result C50.0 C50.0	U O) (GC) Qualifier U RO) (GC) Qualifier U	0.00399 RL 50.0 RL 50.0	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared 07/14/22 16:33	07/18/22 13:45 Analyzed 07/15/22 10:13 Analyzed 07/14/22 22:20	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte Gasoline Range Organics	result <0.00399 age Organics (DR Result <50.0 ange Organics (Diameter Result	U O) (GC) Qualifier U RO) (GC) Qualifier U	0.00399 RL 50.0	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	07/18/22 13:45 Analyzed 07/15/22 10:13 Analyzed	1 Dil Fac

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Client Sample ID: S-1 (1')

Lab Sample ID: 880-16938-3 Date Collected: 07/14/22 00:00 Matrix: Solid

Date Received: 07/14/22 15:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 22:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				07/14/22 16:33	07/14/22 22:20	1
o-Terphenyl	101		70 - 130				07/14/22 16:33	07/14/22 22:20	1

Method: 300.0 - Anions, Ion Chroma	tography - 🤄	Soluble						
Analyte	Result	Qualifier	RL	MDL Unit	. D	Prepared	Analyzed	Dil Fac
Chloride	289		4.95	mg/	Kg		07/16/22 09:13	1

Client Sample ID: H-1 (0-6")

Date Collected: 07/14/22 00:00 Matrix: Solid

Date Received: 07/14/22 15:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		07/14/22 16:20	07/15/22 15:27	
Toluene	< 0.00199	U	0.00199		mg/Kg		07/14/22 16:20	07/15/22 15:27	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		07/14/22 16:20	07/15/22 15:27	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/14/22 16:20	07/15/22 15:27	
o-Xylene	<0.00199	U	0.00199		mg/Kg		07/14/22 16:20	07/15/22 15:27	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/14/22 16:20	07/15/22 15:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	110		70 - 130				07/14/22 16:20	07/15/22 15:27	
1,4-Difluorobenzene (Surr)	97		70 - 130				07/14/22 16:20	07/15/22 15:27	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/18/22 13:45	•
Method: 8015 NM - Diesel Range	•	, , ,				_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			07/15/22 10:13	•
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 22:41	•
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 22:41	•
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 22:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	90		70 - 130				07/14/22 16:33	07/14/22 22:41	
o-Terphenyl	104		70 - 130				07/14/22 16:33	07/14/22 22:41	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Allalyto	63.2	- Guuiiioi	5.01		mg/Kg		Порагоа	Allalyzea	Diria

Eurofins Midland

Lab Sample ID: 880-16938-4

Job ID: 880-16938-1 SDG: Eddy Co, NM

Client: Carmona Resources Project/Site: ZHU 2331-1 Release

Client Sample ID: H-2 (0-6")

Date Collected: 07/14/22 00:00 Date Received: 07/14/22 15:07 Lab Sample ID: 880-16938-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:48	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:48	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:48	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/14/22 16:20	07/15/22 15:48	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 15:48	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/14/22 16:20	07/15/22 15:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				07/14/22 16:20	07/15/22 15:48	1
1,4-Difluorobenzene (Surr)	93		70 - 130				07/14/22 16:20	07/15/22 15:48	1
- Method: Total BTEX - Total B1	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/18/22 13:45	

Method: 8015 NM - Diesel Range Organics (DRO) (GC)AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal TPH<50.0</td>U50.0mg/Kg07/15/22 10:131

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 23:02	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 23:02	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 23:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130				07/14/22 16:33	07/14/22 23:02	1
o-Terphenyl	106		70 - 130				07/14/22 16:33	07/14/22 23:02	1

Method: 300.0 - Anions, Ion Chrom	atography - S	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	864		4.99		mg/Kg			07/16/22 09:29	1

Client Sample ID: H-3 (0-6")

Date Collected: 07/14/22 00:00

Lab Sample ID: 880-16938-6

Matrix: Solid

Date Received: 07/14/22 15:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 16:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 16:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 16:08	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 16:20	07/15/22 16:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 16:08	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 16:20	07/15/22 16:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				07/14/22 16:20	07/15/22 16:08	1
1.4-Difluorobenzene (Surr)	99		70 - 130				07/14/22 16:20	07/15/22 16:08	1

Eurofins Midland

3

5

8

10

12

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-16938-1 SDG: Eddy Co, NM

07/14/22 16:33

07/14/22 23:23

07/16/22 09:53

Client Sample ID: H-3 (0-6") Date Collected: 07/14/22 00:00

Lab Sample ID: 880-16938-6 **Matrix: Solid**

Date Received: 07/14/22 15:07

1-Chlorooctane

Method: Total BTEX - Total BTEX Calculation									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			07/18/22 13:45	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							

Result Qualifier RLMDL Unit Analyzed Dil Fac Analyte D Prepared Total TPH <50.0 U 50.0 07/15/22 10:13 mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit Analyte D Prepared Dil Fac Analyzed <50.0 U 50.0 07/14/22 16:33 07/14/22 23:23 Gasoline Range Organics mg/Kg (GRO)-C6-C10 50.0 Diesel Range Organics (Over <50.0 U mg/Kg 07/14/22 16:33 07/14/22 23:23 C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 07/14/22 16:33 07/14/22 23:23 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac

o-Terphenyl 114 70 - 130 07/14/22 16:33 07/14/22 23:23 Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac

70 - 130

Chloride 139

Released to Imaging: 9/12/2022 1:13:32 PM

99

Client Sample ID: H-4 (0-6") Lab Sample ID: 880-16938-7 Date Collected: 07/14/22 00:00 **Matrix: Solid**

4.97

mg/Kg

Date Received: 07/14/22 15:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 20:02	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 20:02	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 20:02	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		07/14/22 16:20	07/15/22 20:02	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 20:02	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		07/14/22 16:20	07/15/22 20:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				07/14/22 16:20	07/15/22 20:02	1
1,4-Difluorobenzene (Surr)	97		70 - 130				07/14/22 16:20	07/15/22 20:02	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	,	mg/Kg			07/18/22 13:45	1

	Method: 8015 NM - Diesel Range C	organics (DR	O) (GC)							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Į	Total TPH	<49.9	U	49.9		mg/Kg			07/15/22 10:13	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/14/22 16:33	07/14/22 23:44	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		07/14/22 16:33	07/14/22 23:44	1

Date Received: 07/14/22 15:07

Client Sample Results

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Client Sample ID: H-4 (0-6") Date Collected: 07/14/22 00:00

Lab Sample ID: 880-16938-7

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		07/14/22 16:33	07/14/22 23:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130			07/14/22 16:33	07/14/22 23:44	1
o-Terphenyl	108		70 - 130			07/14/22 16:33	07/14/22 23:44	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 149 4.96 07/16/22 10:00 mg/Kg

Surrogate Summary

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

Lab Sample ID	Client Sample ID	BFB1 (70-130)	DFBZ1 (70-130)	Percent Surrogate Recovery (Acceptance Limits)
880-16938-1	S-1 (0-3")	141 S1+	66 S1-	
880-16938-2	S-1 (6")	115	78	
880-16938-3	S-1 (1')	107	95	
880-16938-3 MS	S-1 (1')	108	94	
880-16938-3 MSD	S-1 (1')	104	99	
880-16938-4	H-1 (0-6")	110	97	
880-16938-5	H-2 (0-6")	107	93	
880-16938-6	H-3 (0-6")	104	99	
880-16938-7	H-4 (0-6")	107	97	
880-16984-A-1-C MS	Matrix Spike	113	104	
880-16984-A-1-D MSD	Matrix Spike Duplicate	111	88	
880-17011-A-1-D MS	Matrix Spike	122	79	
880-17011-A-1-E MSD	Matrix Spike Duplicate	124	80	
LCS 880-29770/1-A	Lab Control Sample	105	91	
LCS 880-29886/1-A	Lab Control Sample	100	103	
LCS 880-29987/1-A	Lab Control Sample	119	90	
LCSD 880-29770/2-A	Lab Control Sample Dup	116	101	
LCSD 880-29886/2-A	Lab Control Sample Dup	90	87	
LCSD 880-29987/2-A	Lab Control Sample Dup	127	92	
MB 880-29770/5-A	Method Blank	97	96	
MB 880-29886/5-A	Method Blank	79	88	
MB 880-29987/5-A	Method Blank	87	84	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-16938-1	S-1 (0-3")	95	120	
880-16938-1 MS	S-1 (0-3")	185 S1+	457 S1+	
880-16938-1 MSD	S-1 (0-3")	173 S1+	439 S1+	
880-16938-2	S-1 (6")	95	143 S1+	
880-16938-3	S-1 (1')	88	101	
880-16938-4	H-1 (0-6")	90	104	
880-16938-5	H-2 (0-6")	92	106	
880-16938-6	H-3 (0-6")	99	114	
880-16938-7	H-4 (0-6")	93	108	
LCS 880-29771/2-A	Lab Control Sample	98	115	
LCSD 880-29771/3-A	Lab Control Sample Dup	89	104	
	Method Blank	100	119	

Eurofins Midland

Released to Imaging: 9/12/2022 1:13:32 PM

OTPH = o-Terphenyl

Client: Carmona Resources Job ID: 880-16938-1 SDG: Eddy Co, NM Project/Site: ZHU 2331-1 Release

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-29770/5-A

Matrix: Solid Analysis Batch: 29845 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29770

	мв	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 14:37	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 14:37	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 14:37	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 16:20	07/15/22 14:37	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:20	07/15/22 14:37	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 16:20	07/15/22 14:37	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	70 - 130	07/14/22 16:20	07/15/22 14:37	1
1,4-Difluorobenzene (Surr)	96	70 - 130	07/14/22 16:20	07/15/22 14:37	1

Lab Sample ID: LCS 880-29770/1-A

Matrix: Solid

Analysis Batch: 29845

Client Sample	ID: Lab	Control Sample
----------------------	---------	-----------------------

Prep Type: Total/NA

Prep Batch: 29770

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08786		mg/Kg		88	70 - 130	
Toluene	0.100	0.08880		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.09443		mg/Kg		94	70 - 130	
m-Xylene & p-Xylene	0.200	0.1978		mg/Kg		99	70 - 130	
o-Xylene	0.100	0.1036		mg/Kg		104	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	105	70 - 130
1,4-Difluorobenzene (Surr)	91	70 - 130

Lab Sample ID: LCSD 880-29770/2-A

Matrix: Solid

Analysis Batch: 29845

Prep Type: Total/NA

Prep Batch: 29770

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09859		mg/Kg		99	70 - 130	12	35
Toluene	0.100	0.1026		mg/Kg		103	70 - 130	14	35
Ethylbenzene	0.100	0.1024		mg/Kg		102	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.2173		mg/Kg		109	70 - 130	9	35
o-Xylene	0.100	0.1163		mg/Kg		116	70 - 130	12	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	116	70 _ 130
1,4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: 880-16938-3 MS

Matrix: Solid

Analysis Batch: 29845

Client Sample ID: S-1 (1')

Prep Type: Total/NA

Prep Batch: 29770

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.100	0.08357		mg/Kg		83	70 - 130	
Toluene	<0.00200	U	0.100	0.08946		mg/Kg		89	70 - 130	

Eurofins Midland

Page 13 of 30

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid

Analysis Batch: 29845

Lab Sample ID: 880-16938-3 MS Client Sample ID: S-1 (1') Prep Type: Total/NA

Prep Batch: 29770

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D Ethylbenzene <0.00200 U 0.100 0.08724 87 70 - 130 mg/Kg m-Xylene & p-Xylene < 0.00399 0.201 0.1898 mg/Kg 94 70 - 130 <0.00200 U 0.100 0.1032 o-Xylene mg/Kg 103 70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 880-16938-3 MSD

Matrix: Solid

Analysis Batch: 29845

Client Sample ID: S-1 (1') Prep Type: Total/NA

Prep Batch: 29770

Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 0.0994 Benzene <0.00200 U 0.09057 mg/Kg 91 70 - 130 8 35 Toluene 0.0994 0.09063 35 <0.00200 mg/Kg 91 70 - 130 Ethylbenzene <0.00200 U 0.0994 0.09024 mg/Kg 91 70 - 130 3 35 <0.00399 U 0.199 0.1902 95 70 - 130 35 m-Xylene & p-Xylene mg/Kg 0 0.0994 <0.00200 U 0.1017 102 70 - 130 o-Xylene mg/Kg

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	104	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: MB 880-29886/5-A

Matrix: Solid

Analysis Batch: 29895

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29886

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000400	U	0.000400		mg/Kg		07/17/22 12:29	07/18/22 13:14	1
Toluene	<0.000400	U	0.000400		mg/Kg		07/17/22 12:29	07/18/22 13:14	1
Ethylbenzene	<0.000400	U	0.000400		mg/Kg		07/17/22 12:29	07/18/22 13:14	1
m-Xylene & p-Xylene	<0.000800	U	0.000800		mg/Kg		07/17/22 12:29	07/18/22 13:14	1
o-Xylene	<0.000400	U	0.000400		mg/Kg		07/17/22 12:29	07/18/22 13:14	1
Xylenes, Total	<0.000800	U	0.000800		mg/Kg		07/17/22 12:29	07/18/22 13:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130	07/17/22 12	:29 07/18/22 13:14	1
1,4-Difluorobenzene (Surr)	88		70 - 130	07/17/22 12	:29 07/18/22 13:14	1

Lab Sample ID: LCS 880-29886/1-A

Matrix: Solid

Analysis Batch: 29895

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29886

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.1136		mg/Kg		114	70 - 130
Toluene	0.100	0.09979		mg/Kg		100	70 - 130
Ethylbenzene	0.100	0.1044		mg/Kg		104	70 - 130
m-Xylene & p-Xylene	0.200	0.2057		mg/Kg		103	70 - 130

Client: Carmona Resources

Job ID: 880-16938-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-29886/1-A

Matrix: Solid

Analysis Batch: 29895

Spike LCS LCS

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 29886

Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits D 0.100 0 1101 110 70 - 130 o-Xylene mg/Kg

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 100
 70 - 130

 1,4-Difluorobenzene (Surr)
 103
 70 - 130

Lab Sample ID: LCSD 880-29886/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 29895 Prep Batch: 29886

Spike LCSD LCSD RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit D Benzene 0.100 0.08653 mg/Kg 87 70 - 130 27 35 Toluene 0.100 0.08126 mg/Kg 81 70 - 130 20 35 Ethylbenzene 0.100 0.08703 mg/Kg 87 70 - 130 18 35 m-Xylene & p-Xylene 0.200 0.1740 mg/Kg 87 70 - 130 17 35 0.100 0.09271 93 70 - 130 35 o-Xylene mg/Kg 17

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 90
 70 - 130

 1,4-Diffuorobenzene (Surr)
 87
 70 - 130

Lab Sample ID: 880-16984-A-1-C MS

Matrix: Solid

Client Sample ID: Matrix Spike
Prep Type: Total/NA

Analysis Batch: 29895

MS MS Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Benzene < 0.00199 U 0.101 0.09726 mg/Kg 96 70 - 130 Toluene <0.00199 U 0.101 0.1008 mg/Kg 100 70 - 130 Ethylbenzene <0.00199 U 0.101 0.1073 mg/Kg 106 70 - 130 m-Xylene & p-Xylene <0.00398 U 0.202 0.2096 mg/Kg 104 70 - 130 o-Xylene <0.00199 U 0.101 0.1131 mg/Kg 112 70 - 130

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 113
 70 - 130

 1,4-Difluorobenzene (Surr)
 104
 70 - 130

Lab Sample ID: 880-16984-A-1-D MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 29895 Prep Batch: 29886

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.101	0.09709	-	mg/Kg		97	70 - 130	0	35
Toluene	<0.00199	U	0.101	0.09884		mg/Kg		98	70 - 130	2	35
Ethylbenzene	<0.00199	U	0.101	0.1031		mg/Kg		102	70 - 130	4	35
m-Xylene & p-Xylene	<0.00398	U	0.201	0.2037		mg/Kg		101	70 - 130	3	35
o-Xylene	<0.00199	U	0.101	0.1081		mg/Kg		107	70 - 130	5	35

Eurofins Midland

Prep Batch: 29886

2

3

4

5

1

9

11

13

14

.....

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-16984-A-1-D MSD

Matrix: Solid

Analysis Batch: 29895

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 29886

MSD MSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 111 70 - 130 1,4-Difluorobenzene (Surr) 88 70 - 130

Lab Sample ID: MB 880-29987/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 30016

Prep Type: Total/NA

Prep Batch: 29987

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <0.000400 U 0.000400 07/18/22 15:14 07/19/22 11:53 Benzene mg/Kg Toluene <0.000400 U 0.000400 mg/Kg 07/18/22 15:14 07/19/22 11:53 <0.000400 U 0.000400 07/18/22 15:14 07/19/22 11:53 Ethylbenzene mg/Kg m-Xylene & p-Xylene <0.000800 U 0.000800 mg/Kg 07/18/22 15:14 07/19/22 11:53 mg/Kg o-Xylene <0.000400 U 0.000400 07/18/22 15:14 07/19/22 11:53 0.000800 Xylenes, Total <0.000800 U mg/Kg 07/18/22 15:14 07/19/22 11:53

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87	70 - 130	07/18/22 15:14	07/19/22 11:53	1
1,4-Difluorobenzene (Surr)	84	70 - 130	07/18/22 15:14	07/19/22 11:53	1

Lab Sample ID: LCS 880-29987/1-A

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29987

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1014		mg/Kg		101	70 - 130	
Toluene	0.100	0.1022		mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.1103		mg/Kg		110	70 - 130	
m-Xylene & p-Xylene	0.200	0.2162		mg/Kg		108	70 - 130	
o-Xylene	0.100	0.1134		mg/Kg		113	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	119	70 - 130
1,4-Difluorobenzene (Surr)	90	70 - 130

Lab Sample ID: LCSD 880-29987/2-A

Released to Imaging: 9/12/2022 1:13:32 PM

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29987

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1075		mg/Kg		108	70 - 130	6	35
Toluene	0.100	0.1084		mg/Kg		108	70 - 130	6	35
Ethylbenzene	0.100	0.1173		mg/Kg		117	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.2293		mg/Kg		115	70 - 130	6	35
o-Xylene	0.100	0.1192		mg/Kg		119	70 - 130	5	35

LCSD LCSD

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 70 - 130 127

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-29987/2-A

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29987

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1,4-Difluorobenzene (Surr) 92 70 - 130

Lab Sample ID: 880-17011-A-1-D MS

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 29987

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1	0.0998	0.05315	F1	mg/Kg		53	70 - 130	
Toluene	<0.00200	U F1	0.0998	0.05812	F1	mg/Kg		58	70 - 130	
Ethylbenzene	<0.00200	U F1	0.0998	0.06366	F1	mg/Kg		64	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F1	0.200	0.1212	F1	mg/Kg		61	70 - 130	
o-Xylene	<0.00200	U F1	0.0998	0.06845	F1	mg/Kg		69	70 - 130	
	***	***								

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	122	70 - 130
1,4-Difluorobenzene (Surr)	79	70 - 130

Lab Sample ID: 880-17011-A-1-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 30016

Prep Type: Total/NA

Prep Batch: 29987

Sam	ole Sample	Spike	MSD	MSD				%Rec		RPD
Analyte Res	ult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene <0.002	00 U F1	0.100	0.03929	F1	mg/Kg		39	70 - 130	30	35
Toluene <0.002	00 U F1	0.100	0.04309	F1	mg/Kg		43	70 - 130	30	35
Ethylbenzene <0.002	00 U F1	0.100	0.04664	F1	mg/Kg		47	70 - 130	31	35
m-Xylene & p-Xylene <0.003	99 U F1	0.200	0.08957	F1	mg/Kg		45	70 - 130	30	35
o-Xylene <0.002	00 U F1	0.100	0.05185	F1	mg/Kg		52	70 - 130	28	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	124		70 - 130
1,4-Difluorobenzene (Surr)	80		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-29771/1-A

Matrix: Solid

Analysis Batch: 29692

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29771

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 19:51	1
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 19:51	1
C10-C28)					5 5				
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/14/22 16:33	07/14/22 19:51	1

MD MD

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	100	70 - 130	07/14/22 16:33	07/14/22 19:51	1
o-Terphenyl	119	70 - 130	07/14/22 16:33	07/14/22 19:51	1

Eurofins Midland

Page 17 of 30

Prep Batch: 29771

Prep Type: Total/NA

Prep Batch: 29771

QC Sample Results

Client: Carmona Resources Job ID: 880-16938-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-29771/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 29692

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1036		mg/Kg		104	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	906.0		mg/Kg		91	70 - 130	
C10-C28)								

	LCS	LUS				
Surrogate	%Recovery	Qualifier	Limits			
1-Chlorooctane	98		70 - 130			
o-Terphenyl	115		70 - 130			

Lab Sample ID: LCSD 880-29771/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 29692

/														
		Spike	LCSD	LCSD				%Rec		RPD				
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit				
Gasoline Range Organics		1000	936.7		mg/Kg		94	70 - 130	10	20				
(GRO)-C6-C10														
Diesel Range Organics (Over		1000	858.2		mg/Kg		86	70 - 130	5	20				
040 000)														

C10-C28)

	LCSD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	89		70 - 130
o-Terphenyl	104		70 - 130

ICED ICED

Lab Sample ID: 880-16938-1 MS Client Sample ID: S-1 (0-3") Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 29692									Prep	Batch: 29771
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	1990	F1 F2	1000	1076000	E F1	mg/Kg		10740	70 - 130	
Diesel Range Organics (Over C10-C28)	19100		1000	21270	E 4	mg/Kg		218	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	185	S1+	70 - 130
o-Terphenyl	457	S1+	70 - 130

Lab Sample ID: 880-16938-1 MSD Client Sample ID: S-1 (0-3") Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 29692									Prep	Batch:	29771
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1990	F1 F2	999	2431	F1 F2	mg/Kg		44	70 - 130	199	20
Diesel Range Organics (Over C10-C28)	19100		999	21080	E 4	mg/Kg		199	70 - 130	1	20

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 173 S1+ 70 - 130

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-16938-1

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-16938-1 MSD

Matrix: Solid

Analysis Batch: 29692

Client Sample ID: S-1 (0-3")

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29771

Prep Type: Soluble

MSD MSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 439 S1+ 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29855/1-A

Matrix: Solid

Analysis Batch: 29880

MB MB

Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Chloride <5.00 5.00 07/16/22 08:18 U mg/Kg

Lab Sample ID: LCS 880-29855/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29880

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits Chloride 250 265.4 mg/Kg 106 90 - 110

Lab Sample ID: LCSD 880-29855/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29880

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 265.9 90 - 110 mg/Kg 106

Lab Sample ID: 880-16938-1 MS

Matrix: Solid

Analysis Batch: 29880

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	69 1	F1	249	350 4	F1	ma/Ka	_	113	90 - 110	

Lab Sample ID: 880-16938-1 MSD

Released to Imaging: 9/12/2022 1:13:32 PM

Matrix: Solid

Analysis Batch: 29880

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Qualifier Limits RPD Limit Result Unit %Rec Chloride 69.1 F1 249 353.9 F1 90 - 110 114 20 mg/Kg

Eurofins Midland

Prep Type: Soluble

Client Sample ID: S-1 (0-3")

Client Sample ID: S-1 (0-3")

Prep Type: Soluble

QC Association Summary

Client: Carmona Resources

Job ID: 880-16938-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

GC VOA

Prep Batch: 29770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Total/NA	Solid	5035	
880-16938-2	S-1 (6")	Total/NA	Solid	5035	
880-16938-3	S-1 (1')	Total/NA	Solid	5035	
880-16938-4	H-1 (0-6")	Total/NA	Solid	5035	
880-16938-5	H-2 (0-6")	Total/NA	Solid	5035	
880-16938-6	H-3 (0-6")	Total/NA	Solid	5035	
880-16938-7	H-4 (0-6")	Total/NA	Solid	5035	
MB 880-29770/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29770/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29770/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-16938-3 MS	S-1 (1')	Total/NA	Solid	5035	
880-16938-3 MSD	S-1 (1')	Total/NA	Solid	5035	

Analysis Batch: 29845

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Total/NA	Solid	8021B	29770
880-16938-2	S-1 (6")	Total/NA	Solid	8021B	29770
880-16938-3	S-1 (1')	Total/NA	Solid	8021B	29770
880-16938-4	H-1 (0-6")	Total/NA	Solid	8021B	29770
880-16938-5	H-2 (0-6")	Total/NA	Solid	8021B	29770
880-16938-6	H-3 (0-6")	Total/NA	Solid	8021B	29770
880-16938-7	H-4 (0-6")	Total/NA	Solid	8021B	29770
MB 880-29770/5-A	Method Blank	Total/NA	Solid	8021B	29770
LCS 880-29770/1-A	Lab Control Sample	Total/NA	Solid	8021B	29770
LCSD 880-29770/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29770
880-16938-3 MS	S-1 (1')	Total/NA	Solid	8021B	29770
880-16938-3 MSD	S-1 (1')	Total/NA	Solid	8021B	29770

Prep Batch: 29886

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-29886/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29886/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29886/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-16984-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-16984-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 29895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-29886/5-A	Method Blank	Total/NA	Solid	8021B	29886
LCS 880-29886/1-A	Lab Control Sample	Total/NA	Solid	8021B	29886
LCSD 880-29886/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29886
880-16984-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	29886
880-16984-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	29886

Analysis Batch: 29949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Total/NA	Solid	Total BTEX	
880-16938-2	S-1 (6")	Total/NA	Solid	Total BTEX	
880-16938-3	S-1 (1')	Total/NA	Solid	Total BTEX	
880-16938-4	H-1 (0-6")	Total/NA	Solid	Total BTEX	
880-16938-5	H-2 (0-6")	Total/NA	Solid	Total BTEX	

Eurofins Midland

Page 20 of 30

QC Association Summary

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-16938-1 SDG: Eddy Co, NM

GC VOA (Continued)

Analysis Batch: 29949 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	1
880-16938-6	H-3 (0-6")	Total/NA	Solid	Total BTEX	
880-16938-7	H-4 (0-6")	Total/NA	Solid	Total BTEX	

Prep Batch: 29987

Lab Sample ID 880-16938-1	Client Sample ID S-1 (0-3")	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
MB 880-29987/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29987/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29987/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-17011-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-17011-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 30016

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Total/NA	Solid	8021B	29987
MB 880-29987/5-A	Method Blank	Total/NA	Solid	8021B	29987
LCS 880-29987/1-A	Lab Control Sample	Total/NA	Solid	8021B	29987
LCSD 880-29987/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29987
880-17011-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	29987
880-17011-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	29987

GC Semi VOA

Analysis Batch: 29692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Total/NA	Solid	8015B NM	29771
880-16938-2	S-1 (6")	Total/NA	Solid	8015B NM	29771
880-16938-3	S-1 (1')	Total/NA	Solid	8015B NM	29771
880-16938-4	H-1 (0-6")	Total/NA	Solid	8015B NM	29771
880-16938-5	H-2 (0-6")	Total/NA	Solid	8015B NM	29771
880-16938-6	H-3 (0-6")	Total/NA	Solid	8015B NM	29771
880-16938-7	H-4 (0-6")	Total/NA	Solid	8015B NM	29771
MB 880-29771/1-A	Method Blank	Total/NA	Solid	8015B NM	29771
LCS 880-29771/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29771
LCSD 880-29771/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29771
880-16938-1 MS	S-1 (0-3")	Total/NA	Solid	8015B NM	29771
880-16938-1 MSD	S-1 (0-3")	Total/NA	Solid	8015B NM	29771

Prep Batch: 29771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Total/NA	Solid	8015NM Prep	
880-16938-2	S-1 (6")	Total/NA	Solid	8015NM Prep	
880-16938-3	S-1 (1')	Total/NA	Solid	8015NM Prep	
880-16938-4	H-1 (0-6")	Total/NA	Solid	8015NM Prep	
880-16938-5	H-2 (0-6")	Total/NA	Solid	8015NM Prep	
880-16938-6	H-3 (0-6")	Total/NA	Solid	8015NM Prep	
880-16938-7	H-4 (0-6")	Total/NA	Solid	8015NM Prep	
MB 880-29771/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29771/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29771/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-16938-1 MS	S-1 (0-3")	Total/NA	Solid	8015NM Prep	

Eurofins Midland

2

3

4

6

8

4 0

13

QC Association Summary

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-16938-1 SDG: Eddy Co, NM

GC Semi VOA (Continued)

Prep Batch: 29771 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1 MSD	S-1 (0-3")	Total/NA	Solid	8015NM Prep	

Analysis Batch: 29834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Total/NA	Solid	8015 NM	
880-16938-2	S-1 (6")	Total/NA	Solid	8015 NM	
880-16938-3	S-1 (1')	Total/NA	Solid	8015 NM	
880-16938-4	H-1 (0-6")	Total/NA	Solid	8015 NM	
880-16938-5	H-2 (0-6")	Total/NA	Solid	8015 NM	
880-16938-6	H-3 (0-6")	Total/NA	Solid	8015 NM	
880-16938-7	H-4 (0-6")	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 29855

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Soluble	Solid	DI Leach	
880-16938-2	S-1 (6")	Soluble	Solid	DI Leach	
880-16938-3	S-1 (1')	Soluble	Solid	DI Leach	
880-16938-4	H-1 (0-6")	Soluble	Solid	DI Leach	
880-16938-5	H-2 (0-6")	Soluble	Solid	DI Leach	
880-16938-6	H-3 (0-6")	Soluble	Solid	DI Leach	
880-16938-7	H-4 (0-6")	Soluble	Solid	DI Leach	
MB 880-29855/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29855/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29855/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-16938-1 MS	S-1 (0-3")	Soluble	Solid	DI Leach	
880-16938-1 MSD	S-1 (0-3")	Soluble	Solid	DI Leach	

Analysis Batch: 29880

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-16938-1	S-1 (0-3")	Soluble	Solid	300.0	29855
880-16938-2	S-1 (6")	Soluble	Solid	300.0	29855
880-16938-3	S-1 (1')	Soluble	Solid	300.0	29855
880-16938-4	H-1 (0-6")	Soluble	Solid	300.0	29855
880-16938-5	H-2 (0-6")	Soluble	Solid	300.0	29855
880-16938-6	H-3 (0-6")	Soluble	Solid	300.0	29855
880-16938-7	H-4 (0-6")	Soluble	Solid	300.0	29855
MB 880-29855/1-A	Method Blank	Soluble	Solid	300.0	29855
LCS 880-29855/2-A	Lab Control Sample	Soluble	Solid	300.0	29855
LCSD 880-29855/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29855
880-16938-1 MS	S-1 (0-3")	Soluble	Solid	300.0	29855
880-16938-1 MSD	S-1 (0-3")	Soluble	Solid	300.0	29855

Eurofins Midland

2

3

Λ

R

9

10

12

13

Job ID: 880-16938-1 SDG: Eddy Co, NM

Client: Carmona Resources Project/Site: ZHU 2331-1 Release

Lab Sample ID: 880-16938-1

Matrix: Solid

Client Sample ID: S-1 (0-3")

Date Collected: 07/14/22 00:00 Date Received: 07/14/22 15:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29770	07/14/22 16:20	MR	XEN MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	29845	07/15/22 16:29	MR	XEN MID
Total/NA	Prep	5035			5.03 g	5 mL	29987	07/18/22 15:14	MR	XEN MID
Total/NA	Analysis	8021B		500			30016	07/19/22 22:07	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29949	07/18/22 13:45	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29834	07/15/22 10:13	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		5			29692	07/15/22 07:16	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29855	07/15/22 12:12	SMC	XEN MID
Soluble	Analysis	300.0		1			29880	07/16/22 08:42	CH	XEN MID

Client Sample ID: S-1 (6") Lab Sample ID: 880-16938-2

Date Collected: 07/14/22 00:00 Matrix: Solid

Date Received: 07/14/22 15:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29770	07/14/22 16:20	MR	XEN MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	29845	07/15/22 16:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29949	07/18/22 13:45	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29834	07/15/22 10:13	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		5			29692	07/15/22 07:37	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29855	07/15/22 12:12	SMC	XEN MID
Soluble	Analysis	300.0		1			29880	07/16/22 09:05	CH	XEN MID

Client Sample ID: S-1 (1') Lab Sample ID: 880-16938-3

Date Collected: 07/14/22 00:00 Date Received: 07/14/22 15:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29770	07/14/22 16:20	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29845	07/15/22 15:07	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29949	07/18/22 13:45	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29834	07/15/22 10:13	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/14/22 22:20	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29855	07/15/22 12:12	SMC	XEN MID
Soluble	Analysis	300.0		1			29880	07/16/22 09:13	CH	XEN MID

Eurofins Midland

Matrix: Solid

Lab Chronicle

Job ID: 880-16938-1 Client: Carmona Resources Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Client Sample ID: H-1 (0-6")

Date Collected: 07/14/22 00:00 Date Received: 07/14/22 15:07

Lab Sample ID: 880-16938-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29770	07/14/22 16:20	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29845	07/15/22 15:27	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29949	07/18/22 13:45	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29834	07/15/22 10:13	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/14/22 22:41	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29855	07/15/22 12:12	SMC	XEN MID
Soluble	Analysis	300.0		1			29880	07/16/22 09:21	CH	XEN MID

Client Sample ID: H-2 (0-6") Lab Sample ID: 880-16938-5 Date Collected: 07/14/22 00:00 **Matrix: Solid**

Date Received: 07/14/22 15:07

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 29770 Total/NA 5.01 g 5 mL 07/14/22 16:20 MR XEN MID Total/NA 8021B 5 mL 07/15/22 15:48 XEN MID Analysis 1 5 mL 29845 MR Total/NA Total BTEX 29949 07/18/22 13:45 XEN MID Analysis SM 1 Total/NA Analysis 8015 NM 29834 07/15/22 10:13 XEN MID Total/NA 29771 XEN MID Prep 8015NM Prep 10.01 g 07/14/22 16:33 DM 10 mL Total/NA Analysis 8015B NM 29692 07/14/22 23:02 SM XEN MID Soluble XEN MID Leach DI Leach 5.01 g 50 mL 29855 07/15/22 12:12 SMC Soluble Analysis 300.0 1 29880 07/16/22 09:29 СН XEN MID

Lab Sample ID: 880-16938-6 Client Sample ID: H-3 (0-6") Date Collected: 07/14/22 00:00

Date Received: 07/14/22 15:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	29770	07/14/22 16:20	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29845	07/15/22 16:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29949	07/18/22 13:45	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29834	07/15/22 10:13	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/14/22 23:23	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29855	07/15/22 12:12	SMC	XEN MID
Soluble	Analysis	300.0		1			29880	07/16/22 09:53	CH	XEN MID

Client Sample ID: H-4 (0-6") Lab Sample ID: 880-16938-7 Date Collected: 07/14/22 00:00 **Matrix: Solid**

Date Received: 07/14/22 15:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29770	07/14/22 16:20	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29845	07/15/22 20:02	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29949	07/18/22 13:45	SM	XEN MID

Eurofins Midland

Page 24 of 30

Matrix: Solid

Lab Chronicle

Client: Carmona Resources

Job ID: 880-16938-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Client Sample ID: H-4 (0-6")

Date Collected: 07/14/22 00:00 Date Received: 07/14/22 15:07 Lab Sample ID: 880-16938-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29834	07/15/22 10:13	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29771	07/14/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29692	07/14/22 23:44	SM	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	29855	07/15/22 12:12	SMC	XEN MID
Soluble	Analysis	300.0		1			29880	07/16/22 10:00	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

2

3

4

6

7

9

1 0

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-16938-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report by	it the laboratory is not certific	ed by the governing authority. This list ma	av include analytes for y
the agency does not of		at the laboratory is not certific	ed by the governing additionty. This list the	ay ilicidde allaiytes for t
0 ,		Matrix	Analyte	ay include analytes for t
the agency does not of	fer certification.	•	, , ,	ay include analytes for t

6

8

10

13

Method Summary

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-16938-1 SDG: Eddy Co, NM

ady Co, NW

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 9/12/2022 1:13:32 PM

3

4

6

9

10

12

Sample Summary

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-16938-1 SDG: Eddy Co, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-16938-1	S-1 (0-3")	Solid	07/14/22 00:00	07/14/22 15:07
880-16938-2	S-1 (6")	Solid	07/14/22 00:00	07/14/22 15:07
880-16938-3	S-1 (1')	Solid	07/14/22 00:00	07/14/22 15:07
880-16938-4	H-1 (0-6")	Solid	07/14/22 00:00	07/14/22 15:07
880-16938-5	H-2 (0-6")	Solid	07/14/22 00:00	07/14/22 15:07
880-16938-6	H-3 (0-6")	Solid	07/14/22 00:00	07/14/22 15:07
880-16938-7	H-4 (0-6")	Solid	07/14/22 00:00	07/14/22 15:07

Δ

9

10

12

13

1

2

3

<u>+</u>

6

8

10

11

13

i

													7						Page		의 	
	Clinton Menut				Bill to. (if different)		T									Wo	rk Ord	er Con	Work Order Comments			
	240 141 141 141 141 141	1000			Company Maine		\dagger						Pro	gram L	ST/PS			Program UST/PST PRP prownfields	dsRC		perfund	
	010 44 4401 01 010 410	1 1 1			Address:								Sta	State of Project:	Ject:							
City, State ZIP: Mi	Midland, TX 79701)1			City, State ZIP								Rep	Reporting Level II Level III	evel II [Level		∏ST/UST		_	Level IV	
Phone: 43	432-813-6823			Email									Deli	Deliverables EDD	EDD			ADaPT □		"		
Project Name.	ZHU:	ZHU 2331-1 Release	ease	Turn	Turn Around		_				ANALY	YSIS REQUEST		T				\dashv	- 11		2	
2		1000				Pres.	1		4	$\frac{1}{1}$		- 6	- 0	-			$\left \cdot \right $	+	L lesel	AAMAA	Liesel Aguae Codes	
riojeci Number		7801		□ Routine	□ Rush	Code			_	-		\vdash	-					 S	None. NO	▫	DI Water H ₂ O	H ₂ O
Project Location	E	Eddy Co, NM		Due Date	72 Hrs													င္ပ	Cool Cool	<u> </u>	MeOH Me	עו
Sampler's Name		CCM		TAT starts the da	y received by the la	ō		RO)										픙		エ	HNO. HN	_
PO#)	if receive	if received by 4 30pm			+ MI										<u></u>	H,SO, H,	Z	NaOH Na	- •
SAMPLE RECEIPT	Tomp Blank:	Slank:	Yes (No)	Wet Ice	Yas) No	eter	В	RO	0.0					·····				Ξ,	H CG'H	;		
Received Intact.	/ /Yes/		Thermometer ID			ram	021) + [30									2 3	ביים אים	ñ		
Cooler Custody Seals.	Yes No	NEW YEAR	Correction Factor	7	+,2	Pa	EX 8	GRO	oride									Z i	Na.S.O. NaSO.			
Sample Custody Seals	Yes No(N/A)	Temperature Reading	ading	(S. 0)]	вт	М (Chl				****					7	Zn Acetate+Ni=OH Zn		7	
Total Containers:			Corrected Temperature:	erature:	にい			801										<u>Z</u> !	NaOH+Ascorbic Acid SAPC	rbic Acı	d SAPC	
Sample Identification	cation	Date	Time	Soil	Water Comp	# of	1	TPI				······································	****					T	Sampl	e Con	Sample Comments	
S-1 (0-3")		7/14/2022		×	Grab/	0/	×	×	×			\dashv	\dashv	1			4					
S-1 (6")		7/14/2022		×	Grab/	1	×	×	×								-	\dashv				
S-1 (1')		7/14/2022		×	Grab/	y 1	×	×	×	-		\dashv	+	+			4	+				
H-1 (0-6")		7/14/2022		Х	Grab/	1	×	×	×			\dashv	\dashv	•		1	+	+				
H-2 (0-6")		7/14/2022		X	Grab/	0/ 1	×	×	×			\dashv									1	
H-3 (0-6")		7/14/2022		×	Grab/	y 1	×	×	×				-								J	
H-4 (0-6")		7/14/2022		×	Grab/	y 1	×	×	×			\dashv	-								J	
														880	880-16938 Chain of Clistod	3 Chai						
									_	+	ļ	-	-	\dagger	Ī		<u> </u>	.]	<u></u>
										-		\vdash	-	H		L	_					
Comments																						
										>												
	Rel	inquished t	Relinquished by (Signature)				Date/Time	Time	_			ال چ	celved	Received by: (Signature)	qnatur	e				Dat	Date/Time	
			CARDINATOR				1122	2		K	01	7	М		1				$\frac{1}{1}$			
						-	5	Q	1		(
									<u> </u>													

Work Order No: _

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-16938-1

SDG Number: Eddy Co, NM

List Source: Eurofins Midland

Login Number: 16938 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	

Released to Imaging: 9/12/2022 1:13:32 PM

3

4

6

ន ខ

3

13

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-17728-1

Laboratory Sample Delivery Group: Eddy Co, NM

Client Project/Site: ZHU 2331-1 Release

For:

Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701

Attn: Ashton Thielke

JURAMER

Authorized for release by: 8/5/2022 12:53:11 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 9/12/2022 1:13:32 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

1

2

3

5

6

0

9

1 1

12

TG

н

Client: Carmona Resources

Project/Site: ZHU 2331-1 Release

Laboratory Job ID: 880-17728-1 SDG: Eddy Co, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

2

3

4

6

8

10

11

13

Definitions/Glossary

Client: Carmona Resources

Job ID: 880-17728-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Qualifiers

GC VOA Qualifier

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recovery exceeds control limits.

 S1 Surrogate recovery exceeds control limits, low biased.

 U
 Indicates the analyte was analyzed for but not detected.

4

GC Semi VOA

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recovery exceeds control limits.

 S1 Surrogate recovery exceeds control limits, low biased.

 U
 Indicates the analyte was analyzed for but not detected.

7

HPLC/IC

Qualifier Description

U

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources

Job ID: 880-17728-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Job ID: 880-17728-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-17728-1

Receipt

The samples were received on 8/3/2022 5:14 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-31465 and analytical batch 880-31452 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

3

4

6

7

8

11

. .

Job ID: 880-17728-1 SDG: Eddy Co, NM

Project/Site: ZHU 2331-1 Release Client Sample ID: CS-1 (1')

Client: Carmona Resources

Lab Sample ID: 880-17728-1

Matrix: Solid

Date Collected: 08/03/22 00:00 Date Received: 08/03/22 17:14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:14	1
Toluene	< 0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:14	1
Ethylbenzene	<0.00200	U F1	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:14	1
m-Xylene & p-Xylene	<0.00399	U F1	0.00399		mg/Kg		08/04/22 08:51	08/04/22 11:14	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:14	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/04/22 08:51	08/04/22 11:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				08/04/22 08:51	08/04/22 11:14	1
1,4-Difluorobenzene (Surr)	87		70 - 130				08/04/22 08:51	08/04/22 11:14	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			08/04/22 16:11	1
		O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/05/22 13:04	
Total TPH	<50.0	Qualifier U		MDL		<u>D</u>	Prepared		
Total TPH Method: 8015B NM - Diesel Ran	<50.0	Qualifier U RO) (GC)	50.0		mg/Kg		· · ·	08/05/22 13:04	1
Total TPH Method: 8015B NM - Diesel Rang Analyte	<50.0 ge Organics (D	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg	<u>D</u>	Prepared	08/05/22 13:04 Analyzed	1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	<50.0	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg		· · ·	08/05/22 13:04	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	<50.0 ge Organics (Di Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 03:30	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0 ge Organics (D	Qualifier U RO) (GC) Qualifier U	50.0		mg/Kg		Prepared	08/05/22 13:04 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	<50.0 ge Organics (Di Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 03:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 ge Organics (Di Result <50.0 <50.0	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 03:30 08/05/22 03:30	1 Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 ge Organics (Digentification (Dig	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 03:30 08/05/22 03:30 08/05/22 03:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 %Recovery	Qualifier U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40 Prepared	08/05/22 13:04 Analyzed 08/05/22 03:30 08/05/22 03:30 08/05/22 03:30 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 <63 80	Qualifier U RO) (GC) Qualifier U U Qualifier S1-	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40 Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 03:30 08/05/22 03:30 08/05/22 03:30 Analyzed 08/05/22 03:30	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 <50.0 <63 80 omatography -	Qualifier U RO) (GC) Qualifier U U Qualifier S1-	50.0 RL 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40 Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 03:30 08/05/22 03:30 08/05/22 03:30 Analyzed 08/05/22 03:30	Dil Fac 1 Dil Fac 1 1 Dil Fac 1 Dil Fac

Client Sample ID: SW-1 (1') Lab Sample ID: 880-17728-2 Date Collected: 08/03/22 00:00 **Matrix: Solid**

Date Received: 08/03/22 17:14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/04/22 08:51	08/04/22 11:35	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/04/22 08:51	08/04/22 11:35	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/04/22 08:51	08/04/22 11:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/04/22 08:51	08/04/22 11:35	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/04/22 08:51	08/04/22 11:35	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/04/22 08:51	08/04/22 11:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				08/04/22 08:51	08/04/22 11:35	1
1,4-Difluorobenzene (Surr)	83		70 - 130				08/04/22 08:51	08/04/22 11:35	1

Job ID: 880-17728-1

SDG: Eddy Co, NM

Project/Site: ZHU 2331-1 Release Client Sample ID: SW-1 (1')

Date Collected: 08/03/22 00:00 Date Received: 08/03/22 17:14

Client: Carmona Resources

Lab Sample ID: 880-17728-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/04/22 16:11	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/05/22 13:04	1
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/04/22 16:40	08/05/22 03:52	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/04/22 16:40	08/05/22 03:52	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/04/22 16:40	08/05/22 03:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	67	S1-	70 - 130				08/04/22 16:40	08/05/22 03:52	1
o-Terphenyl	79		70 - 130				08/04/22 16:40	08/05/22 03:52	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.07		5.02		mg/Kg			08/04/22 16:00	

Client Sample ID: SW-2 (1') Lab Sample ID: 880-17728-3 Date Collected: 08/03/22 00:00 **Matrix: Solid**

Date Received: 08/03/22 17:14

Analyte

C10-C28)

(GRO)-C6-C10

Gasoline Range Organics

Diesel Range Organics (Over

Released to Imaging: 9/12/2022 1:13:32 PM

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

<49.9 U

<49.9 U

Method: 8021B - Volatile Orga	inic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:56	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/04/22 08:51	08/04/22 11:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 11:56	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/04/22 08:51	08/04/22 11:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				08/04/22 08:51	08/04/22 11:56	1
1,4-Difluorobenzene (Surr)	89		70 - 130				08/04/22 08:51	08/04/22 11:56	1
- Method: Total BTEX - Total B	ΓEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			08/04/22 16:11	1
- Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	П	49.9		mg/Kg			08/05/22 13:04	

Eurofins Midland

Analyzed

08/05/22 04:14

08/05/22 04:14

RL

49.9

49.9

MDL Unit

mg/Kg

mg/Kg

Prepared

08/04/22 16:40

08/04/22 16:40

Dil Fac

Job ID: 880-17728-1

SDG: Eddy Co, NM

Project/Site: ZHU 2331-1 Release

Date Received: 08/03/22 17:14

Client: Carmona Resources

Client Sample ID: SW-2 (1') Lab Sample ID: 880-17728-3 Date Collected: 08/03/22 00:00

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/04/22 16:40	08/05/22 04:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	68	S1-	70 - 130				08/04/22 16:40	08/05/22 04:14	1
o-Terphenyl	78		70 - 130				08/04/22 16:40	08/05/22 04:14	1

Method: 300.0 - Anions, Ion Chromatography - Soluble								
	Analyte	Result Qu	ıalifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	10.9	5.05	mg/Kg			08/04/22 16:07	1

Client Sample ID: SW-3 (1')

Lab Sample ID: 880-17728-4

Date Collected: 08/03/22 00:00 Date Received: 08/03/22 17:14

Matrix: Solid

Method: 8021B - Volatile Orga	nic Compounds	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 12:16	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 12:16	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 12:16	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/04/22 08:51	08/04/22 12:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 12:16	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/04/22 08:51	08/04/22 12:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				08/04/22 08:51	08/04/22 12:16	1
1,4-Difluorobenzene (Surr)	89		70 - 130				08/04/22 08:51	08/04/22 12:16	1

	Method: Total BTEX - Total BTEX C	alculation								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00401	U	0.00401		mg/Kg			08/04/22 16:11	1
[Method: 8015 NM - Diesel Range O	rganics (DR)	O) (GC)							
	Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.8	U	49.8		mg/Kg			08/05/22 13:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		08/04/22 16:40	08/05/22 04:36	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		08/04/22 16:40	08/05/22 04:36	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/04/22 16:40	08/05/22 04:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	80		70 - 130				08/04/22 16:40	08/05/22 04:36	
o-Terphenyl	92		70 - 130				08/04/22 16:40	08/05/22 04:36	

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 10.2 4.99 mg/Kg 08/04/22 16:16

Eurofins Midland

8/5/2022

Client Sample ID: SW-4 (1')

Date Collected: 08/03/22 00:00

Date Received: 08/03/22 17:14

Client Sample Results

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-17728-1 SDG: Eddy Co, NM

Lab Sample ID: 880-17728-5

Matrix: Solid

IIU	

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/22 08:51	08/04/22 12:37	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/22 08:51	08/04/22 12:37	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/04/22 08:51	08/04/22 12:37	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		08/04/22 08:51	08/04/22 12:37	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/22 08:51	08/04/22 12:37	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		08/04/22 08:51	08/04/22 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				08/04/22 08:51	08/04/22 12:37	1
1,4-Difluorobenzene (Surr)	91		70 - 130				08/04/22 08:51	08/04/22 12:37	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			08/04/22 16:11	1
Method: 8015 NM - Diesel Rang	•		RI	MDI	Unit	n	Prenared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
	•	Qualifier	RL 50.0	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/05/22 13:04	Dil Fac
Analyte Total TPH . Method: 8015B NM - Diesel Ran	Result <50.0	Qualifier U RO) (GC)	50.0		mg/Kg			08/05/22 13:04	1
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte	Result <50.0 ge Organics (D Result	Qualifier U RO) (GC) Qualifier	50.0	MDL	mg/Kg	<u>D</u>	Prepared	08/05/22 13:04 Analyzed	1
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics	Result <50.0	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg			08/05/22 13:04	1
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0 Result <50.0 Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 04:58	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics	Result <50.0 ge Organics (D Result	Qualifier U RO) (GC) Qualifier U	50.0		mg/Kg		Prepared	08/05/22 13:04 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 Result <50.0 Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 04:58	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 04:58 08/05/22 04:58	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 04:58 08/05/22 04:58	Dil Face 1 1 1 Dil Face
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40 Prepared	08/05/22 13:04 Analyzed 08/05/22 04:58 08/05/22 04:58 08/05/22 04:58 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U RO) (GC) Qualifier U U Qualifier S1- S1-	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40 Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 04:58 08/05/22 04:58 Analyzed 08/05/22 04:58	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U RO) (GC) Qualifier U U Qualifier S1- S1-	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 08/04/22 16:40 08/04/22 16:40 08/04/22 16:40 Prepared 08/04/22 16:40	08/05/22 13:04 Analyzed 08/05/22 04:58 08/05/22 04:58 Analyzed 08/05/22 04:58	Dil Fac

Surrogate Summary

Client: Carmona Resources

Job ID: 880-17728-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-17728-1	CS-1 (1')	108	87	
880-17728-1 MS	CS-1 (1')	105	97	
880-17728-1 MSD	CS-1 (1')	102	97	
880-17728-2	SW-1 (1')	109	83	
880-17728-3	SW-2 (1')	112	89	
880-17728-4	SW-3 (1')	113	89	
880-17728-5	SW-4 (1')	111	91	
890-2675-A-1-E MS	Matrix Spike	50 S1-	103	
890-2675-A-1-F MSD	Matrix Spike Duplicate	99	96	
LCS 880-31415/1-A	Lab Control Sample	95	97	
LCS 880-31465/1-A	Lab Control Sample	103	94	
LCSD 880-31415/2-A	Lab Control Sample Dup	103	100	
LCSD 880-31465/2-A	Lab Control Sample Dup	106	97	
MB 880-31415/5-A	Method Blank	98	90	
MB 880-31465/5-A	Method Blank	100	91	
Surrogate Legend				
BFB = 4-Bromofluorober	nzene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-17728-1	CS-1 (1')	63 S1-	80	
880-17728-2	SW-1 (1')	67 S1-	79	
880-17728-3	SW-2 (1')	68 S1-	78	
880-17728-4	SW-3 (1')	80	92	
880-17728-5	SW-4 (1')	60 S1-	61 S1-	
890-2694-A-1-B MS	Matrix Spike	68 S1-	69 S1-	
890-2694-A-1-C MSD	Matrix Spike Duplicate	80	82	
LCS 880-31442/2-A	Lab Control Sample	87	101	
LCSD 880-31442/3-A	Lab Control Sample Dup	83	95	
MB 880-31442/1-A	Method Blank	89	113	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Carmona Resources Project/Site: ZHU 2331-1 Release

Job ID: 880-17728-1 SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-31415/5-A

Lab Sample ID: LCS 880-31415/1-A

Matrix: Solid

Analysis Batch: 31452

Matrix: Solid Analysis Batch: 31452 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 31415

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/03/22 11:47	08/04/22 22:09	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/03/22 11:47	08/04/22 22:09	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/03/22 11:47	08/04/22 22:09	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/03/22 11:47	08/04/22 22:09	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/03/22 11:47	08/04/22 22:09	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/03/22 11:47	08/04/22 22:09	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130	08/03/22 11:47	08/04/22 22:09	1
1,4-Difluorobenzene (Surr)	90		70 - 130	08/03/22 11:47	08/04/22 22:09	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 31415

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.07415 mg/Kg 74 70 - 130 Toluene 0.100 0.08000 mg/Kg 80 70 - 130 0.100 0.08374 Ethylbenzene mg/Kg 84 70 - 130 0.200 76 70 - 130 m-Xylene & p-Xylene 0.1516 mg/Kg 0.100 0.09408 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	95	70 - 130
1,4-Difluorobenzene (Surr)	97	70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 31452

Lab Sample ID: LCSD 880-31415/2-A

Prep Type: Total/NA Prep Batch: 31415

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09442		mg/Kg		94	70 - 130	24	35
Toluene	0.100	0.09278		mg/Kg		93	70 - 130	15	35
Ethylbenzene	0.100	0.09278		mg/Kg		93	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.1873		mg/Kg		94	70 - 130	21	35
o-Xylene	0.100	0.1101		mg/Kg		110	70 - 130	16	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1.4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 890-2675-A-1-E MS

Matrix: Solid

Analysis Batch: 31452

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 31415

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.09578		mg/Kg		95	70 - 130	
Toluene	<0.00201	U	0.100	0.09337		mg/Kg		93	70 - 130	

Client: Carmona Resources Job ID: 880-17728-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2675-A-1-E MS **Matrix: Solid**

Analysis Batch: 31452

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 31415

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ethylbenzene <0.00201 U 0.100 0.09244 92 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00402 U 0.201 0.1855 mg/Kg 92 70 - 130 <0.00201 U 0.100 0.1073 o-Xylene mg/Kg 107 70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	50	S1-	70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 31415

Matrix: Solid

Lab Sample ID: 890-2675-A-1-F MSD

Analysis Batch: 31452

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0998	0.08952		mg/Kg		90	70 - 130	7	35
Toluene	<0.00201	U	0.0998	0.08599		mg/Kg		86	70 - 130	8	35
Ethylbenzene	<0.00201	U	0.0998	0.08552		mg/Kg		86	70 - 130	8	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1709		mg/Kg		86	70 - 130	8	35
o-Xylene	<0.00201	U	0.0998	0.09674		mg/Kg		97	70 - 130	10	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: MB 880-31465/5-A

Matrix: Solid

Analysis Batch: 31452

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 31465

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 10:53	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 10:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 10:53	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/04/22 08:51	08/04/22 10:53	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/22 08:51	08/04/22 10:53	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/04/22 08:51	08/04/22 10:53	1

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130	08/04/22 08:51	08/04/22 10:53	1
1,4-Difluorobenzene (Surr)	91		70 - 130	08/04/22 08:51	08/04/22 10:53	1

Lab Sample ID: LCS 880-31465/1-A

Matrix: Solid

Analysis Batch: 31452

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 31465

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09988		mg/Kg		100	70 - 130
Toluene	0.100	0.1006		mg/Kg		101	70 - 130
Ethylbenzene	0.100	0.1038		mg/Kg		104	70 - 130
m-Xylene & p-Xylene	0.200	0.2107		mg/Kg		105	70 - 130

QC Sample Results

Client: Carmona Resources Project/Site: ZHU 2331-1 Release

Job ID: 880-17728-1 SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-31465/1-A **Matrix: Solid**

Lab Sample ID: LCSD 880-31465/2-A

Analysis Batch: 31452

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 31465

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits D 0.100 0 1145 114 70 - 130 o-Xylene mg/Kg

LCS LCS %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 103 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 94

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 31465

Analysis Batch: 31452 LCSD LCSD RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Benzene 0.100 0.09085 mg/Kg 91 70 - 130 9 35 Toluene 0.100 0.08782 mg/Kg 88 70 - 130 35 14 Ethylbenzene 0.100 0.09053 mg/Kg 91 70 - 130 14 35 m-Xylene & p-Xylene 0.200 0.1832 mg/Kg 92 70 - 130 14 35 0.100 0.1004 100 70 - 130 35 o-Xylene mg/Kg 13

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 106 70 - 130 1,4-Difluorobenzene (Surr) 97 70 - 130

Lab Sample ID: 880-17728-1 MS Client Sample ID: CS-1 (1')

Matrix: Solid

Matrix: Solid

Analysis Batch: 31452

Prep Type: Total/NA Prep Batch: 31465

MS MS Sample Sample Spike %Rec Result Qualifier babbA Result Qualifier Analyte Unit D %Rec Limits Benzene <0.00200 U 0.100 0.08136 81 70 - 130 mg/Kg Toluene <0.00200 0.100 0.07618 mg/Kg 76 70 - 130 Ethylbenzene <0.00200 UF1 0.100 0.07372 mg/Kg 74 70 - 130 m-Xylene & p-Xylene < 0.00399 U F1 0.200 0.1469 mg/Kg 73 70 - 130 o-Xylene <0.00200 U 0.100 0.07974 mg/Kg 80 70 - 130

MS MS %Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 105 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 97

Lab Sample ID: 880-17728-1 MSD Client Sample ID: CS-1 (1')

Analysis Batch: 31452

Matrix: Solid

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Result Qualifier Added Limits Limit Analyte Unit %Rec RPD Benzene <0.00200 U 0.0998 0.08732 mg/Kg 87 70 - 130 35 0.0998 0.07748 Toluene <0.00200 U 78 70 - 1302 35 mg/Kg Ethylbenzene <0.00200 UF1 0.0998 0.06936 F1 mg/Kg 69 70 - 130 35 m-Xylene & p-Xylene 0.200 < 0.00399 U F1 0.1380 F1 mg/Kg 69 70 - 1306 35 o-Xylene <0.00200 U 0.0998 0.07575 mg/Kg 76 70 - 130 35

Eurofins Midland

Prep Type: Total/NA

Prep Batch: 31465

QC Sample Results

Client: Carmona Resources Job ID: 880-17728-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MSD MSD

Lab Sample ID: 880-17728-1 MSD

Matrix: Solid

Analysis Batch: 31452

Client Sample ID: CS-1 (1')

Prep Type: Total/NA

Prep Batch: 31465

%Recovery Qualifier Surrogate

Limits 4-Bromofluorobenzene (Surr) 102 70 - 130 1,4-Difluorobenzene (Surr) 97 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-31442/1-A

Matrix: Solid

Analysis Batch: 31457

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 31442

MD MD

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/03/22 16:40	08/04/22 19:53	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/03/22 16:40	08/04/22 19:53	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/03/22 16:40	08/04/22 19:53	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130	08/03/22 16:40	08/04/22 19:53	1
o-Terphenyl	113		70 - 130	08/03/22 16:40	08/04/22 19:53	1

Lab Sample ID: LCS 880-31442/2-A

Matrix: Solid

Analysis Batch: 31457

Client Sample ID: Lab Con	trol Sample
Prep Typ	e: Total/NA

Prep Batch: 31442

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1004		mg/Kg		100	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	972.1		mg/Kg		97	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	87	70 - 130
o-Terphenyl	101	70 - 130

Lab Sample ID: LCSD 880-31442/3-A

Matrix: Solid

Analysis Batch: 31457

Client Sample ID: Lab Control Samp	lo Dun

Prep Type: Total/NA

Prep Batch: 31442

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	882.1		mg/Kg		88	70 - 130	13	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	925.8		mg/Kg		93	70 - 130	5	20
C10-C28)									

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	83	70 - 130
o-Terphenyl	95	70 - 130

Lab Sample ID: 890-2694-A-1-B MS

QC Sample Results

Client: Carmona Resources Job ID: 880-17728-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Total/NA Analysis Batch: 31457 Prep Batch: 31442

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	999	827.1		mg/Kg		81	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	601	F1	999	1185	F1	mg/Kg		58	70 - 130	
C10-C28)										

MS MS %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 68 S1o-Terphenyl 69 S1-70 - 130

Lab Sample ID: 890-2694-A-1-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 31457** Prep Batch: 31442

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	934.1		mg/Kg		91	70 - 130	12	20
Diesel Range Organics (Over C10-C28)	601	F1	999	1431		mg/Kg		83	70 - 130	19	20

MSD MSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 80 70 - 130 82 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-31472/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 31509

MB MB Analyte Result Qualifier MDL Unit Dil Fac Prepared Analyzed Chloride <5.00 U 5.00 08/04/22 14:18 mg/Kg

Lab Sample ID: LCS 880-31472/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 31509

	Spike	LUS	LUS				70Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	231.7		mg/Kg		93	90 - 110	

Lab Sample ID: LCSD 880-31472/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble Matrix: Solid**

Analysis Batch: 31509

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 232.2 93 90 - 110 mg/Kg 20

Eurofins Midland

QC Sample Results

Client: Carmona Resources Job ID: 880-17728-1 Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-17721-A-1-C MS Client Sample ID: Matrix Spike **Matrix: Solid Prep Type: Soluble Analysis Batch: 31509**

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Chloride 314 1250 1554 mg/Kg 99 90 - 110

Lab Sample ID: 880-17721-A-1-D MSD Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Matrix: Solid Analysis Batch: 31509

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Qualifier RPD Limit Analyte Result Unit D %Rec Limits Chloride 314 1250 1550 mg/Kg 99 90 - 110 0

Lab Sample ID: 880-17727-A-1-B MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Soluble

Analysis Batch: 31509 MS MS %Rec Spike Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit Limits Chloride 165 1240 1345 90 - 110 mg/Kg

Lab Sample ID: 880-17727-A-1-C MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid Analysis Batch: 31509

MSD MSD RPD Sample Sample Spike %Rec

Analyte Result Qualifier Added Qualifier Unit %Rec RPD Limit Result Limits Chloride 165 1240 1345 95 90 - 110 0 20 mg/Kg

QC Association Summary

Client: Carmona Resources

Job ID: 880-17728-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

GC VOA

Prep Batch: 31415

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-31415/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-31415/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-31415/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2675-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-2675-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 31452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-1	CS-1 (1')	Total/NA	Solid	8021B	31465
880-17728-2	SW-1 (1')	Total/NA	Solid	8021B	31465
880-17728-3	SW-2 (1')	Total/NA	Solid	8021B	31465
880-17728-4	SW-3 (1')	Total/NA	Solid	8021B	31465
880-17728-5	SW-4 (1')	Total/NA	Solid	8021B	31465
MB 880-31415/5-A	Method Blank	Total/NA	Solid	8021B	31415
MB 880-31465/5-A	Method Blank	Total/NA	Solid	8021B	31465
LCS 880-31415/1-A	Lab Control Sample	Total/NA	Solid	8021B	31415
LCS 880-31465/1-A	Lab Control Sample	Total/NA	Solid	8021B	31465
LCSD 880-31415/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	31415
LCSD 880-31465/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	31465
880-17728-1 MS	CS-1 (1')	Total/NA	Solid	8021B	31465
880-17728-1 MSD	CS-1 (1')	Total/NA	Solid	8021B	31465
890-2675-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	31415
890-2675-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	31415

Prep Batch: 31465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-1	CS-1 (1')	Total/NA	Solid	5035	
880-17728-2	SW-1 (1')	Total/NA	Solid	5035	
880-17728-3	SW-2 (1')	Total/NA	Solid	5035	
880-17728-4	SW-3 (1')	Total/NA	Solid	5035	
880-17728-5	SW-4 (1')	Total/NA	Solid	5035	
MB 880-31465/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-31465/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-31465/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-17728-1 MS	CS-1 (1')	Total/NA	Solid	5035	
880-17728-1 MSD	CS-1 (1')	Total/NA	Solid	5035	

Analysis Batch: 31512

Lab Sample ID 880-17728-1	Client Sample ID CS-1 (1')	Prep Type Total/NA	Matrix Solid	Method Total BTEX	Prep Batch
880-17728-2	SW-1 (1')	Total/NA	Solid	Total BTEX	
880-17728-3	SW-2 (1')	Total/NA	Solid	Total BTEX	
880-17728-4	SW-3 (1')	Total/NA	Solid	Total BTEX	
880-17728-5	SW-4 (1')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 31442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-1	CS-1 (1')	Total/NA	Solid	8015NM Prep	
880-17728-2	SW-1 (1')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 16 of 25

QC Association Summary

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-17728-1 SDG: Eddy Co, NM

GC Semi VOA (Continued)

Prep Batch: 31442 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-3	SW-2 (1')	Total/NA	Solid	8015NM Prep	
880-17728-4	SW-3 (1')	Total/NA	Solid	8015NM Prep	
880-17728-5	SW-4 (1')	Total/NA	Solid	8015NM Prep	
MB 880-31442/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-31442/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-31442/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2694-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2694-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 31457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-1	CS-1 (1')	Total/NA	Solid	8015B NM	31442
880-17728-2	SW-1 (1')	Total/NA	Solid	8015B NM	31442
880-17728-3	SW-2 (1')	Total/NA	Solid	8015B NM	31442
880-17728-4	SW-3 (1')	Total/NA	Solid	8015B NM	31442
880-17728-5	SW-4 (1')	Total/NA	Solid	8015B NM	31442
MB 880-31442/1-A	Method Blank	Total/NA	Solid	8015B NM	31442
LCS 880-31442/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	31442
LCSD 880-31442/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	31442
890-2694-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	31442
890-2694-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	31442

Analysis Batch: 31591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-1	CS-1 (1')	Total/NA	Solid	8015 NM	
880-17728-2	SW-1 (1')	Total/NA	Solid	8015 NM	
880-17728-3	SW-2 (1')	Total/NA	Solid	8015 NM	
880-17728-4	SW-3 (1')	Total/NA	Solid	8015 NM	
880-17728-5	SW-4 (1')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 31472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-1	CS-1 (1')	Soluble	Solid	DI Leach	
880-17728-2	SW-1 (1')	Soluble	Solid	DI Leach	
880-17728-3	SW-2 (1')	Soluble	Solid	DI Leach	
880-17728-4	SW-3 (1')	Soluble	Solid	DI Leach	
880-17728-5	SW-4 (1')	Soluble	Solid	DI Leach	
MB 880-31472/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-31472/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-31472/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-17721-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-17721-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
880-17727-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-17727-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 31509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-1	CS-1 (1')	Soluble	Solid	300.0	31472
880-17728-2	SW-1 (1')	Soluble	Solid	300.0	31472

Eurofins Midland

Page 17 of 25

QC Association Summary

Client: Carmona Resources

Job ID: 880-17728-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

HPLC/IC (Continued)

Analysis Batch: 31509 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17728-3	SW-2 (1')	Soluble	Solid	300.0	31472
880-17728-4	SW-3 (1')	Soluble	Solid	300.0	31472
880-17728-5	SW-4 (1')	Soluble	Solid	300.0	31472
MB 880-31472/1-A	Method Blank	Soluble	Solid	300.0	31472
LCS 880-31472/2-A	Lab Control Sample	Soluble	Solid	300.0	31472
LCSD 880-31472/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	31472
880-17721-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	31472
880-17721-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	31472
880-17727-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	31472
880-17727-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	31472

_

4

5

7

8

9

10

12

13

Job ID: 880-17728-1 Client: Carmona Resources Project/Site: ZHU 2331-1 Release SDG: Eddy Co, NM

Client Sample ID: CS-1 (1')

Lab Sample ID: 880-17728-1 Date Collected: 08/03/22 00:00

Matrix: Solid

Date Received: 08/03/22 17:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	31465	08/04/22 08:51	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31452	08/04/22 11:14	MR	EETSC MIC
Total/NA	Analysis	Total BTEX		1			31512	08/04/22 16:11	SM	EETSC MIE
Total/NA	Analysis	8015 NM		1			31591	08/05/22 13:04	AJ	EETSC MIE
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31442	08/04/22 16:40	DM	EETSC MIC
Total/NA	Analysis	8015B NM		1			31457	08/05/22 03:30	AJ	EETSC MIC
Soluble	Leach	DI Leach			5.03 g	50 mL	31472	08/04/22 09:34	KS	EETSC MIC
Soluble	Analysis	300.0		1			31509	08/04/22 15:52	CH	EETSC MII

Client Sample ID: SW-1 (1') Lab Sample ID: 880-17728-2

Date Collected: 08/03/22 00:00 Date Received: 08/03/22 17:14

8015B NM

DI Leach

300.0

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.03 g 5 mL 31465 08/04/22 08:51 MR EETSC MID Total/NA 8021B 5 mL EETSC MIC Analysis 1 5 mL 31452 08/04/22 11:35 MR Total/NA Total BTEX 31512 EETSC MIE Analysis 08/04/22 16:11 SM 1 Total/NA Analysis 8015 NM 31591 08/05/22 13:04 EETSC MID Total/NA 31442 Prep 8015NM Prep 10.01 g 08/04/22 16:40 DM EETSC MIE 10 mL

Client Sample ID: SW-2 (1') Lab Sample ID: 880-17728-3

4.98 g

31457

31472

31509

50 mL

08/05/22 03:52

08/04/22 09:34

08/04/22 16:00

AJ

KS

CH

Date Collected: 08/03/22 00:00 Date Received: 08/03/22 17:14

Analysis

Leach

Analysis

Total/NA

Soluble

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	31465	08/04/22 08:51	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31452	08/04/22 11:56	MR	EETSC MIC
Total/NA	Analysis	Total BTEX		1			31512	08/04/22 16:11	SM	EETSC MII
Total/NA	Analysis	8015 NM		1			31591	08/05/22 13:04	AJ	EETSC MII
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31442	08/04/22 16:40	DM	EETSC MIE
Total/NA	Analysis	8015B NM		1			31457	08/05/22 04:14	AJ	EETSC MIC
Soluble	Leach	DI Leach			4.95 g	50 mL	31472	08/04/22 09:34	KS	EETSC MIC
Soluble	Analysis	300.0		1			31509	08/04/22 16:07	CH	EETSC MID

Client Sample ID: SW-3 (1') Lab Sample ID: 880-17728-4 Date Collected: 08/03/22 00:00 **Matrix: Solid**

Date Received: 08/03/22 17:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	31465	08/04/22 08:51	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31452	08/04/22 12:16	MR	EETSC MIE
Total/NA	Analysis	Total BTEX		1			31512	08/04/22 16:11	SM	EETSC MIC

Eurofins Midland

Matrix: Solid

EETSC MID

EETSC MID

EETSC MIE

Matrix: Solid

Lab Chronicle

Client: Carmona Resources

Job ID: 880-17728-1
Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Client Sample ID: SW-3 (1')

Lab Sample ID: 880-17728-4

Matrix: Solid

Date Collected: 08/03/22 00:00 Date Received: 08/03/22 17:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			31591	08/05/22 13:04	AJ	EETSC MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	31442	08/04/22 16:40	DM	EETSC MII
Total/NA	Analysis	8015B NM		1			31457	08/05/22 04:36	AJ	EETSC MII
Soluble	Leach	DI Leach			5.01 g	50 mL	31472	08/04/22 09:34	KS	EETSC MII
Soluble	Analysis	300.0		1			31509	08/04/22 16:16	CH	EETSC MII

Client Sample ID: SW-4 (1')

Date Collected: 08/03/22 00:00

Lab Sample ID: 880-17728-5

Matrix: Solid

Date Received: 08/03/22 17:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	31465	08/04/22 08:51	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31452	08/04/22 12:37	MR	EETSC MIC
Total/NA	Analysis	Total BTEX		1			31512	08/04/22 16:11	SM	EETSC MIC
Total/NA	Analysis	8015 NM		1			31591	08/05/22 13:04	AJ	EETSC MIC
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	31442	08/04/22 16:40	DM	EETSC MIC
Total/NA	Analysis	8015B NM		1			31457	08/05/22 04:58	AJ	EETSC MIC
Soluble	Leach	DI Leach			4.99 g	50 mL	31472	08/04/22 09:34	KS	EETSC MII
Soluble	Analysis	300.0		1			31509	08/04/22 16:23	CH	EETSC MID

Laboratory References:

EETSC MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Released to Imaging: 9/12/2022 1:13:32 PM

2

Α

5

7

9

10

12

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-17728-1

Project/Site: ZHU 2331-1 Release

SDG: Eddy Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		ogram	Identification Number	Expiration Date
		ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report hi	it the laboratory is not certific	ed by the governing authority. This list ma	v include analytes for y
the agency does not of		at the laboratory is not certific	ed by the governing additionty. This list his	ay illolude allalytes for v
0 ,		Matrix	Analyte	ay include analytes for v
the agency does not of	fer certification.	•	, , ,	ay include analytes for v

3

4

9

11

Method Summary

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-17728-1

SDG: Eddy Co, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EETSC MID
Total BTEX	Total BTEX Calculation	TAL SOP	EETSC MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EETSC MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EETSC MID
300.0	Anions, Ion Chromatography	MCAWW	EETSC MID
5035	Closed System Purge and Trap	SW846	EETSC MID
8015NM Prep	Microextraction	SW846	EETSC MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EETSC MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EETSC MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Sample Summary

Client: Carmona Resources Project/Site: ZHU 2331-1 Release Job ID: 880-17728-1 SDG: Eddy Co, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-17728-1	CS-1 (1')	Solid	08/03/22 00:00	08/03/22 17:14
880-17728-2	SW-1 (1')	Solid	08/03/22 00:00	08/03/22 17:14
880-17728-3	SW-2 (1')	Solid	08/03/22 00:00	08/03/22 17:14
880-17728-4	SW-3 (1')	Solid	08/03/22 00:00	08/03/22 17:14
880-17728-5	SW-4 (1')	Solid	08/03/22 00:00	08/03/22 17:14

Л

-

_

9

4 4

12

Sampler's Name PO # SAMPLE RECEIPT Terresceived Intact: Cooler Custody Seals Yes Total Containers Yes				4_	1_	Project Manager
	_p	ZHU	Midland, TX 79701 432-813-5347	310 W Wall St Ste 415	Carmona Resources	Ashton Thielke
	1082	2331-1 Rele	01	te 415	rces	
Yes No Thermometer ID Torrection Factor Semperature Recommendation of the Portion		ase				
TAT starts the dt if receiv Wet loe wet loe ading erature	Routine	Tur	n			
y received by the ed by 4.30pm (Yes) No	Rush	Around		Address.	Company Nan	Bill to (if different)
Parameters	Cod				ne	E
BTEX 8021B	6 9			<u> </u>	*Carn	
1 8015M (GRO + DRO + MRO)					nona Res	
Chloride 300.0					ources*	
· · · · · · · · · · · · · · · · · · ·						
	1	A II				
		<u> </u>				
			7 70	Sta	Pro	
	 	Verable	porting L	te of Pr	gram: I	
		S EUD	evel II	oject:	JST/PS	
	44				Ţ Ţ	Wor
	+-	A				k Orde
H2S0 H3P0 NaH Na ₂ S	Non	- =	TSU/T		wnfields	Page _ Work Order Comments
HC Cool HC D4 H2 D4 HP SO4 NAE SO4 NAE cetate+N H+Ascort	NO	Ç			궁	Page
MeOH Me HNO ₃ , HN NaOH Na BIS SO ₃ laOH Zn bic Acid SAPC	DI Water H ₂	er	□_evel IV			1of1_
	AT TAT starts the day received by the lab if received by 4.30pm MO NO Thermometer ID	Total AT The Due Date 24 Hr AT The starts the day received by the lab if received by 4.30pm No Nub Correction Factor 20 No Nub Corrected Temperature S. 2 Controcted Temperature S. 2 Due Date 24 Hr TAT starts the day received by the lab if received by the lab if received by 4.30pm Yes No No Temperature S. 2 Parama S. 2 Parama S. 300.0 Corrected Temperature S. 2 BT GROULD STATE TO THE TOTAL STATE TO	Confected Temperature Conf		Reporting Level II	Company Name Company Name Company Name Address. Address. Address. Company Name Company Name Address. C

Work Order N
ō
5
1
Q

Page 24 of 25

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-17728-1

SDG Number: Eddy Co, NM

List Source: Eurofins Midland

Login Number: 17728 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

3

4

5

9

13

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 141113

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	141113
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved.	9/12/2022