Page 1 of 42

Incident ID
District RP
Facility ID
Application ID

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	included in the plan			
Remediation Plan Checklist: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)				
Deferral Requests Only: Each of the following items must be conf	irmed as part of any request for deferral of remediation			
Deletral Requests Only: Each of the following tiems must be conf	irmea as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around prodeconstruction.	duction equipment where remediation could cause a major facility			
Extents of contamination must be fully delineated.				
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.			
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file ce which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD acresponsibility for compliance with any other federal, state, or local large.	rtain release notifications and perform corrective actions for releases ce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, eceptance of a C-141 report does not relieve the operator of			
Printed Name:	Title:			
Signature: Thile	Date: _10-23-22			
email:	Telephone:			
OCD Only				
OCD Only				
Received by:	Date:10/24/2022			
Approved	pproval			
Signature: Jennifer Nobui I	Date: 11/18/2022			

October 18, 2022

Robert Hamlet
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
PH #: 575-748-1283
Robert.Hamlet@state.nm.us

Re: Soil Remediation Workplan

Chevron USA

Dagger Lake Narwhal Pad Release (nAPP2205633098)

GPS: N 32.40054° W 103.56251°

Unit Letter "N", Section 10, Township 22 South, Range 33 East

Lea County, New Mexico

Dear Mr. Hamlet,

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA (Chevron), has prepared this *Soil Remediation Workplan* for the Dagger Lake Narwhal Pad Release (Release Site). The legal description of the Release Site is Unit Letter "N", Section 10, Township 22 South, Range 33 East, in Lea County, New Mexico. The GPS coordinates for the site are N 32.40054° W 103.56251°. A Site Location Topographic Map and Aerial Proximity Map are provided as Figure 1 and Figure 2, respectively.

INTRODUCTION

On February 9, 2022, a reportable release occurred at the Release Site. The release was the result of a failure on the body of the layflat hose. Approximately five (5) barrels (bbls) of produced water was released with approximately one (1) bbl of produced water recovered via vacuum truck, for a net loss of four (4) bbls of produced water. The initial Form C-141 is provided in Appendix A.

NMOCD SITE CLASSIFICATION

New Mexico Oil Conservation Division (NMOCD) assessment and cleanup levels for hydrocarbon and produced water releases are based on depth to groundwater and karst status and follow the criteria in the revised August 2018 Title 19 Chapter 15 part 29 New Mexico Administrative Code (19.15.29 NMAC) regulations. Groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE), New Mexico Bureau of Geology & Mineral Resources (NMBGMR), and United States Geological Survey (USGS) were accessed to determine if any registered water wells were located within a half-mile of the site. The databases identified zero (0) water wells within a ½-mile radius. The closest water well (USGS Well# 322325103313301) is 2.16 miles southeast of the release site with a depth to water of three hundred ninety-one (391) feet below ground surface (bgs). In addition, the site is listed as being in a low Karst Topography region. See Appendix B for maps, along with water well data, detailing the site relative to groundwater locations. Based on the NMOCD site classification system and with no pertinent groundwater data located within ½ miles of the site, the following soil remediation clean up levels were assigned to the Release Site:

- Benzene 10 mg/Kg (ppm)
- Total BTEX 50 mg/Kg (ppm)
- Total TPH 100 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

INITIAL ASSESSMENT AND DELINEATION ACTIVITIES

On August 10, 2022, Etech was onsite to perform the initial assessment of the release. On September 6, 2022, one (1) auger hole (Auger Hole 1) was installed in the spill area to depth of forty-eight (48) inches bgs. Samples were collected in every twelve (12) inch intervals and submitted to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas for analysis of Benzene, Toulene, Ethylbenzene, and Xylenes (BTEX) by EPA method 8021B, Total Petroleum Hydrocarbons (TPH) by EPA method 8015M, and Chlorides by EPA method E300.0. Analytical concentrations for chloride were above the NMOCD remediation standards in Auger Hole 1 in the two (2) foot, three (3) foot, and four (4) foot intervals and were not vertically delineated. All other analysis were below both the NMOCD Closure Criteria or Reclamation Standards. See Table 1 for analytical results. See Appendix C for attached photos detailing release and impact to pad. See Figure 3 for Site and Sample Location map.

SOIL DELINEATION AND REMEDIATION WORKPLAN

Etech proposes to complete delineation and remediation in accordance with NMOCD rules and regulations which will entail the following:

- Impacted soils will be excavated to appropriate depths based on field and laboratory delineation data and stockpiled on plastic awaiting disposal.
- During excavation activities, soils will be field screened utilizing chloride test kits and a PID meter for determination of laboratory sampling and additional excavation, if warranted.
- Upon completion of the excavation, confirmation soil samples will be collected every two hundred (200) square feet from the base and sidewalls of the excavated areas. Additional, discrete grab samples will be collected from wet or visibly stained areas inferred to have been affected by the release, as necessary. Samples will be submitted to Permian Basin Environmental Labs of Texas (PBELAB) for analysis of BTEX by EPA Method 8021B, TPH by EPA Method 8015M, and Chlorides by EPA method E300.0.
- The impacted soils will be transported off-site for disposal at an NMOCD approved disposal facility.
- Upon completion of additional delineation/remediation and requisite soil sampling, the site will be backfilled with locally sourced, non-impacted "like" material from an approved off-site facility and brought back to grade.
- A closure report with final C-141 will be submitted to the NMOCD upon completion of remediation activities.

Once the soil remediation work plan has been approved by the NMOCD, Chevron will commence and complete remediation activities within ninety (90) days and submit a "Remediation Summary and Site Closure Request Report" to the NMOCD.

If you have any questions, or if additional information is required, please feel free to call me at 432-563-2200 (office) or 432-894-6038 (cell).

Thank you,

Blake Estep Project Manager

Black Film

Etech Environmental & Safety Solutions, Inc.

Jeffrey Kindley, P.G. Senior Project Manager/Geologist

Hy Kndly

Etech Environmental & Safety Solutions, Inc.

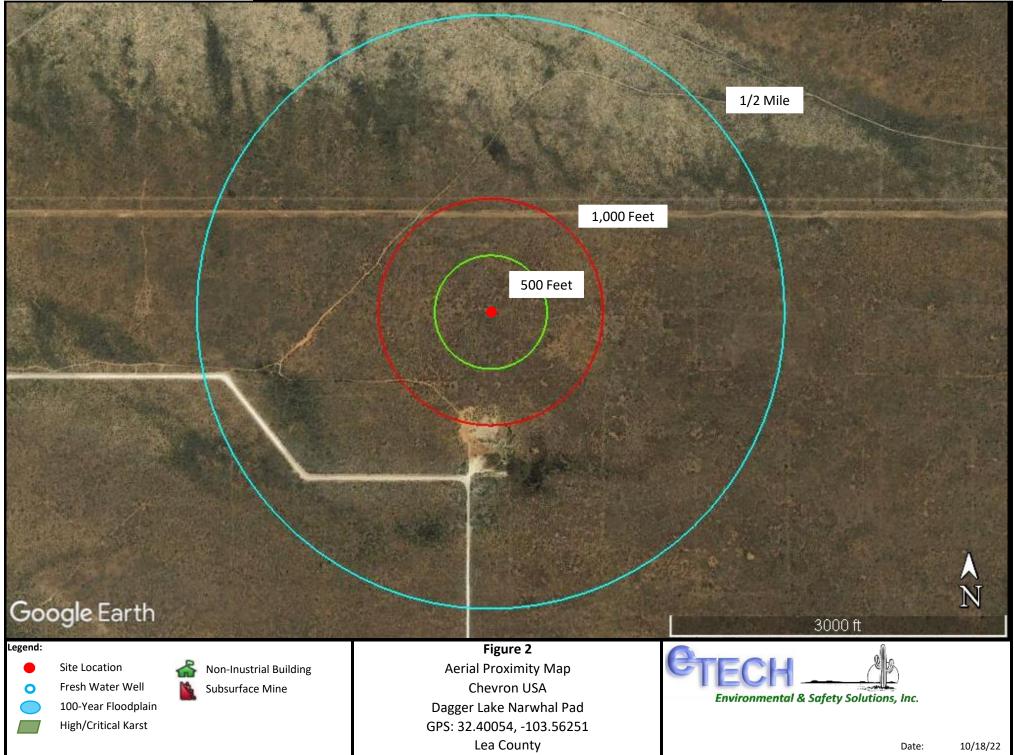
Attachments:

Figure 1 – Site Location Topographic Map

Figure 2 – Aerial Proximity Map

Figure 3 – Site and Sample Location Map

Table 1 – Concentrations of Benzene, BTEX, TPH, and Chloride in Soil - Delineation


Appendix A: Initial Release Notification and Corrective Action Form C-141

Appendix B: Groundwater Data Maps and Supporting Water Well Data

Appendix C: Photographic Documentation

Appendix D: Laboratory Analytical

cc: File

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL - DELINEATION

CHEVRON USA

DAGGER LAKE NARWHAL PAD

LEA COUNTY, NEW MEXICO
All concentrations are reported in mg/Kg

			METHODS: SW 846-8021B				METHOD: SW 8015M			E 300.0				
SAMPLE LOCATION	DEPTH	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₀	TPH DRO C ₁₀ -C ₂₈	TPH ORO C ₂₈ -C ₃₆	TOTAL TPH C ₆ -C ₃₆	CHLORIDE
NMOCD 1	RRAL		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
						Bottom	Hole Sample	Results						
Auger Hole 1	12"	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.2
Auger Hole 1	24''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,520
Auger Hole 1	36''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,620
Auger Hole 1	48''	9/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,530

Bold and Yellow Highlighted indicates Analyte Above NMOCD Regulatory Limit

ND - Analyte Not Detected at or above the laboratory reporting limit

Appendix A

Initial Release Notification and Corrective Action Form C-141

Received by OCD: 10/23/2022	10:45:51 PM
Form C-141	State of New Mexico
Page 3	Oil Conservation Division

	Page 11 of 42
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)				
Did this release impact groundwater or surface water?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No				
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No				
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No				
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No				
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No				
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No				
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No				
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No				
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.					
Characterization Report Checklist: Each of the following items must be included in the report.					
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody					

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/23/2022 10:45:51PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

73	10	6 10
Page	120	T 4 J
I ugc	120	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
Printed Name:	Title:			
Signature: Thile	Date: 10-23-22			
email:	Telephone:			
OCD Only				
Received by:	Date:			

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Responsible Party: Chevron USA

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

OGRID: 4323

Contact Name: Amy Barnhill				Contact Telephone: 432-687-7108					
Contact email: ABarnhill@chevron.com					Incident #	(assigned by OCD)			
Contact mailing address: 6301 Deauville Blvd Midland, Tx 79706				79706	-1				
			Location	n of R					
Latitude 32.4	00539		(NAD 83 in 6	decimal de					
Dagger Lake	Narwhal Pa		kg 3		Site Type:	rease Source Ingitude -103.562422			
Date Release	Discovered	: 2-9-22			API# (if app	plicable)			
Unit Letter	Section	Township	Range		Cour	nty			
N	10	22S	33E	Lea					
Crude Oi		Volume Release	ll that apply and attaed (bbls)			Volume Recovered (bbls)			
Produced	water	Volume Release Is the concentra		l chloride	e in the	` ′			
		produced water							
Condensa		Volume Release				` /			
Natural Gas Volume Released (Mcf)					· /				
Other (describe) Volume/Weight Released (provide units))	Volume/Weight Recovered (provide units)					
Cause of Rel	ease: a failt	I ure on the body o	of the layflat ho	se					

Received by OCD: 10/23/2022 10:45:51 PM Form C-141 State of New Mexico Page 2 Oil Conservation Division Page 14 of 42

Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the respon	sible party consider this a major release?
☐ Yes ⊠ No		
If YES, was immediate no	otice given to the OCD? By whom? To wh	om? When and by what means (phone, email, etc)?
	Initial Ro	esponse
The responsible	party must undertake the following actions immediatel	unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
☐ The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	we been contained via the use of berms or d	ikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and	I managed appropriately.
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investig	required to report and/or file certain release noti ment. The acceptance of a C-141 report by the C ate and remediate contamination that pose a thre	pest of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name: Amy Barn	hill	Title: Water Specialist
Signature:	J'Dhier	Date: 2-7-22
email: ABarnhill@chevro	on.com	Telephone: 432-687-7108
OCD Only		
Received by:		Date:

Received by OCD: 10/23/2022 10:45:51 PM Form C-141 State of New Mexico Page 3 Oil Conservation Division

Page 15 of 42

	- "8" - " " " " " " " " " " " " " " " "
Incident ID	nAPP2205633098
District RP	
Facility ID	
Application ID	

Spill Calculations:

4.76	free- fluid
0.24	in soil
5.00	total

Appendix B

Groundwater Data Maps and Supporting Water Well Data

Received by OCD: 10/23/2022 10:45:51 PM Page 17 of 42

New Mexico Office of the State Engineer Wells with Well Log Information

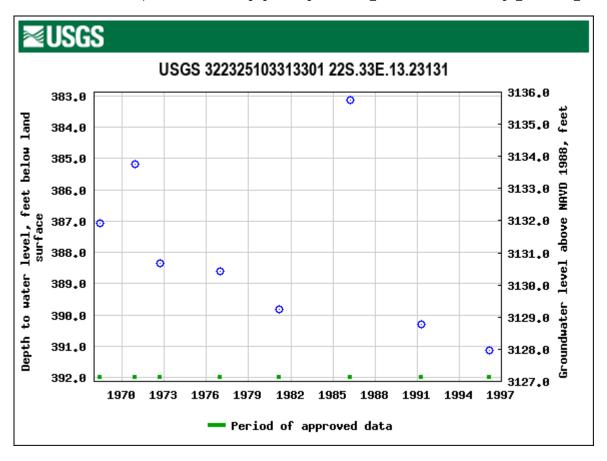
No wells found.

UTMNAD83 Radius Search (in meters):

Easting (X): 635199.74 **Northing (Y):** 3585742.45 **Radius:** 804

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Site Location


USGS Water Well

USGS Well Proximity Map Chevron USA Dagger Lake Narwhal Pad GPS: 32.40054, -103.56251 Lea County

Date:

10/18/22

Appendix C Photographic Documentation

Photographic Documentation

Project Name: Dagger Lake **Project No:** 16450

Photo No: 1.

Direction Taken:

East

Description:

View of the impacted area.

Photo No: 2.

Direction Taken:

West

Description:

View of the impacted area.

Appendix D Laboratory Analytical

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Dagger Lake Project Number: 16450 Location: New Mexico

Lab Order Number: 2I06020

Current Certification

Report Date: 09/15/22

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Auger Hole 1 (1')	2I06020-01	Soil	09/06/22 11:15	09-06-2022 16:24
Auger Hole 1 (2')	2106020-02	Soil	09/06/22 11:20	09-06-2022 16:24
Auger Hole 1 (3')	2106020-03	Soil	09/06/22 11:25	09-06-2022 16:24
Auger Hole 1 (4')	2I06020-04	Soil	09/06/22 11:30	09-06-2022 16:24

Auger Hole 1 (1') 2I06020-01 (Soil)

		Papartin ~							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P2I1201	09/12/22 08:37	09/12/22 11:53	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	19.2	1.15	mg/kg dry	1	P2I0804	09/08/22 10:00	09/09/22 09:29	EPA 300.0	
% Moisture	13.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
Surrogate: 1-Chlorooctane		120 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	
Surrogate: o-Terphenyl		133 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:33	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	28.7	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 22:33	calc	

Auger Hole 1 (2') 2106020-02 (Soil)

Analyte		Reporting		B. 11			A 1 1	M 4 1	N T 4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.5 %	80-120		P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P2I0803	09/08/22 10:05	09/09/22 16:17	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	4520	11.1	mg/kg dry	10	P2I0811	09/08/22 11:54	09/09/22 02:23	EPA 300.0	
% Moisture	10.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
Surrogate: 1-Chlorooctane		124 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	
Surrogate: o-Terphenyl		136 %	70-130		P2I0718	09/07/22 14:30	09/09/22 22:56	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 22:56	calc	

Auger Hole 1 (3') 2I06020-03 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:14	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Metl	hods						
Chloride	2620	10.9	mg/kg dry	10	P2I0811	09/08/22 11:54	09/09/22 02:36	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EP	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
Surrogate: 1-Chlorooctane		125 %	70-130		P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	
Surrogate: o-Terphenyl		136 %	70-130		P2I0718	09/07/22 14:30	09/09/22 23:19	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/07/22 14:30	09/09/22 23:19	calc	

Auger Hole 1 (4') 2I06020-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envii	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.4 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P2I1201	09/12/22 08:37	09/12/22 12:35	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	1530	5.38	mg/kg dry	5	P2I0906	09/09/22 11:55	09/09/22 23:41	EPA 300.0	
% Moisture	7.0	0.1	%	1	P2I0902	09/09/22 09:32	09/09/22 09:34	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	4 Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
Surrogate: 1-Chlorooctane		127 %	70-130		P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	
Surrogate: o-Terphenyl		138 %	70-130		P2I0718	09/07/22 14:30	09/10/22 00:28	TPH 8015M	S-GO
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	09/07/22 14:30	09/10/22 00:28	calc	

13000 West County Road 100

Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

> **BTEX by 8021B - Quality Control** Permian Basin Environmental Lab, L.P.

Project: Dagger Lake

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0803 - *** DEFAULT PREP ***										
Blank (P2I0803-BLK1)				Prepared: (09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.8	80-120			
LCS (P2I0803-BS1)				Prepared: (09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.211	0.00200	"	0.200		105	80-120			
Xylene (o)	0.117	0.00100	"	0.100		117	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.0	80-120			
LCS Dup (P2I0803-BSD1)				Prepared: (09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	0.115	0.00100	mg/kg	0.100		115	80-120	1.92	20	
Toluene	0.110	0.00100	"	0.100		110	80-120	5.68	20	
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120	0.490	20	
Xylene (p/m)	0.217	0.00200	"	0.200		108	80-120	2.88	20	
Xylene (o)	0.113	0.00100	"	0.100		113	80-120	3.05	20	
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.0	80-120			
Calibration Check (P2I0803-CCV1)				Prepared: (09/08/22 Ar	nalyzed: 09	/09/22			
Benzene	0.108	0.00100	mg/kg	0.102		106	80-120			
Toluene	0.110	0.00100	"	0.102		108	80-120			
Ethylbenzene	0.114	0.00100	"	0.102		112	80-120			
Xylene (p/m)	0.206	0.00200	"	0.204		101	80-120			
Xylene (o)	0.117	0.00100	"	0.102		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	75-125			
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.6	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		<u> </u>		- · ·			0.75		n	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resuit	Limit	Omto	Level	resurt	, unite	Liiiits	мь	- Dillit	110103
Batch P2I0803 - *** DEFAULT PREP ***										
Calibration Check (P2I0803-CCV2)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Benzene	0.113	0.00100	mg/kg	0.102		111	80-120			
Toluene	0.116	0.00100	"	0.102		114	80-120			
Ethylbenzene	0.112	0.00100	"	0.102		110	80-120			
Xylene (p/m)	0.232	0.00200	"	0.204		114	80-120			
Xylene (o)	0.120	0.00100	"	0.102		118	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.9	75-125			
Matrix Spike (P2I0803-MS1)	Sou	rce: 2106020-	02	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Benzene	0.0967	0.00111	mg/kg dry	0.111	ND	87.0	80-120			
Toluene	0.0996	0.00111	"	0.111	ND	89.6	80-120			
Ethylbenzene	0.105	0.00111	"	0.111	ND	94.9	80-120			
Xylene (p/m)	0.185	0.00222	"	0.222	ND	83.1	80-120			
Xylene (o)	0.101	0.00111	"	0.111	ND	91.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.140		"	0.133		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.133		"	0.133		99.8	80-120			
Matrix Spike Dup (P2I0803-MSD1)	Sou	rce: 2106020-	02	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Benzene	0.0970	0.00111	mg/kg dry	0.111	ND	87.3	80-120	0.252	20	
Toluene	0.101	0.00111	"	0.111	ND	91.3	80-120	1.91	20	
Ethylbenzene	0.108	0.00111	"	0.111	ND	97.1	80-120	2.31	20	
Xylene (p/m)	0.187	0.00222	"	0.222	ND	83.9	80-120	0.964	20	
Xylene (o)	0.100	0.00111	"	0.111	ND	90.4	80-120	0.651	20	
Surrogate: 4-Bromofluorobenzene	0.142		"	0.133		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.133		98.8	80-120			
Batch P2I1201 - *** DEFAULT PREP ***										
Blank (P2I1201-BLK1)				Prepared &	: Analyzed:	09/12/22				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.6	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I1201 - *** DEFAULT PREP ***										
LCS (P2I1201-BS1)				Prepared &	Analyzed:	09/12/22				
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.196	0.00200	"	0.200		97.9	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
LCS Dup (P2I1201-BSD1)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120	1.01	20	
Toluene	0.106	0.00100	"	0.100		106	80-120	3.69	20	
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120	5.22	20	
Xylene (p/m)	0.206	0.00200	"	0.200		103	80-120	4.90	20	
Xylene (o)	0.110	0.00100	"	0.100		110	80-120	3.05	20	
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Calibration Blank (P2I1201-CCB1)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.00		ug/kg							
Toluene	0.280		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.180		"							
Surrogate: 4-Bromofluorobenzene	0.100		"	0.120		83.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		93.8	80-120			
Calibration Blank (P2I1201-CCB2)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.00		ug/kg							
Toluene	0.230		"							
Ethylbenzene	0.180		"							
Xylene (p/m)	0.250		"							
Xylene (o)	0.180		"							
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.8	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Odessa TX, 79765

Project: Dagger Lake
Project Number: 16450
Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I1201 - *** DEFAULT PREP ***										
Calibration Check (P2I1201-CCV1)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.112	0.00100	mg/kg	0.102		110	80-120			
Toluene	0.114	0.00100	"	0.102		112	80-120			
Ethylbenzene	0.116	0.00100	"	0.102		114	80-120			
Xylene (p/m)	0.208	0.00200	"	0.204		102	80-120			
Xylene (o)	0.117	0.00100	"	0.102		115	80-120			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		86.1	75-125			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	75-125			
Calibration Check (P2I1201-CCV2)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.107	0.00100	mg/kg	0.102		105	80-120			
Toluene	0.110	0.00100	"	0.102		107	80-120			
Ethylbenzene	0.114	0.00100	"	0.102		111	80-120			
Xylene (p/m)	0.209	0.00200	"	0.204		103	80-120			
Xylene (o)	0.114	0.00100	"	0.102		111	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Calibration Check (P2I1201-CCV3)				Prepared &	: Analyzed:	09/12/22				
Benzene	0.118	0.00100	mg/kg	0.102		115	80-120			
Toluene	0.116	0.00100	"	0.102		113	80-120			
Ethylbenzene	0.117	0.00100	"	0.102		115	80-120			
Xylene (p/m)	0.215	0.00200	"	0.204		106	80-120			
Xylene (o)	0.116	0.00100	"	0.102		114	80-120			
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		103	75-125			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	75-125			
Matrix Spike (P2I1201-MS1)	Sou	ırce: 2I08010-	-04	Prepared &	: Analyzed:	09/12/22				
Benzene	0.0867	0.00108	mg/kg dry	0.108	ND	80.6	80-120			
Toluene	0.0865	0.00108	"	0.108	ND	80.4	80-120			
Ethylbenzene	0.0922	0.00108	"	0.108	ND	85.8	80-120			
Xylene (p/m)	0.165	0.00215	"	0.215	ND	76.9	80-120			QM-0
Xylene (o)	0.0893	0.00108	"	0.108	ND	83.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.131		"	0.129		101	80-120			
Surrogate: 4-Bromofluorobenzene	0.145		"	0.129		112	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100

Project Number: 16450 Odessa TX, 79765 Project Manager: Blake Estep

BTEX by 8021B - Quality Control

	•	-	•	
Permian	Basin	Environme	ntal Lab, I	L .P.

Project: Dagger Lake

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
D 4 1 DAI1404 - \$44 DEEA HI T DDED \$44										

Batch P2I1201 - *** DEFAULT PREP *	k*
------------------------------------	----

Matrix Spike Dup (P2I1201-MSD1)	Sour	ce: 2108010-	04	Prepared &	Analyzed:	09/12/22				
Benzene	0.0871	0.00108	mg/kg dry	0.108	ND	81.0	80-120	0.544	20	_
Toluene	0.0869	0.00108	"	0.108	ND	80.8	80-120	0.434	20	
Ethylbenzene	0.0933	0.00108	"	0.108	ND	86.8	80-120	1.18	20	
Xylene (p/m)	0.167	0.00215	"	0.215	ND	77.5	80-120	0.706	20	QM-05
Xylene (o)	0.0903	0.00108	"	0.108	ND	84.0	80-120	1.14	20	
Surrogate: 1,4-Difluorobenzene	0.134		"	0.129		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.150		"	0.129		116	80-120			

	D 1	Reporting		Spike	Source	N/BEG	%REC	DDD	RPD	3 7
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I0804 - *** DEFAULT PREP ***										
Blank (P2I0804-BLK1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	ND	1.00	mg/kg							
LCS (P2I0804-BS1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	38.5		mg/kg	40.0		96.3	90-110			
LCS Dup (P2I0804-BSD1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	38.7		mg/kg	40.0		96.7	90-110	0.373	10	
Calibration Blank (P2I0804-CCB1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	0.00		mg/kg							
Calibration Blank (P2I0804-CCB2)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	0.00		mg/kg							
Calibration Check (P2I0804-CCV1)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	19.9		mg/kg	20.0		99.7	90-110			
Calibration Check (P2I0804-CCV2)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	20.3		mg/kg	20.0		101	90-110			
Calibration Check (P2I0804-CCV3)				Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	19.5		mg/kg	20.0		97.5	90-110			
Matrix Spike (P2I0804-MS1)	Sou	rce: 2106008-	-01	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	1990	28.1	mg/kg dry	1400	717	90.7	80-120			
Matrix Spike (P2I0804-MS2)	Sou	rce: 2106018-	-04	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	780	10.9	mg/kg dry	543	336	81.8	80-120			

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

	·	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I0804 - *** DEFAULT PREP ***										
Matrix Spike Dup (P2I0804-MSD1)	Sou	rce: 2I06008-	01	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	1930	28.1	mg/kg dry	1400	717	86.4	80-120	3.05	20	
Matrix Spike Dup (P2I0804-MSD2)	Sou	rce: 2I06018-	04	Prepared: (09/08/22 A	nalyzed: 09	/09/22			
Chloride	793	10.9	mg/kg dry	543	336	84.1	80-120	1.59	20	
Batch P2I0811 - *** DEFAULT PREP ***										
Blank (P2I0811-BLK1)				Prepared &	Analyzed:	09/08/22				
Chloride	ND	1.00	mg/kg							
LCS (P2I0811-BS1)				Prepared &	Analyzed:	09/08/22				
Chloride	38.5		mg/kg	40.0		96.3	90-110			
LCS Dup (P2I0811-BSD1)				Prepared &	Analyzed:	09/08/22				
Chloride	38.1		mg/kg	40.0	-	95.3	90-110	1.00	10	
Calibration Blank (P2I0811-CCB1)				Prepared &	Analyzed:	09/08/22				
Chloride	0.00		mg/kg	•						
Calibration Blank (P2I0811-CCB2)				Prepared &	Analyzed:	09/08/22				
Chloride	0.00		mg/kg	1						
Calibration Check (P2I0811-CCV1)				Prepared &	Analyzed:	09/08/22				
Chloride	19.6		mg/kg	20.0		97.9	90-110			
Calibration Check (P2I0811-CCV2)				Prepared &	Analyzed:	09/08/22				
Chloride	19.9		mg/kg	20.0	-	99.3	90-110			

	·	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I0811 - *** DEFAULT PREP ***										
Calibration Check (P2I0811-CCV3)				Prepared:	09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	19.9		mg/kg	20.0		99.7	90-110			
Matrix Spike (P2I0811-MS1)	Sour	ce: 2108001-	21	Prepared &	k Analyzed:	09/08/22				
Chloride	12400	26.3	mg/kg dry	1320	11300	88.3	80-120			
Matrix Spike (P2I0811-MS2)	Sour	ce: 2108001-	31	Prepared:	09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	12100	26.9	mg/kg dry	1340	11000	85.3	80-120			
Matrix Spike Dup (P2I0811-MSD1)	Sour	ce: 2108001-	21	Prepared &	k Analyzed:	09/08/22				
Chloride	12600	26.3	mg/kg dry	1320	11300	101	80-120	1.34	20	
Matrix Spike Dup (P2I0811-MSD2)	Sour	ce: 2I08001-	31	Prepared:	09/08/22 Aı	nalyzed: 09	/09/22			
Chloride	12100	26.9	mg/kg dry	1340	11000	82.9	80-120	0.265	20	
Batch P2I0902 - *** DEFAULT PREP ***										
Blank (P2I0902-BLK1)				Prepared &	k Analyzed:	09/09/22				
% Moisture	ND	0.1	%							
Blank (P2I0902-BLK2)				Prepared &	Analyzed:	09/09/22				
% Moisture	ND	0.1	%	•						
Duplicate (P2I0902-DUP1)	Sour	ce: 2107002-	03	Prepared &	& Analyzed:	09/09/22				
% Moisture	13.0	0.1	%		5.0			88.9	20	R3
Duplicate (P2I0902-DUP2)	Sour	ce: 2108001-	06	Prepared &	Analyzed:	09/09/22				

13000 West County Road 100 Odessa TX, 79765 Project: Dagger Lake Project Number: 16450

Project Manager: Blake Estep

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I0902 - *** DEFAULT PREP ***										
Duplicate (P2I0902-DUP3)	Sou	rce: 2108001-2	21	Prepared &	t Analyzed:	09/09/22				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P2I0902-DUP4)	Sou	rce: 2I08001-3	31	Prepared &	ኔ Analyzed:	09/09/22				
% Moisture	7.0	0.1	%		7.0			0.00	20	
Batch P2I0906 - *** DEFAULT PREP ***										
Blank (P2I0906-BLK1)				Prepared &	ኔ Analyzed:	09/09/22				
Chloride	ND	1.00	mg/kg							
LCS (P2I0906-BS1)				Prepared &	ኔ Analyzed:	09/09/22				
Chloride	37.1		mg/kg	40.0		92.7	90-110			
LCS Dup (P2I0906-BSD1)				Prepared &	ኔ Analyzed:	09/09/22				
Chloride	37.0		mg/kg	40.0		92.5	90-110	0.240	10	
Calibration Blank (P2I0906-CCB1)				Prepared &	ኔ Analyzed:	09/09/22				
Chloride	0.00		mg/kg							
Calibration Blank (P2I0906-CCB2)				Prepared &	ኔ Analyzed:	09/09/22				
Chloride	0.00		mg/kg	-						
Calibration Check (P2I0906-CCV1)				Prepared &	λ Analyzed:	09/09/22				
Chloride	19.3		mg/kg	20.0		96.5	90-110			
Calibration Check (P2I0906-CCV2)				Prepared &	ኔ Analyzed:	09/09/22				
Chloride	19.4		mg/kg	20.0		97.0	90-110			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I0906 - *** DEFAULT PREP ***										
Calibration Check (P2I0906-CCV3)				Prepared: (09/09/22 Aı	nalyzed: 09	/10/22			
Chloride	19.6		mg/kg	20.0		98.2	90-110			
Matrix Spike (P2I0906-MS1)	Sour	ce: 2108013-	-17	Prepared &	ኔ Analyzed:	09/09/22				
Chloride	11500	28.1	mg/kg dry	1400	10100	97.9	80-120			
Matrix Spike (P2I0906-MS2)	Sour	ce: 2I08013-	-27	Prepared &	ኔ Analyzed:	09/09/22				
Chloride	9160	28.4	mg/kg dry	1420	7950	85.4	80-120			
Matrix Spike Dup (P2I0906-MSD1)	Sour	ce: 2108013-	-17	Prepared &	ኔ Analyzed:	09/09/22				
Chloride	11500	28.1	mg/kg dry	1400	10100	98.0	80-120	0.00981	20	
Matrix Spike Dup (P2I0906-MSD2)	Sour	ce: 2108013-	-27	Prepared &	λ Analyzed:	09/09/22				
Chloride	9000	28.4	mg/kg dry	1420	7950	74.2	80-120	1.76	20	QM-05

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darlor		
Report Approved By:			Date:	9/15/2022

D AR

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, LP

1400 Rankin Hwy

Midland Texas 79701

Phone: 432-686-7235

Pro	ject	Mai	nag	er:

Blake Estep

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

City/State/Zip:

Midland, Texas 79711

Sampler Signature:

email: blake@etechenv.com

				 	
LIVINI OE	CUSTODY R	PECORD AL	ND ANAI	VSIS REMI	IFST
MAIIVUIT		u cono ai	VIJ MIVML	IJIJ NEQ	ノレント

Project Name: \	gges lake	<u></u>
Project Name: Jaco	Project Loc:	New Mexico
Area: Lea	PO#:	

☐Bill Etech

Sampler Signe													F	Repor	t Forma	t: <u>STA</u>	NDAI	RD:□	7	RRP				DES:1					
																\perp						naly	ze Fo	or:					
(lab use only)	IIU020	•														-		TO										2	
OKDEK #: 0	rido a U			Dre	servation & # of	Containers			_						Matri	x 4	Т		Т		Н	H		十	\top	十	十	- 2Z	
LAB#((ab use only)	FIELD CODE		Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	Ice	HNO ₃	HCI	H₂SO₄	NaOH Na.S.D.	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Soild	NP=Non-PotableSpecify Other X	N N	Anions (CI SO4 CO3 HCO3)	ESP		Volatiles	Semi volatiles	BTEX 80219/5030 or BTEX 8260	RCI	N.O.R.M.	Chlorides		RUSH TAT(Pre-Schedule) 24, 48, 72 hrs	STANDARD TAT
/2) <u> </u>	Augohole I		1	1	9/6/22	11:15	1] [] [18] [V	可					Ĭ.
10				2	11016	11:20	1	Ø	╽	-] [] [2	g _						Ŋ	口][Į.
1/5	Augente 1		+	7.		11:25	1] [╗			3	1 -						₫.] [
	Augmore 1			41		11:30	•	Z	$\overline{\Box}$			7 [1			13	—	T_{\Box}	\Box				V	回			3 E	10	Z
- 129 <u>-</u>	trick role -			1	7	177.20						512	1	+	-		+		$\dagger \Box$						口		3 E		
			+	\vdash					一	\exists			+-	+	+	1		\Box	+	\Box							7		
			-				H					- -	4=		†		-		T								5 E		
				-					H	H			4=	+=	_		_	+-	+			\Box			口		<u> </u>		
			_				\vdash				\rightarrow		+	+=	+		+	+-	1-	$\overline{\Box}$		П					510	4 3 3	-
			<u> </u>	-					片		_			+=		┤ ;		+-	1-	<u>-</u>		1				$\exists i$	1	-	-
							╁	H			7		+	+-	1		+	+	+=	$\frac{1}{1}$	\Box	┢					312	-	-
							\vdash	片	H	ㅐ	7			4-	1	1		+-	1-	后	F			計	ᆵ	7	7	17.0	+
			-				┝	 -	干	\Box		=+=	-	4=	+		+-	4	1=	后	Ħ	H	-	H	긞			- 27	丰
						3.5	╀		+			<u>- -</u> - -	-	+	+			+=	+-	H	-	旨	믐	믁	뒴	-1	= -	100	-
						i				Ш	<u> Ш</u>		<u> </u>	<u> </u>	1	_ _		Labo			L.		ts:		7.00		-1-	- -	7466
Relinquished by		9/6 /6: Date 1	24 ime	Receive	ed by:		nakostati tek	garanta da sa	Salahan ang ang ang ang ang ang ang ang ang a	. No. 200 (200 No. 200	y man	estation (C.S.)	. 10 00 000	Da Da	te	Tin Tin	1e 1e	Sam VOC Cust Cust Sam Sar b	ole Co s Fre ody s ody s ole Ha oy Sa oy Co	ontair e of eals eals and E mpler urier	ners Head on c on c Delive r/Clie	Intac dspa conta coole ered ent R UP	ct? ice? iiner(ir(s) ep. ?	(s) , DHL	7 22 /	FedF	101818x	N N N N N one S	
Relinquished by		Date T	ime I	Receiv	10 by: 1	1019	10	W	77,	Æ			9	ligi	132	Tin Vle	24	Tem	erat	ire U	lpon	Rec	eipt:	<u>a4</u>	8	+1	æ	<u> </u>	L

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 152767

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	152767
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination (<50'). Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Sidewall/Floor samples should represent no more than 200 ft2.	11/18/2022