

May 31, 2022

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: REVISED Release Characterization and Remediation Work Plan ConocoPhillips
VGEU 02-20 West Flowline Release
Unit Letter D, Section 32, Township 17 South, Range 35 East
Lea County, New Mexico
Incident ID nRM2017856312

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the flowline of the Vacuum Glorieta East Unit (VGEU) 02-20 well (Associated API No. 30-025-37850), The release footprint is located approximately 2,800 feet west-northwest of the wellhead. The release footprint is located in Public Land Survey System (PLSS) Unit Letter D, Section 32, Township 17 South, and Range 35 East, Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.796421°, -103.487760°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the VGEU 02-20 West release was discovered on June 16, 2020. The release occurred as the result of a flowline rupture and encompasses an estimated area of 3,255 square feet. Approximately 56.48 barrels (bbls) of produced water and 14.12 bbls of oil were reported released, of which 0.0 bbls of produced water and 5.0 bbls of oil were recovered. The New Mexico Oil Conservation District (NMOCD) received the C-141 form for the release on June 26, 2020. The NMOCD Incident ID for this release is nRM2017856312.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are five water wells within ½ mile (800m) of the Site with an average depth to groundwater of 100 feet below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Tetra Tech

901 West Wall St., Suite 100, Midland, TX 79701

ConocoPhillips

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

Constituent	Site RRALs
Chloride	10,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
TPH	100 mg/kg
BTEX	50 mg/kg

INITIAL RESPONSE AND REMEDIAL ACTIVITIES

In accordance with 19.15.29.8. B. (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", ConocoPhillips elected to begin remediation of the impacted area in 2020. At some point between the discovery of the release and July 1, 2020, the release area was partially excavated to depths ranging from 2 feet bgs to 5 feet bgs. This excavated area encompasses approximately 3,000 square feet. Figure 3 depicts the approximate release extent and the excavated area.

INITIAL ASSESSMENT ACTIVITIES AND SAMPLING RESULTS

As a portion of the initial response, on July 1, 2020, COP personnel collected a total of thirty-two (32) soil samples from sample point (SP) locations in and around the release extent (SP#1 through SP#33). Twenty-eight (28) samples (SP #1 through SP #28) were collected within the excavated release area and four (4) samples (SP #29 through SP #32) were collected outside the excavated release area. These soil samples were sent to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for chloride via EPA Method SM45000Cl-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Sample locations are shown in Figure 3.

Analytical results associated with all but three (3) sample locations exceeded Site RRALs for TPH, chloride and/or BTEX. The analytical results associated with SP#17, SP#29 and SP#30 were below Site RRALs and/or reclamation requirements above 4 feet bgs. A copy of the analytical laboratory report and chain-of-custody documentation are included in Appendix C. Sample results from the initial assessment are summarized in Table 1. Neither horizontal nor vertical delineation was achieved during the initial assessment. Photographic documentation of the release area and initial response extent is included as Appendix D.

ADDITIONAL SITE ASSESSMENT AND SAMPLING RESULTS

In order to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling from January 18, 2021 to May 25, 2021 on behalf of ConocoPhillips. On January 18, 2021, a total of nine (9) borings (BH-1 through BH-9) were installed using an air rotary drilling rig. Three (3) borings (BH-1 and BH-3) were installed within the release extent to depths ranging from 15 feet bgs to 30 feet bgs to achieve vertical delineation. Five (5) borings (BH-4 through BH-8) were installed along the perimeter of the release extent to a depth of 10 feet bgs to achieve horizontal delineation. Due to drill rig access issues west of the release footprint, one (1) hand auger boring (BH-9) was installed to a depth of 1.5 feet bgs to horizontally delineate to the west of the release footprint. Boring logs, included as Appendix

ConocoPhillips

E, present soil descriptions, sample depths, and field screening data from the January 2021 assessment activities.

During the January 2021 assessment activities Tetra Tech personnel observed potential historically impacted and disturbed areas in the vicinity of the release footprint. In an attempt to delineate the observed impacted area, a total of six (6) borings (BH-10 through BH-14 and BH-16) were installed around the perimeter of the affected area on May 14, 2021. BH-10 through BH-14 and BH-16 were installed using an air rotary drilling rig to depths ranging from 8 feet bgs to 15 feet bgs.

On May 25, 2021, seven (7) additional borings (AH-1 through AH-7) were installed within and around the potential historically impacted area using a hand auger to discern between the release footprint and the previously disturbed areas. Samples were collected at the 0-1' depth interval from borings AH-1 through AH-7 and at the 1-2' depth interval at AH-6.

A total of eighty-nine (89) samples were collected from the twenty-two (22) additional borings and submitted to Pace Analytical National Center for Testing & Innovation (Pace) in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Copies of the laboratory analytical reports and chain-of-custody documentation are included in Appendix C. Figure 4 depicts the release extent, excavated area and the January and May 2021 soil boring locations.

Results from the January and May 2021 soil sampling events are summarized in Table 2. The analytical results associated with the BH-1 (4-5' interval), BH-2 (2-5' interval), BH-3 (2-3' interval), BH-7 (0-7' interval), BH-8 (0-3' interval) and BH-9 (0-1.5' interval) either exceeded the Site RRALs and/or reclamation requirements for soil above 4 feet bgs. Additionally, analytical results associated with BH-4 at the 9-10' interval exceeded the Site RRALs for TPH; however, all analytical results above the 9-foot depth interval were below Site RRALs and/or reclamation requirements. These TPH exceedances at 9 feet bgs are presumably related to an unrelated historical release, based on the uncontaminated surface soil. Given the depth to groundwater in the area, the proposed RRALs for the site, and the unimpacted pastureland overlying these strata, COP proposes to leave these impacts in place. There were no other analytical results which exceeded the Site RRALs during the January 2021 sampling event.

The analytical results associated with the May 2021 assessment activities indicate unrelated historical impact in the vicinity of the release footprint. Analytical results at BH-11 (9-10') and BH-16 (9-10') exceeded the Site RRAL for TPH, but the analyzed samples stratigraphically above 9 feet were below Site RRALs and reclamation requirements. Again, these TPH exceedances at 9 feet bgs are presumably related to an unrelated historical release, based on the uncontaminated surface soil. Analytical results associated with AH-2 were above the reclamation requirement for TPH; however, analytical results associated with boring locations between the nRM2017856312 release footprint and AH-2 (BH-11, AH-3, AH-6 and AH-7) were below the Site RRALs and/or reclamation requirements at corresponding depth intervals.

REMEDIATION WORK PLAN AND EXTENSION REQUEST

The Release Characterization Work Plan (Work Plan) was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on October 7, 2021 with fee application payment PO Number AGLL5-211007-C-1410. The Work Plan described the results of the release assessment and provided characterization of the impact at the site. The Work Plan was approved via email by Chad Hensley on Monday, November 15, 2021.

Chad Hensley stated the following conditions of the approval:

- "Mentioned samples have not been fully delineated vertically: BH-4, BH-11, and BH-16. Please show on closure report delineation from 10ft bgs to closure criteria in five foot increments.
- Closure report due 02/15/2022"

ConocoPhillips

On December 20, 2021, COP requested a 60-day extension for Incident ID nRM2017856312 via email. This extension was requested to allow sufficient time to conduct additional assessment activities to address the conditions of the Work Plan approval. The 60-day extension was granted via email by Chad Hensley on December 20, 2021. Regulatory correspondence concerning the initial work plan approval and extension request is included in Appendix F.

ADDITIONAL DELINEATION AND SAMPLING RESULTS

On February 18, 2022, Tetra Tech personnel were at the Site to conduct additional delineation of the release area to address the conditions of the Work Plan approval. A total of three (3) soil borings (BH-17 through BH-19) were installed outside the release extent. BH-17 was installed south of BH-4, BH-18 was installed between the release extent and BH-11, and BH-19 was installed north of BH-16. Soil samples were collected at depths from 6 to 13 feet in BH-17 and BH-18 and from 6 to 10 feet at BH-19. Boring logs, included as Appendix E, present soil descriptions, sample depths, and field screening data from the additional assessment activities.

A total of ten (10) samples were collected from the three (3) borings and submitted to Cardinal Laboratories (Cardinal) in Hobbs, New Mexico to be analyzed for chlorides via SM4500CL-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Copies of the laboratory analytical reports and chain-of-custody documentation are included in Appendix C.

Analytical results associated with BH-17 (12-13') and BH-18 at depth intervals 6-7', 8-9' and 10-11' were above the Site RRAL for TPH. All other analytical results were below Site RRALs and/or reclamation requirements.

During the February 2022 additional delineation, drilling was limited to depths of 13 feet bgs at BH-17 and BH-17 and 10 feet bgs at BH-19. These limitations were due to unconsolidated material below the lithified surface soils sloughing into the borehole, making collection of representative soil samples below these depths impractical. Thus, on March 31, 2022, Tetra Tech, on behalf of COP, requested the NMOCD grant a second 60-day extension to complete additional assessment using alternative methods to address difficulties associated with Site conditions. The extension request was granted on April 4, 2022 by Chad Hensley via email. The 60-day extension approval revised the deadline to July 15, 2022. NMOCD email correspondence is included in Appendix F.

On May 24, 2022, Tetra Tech personnel were onsite to complete delineation per NMOCD request. Soil borings BH-17A and BH-18A were installed at the previously drilled boring locations BH-17 and BH-18. Soil samples were collected from BH-17A and BH-18A below the previously sampled intervals at BH-17 and BH-18 down to depths of 45 feet and 50 feet, respectively. Soil boring BH-20 was installed south of BH-18 to complete horizontal delineation to the south. The February and May 2022 boring locations are shown on Figure 5.

A total of twenty-one (21) samples were collected from BH-17A, BH-18A and BH-20 and analyzed for chlorides via SM4500Cl-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B by Cardinal. Copies of the laboratory analytical reports and chain-of-custody documentation are included in Appendix C.

Analytical results associated with samples collected from BH-17A (from depths ranging from 14' to 25') and BH-18A (from depths ranging from 14' to 20') were above Site RRALs for TPH and/or BTEX. However, sample results from BH-17A and BH-18A were below Site RRALs at depths below 29 feet and 24 feet, respectively. All results associated with BH-20 were below Site RRALs and/or reclamation requirements.

FINDINGS

These additional delineation activities provided a comprehensive study of not only the subsurface conditions in the vicinity of the release, but along with the previously collected data, also the surrounding

ConocoPhillips

impacts previously noted. Based on a review of all collected analytical results associated with the Site release characterization, a few patterns emerged.

- 1. The original reported release extent closely mirrored the excavated area indicated in Figure 4. The release extent was modified based upon data collected from BH-7, BH-8 and BH-9, borings from the site assessment conducted in January 2021. The data from these borings indicated TPH impact in the surficial soils adjacent to the reported release extent. Thus, as indicated in Figure 6, these areas were included in the approximate release extent and proposed for remediation given their proximity to the initial response area. However, upon review of the collected data, borings BH-1, BH-2 and BH-3, drilled within the original reported extent, all have significant chloride impacts which coincide with the TPH impacts. The chloride concentrations within BH-7, BH-8 and BH-9 are virtually non-detect, and if found, do not exceed the reclamation requirement of 600 mg/kg.
- 2. As mentioned earlier in this report and in the previous Work Plan, the analytical results associated with the May 2021 assessment activities indicate unrelated deep historical impact in the vicinity of the release footprint. Analytical results at BH-11 (9-10') and BH-16 (9-10') exceeded the Site RRAL for TPH, but the collected samples stratigraphically above 9 feet were below Site RRALs and reclamation requirements. Therefore, these TPH exceedances at 9 feet bgs are presumably related to an unrelated historical release, based on the uncontaminated surface soil. In extension request #1, COP outlined the notion that these observed impacts at depth are unrelated to the nRM2017856312 incident. This inference was based on the reported incident footprint, the lack of lateral transmissivity at the site, and the lack of widespread contamination in the overlying strata in these areas. Additionally, after review, the analytical results associated with these borings do not contain the accompanying chloride impacts which have now been determined to be coexistent with the nRM2017856312 release.

The conditions of the Work Plan approval have been met. The areas of BH-4, BH-11, and BH-16 have been delineated both vertically and horizontally. To recap, the areas of BH-4, BH-11, and BH-16 contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg. The soil cover includes a top layer, which has established vegetation at the site.

Given these observed analytical data patterns described above, the lack of shallow groundwater in the area and that observed impacted intervals begin at a depth of 9 ft, COP believes that remediation in these areas would cause more damage to the existing surficial environment and create additional risk for a line strike during remedial activities.

VARIANCE REQUEST

The variance request is to leave this impacted material in the areas of BH-4, BH-11, and BH-16 in place. The data indicates that these deep impacts are unrelated to the nRM2017856312 release. The variance will provide equal protection of fresh water, public health and the environment, as the areas of disturbance will be minimized, and the existing uniform vegetative cover will not be eradicated.

REMEDIATION WORK PLAN

Due to the proximity of borings BH-7, BH-8 and BH-9 to the originally reported release extent and the Work Plan approval, these areas will continue to be included within the proposed area of remedial action. Thus, based on the collected analytical results, the remaining impacted material is proposed to be removed as shown in Figure 6. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 10 feet below the surrounding surface or until a representative sample from the walls and bottom of the excavation is below the Site RRALs and/or reclamation requirements. The area containing BH-8 and BH-9 and the area between BH-1 and BH-2 will be excavated to a depth of 4 feet below pre-release grade. The areas containing BH-1 and BH-2 will be excavated to depths of 8 feet and 10 feet

ConocoPhillips

below pre-release grade, respectively. The northern and western area of the release extent that contains steel surface lines will be hand-dug to a depth of 3 feet or the maximum extent practicable and heavy equipment will come no more than 4 feet from any pressurized lines. A pressurized pipeline runs across the southern end of the open excavation, and coordination with the pipeline owner, Plains All American (Plains), will be required to complete the remediation. It is unclear what type of remedial activities Plains will authorize at the Site.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is approximately 1,375 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 7. Twenty (20) confirmation floor samples and twenty-four (24) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses a surface area of approximately 7,560 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chloride (USEPA Method 300.0). Once results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas will be seeded in Spring 2021 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy Loam (SL) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix G.

CONCLUSION

The Previous Work Plan was conditionally approved. However, as noted, a second extension request was granted on April 4, 2022, by Chad Hensley via email. The additional drilling was completed as described, and the conditions of approval have been met. The 60-day extension approval revised the deadline to July 15, 2022. NMOCD email correspondence is included in Appendix F.

The final remedial extents are indicated in the figure set. This revised Work Plan presents the findings of the additional assessment and delineation activities, the conclusions upon review of the collected data and a variance request. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD.

ConocoPhillips

If you have any questions concerning the soil assessment, additional delineation, or the proposed remediation activities for the Site, please call me at (512) 338-2861 or email at Christian.Ilull@tetratech.com.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G. Program Manager

cc:

Mr. Sam Widmer, RMR - ConocoPhillips

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Initial Response and Assessment

Figure 4 – Additional Assessment

Figure 5 – Additional Delineation Locations

Figure 6 – Proposed Remediation and Reclamation

Figure 7 – Alternative Confirmation Sampling Plan

Tables:

Table 1 – Summary of Analytical Results – Initial Soil Assessment

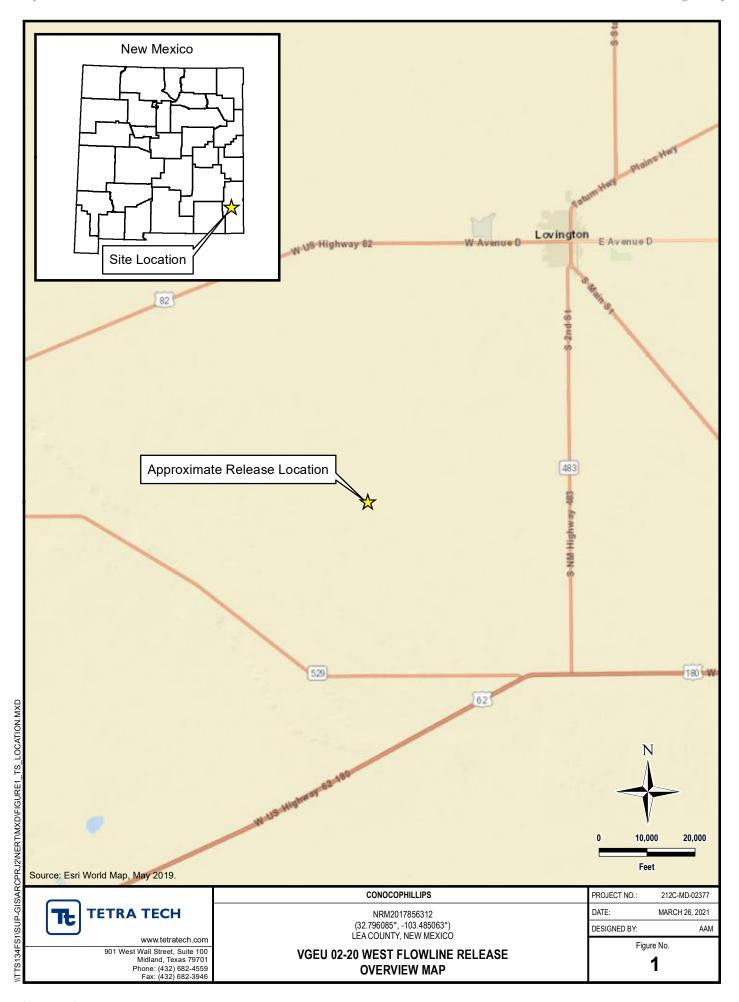
Table 2 – Summary of Analytical Results – Additional Soil Assessment

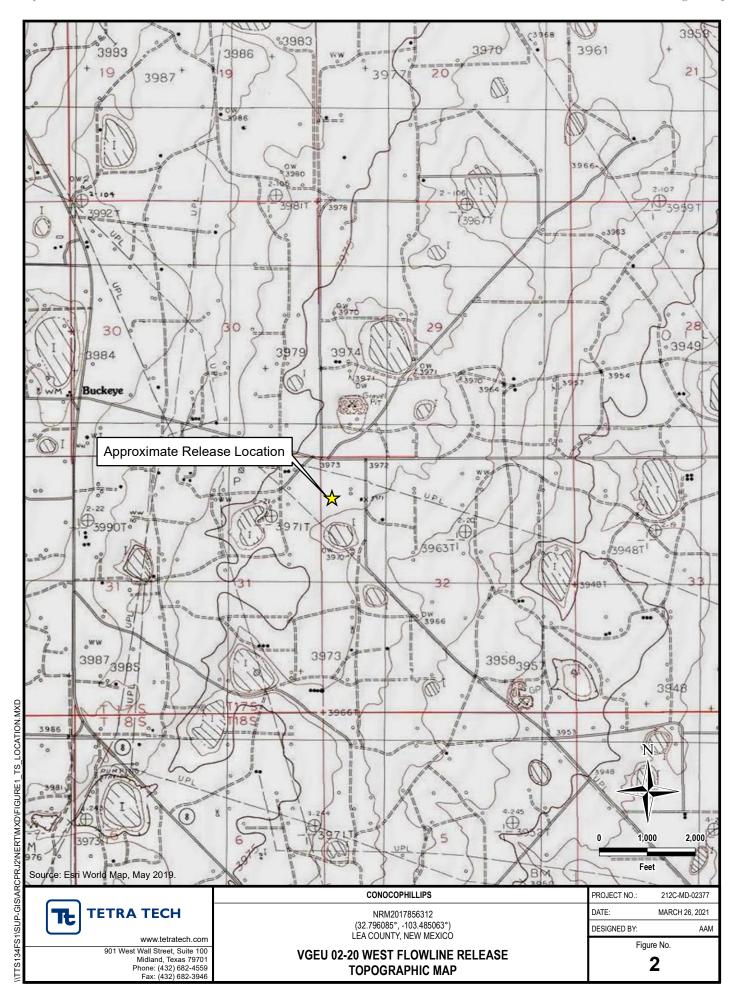
Appendices:

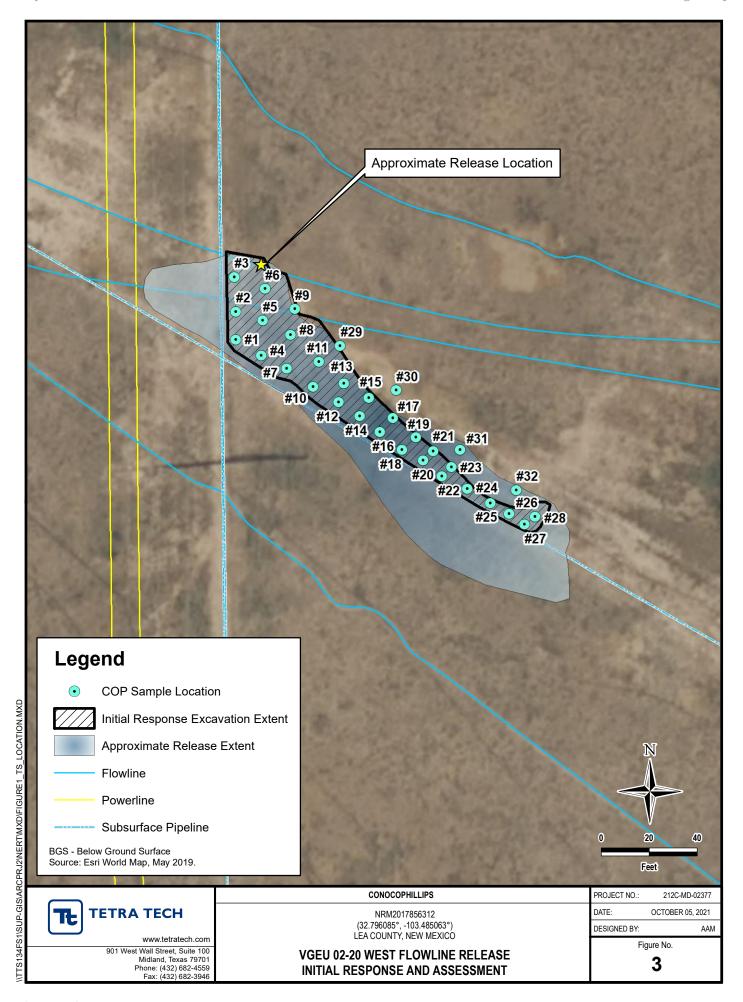
Appendix A – C-141 Forms

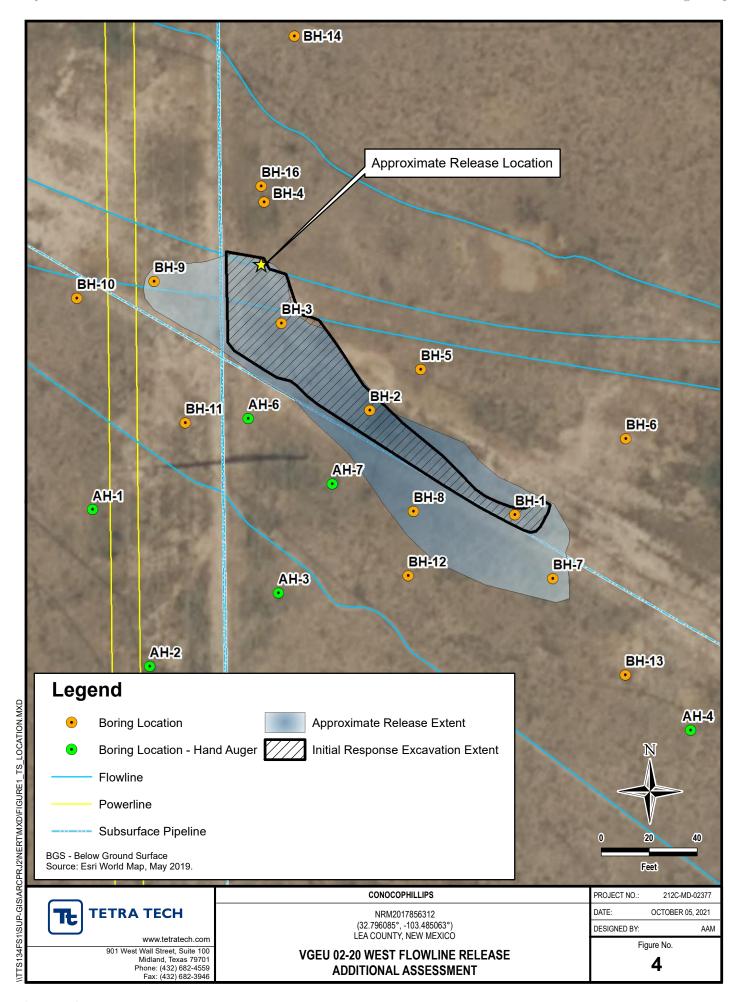
Appendix B – Site Characterization Data

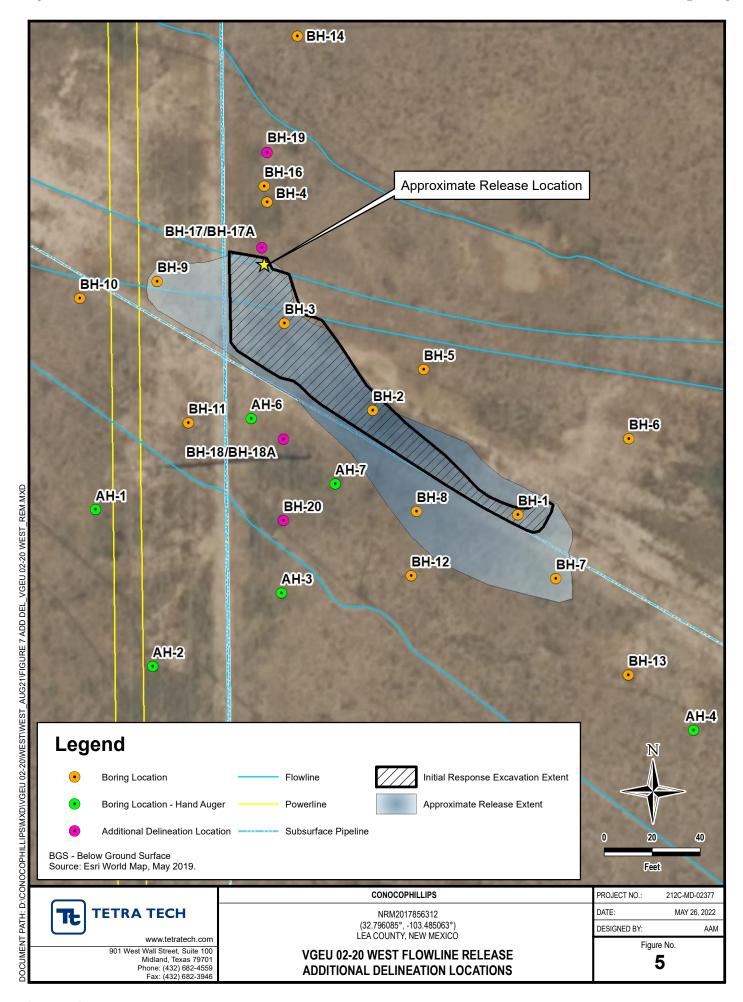
Appendix C - Laboratory Analytical Data

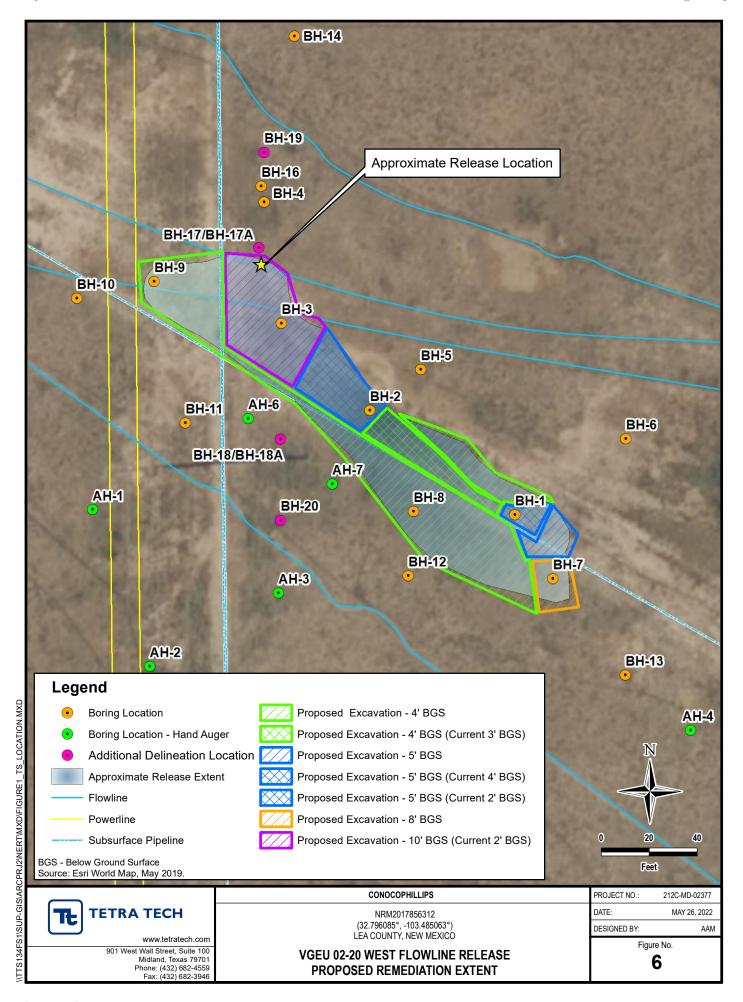

Appendix D – Photographic Documentation

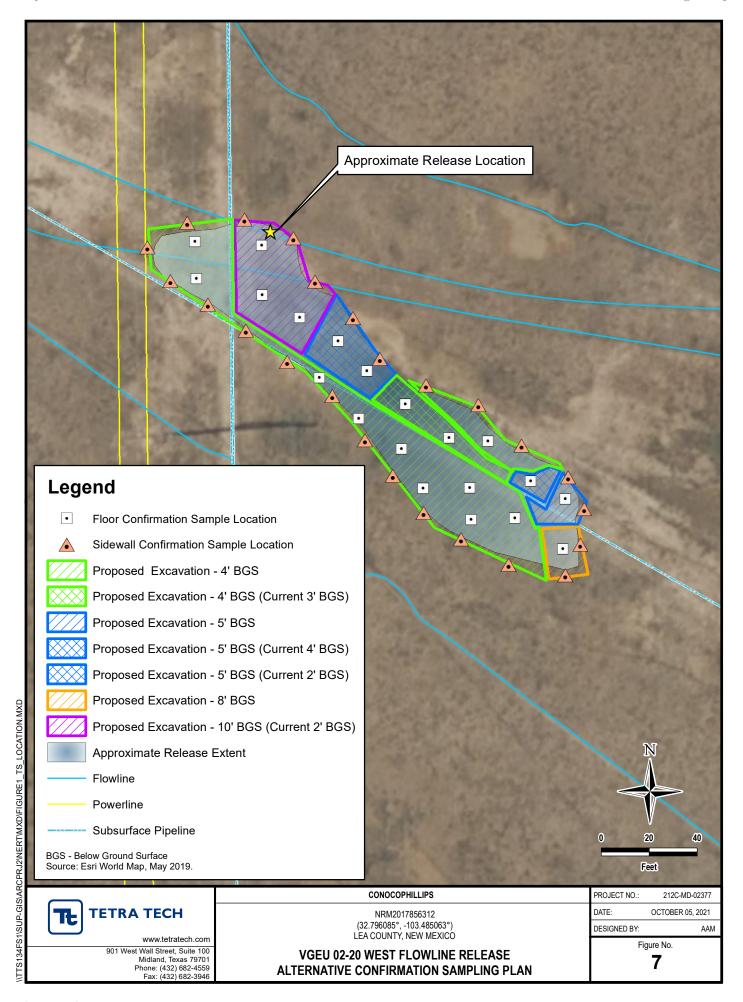

Appendix E – Soil Boring Logs


Appendix F - Regulatory Correspondence


Appendix G - NMSLO Seed Mixture Details


FIGURES





TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS CONOCOPHILLIPS INITIAL SOIL ASSESSMENT VGEU 02-20 WEST FLOWLINE RELEASE LEA COUNTY, NM

									BTEX ²							7	ГРН	3	
Sample ID	Sample Date	Sampled Depth	Chloride ¹	1	D		Talasas		Fab. db access		Tatal Valance		T-4-L DTCV	GRO⁴		DRO		ORO	T-4-LTD
Sample ID	Sample Date				Benzene		Toluene		Ethylbenzen	е	Total Xylene	5	Total BTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀	Total TPI
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg (2	mg/kg Q	mg/kg
SP #1	7/1/2020	2.0	4,360		< 0.050		0.051		0.158		< 0.150		0.323	< 10.0		1,560		517	2,077
SP #2	7/1/2020	2.0	12,400		< 0.050		0.073		0.147		0.302		0.523	11.0		7,450		1,700	9,161
SP #3	7/1/2020	2.0	3,600		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 50.0		5,680		1,750	7,430
SP #4	7/1/2020	2.0	10,400		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		1,920		687	2,607
SP #5	7/1/2020	2.0	18,300		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		2,140		786	2,926
SP #6	7/1/2020	2.0	15,600		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		533		188	721
SP #7	7/1/2020	2.0	15,600		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		1,670		610	2,280
SP #8	7/1/2020	2.0	17,200		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		3,780		1,190	4,970
SP #9	7/1/2020	2.0	7,600		< 0.050	П	< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		4,260		1,300	5,560
SP #10	7/1/2020	2.0	15,000		< 0.050	П	< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		1,260		327	1,587
SP #11	7/1/2020	2.0	14,800		< 0.050	П	< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		1,930		595	2,525
SP #12	7/1/2020	2.0	6,130		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		452		247	699
SP #13	7/1/2020	2.0	8,660		< 0.050		< 0.050		0.067		0.168		< 0.300	< 10.0		2,300		651	2,951
SP #14	7/1/2020	2.0	5,860		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 50.0		8,550		2,330	10,880
SP #15	7/1/2020	2.0	8,660		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		1,260		543	1,803
SP #16	7/1/2020	5.0	3,040		< 0.500		2.77		43.0		31.2		77.0	1,160		3,970		543	5,673
SP #17	7/1/2020	5.0	2,360		< 0.050		0.216		4.18		2.78		7.17	71.8		369		< 50.0	441
SP #18	7/1/2020	5.0	8,660		< 0.500	Ħ	0.848	T	16.6	T	16.1		33.5	868	Ħ	4,030	T	612	5,510
SP #19	7/1/2020	5.0	1,880		< 0.100	Ħ	0.442	T	< 0.100	T	10.900		11.4	597	Ħ	5,050	T	826	6,473
SP #20	7/1/2020	3.5	6,160		< 0.050	Ħ	< 0.050	T	< 0.050	T	< 0.150		< 0.300	19.3	Ħ	1,840	T	605	2,464
SP #21	7/1/2020	3.5	5,060		< 0.050		< 0.050	1	< 0.050		< 0.150		< 0.300	< 10.0	Ħ	2,470	T	674	3,144
SP #22	7/1/2020	3.5	2,200		< 0.050		< 0.050	1	< 0.050		< 0.150		< 0.300	15.8	Ħ	3,270	T	803	4,089
SP #23	7/1/2020	3.5	5,600		< 0.050		< 0.050	1	< 0.050		< 0.150		< 0.300	< 10.0	Ħ	365	T	124	489
SP #24	7/1/2020	3.0	3,840		< 0.050		< 0.050	1	< 0.050		< 0.150		< 0.300	10.8	Ħ	2,100	T	467	2,578
SP #25	7/1/2020	3.0	3,280	П	< 0.050	T	< 0.050	T	< 0.050	T	< 0.150		< 0.300	< 10.0	Ħ	1,050	T	390	1,440
SP #26	7/1/2020	2.5	1,540	П	< 0.050	T	< 0.050	T	< 0.050	T	< 0.150		< 0.300	15.0	Ħ	2,610	T	710	3,335
SP #27	7/1/2020	2.5	1,920	П	< 0.050	T	< 0.050	T	< 0.050	T	< 0.150		< 0.300	14.8	Ħ	3,140	T	857	4,012
SP #28	7/1/2020	2.5	1,380	П	< 0.050	T	< 0.050	T	< 0.050	T	< 0.150		< 0.300	< 10.0	Ħ	3,180	T	936	4,116
SP #29	7/1/2020	-	32.0	П	< 0.050	T	< 0.050	T	< 0.050	T	< 0.150		< 0.300	< 10.0	Ħ	< 10.0	T	< 10.0	< 10.0
SP #30	7/1/2020	-	64.0	П	< 0.050	T	< 0.050	T	< 0.050	Ħ	< 0.150		< 0.300	< 10.0	Ħ	< 10.0	Ť	< 10.0	< 10.0
SP #31	7/1/2020	- 1	464	T	< 0.050	$\dagger \dagger$	< 0.050	t	< 0.050	Ħ	< 0.150		< 0.300	< 10.0	Ħ	313	t	64	377
SP #32	7/1/2020	_	304	†	< 0.050	\dagger	< 0.050	t	0.176	H	0.243		0.419	10.2	\vdash	325	t	121	456

NOTES:

ft. Feet

Below ground surface

bgs ppm Parts per million

mg/kg Milligrams per kilogram Not sampled NS

Total Petroleum Hydrocarbons

GRO Gasoline range organics

Diesel range organics DRO

ORO Oil range organics

Method 4500.0 EPA Method 8260B 2

EPA Method 8015

EPA Method 8015D/GRO

Bold and italicized values indicate exceedance of proposed Site RRALs and/or reclamation requirements above 4 feet bgs.

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - nRM2017856312 CONOCOPHILLIPS VGEU 02-20 FLOWLINE RELEASE - WEST LEA COUNTY, NM

			Field Sci	reening		BTEX ²												TPH ³								
		Sample Depth Interval	Resi	ults	Chloride ¹											GRO⁴		DRO		ORO		Total TPH				
Sample ID	Sample Date	interval	Chloride	PID			Benzene		Toluene		Ethylbenzen	e	Total Xylenes	s	Total BTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)				
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg				
		4-5	3210	-	4430		< 0.00111		< 0.00557		0.0959		0.203		0.299	0.973		1540		1850		3391				
BH-1	1/18/2021	6-7	220	8.0	213		< 0.00104		< 0.00522		0.00149	J	0.00492	J	0.00641	1.27		273		210		484				
DH-1	1/10/2021	9-10	42	5.0	12.4	J	< 0.00105		< 0.00526		< 0.00263		< 0.00683		-	0.0298	J	5.75		6.71		12.5				
		15	-		< 20.7		< 0.00107		< 0.00533		< 0.00266		0.00114	J	0.00114	< 0.103		9.02		8.98		18.0				
		2-3	-		2450		< 0.00110		< 0.00551		0.0562		0.142		0.198	1.73		930		1040		1972				
		4-5	778	8.0	3620		< 0.00114		< 0.00568		0.0376		0.0948		0.132	2.97		1520		1420		2943				
BH-2	1/18/2021	6-7	554	5.0	499		< 0.00116		< 0.00581		< 0.00290		< 0.00755		-	0.0458	J	72.6		83.5		156				
		9-10	78	3.7	41.8		0.00151		< 0.00589		< 0.00294		< 0.00765		0.00151	0.0292	J	7.87		8.95		16.8				
		15	88	5.6	33.9		< 0.00114		< 0.00570		< 0.00285		< 0.00741		-	0.0334	J	9.16		9.25		18.4				
		2-3	-	-	3550		< 0.00113		< 0.00567		0.00639		0.0196		0.0260	2.22		784		649		1435				
		4-5	-	-	5070		< 0.0459		< 0.229		0.0352	J	0.109	J	0.144	411		3460		1650		5521				
		6-7	1250	-	6370		< 0.0475		< 0.237		0.0843	J	0.451		0.535	633		3210		1450		5293				
BH-3	4 /40 /2024	9-10	790	0.7	2940		< 0.0481		< 0.241		0.0697	J	0.284	J	0.354	327		2280		1220		3827				
BH-3	1/18/2021	15	346	0.6	648		< 0.00112		< 0.00562		0.00208	J	0.00824		0.0103	2.40		337		199		538				
		20	338	1.6	811		< 0.00451		< 0.0225		0.00349	J	0.0128	J	0.0163	47.4		330		183		560				
		25	-	-	45.6		< 0.00115		< 0.00575		< 0.00288		< 0.00748		-	0.0305	J	19.5	Т8	18.5	T8	38.0				
		30	-	-	27.8		< 0.00112		< 0.00560		< 0.00280		< 0.00729		-	< 0.106		19.6		13.6		33.2				
		0-1	77	3.0	< 21.2		< 0.00112		< 0.00560		0.000840	J	< 0.00728		0.000840	0.0528	BJ	3.81	J	9.72		13.6				
		2-3	55	9.0	17.3	J	< 0.00107		< 0.00536		0.000912	J	0.00279	J	0.00370	0.100	BJ	3.38	J	5.71		9.19				
BH-4	1/18/2021	4-5	378	5.0	< 20.8		< 0.00108		< 0.00538		< 0.00269		< 0.00699		-	< 0.104		2.29	J	3.49	J	5.78				
		6-7	79	-	< 20.6		< 0.00106		< 0.00531		< 0.00266		< 0.00691		-	< 0.103		3.73	J	12.5		16.2				
		9-10	56	-	< 20.8		< 0.00108		< 0.00542		< 0.00271		< 0.00704		-	< 0.104		1410		1980		3390				
		0-1	79	5.0	13.9	J	< 0.00109		< 0.00547		< 0.00273		< 0.00711			< 0.105	T	8.23	Т	19.7		27.9				
		2-3	90	5.0	211		< 0.00109		< 0.00545		< 0.00272		< 0.00708		-	< 0.104	1	19.0	T	24.7		43.7				
BH-5	1/18/2021	4-5	44	5.0	48.5		< 0.00106		< 0.00531		< 0.00266		< 0.00691		-	< 0.103		10.3		12.4		22.7				
		6-7	-	-	< 20.9		< 0.00109		< 0.00546		< 0.00273		< 0.00710		-	< 0.105		8.91		9.22		18.1				
		9-10	-	-	10.9	J	< 0.00109		< 0.00544		< 0.00272		< 0.00707		-	< 0.104		4.72		5.18		9.90				
		0-1	99	3.0	12.5	J	0.000905	ВЈ	< 0.00603		0.00145	J	0.00317	J	0.00553	0.0715	BJ	12.4	T	29.7		42.2				
		2-3	195	9.0	< 20.7		0.000643	ВЈ	< 0.00536		< 0.00268		< 0.00697		0.000643	< 0.104	1	3.47	J	7.13		10.6				
BH-6	1/18/2021	4-5	126	5.0	31.6		0.000927	ВЈ	< 0.00567		0.00259	J	0.00573	J	0.009247	0.0466	BJ	238	T	742		980				
		6-7	-	-	< 21.5		0.000720	J	0.00738		0.00461		0.0270		0.0397	7.68		2.20	J	2.28	J	12.2				
		9-10	-	-	< 20.9		< 0.00109		< 0.00544		< 0.00272		< 0.00707		-	0.0574	J	80.8		137		218				
		0-1	142		19.5	J	0.000780	ВЈ	< 0.00578		0.0475		0.0896		0.138	0.770		293		869		1163				
		2-3	44	-	< 20.6		0.000576	ВЈ	< 0.00530		0.0353		0.0841		0.120	1.89		233		586		821				
BH-7	1/18/2021	4-5	66		< 21.3		< 0.00901		< 0.0451		0.205		0.497		0.702	401		3980		2090		6471				
		6-7	59	-	< 21.4		< 0.00913		< 0.0457		0.0404		0.116		0.156	111		2320		1130		3561				
		9-10	64	-	< 21.9		< 0.00119		< 0.00595		< 0.00297		< 0.00773		-	0.386		84.6	L	52.3		137				
		0-1	84	5.0	17.1	J	0.000746	ВЈ	< 0.00552		0.0278		0.0564		0.0849	0.985		314		820		1135				
		2-3	42	5.0	14.9	J	0.000778	BJ	< 0.00519		0.00288		0.00875		0.0124	0.915		921		1330		2252				
BH-8	1/18/2021	4-5	41	5.0	< 20.4		0.000488	ВJ	< 0.00519	П	< 0.00260		0.00164	J	0.00213	0.0843	ВJ	320	Т	612		932				
		6-7	56	-	12.6	J	< 0.00107		< 0.00533		< 0.00267		< 0.00693	H	-	< 0.103		13.0	1	22.2		35.2				
		9-10	32	-	214		< 0.00110		< 0.00548		< 0.00274		0.00195	J	0.00195	0.629		242		143		386				
		0-1	77	3.0	16.7	J	< 0.00112		< 0.00562		0.00227	J	0.0126		0.0149	0.338		1260	İ	5100		6360				
BH-9	1/18/2021	1-1.5	55	3.0	< 20.6	Ť	0.000663	BJ	< 0.00530		0.00217		0.00822		0.0114	0.173	В	520		1150		1670				

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - nRM2017856312 CONOCOPHILLIPS VGEU 02-20 FLOWLINE RELEASE - WEST LEA COUNTY, NM

			Field Sc	reening							BTEX ²								TPI	l ³		
Comple ID	County Date	Sample Depth Interval	Res	ults	Chloride ¹		Benzene		Toluene		Feb. db		Tatal Walance	_	Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	interval	Chloride	PID			Benzene		Toluene		Ethylbenzen	е	Total Xylenes	s	IOTALBIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	84.7	0.1	10.3	J	< 0.00113		< 0.00567		< 0.00283		0.00113	J	0.00113	< 0.107		14.7		30.9		45.6
BH-10	5/14/2021	2-3	73.5	0.1	19.7	J	< 0.00108		< 0.00540		< 0.00270		< 0.00702		-	< 0.104		1.70	J	3.79	J	5.49
		3-4	72.7	0.1	13.6	J	< 0.00103		< 0.00515		< 0.00258		< 0.00670		-	0.0441	J	< 4.06		1.58	J	1.62
		0-1	100	0.1	< 21.0		< 0.00110		< 0.00549		< 0.00274		< 0.00713		-	< 0.105		21.4		29.8		51.2
BH-11	5/14/2021	3-4	70.5	0.1	< 20.4		< 0.00104		< 0.00521		< 0.00260		< 0.00677		-	< 0.102		14.0		35.6		49.6
511 11	3/14/2021	4-5	82.3	0.3	< 20.5		< 0.00105		< 0.00527		< 0.00263		0.00276	J	0.00276	0.119		188		438		626
		9-10	79.3	365.4	< 20.7		< 0.00857	J3	< 0.0428	J3	0.0450	J3	0.703	J3	0.748	94.6		2170		1240		3505
		0-1	196	0.4	104		< 0.00115		< 0.00575		< 0.00288		< 0.00748		-	< 0.107		3.91	J	16.6		20.5
BH-12	5/14/2021	2-3	106	0.5	58.4		< 0.00106		< 0.00532		< 0.00266		< 0.00692		-	< 0.103		< 4.13		2.56	J	2.56
511 12	3/14/2021	4-5	78.7	0.3	17.0		< 0.00105		< 0.00523		< 0.00261		< 0.00680		-	< 0.102		< 4.09		0.908	J	0.908
		9-10	62.2	0.3	13.4	J	< 0.00109		< 0.00547		< 0.00273		< 0.00711		-	< 0.105		< 4.19		0.458	J	0.458
		0-1	375	0.3	592		< 0.00116		< 0.00581		< 0.00290		< 0.00755		-	< 0.108		3.78	J	15.3		19.1
BH-13	5/14/2021	2-3	377	0.3	397		< 0.00109		< 0.00545		< 0.00272		< 0.00708		-	< 0.104		< 4.18		1.92	J	1.92
3/14/2021	3-4	623	0.3	495		< 0.00107		< 0.00537		< 0.00269		< 0.00699		-	< 0.104		< 4.15		0.786	J	0.786	
		4-5	1020	0.3	847		< 0.00113		< 0.00563		< 0.00282		< 0.00732		-	< 0.106		< 4.25		0.340	J	0.340
		0-1	66.7	0.1	14.2	J	< 0.00111		< 0.00553		< 0.00276		< 0.00719		-	< 0.105		15.4		31.9		47.3
BH-14	5/14/2021	2-3	100	0.1	19.0	J	< 0.00108		< 0.00538		< 0.00269		< 0.00700		-	< 0.104		2.67	J	4.95		7.62
	3, 2 1, 2 2 2	3-4	92.1	0.1	15.1	J	< 0.00106		< 0.00530		< 0.00265		< 0.00690		-	< 0.103		2.35	J	3.37	J	5.72
		9-10	73.2	0.1	< 20.6		< 0.00106		< 0.00531		< 0.00265		< 0.00690		-	< 0.103		< 4.12		< 4.12		•
BH-16	5/14/2021	0-1	92.3	0.7	107		< 0.00114		< 0.00571		< 0.00286		< 0.00742		-	< 0.107		4.54		15.7		20.2
511 10	3/14/2021	9-10	70.2	61.2	< 21.2		< 0.00112	J3	< 0.00559	J3	< 0.00280	J3	< 0.00727	J3	-	0.488		1960		2260		4220
AH-1	5/25/2021	0-1	86.7	-	< 21.4		0.000824	ВЈ	0.00219	J	0.00171	J	0.00418	J	0.00890	< 0.107		9.48		28.7		38.2
AH-2	5/25/2021	0-1	82.4	-	< 21.8		< 0.00118		< 0.00590		< 0.00295		< 0.00767	П	-	< 0.109		293		908		1201
AH-3	5/25/2021	0-1	94.0	-	< 22.8		0.000825	J	0.00333	J	0.00127	J	0.00615	J		< 0.114		3.45	J	8.82		12.3
AH-4	5/25/2021	0-1	96.0		< 21.6		< 0.00116		0.00163	J	< 0.00289		0.00198	J	0.00361	< 0.108		6.78		15.0		21.8
AH-5	5/25/2021	0-1	198		10.5	J	< 0.00115		0.00168	J	< 0.00287		0.00247	J	0.00415	< 0.107		13.2		33.2		46.4
AH-6	5/25/2021	0-1	209	-	< 23.2		< 0.00132		0.00225	J	< 0.00331		0.00278	J	0.00503	< 0.116		6.33		20.0		26.3
An-u	AH-6 5/25/2021 -	1-2	250		< 22.1		< 0.00121		0.00191	J	< 0.00302		0.00276	J	0.00467	< 0.110		2.65	J	5.63	В	8.28
AH-7	5/25/2021	0-1	93.0		< 22.9		< 0.00129		0.00367	1	< 0.00322		0.00338	1	0.00705	< 0.114		4.99		8.02		13.0

NOTES:

ft. Feet bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics DRO Diesel range organics

ORO Oil range organics

Bold and italicized values indicate exceedance of proposed Site RRALs and/or reclamation requirements above 4 feet bgs.

Shaded rows indicate depth intervals proposed for excavation and remediation

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015 4 EPA Method 8015D/GRO

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

T8 Sample(s) received past/too close to holding time expiration.

TABLE 3

SUMMARY OF ANALYTICAL RESULTS

ADDITIONAL DELINEATION - nRM2017856312

CONOCOPHILLIPS

VGEU 02-20 FLOWLINE RELEASE - WEST LEA COUNTY, NM

									BTEX	.2								TI	PH ³		
Carralla ID	Council a Data	Sample Depth	Chlorid	le ¹	D		Toluer		Fabrilleri		T-4-LV		T-4-LD	TEV	GRO	1	DRO		EXT DR	RO	Total TPH
Sample ID	Sample Date				Benzer	ie	Toluer	ie	Ethylben	zene	Total Xy	enes	Total B	IEX	C ₆ - C	10	> C ₁₀ -	C ₂₈	> C ₂₈ - 0	C ₃₆	(GRO+DRO+EXT DRO
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		6-7	64.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
BH-17	2/18/2022	8-9	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		158		120		278
BH-17	2/16/2022	10-11	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		18.3		1,200		355		1,573
		12-13	< 16.0		< 0.050		< 0.050		0.121	GC-NC1	0.960	GC-NC1	1.08	GC-NC1	130		2,370		503		3,003
		14-15	32.0		< 0.050		< 0.050	GC-NC	< 0.050	GC-NC	< 0.150	GC-NC	< 0.300		200	QM-07	4,860	QM-07	1,060		6,120
		19-20	32.0		< 0.050		0.332		0.294		4.60		5.23		284		4,360		851		5,495
		24-25	16.0		< 0.050		0.136		0.121		2.69		2.95		145		2,800		557		3,502
BH-17A	5/24/2022	29-30	< 16.0		< 0.050		< 0.050		0.062		0.730		0.793		38.9		1,440		287		1,766
		34-35	< 16.0		< 0.050		0.108		0.177		1.24		1.53		41.4		1,400		287		1,728
		39-40	16.0		< 0.050		< 0.050		0.076		0.407		0.483		21.6		997		219		1,238
		44-45	32.0		< 0.050		0.500		0.894		2.34		3.74		54.0		1,100		227		1,381
		6-7	< 16.0		< 0.050		< 0.050		0.610	GC-NC1	3.06	GC-NC1	3.67	GC-NC1	201		2,140		414		2,755
BH-18	2/18/2022	8-9	< 16.0		< 0.050		< 0.050		0.802	GC-NC1	3.90	GC-NC1	4.70	GC-NC1	223		2,190		431		2,844
DN-10 Z/	2/18/2022	10-11	< 16.0		< 0.050		< 0.050		0.598	GC-NC1	2.68	GC-NC1	3.28	GC-NC1	182		2,100		418		2,700
		12-13	< 16.0		< 0.050		< 0.050		< 0.050		0.194		< 0.300	GC-NC1	23.8		340		45.6		409
		14-15	< 16.0		< 0.200		4.06		13.3		27.6		44.9		366		2,590		496		3,452
		19-20	< 16.0		< 0.500		8.44		20.9		37.9		67.2		728		3,580		638		4,946
		24-25	< 16.0		< 0.050		0.383		1.25		2.48		4.11		58.9		1,000		191		1,250
BH-18A	5/24/2022	29-30	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		54.2		< 10.0		54.2
DH-10A	3/24/2022	34-35	< 16.0		< 0.050		< 0.050		0.067		< 0.150		< 0.300		< 10.0		86.8		< 10.0		86.8
		39-40	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		101		13.1		114
		44-45	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		45.4		< 10.0		45.4
		49-50	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		16.0		< 10.0		16.0
BH-19	2/10/2022	6-7	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
BH-19	2/18/2022	9-10	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
		0-1	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		53.7		< 10.0		53.7
		2-3	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		20.2		< 10.0		20.2
21.20	5 /2 4 /2025	4-5	64.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
BH-20	5/24/2022	6-7	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
		9-10	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
		14-15	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-

NOTES:

. Feet Bold and italicized values indicate exceedance of proposed Remediation RRALs and/or Reclamation Requirements.

Below ground surface Shaded rows indicate intervals proposed for excavation.

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics GC-NC 8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis

Diesel range organics and are reported as ND

1 Method SM4500Cl-B GC-NC1 8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis

Method 8021B and are biased high with interfering compounds.

QUALIFIERS:

Method 8015M QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted

based on acceptable LCS.

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	nRM2017856312
District RP	
Facility ID	
Application ID	_

Release Notification

Responsible Party

Responsible	Party Conc	coPhillips Co	mnany	OGRID	217817	
		•	πιραιιγ			. 577 0074
	=	Vaggaman	0 51 ''''		Telephone 505	
		Waggaman@	ConocoPhillip	s.com Incident	# (assigned by OCD)	
Contact mail	ing address	29 Vacuum	Complex Lane	e, Lovington,	NM 88260	
			Location	of Release S	Source	
Latitude 32.7	796111					03.487222
			(NAD 83 in dec	imal degrees to 5 dec	rimal places)	
Site Name V	GEU 02-2	20		Site Type	Off location	
Date Release	Discovered	6/16/20		API# (if a	pplicable) N/A	
Unit Letter	Section	Township	Range	Сот	ınty	
D	32	17S	35E	Lea	a	
Surface Owner			ribal ☐ Private (∧ Nature and Il that apply and attach	Volume of		e volumes provided below)
Crude Oil	1	Volume Release			Volume Reco	
X Produced	Water	Volume Release	ed (bbls) 56.4	8	Volume Reco	overed (bbls) 0
		Is the concentra produced water	tion of dissolved cl >10,000 mg/l?	nloride in the	Yes N	lo
Condensa	ate	Volume Release	ed (bbls)		Volume Reco	overed (bbls)
Natural G	as	Volume Release	ed (Mcf)		Volume Reco	overed (Mcf)
Other (de	scribe)	Volume/Weight	Released (provide	units)	Volume/Weig	ght Recovered (provide units)
Cause of Rel	ease	1				
Flo	owline spl	it				

Received by OCD: 5/31/2022 1:14:59 PM Form C-141 State of New Mexico Oil Conservation Division Page 2

	Page 24 o	of 33.
: ID	nRM2017856312	

Incident ID	nRM2017856312
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the respo	nsible party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?	The release exceeded 25 bbls	of produced water.
X Yes □ No		
K ies I No		
If YES, was immediate n	otice given to the OCD? By whom? To w	hom? When and by what means (phone, email, etc)?
	was given to Bradford Billings and	
Waggaman, Cono	coPhillips Environmental Coordin	ator on 6/17/20.
	Initial R	esponse
The responsible	party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
The impacted area ha	as been secured to protect human health and	the environment.
Released materials ha	ave been contained via the use of berms or	dikes, absorbent pads, or other containment devices.
All free liquids and r	ecoverable materials have been removed an	d managed appropriately.
If all the actions describe	d above have <u>not</u> been undertaken, explain	why:
Dom 10 15 20 9 D (4) NIN	AAC the magnetial month may common as	amodiation immediately after discovery of a release. If namodiation
		remediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred
within a lined containment	nt area (see 19.15.29.11(A)(5)(a) NMAC), j	please attach all information needed for closure evaluation.
		best of my knowledge and understand that pursuant to OCD rules and ifications and perform corrective actions for releases which may endanger
public health or the environ	ment. The acceptance of a C-141 report by the G	OCD does not relieve the operator of liability should their operations have
		eat to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
and/or regulations.	1	
Printed Name: Kelsy V	Vaggaman	Title: Environmental Coordinator
Signature: Tanyla	bryspinn	Date:6/26/20
_{email:} Kelsy.Wagga	man@ConocoPhillips.com	Telephone: 505-577-9071
OCD O I		
OCD Only		
Received by:		Date:

Soil Spilled-Fluid Saturation

15.12%

15.12%

15.12%

L48 Spill Volume Estimate Form

Spill Calculation - Subsurface Spill - Rectangle

Estimated volume of each area

(bbl.)

25.365

120.150

288 360

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Total Volume Release:

On Pad - 10.5%: Off Pad - 15.12% soil spilled-fluid saturation factor

Yes, On Pad - 8%; Off Pad - 13.57% soil spilled-fluid saturation factor; if No, use factors above.

Total Estimated

Volume of Spill

(bbl.)

3 835

18.167

43 600

0.000

0.000

0.000

0.000

0.000

0.000

0.000

65.602

Percentage of Oil if

Spilled Fluid is a

Mixture

20 00%

20.00%

20.00%

Page 25 of 331

Total Estimated

Volume of Spilled Oil

(bbl.)

0.767

3.633

8.720

0.000

0.000

0.000

0.000

0.000

0.000

0.000

13.120

Total Estimated

Volume of Spilled

Liquid other than Oil

(bbl.)

3.068

14.533

34,880

0.000

0.000

0.000

0.000

0.000

0.000

0.000

52.482

Received by OCD: 3/31/2025 9:214:59 PM Release Discovery Date & Time: 6/16/2020

Provide any known details about the event: FL leak

Was the release on pad or off-pad?

Width

(ft.)

5.0

15.0

30.0

Released to Imaging: 9/23/2022 12:51:39 PM

Has it rained at least a half inch in the last 24 hours?

Length

(ft.)

57.0

90.0

54.0

Convert Irregular shape

into a series of

rectangles

Rectangle A

Rectangle C

Rectangle D

Rectangle E

Rectangle F

Rectangle G

Rectangle H

Rectangle J

Release Type: Oil Mixture

Depth

(in.)

6.00

6.00

12.00

of New Mexico

Incident ID nRM2017856312
District RP
Facility ID
Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
 \infty Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well included in the surface features. Subsurface features is subsurface features. Subsurface features in the subsurface features is subsurface features. Subsurface features is subsurface features is subsurface features. Subsurface features is subsurface features is subsurface features is subsurface features. Subsurface features is subsurface features is subsurface features is subsurface features. Subsur	ls.
Data table of soil contaminant concentration data	
Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release	
Boring or excavation logs	
Photographs including date and GIS information	
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
V Dacorator, and increasing citatin or custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/31/2022 1:14:59 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

 Page 27 of 331

 Incident ID
 nRM2017856312

 District RP
 Facility ID

Application ID

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. _____ Title: Principal Program Manager Printed Name: Sam Widmer DocuSigned by: Sam Widner Date: May-30-2022 Signature: -- 5454CA5BAD33498... Telephone: ___ 281-206-5298 email: Sam.Widmer@conocophillips.com **OCD Only** Received by: Date:

Form C-141 Page 5

State of New Mexico Oil Conservation Division

Incident ID	nRM2017856312
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated.
Contamination does not cause an imminent risk to human health, the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Samuel Midner Title: RmfR Royau Manager
Printed Name: Samuel Widmer Title: Rm&R Project Manager Signature: Inc Widner Date: 10/07/21
email: Sim. widner 200, con Telephone: 281-206-5298
OCD Only
Received by: Chad Hensley Date:11/15/2021
☐ Approved ☐ Approved with Attached Conditions of Approval ☐ Denied ☐ Deferral Approved
Signature: Date: 11/15/2021

Page 29 of 331

	1 1180 2 2 0 1 0 0
Incident ID	nRM2017856312
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be inc	cluded in the plan.
 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation points ☑ Estimated volume of material to be remediated ☑ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C) ☑ Proposed schedule for remediation (note if remediation plan timeling) 	
<u>Deferral Requests Only</u> : Each of the following items must be confirm	ned as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around produ deconstruction.	ction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health, the	e environment, or groundwater.
Signature: Sam Widmer I	in release notifications and perform corrective actions for releases of a C-141 report by the OCD does not relieve the operator of d remediate contamination that pose a threat to groundwater, eptance of a C-141 report does not relieve the operator of
OCD Only	
Received by: D	ate:
Approved	roval Denied Deferral Approved
Signature: Jennifer Nobui Dat	e: 09/23/2022

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

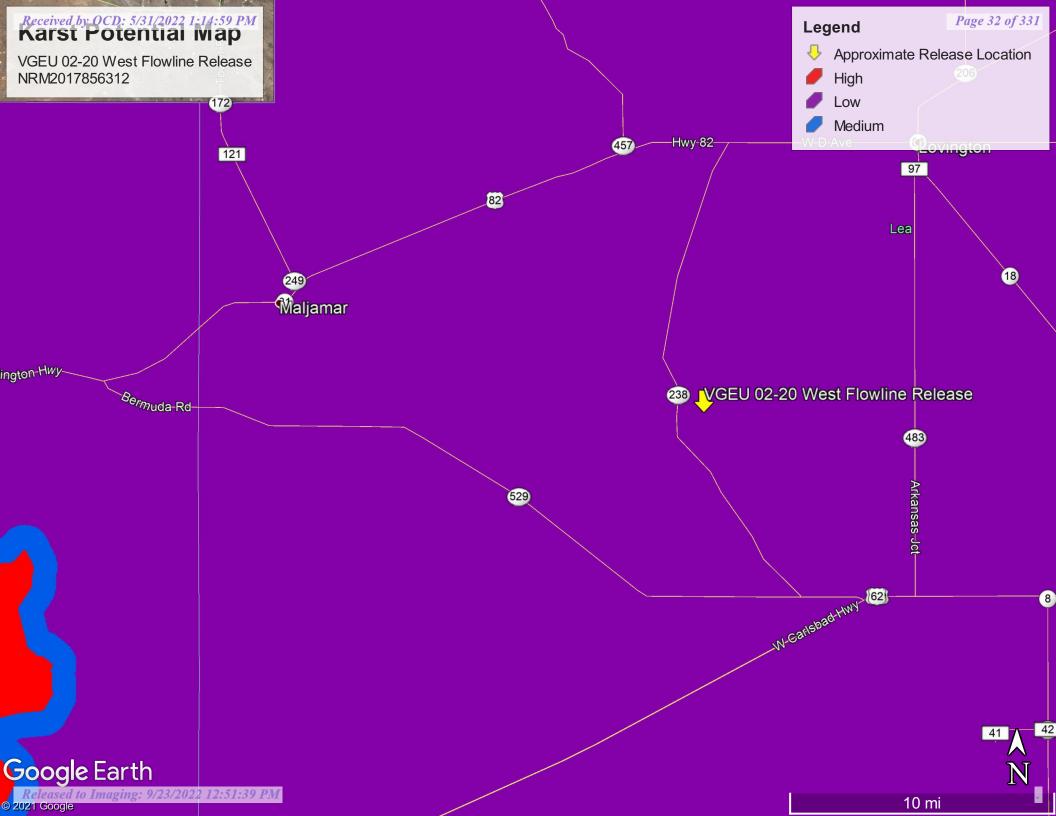
(NAD83 UTM in meters) (In feet)

		POD Sub-		Q	Q	Q							Depth	Depth	Water
POD Number	Code	basin	County	64	16	4	Sec	Tws	Rng	Х	Υ	Distance	-	-	Column
L 14183 POD2		L	LE	3	2	2	31	17S	35E	641304	3629691 🌑	300	227	105	122
L 14183 POD1		L	LE	3	2	2	31	17S	35E	641266	3629667 🌍	341	229	106	123
L 14183 POD3		L	LE	3	2	2	31	17S	35E	641213	3629731 🌍	388	227	104	123
L 03875 S2	R	L	LE			2	31	17S	35E	641131	3629576* 🌑	496	120	95	25
L 03875 S4		L	LE			2	31	17S	35E	641131	3629576* 🌑	496	120		
L 03874		L	LE	3	1	2	31	17S	35E	640823	3629678* 🌍	780	229	90	139

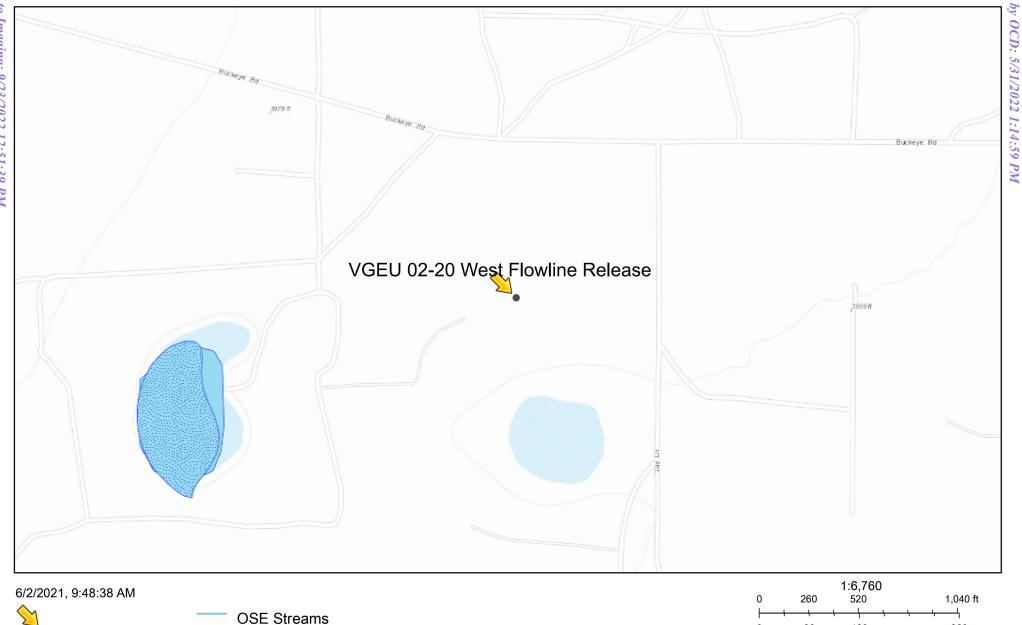
Average Depth to Water: 100 feet

> Minimum Depth: 90 feet

Maximum Depth: 106 feet


Record Count: 6

UTMNAD83 Radius Search (in meters):


Easting (X): 641601.32 Radius: 800 Northing (Y): 3629736

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

VGEU 02-20 West Flowline Release

Override 1

OSE Water-bodies

PLJV Probable Playas

160 320 m

Bureau of Land Management, Texas Parks & Wildlife, Esri, HERE, Garmin INCREMENT P, USGS, EPA, USDA

APPENDIX C Laboratory Analytical Data

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

July 07, 2020

JUSTIN WRIGHT

Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: VGEU 02 - 20

Enclosed are the results of analyses for samples received by the laboratory on 07/01/20 15:28.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 1 - 2 (H001735-01)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	0.051	0.050	07/06/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	0.158	0.050	07/06/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	0.323	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank BS		% Recovery	True Value QC	RPD	Qualifier
Chloride	4360	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	1560	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	517	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	87.6	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	123 9	% 42.2-15	6						

A ... - L ... - - - I D. .. MC

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 2 - 2 (H001735-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	< 0.050	0.050	07/06/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	0.073	0.050	07/06/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	0.147	0.050	07/06/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	0.302	0.150	07/06/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	0.523	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	12400	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	11.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	7450	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	1700	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	97.65	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	410 9	6 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1

Fax To: (575) 297-1477

ma/ka

 Received:
 07/01/2020
 Sampling Date:
 07/01/2020

 Reported:
 07/07/2020
 Sampling Type:
 Soil

Project Name: VGEU 02 - 20 Sampling Condition: ** (See Notes)
Project Number: NOT GIVEN Sample Received By: Jodi Henson

Applyzod By: MC

Project Location: LEA CO NM

Sample ID: SP 3 - 2 (H001735-03)

RTFY 8021R

B1EX 8021B	mg	/ Kg	Analyze	a By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3600	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	5680	50.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	1750	50.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	85.8	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	301	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020 Project Name: VGEU 02 - 20

NOT GIVEN

Project Location: LEA CO NM Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 4 - 2 (H001735-04)

Project Number:

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10400	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	1920	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	687	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	83.4	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	153 9	42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020 Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 5 - 2 (H001735-05)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	< 0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	18300	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	2140	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	786	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	78.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	169 9	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

ma/ka

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: *** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 6 - 2 (H001735-06)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.4	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15600	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	533	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	188	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	74.3	% 44.3-14	14						
Surrogate: 1-Chlorooctadecane	83.8	% 42.2-15	6						

Applyzod By: MC

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 7 - 2 (H001735-07)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	< 0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.6	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15600	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	1670	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	610	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	86.1	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	153	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020 Project Name: VGEU 02 - 20 Project Number: NOT GIVEN

ma/ka

Project Location: LEA CO NM Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 8 - 2 (H001735-08)

RTFY 8021R

BIEX 8021B	mg/	/ Kg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	17200	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	3780	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	1190	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	88.4	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	251	% 42 2-15	6						

Applyzod By: MC

Surrogate: 1-Chlorooctadecane 251 % 42.2-156

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020
Project Name: VGEU 02 - 20
Project Number: NOT GIVEN

mg/kg

Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: *** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 9 - 2 (H001735-09)

BTEX 8021B

DILX GOZID	iiig/	, kg	Andryzo	u by. 1-15					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7600	16.0	07/06/2020	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	174	86.8	200	0.287	
DRO >C10-C28*	4260	10.0	07/02/2020	ND	169	84.5	200	2.06	
EXT DRO >C28-C36	1300	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	87.7	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	249	% 42.2-15	6						

Analyzed By: MS

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 10 - 2 (H001735-10)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15000	16.0	07/06/2020	ND	416	104	400	0.00	QM-07
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	1260	10.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	327	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	89.4	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	137 9	42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020 Project Name: VGEU 02 - 20

Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 11 - 2 (H001735-11)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.4	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	14800	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	1930	10.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	595	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	81.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	158 %	6 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 12 - 2 (H001735-12)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.3	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6130	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	452	10.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	247	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	83.4	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	101 9	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 13 - 2 (H001735-13)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	0.067	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	0.168	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.5	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8660	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	2300	10.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	651	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	71.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	153	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020 Project Name: VGEU 02 - 20

Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: *** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 14 - 2 (H001735-14)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5860	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	8550	50.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	2330	50.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	86.7	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	401	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 15 - 2 (H001735-15)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8660	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	1260	10.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	543	10.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	79.9	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	130 9	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: *** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 16 - 5 (H001735-16)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	2.77	0.500	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	43.0	0.500	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	31.2	1.50	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	77.0	3.00	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	135	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3040	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1160	100	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	3970	100	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	543	100	07/02/2020	ND					
Surrogate: 1-Chlorooctane	167	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	203	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 17 - 5 (H001735-17)

BTEX 8021B	mg/	kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	0.216	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	4.18	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	2.78	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	7.17	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	207 9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2360	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	71.8	50.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	369	50.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	<50.0	50.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	101 9	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	108 9	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

S-04

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

mg/kg

Received: 07/01/2020 Sampling Date: 07/01/2020 Reported: 07/07/2020 Sampling Type: Soil

Project Name: VGEU 02 - 20 Sampling Condition: ** (See Notes) Sample Received By: Project Number: NOT GIVEN Jodi Henson

Analyzed By: MS

Project Location: LEA CO NM

Sample ID: SP 18 - 5 (H001735-18)

BTEX 8021B

	9	/ J							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	0.848	0.500	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	16.6	0.500	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	16.1	1.50	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	33.5	3.00	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	132	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8660	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	868	50.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	4030	50.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	612	50.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	157	% 44.3-14	'4						
		A							

Surrogate: 1-Chlorooctadecane 174 % 42.2-156

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 19 - 5 (H001735-19)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.100	0.100	07/06/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	0.442	0.100	07/06/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.100	0.100	07/06/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	10.9	0.300	07/06/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	11.4	0.600	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	137	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1880	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	597	50.0	07/02/2020	ND	208	104	200	1.20	
DRO >C10-C28*	5050	50.0	07/02/2020	ND	218	109	200	1.17	
EXT DRO >C28-C36	826	50.0	07/02/2020	ND					
Surrogate: 1-Chlorooctane	138	% 44.3-14	14						
Surrogate: 1-Chlorooctadecane	223	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020
Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 20 - 3.5 (H001735-20)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.0	2.00	3.04	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	3.01	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.95	97.3	2.00	3.30	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.66	94.4	6.00	3.42	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6160	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	19.3	10.0	07/06/2020	ND	207	103	200	2.16	QM-07
DRO >C10-C28*	1840	10.0	07/06/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	605	10.0	07/06/2020	ND					
Surrogate: 1-Chlorooctane	75.4	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	122	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: *** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 21 - 3.5 (H001735-21)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/02/2020	ND	1.92	96.1	2.00	1.64	
Toluene*	<0.050	0.050	07/02/2020	ND	1.93	96.3	2.00	2.00	
Ethylbenzene*	<0.050	0.050	07/02/2020	ND	1.96	98.0	2.00	2.04	
Total Xylenes*	<0.150	0.150	07/02/2020	ND	5.71	95.1	6.00	2.01	
Total BTEX	<0.300	0.300	07/02/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.2	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5060	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2020	ND	207	103	200	2.16	
DRO >C10-C28*	2420	10.0	07/06/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	674	10.0	07/06/2020	ND					
Surrogate: 1-Chlorooctane	74.1	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	142	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 22 - 3.5 (H001735-22)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/02/2020	ND	1.92	96.1	2.00	1.64	
Toluene*	<0.050	0.050	07/02/2020	ND	1.93	96.3	2.00	2.00	
Ethylbenzene*	<0.050	0.050	07/02/2020	ND	1.96	98.0	2.00	2.04	
Total Xylenes*	<0.150	0.150	07/02/2020	ND	5.71	95.1	6.00	2.01	
Total BTEX	<0.300	0.300	07/02/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2200	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	15.8	10.0	07/03/2020	ND	207	103	200	2.16	
DRO >C10-C28*	3270	10.0	07/03/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	803	10.0	07/03/2020	ND					
Surrogate: 1-Chlorooctane	91.5	% 44.3-14	'4						
Surrogate: 1-Chlorooctadecane	192	% 42.2-15	6						

Surrogate: 1-Chlorooctadecane 192 % 42.2-156

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Reported: 07/07/2020
Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 23 - 3.5 (H001735-23)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/02/2020	ND	1.92	96.1	2.00	1.64	
Toluene*	<0.050	0.050	07/02/2020	ND	1.93	96.3	2.00	2.00	
Ethylbenzene*	<0.050	0.050	07/02/2020	ND	1.96	98.0	2.00	2.04	
Total Xylenes*	<0.150	0.150	07/02/2020	ND	5.71	95.1	6.00	2.01	
Total BTEX	<0.300	0.300	07/02/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5600	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2020	ND	207	103	200	2.16	
DRO >C10-C28*	365	10.0	07/03/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	124	10.0	07/03/2020	ND					
Surrogate: 1-Chlorooctane	92.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	107	% 42.2-15	6						

Applyzod By: MC

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 24 - 3 (H001735-24)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/03/2020	ND	1.92	96.1	2.00	1.64	
Toluene*	<0.050	0.050	07/03/2020	ND	1.93	96.3	2.00	2.00	
Ethylbenzene*	<0.050	0.050	07/03/2020	ND	1.96	98.0	2.00	2.04	
Total Xylenes*	<0.150	0.150	07/03/2020	ND	5.71	95.1	6.00	2.01	
Total BTEX	<0.300	0.300	07/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3840	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	10.8	10.0	07/03/2020	ND	207	103	200	2.16	
DRO >C10-C28*	2100	10.0	07/03/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	467	10.0	07/03/2020	ND					
Surrogate: 1-Chlorooctane	90.9	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	164	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 25 - 3 (H001735-25)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3280	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2020	ND	207	103	200	2.16	
DRO >C10-C28*	1050	10.0	07/06/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	390	10.0	07/06/2020	ND					
Surrogate: 1-Chlorooctane	72.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	105 9	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 26 - 2.5 (H001735-26)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1540	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	15.0	10.0	07/03/2020	ND	207	103	200	2.16	
DRO >C10-C28*	2610	10.0	07/03/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	710	10.0	07/03/2020	ND					
Surrogate: 1-Chlorooctane	89.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	172 9	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: *** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 27 - 2.5 (H001735-27)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1920	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	14.8	10.0	07/03/2020	ND	207	103	200	2.16	
DRO >C10-C28*	3140	10.0	07/03/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	857	10.0	07/03/2020	ND					
Surrogate: 1-Chlorooctane	93.7	% 44.3-14	'4						
Surrogate: 1-Chlorooctadecane	195	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020 Project Name: VGEU 02 - 20

Project Number: NOT GIVEN
Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 28 - 2.5 (H001735-28)

RTFY 8021R

B1EX 8021B	mg/	/ Kg	Analyze	а ву: мѕ					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.6	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1380	16.0	07/06/2020	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2020	ND	181	90.6	200	0.0215	
DRO >C10-C28*	3180	10.0	07/06/2020	ND	193	96.6	200	0.138	QM-07
EXT DRO >C28-C36	936	10.0	07/06/2020	ND					
Surrogate: 1-Chlorooctane	85.1	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	185	% 42.2-15	6						

Applyzod By: MC

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020

Reported: 07/07/2020 Project Name: VGEU 02 - 20 Project Number: NOT GIVEN

LEA CO NM

Sampling Date:

07/01/2020

Sampling Type:

Soil

Sampling Condition: Sample Received By: ** (See Notes) Jodi Henson

Sample ID: SP 29 (H001735-29)

Project Location:

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.8 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2020	ND	207	103	200	2.16	
DRO >C10-C28*	<10.0	10.0	07/06/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	<10.0	10.0	07/06/2020	ND					
Surrogate: 1-Chlorooctane	77.5 %	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	78.4 9	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Reported: 07/07/2020
Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

mg/kg

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 30 (H001735-30)

BTEX 8021B

DILX GOZID	11197	, kg	Andryzo	u by. 1-15					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	< 0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	< 0.050	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.2	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2020	ND	207	103	200	2.16	
DRO >C10-C28*	<10.0	10.0	07/06/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	<10.0	10.0	07/06/2020	ND					
Surrogate: 1-Chlorooctane	70.0	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	70.8	% 42.2-15	6						

Analyzed By: MS

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20 Project Number: NOT GIVEN Project Location: LEA CO NM

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Jodi Henson

Sample ID: SP 31 (H001735-31)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	<0.050	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	<0.150	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	<0.300	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.0	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	464	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2020	ND	207	103	200	2.16	
DRO >C10-C28*	313	10.0	07/03/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	63.8	10.0	07/03/2020	ND					
Surrogate: 1-Chlorooctane	83.6	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	95.9	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 07/01/2020 Reported: 07/07/2020

Project Name: VGEU 02 - 20
Project Number: NOT GIVEN
Project Location: LEA CO NM

ma/ka

Sampling Date: 07/01/2020

Sampling Type: Soil

Sampling Condition: *** (See Notes)
Sample Received By: Jodi Henson

Sample ID: SP 32 (H001735-32)

RTFY 8021R

B1EX 8021B	mg	^и кд	Anaiyze	ea By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/06/2020	ND	1.92	96.1	2.00	0.415	
Toluene*	<0.050	0.050	07/06/2020	ND	1.93	96.5	2.00	0.694	
Ethylbenzene*	0.176	0.050	07/06/2020	ND	1.95	97.5	2.00	0.476	
Total Xylenes*	0.243	0.150	07/06/2020	ND	5.63	93.9	6.00	0.648	
Total BTEX	0.419	0.300	07/06/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	07/06/2020	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	10.2	10.0	07/03/2020	ND	207	103	200	2.16	
DRO >C10-C28*	325	10.0	07/03/2020	ND	224	112	200	0.916	
EXT DRO >C28-C36	121	10.0	07/03/2020	ND					
Surrogate: 1-Chlorooctane	72.0	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	82.1	% 42.2-15	6						

Applyzod By: MC

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

FORM-006 R 3.0

† Cardinal cannot accept verbal changes. Plaase email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 35 of 38 101 East Marland, Hobbs, NM 88240

(575) 393-2326	575) 393-2326 FAX (575) 393-2476				VSIC BEOLIEST
Company Name: ConocoPhillips		8/11/0	200	ANAL	ANAL COLO.
	ght	P.O. #:			
Address:		Company: ConocoPhillips	ips		
City: Hobbs	St NM Zip ##	Attn:			
le #:	Fax #:	Address:			
	Project Owner: COPC	City:			
Broject Name:		State: Zip:	es	C	
Project Location: V (FEU	02-70 dea COUNTY, NM	Phone #:	loric	вте	
		Fax #:			
4.	MATRIX	SERV.	SAMPLING		
Lab I.D. Sample I.D.	G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	SLUDGE OTHER: ACID/BASE: ICE / COOL OTHER:	TIME		
1001150 1 SPI-2	# S	# 1	-	7	
2 502-2	O #	# 77-70	13:05	11	
	G #	# 7-1-20	0 13:02	0	
4 504-7	G #	# 7-1-10		5	
-	G #	# 7-1-20		,	
6 SP6-2	G #	# 7-1-20	13.05		
2	G #	# 7-1-70	12.62	()	
8 508-2	G #	# 7-1-20		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
9 509-2		1-1-	0013:09	(
PLEASE NOTE: Liability and Damages, Cardinal's liability and Damages, Cardinal's liability analyses, All claims including those for negligence and analyses. All claims including those for negligence and analyses.	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be imited to the amount paid by the client for the pLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be imited to the amount paid by the client for the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed valved unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed valved unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed valved unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed valved unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed valved unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed whether the property of the property of the completion of the applicable analyses. All claims in contract the property of the prop	ntract or tort, shall be limited to the amount ping and received by Cardinal within 30 days at tions, loss of use, or loss of profits incurred by	aid by the client for the fler completion of the applicable y client, its subsidiaries,		
affiliates or successors arising out of or related to the performance Relinquished By:	ormance of services hereunder by Cardinal, regardless of whether such dath is used upon any or any of the control of the contr	Menson	Verbal Result: All Results are emai	Verbal Result: ☐ Yes ☐ No Add'l Phone #: All Results are emailed. Please provide Email address:	Add' Phone #: le Email address:
Relinquished By:	Date: Redeived By:		REMARKS:		
Delivered By: (Circle One)	Observed Temp. °C 28.9 Sample Condition Cool Intact	ondition CHECKED BY:	Turnaround Time: St	Standard N	Yes
Sampler - UPS - Bus - Other:	Corrected Temp. °C	Yes	Correction Factor +0.	7	□ No □ No Corrected Temp. °C

Released to Imaging: 9/23/2022 12:51:39 PM

Relinquished By:

Time: 28 Date: Time:

All Results are emailed. Please provide Email address:

Verbal Result:

☐ Yes

□ No

Add'I Phone #:

Received By:

REMARKS:

Relinquished By:

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 36 of 38 101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476

		311	-		DAD VIII DITCHT
Company Name: ConocoPhillips			Ī		
Project Manager: Justin Wright		P.O. #:			
Address:		Company: ConocoPhillips			
Hobbs St NM	Zip ##	Attn:			
Phone #: 575-631-9092 Fax #:		Address:			
	: COPC	City:			
Project Name: VIGEW 02-70		State: Zip:	es		
on:		Phone #:	lorid	ТРН	зтех
		Fax #:	Ch	15	
	MATRIX	PRESERV. SAMPLING			
Lab I.D. Sample I.D.	B OR (C)OMP. ITAINERS INDWATER EWATER	R: BASE: COOL :R:			
11 SO W - 2	# S	# 1	<	<	
	G #	# 7-1-20 13:2/	5	<	_
13 SP13-7	#	# 7-1-70 13-22	<	4	<
14 SPIN-2	G #	# 7-1-20 /3:23	3	<	<
15 SP 15-2	#	# 7-1-20 13:24	1	C	
3-11 45 01	G #	# 7-1-70 13:25	<	<	C
5-4185	6	# 7-1-10 /3:26	<	C	.<
5-3145 81	#	# 7-1-10 18:23	V	<	<
5-6145 61	G #	# 7-1-20 18:4	000	<	<
75 5820-3.5	G #	# 77.00		7	\ \(\)

FORM-006 R 3.0

Sampler - UPS - Bus - Other: Delivered By: (Circle One)

Observed Temp. °C 25.9

Corrected Temp. °C

Sample Condition
Cool Intact
Yes 7es

Thermometer ID_#97 Turnaround Time:

Standard Rush

Bacteria (only) Sample Condition
Cool Intact Observed Temp.

Yes Yes
No Corrected Temp.

Corrected Temp. °C Observed Temp. °C

Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

FORM-006 R 3.0

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

of 38 Page 37 101 East Marland, Hobbs, NM 88240

	FAX (5/5) 393-24/6	00 11s		ANALYSIS REQUEST
Company Name: ConocoPhillips		DILL		
Project Manager: Justin Wright		P.O. #:		
Address:	Co	Company: ConocoPhillips		
City: Hobbs	St NM Zip ## Attn:	tn:		
1e #:	Fax#: Ad	Address:		
	Project Owner: COPC Cit	City:		
ame: VGEL		State: Zip:		
on don	CHARL DA	Phone #:	TPH 3TE	
lustin Wri		Fax #:		
Sampler Name: Justili verigit	YIGTAIN	PRESERV SAMPLING	G	
FOR LAB USE ONLY	B ER			
Lab I.D. Sample I.D.	G)RAB OR (C)O CONTAINERS GROUNDWATE WASTEWATER SOIL DIL SLUDGE OTHER:	ACID/BASE: ICE / COOL OTHER :	TIME	1 -
11 SP21 - 3.5	G #	# 7-1-60 !	3:10 V V V	
77 SP 22 -3.5	G #	# 7-1-12!	-	
23 50 23 -3.5	G #	# 7-1-20	2.17 1 2	
24 5024 - 3	G #		3.60	
25 SP 25 - 3	O #	-	3:19	
26 SP 26-2.	G #		5.15 V V V	
27 50 27 - 2	6 #	7-1-10	3:17	
28 55 65 -2		71.00	13:18	
29 29 29	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	# 7-1-6	13:19	
PLEASE NOTE: Liability and Damages, Cardinal's liability analyses. All claims including those for negligence and ar consider. In me event shall Cardinal be liable for incidental in the consideration of the consideration	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim aising whether based in contract or tort, shall be limited to the amount paid by the client for the please. Please Note: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim aising whether based in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless that the contract of the contrac	rort, shall be limited to the amount paid by eceived by Cardinal within 30 days after course of profits incurred by olient	amount paid by the client for the 30 days after completion of the applicable former by client, its subsidiaries, and account of the paid to the completion of the paid to the paid t	
artiliates or successors arising out of or related to the performances and the performance of the performanc	Relinquished By: Time: 9 8 m	MISM AI	t: ☐ Yes e emailed. Ple	□ No Add'I Phone #: ase provide Email address:
Relinquished By:	Date: Received By:	72	REMARKS:	
	Time:			4
Delivered By: (Circle One)	Observed Temp. °C 28.9 Sample Condition Cool Intact	CHECKED BY: (Initials)	Turnaround Time: Standard Rush	 າຽ ໝ
Sampler - UPS - Bus - Other:	Corrected Temp. °C	A	Thermometer ID #97- 115 Correction Factor + 0.4 °C	Nc No Corrected Temp. °C

Page 38 of 38

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240

Company Name: ConocoPhillips Project Manager: Justin Wright	7	P.O. 3	# 0111 = 0	1000		מואבו טוט הרשטרטי
	7	7.0.	7			
Address.		Company:	oany: ConocoPhillips	llīps		
City: Hobbs	St NM Zip ##	Attn:				
Phone #: 575-631-9092	Fax #:	Address:	ess:			
	Project Owner: COPC	PC City:				
Project Name:		State:	: Zip:	es		
Project Location: V GEV 0	2-20 dea COUNTY	ZZ	#:	oride	ГРН ВТЕХ	
_		Fax #:	*	Chl	_	
		MATRIX	PRESERV. SAW	SAMPLING		
Lab I.D. Sample I.D.	RAB OR (C)OMP ONTAINERS OUNDWATER	STEWATER L JDGE HER: D/BASE:	HER:			
H001755	# C	SC OII	‡ ICI	12 30		
20 00 00	a c	# :	1		1	
200	<u>ဂ</u>	#	# 7-1-20	1	7 7	
	<u>ဂ</u>	#	# 7-1-70	C	< <	
	G	#	# 7-1-20	8	1	
	ଜ	#	# 7-1-20	0	1	
	<u>බ</u>	#	# 7-7-70	0	4	
	ഒ	*	# 7-1-70	(< <	
	ഒ	#	# 7-1-20	8		
	<u>.</u> ۵	#:	# 7-1-76	16	c <	
PLEASE NOTE: Liability and Damages, Cardinat's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed walved unless made in writing and received by Cardinal within 30 days after completion of the applicable received in no recent shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,	d client's exclusive remedy for any claim arising wh ther cause whatsoever shall be deemed walved unl consequental damages, including without limitation,	ether based in contract or tort, s less made in writing and receive business interruptions, loss of u	shall be limited to the amount ed by Cardinal within 30 days a se, or loss of profits incurred	paid by the client for the after completion of the applic by client, its subsidiaries,	cable	
Relinquished By:	Time: 1 m MMM MMM MMMM All Results :	red By:	MON	0 1	☐ Yes ☐ No Add'l Phone #: emailed. Please provide Email address:	Add'l Phone #: vide Email address:
Relinquished By:		By:		REMARKS:		
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Observed Temp. °C 25.9 Corrected Temp. °C	Sample Condition Cool Intact Yes	CHECKED BY:	Turnaround Time: Thermometer ID _#8 Correction Factor +	Standard Rush	Bacteria (only) Sample Condition Cool Intact Observed Temp. °C Yes Yes No Corrected Temp. °C
FORM-006 R 3.0	† Cardinal cannot accept verbal changes Please email changes to celey.	ept verbal change	//			keene@cardinallahsnm.com

ANALYTICAL REPORT

January 31, 2021

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1308926 Samples Received: 01/21/2021

Project Number: 212-MD-02305

Description: VGEU 02-20 West Site: LEA COUNTY, NM

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Αl

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

Mount Juliet, TN 37122 12065 Lebanon Rd

615-758-5858

800-767-5859

www.pacenational.com

Ss

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	11
Sr: Sample Results	12
BH-1 (4-5') L1308926-01	12
BH-1 (6-7') L1308926-02	13
BH-1 (9-10') L1308926-03	14
BH-2 (2-3') L1308926-04	15
BH-2 (4-5') L1308926-05	16
BH-2 (6-7') L1308926-06	17
BH-2 (9-10') L1308926-07	18
BH-2 (15') L1308926-08	19
BH-3 (2-3') L1308926-09	20
BH-3 (4-5') L1308926-10	21
BH-3 (6-7') L1308926-11	22
BH-3 (9-10') L1308926-12	23
BH-3 (15') L1308926-13	24
BH-3 (20') L1308926-14	25
BH-4 (0-1') L1308926-15	26
BH-4 (2-3') L1308926-16	27
BH-4 (4-5') L1308926-17	28
BH-4 (6-7') L1308926-18	29
BH-5 (0-1') L1308926-19	30
BH-5 (2-3') L1308926-20	31
BH-5 (4-5') L1308926-21	32
BH-6 (0-1') L1308926-22	33
BH-6 (2-3') L1308926-23	34
BH-6 (4-5') L1308926-24	35
BH-7 (0-1') L1308926-25	36
BH-7 (2-3') L1308926-26	37
BH-7 (4-5') L1308926-27	38
BH-8 (0-1') L1308926-28	39
BH-8 (2-3') L1308926-29	40
BH-8 (4-5') L1308926-30	41
BH-9 (0-1') L1308926-31	42
BH-9 (1-1.5') L1308926-32	43
BH-4 (3-4') L1308926-33	44
Qc: Quality Control Summary	45
Total Solids by Method 2540 G-2011	45

Wet Chemistry by Method 300.0	49
Volatile Organic Compounds (GC) by Method 8015D/GRO	54
Volatile Organic Compounds (GC/MS) by Method 8260B	59
Semi-Volatile Organic Compounds (GC) by Method 8015	62
GI: Glossary of Terms	66
Al: Accreditations & Locations	67
Sc: Sample Chain of Custody	68

	SAMI LL		//AIN I			
			Collected by	Collected date/time	Received da	te/time
BH-1 (4-5') L1308926-01 Solid			John Thurston	01/18/21 09:30	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	10	01/25/21 15:50	01/25/21 17:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1.01	01/22/21 14:56	01/28/21 02:06	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 09:02	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612505	5.63	01/27/21 14:18	01/27/21 22:49	TJD	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612505	56.3	01/27/21 14:18	01/28/21 00:27	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (6-7') L1308926-02 Solid			John Thurston	01/18/21 09:35	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 17:24	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1	01/22/21 14:56	01/28/21 08:32	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 09:21	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	1	01/27/21 15:39	01/28/21 07:54	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	2	01/27/21 15:39	01/28/21 13:01	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (9-10') L1308926-03 Solid			John Thurston	01/18/21 09:40	01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 17:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1	01/22/21 14:56	01/28/21 08:54	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1.01	01/22/21 14:56	01/27/21 09:40	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	1	01/27/21 15:39	01/28/21 07:15	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-2 (2-3') L1308926-04 Solid			John Thurston	01/18/21 09:50	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T	111010110		date/time	date/time	WE!!!	14. / · · · ·
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	10	01/25/21 15:50	01/25/21 17:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1	01/22/21 14:56	01/28/21 09:16	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 09:59	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	20	01/27/21 15:39	01/28/21 08:30	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-2 (4-5') L1308926-05 Solid			John Thurston	01/18/21 09:55	01/21/21 09:0	JU
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	10	01/25/21 15:50	01/25/21 17:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1.01	01/22/21 14:56	01/28/21 09:38	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 10:18	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	20	01/27/21 15:39	01/28/21 08:43	CAG	Mt. Juliet, TN

	JAMII LL		/I//I/ I			
BH-2 (6-7') L1308926-06 Solid			Collected by John Thurston	Collected date/time 01/18/21 10:05	Received da 01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	•	
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 18:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1	01/22/21 14:56	01/28/21 10:03	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 10:37	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	1	01/27/21 15:39	01/28/21 12:48	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (9-10') L1308926-07 Solid			John Thurston	01/18/21 10:10	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 18:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1.01	01/22/21 14:56	01/28/21 10:25	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 13:06	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	1	01/27/21 15:39	01/28/21 07:41	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (15') L1308926-08 Solid			John Thurston	01/18/21 10:15	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611241	1	01/27/21 10:30	01/27/21 10:40	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 18:41	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612206	1.01	01/22/21 14:56	01/28/21 10:47	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 13:25	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	1	01/27/21 15:39	01/28/21 07:28	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (2-3') L1308926-09 Solid			John Thurston	01/18/21 10:20	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	10	01/25/21 15:50	01/25/21 18:50	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612902	1	01/22/21 14:56	01/28/21 16:12	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 13:44	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	20	01/27/21 15:39	01/28/21 08:56	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (4-5') L1308926-10 Solid			John Thurston	01/18/21 10:30	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	10	01/25/21 15:50	01/25/21 19:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612902	100	01/22/21 14:56	01/28/21 16:36	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	40	01/22/21 14:56	01/27/21 14:03	BMB	Mt. Juliet, TN
0 11/1 11/1 0 11/					22	

WG1612296

20

01/27/21 15:39

01/28/21 09:22

CAG

BH-3 (6-7') L1308926-11 Solid			Collected by John Thurston	Collected date/time 01/18/21 10:35	Received da 01/21/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	10	01/25/21 15:50	01/25/21 19:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	100	01/22/21 14:56	01/29/21 08:29	ADM	Mt. Juliet, Th
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	40	01/22/21 14:56	01/27/21 14:23	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	20	01/27/21 15:39	01/28/21 09:09	CAG	Mt. Juliet, TN
BH-3 (9-10') L1308926-12 Solid			Collected by John Thurston	Collected date/time 01/18/21 10:40	Received da 01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	10	01/25/21 15:50	01/25/21 19:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	100	01/22/21 14:56	01/29/21 08:51	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	40	01/22/21 14:56	01/27/21 14:41	BMB	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1612296	20	01/27/21 15:39	01/28/21 08:17	CAG	Mt. Juliet, Ti
			Collected by	Collected date/time		
BH-3 (15') L1308926-13 Solid			John Thurston	01/18/21 10:45	01/21/21 09:0	JU
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, Th
Net Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 19:57	ELN	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 14:56	01/29/21 02:56	ADM	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 15:00	BMB	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/29/21 11:22	DMG	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	5	01/29/21 01:22	01/30/21 21:56	JN	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	ite/time
BH-3 (20') L1308926-14 Solid			John Thurston	01/18/21 10:50	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TI
Net Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 20:06	ELN	Mt. Juliet, Th
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	100	01/22/21 14:56	01/29/21 09:42	ADM	Mt. Juliet, Th
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	4	01/22/21 14:56	01/27/21 15:19	BMB	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/29/21 11:35	DMG	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	5	01/29/21 01:22	01/30/21 22:10	JN	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	ite/time
BH-4 (0-1') L1308926-15 Solid			John Thurston	01/18/21 11:05	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 20:35	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 14:56	01/29/21 03:18	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 15:38	BMB	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/30/21 20:35	JN	Mt. Juliet, TN

			Collected by	Collected date/time	Received da	te/time
BH-4 (2-3') L1308926-16 Solid			John Thurston	01/18/21 11:10	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 20:44	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1.01	01/22/21 14:56	01/29/21 03:40	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 15:58	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/30/21 20:48	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (4-5') L1308926-17 Solid			John Thurston	01/18/21 11:15	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tatal Calida by Mathad 2F 40 C 2011	WC1C112.42	1	date/time	date/time	KDW	M4 Juliat TN
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 20:56	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 14:56	01/29/21 04:02	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 14:56	01/27/21 16:17	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/30/21 21:02	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (6-7') L1308926-18 Solid			John Thurston	01/18/21 11:20	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T . 10 II . 1 M . II . 10 F 40 0 0044			date/time	date/time	L/DIL/	
Total Solids by Method 2540 G-2011	WG1611242	1	01/27/21 10:18	01/27/21 10:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 21:09	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612071	1	01/22/21 15:08	01/29/21 03:35	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 15:08	01/27/21 16:36	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/29/21 12:56	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (0-1') L1308926-19 Solid			John Thurston	01/18/21 11:30	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 21:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612071	1	01/22/21 15:08	01/29/21 03:56	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 15:08	01/27/21 16:55	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/29/21 13:09	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (2-3') L1308926-20 Solid			John Thurston	01/18/21 11:35	01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609660	1	01/25/21 15:50	01/25/21 21:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612071	1	01/22/21 15:08	01/29/21 04:17	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611866	1	01/22/21 15:08	01/27/21 17:14	BMB	Mt. Juliet, TN
0 11/1 11/1 0 1 0 1 0 1 1 (00) 1 11 11 1 00:=	11104046155					

WG1613106

01/29/21 01:22

01/29/21 13:22

DMG

	07 (1711 22)		,,, ,,, ,			
BH-5 (4-5') L1308926-21 Solid			Collected by John Thurston	Collected date/time 01/18/21 11:40	Received da 01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	, , , ,	
Total Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 19:13	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612071	1	01/22/21 15:08	01/29/21 04:38	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612070	1	01/22/21 15:08	01/28/21 17:12	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/29/21 13:36	DMG	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 01/18/21 11:55	Received da 01/21/21 09:0	
BH-6 (0-1') L1308926-22 Solid			John marston	01/10/21 11.55	01/21/21 09.0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T	1110404040		date/time	date/time	L/DIL/	
Total Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 19:22	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612071	1	01/22/21 15:08	01/29/21 04:59	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/27/21 22:14	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/29/21 13:49	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-6 (2-3') L1308926-23 Solid			John Thurston	01/18/21 12:00	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 19:32	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1612071	1	01/22/21 15:08	01/29/21 05:19	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/27/21 22:33	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	1	01/29/21 01:22	01/30/21 21:15	JN	Mt. Juliet, TN
BH-6 (4-5') L1308926-24 Solid			Collected by John Thurston	Collected date/time 01/18/21 12:30	Received da 01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 20:00	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 15:08	01/29/21 04:24	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/27/21 22:52	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	10	01/29/21 01:22	01/29/21 14:16	DMG	Mt. Juliet, TN
BH-7 (0-1') L1308926-25 Solid			Collected by John Thurston	Collected date/time 01/18/21 12:45	Received da 01/21/21 09:0	
	Datab	Dilication		Analysis		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 20:10	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 15:08	01/29/21 04:46	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/27/21 23:12	DWR	Mt. Juliet, TN
0 11/1 11 0 1 0 1 0 1 1 100/5			04/00/04 04 00	04/00/04/44/00	D110	

WG1613106

10

01/29/21 01:22

01/29/21 14:29

DMG

BH-7 (2-3') L1308926-26 Solid			Collected by John Thurston	Collected date/time 01/18/21 12:50	01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
nethod	Baten	Dilation	date/time	date/time	rilaryse	Location
Fotal Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 20:19	ELN	Mt. Juliet, Th
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 15:08	01/29/21 05:08	ADM	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/27/21 23:30	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	10	01/29/21 01:22	01/29/21 14:43	DMG	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
3H-7 (4-5') L1308926-27 Solid			John Thurston	01/18/21 12:55	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 20:29	ELN	Mt. Juliet, Th
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1612479	100	01/22/21 15:08	01/28/21 08:26	DWR	Mt. Juliet, Ti
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	8	01/22/21 15:08	01/27/21 23:50	DWR	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	50	01/29/21 01:22	01/30/21 21:42	JN	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3H-8 (0-1') L1308926-28 Solid			John Thurston	01/18/21 13:10	01/21/21 09:0	00
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1611243	1	01/27/21 10:08	01/27/21 10:16	KDW	Mt. Juliet, Th
et Chemistry by Method 300.0	WG1609663	1	01/26/21 12:45	01/26/21 20:38	ELN	Mt. Juliet, TI
platile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 15:08	01/29/21 05:30	ADM	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/28/21 00:08	DWR	Mt. Juliet, Ti
emi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	11.2	01/29/21 01:22	01/29/21 15:10	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-8 (2-3') L1308926-29 Solid			John Thurston	01/18/21 13:15	01/21/21 09:0	00
		Dilution	Preparation	Analysis	Analyst	Location
lethod	Batch	Dilution		7 that y 515	. ,	
ethod		Dilution	date/time	date/time		
	WG1611244	1	·	•	KDW	Mt. Juliet, TN
otal Solids by Method 2540 G-2011			date/time	date/time 01/27/21 16:09 01/27/21 02:58	KDW ELN	Mt. Juliet, Ti
otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0 olatile Organic Compounds (GC) by Method 8015D/GRO	WG1611244	1	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08	date/time 01/27/21 16:09	KDW ELN ADM	Mt. Juliet, Ti
otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0 olatile Organic Compounds (GC) by Method 8015D/GRO olatile Organic Compounds (GC/MS) by Method 8260B	WG1611244 WG1609664 WG1613028 WG1612072	1 1 1 1	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 15:08	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27	KDW ELN ADM DWR	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0 olatile Organic Compounds (GC) by Method 8015D/GRO olatile Organic Compounds (GC/MS) by Method 8260B	WG1611244 WG1609664 WG1613028	1 1 1	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52	KDW ELN ADM	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Yolatile Organic Compounds (GC) by Method 8015D/GRO Yolatile Organic Compounds (GC/MS) by Method 8260B	WG1611244 WG1609664 WG1613028 WG1612072	1 1 1 1	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 15:08	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27	KDW ELN ADM DWR	Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI
otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0 olatile Organic Compounds (GC) by Method 8015D/GRO olatile Organic Compounds (GC/MS) by Method 8260B emi-Volatile Organic Compounds (GC) by Method 8015	WG1611244 WG1609664 WG1613028 WG1612072	1 1 1 1	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 15:08 01/29/21 01:22	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27 01/29/21 15:23	KDW ELN ADM DWR DMG	Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI
otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B emi-Volatile Organic Compounds (GC) by Method 8015 BH-8 (4-5') L1308926-30 Solid	WG1611244 WG1609664 WG1613028 WG1612072	1 1 1 1	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 15:08 01/29/21 01:22 Collected by John Thurston Preparation	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27 01/29/21 15:23 Collected date/time 01/18/21 13:20 Analysis	KDW ELN ADM DWR DMG	Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI
otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 Iolatile Organic Compounds (GC) by Method 8015D/GRO Iolatile Organic Compounds (GC/MS) by Method 8260B Iolatile Organic Compounds (GC) by Method 8015 ISH-8 (4-5') L1308926-30 Solid Idethod	WG1611244 WG1609664 WG1613028 WG1612072 WG1613106	1 1 1 1 10	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 01:22 Collected by John Thurston Preparation date/time	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27 01/29/21 15:23 Collected date/time 01/18/21 13:20 Analysis date/time	KDW ELN ADM DWR DMG Received da 01/21/21 09:0	Mt. Juliet, TI te/time Location
otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0 olatile Organic Compounds (GC) by Method 8015D/GRO olatile Organic Compounds (GC/MS) by Method 8260B emi-Volatile Organic Compounds (GC) by Method 8015 BH-8 (4-5') L1308926-30 Solid fethod otal Solids by Method 2540 G-2011	WG1611244 WG1609664 WG1613028 WG1612072 WG1613106 Batch	1 1 1 1 10 Dilution	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 15:08 01/29/21 01:22 Collected by John Thurston Preparation date/time 01/27/21 16:01	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27 01/29/21 15:23 Collected date/time 01/18/21 13:20 Analysis date/time 01/27/21 16:09	KDW ELN ADM DWR DMG Received da 01/21/21 09:0	Mt. Juliet, TI te/time Location Mt. Juliet, TI
otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Vemi-Volatile Organic Compounds (GC) by Method 8015 ABH-8 (4-5') L1308926-30 Solid Method Otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0	WG1611244 WG1609664 WG1613028 WG1612072 WG1613106 Batch WG1611244 WG1609666	1 1 1 1 10 Dilution	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 15:08 01/29/21 01:22 Collected by John Thurston Preparation date/time 01/27/21 16:01 01/25/21 15:30	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27 01/29/21 15:23 Collected date/time 01/18/21 13:20 Analysis date/time 01/27/21 16:09 01/25/21 17:49	KDW ELN ADM DWR DMG Received dat 01/21/21 09:0 Analyst KDW ELN	Mt. Juliet, TI te/time Location Mt. Juliet, TI Mt. Juliet, TI
Method Total Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BH-8 (4-5') L1308926-30 Solid Method Total Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1611244 WG1609664 WG1613028 WG1612072 WG1613106 Batch	1 1 1 1 10 Dilution	date/time 01/27/21 16:01 01/26/21 15:59 01/22/21 15:08 01/22/21 15:08 01/29/21 01:22 Collected by John Thurston Preparation date/time 01/27/21 16:01	date/time 01/27/21 16:09 01/27/21 02:58 01/29/21 05:52 01/28/21 00:27 01/29/21 15:23 Collected date/time 01/18/21 13:20 Analysis date/time 01/27/21 16:09	KDW ELN ADM DWR DMG Received da 01/21/21 09:0	00

			Collected by	Collected date/time	Received da	ta/tima
BH-9 (0-1') L1308926-31 Solid			John Thurston	01/18/21 13:35	01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Metilod	batcii	Dilution	date/time	date/time	Allalyst	Location
Total Solids by Method 2540 G-2011	WG1611244	1	01/27/21 16:01	01/27/21 16:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609666	1	01/25/21 15:30	01/25/21 18:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 15:08	01/29/21 06:36	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/28/21 01:05	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	200	01/29/21 01:22	01/29/21 16:03	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (1-1.5') L1308926-32 Solid			John Thurston	01/18/21 13:40	01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611244	1	01/27/21 16:01	01/27/21 16:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1609666	1	01/25/21 15:30	01/25/21 18:21	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 15:08	01/29/21 06:58	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/28/21 01:24	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1613106	10	01/29/21 01:22	01/29/21 15:50	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (3-4') L1308926-33 Solid			John Thurston	01/18/21 00:00	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1611244	1	01/27/21 16:01	01/27/21 16:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1610464	1	01/23/21 10:11	01/23/21 19:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613028	1	01/22/21 15:08	01/29/21 07:23	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1612072	1	01/22/21 15:08	01/28/21 01:43	DWR	Mt. Juliet, TN

WG1612302

1

01/28/21 00:29

01/28/21 09:25

CAG

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

SAMPLE RESULTS - 01 L1308926

ONE LAB. NAT Page 84 of 331

Collected date/time: 01/18/21 09:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.6		1	01/27/2021 10:40	WG1611241

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4430		97.2	211	10	01/25/2021 17:06	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.973		0.0231	0.107	1.01	01/28/2021 02:06	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		01/28/2021 02:06	WG1612206

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	01/27/2021 09:02	WG1611866
Toluene	U		0.00145	0.00557	1	01/27/2021 09:02	WG1611866
Ethylbenzene	0.0959		0.000821	0.00278	1	01/27/2021 09:02	WG1611866
Total Xylenes	0.203		0.000980	0.00724	1	01/27/2021 09:02	WG1611866
(S) Toluene-d8	97.4			75.0-131		01/27/2021 09:02	WG1611866
(S) 4-Bromofluorobenzene	96.6			67.0-138		01/27/2021 09:02	WG1611866
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		01/27/2021 09:02	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1540		9.57	23.8	5.63	01/27/2021 22:49	WG1612505
C28-C40 Oil Range	1850		16.3	238	56.3	01/28/2021 00:27	WG1612505
(S) o-Terphenyl	94.1	<u>J7</u>		18.0-148		01/28/2021 00:27	WG1612505
(S) o-Terphenyl	73.4			18.0-148		01/27/2021 22:49	WG1612505

ONE LAB. NAT Page 85 of 331

Collected date/time: 01/18/21 09:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.8		1	01/27/2021 10:40	WG1611241

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	213		9.40	20.4	1	01/25/2021 17:24	WG1609660

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1.27		0.0222	0.102	1	01/28/2021 08:32	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		01/28/2021 08:32	WG1612206

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00104	1	01/27/2021 09:21	WG1611866
Toluene	U		0.00136	0.00522	1	01/27/2021 09:21	WG1611866
Ethylbenzene	0.00149	<u>J</u>	0.000770	0.00261	1	01/27/2021 09:21	WG1611866
Total Xylenes	0.00492	<u>J</u>	0.000919	0.00679	1	01/27/2021 09:21	WG1611866
(S) Toluene-d8	99.5			<i>75.0-131</i>		01/27/2021 09:21	WG1611866
(S) 4-Bromofluorobenzene	98.6			67.0-138		01/27/2021 09:21	WG1611866
(S) 1,2-Dichloroethane-d4	91.5			70.0-130		01/27/2021 09:21	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	273		1.65	4.09	1	01/28/2021 07:54	WG1612296
C28-C40 Oil Range	210		0.560	8.18	2	01/28/2021 13:01	WG1612296
(S) o-Terphenyl	67.1			18.0-148		01/28/2021 07:54	WG1612296
(S) o-Terphenyl	60.9			18.0-148		01/28/2021 13:01	WG1612296

SAMPLE RESULTS - 03 L1308926

ONE LAB. NAT Page 86 of 331

Collected date/time: 01/18/21 09:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.0		1	01/27/2021 10:40	WG1611241

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.4	<u>J</u>	9.39	20.4	1	01/25/2021 17:34	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0298	<u>J</u>	0.0221	0.102	1	01/28/2021 08:54	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/28/2021 08:54	WG1612206

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000491	0.00105	1.01	01/27/2021 09:40	WG1611866
Toluene	U		0.00136	0.00526	1.01	01/27/2021 09:40	WG1611866
Ethylbenzene	U		0.000775	0.00263	1.01	01/27/2021 09:40	WG1611866
Total Xylenes	U		0.000926	0.00683	1.01	01/27/2021 09:40	WG1611866
(S) Toluene-d8	99.5			<i>75.0-131</i>		01/27/2021 09:40	WG1611866
(S) 4-Bromofluorobenzene	98.3			67.0-138		01/27/2021 09:40	WG1611866
(S) 1,2-Dichloroethane-d4	92.3			70.0-130		01/27/2021 09:40	WG1611866

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.75		1.64	4.08	1	01/28/2021 07:15	WG1612296
C28-C40 Oil Range	6.71		0.280	4.08	1	01/28/2021 07:15	WG1612296
(S) o-Terphenyl	54.1			18.0-148		01/28/2021 07:15	WG1612296

ONE LAB. NAT Page 87. of 331

Collected date/time: 01/18/21 09:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	01/27/2021 10:40	<u>WG1611241</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2450		96.7	210	10	01/25/2021 17:43	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1.73		0.0228	0.105	1	01/28/2021 09:16	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		01/28/2021 09:16	WG1612206

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000515	0.00110	1	01/27/2021 09:59	WG1611866
Toluene	U		0.00143	0.00551	1	01/27/2021 09:59	WG1611866
Ethylbenzene	0.0562		0.000812	0.00275	1	01/27/2021 09:59	WG1611866
Total Xylenes	0.142		0.000970	0.00716	1	01/27/2021 09:59	WG1611866
(S) Toluene-d8	97.3			75.0-131		01/27/2021 09:59	WG1611866
(S) 4-Bromofluorobenzene	101			67.0-138		01/27/2021 09:59	WG1611866
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		01/27/2021 09:59	WG1611866

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	930		33.8	84.1	20	01/28/2021 08:30	WG1612296
C28-C40 Oil Range	1040		5.76	84.1	20	01/28/2021 08:30	WG1612296
(S) o-Terphenyl	60.6	J7		18.0-148		01/28/2021 08:30	WG1612296

15 of 73

ONE LAB. NAT Page 88 of 331

Collected date/time: 01/18/21 09:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.6		1	01/27/2021 10:40	WG1611241

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3620		98.3	214	10	01/25/2021 17:53	WG1609660

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	2.97		0.0234	0.108	1.01	01/28/2021 09:38	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		01/28/2021 09:38	WG1612206

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000530	0.00114	1	01/27/2021 10:18	WG1611866
Toluene	U		0.00148	0.00568	1	01/27/2021 10:18	WG1611866
Ethylbenzene	0.0376		0.000837	0.00284	1	01/27/2021 10:18	WG1611866
Total Xylenes	0.0948		0.000999	0.00738	1	01/27/2021 10:18	WG1611866
(S) Toluene-d8	98.3			<i>75.0-131</i>		01/27/2021 10:18	WG1611866
(S) 4-Bromofluorobenzene	101			67.0-138		01/27/2021 10:18	WG1611866
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		01/27/2021 10:18	WG1611866

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1520		34.4	85.4	20	01/28/2021 08:43	WG1612296
C28-C40 Oil Range	1420		5.85	85.4	20	01/28/2021 08:43	WG1612296
(S) o-Terphenyl	120	J7		18.0-148		01/28/2021 08:43	WG1612296

ConocoPhillips - Tetra Tech

SAMPLE RESULTS - 06 L1308926

ONE LAB. NAT Page 82 of 331

Collected date/time: 01/18/21 10:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.5		1	01/27/2021 10:40	WG1611241

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	499		9.94	21.6	1	01/25/2021 18:03	WG1609660

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0458	J	0.0235	0.108	1	01/28/2021 10:03	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/28/2021 10:03	WG1612206

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000542	0.00116	1	01/27/2021 10:37	WG1611866
Toluene	U		0.00151	0.00581	1	01/27/2021 10:37	WG1611866
Ethylbenzene	U		0.000856	0.00290	1	01/27/2021 10:37	WG1611866
Total Xylenes	U		0.00102	0.00755	1	01/27/2021 10:37	WG1611866
(S) Toluene-d8	99.2			75.0-131		01/27/2021 10:37	WG1611866
(S) 4-Bromofluorobenzene	96.4			67.0-138		01/27/2021 10:37	WG1611866
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		01/27/2021 10:37	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	72.6		1.74	4.32	1	01/28/2021 12:48	WG1612296
C28-C40 Oil Range	83.5		0.296	4.32	1	01/28/2021 12:48	WG1612296
(S) o-Terphenvl	42.0			18.0-148		01/28/2021 12:48	WG1612296

ONE LAB. NAT Page 90 of 331

Collected date/time: 01/18/21 10:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.8		1	01/27/2021 10:40	WG1611241

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	41.8		10.0	21.8	1	01/25/2021 18:12	WG1609660

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0292	J	0.0238	0.110	1.01	01/28/2021 10:25	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/28/2021 10:25	WG1612206

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		′ -					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00151		0.000550	0.00118	1	01/27/2021 13:06	WG1611866
Toluene	U		0.00153	0.00589	1	01/27/2021 13:06	WG1611866
Ethylbenzene	U		0.000868	0.00294	1	01/27/2021 13:06	WG1611866
Total Xylenes	U		0.00104	0.00765	1	01/27/2021 13:06	WG1611866
(S) Toluene-d8	101			75.0-131		01/27/2021 13:06	WG1611866
(S) 4-Bromofluorobenzene	99.2			67.0-138		01/27/2021 13:06	WG1611866
(S) 1,2-Dichloroethane-d4	95.9			70.0-130		01/27/2021 13:06	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.87		1.75	4.36	1	01/28/2021 07:41	WG1612296
C28-C40 Oil Range	8.95		0.298	4.36	1	01/28/2021 07:41	WG1612296
(S) o-Terphenyl	30.2			18.0-148		01/28/2021 07:41	WG1612296

ONE LAB. NAT Page 91 of 31

Collected date/time: 01/18/21 10:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.5		1	01/27/2021 10:40	WG1611241

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	33.9		9.84	21.4	1	01/25/2021 18:41	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0334	J	0.0234	0.108	1.01	01/28/2021 10:47	WG1612206
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/28/2021 10:47	WG1612206

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000532	0.00114	1	01/27/2021 13:25	WG1611866
Toluene	U		0.00148	0.00570	1	01/27/2021 13:25	WG1611866
Ethylbenzene	U		0.000840	0.00285	1	01/27/2021 13:25	WG1611866
Total Xylenes	U		0.00100	0.00741	1	01/27/2021 13:25	WG1611866
(S) Toluene-d8	99.4			75.0-131		01/27/2021 13:25	WG1611866
(S) 4-Bromofluorobenzene	96.2			67.0-138		01/27/2021 13:25	WG1611866
(S) 1,2-Dichloroethane-d4	90.6			70.0-130		01/27/2021 13:25	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.16		1.72	4.28	1	01/28/2021 07:28	WG1612296
C28-C40 Oil Range	9.25		0.293	4.28	1	01/28/2021 07:28	WG1612296
(S) o-Terphenyl	59.5			18.0-148		01/28/2021 07:28	WG1612296

ONE LAB. NAT Raga 92 of 331

Collected date/time: 01/18/21 10:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.7		1	01/27/2021 10:29	WG1611242

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3550		98.2	213	10	01/25/2021 18:50	WG1609660

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	2.22		0.0232	0.107	1	01/28/2021 16:12	WG1612902
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		01/28/2021 16:12	WG1612902

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000530	0.00113	1	01/27/2021 13:44	WG1611866
Toluene	U		0.00147	0.00567	1	01/27/2021 13:44	WG1611866
Ethylbenzene	0.00639		0.000836	0.00284	1	01/27/2021 13:44	WG1611866
Total Xylenes	0.0196		0.000998	0.00737	1	01/27/2021 13:44	WG1611866
(S) Toluene-d8	97.6			75.0-131		01/27/2021 13:44	WG1611866
(S) 4-Bromofluorobenzene	98.9			67.0-138		01/27/2021 13:44	WG1611866
(S) 1,2-Dichloroethane-d4	91.5			70.0-130		01/27/2021 13:44	WG1611866

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	784		34.4	85.4	20	01/28/2021 08:56	WG1612296
C28-C40 Oil Range	649		5.85	85.4	20	01/28/2021 08:56	WG1612296
(S) o-Terphenyl	66.6	J7		18.0-148		01/28/2021 08:56	WG1612296

ONE LAB. NATRAGE 93 of 31

Collected date/time: 01/18/21 10:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.2		1	01/27/2021 10:29	<u>WG1611242</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5070		98.7	215	10	01/25/2021 19:28	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	411		2.49	11.5	100	01/28/2021 16:36	WG1612902
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		01/28/2021 16:36	WG1612902

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.0215	0.0459	40	01/27/2021 14:03	WG1611866
Toluene	U		0.0596	0.229	40	01/27/2021 14:03	WG1611866
Ethylbenzene	0.0352	<u>J</u>	0.0338	0.115	40	01/27/2021 14:03	WG1611866
Total Xylenes	0.109	<u>J</u>	0.0404	0.298	40	01/27/2021 14:03	WG1611866
(S) Toluene-d8	97.9			75.0-131		01/27/2021 14:03	WG1611866
(S) 4-Bromofluorobenzene	103			67.0-138		01/27/2021 14:03	WG1611866
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		01/27/2021 14:03	WG1611866

Sample Narrative:

L1308926-10 WG1611866: Non-target compounds too high to run at a lower dilution.

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	<u>quamer</u>	mg/kg	mg/kg	Bliation	date / time	Batch
C10-C28 Diesel Range	3460		34.6	85.9	20	01/28/2021 09:22	WG1612296
C28-C40 Oil Range	1650		5.88	85.9	20	01/28/2021 09:22	WG1612296
(S) o-Terphenyl	348	J7		18.0-148		01/28/2021 09:22	WG1612296

ONE LAB. NATRAGE 94 of 331

Collected date/time: 01/18/21 10:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.4		1	01/27/2021 10:29	<u>WG1611242</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	6370		101	219	10	01/25/2021 19:38	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	633		2.58	11.9	100	01/29/2021 08:29	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		01/29/2021 08:29	WG1613028

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•	'	· · · · · · · · · · · · · · · · · · ·	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.0222	0.0475	40	01/27/2021 14:23	WG1611866
Toluene	U		0.0617	0.237	40	01/27/2021 14:23	WG1611866
Ethylbenzene	0.0843	<u>J</u>	0.0350	0.119	40	01/27/2021 14:23	WG1611866
Total Xylenes	0.451		0.0418	0.309	40	01/27/2021 14:23	WG1611866
(S) Toluene-d8	97.6			75.0-131		01/27/2021 14:23	WG1611866
(S) 4-Bromofluorobenzene	103			67.0-138		01/27/2021 14:23	WG1611866
(S) 1,2-Dichloroethane-d4	96.5			70.0-130		01/27/2021 14:23	WG1611866

PAGE:

22 of 73

Sample Narrative:

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	<u>Qualifier</u>	mg/kg	mg/kg	Dilution	date / time	buten
C10-C28 Diesel Range	3210		35.2	87.5	20	01/28/2021 09:09	WG1612296
C28-C40 Oil Range	1450		5.99	87.5	20	01/28/2021 09:09	WG1612296
(S) o-Terphenyl	359	J7		18.0-148		01/28/2021 09:09	WG1612296

ONE LAB. NATRAGE 95 of 331

Collected date/time: 01/18/21 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.8		1	01/27/2021 10:29	WG1611242

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2940		101	220	10	01/25/2021 19:47	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	327		2.61	12.0	100	01/29/2021 08:51	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		01/29/2021 08:51	WG1613028

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.0225	0.0481	40	01/27/2021 14:41	WG1611866
Toluene	U		0.0625	0.241	40	01/27/2021 14:41	WG1611866
Ethylbenzene	0.0697	<u>J</u>	0.0355	0.120	40	01/27/2021 14:41	WG1611866
Total Xylenes	0.284	<u>J</u>	0.0423	0.313	40	01/27/2021 14:41	WG1611866
(S) Toluene-d8	99.4			75.0-131		01/27/2021 14:41	WG1611866
(S) 4-Bromofluorobenzene	104			67.0-138		01/27/2021 14:41	WG1611866
(S) 1,2-Dichloroethane-d4	96.8			70.0-130		01/27/2021 14:41	WG1611866

Sample Narrative:

Semi-Volatile Organic Compounds (GC) by Method 8015

	Decult /dm/	Ouglifian	MDL (alm.)	DDI (4m.)	Dilution	Amalusis	Datah
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2280		35.5	88.1	20	01/28/2021 08:17	WG1612296
C28-C40 Oil Range	1220		6.03	88.1	20	01/28/2021 08:17	WG1612296
(S) o-Terphenyl	269	J7		18.0-148		01/28/2021 08:17	WG1612296

Gl

SAMPLE RESULTS - 13 L1308926

ONE LAB. NAT Page 96 of 331

Collected date/time: 01/18/21 10:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.2		1	01/27/2021 10:29	<u>WG1611242</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	648		9.77	21.2	1	01/25/2021 19:57	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	2.40		0.0230	0.106	1	01/29/2021 02:56	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		01/29/2021 02:56	WG1613028

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000525	0.00112	1	01/27/2021 15:00	WG1611866
Toluene	U		0.00146	0.00562	1	01/27/2021 15:00	WG1611866
Ethylbenzene	0.00208	<u>J</u>	0.000829	0.00281	1	01/27/2021 15:00	WG1611866
Total Xylenes	0.00824		0.000989	0.00731	1	01/27/2021 15:00	WG1611866
(S) Toluene-d8	98.8			75.0-131		01/27/2021 15:00	WG1611866
(S) 4-Bromofluorobenzene	103			67.0-138		01/27/2021 15:00	WG1611866
(S) 1,2-Dichloroethane-d4	90.2			70.0-130		01/27/2021 15:00	WG1611866

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	337		1.71	4.25	1	01/29/2021 11:22	WG1613106
C28-C40 Oil Range	199		1.46	21.2	5	01/30/2021 21:56	WG1613106
(S) o-Terphenyl	89.9			18.0-148		01/29/2021 11:22	WG1613106
(S) o-Terphenyl	106			18.0-148		01/30/2021 21:56	WG1613106

Gl

ONE LAB. NATRAGE 97. of 331

Collected date/time: 01/18/21 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.0		1	01/27/2021 10:29	<u>WG1611242</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	811		9.78	21.3	1	01/25/2021 20:06	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	47.4		2.45	11.3	100	01/29/2021 09:42	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	115			77.0-120		01/29/2021 09:42	WG1613028

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.00211	0.00451	4	01/27/2021 15:19	WG1611866
Toluene	U		0.00586	0.0225	4	01/27/2021 15:19	WG1611866
Ethylbenzene	0.00349	<u>J</u>	0.00332	0.0113	4	01/27/2021 15:19	WG1611866
Total Xylenes	0.0128	<u>J</u>	0.00397	0.0293	4	01/27/2021 15:19	WG1611866
(S) Toluene-d8	98.1			75.0-131		01/27/2021 15:19	WG1611866
(S) 4-Bromofluorobenzene	100			67.0-138		01/27/2021 15:19	WG1611866
(S) 1,2-Dichloroethane-d4	94.6			70.0-130		01/27/2021 15:19	WG1611866

Sample Narrative:

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	330		1.71	4.25	1	01/29/2021 11:35	WG1613106
C28-C40 Oil Range	183		1.46	21.3	5	01/30/2021 22:10	WG1613106
(S) o-Terphenyl	92.2			18.0-148		01/29/2021 11:35	WG1613106
(S) o-Terphenyl	120			18.0-148		01/30/2021 22:10	WG1613106

SAMPLE RESULTS - 15 L1308926

ONE LAB. NAT Page 98 of 331

Collected date/time: 01/18/21 11:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.3		1	01/27/2021 10:29	<u>WG1611242</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.75	21.2	1	01/25/2021 20:35	WG1609660

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0528	ВЈ	0.0230	0.106	1	01/29/2021 03:18	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/29/2021 03:18	WG1613028

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	01/27/2021 15:38	WG1611866
Toluene	U		0.00146	0.00560	1	01/27/2021 15:38	WG1611866
Ethylbenzene	0.000840	<u>J</u>	0.000825	0.00280	1	01/27/2021 15:38	WG1611866
Total Xylenes	U		0.000986	0.00728	1	01/27/2021 15:38	WG1611866
(S) Toluene-d8	98.5			<i>75.0-131</i>		01/27/2021 15:38	WG1611866
(S) 4-Bromofluorobenzene	96.9			67.0-138		01/27/2021 15:38	WG1611866
(S) 1,2-Dichloroethane-d4	90.9			70.0-130		01/27/2021 15:38	WG1611866

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.81	<u>J</u>	1.71	4.24	1	01/30/2021 20:35	WG1613106
C28-C40 Oil Range	9.72		0.290	4.24	1	01/30/2021 20:35	WG1613106
(S) o-Terphenyl	63.1			18.0-148		01/30/2021 20:35	WG1613106

ConocoPhillips - Tetra Tech

SAMPLE RESULTS - 16 L1308926

ONE LAB. NAT Page 92 of 331

Collected date/time: 01/18/21 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.5		1	01/27/2021 10:29	<u>WG1611242</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.3	<u>J</u>	9.53	20.7	1	01/25/2021 20:44	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.100	ВЈ	0.0227	0.105	1.01	01/29/2021 03:40	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/29/2021 03:40	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	01/27/2021 15:58	WG1611866
Toluene	U		0.00139	0.00536	1	01/27/2021 15:58	WG1611866
Ethylbenzene	0.000912	<u>J</u>	0.000790	0.00268	1	01/27/2021 15:58	WG1611866
Total Xylenes	0.00279	<u>J</u>	0.000944	0.00697	1	01/27/2021 15:58	WG1611866
(S) Toluene-d8	99.6			75.0-131		01/27/2021 15:58	WG1611866
(S) 4-Bromofluorobenzene	96.4			67.0-138		01/27/2021 15:58	WG1611866
(S) 1,2-Dichloroethane-d4	88.6			70.0-130		01/27/2021 15:58	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.38	<u>J</u>	1.67	4.14	1	01/30/2021 20:48	WG1613106
C28-C40 Oil Range	5.71		0.284	4.14	1	01/30/2021 20:48	WG1613106
(S) o-Terphenyl	55.1			18.0-148		01/30/2021 20:48	WG1613106

ONE LAB. NA Page 100 of 331

Collected date/time: 01/18/21 11:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.4		1	01/27/2021 10:29	WG1611242

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.55	20.8	1	01/25/2021 20:56	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	01/29/2021 04:02	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		01/29/2021 04:02	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00108	1	01/27/2021 16:17	WG1611866
oluene	U		0.00140	0.00538	1	01/27/2021 16:17	WG1611866
Ethylbenzene	U		0.000792	0.00269	1	01/27/2021 16:17	WG1611866
otal Xylenes	U		0.000946	0.00699	1	01/27/2021 16:17	WG1611866
(S) Toluene-d8	101			75.0-131		01/27/2021 16:17	WG1611866
(S) 4-Bromofluorobenzene	99.6			67.0-138		01/27/2021 16:17	WG1611866
(S) 1,2-Dichloroethane-d4	89.9			70.0-130		01/27/2021 16:17	WG1611866

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.29	<u>J</u>	1.67	4.15	1	01/30/2021 21:02	WG1613106
C28-C40 Oil Range	3.49	<u>J</u>	0.284	4.15	1	01/30/2021 21:02	WG1613106
(S) o-Terphenyl	62.3			18.0-148		01/30/2021 21:02	WG1613106

ConocoPhillips - Tetra Tech

SAMPLE RESULTS - 18 L1308926

ONE LAB. NA Page 101 of 331

Collected date/time: 01/18/21 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.0		1	01/27/2021 10:29	WG1611242

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.49	20.6	1	01/25/2021 21:09	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	01/29/2021 03:35	WG1612071
(S) a,a,a-Trifluorotoluene(FID)	90.8			77.0-120		01/29/2021 03:35	WG1612071

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, , ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	01/27/2021 16:36	WG1611866
Toluene	U		0.00138	0.00531	1	01/27/2021 16:36	WG1611866
Ethylbenzene	U		0.000783	0.00266	1	01/27/2021 16:36	WG1611866
Total Xylenes	U		0.000935	0.00691	1	01/27/2021 16:36	WG1611866
(S) Toluene-d8	98.9			75.0-131		01/27/2021 16:36	WG1611866
(S) 4-Bromofluorobenzene	97.7			67.0-138		01/27/2021 16:36	WG1611866
(S) 1,2-Dichloroethane-d4	91.6			70.0-130		01/27/2021 16:36	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.73	<u>J</u>	1.66	4.12	1	01/29/2021 12:56	WG1613106
C28-C40 Oil Range	12.5		0.283	4.12	1	01/29/2021 12:56	WG1613106
(S) o-Terphenyl	64.3			18.0-148		01/29/2021 12:56	WG1613106

SAMPLE RESULTS - 19 L1308926

ONE LAB. NAPagev102 of 331

Collected date/time: 01/18/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.6		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.9	<u>J</u>	9.63	20.9	1	01/25/2021 21:18	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	01/29/2021 03:56	WG1612071
(S) a,a,a-Trifluorotoluene(FID)	91.7			77.0-120		01/29/2021 03:56	WG1612071

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1	01/27/2021 16:55	WG1611866
Toluene	U		0.00142	0.00547	1	01/27/2021 16:55	WG1611866
Ethylbenzene	U		0.000806	0.00273	1	01/27/2021 16:55	WG1611866
Total Xylenes	U		0.000962	0.00711	1	01/27/2021 16:55	WG1611866
(S) Toluene-d8	100			75.0-131		01/27/2021 16:55	WG1611866
(S) 4-Bromofluorobenzene	97.8			67.0-138		01/27/2021 16:55	WG1611866
(S) 1,2-Dichloroethane-d4	90.4			70.0-130		01/27/2021 16:55	WG1611866

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.23		1.68	4.19	1	01/29/2021 13:09	WG1613106
C28-C40 Oil Range	19.7		0.287	4.19	1	01/29/2021 13:09	WG1613106
(S) o-Terphenyl	60.7			18.0-148		01/29/2021 13:09	WG1613106

SAMPLE RESULTS - 20 L1308926

ONE LAB. NA Page 103 of 331

Collected date/time: 01/18/21 11:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.7		1	01/27/2021 10:16	<u>WG1611243</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	211		9.61	20.9	1	01/25/2021 21:28	WG1609660

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.104	1	01/29/2021 04:17	WG1612071
(S) a,a,a-Trifluorotoluene(FID)	90.1			77.0-120		01/29/2021 04:17	WG1612071

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		(= =, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000509	0.00109	1	01/27/2021 17:14	WG1611866
Toluene	U		0.00142	0.00545	1	01/27/2021 17:14	WG1611866
Ethylbenzene	U		0.000803	0.00272	1	01/27/2021 17:14	WG1611866
Total Xylenes	U		0.000959	0.00708	1	01/27/2021 17:14	WG1611866
(S) Toluene-d8	99.2			75.0-131		01/27/2021 17:14	WG1611866
(S) 4-Bromofluorobenzene	96.6			67.0-138		01/27/2021 17:14	WG1611866
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		01/27/2021 17:14	WG1611866

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	19.0		1.68	4.18	1	01/29/2021 13:22	WG1613106
C28-C40 Oil Range	24.7		0.286	4.18	1	01/29/2021 13:22	WG1613106
(S) o-Terphenyl	48.2			18.0-148		01/29/2021 13:22	WG1613106

SAMPLE RESULTS - 21 L1308926

ONE LAB. NAPage 104 of 331

Collected date/time: 01/18/21 11:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.0		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	48.5		9.49	20.6	1	01/26/2021 19:13	WG1609663

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	01/29/2021 04:38	WG1612071
(S) a,a,a-Trifluorotoluene(FID)	92.2			77.0-120		01/29/2021 04:38	WG1612071

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, , ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	01/28/2021 17:12	WG1612070
Toluene	U		0.00138	0.00531	1	01/28/2021 17:12	WG1612070
Ethylbenzene	U		0.000783	0.00266	1	01/28/2021 17:12	WG1612070
Total Xylenes	U		0.000935	0.00691	1	01/28/2021 17:12	WG1612070
(S) Toluene-d8	97.9			75.0-131		01/28/2021 17:12	WG1612070
(S) 4-Bromofluorobenzene	98.6			67.0-138		01/28/2021 17:12	WG1612070
(S) 1,2-Dichloroethane-d4	90.9			70.0-130		01/28/2021 17:12	WG1612070

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.3		1.66	4.13	1	01/29/2021 13:36	WG1613106
C28-C40 Oil Range	12.4		0.283	4.13	1	01/29/2021 13:36	WG1613106
(S) o-Terphenyl	52.1			18.0-148		01/29/2021 13:36	WG1613106

SAMPLE RESULTS - 22 L1308926

ONE LAB. NAPage 105 of 331

Collected date/time: 01/18/21 11:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.7		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.5	<u>J</u>	10.1	22.1	1	01/26/2021 19:22	WG1609663

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0715	ВЈ	0.0239	0.110	1	01/29/2021 04:59	WG1612071
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		01/29/2021 04:59	WG1612071

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000905	<u>B J</u>	0.000563	0.00121	1	01/27/2021 22:14	WG1612072
Toluene	U		0.00157	0.00603	1	01/27/2021 22:14	WG1612072
Ethylbenzene	0.00145	<u>J</u>	0.000889	0.00302	1	01/27/2021 22:14	WG1612072
Total Xylenes	0.00317	<u>J</u>	0.00106	0.00784	1	01/27/2021 22:14	WG1612072
(S) Toluene-d8	101			75.0-131		01/27/2021 22:14	WG1612072
(S) 4-Bromofluorobenzene	93.1			67.0-138		01/27/2021 22:14	WG1612072
(S) 1,2-Dichloroethane-d4	95.5			70.0-130		01/27/2021 22:14	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.4		1.78	4.41	1	01/29/2021 13:49	WG1613106
C28-C40 Oil Range	29.7		0.302	4.41	1	01/29/2021 13:49	WG1613106
(S) o-Terphenyl	57.1			18.0-148		01/29/2021 13:49	WG1613106

SAMPLE RESULTS - 23 L1308926

Collected date/time: 01/18/21 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.5		1	01/27/2021 10:16	<u>WG1611243</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.53	20.7	1	01/26/2021 19:32	WG1609663

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	01/29/2021 05:19	WG1612071
(S) a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		01/29/2021 05:19	WG1612071

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000643	ВJ	0.000501	0.00107	1	01/27/2021 22:33	WG1612072
Toluene	U		0.00139	0.00536	1	01/27/2021 22:33	WG1612072
Ethylbenzene	U		0.000790	0.00268	1	01/27/2021 22:33	WG1612072
Total Xylenes	U		0.000944	0.00697	1	01/27/2021 22:33	WG1612072
(S) Toluene-d8	105			75.0-131		01/27/2021 22:33	WG1612072
(S) 4-Bromofluorobenzene	96.1			67.0-138		01/27/2021 22:33	WG1612072
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		01/27/2021 22:33	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.47	<u>J</u>	1.67	4.14	1	01/30/2021 21:15	WG1613106
C28-C40 Oil Range	7.13		0.284	4.14	1	01/30/2021 21:15	WG1613106
(S) o-Terphenyl	62.3			18.0-148		01/30/2021 21:15	WG1613106

SAMPLE RESULTS - 24 L1308926

ONE LAB. NAPage 107 of 331

Collected date/time: 01/18/21 12:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.7		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	31.6		9.82	21.3	1	01/26/2021 20:00	WG1609663

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0466	<u>B J</u>	0.0232	0.107	1	01/29/2021 04:24	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/29/2021 04:24	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000927	ВЈ	0.000530	0.00113	1	01/27/2021 22:52	WG1612072
Toluene	U		0.00148	0.00567	1	01/27/2021 22:52	WG1612072
Ethylbenzene	0.00259	<u>J</u>	0.000836	0.00284	1	01/27/2021 22:52	WG1612072
Total Xylenes	0.00573	<u>J</u>	0.000999	0.00738	1	01/27/2021 22:52	WG1612072
(S) Toluene-d8	103			<i>75.0-131</i>		01/27/2021 22:52	WG1612072
(S) 4-Bromofluorobenzene	96.9			67.0-138		01/27/2021 22:52	WG1612072
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		01/27/2021 22:52	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	238		17.2	42.7	10	01/29/2021 14:16	<u>WG1613106</u>
C28-C40 Oil Range	742		2.92	42.7	10	01/29/2021 14:16	WG1613106
(S) o-Terphenyl	86.5			18.0-148		01/29/2021 14:16	WG1613106

SAMPLE RESULTS - 25 L1308926

ONE LAB. NAPage 108 of 331

Collected date/time: 01/18/21 12:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.8		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	19.5	<u>J</u>	9.92	21.6	1	01/26/2021 20:10	WG1609663

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.770		0.0234	0.108	1	01/29/2021 04:46	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		01/29/2021 04:46	WG1613028

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000780	ВJ	0.000540	0.00116	1	01/27/2021 23:12	WG1612072
Toluene	U		0.00150	0.00578	1	01/27/2021 23:12	WG1612072
Ethylbenzene	0.0475		0.000852	0.00289	1	01/27/2021 23:12	WG1612072
Total Xylenes	0.0896		0.00102	0.00751	1	01/27/2021 23:12	WG1612072
(S) Toluene-d8	101			75.0-131		01/27/2021 23:12	WG1612072
(S) 4-Bromofluorobenzene	97.4			67.0-138		01/27/2021 23:12	WG1612072
(S) 1,2-Dichloroethane-d4	93.2			70.0-130		01/27/2021 23:12	WG1612072

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	293		17.4	43.1	10	01/29/2021 14:29	WG1613106
C28-C40 Oil Range	869		2.95	43.1	10	01/29/2021 14:29	WG1613106
(S) o-Terphenyl	95.9			18.0-148		01/29/2021 14:29	WG1613106

SAMPLE RESULTS - 26 L1308926

ONE LAB. NA Page 109 of 331

Collected date/time: 01/18/21 12:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.1		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.47	20.6	1	01/26/2021 20:19	WG1609663

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1.89		0.0223	0.103	1	01/29/2021 05:08	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		01/29/2021 05:08	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000576	ВЈ	0.000495	0.00106	1	01/27/2021 23:30	WG1612072
Toluene	U		0.00138	0.00530	1	01/27/2021 23:30	WG1612072
Ethylbenzene	0.0353		0.000781	0.00265	1	01/27/2021 23:30	WG1612072
Total Xylenes	0.0841		0.000932	0.00689	1	01/27/2021 23:30	WG1612072
(S) Toluene-d8	104			<i>75.0-131</i>		01/27/2021 23:30	WG1612072
(S) 4-Bromofluorobenzene	104			67.0-138		01/27/2021 23:30	WG1612072
(S) 1,2-Dichloroethane-d4	92.3			70.0-130		01/27/2021 23:30	WG1612072

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	233		16.6	41.2	10	01/29/2021 14:43	WG1613106
C28-C40 Oil Range	586		2.82	41.2	10	01/29/2021 14:43	WG1613106
(S) o-Terphenyl	88.4			18.0-148		01/29/2021 14:43	WG1613106

SAMPLE RESULTS - 27

ONE LAB. NA Page 110 of 331

Collected date/time: 01/18/21 12:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.1		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.78	21.3	1	01/26/2021 20:29	WG1609663

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	401		2.44	11.3	100	01/28/2021 08:26	WG1612479
(S) a,a,a-Trifluorotoluene(FID)	96.3			77.0-120		01/28/2021 08:26	WG1612479

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.00421	0.00901	8	01/27/2021 23:50	WG1612072
Toluene	U		0.0117	0.0451	8	01/27/2021 23:50	WG1612072
Ethylbenzene	0.205		0.00665	0.0225	8	01/27/2021 23:50	WG1612072
Total Xylenes	0.497		0.00793	0.0586	8	01/27/2021 23:50	WG1612072
(S) Toluene-d8	104			75.0-131		01/27/2021 23:50	WG1612072
(S) 4-Bromofluorobenzene	105			67.0-138		01/27/2021 23:50	WG1612072
(S) 1,2-Dichloroethane-d4	93.1			70.0-130		01/27/2021 23:50	WG1612072

Sample Narrative:

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3980		85.6	213	50	01/30/2021 21:42	WG1613106
C28-C40 Oil Range	2090		14.6	213	50	01/30/2021 21:42	WG1613106
(S) o-Terphenyl	733	J7		18.0-148		01/30/2021 21:42	WG1613106

SAMPLE RESULTS - 28 L1308926

ONE LAB. NA Page 11 of 331

Collected date/time: 01/18/21 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.0		1	01/27/2021 10:16	WG1611243

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.1	<u>J</u>	9.68	21.0	1	01/26/2021 20:38	WG1609663

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.985		0.0228	0.105	1	01/29/2021 05:30	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		01/29/2021 05:30	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000746	ВЈ	0.000516	0.00110	1	01/28/2021 00:08	WG1612072
Toluene	U		0.00144	0.00552	1	01/28/2021 00:08	WG1612072
Ethylbenzene	0.0278		0.000814	0.00276	1	01/28/2021 00:08	WG1612072
Total Xylenes	0.0564		0.000972	0.00718	1	01/28/2021 00:08	WG1612072
(S) Toluene-d8	106			75.0-131		01/28/2021 00:08	WG1612072
(S) 4-Bromofluorobenzene	99.3			67.0-138		01/28/2021 00:08	WG1612072
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		01/28/2021 00:08	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	314		18.9	47.1	11.2	01/29/2021 15:10	WG1613106
C28-C40 Oil Range	820		3.23	47.1	11.2	01/29/2021 15:10	WG1613106
(S) o-Terphenyl	101			18.0-148		01/29/2021 15:10	WG1613106

SAMPLE RESULTS - 29 L1308926

ONE LAB. NA Page 112 of 331

Collected date/time: 01/18/21 13:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.2		1	01/27/2021 16:09	WG1611244

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14.9	<u>J</u>	9.37	20.4	1	01/27/2021 02:58	WG1609664

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.915		0.0221	0.102	1	01/29/2021 05:52	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		01/29/2021 05:52	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000778	<u>B J</u>	0.000485	0.00104	1	01/28/2021 00:27	WG1612072
Toluene	U		0.00135	0.00519	1	01/28/2021 00:27	WG1612072
Ethylbenzene	0.00288		0.000765	0.00259	1	01/28/2021 00:27	WG1612072
Total Xylenes	0.00875		0.000913	0.00674	1	01/28/2021 00:27	WG1612072
(S) Toluene-d8	100			75.0-131		01/28/2021 00:27	WG1612072
(S) 4-Bromofluorobenzene	101			67.0-138		01/28/2021 00:27	WG1612072
(S) 1,2-Dichloroethane-d4	87.7			70.0-130		01/28/2021 00:27	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	921		16.4	40.7	10	01/29/2021 15:23	WG1613106
C28-C40 Oil Range	1330		2.79	40.7	10	01/29/2021 15:23	WG1613106
(S) o-Terphenyl	145			18.0-148		01/29/2021 15:23	WG1613106

SAMPLE RESULTS - 30 L1308926

ONE LAB. NAPage 13 of 331

Collected date/time: 01/18/21 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.1		1	01/27/2021 16:09	<u>WG1611244</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.38	20.4	1	01/25/2021 17:49	WG1609666

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0843	ВЈ	0.0221	0.102	1	01/29/2021 06:14	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/29/2021 06:14	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000488	ВJ	0.000485	0.00104	1	01/28/2021 00:46	WG1612072
Toluene	U		0.00135	0.00519	1	01/28/2021 00:46	WG1612072
Ethylbenzene	U		0.000766	0.00260	1	01/28/2021 00:46	WG1612072
Total Xylenes	0.00164	<u>J</u>	0.000914	0.00675	1	01/28/2021 00:46	WG1612072
(S) Toluene-d8	106			75.0-131		01/28/2021 00:46	WG1612072
(S) 4-Bromofluorobenzene	97.0			67.0-138		01/28/2021 00:46	WG1612072
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		01/28/2021 00:46	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	320		16.4	40.8	10	01/29/2021 15:36	WG1613106
C28-C40 Oil Range	612		2.79	40.8	10	01/29/2021 15:36	WG1613106
(S) o-Terphenyl	88.1			18.0-148		01/29/2021 15:36	WG1613106

SAMPLE RESULTS - 31 L1308926

ONE LAB. NAPage 114 of 331

Collected date/time: 01/18/21 13:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.2		1	01/27/2021 16:09	WG1611244

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	16.7	<u>J</u>	9.77	21.2	1	01/25/2021 18:05	WG1609666

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.338		0.0230	0.106	1	01/29/2021 06:36	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		01/29/2021 06:36	WG1613028

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000525	0.00112	1	01/28/2021 01:05	WG1612072
Toluene	U		0.00146	0.00562	1	01/28/2021 01:05	WG1612072
Ethylbenzene	0.00227	<u>J</u>	0.000828	0.00281	1	01/28/2021 01:05	WG1612072
Total Xylenes	0.0126		0.000989	0.00730	1	01/28/2021 01:05	WG1612072
(S) Toluene-d8	104			75.0-131		01/28/2021 01:05	WG1612072
(S) 4-Bromofluorobenzene	94.3			67.0-138		01/28/2021 01:05	WG1612072
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		01/28/2021 01:05	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1260		342	849	200	01/29/2021 16:03	WG1613106
C28-C40 Oil Range	5100		58.2	849	200	01/29/2021 16:03	WG1613106
(S) o-Terphenyl	180	J7		18.0-148		01/29/2021 16:03	WG1613106

SAMPLE RESULTS - 32 L1308926

ONE LAB. NA Page 115 of 331

Collected date/time: 01/18/21 13:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.1		1	01/27/2021 16:09	<u>WG1611244</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.48	20.6	1	01/25/2021 18:21	WG1609666

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.173	В	0.0224	0.103	1	01/29/2021 06:58	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		01/29/2021 06:58	WG1613028

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000663	ВЈ	0.000495	0.00106	1	01/28/2021 01:24	WG1612072
Toluene	U		0.00138	0.00530	1	01/28/2021 01:24	WG1612072
Ethylbenzene	0.00313		0.000782	0.00265	1	01/28/2021 01:24	WG1612072
Total Xylenes	0.00822		0.000933	0.00689	1	01/28/2021 01:24	WG1612072
(S) Toluene-d8	105			<i>75.0-131</i>		01/28/2021 01:24	WG1612072
(S) 4-Bromofluorobenzene	97.0			67.0-138		01/28/2021 01:24	WG1612072
(S) 1,2-Dichloroethane-d4	86.7			70.0-130		01/28/2021 01:24	WG1612072

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	520		16.6	41.2	10	01/29/2021 15:50	WG1613106
C28-C40 Oil Range	1150		2.82	41.2	10	01/29/2021 15:50	WG1613106
(S) o-Terphenyl	81.8			18.0-148		01/29/2021 15:50	WG1613106

SAMPLE RESULTS - 33 L1308926

ONE LAB. NAPage 116 of 331

Collected date/time: 01/18/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.2		1	01/27/2021 16:09	WG1611244

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.46	20.6	1	01/23/2021 19:12	WG1610464

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	01/29/2021 07:23	WG1613028
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		01/29/2021 07:23	WG1613028

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	01/28/2021 01:43	WG1612072
Toluene	U		0.00137	0.00528	1	01/28/2021 01:43	WG1612072
Ethylbenzene	U		0.000779	0.00264	1	01/28/2021 01:43	WG1612072
Total Xylenes	U		0.000930	0.00687	1	01/28/2021 01:43	WG1612072
(S) Toluene-d8	102			<i>75.0-131</i>		01/28/2021 01:43	WG1612072
(S) 4-Bromofluorobenzene	96.8			67.0-138		01/28/2021 01:43	WG1612072
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		01/28/2021 01:43	WG1612072

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.11	1	01/28/2021 09:25	WG1612302
C28-C40 Oil Range	1.32	<u>J</u>	0.282	4.11	1	01/28/2021 09:25	WG1612302
(S) o-Terphenyl	70.7			18.0-148		01/28/2021 09:25	WG1612302

ConocoPhillips - Tetra Tech

ONE LAB. NA Page 117 of 331

L1308926-01,02,03,04,05,06,07,08 Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3616885-1 01/27/21 10:40 MB RDL MB Result MB Qualifier MB MDL Analyte % % % Total Solids

0.00200

L1308920-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1308920-01 01/27/21 10:40 • (DUP) R3616885-3 01/27/21 10:40

DUP RPD Original Result DUP Result Dilution DUP RPD **DUP Qualifier** Limits % % % % 93.7 93.4 0.286 10

Laboratory Control Sample (LCS)

(LCS) R3616885-2 01/27/21 10:40

Analyte

Total Solids

Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier % % % Analyte 50.0 50.0 Total Solids 100 85.0-115

Sc

Ss

[†]Cn

²Qc

GI

ONE LAB. NA Page 118 of 331

L1308926-09,10,11,12,13,14,15,16,17,18

Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3616884-1 01/27/2	1 10:29			
	MB Result	MB Qualifier	MB MDL	MB RD
Analyte	%		%	%

Total Solids 0.00200 RDL

0.549

Ss

[†]Cn

L1308926-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1308926-09 01/27/21 10:29 • (DUP) R3616884-3 01/27/21 10:29

93.7

(,	(/		• =		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifie
Analyte	%	%		%	

93.2

Limits %

10

DUP RPD

Laboratory Control Sample (LCS)

(LCS) R3616884-2 01/27/21 10:29

Total Solids

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

Sc

ONE LAB. NAPagev119 of 31

Total Solids by Method 2540 G-2011

L1308926-19,20,21,22,23,24,25,26,27,28

Method Blank (MB)

(MB) R3616881-1 O	1/27/21 10:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

³Ss

L1308926-19 Original Sample (OS) • Duplicate (DUP)

(OS) L1308926-19 01/27/	(OS) L1308926-19 01/27/21 10:16 • (DUP) R3616881-3 01/27/21 10:16						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	95.6	95.9	1	0.390		10	

Laboratory Control Sample (LCS)

ONE LAB. NAPagev120 of 331

L1308926-29,30,31,32,33

Method Blank (MB)

Total Solids

Total Solids by Method 2540 G-2011

(MB) R3616933-1 01,	/27/21 16:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

100	11202027 05	01/27/21 16:09 •	יםו וחי	D3616033 3	∩1/27/21 16·∩Q
(00) LI300327-03	01/2//21 10.03	(DOF)	K3010333-3	01/2//21 10.03

50.0

50.0

100

(,	(= /		=			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.5	85.0	1	2.95		10

Laboratory Control Sample (LCS)

85.0-115

ONE LAB. NAPagev121 of 331

Wet Chemistry by Method 300.0

L1308926-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3616125-1 01/25/21 16	6:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

Ss

(OS) L1308926-01 01/25/21	1 17:06 • (DUP)	R3616125-3	01/25/21 17:	15		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	4430	4640	10	4.52		20

(OS) L1308926-20 01/25/21 21:28 • (DUP) R3616125-6 01/25/21 21:37

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	211	192	1	9.46		20

Laboratory Control Sample (LCS)

(LCS) R3616125-2 01/25/21 16:47

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	195	97.3	90.0-110	

L1308926-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1308926-10 01/25/21 19:00 • (MS) R3616125-4 01/25/21 19:09 • (MSD) R3616125-5 01/25/21 19:19

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	537	4920	5340	5250	78.1	61.1	1	80.0-120	EV	<u>E V</u>	1.72	20

ONE LAB. NA Page 122 of 331

Wet Chemistry by Method 300.0

L1308926-21,22,23,24,25,26,27,28

Method Blank (MB)

(MB) R3616562-1 01/26/21	16:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	11		9.20	20.0

(OS) L1308878-01 01/26/21	16:31 • (DUP) R	3616562-3	01/26/21 16:	40		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	163	161	1	1.21		20

(OS) L1308926-28 01/26/21 20:38 • (DUP) R3616562-6 01/26/21 20:48

(03) 11300920-20 01/20/2	Original Result (dry)	,	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	17.1	16.1	1	5.98	J	20

Laboratory Control Sample (LCS)

(LCS) R3616562-2 01/26/21 16:19

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	191	95.6	90.0-110	

L1308878-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1308878-02 01/26/21 16:50 • (MS) R3616562-4 01/26/21 16:59 • (MSD) R3616562-5 01/26/21 17:09

(O3) LI300076-02 01/20/	21 10.30 • (IVIS)	K3010302-4 0	1/20/21 10.55	(14130) 14301030	02-3 01/20/21	17.03						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	569	544	1010	1060	81.3	90.8	1	80.0-120			5.21	20

ONE LAB. NAPagev123 of 331

Wet Chemistry by Method 300.0

L1308926-29

Method Blank (MB)

(MB) R3616563-1 01/	26/21 22:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

(OS) L1308904-01	01/26/21 22:30 • (DUP) R3616563	-3 01/26/21 22:39	
	Original Result DUP Result		_

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	4330	4740	10	9.00		20

L1308904-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1308904-15 01/27/21 02:11 • (DUP) R3616563-7 01/27/21 02:20

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	12.9	10.6	1	19.7	<u>J</u>	20

Laboratory Control Sample (LCS)

(LCS) R3616563-4 01/26/21 23:10

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	190	94.9	90.0-110	

L1308904-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1308904 04 01/26/21 23:19 - (MS) | D3616563 5 01/26/21 23:29 - (MSD) | D3616563 6 01/26/21 23:29

(O3) L1306904-04 01/20	0/2123.19 • (IVIS)	K3010303-3 U	1/20/21 23.29 •	(ועוטט) א	003-0 01/20/2	1 23.30						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	528	U	443	466	83.9	88.4	1	80.0-120			5.20	20

ONE LAB. NAPagev124 of 331

Wet Chemistry by Method 300.0

L1308926-30,31,32

Method Blank (MB)

(MB) R3616129-3 01/25/21 17:33							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Chloride	U		9.20	20.0			

(OS) L1308927-02	01/25/21 18:53 • (DUP) R3616129-4 01/25/21 19:09
	0.1.1.0.1.0.1.0.0.1.

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	Ш	U	1	0.000		20

L1308997-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1308997-02 01/26/21 00:59 • (DUP) R3616129-7 01/26/21 01:15

(00) 21000007 02 01/20/2	Original Result (dry)	,	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte				%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3616129-2 01/25/21 16:55

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	203	102	90.0-110	

L1308928-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1308928-03 01/25/21 21:32 • (MS) R3616129-5 01/25/21 21:48 • (MSD) R3616129-6 01/25/21 22:04

(03) 1300320-03 0	1/25/2121.52 (1015)	13010123-3 0	1/25/2121.40 • (10130) 1301012	.5-0 01/25/21.	22.07							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	593	U	614	615	104	104	1	80.0-120			0.130	20	

ONE LAB. NA Page 125 of 31

Wet Chemistry by Method 300.0

L1308926-33

Method Blank (MB)

(MB) R3615640-1 01/23/21	17:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	11		9.20	20.0

L1307381-01 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1309378-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1309378-10 01/23/21 21:06 • (DUP) R3615640-6 01/23/21 21:16

,	000,0 10 0,120,21	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte		mg/kg	mg/kg		%		%	
Chloride		225	229	1	1.76		20	

Laboratory Control Sample (LCS)

(LCS) R3615640-2 01/23/21 17:48

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	200	100	90.0-110	

Chloride 200 200 100 90.0-110

(OS) L1307381-02 01/23/2118:34 • (MS) R3615640-4 01/23/2118:43 • (MSD) R3615640-5 01/23/2118:53

L1307381-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(O3) LI30/301-02	01/23/21 10.34 • (IVIS) K	.3013040-4 01/	23/21 10.43	רטכוטכא (עכוויו)	0-5 01/25/21	10.55							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	U	499	502	99.8	100	1	80.0-120			0.543	20	

ONE LAB. NA Page 126 of 331

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1308926-18,19,20,21,22,23

Method Blank (MB)

(MB) R3617325-2 01/28/2	1 22:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	93.5			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3617325-1 01/28/2	21 21:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.90	107	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120	

L1310278-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05	11310278-08	01/28/21 23:04 •	(MS) R3617325_3	01/29/21 05:40 •	(MSD) R3617325-4	01/29/21 06:01
- 1	-	/ LISIOZ/0-00	01/20/2123.07	(1710	1113017323-3	01/23/2103.70	(17130	/ NOUI/ JZJ-T	01/23/2100.01

(OS) L1310278-08 01/28/2	21 23:04 • (MS) F	7361/325-3 01	/29/21 05:40	• (MSD) R361/3	25-4 01/29/21	06:01							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	109	2.46	122	124	110	112	25	10.0-151			1.63	28	
(S) a.a.a-Trifluorotoluene(FID)					111	111		77.0-120					

Reserve the 2000: 6/31/2022 1:14:59 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 127 of 331

L1308926-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3617045-2 01/28/2	1 00:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120

Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3617045-1 01/27/2	21 23:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.32	115	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			104	77.0-120	

ONE LAB. NA Page 128 of 331

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1308926-27

Method Blank (MB)

(MB) R3617039-2 01/27/2	21 23:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0527	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3617039-1 01/27/2	1 22:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.34	97.1	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			102	77.0-120	

L1308926-27 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1308926-27 01/28/21 08:26 • (MS) R3617039-3 01/28/21 09:31 • (MSD) R3617039-4 01/28/21 09:52

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	614	401	749	943	56.7	88.3	100	10.0-151			22.9	28
(S) a.a.a-Trifluorotoluene(FID)					97.4	98.9		77.0-120				

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev129 of 331

L1308926-09,10

Method Blank (MB)

(MB) R3617321-3 01/28/2	(MB) R3617321-3 01/28/21 14:08									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
TPH (GC/FID) Low Fraction	U		0.0217	0.100						
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120						

Laboratory Control Sample (LCS)

(LCS) R3617321-2 01/28/21 13:07								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
TPH (GC/FID) Low Fraction	5.50	5.34	97.1	72.0-127				
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120				

L1310369-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1310369-06 01/28/21 19:54 • (MS) R3617321-4 01/28/21 22:13 • (MSD) R3617321-5 01/28/21 22:35

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
TPH (GC/FID) Low Fraction	97.9	18.1	170	150	100	87.0	25	10.0-151			12.7	28
(S) a,a,a-Trifluorotoluene(FID)					110	108		77.0-120				

Reserve 6 by 200 2:5/31/2022 1:14:59 PM

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 130 of 31

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1308926-11,12,13,14,15,16,17,24,25,26,28,29,30,31,32,33

Method Blank (MB)

MB Result MB Qualifier Analyte mg/kg	MB MDL MB RDL mg/kg mg/kg
	mg/kg mg/kg
TDLL/CC/FID/Law Fraction 0.0000	
TPH (GC/FID) Low Fraction 0.0238	0.0217 0.100
(S) a,a,a-Trifluorotoluene(FID) 114	77.0-120

Laboratory Control Sample (LCS)

(LCS) R3617399-1 01/29/2	21 01:10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.84	106	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120	

ONE LAB. NAPagev131 of 331

Volatile Organic Compounds (GC/MS) by Method 8260B

L1308926-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3616790-2 01/27/2					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	100			75.0-131	
(S) 4-Bromofluorobenzene	98.4			67.0-138	
(S) 1,2-Dichloroethane-d4	90.1			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3616790-1 01/27/2	1 07:46				· · · · · · · · · · · · · · · · · · ·
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.126	101	70.0-123	
Ethylbenzene	0.125	0.119	95.2	74.0-126	
Toluene	0.125	0.118	94.4	75.0-121	
Xylenes, Total	0.375	0.364	97.1	72.0-127	
(S) Toluene-d8			97.3	75.0-131	
(S) 4-Bromofluorobenzene			101	67.0-138	
(S) 1 2-Dichloroethane-d4			99 6	70 0-130	

L1308926-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1308926-01 01/27/2	(OS) L1308926-01 01/27/21 09:02 • (MS) R3616790-3 01/27/21 17:33 • (MSD) R3616790-4 01/27/21 17:52												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.139	U	0.143	0.137	102	98.4	1	10.0-149			3.98	37	
Ethylbenzene	0.139	0.0959	0.216	0.204	86.3	77.5	1	10.0-160			5.84	38	
Toluene	0.139	U	0.131	0.130	94.4	93.6	1	10.0-156			0.851	38	
Xylenes, Total	0.417	0.203	0.598	0.543	94.7	81.6	1	10.0-160			9.56	38	
(S) Toluene-d8					98.8	96.5		75.0-131					
(S) 4-Bromofluorobenzene					101	99.8		67.0-138					
(S) 1,2-Dichloroethane-d4					92.4	95.4		70.0-130					

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev132 of 331

L1308926-21

Method Blank (MB)

(MB) R3617193-3 01/28/21	10:52				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	99.0			75.0-131	
(S) 4-Bromofluorobenzene	96.9			67.0-138	
(S) 1,2-Dichloroethane-d4	90.4			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3617193-1 01/28/21	09:36 • (LCSD)	R3617193-2 (01/28/21 09:55								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.113	0.116	90.4	92.8	70.0-123			2.62	20	
Ethylbenzene	0.125	0.106	0.110	84.8	88.0	74.0-126			3.70	20	
Toluene	0.125	0.111	0.115	88.8	92.0	75.0-121			3.54	20	
Xylenes, Total	0.375	0.323	0.339	86.1	90.4	72.0-127			4.83	20	
(S) Toluene-d8				97.6	97.1	75.0-131					
(S) 4-Bromofluorobenzene				101	102	67.0-138					
(S) 1,2-Dichloroethane-d4				99.9	97.6	70.0-130					

L1308904-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1308904-18 01/28/2	21 14:03 • (MS) R	3617193-4 01/2	28/21 17:32 • (M	ISD) R3617193-	5 01/28/21 17:5	51						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.130	0.000493	0.0542	0.0852	41.2	65.1	1	10.0-149		<u>J3</u>	44.6	37
Ethylbenzene	0.130	U	0.0517	0.0813	39.7	62.4	1	10.0-160		<u>J3</u>	44.5	38
Toluene	0.130	U	0.0552	0.0862	42.4	66.2	1	10.0-156		<u>J3</u>	43.8	38
Xylenes, Total	0.391	U	0.167	0.235	42.7	60.2	1	10.0-160			33.9	38
(S) Toluene-d8					99.3	97.3		75.0-131				
(S) 4-Bromofluorobenzene					97.8	96.1		67.0-138				
(S) 1,2-Dichloroethane-d4					93.9	92.4		70.0-130				

ONE LAB. NAPagev133 of 331

Volatile Organic Compounds (GC/MS) by Method 8260B

L1308926-22,23,24,25,26,27,28,29,30,31,32,33

Method Blank (MB)

(MB) R3617071-3 01/27/21		MD Qualifier	MB MDL	MB RDL
	MB Result	MB Qualifier	IVID IVIDL	IVID KUL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000600	<u>J</u>	0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	102			75.0-131
(S) 4-Bromofluorobenzene	94.5			67.0-138
(S) 1,2-Dichloroethane-d4	93.9			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3617071-1 01/27/21	20:40 • (LCSD)	R3617071-2 (01/27/21 20:59								E
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	ď
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.129	0.122	103	97.6	70.0-123			5.58	20	8
Ethylbenzene	0.125	0.121	0.119	96.8	95.2	74.0-126			1.67	20	
Toluene	0.125	0.124	0.122	99.2	97.6	75.0-121			1.63	20	-
Xylenes, Total	0.375	0.362	0.352	96.5	93.9	72.0-127			2.80	20	
(S) Toluene-d8				101	98.3	75.0-131					L
(S) 4-Bromofluorobenzene				96.4	101	67.0-138					
(S) 1,2-Dichloroethane-d4				107	106	70.0-130					

L1309011-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1309011-09 01/28/2					-5 01/28/21 04	:53						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.151	U	0.100	0.103	66.7	68.4	1	10.0-149			2.63	37
Ethylbenzene	0.151	U	0.101	0.0986	66.9	65.4	1	10.0-160			2.18	38
Toluene	0.151	U	0.102	0.107	67.7	71.0	1	10.0-156			4.81	38
Xylenes, Total	0.452	U	0.295	0.305	65.2	67.4	1	10.0-160			3.35	38
(S) Toluene-d8					99.1	101		75.0-131				
(S) 4-Bromofluorobenzene					93.2	94.4		67.0-138				
(S) 1,2-Dichloroethane-d4					95.2	93.1		70.0-130				

ONE LAB. NA Page 134 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1308926-02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3616817-1 01/27/	21 23:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	55.1			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3616817-2 01/27	/21 23:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	32.4	64.8	50.0-150	
(S) o-Terphenyl			45.6	18.0-148	

L1310470-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1310470-05 01/28/21 01:48 • (MS) R3616817-3 01/28/21 02:01 • (MSD) R3616817-4 01/28/21 02:14

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
C10-C28 Diesel Range	53.0	118	106	96.2	0.000	0.000	1	50.0-150	J6	<u>J6</u>	9.86	20	
(S) o-Terphenyl					32.5	29.5		18.0-148					

ONE LAB. NA Page 135 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1308926-33

Method Blank (MB)

(MB) R3617096-1 01/28/	21 08:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	80.3			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3617096-2 01/28/2	21 09:11				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.3	78.6	50.0-150	
(S) o-Terphenyl			107	18.0-148	

L1309383-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1309383-01 01/28/21 09:38 •	(MS) R3617096-3	01/28/21 09:52	(MSD) R3617096-4	01/28/21 10:05

(00) 2.000000 0. 0., 20,	, ,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	50.0	2.73	40.0	39.6	74.5	73.7	1	50.0-150			1.01	20
(S) o-Terphenyl					105	103		18.0-148				

ONE LAB. NA Page 136 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1308926-01

Method Blank (MB)

(MB) R3616804-1 01/27/	/21 21:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.413	<u>J</u>	0.274	4.00
(S) o-Terphenyl	57.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3616804-2 01/27/	21 21:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	32.6	65.2	50.0-150	
(S) o-Terphenyl			80.9	18.0-148	

ONE LAB. NAPagev137 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1308926-13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32

Method Blank (MB)

(MB) R3617498-1 01/29/	21 10:55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	68.9			18.0-148

(LCS) R3617498-2 01/29/2	21 11:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.2	72.4	50.0-150	
(S) o-Terphenyl			74.5	18.0-148	

L1308926-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1308926-14 01/29/21 11:35 • (MS) R3617498-3 01/29/21 11:48 • (MSD) R3617498-4 01/29/21 12:02

(03) [1000320 14 01/2]	, ,		MS Result (dry)	,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	j
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
C10-C28 Diesel Range	53.2	330	396	408	124	148	1	50.0-150	Ē	Ē	3.17	20	
(S) o-Terphenyl					82.3	83.5		18.0-148					

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Ouglifier	Docariation
Qualifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Qc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design four laboratories. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alekana	40000	Malamada	NE OC 4E OE
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

Pace Analytical National 1313 Point Mallard Parkway SE Suite B Decatur, AL, 35601

Alabama	40160
ANSI National Accreditation Board	L2239

Pace Analytical National 660 Bercut Dr. Ste. C Sacramento, CA, 95811

California	2961	Oregon	CA300002
Minnesota	006-999-465	Washington	C926
North Dakota	D_21/I		

Pace Analytical National 6000 South Eastern Avenue Ste 9A Las Vegas, NV, 89119

Nevada NV009412021-1

Pace Analytical National 1606 E. Brazos Street Suite D Victoria, TX, 77901

Texas T104704328-20-18

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

TE	Tetra Tech, Inc.				901	Midl	and, I (43)	Tex 2) 6	reet, S as 797 82-455 82-394	59	00			Li.	308	92	16			D2	17	7				
Client Name:	Conoco Phillips	Site Manage	r:	Chr	istian	Llull														REC						
Project Name:	VGEU 02-20 WEST	Contact Info	:		ail: ch					ch.com		1	1	(Cir	cle	or	Sp	eci	fy I	Viet	thoo	I N	0.)	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	0-023	05																			
invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	01											6			-								list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John	Thur	ston					1	O-MRC		Se Hg	Se Hg								attached		
Comments: COPTE	TRA Acctnum											2608	0-0RC		d Cr Pb	a Cr Pb			8 / 624 8270C/625					ees)		
		SAMP	LING	M/	ATRIX	PR		RV	ATIVE		(Y/N)	BTEX 8	8015M (GRO - DRO - ORO - MRO)		As Ba C	As Ba C	atiles		8260B / 624	98			ate TDS	Water Chemistry ation Balance	Ignor	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021				T				INE	DC	118	D) W	70C	Is Ag	als Ag	i Vola		1. 82tmi V	8082 / 608		300.0	Sulfate	Water (2	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	ICE	NONE	# CONTAINERS	FILTERED	BTEX 8021B	TPH 8015M (PAH 8270	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Vola	TCLP Sen	RCI	GC/MS Vol. 8260B	PCB's 806	NORM	PLM (Asbestos) Chloride 300.0	Chloride	General W Anion/Cativ	TPH 8015R	
	BH-1 (4-5')	1/18/2021	9:30		X			Х		1	N	X	X			T	T					X				
	BH-1 (6-7')	1/18/2021	9:35		X			X		1	N	X	X					П				X	П		П	
	BH-1 (9-10')	1/18/2021	9:40		X			X		1	N	X	×									X				
	BH-1 (15')	1/18/2021	9:45		X			X		1	N	X	X									X				
	BH-2 (2-3')	1/18/2021	9:50		X			X		1	N	X	X									X				
	BH-2 (4-5')	1/18/2021	9:55		X			X		1	N	X	X								П	X				
	BH-2 (6-7')	1/18/2021	10:05		X			X		1	N	Х	X									X				
	BH-2 (9-10')	1/18/2021	10:10		X		1	X		1	N	Х	×									X				
	BH-2 (15')	1/18/2021	10:15		X			X		1	N	Х	X									X				
	BH-3 (2-3')	1/18/2021	10:20		X			X		1	N	X	X									X				
Relinquished by:	1/20/21 1500	Received by:				D	ate:		Time:			1	LAB	US		R	_	Sta	s: andard	1						
Relinquished by:	Date: Time:	Received by:)		D	ate:		Time:			Samp	ple Te	mpe	rature					Same Darges A			48 1	hr. 72	2 hr.	
Relinquished by:	Date: Time:	Received by:	1			/	pate:		Time:	00)											or TRE	RP Re	eport		
		ORIGINA	COPY		-	1				-		(Circ	le) H	AND	DEL	IVER	ED	FED	EX	UPS	Tra	acking	#: _			

Tt	Tetra Tech, Inc.				901	Midl Te	and, 7 (432	Texa 2) 68	eet, S as 79 32-455 32-39	59	00										(13	081	924	,	
Client Name:	Conoco Phillips	Site Manage	er:	Chri	stian	Llull													SIS							
Project Name:	VGEU 02-20 WEST	Contact Info):		ail: ch					ch.com	1	1	1	1	Cir	cle	or	Sp	eci	fy I	Viet	ho	dN	10.)	1	11
Project Location: (county, state)	Lea County, New Mexico	Project #:			C-MD							1														
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970)1										1	6											list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:		John	Thur	ston						ORO - MRO)		Se Hg	Se Hg								attached		
Comments: COPTET	RA Acctnum											3260B	5) (O - ORO		Ag As Ba Cd Cr Pb Se Hg	g Cr Pb			8270C/625				S	ees)		
		SAMP	PLING	MA	TRIX	PR	ESE		TIVE		î	BTEX 8	1X1005 (Ext to C35) 8015M (GRO - DRO -		As Ba C	As Ba C	tiles		8260B / 624 . Vol. 82700				te TDS	hemistry	ance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021			T	T	П	T	T	INE	D (3)	81	M (G	C	ls Ag	als Ag	Semi Volatiles			32/60		300.0	Sulfate	ater C	ation Bala	П
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	CE	NONE	# CONTAINERS	FILTERED (Y/N)	3TEX 802	TPH 1X1005		Fotal Metals	CLP Meta	TCLP Serr		3C/MS Vol.	CB's 8082 / 608	NORM	PLM (Asbestos)	Chloride	3eneral Water Che	Anion/Cati	
	BH-3 (4-5')	1/18/2021	10:30	1	X			X		1	N	X	X			T					Ī	×	(1	П
	BH-3 (6-7')	1/18/2021	10:35	11	X			X		1	N	X	×		1	1						×				П
	BH-3 (9-10')	1/18/2021	10:40	П	X			X		1	N	X	×			T		П			П	×				П
	BH-3 (15')	1/18/2021	10:45	П	х			X		1	N	X	×		1	T						×		П		П
	BH-3 (20')	1/18/2021	10:50		X			X		1	N	Х	X			T		П				×		П		П
	BH-3 (25')	1/18/2021	10:55	П	X			х		1	N	X	X		1	T		П				×		П		П
	BH-3 (30')	1/18/2021	11:00		X			X		1	N	Х	X			T		П				×		П		П
	BH-4 (0-1')	1/18/2021	11:05	П	X			X		1	N	X	X									×				П
	BH-4 (2-3')	1/18/2021	11:10		X			Х		1	N	X	×			T		П				×		П		
	BH-4 (4-5')	1/18/2021	11:15	П	X			X		1	N	Х	X									>				
Relinquished by:	Date: Time: 1/20/21 1500	Received by				D	ate:		Time:					US		RI		Star	i: ndard							
Relinquished by:	Date: Time:	Received by:	A			D	ate:		Time:			Sam	ple Te	emper	ature	1			h Chai				. 48	hr. 7	2 hr.	
Relinquished by:	Date: Time:	Received by	1		1	9	ate:		Time:	70)	1							cial Re				RPR	eport		
		ORIGINA	COPY		7														E		Tra	cking	#: _			

Page: 3 of #5 901 West Wall Street, Suite 100 Midland, Texas 79701 Tetra Tech, Inc. 4308926 Tel (432) 682-4559 Fax (432) 682-3946 **ANALYSIS REQUEST** Client Name: Conoco Phillips Site Manager: Christian Llull (Circle or Specify Method No.) Email: christian.llull@tetratech.com Contact Info: **Project Name:** VGEU 02-20 WEST Phone: (512) 338-1667 **Project Location:** Lea County, New Mexico Project #: 212C-MD-02305 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 PH TX1005 (Ext to C35)
PH 8015M (GRO - DRO - ORO - MRO) CLP Metals Ag As Ba Cd Cr Pb Se Hg Metals Ag As Ba Cd Cr Pb Se Hg Pace Analytical Sampler Signature: John Thurston Receiving Laboratory: COPTETRA Acctnum Comments: TDS PRESERVATIVE SAMPLING MATRIX CONTAINERS METHOD YEAR: 2021 LAB# SAMPLE IDENTIFICATION HCL HNO₃ LAB USE DATE TIME ONLY X BH-4 (6-7') 1/18/2021 11:20 X X X BH-4 (9-10') 1/18/2021 11:25 N X X X N X BH-5 (0-1') 1/18/2021 11:30 X X X X BH-5 (2-3') 1/18/2021 11:35 21 X X X X 1 N BH-5 (4-5') 1/18/2021 11:40 X X BH-5 (6-7') X N X 1/18/2021 11:45 X X X X N BH-5 (9-10') 1/18/2021 11:50 X X X X BH-6 (0-1') 1/18/2021 11:55 N X X N X X BH-6 (2-3') 1/18/2021 12:00 BH-6 (4-5') 1/18/2021 12:30 N Relinquished by: Date: Time: Date: Time: REMARKS: Received by: LAB USE x Standard 1500 20/2 ONLY RUSH: Same Day 24 hr. 48 hr. 72 hr. Relinquished by: Date: Time: Received by: Date: Time: Sample Temperature Rush Charges Authorized Relinquished by: Date: Time: Received by Date Time: Special Report Limits or TRRP Report 121 ORIQINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking #:

1.7 ta=1.7 4/10

TŁ		9		Vest V Midlan Tel (4 Fax (4										U	30	891	مل								
Client Name:	Conoco Phillips	Site Manage	Site Manager: Christian Llull								ANALYSIS REQUEST (Circle or Specify Method No.)														
Project Name:	VGEU 02-20 WEST	Contact Info: Email: christian.llull@tetratech.com Phone: (512) 338-1667										11	(0	irc	le	or :	Spe	cif	y M	eth d	od I	No.	1	11	
Project Location: (county, state)	Lea County, New Mexico	Project #: 212C-MD-02305																							
Invoice to:	01																								
Receiving Laboratory:	Pace Analytical	Sampler Signature: John Thurston												Se Hg								attached			
Comments: COPTET	RA Acctnum										8260B	30 - ORC	0	Cd Cr Pb			4	S Semi. Vol. 8270C/625			SS	ees)			
		SAMP	LING	MAT	RIX		SER	VATIVE		î	(8021B BTEX 82 TX 1005 (Ext to C35)	RO-DE	PH 8015M (GRO - DRO - ORO - MRO) AH 8270C olal Metals Ag As Ba Cd Cr Pb Se Hg CLP Metals Ag As Ba Cd Cr Pb Se Hg		tiles	0B / 62	1. 8270	8		e TDS	le l	ance		1	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021	1		T	T	T		INER	D (Y/N)	1B 05 (F	M (G	0	als Ag	tiles	ii Vola	1. 826	mi. Vo	32 / 60	stos)	Sulfate	ral Water Ch	n/Cation Bala 8015R		
(LAB USE)		DATE	TIME	WATER		HCL	CE	NONE	# CONTAINERS	FILTERED	BTEX 8021B	TPH 8015M (PAH 8270C	TCLP Metals	TCLP Vola	TCLP Semi	GC/MS Vol.	GC/MS Se	PCB's 8082 / 608	PLM (Asbe	Chloride 300.0	9	Anion/Cation TPH 8015R	U IOH	
	BH-6 (6-7')	1/18/2021	12:35	X			Х		1	N	Х	X		T							X			1	
	BH-6 (9-10 ¹)	1/18/2021	12:40	×			X		1	N	X	X									X)	
	BH-7 (0-1')	1/18/2021	12:45	X			X		1	N	Х	X									X				-2
	BH-7 (2-3')	1/18/2021	12:50	X			X		1	N	Х	X								П	X				-2
	BH-7 (4-5')	1/18/2021	12:55)			X		1	N	X	X								П	X				1.2
	BH-7 (6-7')	1/18/2021	13:00)			X		1	N	Х	X									X			1	
	BH-7 (9-10')	1/18/2021	13:05) ×			X		1	N	Х	X								П	X			1	
	BH-8 (0-1')	1/18/2021	13:10	>			X		1	N	X	X									X				12
	BH-8 (2-3')	1/18/2021	13:15	X			X		1	N	X	X									X			П	10
	BH-8 (4-5')	1/18/2021	13:20	>			X		1	N	X	X									X			П	187
Relinquished by:	Date: Time: 1/20/11 1505	Received by:	Received by: Date: Time:								LAB USE ONLY REMARKS: X Standard														
Relinquished by:											Samp	le Ten	npera	RUSH: Same Day 24 hr. 48 hr. 72 hr.											
Relinquished by:	Date: Time:	Received by Date: Time:																		its or T		Report	t		
		ORIGINA	ORIGINAL COPY									(Circle) HAND DELIVERED FEDEX UPS Tracking #:													

Analysis Request o	f Chain of Custody Record																					Pa	ge:	5	of	5	
TŁ		901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946								100 Uz08926																	
Client Name:	Site Manage	er:	ristian	stian Llull							ANALYSIS REQUEST (Circle or Specify Method No.)																
Project Name:	VGEU 02-20 WEST	Contact Info):	mail: christian.llull@tetratech.com hone: (512) 338-1667								1	(Cir	cle	0	rs	ped	ify	Me	etho	od I	No.	1	11		
Project Location: (county, state)	Lea County, New Mexico	Project #:	Project #: 212C-MD-02305																								
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970)1	(0)											list)													
Receiving Laboratory:	Sampler Signature: John Thurston											D-MR		Se Hg	Se Hg								tached				
Comments: COPTET	RA Acctnum									35		8260B	GRO - DRO - ORO - MRO)		Cd Cr Pb	Cd Cr Pt			24	8270C/625			TDS	try (see al			
		SAMPLING			MATRIX			SERVATIVE SETHOD		3S	î	BTEX	RO-D		As Ba	As Ba	tiles		30B / 6		9			hemis	lance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021				П	T			INE	0 (3	11B	M (G	O	ls Ag	als Ag	ines i Vols		1. 826	Semi. Vol.	22/00	(Asbestos)	Sulfate	ater	on Ba		
(LAB USE)	GAIN EL IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO3	NONE		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTEX 82	TPH 8015M (PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Met	TCLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi, Vol.	NORM	PLM (Asbe	Chloride 300.0	General Water Chemistry (see attached list)	Anion/Cation Bala TPH 8015R	0.07	HOLD
	BH-8 (6-7')	1/18/2021	13:25		X			х		1	N	X	X			T	T	T					X				X
	BH-8 (9-10')	1/18/2021	13:30		X			X		1	N	X	X			1	1		П	1			X			1	X
	BH-9 (0-1')	1/18/2021	13:35		Х			X		1	N	X	X			T	T			1	T		X			П	-31
	BH-9 (1-1.5')	1/18/2021	13:40		X			X		1	N	X	X				-						×				3
																	+	-									
Relinquished by:	Date: Time: 1/20/21 1500	Received by				Dat	te:	Tin	ne:			L		US		F	×		anda		1		+				-
Relinquished by:	Date: Time:	Received by		Date: Time:							Samp	mper	ature	Rush Charges Authorized													
Relinquished by:	Date: Time:	Received by	Date! Time:							Special Report Limits or TRRP Report																	
		9RIGINA	COPY			1						(Circl	e) H	IAND	DEL	IVE	RED	FE	DEX	UPS	S T	rackin	g#:				
													1	7	t	0	=	17	N	N	7						

https://kanbanflow.com/board/nfK94xZ/print-task

Christopher McCord 21 January 2021 4:29 PM	Christopher McCord
)C.	Received BH-4 (3-4') not listed on the COC.
21 January 2021 3:38 PM	Troy Dunlap
	Comments
	Client Contact: Christian Llull
	PM initials: CM
	✓ Date/Time: 1/21/21 15:56
	Client informed by Voicemail
	Client informed by Email
	Client informed by call
	If no COC: Tracking #:
	If no COC: Carrier:
	If no COC: Temp./Cont.Rec./pH:
	If no COC: Date/Time:
	If no COC: Received by:
	Chain of Custody is missing
	Client did not "X" analysis
IDs on COC	Sample IDs on containers do not match IDs on COC
n COC	Received additional samples not listed on COC
	Please specify TCLP requested
	Please specify Metals requested
	Chain of custody is incomplete
	Login Clarification needed
Christopher McCord	Troy Dunlap (responsible) Ch
	Members

ANALYTICAL REPORT

February 05, 2021

³Ss

⁵Sr

⁶Qc

⁷Gl

⁸Al

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1311641

Samples Received: 01/21/2021

Project Number: 212-MD-02305

Description: VGEU 02-20 West
Site: LEA COUNTY, NM

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Project Manager

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122

615-758-5858

800-767-5859

www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
BH-1 (15') L1311641-01	7
BH-3 (25') L1311641-02	8
BH-3 (30') L1311641-03	9
BH-4 (9-10') L1311641-04	10
BH-5 (6-7') L1311641-05	11
BH-5 (9-10') L1311641-06	12
BH-6 (6-7') L1311641-07	13
BH-6 (9-10') L1311641-08	14
BH-7 (6-7') L1311641-09	15
BH-7 (9-10') L1311641-10	16
BH-8 (6-7') L1311641-11	17
BH-8 (9-10') L1311641-12	18
Qc: Quality Control Summary	19
Total Solids by Method 2540 G-2011	19
Wet Chemistry by Method 300.0	21
Volatile Organic Compounds (GC) by Method 8015D/GRO	22
Volatile Organic Compounds (GC/MS) by Method 8260B	24
Semi-Volatile Organic Compounds (GC) by Method 8015	26
GI: Glossary of Terms	28
Al: Accreditations & Locations	29

Sc: Sample Chain of Custody

30

BH-1 (15') L1311641-01 Solid			Collected by John Thurston	Collected date/time 01/18/21 09:45	Received date 01/21/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1615131	1	02/03/21 13:16	02/03/2113:29	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/02/21 23:48	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613977	1	01/30/21 08:58	01/31/21 14:29	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 13:41	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	1	01/31/21 17:32	02/01/21 10:56	TJD	Mt. Juliet, TN
BH-3 (25') L1311641-02 Solid			Collected by John Thurston	Collected date/time 01/18/21 10:55	Received da: 01/21/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1615131	1	02/03/21 13:16	02/03/2113:29	KDW	Mt. Juliet. TN
Wet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 00:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1614454	1	01/30/21 08:58	02/03/21 00:42	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 14:01	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1615796	1	02/04/21 07:52	02/04/21 14:07	DMG	Mt. Juliet, TN
BH-3 (30') L1311641-03 Solid			Collected by John Thurston	Collected date/time 01/18/21 11:00	Received da: 01/21/21 09:0	
· /	Dotah	Dilution	Dranavation	Analysis	Analyst	Location
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 01:00	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1613977	1	01/30/21 08:58	01/31/21 15:10	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 14:20	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	1	01/31/21 17:32	02/01/21 11:48	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (9-10') L1311641-04 Solid			John Thurston	01/18/21 11:25	01/21/21 09:0	10
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 01:18	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1613977	1	01/30/21 08:58	01/31/21 15:30	ACG	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 14:39	DWR	Mt. Juliet, TN
rolatile Organic Compounds (OC/M3) by Method 8200B		10	01/31/21 17:32	02/01/21 15:30	JN	Mt. Juliet, TN
	WG1614200	10	0.000210.02	02/01/21 10.00	311	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200 WG1614200	20	01/31/21 17:32	02/02/21 16:57	WCR	
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015						Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-5 (6-7') L1311641-05 Solid			O1/31/21 17:32 Collected by John Thurston Preparation	02/02/21 16:57 Collected date/time 01/18/21 11:45 Analysis	WCR Received da	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-5 (6-7') L1311641-05 Solid Method	WG1614200 Batch	20 Dilution	O1/31/21 17:32 Collected by John Thurston Preparation date/time	02/02/21 16:57 Collected date/time 01/18/21 11:45 Analysis date/time	WCR Received da 01/21/21 09:0	Mt. Juliet, TN de/time 10 Location
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-5 (6-7') L1311641-05 Solid Method Total Solids by Method 2540 G-2011	WG1614200 Batch WG1615133	Dilution	O1/31/21 17:32 Collected by John Thurston Preparation date/time O2/03/21 17:01	02/02/21 16:57 Collected date/time 01/18/21 11:45 Analysis date/time 02/03/21 17:08	WCR Received da 01/21/21 09:0 Analyst KDW	Mt. Juliet, TN te/time 10 Location Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015 BH-5 (6-7') L1311641-05 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1614200 Batch	20 Dilution	O1/31/21 17:32 Collected by John Thurston Preparation date/time	02/02/21 16:57 Collected date/time 01/18/21 11:45 Analysis date/time	WCR Received da 01/21/21 09:0	Mt. Juliet, TN te/time

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1614200

01/31/21 17:32

02/01/21 12:01

TJD

Mt. Juliet, TN

			Collected by	Collected date/time		
BH-5 (9-10') L1311641-06 Solid			John Thurston	01/18/21 11:50	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 02:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613977	1	01/30/21 08:58	01/31/21 16:12	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 15:17	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	1	01/31/21 17:32	02/01/21 12:14	TJD	Mt. Juliet, TN
BH-6 (6-7') L1311641-07 Solid			Collected by John Thurston	Collected date/time 01/18/21 12:35	Received da 01/21/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 02:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1614454	25	01/30/21 08:58	02/01/21 10:50	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1614108	1	01/30/21 08:58	01/31/21 12:06	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	1	01/31/21 17:32	02/01/21 12:27	TJD	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-6 (9-10') L1311641-08 Solid			John Thurston	01/18/21 12:40	01/21/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 03:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613977	1	01/30/21 08:58	01/31/21 16:33	ACG	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 15:54	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	1	01/31/21 17:32	02/01/21 12:40	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-7 (6-7') L1311641-09 Solid			John Thurston	01/18/21 13:00	01/21/21 09:0	JU
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 03:23	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1614454	100	01/30/21 08:58	02/01/21 11:11	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	8	01/30/21 08:58	01/30/21 16:13	GLN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	20	01/31/21 17:32	02/01/21 23:05	TJD	Mt. Juliet, Ti
			Collected by	Collected date/time		
BH-7 (9-10') L1311641-10 Solid			John Thurston	01/18/21 13:05	01/21/21 09:0	00
	D	Dilution	Preparation	Analysis	Analyst	Location
Method	Batch	5.100.011	date/time	date/time	,	
	WG1615133	1	date/time 02/03/21 17:01	date/time 02/03/21 17:08	KDW	Mt. Juliet, Ti
Total Solids by Method 2540 G-2011						
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1615133	1	02/03/21 17:01	02/03/2117:08	KDW	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1614200

01/31/21 17:32

02/01/21 22:41

TJD

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
BH-8 (6-7') L1311641-11 Solid			John Thurston	01/18/21 13:25	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 03:59	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1613977	1	01/30/21 08:58	01/31/21 17:14	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 16:51	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	1	01/31/21 17:32	02/01/21 22:16	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-8 (9-10') L1311641-12 Solid			John Thurston	01/18/21 13:30	01/21/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1615133	1	02/03/21 17:01	02/03/21 17:08	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1615163	1	02/02/21 15:58	02/03/21 04:17	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1613977	1	01/30/21 08:58	01/31/21 17:35	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1613926	1	01/30/21 08:58	01/30/21 17:10	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1614200	1	01/31/21 17:32	02/01/21 13:32	TJD	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²Tc

Collected date/time: 01/18/21 09:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	02/03/2021 13:29	WG1615131

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.50	20.7	1	02/02/2021 23:48	WG1615163

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	01/31/2021 14:29	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	83.3			77.0-120		01/31/2021 14:29	<u>WG1613977</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	01/30/2021 13:41	WG1613926
Toluene	U		0.00139	0.00533	1	01/30/2021 13:41	WG1613926
Ethylbenzene	U		0.000786	0.00266	1	01/30/2021 13:41	WG1613926
Total Xylenes	0.00114	<u>J</u>	0.000938	0.00693	1	01/30/2021 13:41	WG1613926
(S) Toluene-d8	101			<i>75.0-131</i>		01/30/2021 13:41	WG1613926
(S) 4-Bromofluorobenzene	103			67.0-138		01/30/2021 13:41	WG1613926
(S) 1,2-Dichloroethane-d4	93.1			70.0-130		01/30/2021 13:41	WG1613926

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.02		1.66	4.13	1	02/01/2021 10:56	WG1614200
C28-C40 Oil Range	8.98		0.283	4.13	1	02/01/2021 10:56	WG1614200
(S) o-Terphenyl	47.7			18.0-148		02/01/2021 10:56	WG1614200

ONE LAB. NAPagev153 of 331

Collected date/time: 01/18/21 10:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.0		1	02/03/2021 13:29	WG1615131

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	45.6		9.89	21.5	1	02/03/2021 00:42	WG1615163

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0305	<u>J</u>	0.0233	0.108	1	02/01/2021 10:29	WG1614454
(S) a,a,a-Trifluorotoluene(FID)	90.6			77.0-120		02/01/2021 10:29	WG1614454

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000537	0.00115	1	01/30/2021 14:01	WG1613926
Toluene	U		0.00150	0.00575	1	01/30/2021 14:01	WG1613926
Ethylbenzene	U		0.000848	0.00288	1	01/30/2021 14:01	WG1613926
Total Xylenes	U		0.00101	0.00748	1	01/30/2021 14:01	WG1613926
(S) Toluene-d8	103			<i>75.0-131</i>		01/30/2021 14:01	WG1613926
(S) 4-Bromofluorobenzene	96.4			67.0-138		01/30/2021 14:01	WG1613926
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		01/30/2021 14:01	WG1613926

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	19.5	<u>T8</u>	1.73	4.30	1	02/04/2021 14:07	WG1615796
C28-C40 Oil Range	18.5	<u>T8</u>	0.295	4.30	1	02/04/2021 14:07	WG1615796
(S) o-Terphenyl	73.2			18.0-148		02/04/2021 14:07	WG1615796

ONE LAB. NAPagev154 of 331

Collected date/time: 01/18/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.3		1	02/03/2021 17:08	<u>WG1615133</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	27.8		9.76	21.2	1	02/03/2021 01:00	WG1615163

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	01/31/2021 15:10	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	91.0			77.0-120		01/31/2021 15:10	WG1613977

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	01/30/2021 14:20	WG1613926
Toluene	U		0.00146	0.00560	1	01/30/2021 14:20	WG1613926
Ethylbenzene	U		0.000826	0.00280	1	01/30/2021 14:20	WG1613926
Total Xylenes	U		0.000986	0.00729	1	01/30/2021 14:20	WG1613926
(S) Toluene-d8	104			75.0-131		01/30/2021 14:20	WG1613926
(S) 4-Bromofluorobenzene	98.4			67.0-138		01/30/2021 14:20	WG1613926
(S) 1,2-Dichloroethane-d4	94.5			70.0-130		01/30/2021 14:20	WG1613926

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	19.6		1.71	4.24	1	02/01/2021 11:48	WG1614200
C28-C40 Oil Range	13.6		0.291	4.24	1	02/01/2021 11:48	WG1614200
(S) o-Terphenyl	50.6			18.0-148		02/01/2021 11:48	WG1614200

Collected date/time: 01/18/21 11:25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.0		1	02/03/2021 17:08	<u>WG1615133</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.58	20.8	1	02/03/2021 01:18	WG1615163

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	01/31/2021 15:30	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		01/31/2021 15:30	WG1613977

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

3	- 1	(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	01/30/2021 14:39	WG1613926
Toluene	U		0.00141	0.00542	1	01/30/2021 14:39	WG1613926
Ethylbenzene	U		0.000798	0.00271	1	01/30/2021 14:39	WG1613926
Total Xylenes	U		0.000953	0.00704	1	01/30/2021 14:39	WG1613926
(S) Toluene-d8	104			75.0-131		01/30/2021 14:39	WG1613926
(S) 4-Bromofluorobenzene	98.1			67.0-138		01/30/2021 14:39	WG1613926
(S) 1,2-Dichloroethane-d4	90.7			70.0-130		01/30/2021 14:39	WG1613926

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1410		16.8	41.7	10	02/01/2021 15:30	WG1614200
C28-C40 Oil Range	1980		5.71	83.3	20	02/02/2021 16:57	WG1614200
(S) o-Terphenyl	0.000	J7		18.0-148		02/02/2021 16:57	WG1614200

ONE LAB. NAPage 156 of 331

Collected date/time: 01/18/21 11:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.6		1	02/03/2021 17:08	WG1615133

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.62	20.9	1	02/03/2021 02:12	WG1615163

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	01/31/2021 15:51	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	90.8			77.0-120		01/31/2021 15:51	WG1613977

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	01/30/2021 14:58	WG1613926
Toluene	U		0.00142	0.00546	1	01/30/2021 14:58	WG1613926
Ethylbenzene	U		0.000805	0.00273	1	01/30/2021 14:58	WG1613926
Total Xylenes	U		0.000961	0.00710	1	01/30/2021 14:58	WG1613926
(S) Toluene-d8	101			75.0-131		01/30/2021 14:58	WG1613926
(S) 4-Bromofluorobenzene	103			67.0-138		01/30/2021 14:58	WG1613926
(S) 1,2-Dichloroethane-d4	93.5			70.0-130		01/30/2021 14:58	WG1613926

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.91		1.68	4.18	1	02/01/2021 12:01	WG1614200
C28-C40 Oil Range	9.22		0.287	4.18	1	02/01/2021 12:01	WG1614200
(S) o-Terphenyl	56.6			18.0-148		02/01/2021 12:01	WG1614200

ONE LAB. NAPagev157 of 331

Collected date/time: 01/18/21 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.8		1	02/03/2021 17:08	WG1615133

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.9	<u>J</u>	9.60	20.9	1	02/03/2021 02:30	WG1615163

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	01/31/2021 16:12	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	87.8			77.0-120		01/31/2021 16:12	WG1613977

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	01/30/2021 15:17	WG1613926
Toluene	U		0.00141	0.00544	1	01/30/2021 15:17	WG1613926
Ethylbenzene	U		0.000801	0.00272	1	01/30/2021 15:17	WG1613926
Total Xylenes	U		0.000957	0.00707	1	01/30/2021 15:17	WG1613926
(S) Toluene-d8	101			75.0-131		01/30/2021 15:17	WG1613926
(S) 4-Bromofluorobenzene	101			67.0-138		01/30/2021 15:17	WG1613926
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		01/30/2021 15:17	WG1613926

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.72		1.68	4.17	1	02/01/2021 12:14	WG1614200
C28-C40 Oil Range	5.18		0.286	4.17	1	02/01/2021 12:14	WG1614200
(S) o-Terphenyl	64.2			18.0-148		02/01/2021 12:14	WG1614200

ConocoPhillips - Tetra Tech

ONE LAB. NAPage 158 of 331

Collected date/time: 01/18/21 12:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.9		1	02/03/2021 17:08	WG1615133

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.90	21.5	1	02/03/2021 02:47	WG1615163

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	7.68		0.626	2.88	25	02/01/2021 10:50	WG1614454
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		02/01/2021 10:50	WG1614454

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

9	•	` / -	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000720	<u>J</u>	0.000538	0.00115	1	01/31/2021 12:06	WG1614108
Toluene	0.00738		0.00150	0.00576	1	01/31/2021 12:06	WG1614108
Ethylbenzene	0.00461		0.000850	0.00288	1	01/31/2021 12:06	WG1614108
Total Xylenes	0.0270		0.00101	0.00749	1	01/31/2021 12:06	WG1614108
(S) Toluene-d8	115			75.0-131		01/31/2021 12:06	WG1614108
(S) 4-Bromofluorobenzene	110			67.0-138		01/31/2021 12:06	WG1614108
(S) 1,2-Dichloroethane-d4	86.7			70.0-130		01/31/2021 12:06	WG1614108

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.20	<u>J</u>	1.73	4.31	1	02/01/2021 12:27	WG1614200
C28-C40 Oil Range	2.28	<u>J</u>	0.295	4.31	1	02/01/2021 12:27	WG1614200
(S) o-Terphenyl	72.9			18.0-148		02/01/2021 12:27	WG1614200

ONE LAB. NA Page 159 of 331

Collected date/time: 01/18/21 12:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.8		1	02/03/2021 17:08	WG1615133

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.60	20.9	1	02/03/2021 03:05	WG1615163

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0574	<u>J</u>	0.0226	0.104	1	01/31/2021 16:33	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	90.6			77.0-120		01/31/2021 16:33	WG1613977

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

		-					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	01/30/2021 15:54	WG1613926
Toluene	U		0.00141	0.00544	1	01/30/2021 15:54	WG1613926
Ethylbenzene	U		0.000802	0.00272	1	01/30/2021 15:54	WG1613926
Total Xylenes	U		0.000957	0.00707	1	01/30/2021 15:54	WG1613926
(S) Toluene-d8	105			<i>75.0-131</i>		01/30/2021 15:54	WG1613926
(S) 4-Bromofluorobenzene	96.8			67.0-138		01/30/2021 15:54	WG1613926
(S) 1,2-Dichloroethane-d4	93.9			70.0-130		01/30/2021 15:54	WG1613926

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	80.8		1.68	4.17	1	02/01/2021 12:40	WG1614200
C28-C40 Oil Range	137		0.286	4.17	1	02/01/2021 12:40	WG1614200
(S) o-Terphenyl	50.2			18.0-148		02/01/2021 12:40	WG1614200

ONE LAB. NAPage 160 of 331

Collected date/time: 01/18/21 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.4		1	02/03/2021 17:08	WG1615133

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.85	21.4	1	02/03/2021 03:23	WG1615163

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	111		2.48	11.4	100	02/01/2021 11:11	WG1614454
(S) a,a,a-Trifluorotoluene(FID)	94.1			77.0-120		02/01/2021 11:11	<u>WG1614454</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

9	1 \	/ .	,				
<u> </u>	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.00427	0.00913	8	01/30/2021 16:13	WG1613926
Toluene	U		0.0119	0.0457	8	01/30/2021 16:13	WG1613926
Ethylbenzene	0.0404		0.00674	0.0228	8	01/30/2021 16:13	WG1613926
Total Xylenes	0.116		0.00804	0.0594	8	01/30/2021 16:13	WG1613926
(S) Toluene-d8	103			75.0-131		01/30/2021 16:13	WG1613926
(S) 4-Bromofluorobenzene	102			67.0-138		01/30/2021 16:13	WG1613926
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		01/30/2021 16:13	WG1613926

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2320		34.5	85.7	20	02/01/2021 23:05	WG1614200
C28-C40 Oil Range	1130		5.87	85.7	20	02/01/2021 23:05	WG1614200
(S) o-Terphenyl	0.000	J7		18.0-148		02/01/2021 23:05	WG1614200

Collected date/time: 01/18/21 13:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.3		1	02/03/2021 17:08	WG1615133

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.1	21.9	1	02/03/2021 03:41	WG1615163

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.386		0.0238	0.109	1	01/31/2021 16:53	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		01/31/2021 16:53	<u>WG1613977</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

3	- 1	(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000555	0.00119	1	01/30/2021 16:32	WG1613926
Toluene	U		0.00155	0.00595	1	01/30/2021 16:32	WG1613926
Ethylbenzene	U		0.000877	0.00297	1	01/30/2021 16:32	WG1613926
Total Xylenes	U		0.00105	0.00773	1	01/30/2021 16:32	WG1613926
(S) Toluene-d8	99.8			<i>75.0-131</i>		01/30/2021 16:32	WG1613926
(S) 4-Bromofluorobenzene	103			67.0-138		01/30/2021 16:32	WG1613926
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		01/30/2021 16:32	WG1613926

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	84.6		1.76	4.38	1	02/01/2021 22:41	WG1614200
C28-C40 Oil Range	52.3		0.300	4.38	1	02/01/2021 22:41	WG1614200
(S) o-Terphenyl	57.2			18.0-148		02/01/2021 22:41	WG1614200

ONE LAB. NAPagev162 of 331

Collected date/time: 01/18/21 13:25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	02/03/2021 17:08	<u>WG1615133</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.6	<u>J</u>	9.50	20.7	1	02/03/2021 03:59	WG1615163

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	01/31/2021 17:14	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		01/31/2021 17:14	WG1613977

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	01/30/2021 16:51	WG1613926
Toluene	U		0.00139	0.00533	1	01/30/2021 16:51	WG1613926
Ethylbenzene	U		0.000786	0.00267	1	01/30/2021 16:51	WG1613926
Total Xylenes	U		0.000938	0.00693	1	01/30/2021 16:51	WG1613926
(S) Toluene-d8	102			<i>75.0-131</i>		01/30/2021 16:51	WG1613926
(S) 4-Bromofluorobenzene	97.8			67.0-138		01/30/2021 16:51	WG1613926
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		01/30/2021 16:51	WG1613926

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.0		1.66	4.13	1	02/01/2021 22:16	WG1614200
C28-C40 Oil Range	22.2		0.283	4.13	1	02/01/2021 22:16	WG1614200
(S) o-Ternhenvl	51.1			18 0-148		02/01/2021 22:16	WG1614200

ONE LAB. NA Page 163 of 331

Collected date/time: 01/18/21 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.4		1	02/03/2021 17:08	<u>WG1615133</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	214		9.64	21.0	1	02/03/2021 04:17	WG1615163

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.629		0.0227	0.105	1	01/31/2021 17:35	WG1613977
(S) a,a,a-Trifluorotoluene(FID)	88.7			77.0-120		01/31/2021 17:35	WG1613977

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

Total or garino o		(= = / = /	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	01/30/2021 17:10	WG1613926
Toluene	U		0.00143	0.00548	1	01/30/2021 17:10	WG1613926
Ethylbenzene	U		808000.0	0.00274	1	01/30/2021 17:10	WG1613926
Total Xylenes	0.00195	<u>J</u>	0.000965	0.00713	1	01/30/2021 17:10	WG1613926
(S) Toluene-d8	103			<i>75.0-131</i>		01/30/2021 17:10	WG1613926
(S) 4-Bromofluorobenzene	99.2			67.0-138		01/30/2021 17:10	WG1613926
(S) 1,2-Dichloroethane-d4	96.7			70.0-130		01/30/2021 17:10	WG1613926

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	242		1.69	4.19	1	02/01/2021 13:32	WG1614200
C28-C40 Oil Range	143		0.287	4.19	1	02/01/2021 13:32	WG1614200
(S) o-Terphenyl	111			18.0-148		02/01/2021 13:32	WG1614200

ONE LAB. NA Page 164 of 331

Total Solids by Method 2540 G-2011

L1311641-01,02

Method Blank (MB)

Total Solids

(MB) R3619354-1 02/0	03/21 13:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1310751-04 Original Sample (OS) • Duplicate (DUP)

83.7

1.41

84.9

(OS) L1310751-04 02/03/21	13:29 • (DUP)	R3619354-3 0	2/03/21 13	3:29			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	

10

Laboratory Control Sample (LCS)

(LCS) R3619354-2 02/0						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.1	100	85.0-115		

ONE LAB. NA Page 165 of 331

[†]Cn

Total Solids by Method 2540 G-2011

L1311641-03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3619327-1 02	2/03/21 17:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1311641-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1311641-03 02/0	S) L1311641-03 02/03/2117:08 • (DUP) R3619327-3 02/03/2117:08												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							
Analyte	%	%		%		%							
Total Solids	94.3	93.5	1	0.888		10							

Laboratory Control Sample (LCS)

(LCS) R3619327-2 02/03	CS) R3619327-2 02/03/21 17:08									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	100	85.0-115						

ONE LAB. NAPagev166 of 331

Wet Chemistry by Method 300.0

L1311641-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3618848-1 02/02/21 22:37											
	MB Result MB Qualifier										
Analyte	mg/kg		mg/kg	mg/kg							
Chloride	U		9.20	20.0							

L1311844-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1311844-07	02/03/21 06:58 • (DUP)	R3618848-6	02/03/21 0	/:16
	Original Result	DUP Result	D:1 ::	D. I.D. D.D.

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1770	1800	5	1.70		20

(LCS) R3618848-2 02/02/21 22:5	(LCS) R3618848-2	02/02/21	22:55
--------------------------------	------	--------------	----------	-------

(LC3) N30100 1 0-2 02/	02/2122.55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	193	96.5	90.0-110	

L1311641-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1311641-01 02/02/21 23:48 • (MS) R3618848-4 02	2/03/21 00:06 • (MSD) R3618848-5 02/03/21 00:24
--	---

(00) 210110 11 01 02/02/2	` '	Original Result (dry)		` '		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	516	U	503	502	97.4	97.2	1	80.0-120			0.161	20

Reserve thy 2007.75/31/2022 1:14:59 PM

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 167 of 31

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1311641-01,03,04,05,06,08,10,11,12

Method Blank (MB)

(MB) R3618053-2 01/31/2	21 11:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120

³Ss

Laboratory Control Sample (LCS)

(LCS) R3618053-1 01/31/2	1 10:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.08	92.4	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			102	77.0-120	

ONE LAB. NAPagev168 of 31

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1311641-02,07,09

Method Blank (MB)

(MB) R3618124-2 02/01/2	21 01:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120

³ Ss

Laboratory Control Sample (LCS)

(LCS) R3618124-1 02/01/2	21 00:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.00	109	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			108	77.0-120	

ONE LAB. NA Page 169 of 331

L1311641-01,02,03,04,05,06,08,09,10,11,12 Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3617853-3 01/30/2					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	105			75.0-131	
(S) 4-Bromofluorobenzene	96.6			67.0-138	
(S) 1,2-Dichloroethane-d4	84.6			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.137	0.135	110	108	70.0-123			1.47	20
Ethylbenzene	0.125	0.141	0.144	113	115	74.0-126			2.11	20
Toluene	0.125	0.136	0.133	109	106	75.0-121			2.23	20
Xylenes, Total	0.375	0.425	0.431	113	115	72.0-127			1.40	20
(S) Toluene-d8				98.1	98.4	75.0-131				
(S) 4-Bromofluorobenze	ene			100	108	67.0-138				

70.0-130

ConocoPhillips - Tetra Tech

98.5

98.3

ONE LAB. NAPagev170 of 331

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

L1	3	11	64	1-	07	

(MB) R3618040-3 01/31/21	06:32					Ι.
	MB Result	MB Qualifier	MB MDL	MB RDL	•	2
Analyte	mg/kg		mg/kg	mg/kg		-
Benzene	U		0.000467	0.00100		L
Ethylbenzene	U		0.000737	0.00250		3
Toluene	U		0.00130	0.00500		L
Xylenes, Total	U		0.000880	0.00650		4
(S) Toluene-d8	114			75.0-131		'
(S) 4-Bromofluorobenzene	110			67.0-138		
(S) 1,2-Dichloroethane-d4	86.3			70.0-130		5

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

84.1

86.3

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
ınalyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
enzene	0.125	0.119	0.120	95.2	96.0	70.0-123			0.837	20
thylbenzene	0.125	0.126	0.129	101	103	74.0-126			2.35	20
oluene	0.125	0.125	0.126	100	101	75.0-121			0.797	20
lenes, Total	0.375	0.389	0.391	104	104	72.0-127			0.513	20
(S) Toluene-d8				110	110	75.0-131				
) 4-Bromofluorobenzene				110	113	67.0-138				

70.0-130

ConocoPhillips - Tetra Tech

ONE LAB. NA Page 15-1 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1311641-01,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3618035-1 02/01	(MB) R3618035-1 02/01/21 04:54						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C40 Oil Range	U		0.274	4.00			
(S) o-Terphenyl	67.4			18.0-148			

Laboratory Control Sample (LCS)

(LCS) R3618035-2 02/01/21 05:20										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
C10-C28 Diesel Range	50.0	46.5	93.0	50.0-150						
(S) o-Terphenyl			61.1	18.0-148						

L1311641-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

((25) I 1311641-01	02/01/21 10:56 •	(MS) R3618035-3	02/01/21 11:09 •	(MSD	R3618035-4	02/01/21 11:22

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	50.6	9.02	53.5	50.3	87.9	81.6	1	50.0-150			6.17	20
(S) o-Terphenyl					50.0	46.2		18.0-148				

ConocoPhillips - Tetra Tech

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 172 of 331

L1311641-02

Method Blank (MB)

(MB) R3619808-1 02/04	1/21 11:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	69.8			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3619808-2 02/0	4/21 11:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.5	79.0	50.0-150	
(S) o-Terphenyl			93.5	18.0-148	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifior	\Box	escri)	ntion
Qual	illei	ᆫ	VE2CII	Puon

J	The identification of the analyte is acceptable; the reported value is an estimate.	
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.	
T8	Sample(s) received past/too close to holding time expiration.	

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conductive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alabana	40000	Malamada	NE OC 4E OE
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

Pace Analytical National 1313 Point Mallard Parkway SE Suite B Decatur, AL, 35601

Alabama	40160
ANSI National Accreditation Board	L2239

Pace Analytical National 660 Bercut Dr. Ste. C Sacramento, CA, 95811

California	2961	Oregon	CA300002
Minnesota	006-999-465	Washington	C926
North Dakota	D_21/I		

Pace Analytical National 6000 South Eastern Avenue Ste 9A Las Vegas, NV, 89119

NV009412021-1

Pace Analytical National 1606 E. Brazos Street Suite D Victoria, TX, 77901

Texas T104704328-20-18

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

TE	Tetra Tech, Inc.					Midl Te	and, 1 (432	Tex () 68	reet, So as 797 82-455 82-394	01	0			L13	:08	921	6		ć	22	28	116	41		
lient Name:	Conoco Phillips	Site Manager		Chr	istian I	Llull										12000			(2500)	REC					
Project Name:	VGEU 02-20 WEST	Contact Info:			ail: chi				etratec	h.com			11	((cle	or s	Spe	ecit	ly N	leth	lod	No.) 	
roject Location: ounty, state)	Lea County, New Mexico	Project #:		212	C-MD	-023	905	25																	
voice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	01											(6									Service Servic	list)		
eceiving Laboratory:	Pace Analytical	Sampler Sign	nature:	1	John '	Thur	rston						ORO - MRO)		Se Hg	00							tached		
Comments: COPTET	RA Acctnum							1				82608	DRO - ORG		Ag As Ba Cd Cr Pb Se Ho			1	C/625				DS try (see at		
	The state of the s	SAMP	LING	M	ATRIX	PF	RESE		ATIVE		(N/N)	BTEX (Fytto C3	GRO - DR		As Ba C	As no	tilles	ROBOR / RO	Vol. 8270C/				ate TDS Chemistry	lance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021	100418							AINE	200	8021B		2	81 5	attles	ni Vols	ACR NOV		8276	estos)	300.0	Sulfa Vater (ion Ba	
LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO,	ICE	NONE	# CONTAINERS	FILTERED	BTEX 80	TPH 8015M	PAH 8270C	Total Meta	TCLP Volt	TCLP Ser	RCI	GC/MS Se	PCB's 80	NORM PLM (Asbe	Chloride 3	Chloride General V	Anion/Cat TPH 8015	НОГР
	BH-1 (4-5')	1/18/2021	9:30		X			X		1	N	X	X									X			
	BH-1 (6-7')	1/18/2021	9:35		X			X		1	N	X	X				3					X			
HI TO BE SEED	BH-1 (9-10')	1/18/2021	9:40	100	X			X		1	N	X	×									X			
ALTERNATION OF THE PARTY OF THE	BH-1 (15')	1/18/2021	9:45		X			X		1	N	X	×									X			×
	BH-2 (2-3')	1/18/2021	9:50		X			X		1	N	X	X	8								X			
	BH-2 (4-5')	1/18/2021	9:55		X			X		1	N	X	X									X			
A STATE OF	BH-2 (6-7')	1/18/2021	10:05		X			×		1	N	X	X								200	X			
	BH-2 (9-10')	1/18/2021	10:10		X		*	X		1	N	X	×									X			
	BH-2 (15')	1/18/2021	10:15		X			X		13	N	X	X									X			
	BH-3 (2-3')	1/18/2021	10:20		X			X	3 8	1	N	X	X	3								X	8		
delinquished by:	Date: Time: 1/20/21 1500	Received by					Date:		Time				LAB	US		RI	X		: ndard						
Relinquished by:	Date: Time:	Received by	/			Date:		Time	AT S		Sam	ple Te	impei	rature			1		Same (48 hr.	72 hr.		
Relinquished by:	Date: Time:	1				Opte:		Time 09)												P Rep	ort		
	ALALA HERRARANAN	ORUGINA	COPY	1		1		I To				(Circ	de) I	HAND	DEL	IVER	ED	FED	E)	UPS	Train	king a	k		
		//										1.7	土	a.	=1.	7	, (4	7	1					

Analysis Request of Chain of Custody Record

TE	Tetra Tech, Inc.					Midlar Tel (id, Te 432) (treet, xas 79 682-45 682-39	559	00	7								-	4	708 L13	924	641	
Client Name:	Conoco Phillips	Site Manage	er:	Chris	stian	Liuii		19											EQU					
Project Name:	VGEU 02-20 WEST	Contact Info):			ristian 12) 33			ech.cor	n	1	11	(C	ircl	e o	rS	pec	ify	Me	tho	A bo	lo.)	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-MD	-0230	5																	
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970)1									11	00										list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:	J	John '	Thurst	on					D-MRC	Se Ho	Se Hg								tached		
Comments: COPTE	TRA Acctnum										82608	DRO - ORO - MRO)	Cr Pb	Cd Cr Pb			4	C/625			Sc	y (see a		
		SAME	PLING	MA	TRIX		SERV	VATIV	ERS	(V/V)	BTEX	GRO-DF	An As Ba C	As Ba	Milan	sans	1 m 1	Vol. 8270	808	0	ate TDS	Chemistr	alance	STORES OF
LAB# (LABUSE) ONLY	SAMPLE IDENTIFICATION	YEAR: 2021 DATE	TIME	WATER	SOIL	HCL	NO.	NONE	CONTAINE	TLTERED (TEX 8021B	PH 8015M(AH 8270C	CLP Metals A	CLP Volatiles	CI Semi vo	Vol.	C/MS Semi.	CB's BUBZ/	M (Asbestos	hloride 300.0	eneral Water	nion/Cation B PH 8015R	
	BH-3 (4-5')	1/18/2021	10:30		X	I	X	Z	1	N	X	X	E F		F	- 2	0	0 0	1 2	0	X	0	4 F	
	BH-3 (6-7')	1/18/2021	10:35		X		×		1	N	X	X								-	X			8
	BH-3 (9-10')	1/18/2021	10:40		X		X		1	N	×	X							5 5		X	1		
	BH-3 (15')	1/18/2021	10:45		X		×		1	N	X	X									X			
化 香港 经	BH-3 (20')	1/18/2021	10:50		X		×		1	N	X	X									X	T		
	BH-3 (25')	1/18/2021	10:55		X		X	H	1	N	X	X								П	X			
THE STALK STALL	BH-3 (30')	1/18/2021	11:00		×		X		1	N	X	X								П	X			
	BH-4 (0-1')	1/18/2021	11:05		X		X		1	N	X	X	8								х	10		
	BH-4 (2-3')	1/18/2021	11:10		X		X		1	N	X	X									X			
	BH-4 (4-5')	1/18/2021	11:15		X		X		1	N	X	X									X			
Relinquished by:	Date: Time: 1/20/21 1500	Received by				Da	te.	Tim	e:			LAB			10000	x S	KS: Standa	ard						
Relinquished by:	Date: Time:	Received by	4			Da	te:	Tim	e:		San	ple Ten	npera	ture							hr. 41	8 hr.	72 hr.	
Relinquished by:	Date: Time:	Received by	1	12	te:	Tim	e:)						Ē.			es Auth		TRRP	Repor				
		GRISINAL COPY /									(Cir	cle) H/	ND I	DELIV	EREC	(FI	EDE	UF	PS 7	ľracki	ng#:			0.07
		1//									1.	7±	0	=1.	7	M	n	-						

TŁ.	Tetra Tech, Inc.			90	N	Vest Wa Midland, Tel (43 Fax (43	Tex (2) 6	as 797	01	0										-	13	13	91	641		
ient Name:	Conoco Phillips	Site Manager		Christi	tian L	Juli		4	SET OF	100	100	17.1	N. K.								EST				100	1
oject Name:	VGEU 02-20 WEST	Contact Info:	Contact Info: Email: christian.llull@tetratech.com Phone: (512) 338-1667						1	1	((Circ	le	or	Spe	eci	y	Me	tho	d N	10.)	1	11			
oject Location: ounty, state)	Lea County, New Mexico	Project #:															188			-				SALANINA MANAGEMENT		
voice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701										(0											d list)			
eceiving Laboratory:	Pace Analytical	Sampler Sign	nature:	Jo	ohn T	Thurston	1					ORO-MRO		Se Hg	5								tached			
omments: COPTET	RA Acctnum		4. 11	L EVI				A			3260B	3		d Cr Pb				C/825				S	y (see a			
		SAMP	LING	MAT	TRIX	PRES	ERV		RS	(N/N)	BTEX 8	(Ext to C35) GRO - DRO		Ag As Ba Cd Cr Pb S	No ov	atiles	and the same	Vol. 8270C				ate TDS	Chemistry	slance		
1404	SAMPLE IDENTIFICATION	YEAR: 2021							INE	DG	218	TX1005 (E 8015M (G	2	als Ag	atiles	ni Volz			82/6		estos)	Sulfa	Vater (R R		
LAB USE)		DATE	TIME	WATER	100	HCL HNO ₃	ICE	NONE	# CONTAINERS	FILTERED	BTEX 80;	TPH TX1	PAH 8270C	Total Meta	TCLP Vot	TCLP Ser	RCI	GCMS Sem	PCB's 80	NORM	PLM (Asb	Chloride	General V	Anion/Cat TPH 8015		НОГД
	BH-4 (6-7')	1/18/2021	11:20	CORP. (8)	x		X		1	N	X	×										X				1
TO DESCRIPTION	BH-4 (9-10')	1/18/2021	11:25	×	X		X		1	N	X	×			N.							X	8			X
	BH-5 (0-1')	1/18/2021	11:30)	X		X		1	N	×	×					1				1	X				1
	BH-5 (2-3')	1/18/2021	11:35)	X		X		_1	N	X	×				6						×		A -		
	BH-5 (4-5')	1/18/2021	11:40)	X		X		1	N	X	×										X				1
	BH-5 (6-7')	1/18/2021	11:45)	X		X		1	N	X	×										X				X -
REAL PROPERTY.	BH-5 (9-10')	1/18/2021	11:50)	X		X		1	N	X	>			10					6		X				X -
Marie Sale	BH-6 (0-1')	1/18/2021	11:55)	X		X		1	N	×	>								13		X				7
	BH-6 (2-3')	1/18/2021	12:00)	X		X		1	N	X	,										×				
	BH-6 (4-5')	1/18/2021	12:30)	X		X		1	N	X)				1						X				
Relinquished by:	1/20/21 1560	Received by				Date	100	Time:				LAI	B US NLY		RI		Sta	ndan						701		
Relinquished by:	Date: Time:	Received by	/)		Date	31	Time			San	nple T	empe	rature							24 h		p rw.	72 hr.		
Relinquished by:	Date: Time:	Received by Date Time:													STATE OF THE PERSON NAMED IN		Spe	cial R	eport	Limi	its or T	RRP	Repo	t		
		The second second				1																				

Analysis Request of Chain of Custody Record

TE	Tetra Tech, Inc.				901	Midla Tel	and, 1 (43	Text 2) 68	eet, St as 797 32-4556 32-394	01	00						見いは				1	t	30	59° 131	25	Y/		
Client Name:	Conoco Phillips	Site Manager		Chr	istian	Llull						0						ALY:			-20		200					
Project Name:	VGEU 02-20 WEST	Contact Info:				ristia 512)			etrateci	n.com		1	1	1	(Cir	cle	or	Sp	ec	ify	Me	the	od I	No.	.)	11	1	
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-ME	0-023	05														0							
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01																						list)				
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:	1	John	Thur	ston						NOW .	- MILE	Se Hg	Se Hg		M						tached				
Comments: COPTET	RA Acctnum											8260B	(9)	NO - ON	a Cd Cr Pb Se Hg	Cd Cr Pb			A Proposition	070/07		000	TOS	rv (see at				
		SAMP	LING	M	ATRI	X PF		ERV	ATIVE	RS	(V/N)	BTEX	Ext to C3	GIKO - DI	As Ba	Ag As Ba	taties	T. Stanfell	82508 / 524			(1	ata	Chemist	alance			
LAB# (LABUSE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2021 DATE	TIME	WATER	SOIL	HCL	HNO	ICE	NONE	# CONTAINERS	FILTERED (A		TPH TX1005 (Ext to C35)	PAH 8270C	Total Metals Ag	TCLP Metals A	TCLP Semi Vo		GC/MS Vol. 82	8082 /		PLM (Asbestos)	Chloride 300.0	General Water	Anion/Cation B	TPH 8015R	HOLD	
E TARREST LOUIS	BH-6 (6-7")	1/18/2021	12:35		Х			Х		1	N	х		X			1 10					3	X				X	The second second
	BH-6 (9-10')	1/18/2021	12:40		X			Х		1	N	X		X									X				×	120000000
	BH-7 (0-1")	1/18/2021	12:45		Х			Х		1	N	X		X								3	Х				-	15
	BH-7 (2-3')	1/18/2021	12:50		X		福	X		1	N	X		X			-				1		X				-	16
	BH-7 (4-5')	1/18/2021	12:55		X			X		1	N	X		X									X					13
	BH-7 (6-7')	1/18/2021	13:00		X			X		1	N	×		X					11				X				X	-07
	BH-7 (9-10°)	1/18/2021	13:05		X			X		1	N	X		X									X				X	
	BH-8 (0-1')	1/18/2021	13:10		X			X		1	N	×		X							1		X				3	128
从是是	BH-8 (2-3')	1/18/2021	13:15		X		18	X	10	1	N	×		X									X				-	18
建设设置	BH-8 (4-5')	1/18/2021	13:20		X			X		1	N	X		X							1		X					30
Relinquished by:	Date: Time: 1505	Received by				1	Date		Time:					BU		F	-	Sta		d								
Relinquished by:	Date: Time:	Received by		/)	-	Date		Time:			San	nple	Temp	eratur	0		Rus						48 hr.	. 72	2 hr.		
Relinquished by:	Date: Time:	Received by	~/	/		10	Date		Time:	50	0												TRRP	Rep	oort			
		ORIGINA	AL COPY					1			910	(Cir	rcle)	HAN	ID DE	LIVE	RED	FED	E)	UP	S 1	Track	ng#:					
		0										1.	社	0=	d:	7	A	20	L									

Page: 5 of 5

Analysis Request of Chain of Custody Record

TE	Tetra Tech, Inc.				901	Midi Te	and, I (43	Tex (2) 6	reet, S as 79 82-45 82-39	9	00								6	13	80	921	á	L	131	164	1	
Client Name:	Conoco Phillips	Site Manage	r	Chri	stian	LJull									0							EST						
Project Name:	VGEU 02-20 WEST	Contact Info				nristia 512) :				ch.com			1		Cir	cle	or	Sp	eci	Ty I	Me	tno	1	(.ol	1	11		
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-ME	0-023	305																				No. of the last	
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970)1											1											list)				
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John	Thur	ston						CON-COC	The second second	Cr Pb Se Hg	Se Hg								ttached				
Comments: COPTET	RA Acctnum											82608		6 80	Cd Cr Pb	2000			0C/625				SQL	istry (see a				
		SAMP	LING	MA	TRI	X PF		ERV	ATIVE	RS	(N/N)	BTEX	(Ext to C35)	0.000	As Ba	Ag As Ba	atiles	000	82608 / 624 Vol. 8270C/			0	ate TI	Chemist	alance			
LAB# (LABUSE)	SAMPLE IDENTIFICATION	YEAR: 2021 DATE	TIME	WATER	SOIL	HCL	HNO,	CE	NONE	CONTAINERS	FILTERED (A	TEX 8021B	PH TX1005 (AH 8270C	otal Metals Ag	CLP Volatiles	CLP Semi Vo	i i	C/MS Sami. \	082 /	ORM	LM (Asbestos)	hloride Suff	eneral Water	nion/Cation B PH 8015R		HOLD	
	BH-8 (6-7')	1/18/2021	13:25	5	X	I	I	X	Z	1	N	a X		X	F		F	000	5 0	0	Z	0	X	0	A F		-	-09 1
	BH-8 (9-10')	1/18/2021	13:30		X			X		1	N	х	,	x	H)	X				x-	-10 1
	BH-9 (0-1")	1/18/2021	13:35		X		10	X	8	1	N	×	,	X								,	X				-	31
	BH-9 (1-1.5')	1/18/2021	13:40		×		100	X		1	N	X		×)	×					32
							1000																					
Relinquished by-	Date: Time: 1/20/21 1500	Received by					Date	× .	Time					BU		R	034	RKS Sta										
Relinquished by:	Date: Time:	Received by					Date		Time	:		Sar	mple '	Тетр	eratur	e	-					24 h		B hr.	72 hr.			
Relinquished by:	Date: Time:	Received by	1			1	Date	21	Time	97)													Report	•			
		ORIGIN	A COPY			1						(C)	ircle)	_			-		/	UPS		rackin	g#:					

L1308926 *COPTETRA* goes OOH Monday, 2/1 - 01-145

R1/R2

Please log all hold samples for V8260BTEX, GRO, DRORLA, CHLORIDE-300, TS. Log as R5 due 2/5. Refer to 01-145 for hold samples.

2/1. Adjust RUSH multiplier for V8260BTEX, GRO to 2x for analysis hold time expiring on Monday, Adjust RUSH multiplier for DRORLA to 1.75x for extraction hold time expiring on Monday, 2/1.

Thanks,

Chris

From: Dickerson, Ryan <Ryan.Dickerson@tetratech.com>

Sent: Friday, January 29, 2021 1:11 PM

To: Chris McCord <Chris.McCord@pacelabs.com>

Cc: Llull, Christian <Christian.Llull@tetratech.com>; Furse, Nik <Nik.Furse@tetratech.com>

Subject: L1308926 - Run all HOLD samples

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe. Can you run the 11 hold samples for L1308926 too? Also, Can you change the project name from "VGEU 02-20 East" to "VGEU 02-20 West".

Thanks,

Ryan Dickerson | Senior Staff Geologist

Direct +1 (512) 338-2889 | Main +1 (512) 338-1667 | Cell +1 (512) 217-7254 |

ryan.dickerson@tetratech.com<mailto:ryan.dickerson@tetratech.com>

Tetra Tech | Leading with Science(r) | OGA

8911 N. Capital of TX Hwy. | Bldg. 2, Ste 2310 | Austin, TX 78759 | tetratech.com

others is strictly prohibited. If you are not the intended recipient, please contact the sender immediately NOTICE-- The contents of this email and any attachments may contain confidential, privileged, and/or legally protected information and are for the sole use of the addressee(s). Any review or distribution by and delete any copies.

P Please consider the environment before printing this email

oh Time estimate:

Time spent: oh

Members

Christopher McCord (responsible)

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

L1355917 Sample Delivery Group:

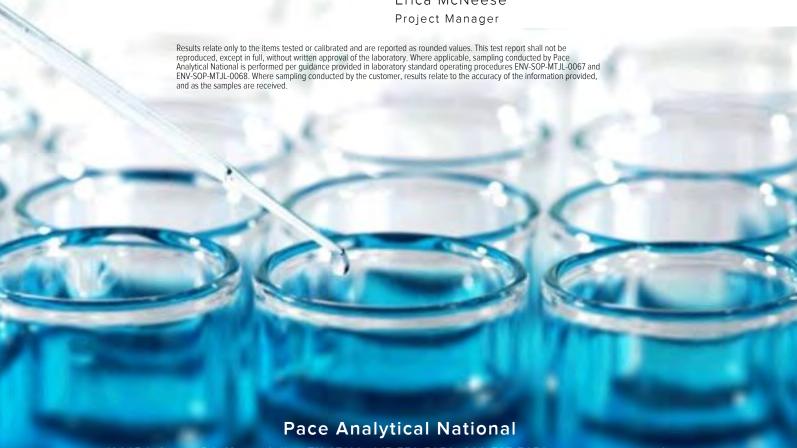
Samples Received: 05/20/2021

Project Number: 212C-MD-02305

Description: VGEU 02-20 West Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enicay Nesse

Erica McNeese Project Manager

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
Sr: Sample Results	9
BH-10 (0-1) L1355917-01	9
BH-10 (2-3) L1355917-02	10
BH-10 (3-4) L1355917-03	11
BH-11 (0-1) L1355917-04	12
BH-11 (3-4) L1355917-05	13
BH-11 (4-5) L1355917-06	14
BH-11 (9-10) L1355917-07	15
BH-12 (0-1) L1355917-08	16
BH-12 (2-3) L1355917-09	17
BH-12 (4-5) L1355917-10	18
BH-12 (9-10) L1355917-11	19
BH-13 (0-1) L1355917-12	20
BH-13 (2-3) L1355917-13	21
BH-13 (3-4) L1355917-14	22
BH-13 (4-5) L1355917-15	23
BH-14 (0-1) L1355917-16	24
BH-14 (2-3) L1355917-17	25
BH-14 (3-4) L1355917-18	26
BH-14 (9-10) L1355917-19	27
BH-16 (0-1) L1355917-20	28
BH-16 (9-10) L1355917-21	29
Qc: Quality Control Summary	30
Total Solids by Method 2540 G-2011	30
Wet Chemistry by Method 300.0	33
Volatile Organic Compounds (GC) by Method 8015D/GRO	35
Volatile Organic Compounds (GC/MS) by Method 8260B	37
Semi-Volatile Organic Compounds (GC) by Method 8015	39
GI: Glossary of Terms	41
Al: Accreditations & Locations	42

Sc: Sample Chain of Custody

43

	J,					
BH-10 (0-1) L1355917-01 Solid			Collected by Devin Dominguez	Collected date/time 05/14/21 00:00	Received da 05/20/21 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1677024	1	05/25/21 19:32	05/25/2119:42	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 03:24	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26	05/28/21 14:35	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/21 19:26	05/26/21 23:58	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 07:08	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (2-3) L1355917-02 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677024	1	05/25/21 19:32	05/25/21 19:42	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 04:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26	05/28/21 14:58	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/21 19:26	05/27/21 00:17	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 03:59	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
BH-10 (3-4) L1355917-03 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 04:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26	05/28/21 15:22	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/21 19:26	05/27/21 00:36	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 04:13	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-11 (0-1) L1355917-04 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T-1-1 C-13-1- In Markey 1 25 40 C 2000	1404077000		date/time	date/time	I/D/II/	NAL L. P Th'
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 04:21	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26 05/25/21 19:26	05/28/21 15:46	TPR ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1		05/27/21 00:55		Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 06:55	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-11 (3-4) L1355917-05 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 04:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26	05/28/21 16:10	TPR	Mt. Juliet, TN
Valatila Occasia Canana and de (CC/MC) ha Matha d 02000	W04677600	4	05/05/04/40 00	05/07/04 04:44	4014	MA Lulian TNI

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1677689

WG1677870

1

05/25/2119:26

05/26/21 15:43

ADM

CAG

05/27/21 01:14

05/27/21 07:22

Mt. Juliet, TN

Mt. Juliet, TN

	SAMPLE	3 O IVIII	MARI			
BH-11 (4-5) L1355917-06 Solid			Collected by Devin Dominguez	Collected date/time 05/14/21 00:00	Received da 05/20/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 04:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26	05/28/21 16:34	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/21 19:26	05/27/21 01:33	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	5	05/26/21 15:43	05/27/21 15:30	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-11 (9-10) L1355917-07 Solid		- · · ·	Devin Dominguez	05/14/21 00:00	05/20/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 05:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	100	05/25/2119:26	05/28/21 19:20	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	8	05/25/2119:26	05/27/21 03:47	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	10	05/26/21 15:43	05/27/21 15:43	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-12 (0-1) L1355917-08 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 05:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/2119:26	05/28/21 16:58	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/2119:26	05/27/21 01:52	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 15:16	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-12 (2-3) L1355917-09 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 05:27	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26	05/28/21 17:22	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/21 19:26	05/27/21 02:11	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 04:26	CAG	Mt. Juliet, TN
DIL 12 /4 EV L12EE017 10 Colid			Collected by Devin Dominguez	Collected date/time 05/14/21 00:00	Received da 05/20/21 08:	
BH-12 (4-5) L1355917-10 Solid	5	D.1				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 05:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/21 19:26	05/28/21 17:45	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/21 19:26	05/27/21 02:30	ADM	Mt. Juliet, TN
Carri Valatila Organia Carra avada (CC) ha Matha d 0015	WC4C77070	4	05/00/01/15:40	05/07/04 04:40	CAC	NAS INTERACTOR

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1677870

05/26/21 15:43

05/27/21 04:40

CAG

Mt. Juliet, TN

•	JAIVII LL V					Ü
BH-12 (9-10) L1355917-11 Solid			Collected by Devin Dominguez	Collected date/time 05/14/21 00:00	Received da 05/20/21 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677026	1	05/26/21 11:51	05/26/21 11:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 05:56	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/2119:26	05/28/21 18:09	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/2119:26	05/27/21 02:49	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 04:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-13 (0-1) L1355917-12 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T-1-1 C-1'-1- h., M-4h - 1 25 40 C 2044	WC4C7700C	1	date/time	date/time	KDW	NAL LUCAL TAI
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1677026 WG1680544	1 1	05/26/21 11:51 06/01/21 23:15	05/26/21 11:57 06/02/21 06:06	KDW ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821		05/25/21 19:26	05/28/21 18:33	TPR	Mt. Juliet, TN Mt. Juliet, TN
	WG1678821 WG1677689	1	05/25/21 19:26	05/28/21 18:33	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1 1	05/26/21 15:43	05/27/21 06:14	CAG	Mt. Juliet, TN
Semi-volatile Organic Compounds (GC) by Metriod 8015	WG16/7870	ļ	05/26/21 15:43	05/27/21 06:14	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-13 (2-3) L1355917-13 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 06:15	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1678821	1	05/25/2119:26	05/28/21 18:57	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677689	1	05/25/2119:26	05/27/21 03:27	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 05:07	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-13 (3-4) L1355917-14 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 06:25	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/21 19:26	05/27/21 01:13	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677778	1	05/25/21 19:26	05/26/21 12:35	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 05:20	CAG	Mt. Juliet, TN
DIL 42 /4 EV L 42EE 047 4E			Collected by Devin Dominguez	Collected date/time 05/14/21 00:00	Received da 05/20/21 08	
BH-13 (4-5) L1355917-15 Solid	5	D.,				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	5	06/01/21 23:15	06/02/21 06:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/21 19:26	05/27/21 01:35	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677778	1	05/25/21 19:26	05/26/2112:54	JHH	Mt. Juliet, TN
0 11/1 11/1 0 1 1 0 1 1 1 1 1 1 1 1 1 1						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1677870

05/26/21 15:43

05/27/21 05:34

CAG

Mt. Juliet, TN

	0, 22 (· · · · · · · ·			
BH-14 (0-1) L1355917-16 Solid			Collected by Devin Dominguez	Collected date/time 05/14/21 00:00	Received da 05/20/21 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 07:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/21 19:26	05/27/21 01:57	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677778	1	05/25/2119:26	05/26/21 13:13	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 06:28	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-14 (2-3) L1355917-17 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 07:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/21 19:26	05/27/21 02:19	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677778	1	05/25/21 19:26	05/26/21 13:32	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 05:47	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-14 (3-4) L1355917-18 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 07:22	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/2119:26	05/27/21 02:41	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677778	1	05/25/2119:26	05/26/21 13:51	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677870	1	05/26/21 15:43	05/27/21 06:01	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-14 (9-10) L1355917-19 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 07:31	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/21 19:26	05/27/21 03:04	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677778	1	05/25/21 19:26	05/26/21 14:10	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677874	1	05/26/21 20:47	05/27/21 05:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-16 (0-1) L1355917-20 Solid			Devin Dominguez	05/14/21 00:00	05/20/21 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1680544	1	06/01/21 23:15	06/02/21 07:41	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/21 19:26	05/27/21 03:26	ACG	Mt. Juliet, TN
V-l-til- 0i- C	WC1C77770	4	05/05/04/40 06	05/06/04/44/00	0.01	NAC TO COMPANY

WG1677778

WG1677874

1

05/25/2119:26

05/26/21 20:47

05/26/21 14:29

05/27/21 19:12

JHH

CAG

Mt. Juliet, TN

Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Collected date/time Received date/time

SAMPLE SUMMARY

Collected by

BH-16 (9-10) L1355917-21 Solid	Devin Dominguez	05/14/21 00:00	05/20/21 08:00			
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1677027	1	05/26/21 11:44	05/26/21 11:50	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1678508	1	05/27/21 15:18	05/28/21 00:15	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1677712	1	05/25/2119:26	05/27/21 03:48	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1677778	1	05/25/2119:26	05/26/21 14:47	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1677874	20	05/26/21 20:47	05/29/21 04:01	CAG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.8		1	05/25/2021 19:42	WG1677024

Page 189 of 331

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.3	<u>J</u>	9.81	21.3	1	06/02/2021 03:24	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.107	1	05/28/2021 14:35	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	94.6			77.0-120		05/28/2021 14:35	WG1678821

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000529	0.00113	1	05/26/2021 23:58	WG1677689
Toluene	U		0.00147	0.00567	1	05/26/2021 23:58	WG1677689
Ethylbenzene	U		0.000835	0.00283	1	05/26/2021 23:58	WG1677689
Total Xylenes	0.00113	<u>J</u>	0.000997	0.00737	1	05/26/2021 23:58	WG1677689
(S) Toluene-d8	105			<i>75.0-131</i>		05/26/2021 23:58	WG1677689
(S) 4-Bromofluorobenzene	91.1			67.0-138		05/26/2021 23:58	WG1677689
(S) 1,2-Dichloroethane-d4	69.8	J2		70.0-130		05/26/2021 23:58	WG1677689

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	14.7		1.72	4.27	1	05/27/2021 07:08	WG1677870
C28-C40 Oil Range	30.9		0.292	4.27	1	05/27/2021 07:08	WG1677870
(S) o-Terphenyl	64.6			18.0-148		05/27/2021 07:08	WG1677870

212C-MD-02305

Page 190 of 331

SAMPLE RESULTS - 02

L1355917

Total Solids by Method 2540 G-2011

Collected date/time: 05/14/21 00:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.2		1	05/25/2021 19:42	WG1677024

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	19.7	J	9.57	20.8	1	06/02/2021 04:02	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	05/28/2021 14:58	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	93.4			77.0-120		05/28/2021 14:58	WG1678821

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	05/27/2021 00:17	WG1677689
Toluene	U		0.00140	0.00540	1	05/27/2021 00:17	WG1677689
Ethylbenzene	U		0.000796	0.00270	1	05/27/2021 00:17	WG1677689
Total Xylenes	U		0.000951	0.00702	1	05/27/2021 00:17	WG1677689
(S) Toluene-d8	106			75.0-131		05/27/2021 00:17	WG1677689
(S) 4-Bromofluorobenzene	89.9			67.0-138		05/27/2021 00:17	WG1677689
(S) 1,2-Dichloroethane-d4	68.4	J2		70.0-130		05/27/2021 00:17	WG1677689

Gl

•	J 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.70	<u>J</u>	1.67	4.16	1	05/27/2021 03:59	WG1677870
C28-C40 Oil Range	3.79	<u>J</u>	0.285	4.16	1	05/27/2021 03:59	WG1677870
(S) o-Terphenyl	69.6			18.0-148		05/27/2021 03:59	WG1677870

Page 191 of 331

SAMPLE RESULTS - 03

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.6	<u>J</u>	9.34	20.3	1	06/02/2021 04:11	WG1680544

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0441	<u>J</u>	0.0220	0.102	1	05/28/2021 15:22	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	96.0			77.0-120		05/28/2021 15:22	WG1678821

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	05/27/2021 00:36	WG1677689
Toluene	U		0.00134	0.00515	1	05/27/2021 00:36	WG1677689
Ethylbenzene	U		0.000759	0.00258	1	05/27/2021 00:36	WG1677689
Total Xylenes	U		0.000907	0.00670	1	05/27/2021 00:36	WG1677689
(S) Toluene-d8	109			75.0-131		05/27/2021 00:36	WG1677689
(S) 4-Bromofluorobenzene	91.4			67.0-138		05/27/2021 00:36	WG1677689
(S) 1,2-Dichloroethane-d4	69.8	<u>J2</u>		70.0-130		05/27/2021 00:36	WG1677689

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	05/27/2021 04:13	WG1677870
C28-C40 Oil Range	1.58	<u>J</u>	0.278	4.06	1	05/27/2021 04:13	WG1677870
(S) o-Terphenyl	74.5			18.0-148		05/27/2021 04:13	WG1677870

11 of 46

Page 192 of 331 SAMPLE RESULTS - 04

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.4		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.65	21.0	1	06/02/2021 04:21	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	05/28/2021 15:46	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120		05/28/2021 15:46	WG1678821

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	05/27/2021 00:55	WG1677689
Toluene	U		0.00143	0.00549	1	05/27/2021 00:55	WG1677689
Ethylbenzene	U		0.000809	0.00274	1	05/27/2021 00:55	WG1677689
Total Xylenes	U		0.000966	0.00713	1	05/27/2021 00:55	WG1677689
(S) Toluene-d8	108			75.0-131		05/27/2021 00:55	WG1677689
(S) 4-Bromofluorobenzene	87.8			67.0-138		05/27/2021 00:55	WG1677689
(S) 1,2-Dichloroethane-d4	70.3			70.0-130		05/27/2021 00:55	WG1677689

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	,	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	21.4		1.69	4.19	1	05/27/2021 06:55	WG1677870
C28-C40 Oil Range	29.8		0.287	4.19	1	05/27/2021 06:55	WG1677870
(S) o-Terphenyl	59.0			18.0-148		05/27/2021 06:55	WG1677870

12 of 46

Page 193 of 331

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.0		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.39	20.4	1	06/02/2021 04:30	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	05/28/2021 16:10	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	94.3			77.0-120		05/28/2021 16:10	WG1678821

Qc

GI

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	05/27/2021 01:14	WG1677689
Toluene	U		0.00135	0.00521	1	05/27/2021 01:14	WG1677689
Ethylbenzene	U		0.000768	0.00260	1	05/27/2021 01:14	WG1677689
Total Xylenes	U		0.000917	0.00677	1	05/27/2021 01:14	WG1677689
(S) Toluene-d8	109			<i>75.0-131</i>		05/27/2021 01:14	WG1677689
(S) 4-Bromofluorobenzene	91.0			67.0-138		05/27/2021 01:14	WG1677689
(S) 1,2-Dichloroethane-d4	<i>78.9</i>			70.0-130		05/27/2021 01:14	WG1677689

	<u> </u>	. ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	14.0		1.64	4.08	1	05/27/2021 07:22	WG1677870
C28-C40 Oil Range	35.6		0.280	4.08	1	05/27/2021 07:22	WG1677870
(S) o-Terphenyl	70.1			18.0-148		05/27/2021 07:22	WG1677870

Page 194 of 331

SAMPLE RESULTS - 06

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011 Result Qualifier Dilution Analysis Batch Analyte % date / time Total Solids 97.4 05/26/2021 11:57 WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.44	20.5	1	06/02/2021 04:59	WG1680544

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.119		0.0223	0.103	1	05/28/2021 16:34	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120		05/28/2021 16:34	<u>WG1678821</u>

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	05/27/2021 01:33	WG1677689
Toluene	U		0.00137	0.00527	1	05/27/2021 01:33	WG1677689
Ethylbenzene	U		0.000776	0.00263	1	05/27/2021 01:33	WG1677689
Total Xylenes	0.00276	<u>J</u>	0.000927	0.00685	1	05/27/2021 01:33	WG1677689
(S) Toluene-d8	106			75.0-131		05/27/2021 01:33	WG1677689
(S) 4-Bromofluorobenzene	88.8			67.0-138		05/27/2021 01:33	WG1677689
(S) 1,2-Dichloroethane-d4	73.0			70.0-130		05/27/2021 01:33	WG1677689

GI

Semi-Volatile Organic Compounds (GC) by Method 8015

	· ·	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	188		8.26	20.5	5	05/27/2021 15:30	WG1677870
C28-C40 Oil Range	438		1.41	20.5	5	05/27/2021 15:30	WG1677870
(S) o-Terphenyl	67.2			18.0-148		05/27/2021 15:30	WG1677870

14 of 46

Page 195 of 331

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.6		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.53	20.7	1	06/02/2021 05:08	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	94.6		2.32	10.7	100	05/28/2021 19:20	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		05/28/2021 19:20	WG1678821

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.00401	0.00857	8	05/27/2021 03:47	WG1677689
Toluene	U	<u>J3</u>	0.0111	0.0428	8	05/27/2021 03:47	WG1677689
Ethylbenzene	0.0450	<u>J3</u>	0.00632	0.0214	8	05/27/2021 03:47	WG1677689
Total Xylenes	0.703	<u>J3</u>	0.00754	0.0557	8	05/27/2021 03:47	WG1677689
(S) Toluene-d8	107			75.0-131		05/27/2021 03:47	WG1677689
(S) 4-Bromofluorobenzene	97.0			67.0-138		05/27/2021 03:47	WG1677689
(S) 1,2-Dichloroethane-d4	80.1			70.0-130		05/27/2021 03:47	WG1677689

GI

Sample Narrative:

L1355917-07 WG1677689: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2170		16.7	41.4	10	05/27/2021 15:43	WG1677870
C28-C40 Oil Range	1240		2.84	41.4	10	05/27/2021 15:43	WG1677870
(S) o-Terphenyl	248	<u>J1</u>		18.0-148		05/27/2021 15:43	WG1677870

Sample Narrative:

L1355917-07 WG1677870: Surrogate failure due to matrix interference

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.0		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	104		9.89	21.5	1	06/02/2021 05:18	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	05/28/2021 16:58	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-120		05/28/2021 16:58	WG1678821

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000537	0.00115	1	05/27/2021 01:52	WG1677689
Toluene	U		0.00150	0.00575	1	05/27/2021 01:52	WG1677689
Ethylbenzene	U		0.000848	0.00288	1	05/27/2021 01:52	WG1677689
Total Xylenes	U		0.00101	0.00748	1	05/27/2021 01:52	WG1677689
(S) Toluene-d8	107			75.0-131		05/27/2021 01:52	WG1677689
(S) 4-Bromofluorobenzene	89.5			67.0-138		05/27/2021 01:52	WG1677689
(S) 1,2-Dichloroethane-d4	78.7			70.0-130		05/27/2021 01:52	WG1677689

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.91	<u>J</u>	1.73	4.30	1	05/27/2021 15:16	WG1677870
C28-C40 Oil Range	16.6		0.295	4.30	1	05/27/2021 15:16	WG1677870
(S) o-Terphenyl	53.1			18.0-148		05/27/2021 15:16	WG1677870

Gl

Page 197 of 331

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 05/14/21 00:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.9		1	05/26/2021 11:57	<u>WG1677026</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	58.4		9.50	20.6	1	06/02/2021 05:27	WG1680544

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/28/2021 17:22	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		05/28/2021 17:22	WG1678821

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00106	1	05/27/2021 02:11	WG1677689
Toluene	U		0.00138	0.00532	1	05/27/2021 02:11	WG1677689
Ethylbenzene	U		0.000785	0.00266	1	05/27/2021 02:11	WG1677689
Total Xylenes	U		0.000937	0.00692	1	05/27/2021 02:11	WG1677689
(S) Toluene-d8	107			<i>75.0-131</i>		05/27/2021 02:11	WG1677689
(S) 4-Bromofluorobenzene	90.9			67.0-138		05/27/2021 02:11	WG1677689
(S) 1,2-Dichloroethane-d4	68.2	J2		70.0-130		05/27/2021 02:11	WG1677689

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	05/27/2021 04:26	WG1677870
C28-C40 Oil Range	2.56	<u>J</u>	0.283	4.13	1	05/27/2021 04:26	WG1677870
(S) o-Terphenyl	71.8			18.0-148		05/27/2021 04:26	WG1677870

17 of 46

Page 198 of 331

SAMPLE RESULTS - 10

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.8		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.0	<u>J</u>	9.41	20.5	1	06/02/2021 05:37	WG1680544

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	05/28/2021 17:45	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	95.5			77.0-120		05/28/2021 17:45	<u>WG1678821</u>

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00105	1	05/27/2021 02:30	WG1677689
Toluene	U		0.00136	0.00523	1	05/27/2021 02:30	WG1677689
Ethylbenzene	U		0.000771	0.00261	1	05/27/2021 02:30	WG1677689
Total Xylenes	U		0.000920	0.00680	1	05/27/2021 02:30	WG1677689
(S) Toluene-d8	108			75.0-131		05/27/2021 02:30	WG1677689
(S) 4-Bromofluorobenzene	87.4			67.0-138		05/27/2021 02:30	WG1677689
(S) 1,2-Dichloroethane-d4	73.4			70.0-130		05/27/2021 02:30	WG1677689

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.09	1	05/27/2021 04:40	WG1677870
C28-C40 Oil Range	0.908	<u>J</u>	0.280	4.09	1	05/27/2021 04:40	WG1677870
(S) o-Terphenyl	71.3			18 0-148		05/27/2021 04:40	WG1677870

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.6		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.4	<u>J</u>	9.63	20.9	1	06/02/2021 05:56	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	05/28/2021 18:09	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		05/28/2021 18:09	WG1678821

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1	05/27/2021 02:49	WG1677689
Toluene	U		0.00142	0.00547	1	05/27/2021 02:49	WG1677689
Ethylbenzene	U		0.000806	0.00273	1	05/27/2021 02:49	WG1677689
Total Xylenes	U		0.000962	0.00711	1	05/27/2021 02:49	WG1677689
(S) Toluene-d8	109			75.0-131		05/27/2021 02:49	WG1677689
(S) 4-Bromofluorobenzene	89.4			67.0-138		05/27/2021 02:49	WG1677689
(S) 1,2-Dichloroethane-d4	76.8			70.0-130		05/27/2021 02:49	WG1677689

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.19	1	05/27/2021 04:53	WG1677870
C28-C40 Oil Range	0.458	<u>J</u>	0.287	4.19	1	05/27/2021 04:53	WG1677870
(S) o-Terphenyl	71.9			18.0-148		05/27/2021 04:53	WG1677870

Received by OGD: 5/31/2022 1:14:59 PM Collected date/time: 05/14/21 00:00

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

	-				
	Resu	lt Qualifie	<u>r</u> Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.5		1	05/26/2021 11:57	WG1677026

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	592		9.94	21.6	1	06/02/2021 06:06	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	05/28/2021 18:33	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	92.8			77.0-120		05/28/2021 18:33	WG1678821

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000542	0.00116	1	05/27/2021 03:08	WG1677689
Toluene	U		0.00151	0.00581	1	05/27/2021 03:08	WG1677689
Ethylbenzene	U		0.000856	0.00290	1	05/27/2021 03:08	WG1677689
Total Xylenes	U		0.00102	0.00755	1	05/27/2021 03:08	WG1677689
(S) Toluene-d8	107			75.0-131		05/27/2021 03:08	WG1677689
(S) 4-Bromofluorobenzene	86.8			67.0-138		05/27/2021 03:08	WG1677689
(S) 1,2-Dichloroethane-d4	77.2			70.0-130		05/27/2021 03:08	WG1677689

	<u> </u>	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.78	<u>J</u>	1.74	4.32	1	05/27/2021 06:14	WG1677870
C28-C40 Oil Range	15.3		0.296	4.32	1	05/27/2021 06:14	WG1677870
(S) o-Terphenyl	58.2			18.0-148		05/27/2021 06:14	WG1677870

Collected date/time: 05/14/21 00:00

Page 201 of 331

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.7		1	05/26/2021 11:50	WG1677027

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	397		9.61	20.9	1	06/02/2021 06:15	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.104	1	05/28/2021 18:57	WG1678821
(S) a,a,a-Trifluorotoluene(FID)	97.0			77.0-120		05/28/2021 18:57	WG1678821

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000509	0.00109	1	05/27/2021 03:27	WG1677689
Toluene	U		0.00142	0.00545	1	05/27/2021 03:27	WG1677689
Ethylbenzene	U		0.000803	0.00272	1	05/27/2021 03:27	WG1677689
Total Xylenes	U		0.000959	0.00708	1	05/27/2021 03:27	WG1677689
(S) Toluene-d8	108			75.0-131		05/27/2021 03:27	WG1677689
(S) 4-Bromofluorobenzene	89.0			67.0-138		05/27/2021 03:27	WG1677689
(S) 1,2-Dichloroethane-d4	74.9			70.0-130		05/27/2021 03:27	WG1677689

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.18	1	05/27/2021 05:07	WG1677870
C28-C40 Oil Range	1.92	<u>J</u>	0.286	4.18	1	05/27/2021 05:07	WG1677870
(S) o-Terphenyl	68.5			18.0-148		05/27/2021 05:07	WG1677870

21 of 46

Page 202 of 331

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.4		1	05/26/2021 11:50	WG1677027

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	495		9.54	20.7	1	06/02/2021 06:25	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	05/27/2021 01:13	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	94.2			77.0-120		05/27/2021 01:13	WG1677712

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	·
Benzene	U		0.000502	0.00107	1	05/26/2021 12:35	WG1677778
Toluene	U		0.00140	0.00537	1	05/26/2021 12:35	WG1677778
Ethylbenzene	U		0.000792	0.00269	1	05/26/2021 12:35	WG1677778
Total Xylenes	U		0.000946	0.00699	1	05/26/2021 12:35	WG1677778
(S) Toluene-d8	105			75.0-131		05/26/2021 12:35	WG1677778
(S) 4-Bromofluorobenzene	102			67.0-138		05/26/2021 12:35	WG1677778
(S) 1,2-Dichloroethane-d4	79.3			70.0-130		05/26/2021 12:35	WG1677778

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	05/27/2021 05:20	WG1677870
C28-C40 Oil Range	0.786	<u>J</u>	0.284	4.15	1	05/27/2021 05:20	WG1677870
(S) o-Terphenyl	70.1			18.0-148		05/27/2021 05:20	WG1677870

Page 203 of 331

SAMPLE RESULTS - 15

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.1		1	05/26/2021 11:50	WG1677027

Ss

Cn

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	847		48.9	106	5	06/02/2021 06:53	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	05/27/2021 01:35	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120		05/27/2021 01:35	WG1677712

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000526	0.00113	1	05/26/2021 12:54	WG1677778
Toluene	U		0.00146	0.00563	1	05/26/2021 12:54	WG1677778
Ethylbenzene	U		0.000830	0.00282	1	05/26/2021 12:54	WG1677778
Total Xylenes	U		0.000991	0.00732	1	05/26/2021 12:54	WG1677778
(S) Toluene-d8	104			75.0-131		05/26/2021 12:54	WG1677778
(S) 4-Bromofluorobenzene	102			67.0-138		05/26/2021 12:54	WG1677778
(S) 1,2-Dichloroethane-d4	76.0			70.0-130		05/26/2021 12:54	WG1677778

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	· ·	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.25	1	05/27/2021 05:34	WG1677870
C28-C40 Oil Range	0.340	<u>J</u>	0.291	4.25	1	05/27/2021 05:34	WG1677870
(S) o-Terphenyl	66.7			18.0-148		05/27/2021 05:34	WG1677870

23 of 46

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.0		1	05/26/2021 11:50	WG1677027

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14.2	<u>J</u>	9.68	21.1	1	06/02/2021 07:03	WG1680544

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	05/27/2021 01:57	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		05/27/2021 01:57	WG1677712

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000516	0.00111	1	05/26/2021 13:13	WG1677778
Toluene	U		0.00144	0.00553	1	05/26/2021 13:13	WG1677778
Ethylbenzene	U		0.000815	0.00276	1	05/26/2021 13:13	WG1677778
Total Xylenes	U		0.000973	0.00719	1	05/26/2021 13:13	WG1677778
(S) Toluene-d8	98.6			75.0-131		05/26/2021 13:13	WG1677778
(S) 4-Bromofluorobenzene	101			67.0-138		05/26/2021 13:13	WG1677778
(S) 1,2-Dichloroethane-d4	70.6			70.0-130		05/26/2021 13:13	WG1677778

Gl

	<u> </u>	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.4		1.69	4.21	1	05/27/2021 06:28	WG1677870
C28-C40 Oil Range	31.9		0.288	4.21	1	05/27/2021 06:28	WG1677870
(S) o-Terphenyl	59.0			18.0-148		05/27/2021 06:28	WG1677870

Page 205 of 331

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.3		1	05/26/2021 11:50	WG1677027

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	19.0	<u>J</u>	9.55	20.8	1	06/02/2021 07:12	WG1680544

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	05/27/2021 02:19	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		05/27/2021 02:19	WG1677712

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	05/26/2021 13:32	WG1677778
oluene	U		0.00140	0.00538	1	05/26/2021 13:32	WG1677778
thylbenzene	U		0.000794	0.00269	1	05/26/2021 13:32	WG1677778
otal Xylenes	U		0.000948	0.00700	1	05/26/2021 13:32	WG1677778
(S) Toluene-d8	103			75.0-131		05/26/2021 13:32	WG1677778
(S) 4-Bromofluorobenzene	101			67.0-138		05/26/2021 13:32	WG1677778
(S) 1,2-Dichloroethane-d4	71.9			70.0-130		05/26/2021 13:32	WG1677778

	J 1	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.67	<u>J</u>	1.67	4.15	1	05/27/2021 05:47	WG1677870
C28-C40 Oil Range	4.95		0.284	4.15	1	05/27/2021 05:47	WG1677870
(S) o-Terphenyl	66.1			18.0-148		05/27/2021 05:47	WG1677870

Total Solids by Method 2540 G-2011

Collected date/time: 05/14/21 00:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.0		1	05/26/2021 11:50	<u>WG1677027</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.1	<u>J</u>	9.48	20.6	1	06/02/2021 07:22	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/27/2021 02:41	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	94.1			77.0-120		05/27/2021 02:41	WG1677712

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	05/26/2021 13:51	WG1677778
Toluene	U		0.00138	0.00530	1	05/26/2021 13:51	WG1677778
Ethylbenzene	U		0.000782	0.00265	1	05/26/2021 13:51	WG1677778
Total Xylenes	U		0.000934	0.00690	1	05/26/2021 13:51	WG1677778
(S) Toluene-d8	102			75.0-131		05/26/2021 13:51	WG1677778
(S) 4-Bromofluorobenzene	103			67.0-138		05/26/2021 13:51	WG1677778
(S) 1,2-Dichloroethane-d4	67.6	<u>J2</u>		70.0-130		05/26/2021 13:51	WG1677778

Semi-Volatile Organic Compounds (GC) by Method 8015

<u> </u>	,	•	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.35	<u>J</u>	1.66	4.12	1	05/27/2021 06:01	WG1677870
C28-C40 Oil Range	3.37	<u>J</u>	0.282	4.12	1	05/27/2021 06:01	WG1677870
(S) o-Terphenyl	71.1			18.0-148		05/27/2021 06:01	WG1677870

GI

Collected date/time: 05/14/21 00:00

Page 207 of 331

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.0		1	05/26/2021 11:50	WG1677027

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.48	20.6	1	06/02/2021 07:31	WG1680544

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/27/2021 03:04	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120		05/27/2021 03:04	WG1677712

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	05/26/2021 14:10	WG1677778
Toluene	U		0.00138	0.00531	1	05/26/2021 14:10	WG1677778
Ethylbenzene	U		0.000782	0.00265	1	05/26/2021 14:10	WG1677778
Total Xylenes	U		0.000934	0.00690	1	05/26/2021 14:10	WG1677778
(S) Toluene-d8	98.5			<i>75.0-131</i>		05/26/2021 14:10	WG1677778
(S) 4-Bromofluorobenzene	102			67.0-138		05/26/2021 14:10	WG1677778
(S) 1,2-Dichloroethane-d4	72.7			70.0-130		05/26/2021 14:10	WG1677778

Gl

`	J 1	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	05/27/2021 05:53	WG1677874
C28-C40 Oil Range	U		0.282	4.12	1	05/27/2021 05:53	WG1677874
(S) o-Terphenyl	67.3			18.0-148		05/27/2021 05:53	WG1677874

Page 208 of 331

SAMPLE RESULTS - 20

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	05/26/2021 11:50	WG1677027

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	107		9.85	21.4	1	06/02/2021 07:41	WG1680544

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	05/27/2021 03:26	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		05/27/2021 03:26	WG1677712

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000533	0.00114	1	05/26/2021 14:29	WG1677778
Toluene	U		0.00148	0.00571	1	05/26/2021 14:29	WG1677778
Ethylbenzene	U		0.000842	0.00286	1	05/26/2021 14:29	WG1677778
Total Xylenes	U		0.00101	0.00742	1	05/26/2021 14:29	WG1677778
(S) Toluene-d8	100			75.0-131		05/26/2021 14:29	WG1677778
(S) 4-Bromofluorobenzene	103			67.0-138		05/26/2021 14:29	WG1677778
(S) 1,2-Dichloroethane-d4	71.0			70.0-130		05/26/2021 14:29	WG1677778

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.54		1.72	4.28	1	05/27/2021 19:12	WG1677874
C28-C40 Oil Range	15.7		0.293	4.28	1	05/27/2021 19:12	WG1677874
(S) o-Terphenyl	69.1			18.0-148		05/27/2021 19:12	WG1677874

28 of 46

Collected date/time: 05/14/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.4		1	05/26/2021 11:50	WG1677027

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.74	21.2	1	05/28/2021 00:15	WG1678508

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.488		0.0230	0.106	1	05/27/2021 03:48	WG1677712
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		05/27/2021 03:48	WG1677712

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		· · · · · ·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000522	0.00112	1	05/26/2021 14:47	WG1677778
Toluene	U	<u>J3</u>	0.00145	0.00559	1	05/26/2021 14:47	WG1677778
Ethylbenzene	U	<u>J3</u>	0.000824	0.00280	1	05/26/2021 14:47	WG1677778
Total Xylenes	U	<u>J3</u>	0.000984	0.00727	1	05/26/2021 14:47	WG1677778
(S) Toluene-d8	106			75.0-131		05/26/2021 14:47	WG1677778
(S) 4-Bromofluorobenzene	104			67.0-138		05/26/2021 14:47	WG1677778
(S) 1,2-Dichloroethane-d4	83.3			70.0-130		05/26/2021 14:47	WG1677778

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1960		34.1	84.7	20	05/29/2021 04:01	WG1677874
C28-C40 Oil Range	2260		5.80	84.7	20	05/29/2021 04:01	WG1677874
(S) o-Terphenyl	0.000	J7		18.0-148		05/29/2021 04:01	WG1677874

 SDG:
 DATE/TIME:
 PA

 L1355917
 06/02/21 12:17
 29 0

Page 210 of 331

Total Solids by Method 2540 G-2011

L1355917-01,02

Method Blank (MB)

 (MB) R3659332-1
 05/25/21 19:42

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00100

3 Ss

[†]Cn

L1355900-22 Original Sample (OS) • Duplicate (DUP)

(OS) L1355900-22 05/25/21 19:42 • (DUP) R3659332-3 05/25/21 19:42

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	98.6	98.5	1	0.164		10

Sr

Laboratory Control Sample (LCS)

(LCS) R3659332-2 05/25/2119:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

Page 211 of 331

[†]Cn

Total Solids by Method 2540 G-2011

L1355917-03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3659778-1 05/2	6/21 11:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1355917-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1355917-11 05/26/21 11:57 • (DUP) R3659778-3 05/26/21 11:57

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	95.6	95.3	1	0.285		10

Laboratory Control Sample (LCS)

(LCS) R3659778-2 05/26/21 11:57

(200) 113033770 2 0	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 212 of 331

Total Solids by Method 2540 G-2011

L1355917-13,14,15,16,17,18,19,20,21

Method Blank (MB)

(MB) R3659775-1 0)5/26/21 11:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1355917-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1355917-13 05/26/21 11:50 • (DUP) R3659775-3 05/26/21 11:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	95.7	95.8	1	0.0797		10

Laboratory Control Sample (LCS)

(LCS) R3659775-2 05/26/21 11:50

,	Spike Amount LO	Spike Amount	LCS Result LCS Rec.	Rec. Limits
Analyte	% %	%	% %	%
Total Solids	50.0 50	50.0	50.0 100	85.0-115

Page 213 of 331

Wet Chemistry by Method 300.0

L1355917-21

Method Blank (MB)

(MB) R3660951-1 05/27/21 20:58										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Chloride	U		9.20	20.0						

L1355648-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1355648-02	05/27/21 21:26 • (DUP)	R3660951-3	05/2//21.	21:35	
	Original Result	DUP Result	Dilution	DUP RPD	

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1356319-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1356319-03 05/28/21 00:44 • (DUP) R3660951-6 05/28/21 00:53

(00) 21000010 00 00/20/2	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	2610	2400	5	8.48		20

Laboratory Control Sample (LCS)

(LCS) R3660951-2 05/27/21 21:07

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	193	96.5	90.0-110	

L1355648-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1355648-04 05/27/21 21:54 • (MS) R3660951-4 05/27/21 22:04 • (MSD) R3660951-5 05/27/21 22:13

(00) 110000	140 04 03/2//2121.54 (1015) 100000001 + C	00/2//2122.04	- (IVISD) 1(5000	00/2//2	21 22.15						
	Spike Amoun (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	597	U	551	650	92.3	109	1	80.0-120			16.4	20

Page 214 of 331

Wet Chemistry by Method 300.0

L1355917-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3662059-1 06/02/	/21 02:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1355917-01 Original Sample (OS) • Duplicate (DUP)

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	10.3	11.2	1	9.04	J	20

[†]Cn

L1355917-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1355917-10 06/02/	Original Result (dry)		Dilution		DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	17.0	14.7	1	14.3	<u>J</u>	20

Laboratory Control Sample (LCS)

(LCS) R3662059-2 06/02/21 03:02

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	207	103	90.0-110	

L1355917-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1355917-01 06/02/21 03:24 • (MS) R3662059-4 06/02/21 03:43 • (MSD) R3662059-5 06/02/21 03:52

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	533	10.3	561	539	103	99.2	1	80.0-120			3.89	20

Page 215 of 331

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1355917-14,15,16,17,18,19,20,21

Method Blank (MB)

(MB) R3660542-2 05/26	/21 23:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3660542-1 05/26	/21 23:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.09	92.5	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			100	77.0-120	

L1356406-31 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1356406-31 05/27/21 07:04 • (MS) R3660542-3 05/27/21 08:31 • (MSD) R3660542-4 05/27/21 08:54

. ,	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	254	260	387	376	50.0	45.7	25	10.0-151			2.87	28	
(S) a a a-Trifluorotoluene(FID)					109	108		77.0-120					

Page 216 of 331

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1355917-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3661588-2 05/28	/21 13:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.2			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3661588-1 05/28/	/21 12:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.00	90.9	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120	

Page 217 of 331

Volatile Organic Compounds (GC/MS) by Method 8260B L1355917-01,02,03,04,05

L1355917-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3660053-2 05/26	/21 21:25				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	105			75.0-131	
(S) 4-Bromofluorobenzene	88.1			67.0-138	
(S) 1,2-Dichloroethane-d4	76.6			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3660053-1 05/26	/21 20:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.119	95.2	70.0-123	
Ethylbenzene	0.125	0.119	95.2	74.0-126	
Toluene	0.125	0.124	99.2	75.0-121	
Xylenes, Total	0.375	0.343	91.5	72.0-127	
(S) Toluene-d8			103	75.0-131	
(S) 4-Bromofluorobenzene			92.4	67.0-138	
(S) 1,2-Dichloroethane-d4			89.7	70.0-130	

L1355917-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1355917-07 05/27/2	21 03:47 • (MS) F	R3660053-3 0	5/27/21 04:06	• (MSD) R3660	0053-4 05/27/	21 04:25						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	1.06	U	0.509	1.01	48.0	95.1	8	10.0-149		<u>J3</u>	65.8	37
Ethylbenzene	1.06	0.0450	0.562	1.05	48.8	94.3	8	10.0-160		<u>J3</u>	60.1	38
Toluene	1.06	U	0.539	1.04	50.8	98.3	8	10.0-156		<u>J3</u>	63.7	38
Xylenes, Total	3.18	0.703	2.55	3.97	58.0	103	8	10.0-160		<u>J3</u>	43.7	38
(S) Toluene-d8					107	103		75.0-131				
(S) 4-Bromofluorobenzene					95.4	94.4		67.0-138				
(S) 1.2-Dichloroethane-d4					87.1	84.0		70.0-130				

Sample Narrative:

OS: Non-target compounds too high to run at a lower dilution.

Page 218 of 331

Volatile Organic Compounds (GC/MS) by Method 8260B

L1355917-14,15,16,17,18,19,20,21

Method Blank (MB)

(MB) R3660445-3 05/26/	21 09:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	98.6			75.0-131
(S) 4-Bromofluorobenzene	103			67.0-138
(S) 1,2-Dichloroethane-d4	86.8			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3660445-1 05/26/21 08:42 • (L	LCSD) R3660445-2 05/26/21 09:01
--------------------------------------	---------------------------------

(200) 113000443 1 03/20/	2100.72 (LCS	D) 113000443	2 03/20/2103	.01							- 17
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	ď
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.132	0.121	106	96.8	70.0-123			8.70	20	8
Ethylbenzene	0.125	0.136	0.126	109	101	74.0-126			7.63	20	
Toluene	0.125	0.136	0.121	109	96.8	75.0-121			11.7	20	[
Xylenes, Total	0.375	0.404	0.376	108	100	72.0-127			7.18	20	
(S) Toluene-d8				103	99.1	75.0-131					L
(S) 4-Bromofluorobenzene				102	102	67.0-138					
(S) 1,2-Dichloroethane-d4				83.6	87.1	70.0-130					

L1355917-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1355917-21 05/26/21 14:47 • (MS) R3660445-4 05/26/21 18:54 • (MSD) R3660445-5 05/26/21 19:13

. ,	, ,		,									
	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.140	U	0.136	0.0651	97.6	46.6	1	10.0-149		<u>J3</u>	70.8	37
Ethylbenzene	0.140	U	0.138	0.0673	98.4	48.2	1	10.0-160		<u>J3</u>	68.6	38
Toluene	0.140	U	0.138	0.0690	98.4	49.4	1	10.0-156		<u>J3</u>	66.4	38
Xylenes, Total	0.419	U	0.405	0.183	96.5	43.7	1	10.0-160		<u>J3</u>	75.3	38
(S) Toluene-d8					101	105		75.0-131				
(S) 4-Bromofluorobenzene					113	105		67.0-138				
(S) 1,2-Dichloroethane-d4					92.1	86.0		70.0-130				

Page 219 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1355917-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18

Method Blank (MB)

(MB) R3659822-1 05/23	7/21 03:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	76.3			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3659822-2 05/2	27/21 03:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	44.0	88.0	50.0-150	
(S) o-Terphenyl			94.7	18.0-148	

L1355917-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1355917-05 05/27/21 07:22 • (MS) R3659822-3 05/27/21 07:35 • (MSD) R3659822-4 05/27/21 07:49

⁹ Sc	

(03) 11333317 03 03/2	.772107.22 (1413)	113033022 3 1	33/2//2107.33	· (IVISB) 1(505	3022 + 03/2/	/2107.45							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	50.7	14.0	57.6	51.8	85.9	76.1	1	50.0-150			10.6	20	
(S) o-Terphenyl					77.5	71.6		18.0-148					

Page 220 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1355917-19,20,21

Method Blank (MB)

(MB) R3660009-1 05/2	7/21 01:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	76.0			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3660009-2 05/2	7/21 02:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	45.1	90.2	50.0-150	
(S) o-Terphenyl			77.6	18.0-148	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

D A	Athen Nieutenan	120CF alaman	- Dal Marria	. II: TN	U 27122
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	: Juliet, 11	N 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

05-200

K-037

Analysis Request of Chain of Custody Record Page 1 of Tetra Tech, Inc. 900 West Wall Street, Ste 100 1355917 TŁ Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 Site Manager: Client Name: **ANALYSIS REQUEST** Christian Llull ConocoPhillips (Circle or Specify Method No.) Project Name: VGEU 02-20 West Release Project #: Project Location: (county 212C-MD-02305 Lea County, New Mexico Invoice to: Accounts Payable GRO - DRO - ORO - MRO) Se Hg otal Metals Ag As Ba Cd Cr Pb Se Hg 901 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Receiving Laboratory: Pace Analytical **Devin Dominguez** CLP Metals Ag As Ba Cd Cr Pb Comments: TDS General Water Chemistry **COPTETRA Acctnum TX1005** (Ext to C35) PRESERVATIVE SAMPLING MATRIX METHOD YEAR: 2021 SAMPLE IDENTIFICATION LAB # WATER HNO LAB USE ICE ONLY N X X BH-10 (0-1') 5/14/2021 X X 01 X X X X X N 02 BH-10 (2'-3') 5/14/2021 X X N X X 63 BH-10 (3'-4') 5/14/2021 X X N BH-10 (4'-5') 5/14/2021 X BH-10 (7'-8') 5/14/2021 X N X X X N X X BH-11 (0-1') 5/14/2021 X X N BH-11 (2'-3') 5/14/2021 X X N X BH-11 (3'-4') 5/14/2021 05 66 X X N X BH-11 (4'-5') 5/14/2021 X N BH-11 (7'-8') 5/14/2021 REMARKS: Date: Time: Date: Relinquished by: LAB USE ONLY STANDARD RUSH: Same Day 24 hr 48 hr 72 hr Time: Received by: Relinquished by: Sample Temperature Rush Charges Authorized Received by: Relinquished by: Special Report Limits or TRRP Report 0800 14.1=. 5 SWA TC=4.37=402 (Circle) HAND DELIVERED FEDEX UPS Tracking #: ORIGINAL COPY

Analysis Request	of Chain of Custody Record																							Pa	age	_		2	of _	4
TŁ	Tetra Tech, Inc.				Tel	and,T (432)	exas 7 682-4 682-3	9701 559	100								17	15	59	11									1	
Client Name:	ConocoPhillips	Site Manager:		Ch	ristian	Llu	ıll																QUE							
Project Name:	VGEU 02-20 West Release													1	1	(Ci	rc	le d	or:	Spe 	eci	fy I	/let	tho 	d N	No.)	1	1	1
Project Location: (cou state)	Lea County, New Mexico	Project #:			212C	-ME	0-02	30	5																		list)			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701														(NAO)	5	PH PH										attached li			
Receiving Laboratory:	Pace Analytical	Sampler Sign	ature:		Devin	Do	omin	gue	ez				m		- ORO - MRO)	Ph Sa	1 Cr Pb Se Ha					10					see atta			
Comments:	ETRA Acctnum												x 8260F	(38)	DRO - C	7	lö				624	8270C/625					stry			-
		SAME	PLING	М	ATRIX	T		SERV	ATIVE OD	I	RS	(N)	BTEX	(Ext to	GRO-	An Ac Ra	Ad As Ba	4	olatiles				000	s)		Sulfate	er Chen	Dalan	3 St	
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2021	TIME	WATER	SOIL	HCL	HNO3	ICE	None		CONTAINERS	FILTERED (Y/N)	BTEX 8021B	PH TX1005	TPH 8015M (GRO -	Total Matals A		TCLP Volatiles	TCLP Semi Volatiles		GC/MS Vol. 8	GC/MS Semi. Vol.	NORM	PLM (Asbestos)	1 1		General Water	TPH 8015R		Hold
67	BH-11 (9'-10')	5/14/2021		_	X	-	-	X	_	†	1	N	X		X		1		-	111			- 2	1	X					-
	BH-11 (14'-15')	5/14/2021			X	T		X		†	1	N			1	+	†	1			1	1	+			1	+			X
00	BH-12 (0-1')	5/14/2021			X	T		X		1	1	N	Х		X	+	T				1	1	1		X					
09	BH-12 (2'-3')	5/14/2021			X			X		1	1	N	Х		X	T					1	1			X					
	BH-12 (3'-4')	5/14/2021			X	T		X		T	1	N																		X
10	BH-12 (4'-5')	5/14/2021			X			X		1	1	N	Х		X										X					
	BH-12 (7'-8')	5/14/2021			X			X			1	N																		X
11	BH-12 (9'-10')	5/14/2021			X			X			1	N	Х		X										X					
	BH-12 (14'-15')	5/14/2021			X			X			1	N																		X
12	BH-13 (0-1')	5/14/2021			X			X			1	N	Χ		X										X					
Relinquished by:	5/19/31 930	Received by	In	1	5-K	Date 7-	21			25	5		LA	В	JSE	01	ILY		X		STA		DAR		24 6		10 hr	70	he	
Relinquished by	Date: Time: 5-6-21 15:00	Received by	A	5	5-19	Date	21	Tir	ne: /5	5:0	د		Sam	nple 1	Temp	eratu	re						es Ai				40 111	72	111	
Relinquished by:	Date: Time:	13	1	_	5/-	29	/21		0	80	00									_						RRF	Rep	oort		
		ORIGINAL	LCOPY			4	-11-	2.	5				(Circ	cle) I	HANE	DE	IVE	RED	FE	DEX	UF	S	Track	king #	t:					
							30																							

Analysis Requ	est of Chain of Custody Record																							P	age	_		3	of _	4
TŁ	Tetra Tech. Inc.			5	Tel	and,Te (432)	exas 79 682-49 682-3	9701 559	100								1	35	50	117										
Client Name:	ConocoPhillips	Site Manager:		Chr	istian	Llu	ıll						Γ		П									EST						
Project Name:	VGEU 02-20 West Release												1	1	1	(Ci	rcl	le c	or s	Spe 	ecit	fy	Me	tho	dN	10.	1	1		1
Project Location: state)	(county, Lea County, New Mexico	Project #:		2	212C	-ME	0-02	305	5				1			1											list)			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970														ARO)	P	Hg	,				1					attached li			
Receiving Laboratory	Pace Analytical	Sampler Sign	ature:	[Devin	Do	min	gue	ez				1		- ORO - MHO)	ob Se	d Cr Pb Se Hg									1	(see atta			
Comments:	OPTETRA Acctnum												(8260B		DRO-0	Cd Cr	a Cd Cr				624	8270C/625					stry			
		SAME	PLING	MA	TRIX	T		SERV	ATIVE	T	RS	(N.	BTEX			d As Ba	s Ag As Ba Cd (olatiles				809	(\$		Sulfate	ar Chemistry Balance	Daian		
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2021	TIME	WATER	SOIL	HCL	HNO3	ICE	None		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005	TPH 8015M (GRO-	Fotal Metals A	rCLP Metals Ag	rclp Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol. 8	GC/MS Semi. Vol.	PCB'S 80827608	PLM (Asbestos)		1	General Water Chemi Anion/Cation Balance	TPH 8015R		Hold
13	BH-13 (2'-3')	5/14/2021		_	X	Ť		Χ		Ť	1	N	X	-	X	1	Ť	1						1	X		1			
14	BH-13 (3'-4')	5/14/2021			X			X		T	1	N	X		X	T	T					1	1		X	1				
15	BH-13 (4'-5')	5/14/2021			X			Х		T	1	N	Х		X										X			\Box		
+6	BH-13 (7'-8')	5/14/2021		П	X			X		T	1	N										1			П			П		X
16	BH-14 (0-1')	5/14/2021			X			Х		T	1	N	Х		X										X					
17	BH-14 (2'-3')	5/14/2021			X			Χ		T	1	N	X		X										X					
18	BH-14 (3'-4')	5/14/2021		П	X			X		T	1	N	X		X						T				X					
	BH-14 (4'-5')	5/14/2021			X			X		T	1	N													П					X
	BH-14 (7'-8')	5/14/2021			X			X			1	N													П					X
19	BH-14 (9'-10')	5/14/2021			X			X			1	N	Х		X										X					
Relinquished by:	Date: Time: 5 19 8 9 70 Date: Time:	Received by	El		SI	Date Date	2	Tin	9	752	25		1	BU					X		STA				241	nr 4	8 hr	72	hr	
Relinquished by:	Date: Time:	Received by	A	5	-19		1	Tin	K	1	0		San	Sample Temperature RUSH: Same Day 24 hr 48 hr 72 hr Rush Charges Authorized																
Tourisday.		13	1		/		/2			08	00	>								Spe	cial	Rep	ort L	imits	or T	RRP	Rep	ort		
		ORIGINAL	L COPY		.2	+	(-		5				(Cir	cle) H	IANE	DEL	IVE	RED	FE	DEX	UP	PS	Trac	king #						
					Δ	10	-	11																						

Analysis Request of	Chain of Custody Record																							P	age			4	of _	4
TE	Tetra Tech, Inc.				Tel	and,T (432)	Exas (2) 682-	7970 4559)1							1	17	59	59	17										
Client Name:	ConocoPhillips	Site Manager:		Chi	ristian	Llu	ull						T		ī							RE								
Project Name:	VGEU 02-20 West Release												1		1	(C	irc	le	or	Sp	eci	ify	Me	the	d I	No.)	1		1
Project Location: (count state)	ty, Lea County, New Mexico	Project #:			212C	-ME	D-02	230	05				1														list)			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701												1		MRO)		E I	61									attached			
Receiving Laboratory:	Pace Analytical	Sampler Signa	ature:		Devin	Do	omir	ngı	Jez						ORO - MRO)	0	Pb Se	PD Se				2					(see attg			
COPTE	TRA Acctnum												X 8260	C35)	DRO-	0	Ag As Ba Cd Cr Pb Se Hg	a Co C		*	624	8270C/625				TDS	stry	9		
		SAME	PLING	M	ATRIX	I			RVAT	IVE	ERS	(N)	BTEX	(Ext to	(GRO-		Ag As Ba	Ag As E	olatiles		3260B/	Vol. 82	909	(\$0		Sulfate	er Cher	Dalam		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021	TIME	WATER	OIL	HCL	HNO3	ICE	None	2	CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005	TPH 8015M (PAH 8270C	Total Metals Ag	TCLP Metals A	TCLP Semi Volatiles	77	GC/MS Vol. 8260B / 624	J/MS Semi.	PCB's 8082 / 608	PLM (Asbestos)	Chloride		General Water	Anion/Cation balance		plo
(ONLY)	BH-14 (14'-15')	5/14/2021	F		X	主	I	X			# 1	N	- B	브	부	4 1	2 5	- -	12	RCI	Ö	9	Z	P	5	Ö	g 4	1 5	+	Hold
20	BH-16 (0-1')	5/14/2021		\rightarrow	X	+	+	X	+		1	N	X		X	+	+	+	+	\vdash	H	1	+	+	X		+	H		1
6	BH-16 (2'-3')	5/14/2021		\rightarrow	X	+	+	X	+		1	N	1			1	+	+	+	\vdash	Н		+	+		Н	+	\forall		X
	BH-16 (3'-4')	5/14/2021		\rightarrow	X	+	+	X			1	N	1			1	1	+	1				1	T	Н			\Box		X
	BH-16 (4'-5')	5/14/2021		П	X			X			1	N	1			1	1	1			П		+	T	П	П		\Box		X
	BH-16 (7'-8')	5/14/2021			X			X			1	N														П				X
21	BH-16 (9'-10')	5/14/2021			X	F		X			1	N	Х		X	1	1	1					Ŧ		Х		1	\Box		
							1						1			1		+					+		H					
Relinquished by: Relinquished by: Relinquished by:	Date: Time: 5 19 8 9 9 9 Date: Time: Date: Time: Date: Time:	Received by Received by Received by	4	2	519	Date	e: 2/	/ /	ime /ime	9:	200		-			E OI] RU Ru	ST.	Charg	me D	ay	rized	d	48 hr	72	hr	
		ORIGINAL	COPY		4	, (:	= .	5		0	000	0	(Ci	rcle)	HAN	D DE	LIVE	REC) FE	EDEX	CUF	PS	Track	king #	t					
					A3	0	(

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

L1358911 Sample Delivery Group:

Samples Received: 05/27/2021

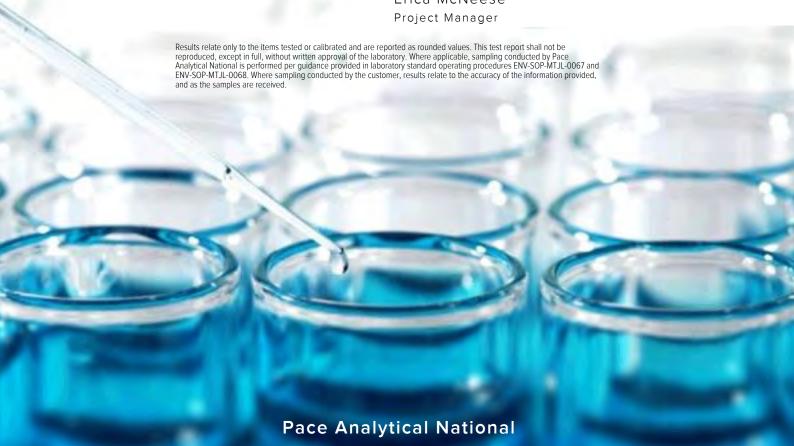
Project Number: 212-MD-02305

Description: VGEU 02-20 West Flowline Release

Site: LEA COUNTY, NM

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enicay Nesse

Erica McNeese Project Manager

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
c: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
AH-1 (0-1) L1358911-01	6
AH-2 (0-1) L1358911-02	7
AH-3 (0-1) L1358911-03	8
AH-4 (0-1) L1358911-04	9
AH-5 (0-1) L1358911-05	10
AH-6 (0-1) L1358911-06	11
AH-6 (1-2) L1358911-07	12
AH-7 (0-1) L1358911-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Wet Chemistry by Method 300.0	16
Volatile Organic Compounds (GC) by Method 8015D/GRO	18
Volatile Organic Compounds (GC/MS) by Method 8260B	19
Semi-Volatile Organic Compounds (GC) by Method 8015	21
GI: Glossary of Terms	22
Al: Accreditations & Locations	23

Sc: Sample Chain of Custody

24

SAMPLE SUMMARY

	0711111	J	,,,,,,,,			
AH-1 (0-1) L1358911-01 Solid			Collected by Andrew Garcia	Collected date/time 05/25/2110:00	Received da 05/27/21 10::	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Batteri	211411011	date/time	date/time	, mary st	200000
Total Solids by Method 2540 G-2011	WG1680775	1	06/01/21 14:21	06/01/21 14:27	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682565	1	06/04/21 00:40	06/04/21 05:46	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	05/31/21 22:58	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1680224	1	05/29/21 16:45	05/30/21 22:35	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1680017	1	05/30/21 01:29	06/03/21 16:06	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2 (0-1) L1358911-02 Solid			Andrew Garcia	05/25/2110:30	05/27/21 10:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1680776	1	06/02/21 09:13	06/02/21 09:20	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682565	1	06/04/21 00:40	06/04/21 05:55	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	05/31/21 23:20	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1680224	1	05/29/21 16:45	05/30/21 22:54	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1680017	20	05/30/21 01:29	06/03/21 18:36	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-3 (0-1) L1358911-03 Solid			Andrew Garcia	05/25/21 11:00	05/27/2110:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1680776	1	06/02/21 09:13	06/02/21 09:20	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682565	1	06/04/21 00:40	06/04/21 06:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	05/31/21 23:42	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1680328	1	05/29/21 16:45	05/31/21 08:14	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1680017	1	05/30/21 01:29	06/03/21 15:25	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-4 (0-1) L1358911-04 Solid			Andrew Garcia	05/25/21 11:30	05/27/2110:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1680776	1	06/02/21 09:13	06/02/21 09:20	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682565	1	06/04/21 00:40	06/04/21 06:14	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	06/01/21 00:04	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1680328	1	05/29/21 16:45	05/31/21 08:33	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1680017	1	05/30/21 01:29	06/03/21 15:39	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		
AH-5 (0-1) L1358911-05 Solid			Andrew Garcia	05/25/2112:00	05/27/2110:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1680776	1	06/02/21 09:13	06/02/21 09:20	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682565	1	06/04/21 00:40	06/04/21 06:24	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	06/01/21 00:26	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1680328	1	05/29/21 16:45	05/31/21 08:52	DWR	Mt. Juliet, TN
0 11/1 11/1 0 10/1						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1680017

05/30/21 01:29

06/03/21 16:20

TJD

Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
AH-6 (0-1) L1358911-06 Solid			Andrew Garcia	05/25/2112:30	05/27/21 10:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1680776	1	06/02/21 09:13	06/02/21 09:20	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682565	1	06/04/21 00:40	06/04/21 06:33	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	06/01/21 00:48	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1680328	1	05/29/21 16:45	05/31/21 09:12	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1680017	1	05/30/21 01:29	06/03/21 15:53	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-6 (1-2) L1358911-07 Solid			Andrew Garcia	05/25/2113:00	05/27/21 10:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1680776	1	06/02/21 09:13	06/02/21 09:20	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682565	1	06/04/21 00:40	06/04/21 07:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	06/01/21 01:09	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1680328	1	05/29/21 16:45	05/31/21 09:31	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1680017	1	05/30/21 01:29	06/03/21 15:12	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-7 (0-1) L1358911-08 Solid			Andrew Garcia	05/25/21 13:30	05/27/21 10:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1680776	1	06/02/21 09:13	06/02/21 09:20	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1682615	1	06/05/21 17:23	06/06/21 01:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1680332	1	05/29/21 16:45	06/01/21 01:31	ADM	Mt. Juliet, TN

WG1680328

WG1680017

1

05/29/21 16:45

05/30/21 01:29

05/31/21 09:50

06/03/21 14:58

DWR

TJD

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

Collected date/time: 05/25/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	_
Total Solids	93.6		1	06/01/2021 14:27	WG1680775

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.83	21.4	1	06/04/2021 05:46	WG1682565

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	05/31/2021 22:58	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	90.9			77.0-120		05/31/2021 22:58	WG1680332

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	D 1: (1)						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000824	ВЈ	0.000531	0.00114	1	05/30/2021 22:35	WG1680224
Toluene	0.00219	<u>J</u>	0.00148	0.00568	1	05/30/2021 22:35	WG1680224
Ethylbenzene	0.00171	<u>J</u>	0.000838	0.00284	1	05/30/2021 22:35	WG1680224
Total Xylenes	0.00418	<u>J</u>	0.00100	0.00739	1	05/30/2021 22:35	WG1680224
(S) Toluene-d8	109			75.0-131		05/30/2021 22:35	WG1680224
(S) 4-Bromofluorobenzene	88.0			67.0-138		05/30/2021 22:35	WG1680224
(S) 1,2-Dichloroethane-d4	78.9			70.0-130		05/30/2021 22:35	WG1680224

Semi-Volatile Organic Compounds (GC) by Method 8015

	· ·	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.48		1.72	4.27	1	06/03/2021 16:06	WG1680017
C28-C40 Oil Range	28.7		0.293	4.27	1	06/03/2021 16:06	WG1680017
(S) o-Terphenyl	65.6			18.0-148		06/03/2021 16:06	WG1680017

Gl

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.8		1	06/02/2021 09:20	WG1680776

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.0	21.8	1	06/04/2021 05:55	WG1682565

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	05/31/2021 23:20	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		05/31/2021 23:20	WG1680332

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000551	0.00118	1	05/30/2021 22:54	WG1680224
Toluene	U		0.00153	0.00590	1	05/30/2021 22:54	WG1680224
Ethylbenzene	U		0.000869	0.00295	1	05/30/2021 22:54	WG1680224
Total Xylenes	U		0.00104	0.00767	1	05/30/2021 22:54	WG1680224
(S) Toluene-d8	107			75.0-131		05/30/2021 22:54	WG1680224
(S) 4-Bromofluorobenzene	91.6			67.0-138		05/30/2021 22:54	WG1680224
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		05/30/2021 22:54	WG1680224

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	293		35.1	87.2	20	06/03/2021 18:36	WG1680017
C28-C40 Oil Range	908		5.97	87.2	20	06/03/2021 18:36	WG1680017
(S) o-Terphenyl	0.000	J7		18.0-148		06/03/2021 18:36	WG1680017

7 of 25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.7		1	06/02/2021 09:20	WG1680776

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.5	22.8	1	06/04/2021 06:05	WG1682565

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0247	0.114	1	05/31/2021 23:42	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120		05/31/2021 23:42	WG1680332

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000825	<u>J</u>	0.000598	0.00128	1	05/31/2021 08:14	WG1680328
Toluene	0.00333	<u>J</u>	0.00166	0.00640	1	05/31/2021 08:14	WG1680328
Ethylbenzene	0.00127	<u>J</u>	0.000944	0.00320	1	05/31/2021 08:14	WG1680328
Total Xylenes	0.00615	<u>J</u>	0.00113	0.00832	1	05/31/2021 08:14	WG1680328
(S) Toluene-d8	107			75.0-131		05/31/2021 08:14	WG1680328
(S) 4-Bromofluorobenzene	86.9			67.0-138		05/31/2021 08:14	WG1680328
(S) 1,2-Dichloroethane-d4	<i>76.5</i>			70.0-130		05/31/2021 08:14	WG1680328

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.45	<u>J</u>	1.83	4.56	1	06/03/2021 15:25	WG1680017
C28-C40 Oil Range	8.82		0.312	4.56	1	06/03/2021 15:25	WG1680017
(S) o-Terphenyl	57.3			18.0-148		06/03/2021 15:25	WG1680017

Gl

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.8		1	06/02/2021 09:20	WG1680776

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.92	21.6	1	06/04/2021 06:14	WG1682565

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	06/01/2021 00:04	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		06/01/2021 00:04	WG1680332

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000540	0.00116	1	05/31/2021 08:33	WG1680328
Toluene	0.00163	<u>J</u>	0.00150	0.00578	1	05/31/2021 08:33	WG1680328
Ethylbenzene	U		0.000853	0.00289	1	05/31/2021 08:33	WG1680328
Total Xylenes	0.00198	<u>J</u>	0.00102	0.00752	1	05/31/2021 08:33	WG1680328
(S) Toluene-d8	106			75.0-131		05/31/2021 08:33	WG1680328
(S) 4-Bromofluorobenzene	88.1			67.0-138		05/31/2021 08:33	WG1680328
(S) 1,2-Dichloroethane-d4	73.7			70.0-130		05/31/2021 08:33	WG1680328

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.78		1.74	4.31	1	06/03/2021 15:39	WG1680017
C28-C40 Oil Range	15.0		0.295	4.31	1	06/03/2021 15:39	WG1680017
(S) o-Terphenyl	62.3			18.0-148		06/03/2021 15:39	WG1680017

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.1		1	06/02/2021 09:20	WG1680776

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.5	<u>J</u>	9.88	21.5	1	06/04/2021 06:24	WG1682565

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	06/01/2021 00:26	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	92.9			77.0-120		06/01/2021 00:26	WG1680332

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000536	0.00115	1	05/31/2021 08:52	WG1680328
Toluene	0.00168	<u>J</u>	0.00149	0.00574	1	05/31/2021 08:52	WG1680328
Ethylbenzene	U		0.000847	0.00287	1	05/31/2021 08:52	WG1680328
Total Xylenes	0.00247	<u>J</u>	0.00101	0.00747	1	05/31/2021 08:52	WG1680328
(S) Toluene-d8	104			75.0-131		05/31/2021 08:52	WG1680328
(S) 4-Bromofluorobenzene	94.1			67.0-138		05/31/2021 08:52	WG1680328
(S) 1,2-Dichloroethane-d4	91.0			70.0-130		05/31/2021 08:52	WG1680328

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.2		1.73	4.30	1	06/03/2021 16:20	WG1680017
C28-C40 Oil Range	33.2		0.294	4.30	1	06/03/2021 16:20	WG1680017
(S) o-Terphenyl	72.4			18.0-148		06/03/2021 16:20	WG1680017

Gl

Collected date/time: 05/25/21 12:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.1		1	06/02/2021 09:20	WG1680776

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.7	23.2	1	06/04/2021 06:33	WG1682565

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0252	0.116	1	06/01/2021 00:48	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	92.9			77.0-120		06/01/2021 00:48	WG1680332

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000619	0.00132	1	05/31/2021 09:12	WG1680328
Toluene	0.00225	<u>J</u>	0.00172	0.00662	1	05/31/2021 09:12	WG1680328
Ethylbenzene	U		0.000976	0.00331	1	05/31/2021 09:12	WG1680328
Total Xylenes	0.00278	<u>J</u>	0.00117	0.00861	1	05/31/2021 09:12	WG1680328
(S) Toluene-d8	107			75.0-131		05/31/2021 09:12	WG1680328
(S) 4-Bromofluorobenzene	90.1			67.0-138		05/31/2021 09:12	WG1680328
(S) 1,2-Dichloroethane-d4	86.0			70.0-130		05/31/2021 09:12	WG1680328

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.33		1.87	4.65	1	06/03/2021 15:53	WG1680017
C28-C40 Oil Range	20.0		0.318	4.65	1	06/03/2021 15:53	WG1680017
(S) o-Terphenyl	77.6			18.0-148		06/03/2021 15:53	WG1680017

Collected date/time: 05/25/21 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.6		1	06/02/2021 09:20	WG1680776

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.2	22.1	1	06/04/2021 07:11	WG1682565

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.110	1	06/01/2021 01:09	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	92.9			77.0-120		06/01/2021 01:09	WG1680332

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000565	0.00121	1	05/31/2021 09:31	WG1680328
Toluene	0.00191	<u>J</u>	0.00157	0.00605	1	05/31/2021 09:31	WG1680328
Ethylbenzene	U		0.000891	0.00302	1	05/31/2021 09:31	WG1680328
Total Xylenes	0.00276	<u>J</u>	0.00106	0.00786	1	05/31/2021 09:31	WG1680328
(S) Toluene-d8	109			75.0-131		05/31/2021 09:31	WG1680328
(S) 4-Bromofluorobenzene	87.9			67.0-138		05/31/2021 09:31	WG1680328
(S) 1,2-Dichloroethane-d4	82.8			70.0-130		05/31/2021 09:31	WG1680328

Semi-Volatile Organic Compounds (GC) by Method 8015

	9	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.65	<u>J</u>	1.78	4.42	1	06/03/2021 15:12	WG1680017
C28-C40 Oil Range	5.63	В	0.303	4.42	1	06/03/2021 15:12	WG1680017
(S) o-Terphenyl	66.0			18.0-148		06/03/2021 15:12	WG1680017

12 of 25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.4		1	06/02/2021 09:20	<u>WG1680776</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.5	22.9	1	06/06/2021 01:59	WG1682615

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0248	0.114	1	06/01/2021 01:31	WG1680332
(S) a,a,a-Trifluorotoluene(FID)	93.5			77.0-120		06/01/2021 01:31	WG1680332

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Decult (dm.)						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000602	0.00129	1	05/31/2021 09:50	WG1680328
Toluene	0.00367	<u>J</u>	0.00168	0.00645	1	05/31/2021 09:50	WG1680328
Ethylbenzene	U		0.000950	0.00322	1	05/31/2021 09:50	WG1680328
Total Xylenes	0.00338	<u>J</u>	0.00113	0.00838	1	05/31/2021 09:50	WG1680328
(S) Toluene-d8	108			75.0-131		05/31/2021 09:50	WG1680328
(S) 4-Bromofluorobenzene	87.9			67.0-138		05/31/2021 09:50	WG1680328
(S) 1,2-Dichloroethane-d4	76.8			70.0-130		05/31/2021 09:50	WG1680328

GI

Semi-Volatile Organic Compounds (GC) by Method 8015

	,	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.99		1.84	4.58	1	06/03/2021 14:58	WG1680017
C28-C40 Oil Range	8.02		0.313	4.58	1	06/03/2021 14:58	WG1680017
(S) o-Terphenyl	62.0			18.0-148		06/03/2021 14:58	WG1680017

13 of 25

Page 240 of 331

Total Solids by Method 2540 G-2011

L1358911-01

Method Blank (MB)

(MB) R3662015-1 06/01/	21 14:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

²Tc

L1358889-01 Original Sample (OS) • Duplicate (DUP)

(OS) I 1358889-01	06/01/2114.27	(DUP) R3662015-3	06/01/21 1/1.27
(03) [1330003-01	00/01/21 17.27	(DOI) 13002013-3	00/01/21 17.27

(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	84.3	84.9	1	0.616		10

³Ss

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3662015-2 06/01/21 14:27

(LCS) R3662015-2 06/01/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 241 of 331

Total Solids by Method 2540 G-2011

L1358911-02,03,04,05,06,07,08

(MB) R3662583-1 0	06/02/21 09:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

³Ss

L1358911-02 Original Sample (OS) • Duplicate (DUP)

(DS)	H 1358911-02	06/02/21	09.20	MUIP) R3662583-3	06/02/21 09:20
 \sim	1 10000011 02	00,02,21	00.20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 110002000	00/02/2100.20

	Original Result	sult DUP	Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%			%		%
Total Solids	91.8	91.7		1	0.0475		10

Laboratory Control Sample (LCS)

	(LCS) R3662583-2	06/02/21	09:20
--	------	--------------	----------	-------

(LC3) R3002363-2 U0/U2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 242 of 331

Wet Chemistry by Method 300.0

L1358911-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3663266-1 06/04	1/21 03:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1358029-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1358029-03 06/04/21 04:01 • (DUP) R3663266-3 06/04/21 04:10

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	71.0	80.9	1	13.0		20

Cn

L1358911-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1358911-06 06/04/21 06:33 • (DUP) R3663266-6 06/04/21 06:43

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3663266-2 06/04/21 03:32

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	181	90.3	90.0-110	

L1358029-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1358029-03 06/04/21 04:01 • (MS) R3663266-4 06/04/21 04:20 • (MSD) R3663266-5 06/04/21 04:29

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	71.0	575	589	101	104	1	80.0-120			2.42	20

Page 243 of 331

Wet Chemistry by Method 300.0

L1358911-08

Method Blank (MB)

(MB) R3663690-1 06/05/	21 20:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

	(C)	1 12 E C 177 O E	OC/OF/21 22:FO		DOCCOCOO O	06/06/21 00:00
- 1	U31	L13304//-U3	06/05/21 23:50 •	יוטטרו	1 K300309U-3	00/00/2100.00

(00) 21000 177 00 00,00,21 20.00 (2017) 10000000 0 00,00,21								
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	430	355	1	19.2		20		

[†]Cn

(OS) L1359549-01_06/06/21 04:08 • (DUP) R3663690-4_06/06/21 04:26

(03) 11333343-01 00/00/2	Original Result (dry)	,	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	349	342	1	2.18		20

Laboratory Control Sample (LCS)

(LCS) R3663690-2 06/05/21 20:58

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	203	101	90.0-110	

L1359549-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1359549-01 06/06/21 04:08 • (MS) R3663690-5 06/06/21 04:45 • (MSD) R3663690-6 06/06/21 05:03

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	625	349	980	975	101	100	1	80.0-120			0.587	20

Page 244 of 331

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1358911-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3663330-2 05/31/	/21 19:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.6			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3663330-1 05/31/2	21 18:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.41	117	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			115	77.0-120	

L1358531-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1358531-01 05/31/21 20:24 - (MS) R3663330-3 06/01/21 03:21 - (MSD) R3663330-4 06/01/21 03:43

(03) [1338331-01 03/31/2	, ,				MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	162	U	134	147	82.6	90.9	25	10.0-151			9.61	28	
(S) a.a.a-Trifluorotoluene(FID)					107	108		77.0-120					

Page 245 of 331

Volatile Organic Compounds (GC/MS) by Method 8260B

L1358911-01,02

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3664369-3 05/30/	/21 15:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000525	<u>J</u>	0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	110			75.0-131
(S) 4-Bromofluorobenzene	84.0			67.0-138
(S) 1,2-Dichloroethane-d4	77.8			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

91.3

98.1

(LCS) R3664369-1	05/30/21 14:22 •	(LCSD) R3664369-2	05/30/21 14:41

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.111	0.0995	88.8	79.6	70.0-123			10.9	20	
Ethylbenzene	0.125	0.110	0.110	88.0	88.0	74.0-126			0.000	20	
Toluene	0.125	0.113	0.113	90.4	90.4	75.0-121			0.000	20	
Xylenes, Total	0.375	0.320	0.323	85.3	86.1	72.0-127			0.933	20	
(S) Toluene-d8				102	102	75.0-131					
(S) 4-Bromofluorobenzene				94.0	88.8	67.0-138					

70.0-130

Page 246 of 331

Volatile Organic Compounds (GC/MS) by Method 8260B

L1358911-03,04,05,06,07,08

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

MB Result	MB Qualifier	MB MDL	MD DDI				
		IND INDL	MB RDL				
mg/kg		mg/kg	mg/kg				
U		0.000467	0.00100				
U		0.000737	0.00250				
U		0.00130	0.00500				
U		0.000880	0.00650				
111			75.0-131				
87.9			67.0-138				
78.6			70.0-130				
	U U U U 1111 87.9	U U U U 111 87.9	U 0.000467 U 0.000737 U 0.00130 U 0.000880 1111 87.9	U 0.000467 0.00100 U 0.000737 0.00250 U 0.00130 0.00500 U 0.000880 0.00650 111 75.0-131 87.9 67.0-138	U 0.000467 0.00100 U 0.000737 0.00250 U 0.00130 0.00500 U 0.000880 0.00650 1111 75.0-131 87.9 67.0-138	U 0.000467 0.00100 U 0.000737 0.00250 U 0.00130 0.00500 U 0.000880 0.00650 1111 75.0-131 87.9 67.0-138	U 0.000467 0.00100 U 0.000737 0.00250 U 0.00130 0.00500 U 0.000880 0.00650 111 75.0-131 87.9 67.0-138

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3664466-1 05/31/2	21 00:30 • (LCSI	D) R3664466-2	2 05/31/21 00:4	48						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.106	0.114	84.8	91.2	70.0-123			7.27	20
Ethylbenzene	0.125	0.102	0.111	81.6	88.8	74.0-126			8.45	20
Toluene	0.125	0.106	0.119	84.8	95.2	75.0-121			11.6	20
Xylenes, Total	0.375	0.317	0.332	84.5	88.5	72.0-127			4.62	20
(S) Toluene-d8				102	105	75.0-131				
(S) 4-Bromofluorobenzene				95.5	90.6	67.0-138				

70.0-130

L1358911-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

95.1

92.4

(OS) L1358911-08 05/31/21 09:50 • (MS) R3664466-4 05/31/21 12:42 • (MSD) R3664466-5 05/31/21 13:01

	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.160	U	0.111	0.150	69.3	93.5	1	10.0-149			29.8	37
Ethylbenzene	0.160	U	0.144	0.157	90.3	98.4	1	10.0-160			8.55	38
Toluene	0.160	0.00367	0.130	0.174	79.2	107	1	10.0-156			28.8	38
Xylenes, Total	0.480	0.00338	0.380	0.398	78.6	82.4	1	10.0-160			4.64	38
(S) Toluene-d8					103	106		75.0-131				
(S) 4-Bromofluorobenzene					91.2	87.9		67.0-138				
(S) 1,2-Dichloroethane-d4					93.1	102		70.0-130				

Page 247 of 331

Semi-Volatile Organic Compounds (GC) by Method 8015

L1358911-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3663063-1 06/03	3/21 13:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.652	<u>J</u>	0.274	4.00
(S) o-Terphenyl	61.4			18.0-148

3 Ss

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3663063-2 06/0	3/21 13:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	38.6	77.2	50.0-150	
(S) o-Terphenyl			85.7	18.0-148	

⁷Gl

L1358914-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1358914-04 06/03/21 16:34 • (MS) R3663063-3 06/03/21 16:47 • (MSD) R3663063-4 06/03/21 17:01

⁹ Sc

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
C10-C28 Diesel Range	50.0	5.64	54.3	49.8	76.3	69.6	1	50.0-150			8.57	20
(S) o-Terphenyl					71.5	71.8		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier	C	escri)	ption

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12000 Lebanon Ru Mount Juliet,	111 3/122

, , , , , , , , , , , , , , , , , , , ,		-/ -	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Received by OCD: 5/31/2022 1:14:59 PM
Analysis Request of Chain of Custody Record

F135

Page 250 of 331
Page: 1 of 1

Te	Tetra Tech, Inc.		121			Mid	lland, el (43	Texas (2) 682 (32) 682	79 -455	701 59	0		1	*													
Client Name:	Conoco Phillips	Site Manage	Site Manager: Christian Llull									ANALYSIS REQUEST (Circle or Specify Method No.)															
Project Name:	VGEU 02-20 West Flowline Release	Contact Info);		ail: ch			II@tetr 1667	ated	h.com		1	Í	1	(Ci	rcl	e o	or S	pe	CIT	y M	eth 	od	No	.)	П	1
Project Location: (county, state)	Lea County, New Mexico	Project #:																	100								
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	9701											6											lie#\	hoy		
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:		Andre	ew G	arcia	a				П	O-MRO)		Se Hg	Se Hg	1							pohod	Idam		
Comments: COPTE	TRA Acctnum		1000				- 1					8260B	C35)		Ag As Ba Cd Cr Pb Se Hg	3d Cr Pb				C/625				S S S S S S S S S S S S S S S S S S S			
	7.7	SAMI	PLING	MA	ATRIX	P		ERVAT			(N/N)	×	(Ext to C3		As Ba C	As Ba (atiles	60B / 62	ol. 8270	80		1 1	Themistry	Balance	Aug C	- 1 1
LAB# (LAB USE)	2135891)	YEAR: 2021 DATE	TIME	WATER	SOIL	HCI	HNO3	ICE		# CONTAINERS	FILTERED (Y	X 8021B	TPH TX1005 (8	8270C	Total Metals Ag	TCLP Metals A	TCLP Volatiles	TCLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625	PCB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	Chloride Sulfate TDS	Anion/Cation Ba	FPH 8015R	ногр
-1	AH-1 (0'-1')	05/25/21	1000	1	Х	1		Х		1	N	Х	X				-						Х				
ul	AH-2 (0'-1')	05/25/21	1030		х			Х		1	N	Х	X										Х				
w	AH-3 (0'-1')	05/25/21	1100		X	T		X		1	N	X	×										Х				
-vy	AH-4 (0'-1')	05/25/21	1130		X			Х	1	1	N	х	X									1	Х				
-05	AH-5 (0'-1')	05/25/21	1200		Х			Х		1	N	х	X										Х	27			
-04	AH-6 (0'-1')	05/25/21	1230	1	Х			х		1	Ν	Х	X										Х				
-07	AH-6 (11-2")	05/25/21	1300		Х		18	X		1	N	Х	X										Х				
208	AH-7 (0'-1')	05/25/21	1330		Х		100	X		1	N	X	X										Х				
						1	-		1			Н	1	1		Ц	0.0				1	\perp	- 1		- 3		
Relinquished by:	Date: Time:	Received by	-				ate.			Time:	-14	Н	\perp	_		Н	REN	ΔARI	(S·	Ш		\perp					
Andrew Garcia	5/26/2021 09:00 A	LABUSE					REMARKS: X Standard																				
Relinguished by	Date: Time: 516-21 17ίω	Received by	A	•	52	2G	ate:	1		Time:	2	Rush Charges Authorized				48 hr.	72	hr.									
Relinquished by:	Date: Time:	Received by	91	le	n	D	ate:	27/3	21	Time	3)	Special Report Limits or TRRP Report															
		ORIGIN	AL COPY	77	i C							(Cir	cle) I	HAN	D DE	LIVE	REC	FE	DEX	Ü	PS :	Fracki	ing #:	:			7

Pace Analytical National Center for Testing & Innovation									
Cooler Receipt F	orm								
Client: COPTETRA		U135	8511						
Cooler Received/Opened On: 5/2// 21	Temperature:	0.2							
Received By: Olivia Turner			A section						
Signature: Ning Muy									
Receipt Check List	NP NP	Yes	No						
COC Seal Present / Intact?									
COC Signed / Accurate?	加州以及,为 为								
Bottles arrive intact?		/							
Correct bottles used?		//							
Sufficient volume sent?		1							
If Applicable									
VOA Zero headspace?	4.16.	To the second	el elegate						
Preservation Correct / Checked?									

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

February 26, 2022

CHRISTIAN LLULL
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: VGEU 02-20 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 02/21/22 12:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

 Received:
 02/21/2022
 Sampling Date:
 02/18/2022

 Reported:
 02/26/2022
 Sampling Type:
 Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

A ... - L ... - - - I D. .. MC

Project Location: COP - LEA CO NM

Sample ID: BH - 17 (6-7) (H220656-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/24/2022	ND	2.29	115	2.00	1.40	
Total Xylenes*	<0.150	0.150	02/24/2022	ND	7.12	119	6.00	1.17	
Total BTEX	<0.300	0.300	02/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/23/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	<10.0	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	<10.0	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	96.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	97.5	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 17 (8-9) (H220656-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/24/2022	ND	2.29	115	2.00	1.40	
Total Xylenes*	<0.150	0.150	02/24/2022	ND	7.12	119	6.00	1.17	
Total BTEX	<0.300	0.300	02/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/23/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	158	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	120	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	92.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	99.5	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 17 (10-11) (H220656-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/24/2022	ND	2.29	115	2.00	1.40	
Total Xylenes*	<0.150	0.150	02/24/2022	ND	7.12	119	6.00	1.17	
Total BTEX	<0.300	0.300	02/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 69.9-14	10						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/23/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	18.3	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	1200	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	355	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	103	% 66.9-13	26						
Surrogate: 1-Chlorooctadecane	117	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 17 (12-13) (H220656-04)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	0.121	0.050	02/24/2022	ND	2.29	115	2.00	1.40	GC-NC1
Total Xylenes*	0.960	0.150	02/24/2022	ND	7.12	119	6.00	1.17	GC-NC1
Total BTEX	1.08	0.300	02/24/2022	ND					GC-NC1
Surrogate: 4-Bromofluorobenzene (PID	188	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/23/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	130	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	2370	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	503	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	143	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	192	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 18 (6-7) (H220656-05)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/25/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	0.610	0.050	02/25/2022	ND	2.29	115	2.00	1.40	GC-NC1
Total Xylenes*	3.06	0.150	02/25/2022	ND	7.12	119	6.00	1.17	GC-NC1
Total BTEX	3.67	0.300	02/25/2022	ND					GC-NC1
Surrogate: 4-Bromofluorobenzene (PID	233	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/23/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	201	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	2140	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	414	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	123	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	115	% 59.5-14	2						

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 18 (8-9) (H220656-06)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	0.802	0.050	02/24/2022	ND	2.29	115	2.00	1.40	GC-NC1
Total Xylenes*	3.90	0.150	02/24/2022	ND	7.12	119	6.00	1.17	GC-NC1
Total BTEX	4.70	0.300	02/24/2022	ND					GC-NC1
Surrogate: 4-Bromofluorobenzene (PID	269	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/23/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	223	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	2190	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	431	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	160	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	185	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 18 (10-11) (H220656-07)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	0.598	0.050	02/24/2022	ND	2.29	115	2.00	1.40	GC-NC1
Total Xylenes*	2.68	0.150	02/24/2022	ND	7.12	119	6.00	1.17	GC-NC1
Total BTEX	3.28	0.300	02/24/2022	ND					GC-NC1
Surrogate: 4-Bromofluorobenzene (PID	230	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/23/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	182	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	2100	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	418	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	133	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	221	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 18 (12-13) (H220656-08)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/24/2022	ND	2.29	115	2.00	1.40	
Total Xylenes*	0.194	0.150	02/24/2022	ND	7.12	119	6.00	1.17	GC-NC1
Total BTEX	<0.300	0.300	02/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	123 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/23/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	23.8	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	340	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	45.6	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	112 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	124 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 19 (6-7) (H220656-09)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/24/2022	ND	2.25	113	2.00	0.275	
Toluene*	<0.050	0.050	02/24/2022	ND	2.34	117	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/24/2022	ND	2.29	115	2.00	1.40	
Total Xylenes*	<0.150	0.150	02/24/2022	ND	7.12	119	6.00	1.17	
Total BTEX	<0.300	0.300	02/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/23/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/23/2022	ND	210	105	200	3.13	
DRO >C10-C28*	<10.0	10.0	02/23/2022	ND	213	106	200	1.86	
EXT DRO >C28-C36	<10.0	10.0	02/23/2022	ND					
Surrogate: 1-Chlorooctane	82.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	85.5	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
CHRISTIAN LLULL
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/21/2022 Sampling Date: 02/18/2022

Reported: 02/26/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C-MD-02305 Sample Received By: Tamara Oldaker

Project Location: COP - LEA CO NM

Sample ID: BH - 19 (9-10) (H220656-10)

Analyte Result Reporting Limit Analyzed Method Blank BS Benzene* < 0.050		True Value QC 2.00	RPD	Qualifier
• •		2.00		
0.050 0.050 0.070 0.070	117		0.275	
Toluene* <0.050 0.050 02/24/2022 ND 2.34	11,	2.00	2.29	
Ethylbenzene* <0.050 0.050 02/24/2022 ND 2.29	115	2.00	1.40	
Total Xylenes* <0.150 0.150 02/24/2022 ND 7.12	119	6.00	1.17	
Total BTEX <0.300 0.300 02/24/2022 ND				
Surrogate: 4-Bromofluorobenzene (PID 106 % 69.9-140				
Chloride, SM4500Cl-B mg/kg Analyzed By: AC				
Analyte Result Reporting Limit Analyzed Method Blank BS	% Recovery	True Value QC	RPD	Qualifier
Chloride 16.0 16.0 02/23/2022 ND 432	108	400	0.00	
TPH 8015M mg/kg Analyzed By: MS				
Analyte Result Reporting Limit Analyzed Method Blank BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10* <10.0 10.0 02/23/2022 ND 210	105	200	3.13	
DRO >C10-C28* <10.0 10.0 02/23/2022 ND 213	106	200	1.86	
EXT DRO >C28-C36 <10.0 10.0 02/23/2022 ND				
Surrogate: 1-Chlorooctane 87.4 % 66.9-136				
Surrogate: 1-Chlorooctadecane 89.6 % 59.5-142				

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

GC-NC1 8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis and are biased high with

interfering compounds.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries of successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

PageOl of 02

Relinquished By Sampler - UPS -H220165 Delivered By: (Circle One) Sampler Name: Joe Tyler Project Location: Lea County, New Mexico Project Name: VGEU 02-20 Flowline Release Project #: 212C-MD-02305 Phone #: (512) 338-1667 Project Manager: Christian Llull Company Name: ConocoPhillips Address: christian.llull@tetratech.com Lab I.D. † Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326 a t W Bus - Other: BH-19 BH-18 BH-17 Sample I.D 600 (6-7)(9-10) (B-13) (10-11) (8-9)(6-7) (12-13)(10-11) Time: Time; Fax #: NA State: Project Owner: Ó 500 Received By Received By: 9 (G)RAB OR (C)OMP Zip # CONTAINERS GROUNDWATER Sample Condition
Cool Intact
Pes Tyes
No No WASTEWATER MATRIX SOIL OIL SLUDGE OTHER City: Fax #: Phone #: State: P.O. #: Address: by email Attn: Christian Llull Company: Tetra Tech ACID/BASE PRESERV CHECKED BY: ICE / COOL 9 (Initials) OTHER BILL TO 2-18-2 Zip: DATE SAMPLING Fax Results: Email Results to: Phone Results: 0900 1300 1130 1030 0420 1100 1000 1430 1400 1330 TIME ion of the app Christian (PM) TPH ☐ Yes × BTEX × Chlorides O No Add'I Fax #: ANALYSIS Hold REQUEST

† Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

(575) 393-2326 FAX (575) 393-2476 101 East Marland, Hobbs, NM 88240

Page 02 of 02

Company Name: ConocoPhillips	onocoPhillips		- 1	- 1	- 1	- 1	- 1	- 1	_				6	Ħ١	BILL TO			1	1		ANALYSIS	SIS		2	REQUEST	7			
Project Manager: Christian Llull	Christian Llull									P.	P.O. #:	*	- 1	- 1										7	4		_	4	
Address: christian.llull@tetratech.com	llull@tetratech.com									2	Ĭ	oan	≅	e l	Company: Tetra Tech													_	
City:	State:	Zip:	Ď.							At	5	오	TIS!	tian	Attn: Christian Llull														
Phone #: (512) 338-1667	-1667 Fax #: NA									A	흑	ess	5:	y e	Address: by email														_
Project #: 212C-MD-02305	0-02305 Project Owner:	er:								O	City:																		
Project Name: VGE	Project Name: VGEU 02-20 Flowline Release									St	State:	**			Zip:													_	
Project Location: L	Project Location: Lea County, New Mexico									무	Phone #:	e #																_	_
Sampler Name: Joe Tyler	e Tyler									Fa	Fax #:																		
FOR LAB USE ONLY		P.		\neg	- 1	- 2	A	MATRIX			P	PRESERV	뮈	<	SAMPLING	NG.													
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER		WASTEWATER	SOIL	OIL	SLUDGE	OTHER:	ACID/BASE:	ICE / COOL	OTHER:	OTHER:	DATE	TIME	TPH	BTEX	Chlorides		Hold								
1	84-19 (1415)	Q													2-18-22	0940					×								
						-				1-1-1																			
LEASE NOTE: Liability and Da nalyses. All claims including the ervice. In no event shall Cardina filiates or successors arising ou	LEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the nalyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable errice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, titlades or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal, regardless or successors arising out of or related to the performance of services hereunder by Cardinal regardless or successors arising out of or related to the performance of services hereunder by the services of the services of the services or successors are successful to the	any clai e deeme ng withou Cardinal	m aris d wain at limit	ing w ed un ation	heth nless bus	er bar mad mess	e in v	riting ruptio	and and	g whether based in contract or tort, shall be li J unless made in writing and received by Can ion, business interruptions, loss of use, or los less of whether such dairn is based upon an	ved t	If be	limited to rdinal wi ss of pro	with profit	the amount paid in 30 days after its incurred by clic bove stated reasons.	by the client for to completion of the ent, its subsidiarions or otherwise	the e applicab ies.	ő										-	l
Relinquished By:	Date:	V	Received By:	>é	B	×	- 1	- 1	- 1		9	0		-		Phone Results: Fax Results:		□ Yes	00	N N	Add'l Phone #: Add'l Fax #:	hone #	П						Ш
Relinquished By:		7	Received By:	e	B		The	0	1	1			6	10	A.	Email Results to:	This to:	Tes			Add I Fa	**							
Delivered By: (Circle One)	1.600 0	-0.50	60		CS	Samp	- e	Sample Condition Cool Intact	-\- <u>=</u>	š		오	(I) E	ECKED E	CHECKED BY: (Initials)														
Sampler - UPS - Bus - Other:	Clile	#13	CV			= 3	S	Tyes Tyes	No			1	N	9	1														_

Page 14 of 14

May 25, 2022

RYAN DICKERSON
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: VGEU 02-20 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 05/24/22 14:13.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Fax To:

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 17 A (14'-15') (H222202-01)

BTEX 8021B	mg,	'kg	Analyze	d By: MS/					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	<0.050	0.050	05/24/2022	ND	2.07	103	2.00	5.53	GC-NC
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	1.97	98.7	2.00	6.26	GC-NC
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.15	102	6.00	6.65	GC-NC
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	273	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	200	50.0	05/25/2022	ND	204	102	200	0.0987	QM-07
DRO >C10-C28*	4860	50.0	05/25/2022	ND	208	104	200	1.27	QM-07
EXT DRO >C28-C36	1060	50.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	121	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	140	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) 212C-MD-02305 - WEST Sample Received By: Project Number: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 17 A (19'-20') (H222202-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/25/2022	ND	2.08	104	2.00	5.92	
Toluene*	0.332	0.050	05/25/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	0.294	0.050	05/25/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	4.60	0.150	05/25/2022	ND	6.15	102	6.00	6.65	
Total BTEX	5.23	0.300	05/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	250 9	% 69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	284	50.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	4360	50.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	851	50.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	112 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	313 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

C-04

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Fax To:

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Applyzod By: MC/

Project Location: COP - LEA CO NM

Sample ID: BH - 17 A (24'-25') (H222202-03)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	ea By: MS/					5-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/25/2022	ND	2.08	104	2.00	5.92	
Toluene*	0.136	0.050	05/25/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	0.121	0.050	05/25/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	2.69	0.150	05/25/2022	ND	6.15	102	6.00	6.65	
Total BTEX	2.95	0.300	05/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	160	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	145	50.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	2800	50.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	557	50.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	101	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	187	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Sample Received By: Shalyn Rodriguez Project Number: 212C-MD-02305 - WEST

Project Location: COP - LEA CO NM

Sample ID: BH - 17 A (29'-30') (H222202-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	<0.050	0.050	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	0.062	0.050	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	0.730	0.150	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	0.793	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	120	% 69.9-14	10						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	38.9	10.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	1440	10.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	287	10.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	90.5	% 66.9-13	26						
Surrogate: 1-Chlorooctadecane	161	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Fax To:

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Sample Received By: Project Number: 212C-MD-02305 - WEST Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 17 A (34'-35') (H222202-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	0.108	0.050	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	0.177	0.050	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	1.24	0.150	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	1.53	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	123	% 69.9-14	10						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	41.4	10.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	1400	10.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	287	10.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	90.1	% 66.9-13	26						
Surrogate: 1-Chlorooctadecane	143	% 59.5-14	12						

Surrogate: 1-Chlorooctadecane

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: Sample Received By: 212C-MD-02305 - WEST Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 17 A (39'-40') (H222202-06)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	<0.050	0.050	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	0.076	0.050	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	0.407	0.150	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	0.483	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	21.6	10.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	997	10.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	219	10.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	85.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	141 9	59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Fax To:

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 17 A (44'-45') (H222202-07)

BTEX 8021B	mg	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	0.500	0.050	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	0.894	0.050	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	2.34	0.150	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	3.74	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	123	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	54.0	10.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	1100	10.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	227	10.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	90.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	133	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (14'-15') (H222202-09)

BTEX 8021B	mg/	'kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.200	0.200	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	4.06	0.200	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	13.3	0.200	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	27.6	0.600	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	44.9	1.20	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	140 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	366	50.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	2590	50.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	496	50.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	116 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	181 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (19'-20') (H222202-10)

BTEX 8021B	mg	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	8.44	0.500	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	20.9	0.500	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	37.9	1.50	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	67.2	3.00	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	120	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	728	50.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	3580	50.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	638	50.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	131	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	203	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (24'-25') (H222202-11)

BTEX 8021B	mg	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	0.383	0.050	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	1.25	0.050	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	2.48	0.150	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	4.11	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	122	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	58.9	10.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	1000	10.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	191	10.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	93.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	130	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (29'-30') (H222202-12)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.08	104	2.00	5.92	
Toluene*	<0.050	0.050	05/24/2022	ND	2.07	103	2.00	5.53	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	1.97	98.7	2.00	6.26	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.15	102	6.00	6.65	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	54.2	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	83.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	93.9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (34'-35') (H222202-13)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	0.067	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	86.8	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	81.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.0	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: Sample Received By: 212C-MD-02305 - WEST Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (39'-40') (H222202-14)

BTEX 8021B	mg/	kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	101	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	13.1	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	89.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	103 9	59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Applyzod By: MC\

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (44'-45') (H222202-15)

RTFY 8021R

BIEX 8021B	тд/кд		Anaiyze	zed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 % 69.9-140		0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	45.4	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	90.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	101	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 18 A (49'-50') (H222202-16)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	16.0	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	90.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	100	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 20 (0-1') (H222202-17)

BTEX 8021B	mg/kg		Analyzed By: MS\						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 % 69.9-140		0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	53.7	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	76.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	84.6	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 20 (2'-3') (H222202-18)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 % 69.9-140		0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/25/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	20.2	10.0	05/25/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/25/2022	ND					
Surrogate: 1-Chlorooctane	69.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	76.7	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 20 (4'-5') (H222202-19)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	<10.0	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	85.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.7	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 20 (6'-7') (H222202-20)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	204	102	200	0.0987	
DRO >C10-C28*	<10.0	10.0	05/24/2022	ND	208	104	200	1.27	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	80.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	89.0	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH
RYAN DICKERSON
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 20 (9'-10') (H222202-21)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/25/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	210	105	200	4.31	
DRO >C10-C28*	<10.0	10.0	05/24/2022	ND	203	102	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	78.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	79.1	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH RYAN DICKERSON 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 05/24/2022 Sampling Date: 05/24/2022

Reported: 05/25/2022 Sampling Type: Soil

Project Name: VGEU 02-20 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: 212C-MD-02305 - WEST Sample Received By: Shalyn Rodriguez

Project Location: COP - LEA CO NM

Sample ID: BH - 20 (14'-15') (H222202-22)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/24/2022	ND	2.19	109	2.00	8.30	
Toluene*	<0.050	0.050	05/24/2022	ND	2.14	107	2.00	8.62	
Ethylbenzene*	<0.050	0.050	05/24/2022	ND	2.11	105	2.00	8.85	
Total Xylenes*	<0.150	0.150	05/24/2022	ND	6.52	109	6.00	8.44	
Total BTEX	<0.300	0.300	05/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/25/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/24/2022	ND	210	105	200	4.31	
DRO >C10-C28*	<10.0	10.0	05/24/2022	ND	203	102	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	05/24/2022	ND					
Surrogate: 1-Chlorooctane	78.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	79.0	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
GC-NC	8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis and are reported as ND.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Kreene

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 8 (575) 393-2326 FAX (575) 393	CARDINA

S 5

(5/5) 393-2326	(575) 393-2326 FAX (575) 393-2476			ANALYSIS BEOLIEST
Ž,		P.O. #:		
Shan	Videosos	my: tetra	trus	
lity:	State: Zip:		e Clas	_
hone #:	Fax #:	2	n	
roject #: 2/2/-MD-02305	Project Owner:	City:		
0	West Plantine Release	State: Zip:		_
roject Location: Lee (should	My	Phone #:		
9,		Fax #:		
		PRESERV. SAM	SAMPLING	
Lab I.D. Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	SLUDGE OTHER: ACID/BASE: ICE / COOL OTHER:	TPH BAREL CMarades	
BH-174-UY-U)		Shuba		
	S. C.			
DH-174 C34-35'	\$ G			
34-17AC44-45				
SHIBACH-15				
ASE NOTE: Liability and Damages, Cardina's liability and open cardinal flower to registerize and any other in no event shall Cardinal be liable for incidental or cornice. In no event shall Cardinal be liable for incidental or cornice.	dient's exc of cause w sequental	tract or tort, shall be limited to the arrount pai g and received by Cardinal within 30 days afte ons, loss of use, or loss of profits incurred by	id by the client for the er completion of the applicable client, its subsidiaries,	
filiales or successors arising out of or related to the performance of successors arising out of or related to the performance of successors.	ate:	alim is based upon any of the above stated it	Verbal Result: Yes No	No Add'I Phone #:
Colton BIENERSDAPP	1413 SC	odeignus	Ryon, Dirkerson etchnitech w	Director etchnitech was
alliquisned by:	Time:	(on other	841-1714 C441-50" and 54-55")
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Observed Temp. °C 3\50 Sample Condition Corrected Temp. °C 2\0.00 Sample Condition Corrected Temp. °C 2\0.00 Sample Condition	Λ 0	Turnaround Time: Standard Thermometer ID #113	Bacteria (only) S Cool Infact Yes Yes
ampler - UPS - Bus - Otner:	Corrected temp. CSI OC No DI	No	Correction Factor -0.5°C 2450, TAT	

Page 24 of 26

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com 572

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240

	(575) 393-2326 FAX (575) 393-2476	2476			
Company Name:	Samo Philles		BILL TO		ANALYSIS REQUEST
Project Manager:	_ 1		P.O. #:		
Address:			Company: Tetra Te	Tech	
City:	State:	Zip:	Attn: Ryon Dickerson	To-	
Phone #:	Fax #:		Address: by email		
Project #: 2/2/-MD-02305	MD-02305 Project Owner:	er:	City:		
Project Name: V	Do West	Florible Release	State: Zip:		
Project Location:			Phone #:		
Sampler Name:	olta Biza		1		
FOR LAB USE ONLY	- 1	MATRIX	PRESERV. SAMPLING		
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER: ACID/BASE: ICE / COOL OTHER:	TPH BTEX Chlorade	
8	BH-18A (24-25)		Spripa	-X -X -X	
T	846				
	BY-18A (37-40)				
£2	SH-18A CH9 (SO')				
[]	8H-20 CO-1'S				
$\bar{\sim}a$	SW-20 (2'-5')				
and the same of th	30 84-20 (6-2)	or any claim arising whether based in contrac	t or fort, shall be limited to the amount paid	by the client for the	
analyses. All claims including service. In no event shall Ca	analyses. All claims including those for negligence and any other cause whatsbeever shall be deemed waters unaural may an a review of profits incurred by client, its subsidiaries, service. In no event shall Cardinal be liable for incidental or consequental damages, including without inmatishon, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, service. In no event shall Cardinal be liable for incidental or consequental damages, including without inmatishon, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services in no event shall Cardinal be liable for incidental or consequental damages, including without inmatishon, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services in the consequent of the province of profits incurred by client, its subsidiaries, services in the consequent of the province of profits incurred by client, its subsidiaries, and the consequent of the province of profits incurred by client, its subsidiaries, and the consequent of the province of profits incurred by client, its subsidiaries, and the consequent of the province of profits incurred by client, its subsidiaries, and the consequence of the consequent of the province of profits incurred by client, its subsidiaries, and the consequence of the conse	be deemed waived unless made in whally a ding without limitation, business interruptions, business interruptions.	loss of use, or loss of profits incurred by do is based upon any of the above stated res		
Relinquished By:	out of or related to the performance of serve	18: 14/2 Received By:	Men	Verbal Result: ☐ Yes ☐ No Add'I Phone #: All Results are emailed. Please provide Email address:	ide Email address:
Relinquished By	Relinquished By: Date:	Received I	0	Alble analysis on BA-174 (49:50 a	analysis on BH-174 (49:50 and 54-551)
Delivered By: (Circle One)		C 3152 Sample Condition C 3152 Cool Intact	tion CHECKED BY: (Injitials) es	Turnaround Time: Standard E	Bacteria (only) S Cool Intact Yes Yes
Sampler - UPS - Bus - Other:	Bus - Other: Corrected lemp.	5	X	Correction Factor -0.5°C 27 10 T	

Page 25 of 26

Retinquished By:

Date: Time:

Received By:

Sampler - UPS - Bus - Other: Delivered By: (Circle One)

Observed Temp. °C 31.5° Corrected Temp. °C31.0°

Cool Intact
Ves Yes Sample Condition

> CHECKED BY: (Initials)

> > Turnaround Time:

Standard

Bacteria (only) Sample Condition
Cool Intact Observed Temp.

Yes Yes
No Corrected Temp.

ô

Corrected Temp. °C

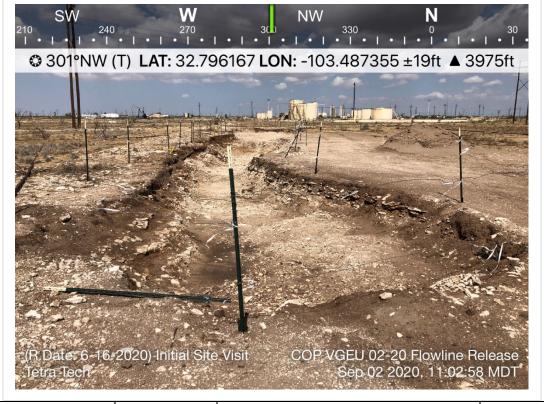
Hold and by on BAHTA CHANGO and SAVIST)

Thermometer ID #113 25% TAT

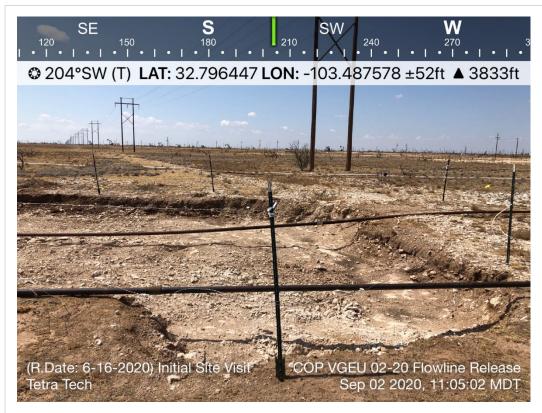
CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

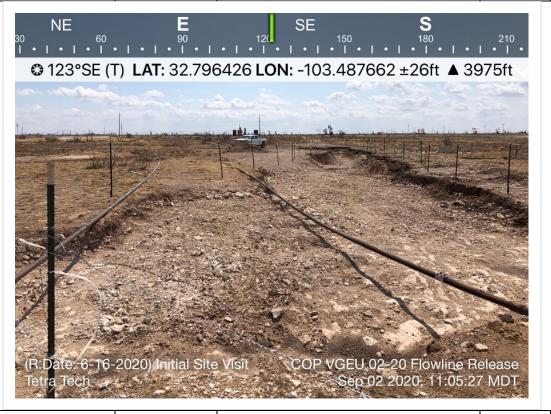
101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name:	e: ComoPhillips		BILL TO		ANA	ANALYSIS REQUEST	
Project Manag	Project Manager: Ryan Dizkerjan		P.O. #:				
Address:			To	tech			
City:	State:	Zip:	Attn: Ryan Diz	DIERRIA			
Phone #:	Fax #:			all.			
roject #:2/1	Project #: 2/2C-MD- 82505 Project Owner:	ā	City:				
roject Name:	Project Name: VG54 02-20 Web Plowline Release	the Refease	State: Zip:				
Project Location:	on: Les County Mrs		Phone #:				
Sampler Name:	College		Fax #:				
FOR LAB USE ONLY		MATRIX	PRESERV. SAN	SAMPLING			
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	SLUDGE OTHER: ACID/BASE: ICE / COOL OTHER:	TPM	BTEX Chientoles		4101d
22	BH-20 (9-10')		5/24/22	XX	XX		
23	~	6 X	shin	X	2		×
PLEASE NOTE: Liability analyses. All claims incluservice. In no event shall	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall cardinal be inable for incidental or consequental damages, including without firmitation, business interruptions, loss of use, or loss of profits incurred by client, its subsections.	any claim arising whether based in control deemed waited unless made in writing g without limitation, business interruption control reporting and whother such discounts are the second control reporting to the second control contro	ract or tort, shall be limited to the amount p and received by Cardinal within 30 days at far, loss of use, or loss of profits incurred by the based unon any of the abboxs stated	aid by the client for the ter completion of the applicable / client, its subsidiaries, reasons or otherwise			
Relinquished By:	Date:	Received By:	ment	are e	Verbal Result: ☐ Yes ☐ No ☐ Add'i Phone #: All Results are emailed. Please provide Email address:	Add'I Phone #: de Email address:	
Retinquished By	STEVERTOR	Re /	Summy	REMARKS:	lickerson @behratech. Cor.	tech. com	


† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

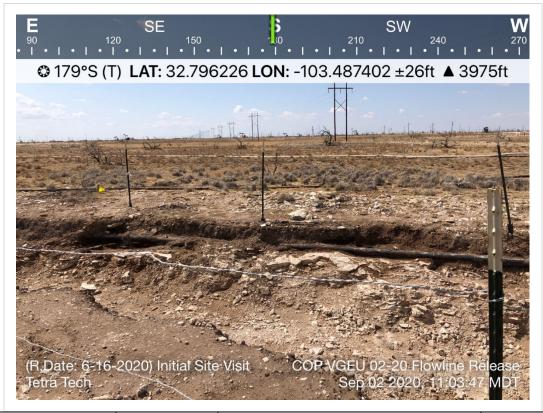
Page 26 of 26


APPENDIX D Photographic Documentation


TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of the eastern portion of the VGEU 02-20 West flowline release area, looking west.	1
212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of the eastern portion of the VGEU 02-20 West flowline release area, looking west.	2
212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of the western portion of the VGEU 02-20 West flowline release area, looking southwest.	3
212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020


TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of the western portion of the VGEU 02-20 West flowline release area, looking southeast.	4
212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of the western portion of the VGEU 02-20 West flowline release area, looking west.	5
212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020

TETRA TECH, INC.	DESCRIPTION	View of the central portion of the VGEU 02-20 West flowline release area, looking southeast.	6
PROJECT NO. 212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of the western portion of the VGEU 02-20 West flowline release area, looking south.	7
212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020

TETRA TECH, INC.	DESCRIPTION	View of the southeastern extent of the VGEU 02-20 West flowline release area, looking northwest.	8
PROJECT NO. 212C-MD-02305	SITE NAME	ConocoPhillips VGEU 02-20 West Release	9/02/2020

APPENDIX E Soil Boring Logs

212C-MD-02305 TETRA TECH							ATEC	СН				LOG OF BORING BH-1	Page 1 of 1
Project Name: VGEU 02-20 West Flowline Release										se			l.
Borel	nole	Loc	ation:	GPS: 32	.796	171,	-103.4	48738	30			Surface Elevation: 3977 ft	
Borel	nole	Nur	nber:	BH-1						E	Boreho Diame	ole er (in.): 8 Date Started: 1/18/2021 Date Finished	: 1/18/2021
	Е		(mdd	(mdd	ERY (%)	TENT (%)	of)		ADEX		Jiame	WATER LEVEL OBSERVATIONS	Dry_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (j) HEDGE	REMARKS
_ _ _												Previously excavated to approximately 4' bgs.	
5		\bigvee	3210 220	8								-ML- SILT: Light grey, very dense, cemented, with occasional chert.	BH-1 (4-5') BH-1 (6-7')
_		\bigvee	40	_								-ML- SILT: Light tan, very dense, cemented, with occasional chert.	
		XI	42	5								Becoming brittle at 10' bgs.	BH-1 (9-10')
_	$\langle \langle$											-SM- SILTY SAND: Reddish brown, medium dense, dry.	
15	$\langle \langle$	M										15	BH-1 (15')
Samp	oler		Split Spoon Shelby			te Line	" T	Dpera jypes:	Muc Rota	ary		Bottom of borehole at 15.0 feet. Hand Auger Air Rotary Air Rotary Air Rotary Air Rotary Air Rotary Air Rotary Surface elevations are estimated from Google Early	nn above. th data.
Bulk Sample California Continuous Flight Auger Direct Push Wash Rotary Core Barrel Drilling Equipment: Air Rotary Drilling													

212C-MD-02305	TE TETRA TECH	LOG OF BORING BH-2	Page 1 of 1				
Project Name: V	GEU 02-20 West Flowline Release						
Borehole Location:	GPS: 32.796291, -103.487576	Surface Elevation: 3977 ft					
Borehole Number:	BH-2 Bore	ehole meter (in.): 8 Date Started: 1/18/2021 Date Finished:	1/18/2021				
E E E E E E E E E E E E E E E E E E E	m) NT (%) EX	WATER LEVEL OBSERVATIONS	Ory_ft				
OPERATION TYPE SAMPLE CHLORIDE FIELD SCREFNING (ppm)		GRAPHIC LOG GRAPHIC LOG GRAPHIC LOG GRAPHIC LOG	REMARKS				
5 5 778 - 10 78 - 15 88	8	-ML- SILT: Light tan, very dense, cemented, with occasional chert.	BH-2 (2-3') BH-2 (4-5') BH-2 (6-7') BH-2 (9-10')				
Sampler Spl Spc Spc She She Sar Sm Sar	Ilby Vane Shear Wud Rotary California California Wash Rotary Test Pit Wash Rotary	Core Barrel	nn above. h data.				

212C-MD-02305	TE TETRA	TECH	LOG OF BORING BH-3	Page 1 of 2
Project Name: \	GEU 02-20 West Fl	lowline Release		
Borehole Location:	GPS: 32.796390, -1	103.487729	Surface Elevation: 3977 ft	
Borehole Number:	BH-3	Boreh Diam	nole eter (in.): Date Started: 1/18/2021 Date Finished:	1/18/2021
E E E E E E E E E E E E E E E E E E E	ppm) ERY (%) FENT (%)	EX	WATER LEVEL OBSERVATIONS While Drilling ☐ Dry ft Upon Completion of Drilling ☐ Remarks:	Ory_ft
OPERATION TYPE SAMPLE SAMPLE SAMPLE SCHLORIDE FIELD SCREENING (rom)	─	DRY DENSITY (pcf) T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (3) HE GEORGE	REMARKS
			Previously excavated to approximately 2' bgs.	
			-ML- SILT: Light tan, very dense, cemented, dry.	BH-3 (2-3')
5			5 -SM- SILTY SAND: Reddish brown, medium	BH-3 (4-5')
125	0		dense, dry.	BH-3 (6-7')
10 790	0.7			BH-3 (9-10')
			-SM- SILTY SAND: Dark red-brown, medium dense, dry.	- ()
15 346	0.6			BH-3 (15')
20 388	3 1.6			BH-3 (20')
				211 0 (20)
25				BH-3 (25')
₩ Gra	Vane Shear k nple California	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Air Rotary Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the remarks colum Surface elevations are estimated from Google Earth	nn above. h data.
Loggor: Jahr Thurs		Drilling Equipment:	Drillor: Conhessual Drilling	

212C-MD-02305	TETRAT	TECH		LOG OF BORING BH-3					
Project Name: V	GEU 02-20 West Flo	owline Release							
Borehole Location:	GPS: 32.796390, -10	03.487729	Surface Eleva	tion: 3977 ft					
Borehole Number:	BH-3	Bor Dia	rehole ameter (in.): 8	Date Started: 1/18/2021 Date Finished:	1/18/2021				
ELD Photos	ppm) ERY (%) TENT (%)	cf) NDEX %)	While Drilling Remarks:	WATER LEVEL OBSERVATIONS g ☑ Dry ft Upon Completion of Drilling ☑ □	Ory_ft				
OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	─ ── ४ । ∪ ।	DRY DENSITY (pcf) LIQUID LIMIT DRASTICITY INDEX MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (3) H L DE	REMARKS				
				 - - -					
30 ((🖂				Bottom of borehole at 30.0 feet.	BH-3 (30')				
Sampler Split Types: Spin	Acetate Liner	Operation Types:	Hand Auger	Notes:					
Types: Spot	by Vane Shear ple California	Types: Mud Rotary Continuous Flight Auger Wash Rotary	Air Rotary	Analytical samples are shown in the remarks colum Surface elevations are estimated from Google Earth	n above. n data.				
Logger: John Thursto	an .	Drilling Equipment	Air Deter	Driller: Scarborough Drilling					

212C-MD-02305	TETRA 1	TECH	LOG OF BORING BH-4										
Project Name: V	GEU 02-20 West Flo	owline Release											
Borehole Location: GPS: 32.796534, -103.487717 Surface Elevation: 3977 ft													
Borehole Number:	BH-4	Bore Diam	hole neter (in.): 8 Date Started: 1/18/2021 Date Finished	1/18/2021									
PE ELD	(ppm) FERY (%) TENT (%)	ocf) NDEX %)	WATER LEVEL OBSERVATIONS While Drilling $\underline{\underline{Y}}$ Dry ft Upon Completion of Drilling $\underline{\underline{Y}}$ Remarks:	Dry_ft									
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (DDM)	-	PRY DENSITY (pcf) LIQUID LIMIT PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (ij) HEdge	REMARKS									
77	3		-SM- SILTY SAND: Brown, medium dense, dry.	BH-4 (0-1')									
55	9		-ML- SILT: Light grey, very dense, cemented, dry.	BH-4 (2-3')									
5 378	5		MI SII Ti Light grouften van denne comented	BH-4 (4-5')									
79			-ML- SILT: Light grey/tan, very dense, cemented, dry. -ML- SILT: Light tan, very dense, cemented, dry. 7	BH-4 (6-7') BH-4 (9-10")									
			Bottom of borehole at 10.0 feet.										
Sampler Spin Spin Spin Spin Spin Spin Spin Spin	Vane Shear California	Operation Types: Mud Rotary Flight Auger Wash Rotary	Hand Auger Air Rotary Analytical samples are shown in the remarks colur Surface elevations are estimated from Google Early Core Barrel	nn above. h data.									
Logger: John Thurst	on	Drilling Equipment:	Air Rotary Driller: Scarborough Drilling										

212C-MD-02305	TE TETRA	TECH	LOG OF BORING BH-5	Page 1 of 1
Project Name: V	GEU 02-20 West Flo	lowline Release		
Borehole Location:	GPS: 32.796421, -10	03.487760	Surface Elevation: 3977 ft	
Borehole Number:	BH-5	Bor	prehole ameter (in.): 8 Date Started: 1/18/2021 Date Finished:	1/18/2021
E E E E E E E E E E E E E E E E E E E	ppm) ERY (%) TENT (%)	X	WATER LEVEL OBSERVATIONS	Ory_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)		DRY DENSITY (pcf) F LIQUID LIMIT B PLASTICITY INDEX MINUS NO. 200 (%)	GRAPHIC LOG MATERIAL DESCRIPTION DEPTH (ft)	REMARKS
79	5	a	-GM- CALICHE: Light tan, very dense, cemented, with occasional topsoil.	BH-5 (0-1')
90	5	0	-GM- CALICHE: Light tan, very dense, cemented, dry.	BH-5 (2-3')
5		a		BH-5 (4-5')
44	4		-ML- SILT: Light tan, very dense, cemented, dry.	BH-5 (6-7')
15			14.9	BH-5 (9-10')
Sampler Spling S	Iby Vane Shear	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	SM- SILTY SAND: Tan, medium dense, dry. Bottom of borehole at 15.0 feet. Air Rotary	nn above. h data.
San Logger: John Thurst		Drilling Equipment:	Air Rotary Driller Scarborough Drilling	

Bronchole Loatiline GPS 32796421, 103 487790 Bronchole Number: BH-6 Bronchole Number: BH-7 BRONCHOLE Number: BH-8 BRONCHOLE Number: BH-8 BRONCHOLE Number: BH-9 BH-9 BRONCHOLE Number: BH-9 BH-9 BRONCHOLE Number: BH-9 BH-	212C-MD-02305	ГКА ТЕСН	LOG OF BORING BH-6				
Borehole Number: BH-6 Borehole (m.) 8 Detection 1/10/2021 Date Finished: 1/10/2021 Date Finished: 1/10/2021 WATER LEVEL OBSERVATIONS WATER	Project Name: VGEU 02-20 West	st Flowline Release					
Sampler Types Services S	Borehole Location: GPS: 32.796421	1, -103.487760 Surface El	evation: 3977 ft				
While Drilling Dry ft Upon Completion of Dry ft Dry ft Upon Completion of Dry ft Dry	Borehole Number: BH-6	Borehole Diameter (in.):	Date Started: 1/18/2021 Date Finished	1/18/2021			
Sampler South Acetate Liner Types: Sampler School Acetate Liner Types: Sampler School Acetate Liner Types: Soon Acetate Liner Types: Sampler School Acetate Liner Types: Soon Acetate Liner Types: Acetate Liner Ty	FELD (ppm) (ppm) FERY (%)	E X Bomarke	Illing $\overline{\underline{Y}}$ Dry ft Upon Completion of Drilling $\underline{\underline{Y}}$	<u>Dry</u> ft			
Sampler Spite Acetate Liner Types: Sempler Spite Spite Acetate Liner Types: Shelty Vane Shear Shelty Vane Shear BH-6 (0-1')	DEPTH (ft) OPERATION TYF SAMPLE CHLORIDE FII SCREENING COC FIELD SAMPLE RECOV MOISTURE CON	LL PI -	ОЕРТН (REMARKS			
Sampler Spill Spion Acetate Liner Types: Sheltby Vane Shear Sheltby Vane Shear Sheltby Vane Shear Sheltby Spill Acetate Liner Rotary Rotary Ar Rotary Analytical samples are shown in the remarks column above. Surface elevations are estimated from Google Earth data.		- SM - S	·				
126 5		<u>" - "</u> dry.	CALICHE: Light tan, very dense, cemented, —				
Bottom of borehole at 10.0 feet. Sampler Spoin	126 5		GILT: Light grey/tan, very dense, cemented,				
Sampler Spoin Acetate Liner Types: Shelby Vane Shear Shelby Vane Shear Shelby Vane Shear Shelby Vane Shear Acetate Liner Types: Analytical samples are shown in the remarks column above. Surface elevations are estimated from Google Earth data	10		10	BH-6 (9-10')			
Shelby Vane Shear Wund Rotary Air Rotary Analytical samples are shown in the remarks column above. Surface elevations are estimated from Google Earth data.	Sampler M. Salit	Operation					
Sample California Direct Push Sample Test Pit Core Barrel Core Barrel Driller: Scarborough Drilling Driller: Scarborough Drilling	Shelby Vane Shea	Air Rotary Continuous Flight Auger Wash Rotary Core Bar	Analytical samples are shown in the remarks colun Surface elevations are estimated from Google Earl	nn above. th data.			

212C-MD-02305	TE TETRA	TECH	LOG OF BORING BH-7	Page 1 of 1
Project Name: V	GEU 02-20 West Flo	owline Release		
Borehole Location:	Surface Elevation: 3977 ft			
Borehole Number:	BH-7	Bore Diar	ehole meter (in.): 8 Date Started: 1/18/2021 Date Finished:	1/18/2021
E E E E E E E E E E E E E E E E E E E	ppm) ERY (%) FENT (%)	of) NDEX %)	WATER LEVEL OBSERVATIONS While Drilling ☐ Dry ft Upon Completion of Drilling Remarks:	Dry_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	-	DRY DENSITY (pcf) LIQUID LIMIT U PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (t) DEPTH (ft)	REMARKS
142				BH-7 (0-1')
44		- - - -	-GM- CALICHE: Light tan, very dense, cemented, dry.	BH-7 (2-3')
5 66 59		a -	- ML- SILT: Light tan, very dense, cemented, dry.	BH-7 (4-5') BH-7 (6-7')
10 \ \ \ 64			Becoming brittle at 10' bgs 10 10 10 10 10 10 10 10 10 10 10 10 10	BH-7 (9-10')
Sampler M.C.		Operation		
Sampler Types: Split Spo Spo She Sam	Vane Shear California	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Air Rotary Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the remarks colun Surface elevations are estimated from Google Earl	nn above. h data.
Logger John Thursto	on.	Drilling Equipment	Air Rotary Driller: Scarborough Drilling	

212C-MD-02305	TE TETRATE	ECH	LOG OF BORING BH-8	Page 1 of 1
Project Name: V	i GEU 02-20 West Flov	wline Release		1
Borehole Location:	GPS: 32.796171, -103	3.487380	Surface Elevation: 3977 ft	
Borehole Number:	BH-8	Boreh Diame	ole eter (in.): 8 Date Started: 1/18/2021 Date Finished	: 1/18/2021
E E E E E E E E E E E E E E E E E E E	ppm) ERY (%) ENT (%)	EX	WATER LEVEL OBSERVATIONS	Dry_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	── ──	T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC LOG	MATERIAL DESCRIPTION (£) H dep description	REMARKS
84	5		-SM- SILTY SAND: Brown, medium dense, dry, occasional limestone.	BH-8 (0-1')
42	5	a	-GM- CALICHE: Light tan, very dense, cemented, dry.	BH-8 (2-3')
5	5	a ·	6 -ML- SILT: Light grey/tan, very dense, cemented,	BH-8 (4-5')
56			dry	BH-8 (6-7')
10 32 32 - 3 15 15 15 15 15 15 15 15 15 15 15 15 15			-ML- SILT: Light tan, very dense, cemented, dry. -ML- SILT: Light tan, very dense, cemented, dry, sandy. Bottom of borehole at 15.0 feet.	BH-8 (9-10')
Sampler Spli Spo She	by Vane Shear	Operation Types: Mud Rotary Continuous Flight Auger	Hand Auger Air Rotary Direct Push Air Rotary Direct Push Analytical samples are shown in the remarks colur Surface elevations are estimated from Google Ear	nn above. th data.
Gra San		Wash Rotary	Core Barrel	

Sampler Types: Split Spoon Operation Acetate Liner Hand Auger Týpes: Mud Rotary Analytical samples are shown in the remarks column above. Shelby Vane Shear Air Rotary Surface elevations are estimated from Google Earth data. Drill rig Bulk Continuous unable to mobilize to boring location. California Direct Push Sample Flight Auger Wash Grab Core Barrel Test Pit Rotary Sample Drilling Equipment: Hand Auger Driller: Scarborough Drilling John Thurston Released to Imaging: 9/23/7622712:51:39 1 WELL3 '2015 TT TEMPLATE DECEMBER WELL.GDT

212C-MD-02305	TE TETRAT	ГЕСН	LOG OF BORING BH-17/BH-17A	Page 1 of 2
Project Name: V	GEU 02-20 West Flo	owline Release		
Borehole Location:	GPS Coordinates: 32	2.796482°, -103.487724°	Surface Elevation: 3977 ft	
Borehole Number:	BH-17/BH-17A	Boreh Diame	nole eter (in.): Date Started: 2/18/2022 Date Finished:	5/24/2022
(ma	ppm) ERY (%) ENT (%)	×	WATER LEVEL OBSERVATIONS While Drilling ✓ DRY ft Upon Completion of Drilling Remarks:	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (DDM)	─	DRY DENSITY (pcf) LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC LOG	MATERIAL DESCRIPTION (#) 보 보 실 점	REMARKS
5	t on Acetate Liner		-GM- CALICHE: Tan, dense, with minimal gravel. -GM- CALICHE: Tan, dense, with	BH-17 (6-7') BH-17 (8-9') BH-17 (10-11') BH-17 (12-13') BH-17A (14-15') BH-17A (19-20') BH-17A (24-25')
San Gra	b = + + B''	Wash Rotary	Core Barrel	
Llegger L TI (C	W D: 1	Drilling Equipment: A	Drillor: Coorbosoush Drilling	

ved by OCD	5/31/2022	2 1:1	4:59	PM											Page 309 of
212C-MD-02305 TETRA TECH									LOG OF BORING BH-17/BH-17A					Page 2 of 2	
oject Name:	VGEU 02-2	20 W	est F	Flowl	ine R	Relea	se								
rehole Location	: GPS Co	ordin	ates:	32.79	96482	°, -10			Surface Elevatio	n: 3977	ft				
rehole Number	: BH-17/	BH-1	7A				B	oreho iame	ole ter (in.):	Date S	Started:	2/18/2022	Date F	inished	i: 5/24/2022
		(%)	T (%)			×	·		While Drilling	WATEF		OBSERVATI		ā [DRY_ft
	mdd)	/ERY	TEN.	(Joc		INDE	(%)		Remarks:						
OPERATION TYPE SAMPLE THORIDE FIEL	SCREENING (ppm) UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MA	TERIAL I	DESCR	IPTION		DEPTH (ft)	REMARKS
										COAND					BH-17A (34-35')
									-SM- SILTY fine-grained	SAND: Li	ight tan t	o light brown, v	very	- - - -	BH-17A (39-40') BH-17A (44-45')
														 55	
S	helby ulk ample			er C	Operatives:	Mud Rota Con Fligh	ary tinuou nt Aug	s er	Hand Auger N	otes: Surface ele	evation is	at 55.0 feet. an estimated of sample intervalues.	value from vals are sh	n Goog nown ii	gle Earth data. n the
Grab Sample Test Pit Wash Rotary OGGET: Joe Tyler/Colton Rickerstaff Drilling Equipment:								<u> </u>	Core Barrel	riller: Scarb					

212C-MD-02305						A TEC	СН				LC	G OF B	ORING	BH-18/BH-	18A		Page 1 of 2
Project N	lame	e: VG	EU 02-2	20 W	/est F	Flowl	ine F	Relea	se								•
Borehole Location: GPS Coordinates: 32.796263°, -103.487698 Surface Elevation: 3977 ft																	
Borehole	Nu	mber:	BH-18/E	3H-1	18A				E	Boreho Diamet	ole ter (in.): 4	Date	Started:	2/18/2022	Date Fi	nished	l: 5/24/2022
		D om)	(mc	RY (%)	ENT (%)			DEX			While Drilling			L OBSERVATION OF L		Ā C	DRY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	고 PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	M	IATERIAL	_ DESCI	RIPTION		DEPTH (ft)	REMARKS
										o · o	-GM- CAI	ICHE: Ta	n, dense,	, with minimal gra	vel.	_	
5										a						_	
										a — a						_	BH-18 (6-7')
										aa						_	BH-18 (8-9')
10										0 0						_	BH-18 (10-11')
											-SW- SAN	ND: Reddi	sh brown	, loose, with no g	ıravel.	12	BH-18 (12-13')
15																 15	BH-18A (14-15')
											to very fine	TY SAND: e-grained,	Light tan with som	, medium dense, le caliche.	fine	_	
																_	
20																_	BH-18A (19-20')
																_	
25_																	BH-18A (24-25')
30																	BH-18A (29-30')
Sampler Types:		Split Spoor Shelb Shelb Samp Grab Samp	y V le X		le	7)pera ypes	Muc Rota Cor Flig Wa:	ary ntinuou ht Aug sh ary	Jas Jer L	Hand Auger Air Rotary Direct Push Core Barrel	Notes: Surface e Laborato "Remark:	ry analyz s" columr		alue from als are sho	Goog own ir	gle Earth data. n the

Project Name: VSEU 02-20 West Flowline Release	212C-MD-02305 TETRA TECH			LOG OF BORING BH-18/BH-18A	Page 2 of 2			
Boreling Bright	Project Name: VGEU 02-20 West Flowline Release							
WATER LEVEL DESERVATIONS While Drilling WATER LEVEL DESERVATIONS	Borehole Location: GPS Coordinates: 32.796263°, -103.487698 Surface Elevation: 3977 ft							
White Defilling DRY ft Upon Completion of Drilling Properties Remarks: White Defilling Dry ft Upon Completion of Drilling Properties Remarks:	Borehole Number:	BH-18/BH-18A	Bore Dian	hole Date Started: 2/18/2022 Date Finisho	ed: 5/24/2022			
Sampler Spite Van Share Van Sha	PE ELD (ppm)	(ppm) FERY (%) TENT (%)	icf) NDEX %)	While Drilling \(\frac{\textstyle DRY}{2} \) ft Upon Completion of Drilling \(\frac{\textstyle T}{2} \)	DRY_ft			
Sampler Sampler Spoot Varie Shear Varie Shear Shely Varie Shear Sample Sampl	I Ⅲ I ₾ ₹ ├──	VOC FIELD SCREENING (SAMPLE RECOV	~ = 1 7	MATERIAL DESCRIPTION (#) HED	REMARKS			
Sampler Spon Acetate Liner Types: Shelby Shelby Vane Shear Sheary Shelby Shelpy Shear Shear Shelpy Notes Sharple Sheary Shelpy Shelpy Shear Sheary Shear Sheary Sh	35			-SM- SILTY SAND: Light tan to light brown, very				
Sampler Types: Shelby Vane Shear Bulk Sample Sample Sample Wash Core Barrel Wash Core Barrel Bottom of borehole at 50.0 feet. Hand Auger Auger Air Rotary Air Rotary Discrete Sample Sight Auger Treet Push Remarks" column above.	45				BH-18A (44-45')			
Types: Spoon Shelby Vane Shear Bulk Sample Sample Sample Wash Discrete Sample Wash Tot Pit Wash Types: Types: Air Rotary Direct Push Wash Notes: Surface elevation is an estimated value from Google Earth data. Laboratory analyzed sample intervals are shown in the "Remarks" column above.	50 ((/)				(1 11)			
(M) Grab Toot Bit Wash Core Barrel	Sampler Types: Split Spoon Acetate Liner Types: Acetate Liner Types: Mud Rotary Notes: Surface elevation is an estimated value from Google Earth data.							
Logger: Joe Tyler/Colton Bickerstaff Drilling Equipment: Air Rotary Driller: Scarborough Drilling	Sar	nple Hest Pit	Rotary					

212C-MD-02305	TE TETRA T	TECH		LOG OF BORING BH-19	Page 1 of 1
Project Name: V	GEU 02-20 West Flo	owline Release		-	
Borehole Location: GPS Coordinates: 32.796590°, -103.487716 Surface Elevation: 3977 ft					
Borehole Number:	BH-19	Bor Dia	rehole meter (in.): 4	Date Started: 2/28/2022 Date Finished:	5/24/2022
PELD ((ppm)	(ppm) FERY (%) TENT (%)	EX	While Drilling	WATER LEVEL OBSERVATIONS g ☑ DRY ft Upon Completion of Drilling ☑ DI	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	─ ───	DRY DENSITY (pcf) LIQUID LIMIT PLASTICITY INDEX MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (£)	REMARKS
- \ \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		a a a a		ND: Reddish brown, loose, with no gravel.	BH-19 (6-7') BH-19 (9-10')
Sampler Types: Spi She Bull San Gra San Logger: Joe Tyler	Vane Shear Discrete Sample Discrete Sample	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary Drilling Equipment:	Core Barrel	Notes: Surface elevation is an estimated value from Googl Laboratory analyzed sample intervals are shown in "Remarks" column above. Driller: Scarborough Drilling	e Earth data. the

212C-MD-02305	TETRA 1	TECH	LOG OF BORING BH-20	Page 1 of 1	
Project Name: V	GEU 02-20 West Flo	owline Release			
Borehole Location: GPS Coordinates: 32.796170°, -103.487698° Surface Elevation: 3977 ft					
Borehole Number:	BH-20	Bore Dian	hole neter (in.): 4 Date Started: 5/24/2022 Date Finishe	d: 5/24/2022	
E E E E E E E E E E E E E E E E E E E	ppm) ERY (%) FENT (%)	X	WATER LEVEL OBSERVATIONS	DRY_ft	
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	─ ───	PRY DENSITY (pcf) LIQUID LIMIT PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (3) HLdad	REMARKS	
			-ML- SILT: Light tan, very dense, with abundant caliche.	BH-20 (0-1') BH-20 (2-3')	
5			-SM- SILTY SAND: Light tan to light brown, fine-grained, with trace caliche.	BH-20 (4-5')	
10				BH-20 (6-7') BH-20 (9-10')	
15			Bottom of borehole at 15.0 feet.	BH-20 (14-15')	
Sampler Types: Spii Spoi Spoi She	Vane Shear Discrete Sample Discrete Sample	Operation Types: Mud Rotary Flight Auger Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Surface elevation is an estimated value from Good Laboratory analyzed sample intervals are shown "Remarks" column above.	gle Earth data. in the	
Logger: Colton Bick	erstaff	Drilling Equipment:	Air Rotary Driller: Scarborough Drilling		

APPENDIX F Regulatory Correspondence

Form C-141 Page 5

State of New Mexico Oil Conservation Division

Incident ID	nRM2017856312
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.					
 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation points ☑ Estimated volume of material to be remediated ☑ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC ☑ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 					
Defenued Dequests Only Each of the following items must be a Complete Compl					
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. ☐ Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. ☐ Extents of contamination must be fully delineated.					
Contamination does not cause an imminent risk to human health, the environment, or groundwater.					
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.					
Printed Name: Samuel Widner Title: RM&R Program Manager					
Printed Name: Samuel Widner Title: RM&R Program Manager Signature: Inc William Date: 10/07/21					
email: Sam. Widner & Cop. Con Telephone: 281-206-5298					
OCD Only					
Received by: Chad Hensley Date:11/15/2021					
Approved Approved with Attached Conditions of Approval Denied Deferral Approved					
Signature: Date: 11/15/2021					

Llull, Christian

From: Hensley, Chad, EMNRD < Chad.Hensley@state.nm.us>

Sent: Monday, April 04, 2022 9:03 AM

To: Llull, Christian Cc: Widmer, Sam A

Subject: RE: [EXTERNAL] (Extension Request #2) VGEU 02-20 West Flowline (nRM2017856312)

⚠ CAUTION: This email originated from an external sender. Verify the source before opening links or attachments. ⚠

Extension request for nRM2017856312 is granted. Closure report due 07/15/2022.

NOTE: The OCD requires a copy of all correspondence relative to remedial projects be included in all proposal and/or final closure reports. Correspondence required to be included in reports may include, but not necessarily limited to, extension requests, liner inspection notifications, sample event notifications, spill/release/fire notifications, and variance requests. This will allow for notifications and requests to become a documented part of the incident file.

Cheers,

Chad Hensley • Environmental Science & Specialist

Environmental Bureau EMNRD - Oil Conservation Division 811 First St. | Artesia, NM 88210

Office: 575.748.1283 | Cell: 575-703-1723

chad.hensley@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Llull, Christian < Christian.Llull@tetratech.com>

Sent: Thursday, March 31, 2022 3:51 PM

To: Hensley, Chad, EMNRD < Chad. Hensley@state.nm.us> **Cc:** Widmer, Sam A < Sam. Widmer@conocophillips.com>

Subject: [EXTERNAL] (Extension Request #2) VGEU 02-20 West Flowline (nRM2017856312)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Mr. Hensley,

The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nRM2017856312, with the following conditions:

• Mentioned samples have not been fully delineated vertically: BH-4, BH-11, and BH-16. Please show on closure report delineation from 10ft bgs to closure criteria in five foot increments.

• Closure report due 02/15/2022

OCD previously granted an extension via email on December 20, 2021. Thus, the closure Report is due for the above release is currently due on **April 16, 2022**.

Per discussion, we are providing more data for an additional extension request. Justification for this request, including figures and analytical data showing the project progress of ConocoPhilips is described below.

EXTENSION REQUEST #2

ConocoPhillips is requesting a three-month extension of the current deadline of April 16, 2022 (**to July 15, 2022**) in order to complete delineation and remediation for the subject line release (Incident Number nRM2017856312).

In February 2022, on behalf of COP, Tetra Tech personnel drilled three soil borings (BH-17 through BH-19) to approximately 13 ft bgs using an air rotary drilling rig. The borings were completed to attempt to vertically delineate the impacted soil at previously drilled locations BH-4, BH-11 and BH-16 and/or horizontally define the VGEU 02-20 West flowline release, as discussed in the conditions.

During drilling, a loose unconsolidated sand unit was encountered below lithified soils at approximately 13'. This loose sand unit sloughed in the open borehole, and did not allow for representative sampling at depth. The release assessment and delineation activities will need to continue.

Based on the most recent laboratory analytical results, additional assessment is required at the site to fulfill OCD directives. Please see attached laboratory analytical results.

- The analytical data from BH-17 (closest to the release) again exhibited the "clean" soils above the impacted depth interval at 12-13 bgs.
- The analytical data from BH-19 (northern delineation) was clean at the 9-10 bgs interval. This was a successful horizontal delineation of BH-4 and BH-16.
- The analytical data from BH-18 (south of the release) was impacted in the upper 11', but did delineate vertically at the 12-13' bgs interval.

Thus, additional drilling is required in the vicinity of BH-17 and south of BH-18. COP intends to complete additional drilling in the next 30 days, and provide the additional data to OCD.

Once the data is collected and evaluated, final remediation extents at the Site will be discussed with OCD.

Please let me know if you have any additional questions, (M) 512-565-0190. Thank you for your time.

Christian Llull, P.G. | Program Manager

Direct +1 (512) 338-2861 | Business +1 (512) 338-1667 | Fax +1 (512) 338-1331 | christian.llull@tetratech.com

Tetra Tech | Leading with Science® | OGA

8911 N. Capital of Texas Highway | Bldg. 2, Suite 2310 | Austin, TX 78759 | tetratech.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

Please consider the environment before printing. Read more

Llull, Christian

From: Hensley, Chad, EMNRD < Chad.Hensley@state.nm.us>

Sent: Monday, December 20, 2021 11:09 AM

To: Widmer, Sam A

Cc: Dickerson, Ryan; Llull, Christian; Bratcher, Mike, EMNRD

Subject: RE: [EXTERNAL] RE: [EXTERNAL]FW: The Oil Conservation Division (OCD) has approved

the application, Application ID: 54738

⚠ **CAUTION:** This email originated from an external sender. Verify the source before opening links or attachments. ⚠

Sam,

I hope all is well with you and your family for this coming Christmas. I have no issues with the 60-day extension and that is granted. For the later part "Once the data is reported, COP would recommend leaving this impacted material in place." We can discuss this when you all have the data in hand.

Chad Hensley • Environmental Science & Specialist

Environmental Bureau EMNRD - Oil Conservation Division 811 First St. | Artesia, NM 88210

Office: 575.748.1283 | Cell: 575-703-1723

chad.hensley@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Widmer, Sam A <Sam.Widmer@conocophillips.com>

Sent: Monday, December 20, 2021 8:16 AM

To: Hensley, Chad, EMNRD < Chad. Hensley@state.nm.us>

Cc: Dickerson, Ryan < Ryan. Dickerson@tetratech.com >; Llull, Christian < christian. Ilull@tetratech.com >

Subject: [EXTERNAL] RE: [EXTERNAL] FW: The Oil Conservation Division (OCD) has approved the application, Application

ID: 54738

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hi Chad,

COP appreciates the OCD approval for this Work Plan associated with this complex incident site.

Regarding the conditions of your approval below, based on interpretation, COP is planning to drill soil borings in the mentioned locations below to confirm vertical delineation at those specific locations. Based on the reported incident footprint, the lack of lateral transmissivity at the site, and the lack of widespread contamination in the overlying strata in these areas, COP maintains the belief that these observed impacts at depth are unrelated to the nRM2017856312

incident. Given that this observed impacted interval is at a depth of 9-10 ft, along with the surrounding pipelines and obstructions, COP believes that remediation in these areas would cause more damage to the environment and create additional risk for a line strike during remedial activities. Once delineated, COP would report these soil boring results as a Work Plan addendum.

Once the data is reported, COP would recommend leaving this impacted material in place.

Additionally, COP requests a 60-day extension of time. This time will allow us to assess and delineate these areas as requested before remediation of the reported release footprint.

Does the OCD approve of this path forward and action plan?

Thanks for your support,
Sam Widmer
Risk Management & Remediation
ConocoPhillips
O: 281-206-5298

C: 907-227-1777

From: OCDOnline@state.nm.us>

Sent: Monday, November 15, 2021 12:38 PM **To:** Llull, Christian < Christian.Llull@tetratech.com>

Subject: The Oil Conservation Division (OCD) has approved the application, Application ID: 54738

⚠ **CAUTION:** This email originated from an external sender. Verify the source before opening links or attachments. ⚠

To whom it may concern (c/o Christian Llull for CONOCOPHILLIPS COMPANY),

The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nRM2017856312, with the following conditions:

- Mentioned samples have not been fully delineated vertically: BH-4, BH-11, and BH-16. Please show on closure report delineation from 10ft bgs to closure criteria in five foot increments.
- Closure report due 02/15/2022

The signed C-141 can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you, Chad Hensley Environmental Science & Specialist 575-703-1723 Chad.Hensley@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX G NMSLO Seed Mixture Details

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

VGEU 02-20 West Flowline Release

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

å

Ŷ

Δ

Water Features

Transportation

00

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot **Closed Depression**

Gravel Pit

Gravelly Spot

Landfill

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	1.7	100.0%		
Totals for Area of Interest		1.7	100.0%		

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent Lea and similar soils: 25 percent Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kimbrough

Setting

Landform: Plains, playa rims

Down-slope shape: Linear, convex

Across-slope shape: Linear, concave

Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam

Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 18 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 95 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

Description of Lea

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam

Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 22 to 30 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 90 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 3.0

Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ

Hydric soil rating: No

Minor Components

Douro

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

Kenhill

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY038TX - Clay Loam 12-17" PZ

Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear

Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

NMSLO Seed Mix

Sandy Loam (SL)

SANDY LOAM (SL) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
Grasses:				
Galleta grass	Viva, VNS, So.	2.5	F	
Little bluestem	Cimmaron, Pastura	2.5	F	
Blue grama	Hachita, Lovington	2.0	D	
Sideoats grama	Vaughn, El Reno	2.0	\mathbf{F}	
Sand dropseed	VNS, Southern	1.0	S	
Forbs:				
Indian blanketflower	VNS, Southern	1.0	D	
Parry penstemon	VNS, Southern	1.0	D	
Blue flax	Appar	1.0	D	
Desert globemallow	VNS, Southern	1.0	D	
Shrubs:				
Fourwing saltbush	VNS, Southern	2.0	D	
Common winterfat	VNS, Southern	1.0	F	
Apache plume	VNS, Southern	0.75	F	
	Total PLS/acro	e 17.75		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box

- VNS, Southern No Variety Stated, seed should be from a southern latitude collection of this species.
- Double above seed rates for broadcast or hydroseeding.
- If Parry penstemon is not available, substitute firecracker penstemon.
- If desert globemallow is not available, substitute scarlet globemallow or Nelson globemallow.
- If a species is not available, provide a suggested substitute to the New Mexico Land Office for approval. Increasing all other species proportionately may be acceptable.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 112102

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	112102
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. Composite confirmation samples will be collected from the bottom and sidewalls of the excavation from areas representing no more than four hundred (400) square feet. Please address AH-2 in remedial process. Please identify the Responsible Party (RP) of the suspected deeper TPH release identified in borings BH-4, BH-11, and BH-16. Do not backfill excavation until RP is identified and a discussion with OCD can be held.	9/23/2022