District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

### Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

| Printed Nar | ne: <u>Robert Dunaway</u> | Title: Senior Environmental Engineer |
|-------------|---------------------------|--------------------------------------|
| Signature:  | Kim                       | Date: 4/19/23                        |
| email:      | rhdunaway@eprod.com       | Telephone: 575-628-6802              |

| Received by OCD.         | : 4/19/2023 7:30:52 AM state of New Mexico                                                                                                                                                 |         |                                                                    | Page 2 of 190                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|------------------------------------------------------------------|
|                          |                                                                                                                                                                                            |         | Incident ID                                                        |                                                                  |
| Page 2                   | Oil Conservation Division                                                                                                                                                                  |         | District RP                                                        |                                                                  |
|                          |                                                                                                                                                                                            |         | Facility ID                                                        |                                                                  |
|                          |                                                                                                                                                                                            |         | Application ID                                                     |                                                                  |
| OCD Only<br>Received by: | OCD                                                                                                                                                                                        | Date: _ | 4/19/2023                                                          |                                                                  |
| remediate contami        | by the OCD does not relieve the responsible party of liabi<br>ination that poses a threat to groundwater, surface water, h<br>ce with any other federal, state, or local laws and/or regul | uman he | ld their operations have failed<br>alth, or the environment nor do | to adequately investigate and<br>bes not relieve the responsible |
| Closure Approved         | by: Ashley Maxwell                                                                                                                                                                         | Dates   | 4/19/2023                                                          |                                                                  |
| Printed Name:            | Ashley Maxwell                                                                                                                                                                             | Title   | Environmental Special                                              | ist                                                              |



#### **CORRECTIVE ACTION REPORT**

Property:

#### **30137 Pipeline Releases** SW¼ SE ¼, S13 T19S R28E Eddy County, New Mexico ECIRTS: 25049, 25811, 26242, 26497

#### NMOCD RP#s: 2RP-2846 (30137 #3 Release), 2RP-3191 (30137 #4 Release), 2RP-3044 (30137 #5 Release), 2RP-3193 (30137 #6 Release)

July 2016 Apex Project No. 725010112096

Prepared for:

Enterprise Field Services, LLC PO Box 4324 Houston, TX 77252 Attention: Dina Ferguson

Prepared by:

Karolanne Toby Project Manager

Liz Scaggs, P.G. Division Manager

Apex TITAN, Inc., a subsidiary of Apex Companies, LLC 12100 Ford Road, Suite 401, Dallas, TX 75234 T 469.365.1102 www.apexcos.com PG License No. 50296 PE License No. F14073

•

### TABLE OF CONTENTS

| <b>1.0</b><br>1.1<br>1.2 | INTRODUCTION<br>Site Description & Background<br>Project Objective      | 1 |
|--------------------------|-------------------------------------------------------------------------|---|
| 2.0                      | SITE RANKING                                                            | 2 |
| 3.0                      | SITE CHRONOLOGY                                                         | 2 |
| <b>4.0</b><br>4.1<br>4.2 | RESPONSE ACTIONS<br>Soil Excavation Activities<br>Soil Sampling Program | 5 |
| <b>5.0</b><br>5.1<br>5.2 | DATA EVALUATION<br>Confirmation Soil Samples<br>Stockpile Soil Samples  | 7 |
| 6.0                      | FINDINGS AND RECOMMENDATIONS                                            | 8 |

#### LIST OF APPENDICES

| Appendix A: | Figure 1 – Topographic Map<br>Figure 2 – Site Vicinity Map<br>Figure 3 – Site Map |
|-------------|-----------------------------------------------------------------------------------|
| Appendix B: | Photographic Documentation                                                        |
| Appendix C: | Analytical Tables                                                                 |
| Appendix D: | Laboratory Analytical Reports & Chain-of-Custody Documentation                    |
| Appendix E: | NMOCD C-141 Documentation                                                         |



#### **CORRECTIVE ACTION REPORT**

#### **30137 Pipeline Releases**

SW¼ SE ¼, S13 T19S R28E Eddy County, New Mexico ECIRTS: 25049, 25811, 26242, 26497 Apex Project No. 725010112096

# NMOCD RP#s: 2RP-2846 (30137 #3 Release), 2RP-3191 (30137 #4 Release), 2RP-3044 (30137 #5 Release), 2RP-3100 (30137 #6 Release)

#### 1.0 INTRODUCTION

#### 1.1 Site Description & Background

The 30137 #3, #4, #5 and #6 Pipeline Releases (30137 releases) are located within the Enterprise Field Services, LLC (Enterprise) 30137 natural gas gathering pipeline right-of-way (ROW) in the southwest (SW) ¼ of the southeast (SE) ¼ of Section 13 in Township 19 South and Range 28 East in rural Eddy County, New Mexico (32.65386N, 104.12857W), referred to hereinafter as the "Site". The Site is surrounded by native vegetation rangeland periodically interrupted with oil and gas production and gathering facilities. The subsurface consists of fine sandy loam over mixed alluvium and /or eolian sands.

On February 15, 2015 a leak (30137 #3) was detected on the 30137 natural gas gathering pipeline (30137 pipeline) by a pipeline technician. Subsequent to the initial response activities, a second leak (30137 #4) was detected on the 30137 pipeline on April 30, 2015. Immediate response action was taken based on the Enterprise *General Release Notification, Response and Remediation Plan (dated March 2015)*. On June 8, 2015, a third leak (30137 #5) was detected on the 30137 pipeline. During the completion of remediation activities to address the third leak on the 30137 pipeline, a fourth leak (30137 #6) was detected in the same approximate area as the third release. The four (4) releases on the 30137 pipeline were repaired and remediation efforts were completed subsequent to Enterprise Operations combining the excavation efforts for each individual release. All four (4) of the 30137 pipeline releases listed above occurred within a 200-foot segment along the 30137 pipeline. The RP numbers assigned by the NMOCD to the 30137 #3, #4, #5 and #6 releases are 2RP-2846, 2RP-3191, 2RP-3044 and 2RP-3100, respectively.

Due to the close proximity of each leak on the 30137 pipeline, Enterprise submitted a notification to the New Mexico Oil Conservation Division (NMOCD) of Enterprise's intent to combine the excavation efforts for each release (30137 #3, #4, #5 and #6) into one large excavation in order to effectively complete remediation efforts and to replace the 200-foot segment of pipeline on which all the releases occurred. NMOCD approved Enterprise's plan to address the combined remediation efforts and to combine the releases into a single report subsequent to completion of remediation activities.

A topographic map depicting the location of the Site is included as Figure 1, and a Site Vicinity Map is included as Figure 2 in Appendix A.

#### 1.2 **Project Objective**

The primary objective of the corrective actions was to reduce the concentration of constituents of concern (COCs) in the on-Site soils to below the NMOCD *Recommended Remediation Action Levels (RRALs)* using the New Mexico Energy, Minerals and Natural Resources Division (EMNRD) OCD's *Guidelines for Remediation of Leaks, Spills and Releases* as guidance.



| Enterprise Field Services, LLC | July 2016 |
|--------------------------------|-----------|
| Corrective Action Report       | Page 2    |
| 30137 Pipeline Releases        | -         |

#### 2.0 SITE RANKING

In accordance with the New Mexico EMNRD OCD's *Guidelines for Remediation of Leaks, Spills and Releases*, Apex TITAN, Inc. (Apex) utilized the general site characteristics obtained during the completion of corrective action activities and information available from the New Mexico Office of the State Engineer (OSE) to determine the appropriate "ranking" for the Site. The ranking criteria and associated scoring are provided in the following table:

| Ranking Criteria                                         |                  | Ranking Score |    |
|----------------------------------------------------------|------------------|---------------|----|
|                                                          | <50 ft.          | 20            |    |
| Depth to Groundwater                                     | 50 to 99 ft.     | 10            | 10 |
|                                                          | >100 ft.         | 0             |    |
| Wellhead Protection Area <1,000 ft. from a water source, | Yes              | 20            | 0  |
| or; <200 ft. from private<br>domestic water source.      | No               | 0             | Ť  |
|                                                          | <200 ft.         | 20            |    |
| Distance to Surface Water Body                           | 200 to 1,000 ft. | 10            | 0  |
|                                                          | >1,000 ft.       | 0             |    |
| Total Ranking Score                                      |                  | 10            |    |

Based on Apex's evaluation of the scoring criteria, the Site would have a maximum Total Ranking Score of "10". This ranking is based on the following:

- The approximate depth to the initial groundwater-bearing zone is between 50 and 99 feet (ft.).
- No water source wells (municipal/community wells) were identified within 1,000 ft. of the Site. No private domestic water sources were identified within 200 ft. of the Site.
- The distance to the nearest surface water body is greater than 1,000 ft.

Based on a Total Ranking Score of "10", cleanup goals for soils remaining in place at the Site include:

- 10 milligrams per Kilogram (mg/Kg) for benzene;
- 50 mg/Kg for total benzene, toluene, ethylbenzene and xylene (BTEX);
- 1,000 mg/Kg for combined total petroleum hydrocarbons (TPH) gasoline range organics (GRO) and diesel range organics (DRO); and
- 500 mg/Kg for chloride.

#### 3.0 SITE CHRONOLOGY

Apex has reviewed the available documentation from previously conducted subsurface investigation and corrective action activities completed at the Site.

The following is a chronology of Site assessment, investigation and corrective action activities previously conducted at the Site. Each release

February 15, 2015 A release was discovered along the Enterprise 30137 pipeline within the pipeline ROW. Enterprise initially estimated the release as approximately three (3) barrels (bbls) of natural gas pipeline liquid. This release is referred to hereinafter as the 30137 #3 release.



| Enterprise Field Services, LLC | July 2016 |
|--------------------------------|-----------|
| Corrective Action Report       | Page 3    |
| 30137 Pipeline Releases        |           |

- February 24, 2015 An initial C-141 was submitted by Enterprise to the NMOCD due to the gas volume associated with the 30137 #3 release. The initial liquid spill volume was estimated to be approximately three (3) bbls of natural gas pipeline liquid. The RP # 2RP-2846 was assigned by the NMOCD to the 30137 #3 release.
- February 25, 2015 Enterprise Operations initiated excavation activities at the 30137 #3 release site and removed impacted soil from below and surrounding the release point on the pipeline. Apex collected five (5) confirmation soil samples (N-Wall, S-Wall, E-Wall, W-Wall, and RP) from each sidewall and floor of the 30137 #3 excavation and two (2) confirmation soil samples [CS-1(2015) and CS-2(2015)] from an area of hydrocarbon staining identified to the southeast of the excavation. In addition, Apex collected one (1) composite soil sample (SP) from the stockpiled material staged next to the excavation. Based on laboratory analytical results from the initial soil samples, additional excavation was required.
- April 29, 2015 A new release was discovered on the 30137 pipeline approximately 170 ft. to the east of the 30137 #3 release. Enterprise initially estimated the release as approximately two (2) bbls of natural gas pipeline liquids. This release is referred to hereinafter as the 30137 #4 release. The RP # 2RP-3191 was assigned by the NMOCD to the 30137 #4 release.
- May 18, 2015 An initial C-141 was submitted by Enterprise to the NMOCD due to the gas volume associated with the 30137 #4 release. The initial liquid spill volume was estimated to be approximately two (2) bbls of natural gas pipeline liquid.
- June 8, 2015 A new release was discovered on the 30137 pipeline approximately 105 ft. to the east of the 30137 #3 release. Enterprise initially estimated the release as approximately three (3) bbls of natural gas pipeline liquid. This release is referred to hereinafter as the 30137 #5 release.
- June 10, 2015 An initial C-141 was submitted by Enterprise to the NMOCD due to the gas volume associated with the 30137 #5 release. The initial liquid spill volume was estimated to be approximately three (3) bbls of natural gas pipeline liquid. The RP # 2RP-3044 was assigned by the NMOCD to the 30137 #5 release.
- June 15 to June 16, Enterprise Operations conducted excavation activities at the 30137 #4 and 2015 30137 #5 release sites. Apex returned to the Site to conduct additional field activities. Apex did not collect additional samples from the 30137 #3 release due to elevated field readings collected from a photoionization detector (PID) and a salinity meter. Apex collected five (5) confirmation soil samples (N-Wall, S-Wall, E-Wall, W-Wall and RP) from the excavation in the vicinity of the 30137 #4 release and five (5) confirmation soil samples (N-Wall, S-Wall, E-Wall, W-Wall and RP) from the excavation in the vicinity of the 30137 #5 release. In addition, Apex collected three (3) composite soil samples (STP-2, STP and STP) from the stockpiled material staged on-Site and two (2) background soil samples (BKG-1 and BKG-2) from areas within the 30137 pipeline ROW, approximately 150 feet (ft.) to the east and west of the excavated areas on-Site. Based on laboratory analytical results, additional excavation was required in the vicinity of the 30137 #5 release.



| Enterprise Field Services<br>Corrective Action Report<br>30137 Pipeline Releases |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2016<br>age 4 |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| July 2, 2015                                                                     | A new release was discovered on the 30137 pipeline in the same approximate location as the 30137 #5 release. Enterprise initially estimated the release to be approximately three (3) bbls of natural gas pipeline liquid. This release is referred to hereinafter as the 30137 #6 release.                                                                                                                                                                                                                                                                                        |               |
| July 7, 2015                                                                     | An initial C-141 was submitted by Enterprise to the NMOCD due to the gas volume associated with the 30137 #6 release. The initial liquid spill volume was estimated to be approximately three (3) bbls of natural gas pipeline liquid. The RP # 2RP-3100 was assigned by the NMOCD to the 30137 #6 release.                                                                                                                                                                                                                                                                        |               |
| August 2015                                                                      | Enterprise submits revised C-141 forms with updated liquid spill volumes for the 30137 #3, #4 and #5 releases subsequent to the receipt of field and soil sampling data associated with the initial response actions for each release. The revised liquid spill estimates are ten (10) bbls, eight and a half (8.5) bbls and nine (9) bbls, respectively.                                                                                                                                                                                                                          |               |
|                                                                                  | Due to the close proximity of each leak on the 30137 pipeline, Enterprise submitted a notification to the NMOCD of Enterprise's intent to combine the excavation efforts for each release (30137 #3, #4, #5 and #6) into one large excavation in order to effectively complete remediation efforts and to replace the 200-foot segment of pipeline on which all the releases occurred. NMOCD approves Enterprise's plan to address the combined remediation efforts and combining the releases into a single report subsequent to completion of remediation activities.            |               |
| January 14, 2016                                                                 | Apex arrived on-Site to collect confirmation soil samples from the combined excavation for the 30137 #3, #4, #5 and #6 releases subsequent to Enterprise Operations completing excavation activities and replacing the 200-foot segment of pipeline. Apex collected 14 confirmation soil samples (CS-1(2016), CS-2(2016) and CS-3 through CS-14) from the sidewalls and floor of the combined excavation for the 30137 pipeline releases. In addition, Apex collected three (3) composite soil samples (SP-1 through SP-3) from the soil stockpiles staged next to the excavation. |               |
| March 14, 2016                                                                   | Based on laboratory analytical results, additional excavation was required. Apex returned to the Site and collected four (4) confirmation soil samples [CS-1(2015) (RE), CS-2(2015) (RE), S-Wall (RE) and R.P.(RE)] from areas within the excavation and from the previously identified area of hydrocarbon staining to the southeast of the former 30137 #3 excavation.                                                                                                                                                                                                           |               |
| March through<br>April, 2016                                                     | Based on laboratory analytical results, no further remediation activities were required. The excavation was backfilled utilizing the final stockpiled soils (SP-1 through SP-6) as fill material and the area was contoured to approximate original surface grade.                                                                                                                                                                                                                                                                                                                 |               |



#### 4.0 **RESPONSE ACTIONS**

#### 4.1 Soil Excavation Activities

On February 25, 2015, Enterprise Operations and Willbros Construction, LLC (Willbros) initiated response actions in the vicinity of the 30137 #3 release. It was at this time that Enterprise estimated the initial spill volume for the 30137 #3 release as three (3) bbls of natural gas pipeline liquid. Enterprise isolated the leaking portion of the 30137 pipeline and the pipeline section was blown down to carry out repair activities. Impacted soil was removed from the vicinity of the release point and collected into a stockpile on-Site. The former 30137 #3 excavation dimensions measured approximately 25 ft. (ft.) long by 15 ft. wide with an approximate depth of ten (10) ft. below ground surface (bgs). The area of hydrocarbon staining identified to the southeast of the 30137 #3 excavation measured approximately 50 ft. long by 15 ft. wide with an approximate depth of two (2) ft. bgs.

On April 29, 2015, Enterprise Operations and Willbros returned to the Site to initiate response actions at in the vicinity of the 30137 #4 release. It was at this time that Enterprise estimated the initial spill volume for the 30137 #4 release as two (2) bbls of natural gas pipeline liquid. The leak was subsequently identified and repaired. Impacted soil was removed from the affected areas surrounding the release point on the 30137 pipeline associated with the 30137 #4 release and collected into a stockpile on-Site. The former 30137 #4 excavation dimensions measured approximately 25 ft. long by 15 ft. wide with an approximate depth of eight (8) ft. bgs.

On June 8, 2016, Enterprise Operations and Willbros returned to the Site to initiate response actions in the vicinity of the 30137 #5 release. It was at this time that Enterprise estimated the initial spill volume for the 30137 #5 release as three (3) bbls of natural gas pipeline liquid. The leak was subsequently identified and repaired. Impacted soil was removed from the affected areas surrounding the release point on the 30137 pipeline associated with the 30137 #5 release and collected into a stockpile on-Site. The former 30137 #5 excavation dimensions measured approximately 35 ft. long by 15 ft. wide with an approximate depth of ten (10) ft. bgs.

On July 2, 2015, Enterprise Operations returned to the Site to initiate response actions in the vicinity of the 30137 #6 release, which occurred in the same approximate location on the 30137 pipeline as the 30137 #5 release. It was at this time that Enterprise estimated the liquid spill volume for the 30137 #6 release as approximately three (3) bbls of natural gas pipeline liquid.

During August, 2015, Enterprise submitted to the NMOCD revised C-141 forms with updated liquid spill volumes for the 30137 #3, #4 and #5 releases. Subsequent to the initial remediation activities conducted at the Site, the 30137 #3, #4 and #5 release volumes were updated and revised to be ten (10) bbls, eight and a half (8.5) bbls and nine (9) bbls, respectively.

Between August, 2015 and January, 2016, Enterprise Operations and NMR Pipeline, LLC (NMR) returned to the Site to complete remediation activities and to replace the 200-foot segment of the 30137 pipeline on which the 30137 #3, #4, #5 and #6 releases occurred. Due to the close proximity of each leak on the 30137 pipeline, the excavation efforts for the 30137 #3, #4, #5 and #6 releases were combined into a single excavation subsequent to Enterprise notification to the NMOCD.

The final excavation dimensions measured approximately 200 ft. long by 15 ft. wide, with an approximate depth ranging from approximately eight (8) ft. to 14 ft. bgs. Figure 3 - Site Map, provided in Appendix A, indicates the previous extent of the former 30137 #3, #4 and #5 excavation limits in relation to the final combined 30137 releases excavation.



| Enterprise Field Services, LLC | July 2016 |
|--------------------------------|-----------|
| Corrective Action Report       | Page 6    |
| 30137 Pipeline Releases        |           |

Backfill of the final combined 30137 #3, #4, #5 and #6 excavation was completed during March 2016. The soil stockpiles generated from the individual 30137 #3, #4, #5 and #6 releases were blended into the soils generated during the combined excavation effort.

During the initiation of the combined excavation effort, the initial soil stockpiles from the individual 30137 #3, #4, #5 and #6 releases were moved to different areas around the excavation on-Site to allow heavy equipment safe access around the combined excavation. This allowed the initial affected soil stockpiles from the individual 30137 #3, #4, #5 and #6 releases to aerate during the combined excavation process. It was also during this time that a substantial amount of soil was removed from the excavation and added to the pre-existing stockpiles, which allowed for potential COC concentrations remaining in the previous soil stockpiles to become diluted.

Based on laboratory analytical results, the final stockpiled material (SP-1 through SP-6) generated from combined excavation activities was reused as fill material in the excavation and the area was contoured to approximate original surface grade.

#### 4.2 Soil Sampling Program

On February 25, 2015, Apex collected five (5) confirmation soil samples (N-Wall, S-Wall, E-Wall, W-Wall, and RP) from each sidewall and floor of the 30137 #3 release excavation and two (2) confirmation soil samples [CS-1(2015) and CS-2(2015)] from the area of hydrocarbon staining identified to the southeast of the 30137 #3 release excavation. In addition, Apex collected one (1) composite soil sample (SP) from the stockpiled material staged next to the 30137 #3 release excavation.

On June 15 and 16, 2015, Apex returned to the Site and collected five (5) confirmation soil samples (N-Wall, S-Wall, E-Wall, W-Wall and RP) from the excavation in the vicinity of the 30137 #4 release and five (5) confirmation soil samples (N-Wall, S-Wall, E-Wall, W-Wall and RP) from the excavation in the vicinity of the 30137 #5 release. In addition, Apex collected three (3) composite soil samples from the stockpiled soils removed from the 30137 #3 excavation (STP-2), from the stockpiled soils removed from the 30137 #4 excavation (STP) and from the stockpiled soils removed from the 30137 #5 excavation (STP). Apex also collected two (2) background soil samples (BKG-1 and BKG-2) from areas within the 30137 pipeline ROW approximately 150 ft. to the east and west of the excavated areas on-Site.

On January 14, 2016, Apex arrived on-Site to collect confirmation soil samples from the combined excavation for the 30137 releases. The confirmation soil samples were collected subsequent to Enterprise Operations completing excavation activities and replacing the 200-foot segment of pipeline. Apex collected 14 confirmation soil samples [CS-1(2016), CS-2(2016) and CS-3 through CS-14] from the sidewalls and floor of the combined excavation. Confirmation soil sample CS-1(2016) was collected in the vicinity of confirmation soil sample W-Wall (30137 #3) subsequent to over-excavation activities. The confirmation soil sample CS-3 was collected to the east of confirmation soil sample E-Wall (30137 #3) along the excavation floor, subsequent to the complete removal of soil that comprised the boundary of the E-Wall sample location. Confirmation soil sample CS-9 was collected from the same location as confirmation soil sample RP (30137 #5) subsequent to over-excavation activities. In addition, Apex collected three (3) composite soil samples (SP-1 through SP-3) from the final soil stockpiles staged next to the final combined excavation.

Based on previous laboratory analytical results, additional excavation was required in the vicinity of the former location of the 30137 #3 release. Apex returned to the Site and collected four (4) confirmation soil samples [CS-1(2015)(RE), CS-2(2015)(RE), S-Wall(RE) and R.P.(RE)] from areas within the former 30137 #3 excavation boundaries and in the vicinity of the previously identified area of hydrocarbon staining. In addition, Apex collected three (3) composite soil samples (SP-4 through SP-6) from the final soil stockpiles staged next to the excavation.



| Enterprise Field Services, LLC | July 2016 |
|--------------------------------|-----------|
| Corrective Action Report       | Page 7    |
| 30137 Pipeline Releases        |           |

Soil samples were collected and delivered under chain of custody control to Trace Analysis Laboratory and Xenco Laboratories in Midland, Texas for analysis of BTEX utilizing EPA SW-846 Method #8021B, TPH GRO and DRO utilizing EPA SW-846 Method #8015 and chloride utilizing EPA Method SM 4500-Cl B and/or EPA Method 300.

Executed chain-of-custody forms and laboratory data sheets are provided in Appendix D. All soil samples were analyzed within the specified holding times.

Figure 2 is a Site Vicinity Map that indicates the approximate location of the background soil samples in relation to the Site. Figure 3 is a Site Map that indicates the approximate confirmation soil sample and composite stockpile soil sample locations in relation to the former individual 30137 releases excavation boundaries and the final combined 30137 releases excavation and pertinent land features (Appendix A).

#### 5.0 DATA EVALUATION

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to condensate releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the OCD rules, specifically NMAC 19.15.29 *Remediation Plan.* These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

#### 5.1 Confirmation Soil Samples

Apex compared the benzene, BTEX, TPH GRO/DRO and chloride concentrations associated with the final confirmation soil samples collected from the previous limits of excavation for the individual 30137 #3, #4 and #5 releases and the final combined excavation for the 30137 #3, #4, #5 and #6 releases to the OCD RRALs for sites having a total ranking score of "10".

The laboratory analyses of the final confirmation soil samples CS-1(2015)(RE), CS-2(2015)(RE), CS-1 (2016), CS-2(2016), CS-3, CS-4, N-Wall, S-Wall(RE), R.P.(RE), CS-11, N-Wall, CS-12, CS-13, CS-14, S-Wall, RP, E-Wall and CS-5 through CS-10, collected from both the previous limits of excavation for the individual 30137 #3, #4 and #5 releases and the final combined excavation at the Site, indicate benzene concentrations ranging from below the laboratory reporting limit of 0.000990 mg/Kg to 4.08 mg/Kg, which are below the OCD RRAL limits of 10 mg/Kg for a Site ranking of "10".

The laboratory analyses of the final confirmation soil samples CS-1(2015)(RE), CS-2(2015)(RE), CS-1(2016), CS-2(2016), CS-3, CS-4, N-Wall, S-Wall(RE), R.P.(RE), CS-11, N-Wall, CS-12, CS-13, CS-14, S-Wall, RP, E-Wall and CS-5 through CS-10, collected from both the previous limits of excavation for the individual 30137 #3, #4, and #5 releases and the final combined excavation at the Site, indicate total BTEX concentrations ranging from below the laboratory reporting limit of 0.000990 mg/Kg to 0.507 mg/Kg, which are below the OCD RRAL limits of 50 mg/Kg for a Site ranking of "10".

The laboratory analyses of the final confirmation soil samples CS-1(2015)(RE), CS-2(2015)(RE), CS-1(2016), CS-2(2016), CS-3, CS-4, N-Wall, S-Wall(RE), R.P.(RE), CS-11, N-Wall, CS-12, CS-13, CS-14, S-Wall, RP, E-Wall and CS-5 through CS-10, collected from both the previous limits of excavation for the individual 30137 #3, #4, and #5 releases and the final combined excavation at the Site, indicate combined TPH GRO/DRO concentrations ranging from below the laboratory reporting limit of15.0 mg/Kg to 449 mg/kg, which are below the OCD RRAL limits of 1,000 mg/Kg for a Site ranking of "10".

The laboratory analyses of the final confirmation soil samples CS-1(2015)(RE), CS-2(2015)(RE), CS-1(2016), CS-2(2016), CS-3, CS-4, N-Wall, S-Wall(RE), R.P.(RE), CS-11, N-Wall, CS-12, CS-13, CS-14, S-Wall, RP, E-Wall and CS-5 through CS-10, collected from both the previous limits of excavation for the



| Enterprise Field Services, LLC | July 2016 |
|--------------------------------|-----------|
| Corrective Action Report       | Page 8    |
| 30137 Pipeline Releases        | -         |

individual 30137 #3, #4, and #5 releases and the final combined excavation at the Site, indicate chloride concentrations ranging from below the laboratory reporting limit of 20.0 mg/Kg to 403 mg/Kg, which are below the OCD RRAL limits of 500 mg/Kg for a Site ranking of "10".

#### 5.2 Stockpile Soil Samples

Apex compared the benzene, BTEX, TPH GRO/DRO and chloride concentrations associated with the final composite soil samples (SP-1 through SP-6) collected from the stockpiled soils generated from excavation activities to the OCD RRALs for sites having a total ranking score of "10".

The laboratory analyses of the final composite soil samples (SP-1 though SP-6) indicate benzene concentrations below the laboratory reporting limits, ranging from 0.000996 mg/Kg to 0.0299 mg/Kg, which are below the OCD RRAL limits of 10 mg/Kg for a Site ranking of "10". The laboratory analyses of the final composite soil samples (SP-1 though SP-6) indicate total BTEX concentrations ranging from below the laboratory reporting limit of 0.000996 mg/Kg to 19.2 mg/Kg, which are below the OCD RRAL limits of 50 mg/Kg for a Site ranking of "10".

The final composite soil samples (SP-1 though SP-6), indicate combined TPH GRO/DRO concentrations ranging from below the laboratory reporting limit of 15.0 mg/Kg to 829 mg/kg, which are below the OCD RRAL limits of 1,000 mg/Kg for a Site ranking of "10".

The final composite soil samples (SP-1 though SP-6), indicate chloride concentrations ranging from 37.0 mg/Kg to 364 mg/Kg, which are below the OCD RRAL limits of 500 mg/Kg for a Site ranking of "10".

Based on the laboratory analytical results, the final soil stockpiles (SP-1 though SP-6) indicated benzene, total BTEX, combined TPH GRO/DRO and chloride concentrations below the applicable regulatory standards, and were suitable to be reused as fill material in the excavation subsequent to the completion of remediation activities.

The laboratory analytical results for the soil samples collected from the Site are provided in Table 1 in Appendix C.

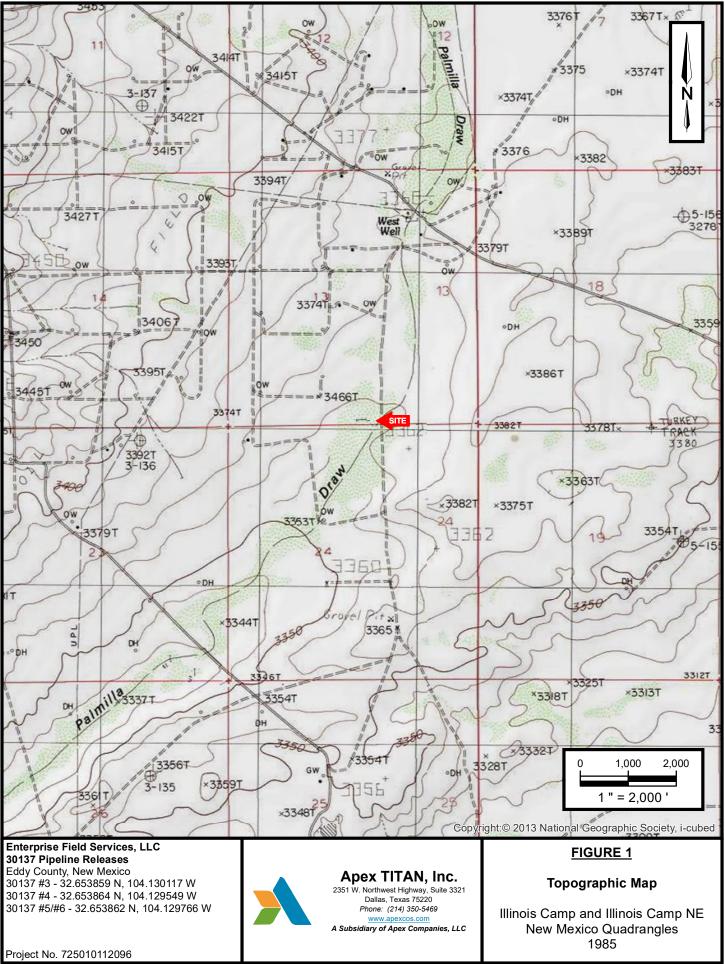
#### 6.0 FINDINGS AND RECOMMENDATIONS

The 30137 releases are located within the Enterprise 30137 natural gas gathering pipeline ROW in the SW ¼ of the southeast SE ¼ of Section 13 in Township 19 South and Range 28 East in rural Eddy County, New Mexico. The Site is surrounded by native vegetation rangeland periodically interrupted with oil and gas production and gathering facilities. The subsurface consists of fine sandy loam over mixed alluvium and /or eolian sands.

On February 15, 2015 a leak (30137 #3) was detected on the 30137 natural gas gathering pipeline (30137 pipeline) by a pipeline technician. Subsequent to the initial response activities, a second leak (30137 #4) was detected on the 30137 pipeline on April 30, 2015. Immediate response action was taken based on the Enterprise *General Release Notification, Response and Remediation Plan (dated March 2015).* On June 8, 2015, a third leak (30137 #5) was detected on the 30137 pipeline. During the completion of remediation activities to address the third leak on the 30137 pipeline, a fourth leak (30137 #6) was detected in the same approximate area as the third release. The four (4) releases on the 30137 pipeline were repaired and remediation efforts were completed subsequent to Enterprise Operations combining the excavation efforts for each individual release. All four (4) of the 30137 pipeline releases listed above occurred within a 200-foot segment along the 30137 pipeline. The RP numbers assigned by the NMOCD to the 30137 #3, #4, #5 and #6 releases are 2RP-2846, 2RP-3191, 2RP-3044 and 2RP-3100, respectively.



| Enterprise Field Services, LLC | July 2016 |
|--------------------------------|-----------|
| Corrective Action Report       | Page 9    |
| 30137 Pipeline Releases        |           |


- The primary objective of the corrective actions completed at the Site was to reduce the concentration of COCs in the on-Site soils to below the New Mexico EMNRD OCD *RRALs* using the New Mexico EMNRD OCD's *Guidelines for Remediation of Leaks, Spills and Releases* as guidance.
- On-Site remediation included excavation of the affected areas impacted by the 30137 #3, #4, #5 and #6 releases of natural gas pipeline liquid starting from each release point on the 30137 pipeline. The final combined excavated area for the 30137 releases measured approximately 200 ft. long by 15 ft. wide, with an approximate depth ranging from approximately eight (8) ft. to 14 ft. bgs. Excavated soils were removed and collected into six (6) stockpiles on-Site (SP-1 through SP-6).
- The final confirmation soil samples CS-1(2015)(RE), CS-2(2015)(RE), CS-1 (2016), CS-2(2016), CS-3, CS-4, N-Wall, S-Wall(RE), R.P.(RE), CS-11, N-Wall, CS-12, CS-13, CS-14, S-Wall, RP, E-Wall and CS-5 through CS-10, collected from both the previous limits of excavation for the individual 30137 #3, #4, #5 and #6 releases and the final combined excavation at the Site, indicate benzene, total BTEX, combined TPH GRO/DRO and chloride concentrations below the applicable OCD RRALs for a Site ranking of "10".
- The six (6) final soil stockpiles on-Site (SP-1 through SP-6) indicated laboratory results below the applicable OCD RRALs for a Site ranking of "10" and were suitable to be reused as fill material in the excavation. The final excavated area was backfilled with the final stockpiled soils and subsequently contoured to approximate original surface grade.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.



APPENDIX A

Figures

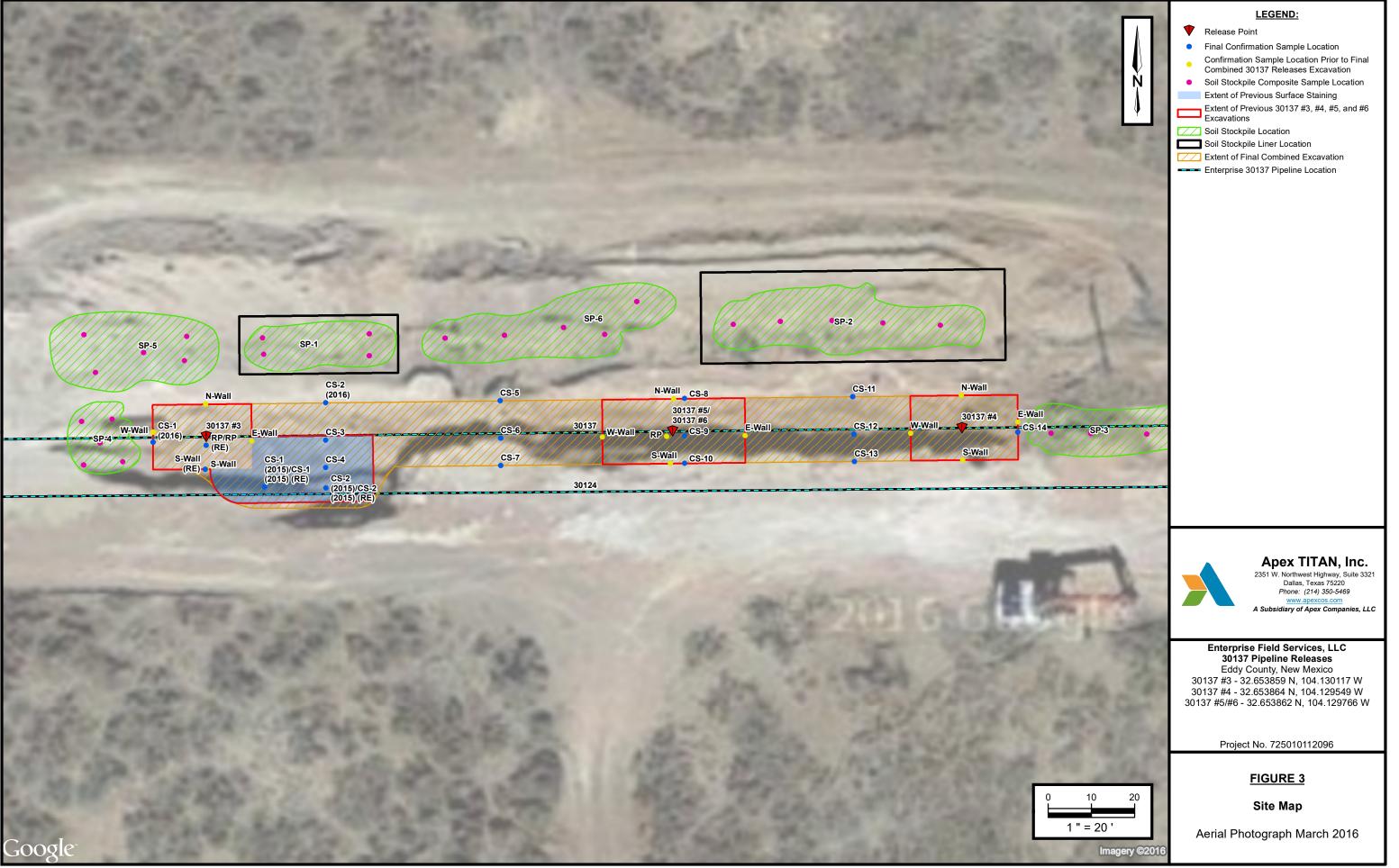


P:\Drafting\2016\725010112096\Figure 1.mxd 5/6/2016 NAD 1983 2011 StatePlane New Mexico East FIPS 3001 Ft US Projected Coordinate System



Enterprise Field Services, LLC 30137 Pipeline Releases Eddy County, New Mexico 30137 #3 - 32.653859 N, 104.130117 W 30137 #4 - 32.653864 N, 104.129549 W 30137 #5/#6 - 32.653862 N, 104.129766 W




Apex TITAN, Inc. 2351 W. Northwest Highway, Suite 3321 Dallas, Texas 75220 Phone: (214) 350-5469 www.apexcos.com A Subsidiary of Apex Companies, LLC FIGURE 2

Site Vicinity Map

Aerial Photograph March 2016

Project No. 725010112096

P:\Drafting\2016\725010112096\Figure 2.mxd 5/6/2016 NAD 1983 2011 StatePlane New Mexico East FIPS 3001 Ft US Projected Coordinate System



P:\Drafting\2016\725010112096\Figure 3B.mxd 5/6/2016 NAD 1983 2011 StatePlane New Mexico East FIPS 3001 Ft US Projected Coordinate System Released to Imaging: 4/19/2023 8:21:30 AM Page 17 of 190



APPENDIX B

Photographic Documentation



View of combined 30137 releases excavation facing southeast.



View of hydrocarbon stain removal in the vicinity of the former 30137 #3 excavation, facing southwest.



View of stockpiled soils after final excavation activities, facing northeast.



View of excavation sidewall during final remediation activities, facing east.



View of stockpiled soil during final remediation activities, facing west.



View of excavation during final remediation activities, facing east.





APPENDIX C

Analytical Tables

•

|                      |                                            |                            | SOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | BLE 1<br>NALYTICAL RI   | ESULTS              |                    |              |                      |               |                      |
|----------------------|--------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|---------------------|--------------------|--------------|----------------------|---------------|----------------------|
|                      |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30137 Pip            | eline Releases          | \$                  |                    |              |                      |               |                      |
|                      |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                         |                     |                    |              |                      |               |                      |
|                      |                                            | Ormalia Danith             | Demonstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Talaana              | Educility               | Yelener             | Total              | TPH          | TPH                  | TPH           | Oblasia              |
| Sample I.D.          | Sample Date                                | Sample Depth<br>(feet bgs) | Benzene<br>(mg/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toluene<br>(mg/Kg)   | Ethylbenzene<br>(mg/Kg) | Xylenes<br>(mg/Kg)  | BTEX               | GRO          | DRO                  | GRO/DRO       | Chlorid              |
|                      |                                            | (                          | ( 3 3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( 3 3/               | ( 3, 3,                 | ( 3' 3'             | (mg/Kg)            | (mg/Kg)      | (mg/Kg)              | (mg/Kg)       | (mg/Kg               |
| ew Mexico Oil Consei | rvation Division (NM                       | MOCD) Recommend            | ded Remediati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on Action Leve       | els (RRALs) (To         | tal Ranking Sco     | ore: 10)           |              |                      | •             | <u> </u>             |
|                      |                                            | ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | . ,.                    | -                   | ,                  | <b></b>      | -                    | <b></b>       |                      |
|                      | Conservation Divisioned Remediation Action | · · ·                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | NE                      |                     | 50                 | NE           | NE                   | 1,000         | 500                  |
| BKG-1                | 6/16/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.0         | 98.0                 |
| BKG-2                | 6/16/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | 0.0517                  | <0.0200             | 0.0517             | <4.00        | <50.0                | <54.0         | <20.0                |
|                      |                                            | 30137 #3                   | EXCAVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONFIRMATI           | ON SOIL SAMPI           |                     | L RESULTS          | •            | •                    | •             | •                    |
| W-Wall               | 2/25/2015                                  | 8                          | 0.0665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.304                | 0.0500                  | 0.851               | 1.27               | 14.5         | <50.0                | 14.5          | 3,080                |
| CS-1 (2016)          | 1/14/2016                                  | 6                          | 0.0142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0637               | 0.0147                  | 0.142               | 0.234              | 24.3         | <14.9                | 24.3          | 56.5                 |
| CS-1 (2015)          | 2/25/2015                                  | 2                          | 4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.3 <sup>Je</sup>   | 5.54                    | 47.6 <sup>.je</sup> | 82,5               | 2,420        | <50.0                | 2,420         | 383                  |
| CS-1 (2015) (RE)     | 3/14/2016                                  | 10                         | <0.00150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00200             | <0.00200                | <0.0020             | <0.00150           | <25.0        | 34.3                 | 34.3          | NS                   |
| CS-2 (2015)          | 2/25/2015                                  | 2                          | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 378 <sup>.)e</sup>   | 82.3                    | 346 <sup>Je</sup>   | 918                | 15,200       | 320                  | 15,520        | 3,160                |
| CS-2 (2015) (RE)     | 3/14/2016                                  | 14                         | < 0.00149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00199            | < 0.00199               | < 0.00199           | < 0.00149          | <24.9        | 135                  | 135           | 343                  |
| CS-2 (2016)          | 1/14/2016<br>2/25/2015                     | 6<br>8                     | <0.000990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00198            | <0.000990               | <0.000990           | <0.000990          | <15.0        | 40.7                 | 40.7          | 13.7                 |
| E-Wall<br>CS-3       | 1/14/2016                                  | 8                          | 0.0214<br><0.000998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00200             | <0.000998               | <0.000998           | <0.000998          | <15.0        | <b>61.1</b><br><15.0 | <b>183</b>    | <b>1,530</b><br>6,74 |
| CS-3<br>CS-4         | 1/14/2016                                  | 6                          | <0.000998<br>0.00150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00200             | <0.000998               | <0.000998<br>0.505  | <0.000998<br>0.507 | <15.0<br>149 | <15.0<br>300         | <15.0<br>449  | 9.42                 |
| N-Wall               | 2/25/2015                                  | 8                          | 0.00150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0436               | <0.000990               | 0.0334              | 0.307              | <4.00        | <50.0                | <54.0         | 383                  |
| S-Wall               | 2/25/2015                                  | 8                          | 0.0494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.277                | 0.352                   | 0.556               | 1.23               | 120          | 62.1                 | 182           | 11,100               |
| S-Wall (RE)          | 3/14/2016                                  | 8                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS                   | NS                      | NS                  | NS                 | NS           | NS                   | NS            | 254                  |
| RP                   | 2/25/2015                                  | 10                         | 0.0461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0200              | 0.254                   | 0.511               | 0.811              | 90.7         | 292                  | 383           | 9,000                |
| R.P. (RE)            | 3/14/2016                                  | 13                         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NS                   | NS                      | NS                  | NS                 | NS           | NS                   | NS            | 403                  |
|                      |                                            | 30137 #4                   | EXCAVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONFIRMATI           | ON SOIL SAMPI           |                     | L RESULTS          |              |                      | -             |                      |
| CS-11                | 1/14/2016                                  | 6                          | <0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00200             | <0.00100                | <0.00100            | <0.00100           | <15.0        | <15.0                | <15.0         | <2.00                |
| N-Wall               | 6/15/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.00        | <20.0                |
| W-Wall               | 6/15/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0221               | 0.0389                  | 0.0681              | 0.129              | 9.34         | <50.0                | 9.34          | <20.0                |
| CS-12                | 1/14/2016                                  | 10                         | <0.00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00202             | <0.00101                | < 0.00101           | <0.00101           | <14.9        | <14.9                | <14.9         | 7.29                 |
| CS-13                | 1/14/2016                                  | 6                          | <0.00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00202             | <0.00101                | <0.00101            | <0.00101           | <15.0        | <15.0                | <15.0         | 2.47                 |
| E-Wall               | 6/15/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0231               | 0.0528                  | 0.0585              | 0.134              | 8.14         | <50.0                | 8.14          | <20.0                |
| CS-14                | 1/14/2016                                  | 6                          | < 0.000992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.00198             | <0.000992               | < 0.000992          | <0.000992          | <15.0        | <15.0                | <15.0         | 5.75                 |
| S-Wall               | 6/15/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.0         | <20.0                |
| RP                   | 6/15/2015                                  | 8                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.0         | <20.0                |
|                      |                                            | 30137 #5                   | EXCAVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONFIRMATI           | ON SOIL SAMPI           | E ANALYTICA         | L RESULTS          |              |                      |               |                      |
| CS-5                 | 1/14/2016                                  | 6                          | <0.00990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00198             | <0.000990               | <0.000990           | <0.000990          | <15.0        | 101                  | 101           | <2.00                |
| W-Wall               | 6/15/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.00        | <20.0                |
| CS-6                 | 1/14/2016                                  | 6                          | <0.00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00202             | <0.00101                | <0.00101            | <0.00101           | <14.9        | <14.9                | <14.9         | <2.00                |
| CS-7                 | 1/14/2016                                  | 6                          | <0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00201             | <0.00100                | <0.00100            | <0.00100           | <15.0        | <15.0                | <15.0         | 2.84                 |
| N-Wall               | 6/15/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≪0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.00        | 193                  |
| CS-8                 | 1/14/2016                                  | 6                          | <0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00200             | <0.00100                | <0.00100            | <0.00100           | <15.0        | <15.0                | <15.0         | 5.66                 |
| E-Wall               | 6/15/2015                                  | 6                          | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.00        | <20.0                |
| RP                   | 6/15/2015                                  | 10                         | <0.000996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.0200<br><0.00199  | <0.000006               | <0.0200             | <0.0200            | <4.00        | <50.0                | <b>454.00</b> | 5,630                |
| CS-9                 | 1/14/2016                                  | 10<br>6                    | <0.000996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00199             | <0.000996               | <0.000996           | <0.000996          | <15.0        | <15.0                | <15.0         | <2.00                |
| S-Wall<br>CS-10      | 6/15/2015<br>1/14/2016                     | 6                          | <0.000994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00199             | <0.000994               | <0.000994           | <0.000994          | <15.0        | <15.0                | <15.0         | 2.63                 |
| 03-10                | 1/14/2010                                  | 0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | <0.000994               |                     |                    | <10.0        | <10.0                | < 10.0        | 2.03                 |
| en l                 | 2/25/2045                                  | NIA                        | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | SAMPLE ANAL             | 129                 |                    |              |                      |               |                      |
| SP<br>STP-2          | 2/25/2015<br>6/16/2015                     | NA<br>NA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63.2                 |                         |                     | 224<br>66.0        | 3,150        | 571<br>676           | 3,721         | 1,530                |
| J1F-2                | 0/10/2015                                  | INA                        | 4,22<br>30137 #4 STC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.4                 | SAMPLE ANAL             | 34.0 <sup>%</sup>   |                    | 1,190'*      | 575                  | 1,765         | 98.0                 |
| STP                  | 6/15/2015                                  | NA                         | 0.0248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.777                | 1.13                    | 1.22                |                    | 314          | <50.0                | 314           | 588                  |
|                      |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | SAMPLE ANAL             |                     |                    |              |                      |               |                      |
| STP                  | 6/15/2015                                  | NA                         | <0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0200              | <0.0200                 | <0.0200             | <0.0200            | <4.00        | <50.0                | <54.00        | <20.0                |
|                      |                                            | F                          | <pre>FINAL 30137 ST<br/>&lt;0.000996</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                    | IPLE SOIL ANA           | -                   | -                  | 45.0         | 45.0                 | 45.0          |                      |
| 00.4                 | 4/44/0010                                  |                            | <ul> <li>&lt;</li> <li>&lt;</li> <li>&lt;</li> <li>&lt;</li> <li>&lt;</li> <li>&lt;</li> <li>&lt;</li> <li>&lt;</li> <li></li> <li></li></ul> <li></li> | < 0.00199            | < 0.000996              | < 0.000996          | < 0.000996         | <15.0        | <15.0                | <15.0         | 364                  |
| SP-1                 | 1/14/2016                                  | NA                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | -0.000000               | -0.000000           | -0.000000          | .45 0        | .45.0                | .45.0         | 4 4 4                |
| SP-2                 | 1/14/2016                                  | NA                         | <0.000996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00199             | <0.000996               | < 0.000996          | <0.000996          | <15.0        | <15.0                | <15.0         | 141                  |
| SP-2<br>SP-3         | 1/14/2016<br>1/14/2016                     | NA<br>NA                   | <0.000996<br><0.00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.00199<br><0.00201 | <0.00101                | <0.00101            | <0.00101           | <15.0        | <15.0                | <15.0         | 37.0                 |
| SP-2                 | 1/14/2016                                  | NA                         | <0.000996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.00199             | 1                       |                     | 1                  |              | 1                    | 1             |                      |

: indicates overexcavated area and/or resample

Note: Concentrations in **bold** and yellow exceed the applicable OCD Remediation Action Level

NE: Not Established

NS: Not Sampled Je: Estimated concentration exceeding calibration range

bgs: below ground surface



### APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation



6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 Texas 79922 El Paso, Texas 79703 Midland, Carroliton. Texas 75006 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

800-378-1296

806 • 794 • 1296 FAX 806 • 794 • 1298 915-585-3443 FAX 915 • 585 • 4944 432-689-6301 FAX 432 • 689 • 6313 972-242 -7750

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Oklahoma ISO 17025 Kansas

## Analytical and Quality Control Report

Karolanne Toby APEX/Titan 2351 W. Northwest Hwy. Suite 3321 Dallas, Tx, 75220

Report Date: March 9, 2015

Work Order: 15022625 

**Project** Name: 30137 #3 Project Number: 7250715022.001

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

|        |             |        | Date       | Time  | Date       |
|--------|-------------|--------|------------|-------|------------|
| Sample | Description | Matrix | Taken      | Taken | Received   |
| 387688 | CS-1        | soil   | 2015-02-25 | 14:52 | 2015-02-26 |
| 387689 | CS-2        | soil   | 2015-02-25 | 14:54 | 2015-02-26 |
| 387690 | N- Wall     | soil   | 2015-02-25 | 14:58 | 2015-02-26 |
| 387691 | E- Wall     | soil   | 2015-02-25 | 15:02 | 2015-02-26 |
| 387692 | W- Wall     | soil   | 2015-02-25 | 15:04 | 2015-02-26 |
| 387693 | S- Wall     | soil   | 2015-02-25 | 15:06 | 2015-02-26 |
| 387694 | RP          | soil   | 2015-02-25 | 15:08 | 2015-02-26 |
| 387695 | SP          | soil   | 2015-02-25 | 15:15 | 2015-02-26 |

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 34 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lefturich

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Page 2 of 34

5

**6** 

7

8

 $\begin{array}{c} 10\\ 11 \end{array}$ 

13

14

16

**18** 18

18

18

18 19 19

20

**21** 21

21

21

22

22

23

23

**25** 25

 $\begin{array}{c} 25\\ 25 \end{array}$ 

. . . . . . . . .

. . . . . . . . .

. . .

. . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . .

. . . . . . . . .

. . . .

## **Report Contents**

| Case Narrative                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| Analytical Report                                                                                                                            |
| Sample 387688 (CS-1)                                                                                                                         |
| Sample 387689 (CS-2)                                                                                                                         |
| Sample 387690 (N- Wall)                                                                                                                      |
| Sample 387691 (E- Wall)                                                                                                                      |
| Sample 387692 (W- Wall)                                                                                                                      |
| Sample 387693 (S- Wall)                                                                                                                      |
| Sample 387694 (RP)                                                                                                                           |
| Sample 387695 (SP)                                                                                                                           |
| Aethod Blanks                                                                                                                                |
| QC Batch 119724 - Method Blank (1)                                                                                                           |
| QC Batch 119733 - Method Blank $(1)$                                                                                                         |
| QC Batch 119741 - Method Blank (1)                                                                                                           |
| QC Batch 119761 - Method Blank (1)                                                                                                           |
| QC Batch 119764 - Method Blank $(1)$                                                                                                         |
| $\overrightarrow{QC}$ Batch 119791 - Method Blank $\overrightarrow{(1)}$                                                                     |
| $\overrightarrow{QC}$ Batch 119849 - Method Blank $\overbrace{1}$                                                                            |
|                                                                                                                                              |
| Laboratory Control Spikes                                                                                                                    |
| QC Batch $119724 - LCS(1) \dots \dots$ |
| QC Batch 119733 - LCS $(1)$                                                                                                                  |
| QC Batch 119741 - LCS (1)                                                                                                                    |
| •                                                                                                                                            |
| QC Batch 119764 - LCS $(1)$                                                                                                                  |
| QC Batch 119791 - LCS (1)                                                                                                                    |
| QC Datch 119849 - LCS (1)                                                                                                                    |
| Matrix Spikes                                                                                                                                |
| QC Batch 119724 - MS (1)                                                                                                                     |
| QC Batch 119733 - MS (1)                                                                                                                     |
| QC Batch 119741 - MS (1)                                                                                                                     |
| QC Batch 119761 - MS (1)                                                                                                                     |

#### 26. . . . . . . QC Batch 119764 - MS (1) 26QC Batch 119791 - MS (1) 27QC Batch 119849 - MS (1) 27**Calibration Standards** 29 29QC Batch 119724 - CCV (1) QC Batch 119724 - CCV (2) 2929QC Batch 119733 - CCV (1) ..... 2929QC Batch 119741 - CCV (1) ..... 30

Page 3 of 34

•

| QC Batch 119761 - CCV (1)      | 30 |
|--------------------------------|----|
| QC Batch 119761 - CCV $(2)$    | 30 |
| QC Batch 119761 - CCV $(3)$ 3  | 31 |
| QC Batch 119764 - CCV (1)      | 31 |
| QC Batch 119764 - CCV $(2)$    | 31 |
| QC Batch 119764 - CCV $(3)$ 33 | 31 |
| QC Batch 119791 - CCV (1)      | 31 |
| QC Batch 119791 - CCV (2)      | 32 |
| QC Batch 119849 - CCV (1)      | 32 |
| QC Batch 119849 - CCV $(2)$    | 32 |
| Appendix 3                     | 33 |
| Report Definitions             | 33 |
| Laboratory Certifications      | 33 |
| Standard Flags                 | 33 |
| Attachments                    | 33 |

Page 4 of 34

### Case Narrative

Samples for project 30137 #3 were received by TraceAnalysis, Inc. on 2015-02-26 and assigned to work order 15022625. Samples for work order 15022625 were received intact at a temperature of 4.1 C.

Samples were analyzed for the following tests using their respective methods.

|                      |                 | Prep   | $\operatorname{Prep}$ | QC     | Analysis              |
|----------------------|-----------------|--------|-----------------------|--------|-----------------------|
| Test                 | Method          | Batch  | Date                  | Batch  | Date                  |
| BTEX                 | S 8021B         | 101285 | 2015-03-03 at 14:50   | 119761 | 2015-03-04 at 12:14   |
| Chloride (Titration) | SM 4500-Cl B $$ | 101275 | 2015-03-03 at $12:51$ | 119733 | 2015-03-03 at $12:53$ |
| Chloride (Titration) | SM 4500-Cl B $$ | 101283 | 2015-03-03 at $14:35$ | 119741 | 2015-03-03 at $14:51$ |
| TPH DRO - NEW        | S 8015 D        | 101249 | 2015-03-02 at $14:10$ | 119724 | 2015-03-03 at $11:04$ |
| TPH GRO              | S 8015 D        | 101285 | 2015-03-03 at $14:50$ | 119764 | 2015-03-04 at $12:23$ |
| TPH GRO              | S 8015 D        | 101317 | 2015-03-04 at $14:57$ | 119791 | 2015-03-05 at $10:28$ |
| TPH GRO              | S 8015 D        | 101336 | 2015-03-05 at 11:54   | 119849 | 2015-03-09 at $09:05$ |

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15022625 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

•

Report Date: March 9, 2015

7250715022.001

Page Number: 6 of 34

| Sample: 387688 -     | CS-1           |            |             |                     |                  |        |             |          |
|----------------------|----------------|------------|-------------|---------------------|------------------|--------|-------------|----------|
| Laboratory: Midlan   | d              |            |             |                     |                  |        |             |          |
| Analysis: BTEX       |                | Analytical |             | S 80211             | В                |        | Prep Metho  |          |
| QC Batch: 119761     |                | Date Anal  | •           | 2015-03             |                  |        | Analyzed B  | <i>v</i> |
| Prep Batch: 101285   |                | Sample Pi  | reparation: | 2015-03             | 3-03             |        | Prepared By | y: AK    |
|                      |                |            |             | $\operatorname{RL}$ |                  |        |             |          |
| Parameter            | Flag           | Cert       | F           | Result              | Units            |        | Dilution    | RI       |
| Benzene              |                | 1          |             | 4.08                | mg/Kg            |        | 1           | 0.0200   |
| Toluene              | Je             | 1          |             | 25.3                | $\mathrm{mg/Kg}$ |        | 1           | 0.0200   |
| Ethylbenzene         |                | 1          |             | 5.54                | $\mathrm{mg/Kg}$ |        | 1           | 0.0200   |
| Xylene               | Je             | 1          |             | 47.6                | mg/Kg            |        | 1           | 0.0200   |
|                      |                |            |             |                     |                  | Spike  | Percent     | Recovery |
| Surrogate            | Flag           | g Cert     | Result      | Units               | Dilution         | Amount |             | Limits   |
| Trifluorotoluene (TF |                | ,          | 1.58        | mg/Kg               | 1                | 2.00   | 79          | 70 - 130 |
| 4-Bromofluorobenzen  |                |            | 6.72        | mg/Kg               | 1                | 2.00   | 336         | 70 - 130 |
| Sample: 387688 -     | CS-1           |            |             |                     |                  |        |             |          |
| Laboratory: Midlan   |                |            |             |                     |                  |        |             |          |
|                      | le (Titration) |            | ytical Met  |                     | M 4500-Cl B      |        | Prep Met    | ,        |
| QC Batch: 119733     |                |            | Analyzed    |                     | 015-03-03        |        | Analyzed    |          |
| Prep Batch: 101275   |                | Samj       | ole Prepara | ation: 20           | 015-03-03        |        | Prepared    | By: EM   |
|                      |                |            |             | $\operatorname{RL}$ |                  |        |             |          |
| Parameter            | Flag           | Cert       | F           | Result              | Units            |        | Dilution    | RI       |
| Chloride             | Qs             |            |             | 383                 | mg/Kg            |        | 5           | 4.00     |

Work Order: 15022625

 $30137 \ \#3$ 

# Analytical Report

| Laboratory:                                         | Midland                                                  |          |                                          |                        |                              |                         |
|-----------------------------------------------------|----------------------------------------------------------|----------|------------------------------------------|------------------------|------------------------------|-------------------------|
| Analysis:                                           | Chloride (Titration)                                     | Analytic | al Method:                               | SM 4500-Cl B           | Prep Method:                 | N/A                     |
| QC Batch:                                           | 119733                                                   | Date An  |                                          | 2015-03-03             | Analyzed By:                 | EM                      |
| Prep Batch:                                         | 101275                                                   |          | Preparation:                             | 2015-03-03             | Prepared By:                 | $\mathbf{E}\mathbf{M}$  |
|                                                     |                                                          |          | RL                                       |                        |                              |                         |
| Parameter                                           | Flag                                                     | Cert     | Result                                   | Units                  | Dilution                     | $\operatorname{RL}$     |
|                                                     |                                                          |          |                                          | /                      |                              |                         |
| Chloride<br>Sample: 38                              | Qs<br>7688 - CS-1                                        |          | 383                                      | mg/Kg                  | 5                            | 4.00                    |
| Sample: 38<br>Laboratory:<br>Analysis:              | <b>7688 - CS-1</b><br>Midland<br>TPH DRO - NEW           | v        | ical Method:                             | S 8015 D               | Prep Method:                 | N/A                     |
| Sample: 38<br>Laboratory:<br>Analysis:<br>QC Batch: | <b>7688 - CS-1</b><br>Midland<br>TPH DRO - NEW<br>119724 | Date A   | ical Method:<br>nalyzed:                 | S 8015 D<br>2015-03-03 | Prep Method:<br>Analyzed By: | N/A<br>SC               |
| Sample: 38<br>Laboratory:<br>Analysis:<br>QC Batch: | <b>7688 - CS-1</b><br>Midland<br>TPH DRO - NEW           | Date A   | ical Method:                             | S 8015 D               | Prep Method:                 | 4.00<br>N/A<br>SC<br>SC |
| Sample: 38<br>Laboratory:<br>Analysis:<br>QC Batch: | <b>7688 - CS-1</b><br>Midland<br>TPH DRO - NEW<br>119724 | Date A   | ical Method:<br>nalyzed:                 | S 8015 D<br>2015-03-03 | Prep Method:<br>Analyzed By: | N/A<br>SC               |
|                                                     | <b>7688 - CS-1</b><br>Midland<br>TPH DRO - NEW<br>119724 | Date A   | ical Method:<br>nalyzed:<br>Preparation: | S 8015 D<br>2015-03-03 | Prep Method:<br>Analyzed By: | N/A<br>SC               |

| Report Date: March 9, 2015<br>7250715022.001                       |      |       | V       | Work Orde:<br>3013                   |                     | 25       |                 | Page Num                               | umber: 7 of 34     |  |
|--------------------------------------------------------------------|------|-------|---------|--------------------------------------|---------------------|----------|-----------------|----------------------------------------|--------------------|--|
| Surrogate Flag                                                     | Cer  | - ·   | Result  | Units                                | Dilu                |          | Spike<br>.mount | Percent<br>Recovery                    | Recovery<br>Limits |  |
| n-Tricosane                                                        | Cer  | U .   | 82.7    | mg/Kg                                |                     |          | 100             | 83                                     | 70 - 130           |  |
| Sample: 387688 - CS-1                                              |      |       |         |                                      |                     |          |                 |                                        |                    |  |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:119791Prep Batch:101317 |      |       | Date An | al Method:<br>alyzed:<br>Preparation | 2015-0              | 3-05     |                 | Prep Metho<br>Analyzed B<br>Prepared B | y: AK              |  |
|                                                                    |      |       |         |                                      | $\operatorname{RL}$ |          |                 |                                        |                    |  |
| Parameter                                                          | Flag |       | Cert    |                                      | Result              | Un       |                 | Dilution                               |                    |  |
| GRO                                                                |      |       | 1       |                                      | 2420                | mg/l     | <u>ng</u>       | 50                                     | 4.00               |  |
| Surrogate                                                          |      | Flag  | Cert    | Result                               | Units               | Dilution | Spike<br>Amount | Percent<br>Recovery                    | Recovery<br>Limits |  |
| Trifluorotoluene (TFT)                                             |      | 1 103 | Cert    | 86.2                                 | mg/Kg               | 50       | 100             | 86                                     | 70 - 130           |  |
| 4-Bromofluorobenzene (4-BF                                         | В)   |       |         | 107                                  | mg/Kg               | 50       | 100             | 107                                    | 70 - 130           |  |

#### Sample: 387689 - CS-2

| Laboratory:MidlandAnalysis:BTEXQC Batch:119761Prep Batch:101285 |      | Da   | ate Analy | Method:<br>yzed:<br>eparation: | S 8021B<br>2015-03-<br>2015-03- | 04               |        | Prep Methoo<br>Analyzed By<br>Prepared By | v: AK               |
|-----------------------------------------------------------------|------|------|-----------|--------------------------------|---------------------------------|------------------|--------|-------------------------------------------|---------------------|
|                                                                 |      |      |           |                                | $\operatorname{RL}$             |                  |        |                                           |                     |
| Parameter                                                       | Flag |      | Cert      | R                              | Result                          | Units            |        | Dilution                                  | $\operatorname{RL}$ |
| Benzene                                                         |      |      | 1         |                                | 112                             | mg/Kg            |        | 20                                        | 0.0200              |
| Toluene                                                         | Je   |      | 1         |                                | <b>378</b>                      | $\mathrm{mg/Kg}$ |        | 20                                        | 0.0200              |
| Ethylbenzene                                                    |      |      | 1         |                                | 82.3                            | mg/Kg            |        | 20                                        | 0.0200              |
| Xylene                                                          | Je   |      | 1         |                                | 346                             | mg/Kg            |        | 20                                        | 0.0200              |
|                                                                 |      |      |           |                                |                                 |                  | Spike  | Percent                                   | Recovery            |
| Surrogate                                                       |      | Flag | Cert      | Result                         | Units                           | Dilution         | Amount | Recovery                                  | Limits              |
| Trifluorotoluene (TFT)                                          |      |      |           | 35.1                           | $\mathrm{mg/Kg}$                | 20               | 40.0   | 88                                        | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                    | Qsr  | Qsr  |           | 67.3                           | mg/Kg                           | 20               | 40.0   | 168                                       | 70 - 130            |

•

| Report Date:<br>7250715022.00 | March 9, 2015<br>01                                |      | Work Order: 15022625<br>30137 #3 |                                          |                       |                                     |                        | Page Num                               | ber: 8 of 34                   |
|-------------------------------|----------------------------------------------------|------|----------------------------------|------------------------------------------|-----------------------|-------------------------------------|------------------------|----------------------------------------|--------------------------------|
| Sample: 387                   | 7689 - CS-2                                        |      |                                  |                                          |                       |                                     |                        |                                        |                                |
| Analysis:<br>QC Batch:        | Midland<br>Chloride (Titration<br>119733<br>101275 | n)   | Date                             | ytical Met<br>Analyzed:<br>ple Prepara   | 20                    | И 4500-Cl В<br>15-03-03<br>15-03-03 |                        | Prep Met<br>Analyzed<br>Prepared       | By: EM                         |
|                               |                                                    |      |                                  |                                          | RL                    |                                     |                        |                                        |                                |
| Parameter<br>Chloride         |                                                    | Flag | Cert                             |                                          | tesult<br><b>3160</b> | Uni<br>mg/k                         |                        | Dilution 5                             | $\frac{\text{RL}}{4.00}$       |
|                               |                                                    | Qs   |                                  |                                          | 0100                  | IIIg/ I                             | 5                      | 0                                      | 1.00                           |
| Sample: 387                   | 7689 - CS-2                                        |      |                                  |                                          |                       |                                     |                        |                                        |                                |
| Analysis:<br>QC Batch:        | Midland<br>TPH DRO - NEW<br>119724<br>101249       | T    | Dat                              | alytical Me<br>e Analyzec<br>nple Prepar | l: 2                  | 8015 D<br>015-03-03<br>015-03-02    |                        | Prep Met<br>Analyzed<br>Prepared       | By: SC                         |
| _                             |                                                    |      |                                  | _                                        | RL                    |                                     |                        |                                        |                                |
| Parameter                     |                                                    | Flag | Cert                             | R                                        | Result                | Uni                                 |                        | Dilution                               | RL                             |
| DRO                           |                                                    |      | 1                                |                                          | 320                   | mg/k                                | g                      | 1                                      | 50.0                           |
| Surrogate                     | Flag                                               | Cert | Result                           | Units                                    | Dilu                  |                                     | bpike<br>nount         | Percent<br>Recovery                    | Recovery<br>Limits             |
| n-Tricosane                   |                                                    |      | 96.7                             | mg/Kg                                    | 1                     |                                     | 100                    | 97                                     | 70 - 130                       |
| Analysis:                     | Midland<br>TPH GRO<br>119849                       |      | Date An                          | al Method:<br>alyzed:<br>Preparatior     | 2015-0                | 3-09                                |                        | Prep Metho<br>Analyzed B<br>Prepared B | y: AK                          |
| Parameter                     |                                                    | Flag | Cert                             | F                                        | RL<br>Result          | Uni                                 | te                     | Dilution                               | $\operatorname{RL}$            |
| $\frac{1}{\text{GRO}}$        |                                                    | Qs   | 1                                |                                          | <b>5200</b>           | mg/k                                |                        | 100                                    | 4.00                           |
| Surrogate<br>Trifluorotoluer  | no (TET)                                           | Flag |                                  | Result                                   | Units                 | Dilution<br>100                     | Spike<br>Amount<br>200 | Percent<br>Recovery<br>92              | Recovery<br>Limits<br>70 - 130 |
|                               | benzene (4-BFB)                                    |      |                                  | $\frac{185}{248}$                        | m mg/Kg $ m mg/Kg$    | $100 \\ 100$                        | 200<br>200             | $\frac{92}{124}$                       | 70 - 130<br>70 - 130           |
|                               | Doursene (4-DI D)                                  |      |                                  | 240                                      | mg/ ng                | 100                                 | 200                    | 124                                    | 10 - 100                       |

| Work Order: 15022625<br>30137 #3 |           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             | Page Number: 9                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                                                                           |
|----------------------------------|-----------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                           |
|                                  |           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                           |
|                                  | Analytica | Analytical Method:                                 |                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  | Prep Method                                            | : S 5035                                                                                                                                                  |
|                                  | Date Ana  | alyzed:                                            | 2015-03-                                                                                                                                                                                                                                                                                                                                                                              | -04                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  | Analyzed By                                            | : AK                                                                                                                                                      |
|                                  | Sample F  | reparation                                         | : 2015-03-                                                                                                                                                                                                                                                                                                                                                                            | -03                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  | Prepared By:                                           | AK                                                                                                                                                        |
|                                  |           |                                                    | RL                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                           |
| Flag                             | Cert      |                                                    | Result                                                                                                                                                                                                                                                                                                                                                                                | Units                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  | Dilution                                               | $\operatorname{RL}$                                                                                                                                       |
| -                                | 1         | 0                                                  | 0.0270                                                                                                                                                                                                                                                                                                                                                                                | mg/Kg                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  | 1                                                      | 0.0200                                                                                                                                                    |
|                                  | 1         | 0                                                  | 0.0436                                                                                                                                                                                                                                                                                                                                                                                | mg/Kg                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  | 1                                                      | 0.0200                                                                                                                                                    |
| U                                | 1         | <                                                  | 0.0200                                                                                                                                                                                                                                                                                                                                                                                | $\mathrm{mg/Kg}$                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  | 1                                                      | 0.0200                                                                                                                                                    |
|                                  | 1         | 0                                                  | 0.0334                                                                                                                                                                                                                                                                                                                                                                                | mg/Kg                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  | 1                                                      | 0.0200                                                                                                                                                    |
|                                  |           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             | Spike                                                                                                                                                                                                                                                                                                            | Percent                                                | Recovery                                                                                                                                                  |
| $\mathbf{F}$                     | lag Cert  | Result                                             | Units                                                                                                                                                                                                                                                                                                                                                                                 | Dilution                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                  | Recovery                                               | Limits                                                                                                                                                    |
|                                  |           | 1.79                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                           | 2.00                                                                                                                                                                                                                                                                                                             | 90                                                     | 70 - 130                                                                                                                                                  |
|                                  |           | 2.23                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                           | 2.00                                                                                                                                                                                                                                                                                                             | 112                                                    | 70 - 130                                                                                                                                                  |
| _                                | U         | Date Ana<br>Sample F<br>Flag Cert<br>1<br>U 1<br>1 | Date Analyzed:<br>Sample PreparationFlagCert10 $U$ 10 $U$ 00 $U$ 0 $U$ 0 | Date Analyzed:     2015-03       Sample Preparation:     2015-03       Flag     Cert     RL       1     0.0270       1     0.0436       0     1     <0.0200 | Date Analyzed:       2015-03-04         Sample Preparation:       2015-03-03         RL       RE         1       0.0270       mg/Kg         1       0.0436       mg/Kg         1       0.0334       mg/Kg         1       0.0334       mg/Kg         1       0.0334       10/Kg         1       1.79       mg/Kg | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Date Analyzed:2015-03-04Analyzed By<br>Prepared By:Sample Preparation:2015-03-03Prepared By:FlagCertResultUnitsDilution10.0270mg/Kg110.0436mg/Kg11<0.0200 |

#### Sample: 387690 - N- Wall

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>Chloride (Titration)<br>119733<br>101275 | Date | tical Method:<br>Analyzed:<br>e Preparation: | SM 4500-Cl B<br>2015-03-03<br>2015-03-03 | Prep Method:<br>Analyzed By:<br>Prepared By: | ÉM                  |
|------------------------------------------------------|-----------------------------------------------------|------|----------------------------------------------|------------------------------------------|----------------------------------------------|---------------------|
|                                                      |                                                     |      | $\operatorname{RL}$                          |                                          |                                              |                     |
| Parameter                                            | Flag                                                | Cert | Result                                       | Units                                    | Dilution                                     | $\operatorname{RL}$ |
| Chloride                                             | Qs                                                  |      | 383                                          | m mg/Kg                                  | 5                                            | 4.00                |

#### Sample: 387690 - N- Wall

| Laboratory: | Midland      |      |        |               |             |                 |                     |                     |
|-------------|--------------|------|--------|---------------|-------------|-----------------|---------------------|---------------------|
| Analysis:   | TPH DRO - NE | W    | Ana    | lytical Metho | Prep Me     | thod: N/A       |                     |                     |
| QC Batch:   | 119724       |      |        |               | 2015-0      | )3-03           | Analyzed            | l By: SC            |
| Prep Batch: | 101249       |      | Sam    | ple Preparat  | ion: 2015-0 | 03-02           | Preparec            | l By: SC            |
|             |              |      |        | ]             | RL          |                 |                     |                     |
| Parameter   |              | Flag | Cert   | Res           | ult         | Units           | Dilution            | $\operatorname{RL}$ |
| DRO         |              | U    | 1      | <5            | 0.0         | mg/Kg           | 1                   | 50.0                |
| Surrogate   | Flag         | Cert | Result | Units         | Dilution    | Spike<br>Amount | Percent<br>Recovery | Recovery<br>Limits  |
| n-Tricosane | -0           |      | 87.0   | mg/Kg         | 1           | 100             | 87                  | 70 - 130            |

| Report Date: March 9, 2015<br>7250715022.001                       |                                                                                 |       | W     |        | er: 1502262<br>37 #3 | 5        |                                        | Page Numb           | er: 10 of 34        |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|-------|--------|----------------------|----------|----------------------------------------|---------------------|---------------------|
| Sample: 387690 - N- Wall                                           |                                                                                 |       |       |        |                      |          |                                        |                     |                     |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:119764Prep Batch:101285 | Analytical Method:S 8015 DDate Analyzed:2015-03-04Sample Preparation:2015-03-03 |       |       |        |                      |          | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |                     |
|                                                                    |                                                                                 |       |       |        | $\operatorname{RL}$  |          |                                        |                     |                     |
| Parameter                                                          | Flag                                                                            |       | Cert  |        | Result               | Unit     | s                                      | Dilution            | $\operatorname{RL}$ |
| GRO                                                                | U                                                                               |       | 1     |        | <4.00                | mg/K     | g                                      | 1                   | 4.00                |
| Surrogate                                                          |                                                                                 | Flag  | Cert  | Result | Units                | Dilution | Spike<br>Amount                        | Percent<br>Recovery | Recovery<br>Limits  |
| Trifluorotoluene (TFT)                                             |                                                                                 | 1 145 | 0.010 | 1.82   | mg/Kg                | 1        | 2.00                                   | 91                  | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                       |                                                                                 |       |       | 1.96   | mg/Kg                | 1        | 2.00                                   | 98                  | 70 - 130            |

#### Sample: 387691 - E- Wall

| Laboratory: Midland          |              |      |           |            |                     |                  |        |             |                     |
|------------------------------|--------------|------|-----------|------------|---------------------|------------------|--------|-------------|---------------------|
| Analysis: BTEX               |              | Ar   | nalytical | Method:    | S 8021B             |                  |        | Prep Method | l: S 5035           |
| QC Batch: 119761             |              | Dε   | te Anal   | yzed:      | 2015-03-            | 04               |        | Analyzed By | : AK                |
| Prep Batch: 101285           |              | Sa   | mple Pr   | eparation: | 2015-03-            | 03               |        | Prepared By | : AK                |
|                              |              |      |           |            | $\operatorname{RL}$ |                  |        |             |                     |
| Parameter                    | Flag         |      | Cert      | F          | Result              | Units            |        | Dilution    | $\operatorname{RL}$ |
| Benzene                      |              |      | 1         | 0.         | 0214                | mg/Kg            |        | 1           | 0.0200              |
| Toluene                      |              |      | 1         | (          | ).163               | m mg/Kg          |        | 1           | 0.0200              |
| Ethylbenzene                 |              |      | 1         | (          | ).746               | $\mathrm{mg/Kg}$ |        | 1           | 0.0200              |
| Xylene                       |              |      | 1         |            | 3.48                | mg/Kg            |        | 1           | 0.0200              |
|                              |              |      |           |            |                     |                  | Spike  | Percent     | Recovery            |
| Surrogate                    |              | Flag | Cert      | Result     | Units               | Dilution         | Amount | Recovery    | Limits              |
| Trifluorotoluene (TFT)       |              |      |           | 2.14       | mg/Kg               | 1                | 2.00   | 107         | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB) | $_{\rm Qsr}$ | Qsr  |           | 4.44       | mg/Kg               | 1                | 2.00   | 222         | 70 - 130            |

#### Sample: 387691 - E- Wall

| Laboratory: | Midland              |                     |              |              |                        |
|-------------|----------------------|---------------------|--------------|--------------|------------------------|
| Analysis:   | Chloride (Titration) | Analytical Method:  | SM 4500-Cl B | Prep Method: | N/A                    |
| QC Batch:   | 119733               | Date Analyzed:      | 2015-03-03   | Analyzed By: | $\mathbf{E}\mathbf{M}$ |
| Prep Batch: | 101275               | Sample Preparation: | 2015-03-03   | Prepared By: | $\mathbf{E}\mathbf{M}$ |
|             |                      |                     |              |              |                        |

continued ...

.

| Report Date<br>7250715022.0                                        | : March 9, 2015<br>001                                               | We   | ork Order: 1<br>30137 # |                                           |                                      | Page Numb              | er: 11 of 34                           |                                |
|--------------------------------------------------------------------|----------------------------------------------------------------------|------|-------------------------|-------------------------------------------|--------------------------------------|------------------------|----------------------------------------|--------------------------------|
| sample 38769                                                       | 91 continued                                                         |      |                         |                                           |                                      |                        |                                        |                                |
| Parameter                                                          |                                                                      | Flag | Cert                    | Res                                       | RL<br>ult                            | Units                  | Dilution                               | RL                             |
| Parameter                                                          |                                                                      | Flag | Cert                    | Res                                       |                                      | Units                  | Dilution                               | RL                             |
| Chloride                                                           |                                                                      | Qs   |                         | 15                                        | 30                                   | m mg/Kg                | 5                                      | 4.00                           |
| Sample: 38<br>Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | <b>7691 - E- Wall</b><br>Midland<br>TPH DRO - NE<br>119724<br>101249 | W    | Date                    | ytical Metho<br>Analyzed:<br>ple Preparat | 2015-0                               | 03-03                  | Prep Met<br>Analyzed<br>Prepared       | By: SC                         |
| Parameter                                                          |                                                                      | Flag | Cert                    | Res                                       | RL<br>ult                            | Units                  | Dilution                               | $\operatorname{RL}$            |
| DRO                                                                |                                                                      |      | 1                       | 61                                        | 1.1                                  | m mg/Kg                | 1                                      | 50.0                           |
| Surrogate<br>n-Tricosane                                           | Flag                                                                 | Cert | Result<br>94.5          | Units<br>mg/Kg                            | Dilution<br>1                        | Spike<br>Amount<br>100 | Percent<br>Recovery<br>94              | Recovery<br>Limits<br>70 - 130 |
| Sample: 38<br>Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | <b>7691 - E- Wall</b><br>Midland<br>TPH GRO<br>119764<br>101285      |      | Date Ana                | l Method:<br>lyzed:<br>reparation:        | S 8015 D<br>2015-03-04<br>2015-03-03 |                        | Prep Metho<br>Analyzed B<br>Prepared B | y: AK                          |
| i tep Datell.                                                      | 101200                                                               |      | Semple 1                | -                                         | 2015-05-05                           |                        | r repared D                            | y. 1111                        |
| Parameter<br>GRO                                                   |                                                                      | Flag | Cert                    | Res                                       |                                      | Units<br>mg/Kg         | Dilution<br>1                          | RL<br>4.00                     |

| 0110                         |     |      | 1    |        | 144   | 1116/116 |        | 1        | 4.00     |
|------------------------------|-----|------|------|--------|-------|----------|--------|----------|----------|
|                              |     |      |      |        |       |          | Spike  | Percent  | Recovery |
| Surrogate                    |     | Flag | Cert | Result | Units | Dilution | Amount | Recovery | Limits   |
| Trifluorotoluene (TFT)       |     |      |      | 1.65   | mg/Kg | 1        | 2.00   | 82       | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB) | Qsr | Qsr  |      | 5.27   | mg/Kg | 1        | 2.00   | 264      | 70 - 130 |

| Report Date: March 9, 2015<br>7250715022.001                    |       | W        |                                   | r: 15022623<br>7 #3 | 5        |                 | Page Numb                              | er: 12 of 34        |
|-----------------------------------------------------------------|-------|----------|-----------------------------------|---------------------|----------|-----------------|----------------------------------------|---------------------|
| Sample: 387692 - W- Wall                                        |       |          |                                   |                     |          |                 |                                        |                     |
| Laboratory:MidlandAnalysis:BTEXQC Batch:119761Prep Batch:101285 | I     | Date Ana | l Method:<br>lyzed:<br>reparation | 2015-03             | -04      |                 | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |
|                                                                 |       |          |                                   | $\operatorname{RL}$ |          |                 |                                        |                     |
| Parameter                                                       | Flag  | Cert     |                                   | Result              | Units    |                 | Dilution                               | $\operatorname{RL}$ |
| Benzene                                                         |       | 1        | (                                 | ).0665              | mg/Kg    |                 | 1                                      | 0.0200              |
| Toluene                                                         |       | 1        |                                   | 0.304               | mg/Kg    |                 | 1                                      | 0.0200              |
| Ethylbenzene                                                    |       | 1        | 0                                 | 0.0500              | mg/Kg    |                 | 1                                      | 0.0200              |
| Xylene                                                          |       | 1        |                                   | 0.851               | mg/Kg    |                 | 1                                      | 0.0200              |
| Surrogate                                                       | Flag  | Cert     | Result                            | Units               | Dilution | Spike<br>Amount | Percent<br>Recovery                    | Recovery<br>Limits  |
| Trifluorotoluene (TFT)                                          | 1 1ag | 0010     | 1.64                              | mg/Kg               | 1        | 2.00            | 82                                     | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                    |       |          | 2.23                              | mg/Kg               | 1        | 2.00            | 112                                    | 70 - 130            |

#### Sample: 387692 - W- Wall

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>Chloride (Titration)<br>119741<br>101283 | Date A | cal Method:<br>nalyzed:<br>Preparation: | SM 4500-Cl B<br>2015-03-03<br>2015-03-03 | Prep Method:<br>Analyzed By:<br>Prepared By: | ÉM                  |
|------------------------------------------------------|-----------------------------------------------------|--------|-----------------------------------------|------------------------------------------|----------------------------------------------|---------------------|
|                                                      |                                                     |        | $\operatorname{RL}$                     |                                          |                                              |                     |
| Parameter                                            | Flag                                                | Cert   | Result                                  | Units                                    | Dilution                                     | $\operatorname{RL}$ |
| Chloride                                             | Qs                                                  |        | 3080                                    | mg/Kg                                    | 5                                            | 4.00                |

#### Sample: 387692 - W- Wall

| Laboratory:   | Midland      |      |        |               |             |        |          |                     |
|---------------|--------------|------|--------|---------------|-------------|--------|----------|---------------------|
| Analysis:     | TPH DRO - NE | EW   | Ana    | lytical Metho | od: S 8015  | 5 D    | Prep Me  | thod: N/A           |
| QC Batch:     | 119724       |      | Date   | e Analyzed:   | 2015-0      | )3-03  | Analyzed | l By: SC            |
| Prep Batch:   | 101249       |      | Sam    | ple Preparat  | ion: 2015-0 | )3-02  | Prepared | By: SC              |
|               |              |      |        |               |             |        |          |                     |
|               |              |      |        | ]             | RL          |        |          |                     |
| Parameter     |              | Flag | Cert   | Res           | ult         | Units  | Dilution | $\operatorname{RL}$ |
| DRO           |              | U    | 1      | <5            | 0.0         | mg/Kg  | 1        | 50.0                |
|               |              |      |        |               |             | Spike  | Percent  | Recovery            |
| Surrogate     | Flag         | Cert | Result | Units         | Dilution    | Amount | Recovery | Limits              |
| n-Tricosane   | 1108         | 2010 | 94.1   | mg/Kg         | 1           | 100    | 94       | 70 - 130            |
| ii iiicobaiic |              |      | 01.1   | 1118/118      | 1           | 100    | 51       | 10 100              |

| Report Date: March 9, 2015<br>7250715022.001                       |      |      | W       |                                    | er: 1502262<br>37 #3 | 5        |        | Page Number: 13 of                     |                     |  |  |
|--------------------------------------------------------------------|------|------|---------|------------------------------------|----------------------|----------|--------|----------------------------------------|---------------------|--|--|
| Sample: 387692 - W- Wall                                           |      |      |         |                                    |                      |          |        |                                        |                     |  |  |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:119849Prep Batch:101336 |      |      | Date An | al Methoo<br>alyzed:<br>Preparatio | 2015-0               | 03-09    |        | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |  |  |
|                                                                    |      |      |         |                                    | $\operatorname{RL}$  |          |        |                                        |                     |  |  |
| Parameter                                                          | Flag |      | Cert    |                                    | Result               | Unit     | s      | Dilution                               | $\operatorname{RL}$ |  |  |
| GRO                                                                | Qs   |      | 1       |                                    | 14.5                 | mg/K     | g      | 1                                      | 4.00                |  |  |
|                                                                    |      |      |         |                                    |                      |          | Spike  | Percent                                | Recovery            |  |  |
| Surrogate                                                          |      | Flag | Cert    | Result                             | Units                | Dilution | Amount | Recovery                               | Limits              |  |  |
| Trifluorotoluene (TFT)                                             |      |      |         | 1.72                               | mg/Kg                | 1        | 2.00   | 86                                     | 70 - 130            |  |  |
| 4-Bromofluorobenzene (4-BFB)                                       |      |      |         | 2.01                               | $\mathrm{mg/Kg}$     | 1        | 2.00   | 100                                    | 70 - 130            |  |  |

#### Sample: 387693 - S- Wall

| Laboratory: Midland          |      |      |           |            |                     |                  |        |              |                     |
|------------------------------|------|------|-----------|------------|---------------------|------------------|--------|--------------|---------------------|
| Analysis: BTEX               |      | Ar   | nalytical | Method:    | S 8021B             |                  |        | Prep Method  | : S 5035            |
| QC Batch: 119761             |      | Da   | te Anal   | yzed:      | 2015-03-            | 04               |        | Analyzed By: | AK                  |
| Prep Batch: 101285           |      | Sa   | mple Pr   | eparation: | 2015-03-            | 03               |        | Prepared By: | AK                  |
|                              |      |      |           |            | $\operatorname{RL}$ |                  |        |              |                     |
| Parameter                    | Flag |      | Cert      | F          | Result              | Units            |        | Dilution     | $\operatorname{RL}$ |
| Benzene                      |      |      | 1         | 0.         | 0494                | mg/Kg            |        | 1            | 0.0200              |
| Toluene                      |      |      | 1         | (          | 0.277               | $\mathrm{mg/Kg}$ |        | 1            | 0.0200              |
| Ethylbenzene                 |      |      | 1         | (          | 0.352               | m mg/Kg          |        | 1            | 0.0200              |
| Xylene                       |      |      | 1         | (          | ).556               | mg/Kg            |        | 1            | 0.0200              |
|                              |      |      |           |            |                     |                  | Spike  | Percent      | Recovery            |
| Surrogate                    |      | Flag | Cert      | Result     | Units               | Dilution         | Amount | Recovery     | Limits              |
| Trifluorotoluene (TFT)       |      |      |           | 1.70       | mg/Kg               | 1                | 2.00   | 85           | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB) | Qsr  | Qsr  |           | 2.72       | mg/Kg               | 1                | 2.00   | 136          | 70 - 130            |

#### Sample: 387693 - S- Wall

| Laboratory: | Midland              |                     |              |              |                        |
|-------------|----------------------|---------------------|--------------|--------------|------------------------|
| Analysis:   | Chloride (Titration) | Analytical Method:  | SM 4500-Cl B | Prep Method: | N/A                    |
| QC Batch:   | 119733               | Date Analyzed:      | 2015-03-03   | Analyzed By: | $\mathbf{E}\mathbf{M}$ |
| Prep Batch: | 101275               | Sample Preparation: | 2015-03-03   | Prepared By: | $\mathbf{E}\mathbf{M}$ |
|             |                      |                     |              |              |                        |

continued ...

•

| Report Date: 7250715022.00                                                                       | Date: March 9, 2015<br>022.001                                 |                                                                                 |          | Work Order: 15022625<br>30137 #3 |                                            |                                                        |                                            | Page Number: 14 of 34 |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|----------|----------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------------|-----------------------|--|--|
| sample 387693                                                                                    | continued                                                      |                                                                                 |          |                                  |                                            |                                                        |                                            |                       |  |  |
|                                                                                                  |                                                                |                                                                                 |          |                                  | RL                                         |                                                        |                                            |                       |  |  |
| Parameter                                                                                        |                                                                | Flag                                                                            | Cert     | Res                              | sult                                       | Units                                                  | Dilution                                   | RI                    |  |  |
|                                                                                                  |                                                                |                                                                                 |          |                                  | RL                                         |                                                        |                                            |                       |  |  |
| Parameter                                                                                        |                                                                | Flag                                                                            | Cert     | Rea                              |                                            | Units                                                  | Dilution                                   | RI                    |  |  |
| Chloride                                                                                         |                                                                | Qs                                                                              |          | 111                              | 100                                        | m mg/Kg                                                | 5                                          | 4.00                  |  |  |
| Sample: 387693 - S- WallLaboratory:MidlandAnalysis:TPH DRO - NEWQC Batch:119724Prep Batch:101249 |                                                                | Analytical Method:S 8015 DDate Analyzed:2015-03-03Sample Preparation:2015-03-02 |          |                                  |                                            | Prep Method: N/A<br>Analyzed By: SC<br>Prepared By: SC |                                            |                       |  |  |
| Parameter                                                                                        |                                                                | Flag                                                                            | Cert     | Res                              | RL                                         | Units                                                  | Dilution                                   | RI                    |  |  |
| DRO                                                                                              |                                                                | 1 145                                                                           | 1        |                                  | <b>2.1</b>                                 | mg/Kg                                                  | 1                                          | 50.0                  |  |  |
| Surrogate                                                                                        | Flag                                                           | Cert                                                                            | Result   | Units                            | Dilution                                   | Spike<br>Amount                                        | Percent<br>Recovery                        | Recovery<br>Limits    |  |  |
| n-Tricosane                                                                                      |                                                                |                                                                                 | 91.4     | $\mathrm{mg/Kg}$                 | 1                                          | 100                                                    | 91                                         | 70 - 130              |  |  |
| Laboratory: 1<br>Analysis: 7<br>QC Batch: 1                                                      | <b>693 - S- Wall</b><br>Midland<br>TPH GRO<br>119764<br>101285 |                                                                                 | Date Ana | reparation:                      | S 8015 D<br>2015-03-04<br>2015-03-03<br>BL |                                                        | Prep Method<br>Analyzed By<br>Prepared By: | : AK                  |  |  |
| Parameter                                                                                        |                                                                | Flag                                                                            | Cert     | Res                              | RL<br>sult                                 | Units                                                  | Dilution                                   | RI                    |  |  |
| GRO                                                                                              |                                                                | 8                                                                               | 1        |                                  | L20                                        | mg/Kg                                                  | 1                                          | 4.00                  |  |  |

| Surrogate                    |     | Flag | Cert | Result | Units            | Dilution | Spike<br>Amount | Percent<br>Recovery | Recovery<br>Limits |
|------------------------------|-----|------|------|--------|------------------|----------|-----------------|---------------------|--------------------|
| Trifluorotoluene (TFT)       |     | 0    |      | 1.68   | mg/Kg            | 1        | 2.00            | 84                  | 70 - 130           |
| 4-Bromofluorobenzene (4-BFB) | Qsr | Qsr  |      | 3.36   | $\mathrm{mg/Kg}$ | 1        | 2.00            | 168                 | 70 - 130           |

| Report Date: March 9, 2015<br>7250715022.001 | ,    |    |           | Vork Order<br>30137 | :: 15022623<br>7 #3 |          | Page Number: 15 of 3 |              |                     |  |
|----------------------------------------------|------|----|-----------|---------------------|---------------------|----------|----------------------|--------------|---------------------|--|
| Sample: 387694 - RP                          |      |    |           |                     |                     |          |                      |              |                     |  |
| Laboratory: Midland                          |      |    |           |                     |                     |          |                      |              |                     |  |
| Analysis: BTEX                               |      |    | v         | l Method:           | S 8021B             |          |                      | Prep Method  |                     |  |
| QC Batch: 119761                             |      |    | Date Anal | v                   | 2015-03-            |          |                      | Analyzed By  |                     |  |
| Prep Batch: 101285                           |      | S  | Sample Pi | reparation          | 2015-03-            | -03      |                      | Prepared By: | AK                  |  |
|                                              |      |    |           |                     | RL                  |          |                      |              |                     |  |
| Parameter                                    | Flag |    | Cert      |                     | Result              | Units    |                      | Dilution     | $\operatorname{RL}$ |  |
| Benzene                                      | -    |    | 1         | 0                   | 0.0461              | mg/Kg    |                      | 1            | 0.0200              |  |
| Toluene                                      | U    |    | 1         | <                   | 0.0200              | mg/Kg    |                      | 1            | 0.0200              |  |
| Ethylbenzene                                 |      |    | 1         |                     | 0.254               | m mg/Kg  |                      | 1            | 0.0200              |  |
| Xylene                                       |      |    | 1         |                     | 0.511               | mg/Kg    |                      | 1            | 0.0200              |  |
|                                              |      |    |           |                     |                     |          | Spike                | Percent      | Recovery            |  |
| Surrogate                                    | Fl   | ag | Cert      | Result              | Units               | Dilution | Amount               | Recovery     | Limits              |  |
| Trifluorotoluene (TFT)                       |      |    |           | 1.78                | mg/Kg               | 1        | 2.00                 | 89           | 70 - 130            |  |
| 4-Bromofluorobenzene (4-BFB)                 |      |    |           | 2.47                | mg/Kg               | 1        | 2.00                 | 124          | 70 - 130            |  |

#### Sample: 387694 - RP

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>Chloride (Titration)<br>119733<br>101275 | Date                  | tical Method:<br>Analyzed:<br>le Preparation: | SM 4500-Cl B<br>2015-03-03<br>2015-03-03 | Prep Method:<br>Analyzed By:<br>Prepared By: | ÉM                  |
|------------------------------------------------------|-----------------------------------------------------|-----------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------|---------------------|
| _                                                    |                                                     |                       | RL                                            |                                          |                                              | _                   |
| Parameter                                            | Flag                                                | $\operatorname{Cert}$ | Result                                        | Units                                    | Dilution                                     | $\operatorname{RL}$ |
| Chloride                                             | Qs                                                  |                       | 9000                                          | m mg/Kg                                  | 5                                            | 4.00                |

### Sample: 387694 - RP

| Laboratory: | Midland     |      |        |               |             |        |          |                     |
|-------------|-------------|------|--------|---------------|-------------|--------|----------|---------------------|
| Analysis:   | TPH DRO - N | EW   | Ana    | lytical Metho | od: S 8015  | 5 D    | Prep Me  | thod: N/A           |
| QC Batch:   | 119724      |      | Date   | e Analyzed:   | 2015-0      | 3-03   | Analyzeo | l By: SC            |
| Prep Batch: | 101249      |      | Sam    | ple Preparati | ion: 2015-0 | 3-02   | Prepared | l By: SC            |
|             |             |      |        | Ι             | RL          |        |          |                     |
| Parameter   |             | Flag | Cert   | Res           | ult         | Units  | Dilution | $\operatorname{RL}$ |
| DRO         |             |      | 1      | 2             | 92          | mg/Kg  | 1        | 50.0                |
|             |             |      |        |               |             | Spike  | Percent  | Recovery            |
| Surrogate   | Flag        | Cert | Result | Units         | Dilution    | Amount | Recovery | Limits              |
| n-Tricosane |             |      | 106    | m mg/Kg       | 1           | 100    | 106      | 70 - 130            |

| Report Date: March 9, 2015<br>7250715022.001 |      | Work Order: 15022625<br>30137 #3 |          |            |                     |          |        | Page Number: 16 of 34 |                     |  |
|----------------------------------------------|------|----------------------------------|----------|------------|---------------------|----------|--------|-----------------------|---------------------|--|
| Sample: 387694 - RP                          |      |                                  |          |            |                     |          |        |                       |                     |  |
| Laboratory: Midland                          |      |                                  |          |            |                     |          |        |                       |                     |  |
| Analysis: TPH GRO                            |      | А                                | nalytica | al Method  | : S 8015            | D        |        | Prep Metho            | d: S 5035           |  |
| QC Batch: 119764                             |      | Γ                                | Date Ana | lyzed:     | 2015-03             | 3-04     |        | Analyzed By           | V: AK               |  |
| Prep Batch: 101285                           |      | $\mathbf{S}$                     | ample P  | reparation | n: 2015-03          | 3-03     |        | Prepared By           | r: AK               |  |
|                                              |      |                                  |          |            | $\operatorname{RL}$ |          |        |                       |                     |  |
| Parameter                                    | Flag |                                  | Cert     | Η          | Result              | Units    | 5      | Dilution              | $\operatorname{RL}$ |  |
| GRO                                          |      |                                  | 1        |            | 90.7                | mg/Kg    | 5      | 1                     | 4.00                |  |
|                                              |      |                                  |          |            |                     |          | Spike  | Percent               | Recovery            |  |
| Surrogate                                    |      | Flag                             | Cert     | Result     | Units               | Dilution | Amount | Recovery              | Limits              |  |
| Trifluorotoluene (TFT)                       |      |                                  |          | 1.66       | mg/Kg               | 1        | 2.00   | 83                    | 70 - 130            |  |
| 4-Bromofluorobenzene (4-BFB)                 | Qsr  | Qsr                              |          | 3.24       | mg/Kg               | 1        | 2.00   | 162                   | 70 - 130            |  |

### Sample: 387695 - SP

| Laboratory: Midland<br>Analysis: BTEX<br>QC Batch: 119761<br>Prep Batch: 101285 |      | D    | ate Analy  | Method:<br>yzed:<br>eparation: | S 8021B<br>2015-03-<br>2015-03- | 04               |        | Prep Method<br>Analyzed By:<br>Prepared By: | AK                  |
|---------------------------------------------------------------------------------|------|------|------------|--------------------------------|---------------------------------|------------------|--------|---------------------------------------------|---------------------|
| Flep Datch: 101265                                                              |      | 56   | imple r fo | eparation:                     | 2010-00-                        | 03               |        | Frepared by:                                | AK                  |
|                                                                                 |      |      |            |                                | $\operatorname{RL}$             |                  |        |                                             |                     |
| Parameter                                                                       | Flag |      | Cert       | R                              | Result                          | Units            |        | Dilution                                    | $\operatorname{RL}$ |
| Benzene                                                                         |      |      | 1          |                                | 1.88                            | mg/Kg            |        | 5                                           | 0.0200              |
| Toluene                                                                         |      |      | 1          |                                | 63.2                            | $\mathrm{mg/Kg}$ |        | 5                                           | 0.0200              |
| Ethylbenzene                                                                    |      |      | 1          |                                | 30.1                            | $\mathrm{mg/Kg}$ |        | 5                                           | 0.0200              |
| Xylene                                                                          |      |      | 1          |                                | 129                             | mg/Kg            |        | 5                                           | 0.0200              |
|                                                                                 |      |      |            |                                |                                 |                  | Spike  | Percent                                     | Recovery            |
| Surrogate                                                                       |      | Flag | Cert       | Result                         | Units                           | Dilution         | Amount | Recovery                                    | Limits              |
| Trifluorotoluene (TFT)                                                          |      |      |            | 7.71                           | mg/Kg                           | 5                | 10.0   | 77                                          | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                                    | Qsr  | Qsr  |            | 23.4                           | m mg/Kg                         | 5                | 10.0   | 234                                         | 70 - 130            |

#### Sample: 387695 - SP

| Laboratory: | Midland              |                     |                 |              |               |
|-------------|----------------------|---------------------|-----------------|--------------|---------------|
| Analysis:   | Chloride (Titration) | Analytical Method:  | SM 4500-Cl B $$ | Prep Method: | N/A           |
| QC Batch:   | 119733               | Date Analyzed:      | 2015-03-03      | Analyzed By: | EM            |
| Prep Batch: | 101275               | Sample Preparation: | 2015-03-03      | Prepared By: | $\mathbf{EM}$ |

continued ...

| Report Date: March 9, 20<br>7250715022.001                                            | )15     | V        | Work Order: 15022625<br>30137 #3        |                                    |                  |                 |                                        | per: 17 of 34      |
|---------------------------------------------------------------------------------------|---------|----------|-----------------------------------------|------------------------------------|------------------|-----------------|----------------------------------------|--------------------|
| sample 387695 continued .                                                             |         |          |                                         |                                    |                  |                 |                                        |                    |
| Parameter                                                                             | Flag    | Cert     | Res                                     | RL<br>ult                          | Uni              | ts              | Dilution                               | RL                 |
| Parameter                                                                             | Flag    | Cert     | Res                                     | RL                                 | Uni              | te              | Dilution                               | RL                 |
| Chloride                                                                              | Qs      | Cert     |                                         | <b>30</b>                          | mg/k             |                 | 5                                      | 4.00               |
| Sample: 387695 - SP                                                                   |         |          |                                         |                                    |                  |                 |                                        |                    |
| Laboratory: Midland<br>Analysis: TPH DRO -<br>QC Batch: 119724                        | - NEW   |          | alytical Meth<br>te Analyzed:           |                                    | 015 D<br>5-03-03 |                 | Prep Met<br>Analyzed                   | ,                  |
| Prep Batch: 101249                                                                    |         | Sar      | nple Prepara                            |                                    | 5-03-02          |                 | Prepared                               | By: SC             |
| Parameter                                                                             | Flag    | Cert     | Res                                     |                                    | Uni              |                 | Dilution                               | RI                 |
| DRO                                                                                   |         | 1        | Į                                       | 71                                 | mg/k             | Kg              | 1                                      | 50.0               |
| Surrogate F1                                                                          | ag Cert | Result   | Units                                   | Dilution                           |                  | Spike<br>mount  | Percent<br>Recovery                    | Recovery<br>Limits |
| n-Tricosane                                                                           |         | 106      | mg/Kg                                   | 1                                  |                  | 100             | 106                                    | 70 - 130           |
| Sample: 387695 - SPLaboratory:MidlandAnalysis:TPH GROQC Batch:119791Prep Batch:101317 |         | Date Ar  | cal Method:<br>nalyzed:<br>Preparation: | S 8015 D<br>2015-03-0<br>2015-03-0 | )5               |                 | Prep Metho<br>Analyzed E<br>Prepared B | By: AK             |
| Parameter                                                                             | Flag    | Cert     | Res                                     | RL<br>ult                          | Uni              | ts              | Dilution                               | RI                 |
| GRO                                                                                   | - 0     | 1        |                                         | .50                                | mg/k             |                 | 50                                     | 4.00               |
| Surrogate                                                                             | F       | lag Cert |                                         |                                    | Dilution         | Spike<br>Amount | Percent<br>Recovery                    | Recovery<br>Limits |
| Trifluorotoluene (TFT)                                                                |         |          | 82.6 r                                  | ng/Kg                              | 50               | 100             | 83                                     | 70 - 130           |

Report Date: March 9, 2015

Page Number: 18 of 34  $\,$ 

| 7250715022.001     |      |                       |         | 30137       | 7 #3       |        |       |          |        |                     |
|--------------------|------|-----------------------|---------|-------------|------------|--------|-------|----------|--------|---------------------|
| Method I           | Blan | ks                    |         |             |            |        |       |          |        |                     |
| Method Blank (1)   | QC E | Batch: 1197           | 24      |             |            |        |       |          |        |                     |
| QC Batch: 119724   |      |                       | Date .  | Analyzed:   | 2015-03-03 |        |       | Analyz   | ed By: | $\mathbf{SC}$       |
| Prep Batch: 101249 |      |                       |         | reparation: | 2015-03-02 |        |       | Prepare  | ed By: | $\mathbf{SC}$       |
|                    |      |                       |         |             |            | MDL    |       |          |        |                     |
| Parameter          |      | $\operatorname{Flag}$ | or<br>S | Cert        |            | Result |       | Units    |        | $\operatorname{RL}$ |
| DRO                |      |                       |         | 1           |            | <7.41  |       | m mg/Kg  |        | 50                  |
|                    |      |                       |         |             |            | 5      | Spike | Percent  | Reco   | overy               |
| Surrogate          | Flag | Cert                  | Result  | Units       | Dilutio    |        | mount | Recovery |        | nits                |
| n-Tricosane        |      |                       | 91.3    | mg/Kg       | 1          |        | 100   | 91       | 70 -   | 130                 |

Work Order: 15022625

| Method Blank (1)                       | QC Batch: 119733 |                                   |                          |                              |    |
|----------------------------------------|------------------|-----------------------------------|--------------------------|------------------------------|----|
| QC Batch: 119733<br>Prep Batch: 101275 |                  | Date Analyzed:<br>QC Preparation: | 2015-03-03<br>2015-03-03 | Analyzed By:<br>Prepared By: |    |
| Parameter                              | Flag             | Cert                              | MDL<br>Result            | Units                        | RL |
| Chloride                               |                  |                                   | <3.85                    | m mg/Kg                      | 4  |

| Method Blank (1)                       | QC Batch: $119741$ |                                   |                        |                            |                         |
|----------------------------------------|--------------------|-----------------------------------|------------------------|----------------------------|-------------------------|
| QC Batch: 119741<br>Prep Batch: 101283 |                    | Date Analyzed:<br>QC Preparation: |                        | Analyzed By<br>Prepared By |                         |
| Parameter<br>Chloride                  | Flag               | Cert                              | MDL<br>Result<br><3.85 | Units                      | $\frac{\mathrm{RL}}{4}$ |

| Report Date: March 9, 2015<br>7250715022.001 |               |              | Order: 1502262<br>80137 #3 |           |        |          | er: 19 of 34 |
|----------------------------------------------|---------------|--------------|----------------------------|-----------|--------|----------|--------------|
| Method Blank (1) QC                          | Batch: 119761 |              |                            |           |        |          |              |
| QC Batch: 119761                             |               | Date Analyze | ed: 2015-03-               | 04        |        | Analyzed | l By: AK     |
| Prep Batch: 101285                           |               | QC Preparati | ion: 2015-03-              | 03        |        | Prepared | By: AK       |
|                                              |               |              |                            | MDL       |        |          |              |
| Parameter                                    | Flag          | Ce           | ert                        | Result    |        | Units    | RL           |
| Benzene                                      | _             | 1            | 1                          | < 0.00533 | 1      | mg/Kg    | 0.02         |
| Toluene                                      |               | 1            | 1                          | < 0.00645 |        | mg/Kg    | 0.02         |
| Ethylbenzene                                 |               | 1            | L                          | < 0.0116  | 1      | mg/Kg    | 0.02         |
| Xylene                                       |               | 1            | 1                          | < 0.00874 |        | mg/Kg    | 0.02         |
|                                              |               |              |                            |           | Spike  | Percent  | Recovery     |
| Surrogate                                    | Flag          | Cert Resu    | ult Units                  | Dilution  | Amount | Recovery | Limits       |
| Trifluorotoluene (TFT)                       |               | 1.5          | 86 mg/Kg                   | 1         | 2.00   | 93       | 70 - 130     |
| 4-Bromofluorobenzene (4-BFB                  | )             | 2.           | 04  mg/Kg                  | 1         | 2.00   | 102      | 70 - 130     |

## Method Blank (1) QC Batch: 119764

| QC Batch: 119764<br>Prep Batch: 101285 |       |      | nalyzed:<br>eparation: | 2015-03-0<br>2015-03-0 |          |                 | Analyzed<br>Prepared | e e                 |
|----------------------------------------|-------|------|------------------------|------------------------|----------|-----------------|----------------------|---------------------|
|                                        |       |      |                        |                        | MDL      |                 |                      |                     |
| Parameter                              | Flag  |      | Cert                   |                        | Result   |                 | Units                | $\operatorname{RL}$ |
| GRO                                    |       |      | 1                      |                        | <2.32    |                 | m mg/Kg              | 4                   |
| Surrogate                              | Flag  | Cert | Result                 | Units                  | Dilution | Spike<br>Amount | Percent<br>Recovery  | Recovery<br>Limits  |
| Trifluorotoluene (TFT)                 | 1 145 | 0010 | 1.94                   | mg/Kg                  | 1        | 2.00            | 97                   | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)           |       |      | 1.83                   | mg/Kg                  | 1        | 2.00            | 92                   | 70 - 130            |

## Method Blank (1) QC Batch: 119791

| QC Batch:   | 119791 |      | Date Analyzed:  | 2015-03-05 | Analyzed By: |                     |
|-------------|--------|------|-----------------|------------|--------------|---------------------|
| Prep Batch: | 101317 |      | QC Preparation: | 2015-03-04 | Prepared By: | AK                  |
|             |        |      |                 | MDL        |              |                     |
| Parameter   |        | Flag | Cert            | Result     | Units        | $\operatorname{RL}$ |
| GRO         |        |      | 1               | <2.32      | mg/Kg        | 4                   |

| Report Date: March 9, 2015<br>7250715022.001           |        | V      | Vork Order<br>3013 |                  | Page Number: 20 of 34 |                 |                   |                       |
|--------------------------------------------------------|--------|--------|--------------------|------------------|-----------------------|-----------------|-------------------|-----------------------|
| Cumporato                                              | Elam   | Cert   | Result             | Units            | Dilution              | Spike<br>Amount | Percent           | Recovery<br>Limits    |
| Surrogate                                              | Flag   | Cert   |                    |                  |                       |                 | Recovery<br>94    | $\overline{70 - 130}$ |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB) |        |        | $1.88 \\ 1.82$     | mg/Kg<br>mg/Kg   | 1<br>1                | $2.00 \\ 2.00$  | $94 \\ 91$        | 70 - 130<br>70 - 130  |
| Method Blank (1) QC Batch:<br>QC Batch: 119849         | 119849 |        | nalyzed:           | 2015-03-0        |                       |                 | Analyzed          | v                     |
| Prep Batch: 101336<br>Parameter                        | Flag   | QC Pro | eparation:<br>Cert | 2015-03-0        | 05<br>MDL<br>Result   |                 | Prepared<br>Units | By: AK<br>RL          |
| GRO                                                    | 1 145  |        |                    |                  | <2.32                 |                 | mg/Kg             | 4                     |
|                                                        |        |        | 1                  |                  |                       | Spike           | Percent           | Recovery              |
| Surrogate                                              | Flag   | Cert   | Result             | Units            | Dilution              | Amount          | Recovery          | Limits                |
| Trifluorotoluene (TFT)                                 |        |        | 1.87               | m mg/Kg          | 1                     | 2.00            | 94                | 70 - 130              |
| 4-Bromofluorobenzene (4-BFB)                           |        |        | 1.82               | $\mathrm{mg/Kg}$ | 1                     | 2.00            | 91                | 70 - 130              |

| Report Date: March 9, 2015<br>7250715022.001 | Work Order: 15022625<br>30137 #3 | Page Number: 21 of 34 |
|----------------------------------------------|----------------------------------|-----------------------|
|                                              |                                  |                       |

# Laboratory Control Spikes

### Laboratory Control Spike (LCS-1)

| QC Batch: 119724<br>Prep Batch: 101249 |              |              |                       | te Analyz<br>Preparat |                | 15-03-03<br>15-03-02   |                           |            |                           | lyzed B<br>pared B | 0                     |
|----------------------------------------|--------------|--------------|-----------------------|-----------------------|----------------|------------------------|---------------------------|------------|---------------------------|--------------------|-----------------------|
| Param                                  |              | F            | С                     | LCS<br>Result         | Units          | Dil.                   | Spike<br>Amount           | Re         |                           | ec.                | Rec.<br>Limit         |
| DRO                                    |              |              | 1                     | 251                   | mg/Kg          |                        | 250                       |            |                           | 00                 | 70 - 130              |
| Percent recovery is based on the       | spike        | resu         | lt. RPI               | ) is based            | on the sp      | oike and sp            | pike duplica              | ate resu   | ılt.                      |                    |                       |
| Param<br>DRO                           | F            | C            | LCSD<br>Result<br>260 |                       |                | Spike<br>Amount<br>250 | Matrix<br>Result<br><7.41 | Rec.       | Rec.<br>Limit<br>70 - 130 | RPD<br>4           | RPD<br>Limit<br>20    |
| Percent recovery is based on the       | snike        |              |                       |                       |                |                        |                           |            |                           |                    |                       |
| refeelit feedvery is based on the      | -            |              |                       |                       | on the s       | Jine and 5             |                           |            |                           |                    |                       |
| C .                                    |              | CS           | LCS                   |                       | · <b>·</b> · · | D'1                    | Spike                     | LCS        |                           |                    | $\operatorname{Rec.}$ |
| Surrogate<br>n-Tricosane               |              | sult<br>01   | Res<br>99             |                       | Units<br>ng/Kg | Dil.                   | Amount<br>100             | Rec<br>101 |                           |                    | Limit<br>70 - 130     |
| Laboratory Control Spike (L            | CS-1         | L)           |                       |                       |                |                        |                           |            |                           |                    |                       |
| QC Batch: 119733<br>Prep Batch: 101275 |              |              |                       | e Analyze<br>Preparat |                | 5-03-03<br>5-03-03     |                           |            | ,                         | yzed By<br>ared By |                       |
|                                        |              |              |                       | LCS                   |                |                        | Spike                     | Ma         | atrix                     |                    | Rec.                  |
| Param                                  |              | F            | С                     | Result                | Units          | Dil.                   | Amount                    |            |                           | ec.                | Limit                 |
| Chloride                               |              |              |                       | 2680                  | mg/Kg          |                        | 2500                      |            |                           | 07                 | 85 - 115              |
| Percent recovery is based on the       | spike        | resu         | lt. RPI               | ) is based            | on the sp      | oike and sp            | pike duplica              | ate resu   | ılt.                      |                    |                       |
|                                        |              |              | LCSD                  | )                     |                | Spike                  | Matrix                    |            | Rec.                      |                    | RPD                   |
| Param                                  | $\mathbf{F}$ | $\mathbf{C}$ | Result                |                       | Dil.           | Amount                 | Result                    | Rec.       | Limit                     | RPD                |                       |
|                                        | 1            | U            | nesun                 | U Units               | $D_{\Pi}$ .    | Amount                 | nesun                     | nec.       |                           | ΠΓ D               | Limit                 |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: March 9, 2015

Page Number: 22 of 34

| 7250715022.001                   |              |        |         | 30          | 0137 #3       |             |              |         | I age I  | uniber.  |          |
|----------------------------------|--------------|--------|---------|-------------|---------------|-------------|--------------|---------|----------|----------|----------|
| Laboratory Control Spike (I      | LCS-1        | L)     |         |             |               |             |              |         |          |          |          |
| QC Batch: 119741                 |              |        | Date    | Analyzed    | l: 201        | 5-03-03     |              |         | Ana      | lyzed By | y: EM    |
| Prep Batch: 101283               |              |        | QC ]    | Preparatio  | on: 201       | 5-03-03     |              |         | Prep     | bared By | : EM     |
| D                                |              | D      |         | LCS         | <b>T</b> T •/ | וית         | Spike        |         | atrix    |          | Rec.     |
| Param                            |              | F      | C 1     | Result      | Units         | Dil.        | Amount       |         |          | Rec.     | Limit    |
| Chloride                         |              |        |         | 2500        | mg/Kg         |             | 2500         |         |          | 100      | 85 - 115 |
| Percent recovery is based on the | spike        | resu   | lt. RPD | is based of | on the s      | pike and sp | oike duplica | ate res | ult.     |          |          |
|                                  |              |        | LCSD    |             |               | Spike       | Matrix       |         | Rec.     |          | RPD      |
| Param                            | $\mathbf{F}$ | С      | Result  | Units       | Dil.          | Amount      | Result       | Rec.    | Limit    | RPD      | Limit    |
| Chloride                         |              |        | 2310    | mg/Kg       | 5             | 2500        | $<\!19.2$    | 92      | 85 - 115 | 8        | 20       |
| Percent recovery is based on the | spike        | e resu | lt. RPD | is based o  | on the s      | pike and sr | oike duplica | ate res | ult.     |          |          |
| v                                | •            |        |         |             |               | . 1         |              |         |          |          |          |
|                                  |              |        |         |             |               |             |              |         |          |          |          |
|                                  |              |        |         |             |               |             |              |         |          |          |          |
| Laboratory Control Spike (I      | CS-1         | L)     |         |             |               |             |              |         |          |          |          |

Work Order: 15022625

| QC Batch:   | 119761 | Date Analyzed:  | 2015-03-04 | Analyzed By: | AK |
|-------------|--------|-----------------|------------|--------------|----|
| Prep Batch: | 101285 | QC Preparation: | 2015-03-03 | Prepared By: | AK |

|              |              |              | LCS    |                  |      | $\operatorname{Spike}$ | Matrix       |      | Rec.     |
|--------------|--------------|--------------|--------|------------------|------|------------------------|--------------|------|----------|
| Param        | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units            | Dil. | Amount                 | Result       | Rec. | Limit    |
| Benzene      |              | 1            | 2.09   | $\mathrm{mg/Kg}$ | 1    | 2.00                   | < 0.00533    | 104  | 70 - 130 |
| Toluene      |              | 1            | 2.02   | $\mathrm{mg/Kg}$ | 1    | 2.00                   | $<\!0.00645$ | 101  | 70 - 130 |
| Ethylbenzene |              | 1            | 2.07   | $\mathrm{mg/Kg}$ | 1    | 2.00                   | < 0.0116     | 104  | 70 - 130 |
| Xylene       |              | 1            | 6.25   | mg/Kg            | 1    | 6.00                   | < 0.00874    | 104  | 70 - 130 |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|              |              |              | LCSD   |       |      | Spike  | Matrix    |      | Rec.     |     | RPD   |
|--------------|--------------|--------------|--------|-------|------|--------|-----------|------|----------|-----|-------|
| Param        | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units | Dil. | Amount | Result    | Rec. | Limit    | RPD | Limit |
| Benzene      |              | 1            | 2.00   | mg/Kg | 1    | 2.00   | < 0.00533 | 100  | 70 - 130 | 4   | 20    |
| Toluene      |              | 1            | 1.96   | mg/Kg | 1    | 2.00   | < 0.00645 | 98   | 70 - 130 | 3   | 20    |
| Ethylbenzene |              | 1            | 1.99   | mg/Kg | 1    | 2.00   | < 0.0116  | 100  | 70 - 130 | 4   | 20    |
| Xylene       |              | 1            | 6.03   | mg/Kg | 1    | 6.00   | < 0.00874 | 100  | 70 - 130 | 4   | 20    |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|                              | LCS    | LCSD   |                  |      | Spike  | LCS  | LCSD | Rec.     |
|------------------------------|--------|--------|------------------|------|--------|------|------|----------|
| Surrogate                    | Result | Result | Units            | Dil. | Amount | Rec. | Rec. | Limit    |
| Trifluorotoluene (TFT)       | 1.76   | 1.78   | mg/Kg            | 1    | 2.00   | 88   | 89   | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB) | 2.05   | 2.08   | $\mathrm{mg/Kg}$ | 1    | 2.00   | 102  | 104  | 70 - 130 |

| Report Date: March 9, 2015<br>7250715022.001                                                                                                                                                                                                 |            |                     |                                                                                       | WC                                                                                            |                                                                                                                                                | er: 15<br>37 #3                                                                                        | 022625                                                                                                  |                                      |                                                                                                        |                                                         | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .ge Nu                                                 | mber:                                                             | 25 01 5                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Laboratory Control Spike (L                                                                                                                                                                                                                  | CS-1       | )                   |                                                                                       |                                                                                               |                                                                                                                                                |                                                                                                        |                                                                                                         |                                      |                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                   |                                                                                                               |
| QC Batch: 119764<br>Prep Batch: 101285                                                                                                                                                                                                       |            |                     |                                                                                       |                                                                                               | alyzed:<br>aration:                                                                                                                            |                                                                                                        | 15-03-04<br>15-03-03                                                                                    |                                      |                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | vzed B<br>ared B                                                  |                                                                                                               |
| D                                                                                                                                                                                                                                            |            | F                   | G                                                                                     | LCS                                                                                           |                                                                                                                                                | · ·,                                                                                                   | D.1                                                                                                     |                                      | Spike                                                                                                  |                                                         | Iatrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                      |                                                                   | Rec.                                                                                                          |
| Param<br>GRO                                                                                                                                                                                                                                 |            | F                   | С                                                                                     | Resul                                                                                         |                                                                                                                                                | Jnits                                                                                                  | Dil.                                                                                                    | A                                    | mount                                                                                                  |                                                         | $\frac{1}{2.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Re<br>10                                               |                                                                   | Limit<br>70 - 130                                                                                             |
|                                                                                                                                                                                                                                              |            |                     | 1                                                                                     |                                                                                               |                                                                                                                                                | g/Kg                                                                                                   |                                                                                                         |                                      | 20.0                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | п                                                      | )2                                                                | 70 - 130                                                                                                      |
| Percent recovery is based on the s                                                                                                                                                                                                           | spike      | resu                | lt. RPI                                                                               | D is ba                                                                                       | ased on                                                                                                                                        | the s                                                                                                  | pike and                                                                                                | spike                                | duplica                                                                                                | ate res                                                 | sult.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                   |                                                                                                               |
| Param                                                                                                                                                                                                                                        | F          | С                   | LCSI<br>Resul                                                                         |                                                                                               | Inits                                                                                                                                          | Dil.                                                                                                   | Spike<br>Amoun                                                                                          |                                      | latrix<br>lesult                                                                                       | Rec.                                                    | Re<br>Lir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | RPD                                                               | RPD<br>Limit                                                                                                  |
| GRO                                                                                                                                                                                                                                          | -          | 1                   | 21.9                                                                                  |                                                                                               | g/Kg                                                                                                                                           | 1                                                                                                      | 20.0                                                                                                    |                                      | <2.32                                                                                                  | 110                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130                                                    | 7                                                                 | 20                                                                                                            |
| Percent recovery is based on the s                                                                                                                                                                                                           | snike      | resu                |                                                                                       |                                                                                               |                                                                                                                                                | the s                                                                                                  |                                                                                                         |                                      |                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                   |                                                                                                               |
| ereent recovery is based on the t                                                                                                                                                                                                            | эрикс      | 1050                |                                                                                       |                                                                                               |                                                                                                                                                | -                                                                                                      | pine and                                                                                                | spine                                | -                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                   |                                                                                                               |
|                                                                                                                                                                                                                                              |            |                     | Ι                                                                                     | $\mathcal{LCS}$                                                                               | LCSD                                                                                                                                           |                                                                                                        |                                                                                                         |                                      | Spi                                                                                                    |                                                         | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LC                                                     |                                                                   | Rec.                                                                                                          |
|                                                                                                                                                                                                                                              |            |                     |                                                                                       |                                                                                               |                                                                                                                                                |                                                                                                        |                                                                                                         | D:1                                  | Amo                                                                                                    | unt                                                     | Doo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D /                                                    |                                                                   |                                                                                                               |
|                                                                                                                                                                                                                                              |            |                     | R                                                                                     | esult                                                                                         | Result                                                                                                                                         |                                                                                                        | Units                                                                                                   | Dil.                                 |                                                                                                        |                                                         | Rec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | ec.                                                               | Limit                                                                                                         |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)                                                                                                                                                                                       | <u> </u>   |                     | R.                                                                                    |                                                                                               | Result<br>1.94<br>1.92                                                                                                                         | n                                                                                                      | onits<br>ng/Kg<br>ng/Kg                                                                                 | 1<br>1                               | 2.0<br>2.0                                                                                             | 00                                                      | 98<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>9                                                 | 7                                                                 | 70 - 130<br>70 - 130                                                                                          |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791                                                                                                                                   | CS-1       | )                   | Ri<br>1<br>1<br>Da                                                                    | esult<br>95<br>89<br>te Ana                                                                   | 1.94<br>1.92<br>alyzed:                                                                                                                        | 201                                                                                                    | ng/Kg<br>ng/Kg<br>15-03-05                                                                              | 1                                    | 2.0                                                                                                    | 00                                                      | 98<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>9<br>Analy                                        | 7<br>6<br>vzed B                                                  | 70 - 130<br>70 - 130<br>y: AK                                                                                 |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791                                                                                                                                   | CS-1       | )                   | Ri<br>1<br>1<br>Da                                                                    | esult<br>95<br>89<br>te Ana                                                                   | 1.94<br>1.92                                                                                                                                   | 201                                                                                                    | ng/Kg<br>ng/Kg                                                                                          | 1                                    | 2.0                                                                                                    | 00                                                      | 98<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>9<br>Analy                                        | 7<br>6                                                            | 70 - 130<br>70 - 130<br>y: AK                                                                                 |
| Trifluorotoluene (TFT)<br>I-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791<br>Prep Batch: 101317                                                                                                             | CS-1       |                     | R<br>1<br>1<br>Da<br>QC                                                               | esult<br>95<br>89<br>te Ana<br>C Prep<br>LCS                                                  | 1.94<br>1.92<br>alyzed:<br>aration:                                                                                                            | n<br>m<br>201<br>201                                                                                   | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04                                                                  | 1                                    | 2.0<br>2.0<br>Spike                                                                                    | 00<br>00<br>N.                                          | 98<br>94<br>Iatrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>Analy<br>Prepa                               | 7<br>6<br>vzed B<br>ured B                                        | 70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.                                                                |
| Trifluorotoluene (TFT)<br>I-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (L4<br>QC Batch: 119791<br>Prep Batch: 101317                                                                                                             | CS-1       | -)<br>F             | R<br>1<br>1<br>Da<br>QC                                                               | esult<br>95<br>89<br>te Ana<br>C Prep<br>LCS<br>Resu                                          | 1.94<br>1.92<br>alyzed:<br>aration:<br>blt U                                                                                                   | n<br>n<br>201<br>201<br>Jnits                                                                          | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.                                                          | 1                                    | 2.0<br>2.0<br>Spike                                                                                    | 00<br>00<br>M<br>R                                      | 98<br>94<br>Iatrix<br>tesult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>9<br>Analy<br>Prepa<br>Re                         | 7<br>6<br>vzed B<br>ured B                                        | 70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit                                                       |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO                                                                                             |            | F                   | R<br>1<br>1<br>Da<br>QC                                                               | esult<br>95<br>89<br>te Ana<br>C Prep<br>LCS<br>Resu<br>21.3                                  | 1.94<br>1.92<br>alyzed:<br>aration:<br>S<br>lt U<br>B m                                                                                        | 201<br>201<br>201<br>Jnits<br>g/Kg                                                                     | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.<br>5 1                                                   | 1<br>1<br>A                          | 2.0<br>2.0<br>Spike<br>mount<br>20.0                                                                   | 00<br>00<br>M<br>R<br><                                 | 98<br>94<br>Iatrix<br>cesult<br><2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>9<br>Analy<br>Prepa                               | 7<br>6<br>vzed B<br>ured B                                        | 70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit                                                       |
| Irifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO                                                                                             |            | F                   | R<br>1<br>1<br>Da<br>QC                                                               | esult<br>95<br>89<br>te Ana<br>C Prep<br>LCS<br>Resu<br>21.3                                  | 1.94<br>1.92<br>alyzed:<br>aration:<br>S<br>lt U<br>B m                                                                                        | 201<br>201<br>201<br>Jnits<br>g/Kg                                                                     | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.<br>5 1                                                   | 1<br>1<br>A                          | 2.0<br>2.0<br>Spike<br>mount<br>20.0                                                                   | 00<br>00<br>M<br>R<br><                                 | 98<br>94<br>Iatrix<br>cesult<br><2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>9<br>Analy<br>Prepa<br>Re                         | 7<br>6<br>vzed B<br>ured B                                        | 70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit                                                       |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the s                                                       |            | F                   | R<br>1<br>1<br>Da<br>QC                                                               | te Ana<br>C Prep<br>LCS<br>Resu<br>21.3<br>D is ba                                            | 1.94<br>1.92<br>alyzed:<br>aration:<br>b<br>lt U<br>m<br>ased on                                                                               | 201<br>201<br>201<br>Jnits<br>g/Kg                                                                     | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.<br>5 1                                                   | 1<br>1<br>Spike                      | 2.0<br>2.0<br>Spike<br>mount<br>20.0                                                                   | 00<br>00<br>M<br>R<br><                                 | 98<br>94<br>Iatrix<br>cesult<br><2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>9<br>Prepa<br><u>Re</u><br>10                     | 7<br>6<br>vzed B<br>ured B                                        | 70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD                                    |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the s<br>Param                                              | spike      | F                   | $\frac{R}{1}$ $1$ $1$ $1$ $0$ $0$ $0$ $0$ $0$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ | esult<br>95<br>89<br>te Ana<br>C Prep<br>LCS<br>Resul<br>21.3<br>D is ba<br>D<br>t U          | 1.94<br>1.92<br>alyzed:<br>aration:<br>blt U<br>ased on<br>Units                                                                               | 201<br>201<br>201<br>Jnits<br>g/Kg<br>the sp                                                           | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.<br>5 1<br>pike and<br>Spike                              | 1<br>1<br>spike<br>M<br>t R          | 2.0<br>2.0<br>Spike<br>amount<br>20.0<br>duplica<br>Iatrix                                             | 00<br>00<br>M<br>R<br>ate res                           | 98<br>94<br>Iatrix<br>tesult<br><2.32<br>sult.<br>Re<br>Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9<br>9<br>Prepa<br><u>Re</u><br>10                     | 7<br>6<br>vzed B<br>ured B<br>ec.<br>06                           | 70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD                                    |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the s<br>Param<br>GRO                                       | spike<br>F | F<br>resu<br>C<br>1 | R<br>1<br>1<br>Da<br>QC<br>LCSI<br>Resul<br>19.4                                      | esult<br>95<br>89<br>te Ana<br>C Prep<br>LCS<br>Resul<br>21.3<br>D is ba<br>D<br>it U<br>mage | 1.94<br>1.92<br>alyzed:<br>aration:<br>aration:<br>blt U<br>3 m<br>ased on<br>Juits<br>g/Kg                                                    | 201<br>201<br>201<br>Jnits<br><u>g/Kg</u><br>the sj<br>Dil.<br>1                                       | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.<br>5 1<br>pike and<br>Spike<br>Amoun<br>20.0             | 1<br>1<br>spike<br>t R<br><          | 2.0<br>2.0<br>Spike<br>mount<br>20.0<br>duplica<br>Iatrix<br>cesult<br><2.32                           | 00<br>00<br>M<br>R<br>ate res<br>Rec.<br>97             | 98<br>94<br>Iatrix<br>cesult<br><2.32<br>sult.<br>Re<br>Lin<br>70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9<br>9<br>Prepa<br>Re<br>10<br>ec.                     | 7<br>6<br>vzed B<br>ured B<br>ec.<br>06<br>RPD                    | 70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>Limit                           |
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (Lo<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the s<br>Param<br>GRO<br>Percent recovery is based on the s | spike<br>F | F<br>resu<br>C<br>1 | R<br>1<br>1<br>Da<br>QC<br>1<br>LCSI<br>Resul<br>19.4<br>It. RPI                      | te Ana<br>                                                                                    | 1.94<br>1.92<br>alyzed:<br>aration:<br>aration:<br>b<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t | $\frac{n}{201}$ $\frac{201}{201}$ $\frac{Jnits}{g/Kg}$ $\frac{g/Kg}{1}$ $\frac{Dil.}{1}$ $\frac{1}{1}$ | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.<br>5 1<br>pike and<br>Spike<br>Amoun<br>20.0<br>pike and | 1<br>1<br>spike<br>M<br>t R<br>spike | 2.0<br>2.0<br>2.0<br>Spike<br>amount<br>20.0<br>duplica<br>Iatrix<br>tesult<br>(2.32<br>duplica<br>Spi | M<br>R<br>ate res<br>Rec.<br>97<br>ate res<br>ke        | $\begin{array}{c} 98\\ 94\\ \hline \\ 94\\ \hline \\ 84\\ \hline 84\\ \hline \\ 84\\ \hline \\ 84\\ \hline \\ 84\\ \hline 84\\ \hline$ | 9<br>9<br>Prepa<br>Re<br>10<br>ec.<br>nit<br>130<br>LC | 7<br>6<br>vzed B<br>ured B<br>vec.<br>06<br><u>RPD</u><br>9<br>SD | 70 - 130<br>70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>Limit<br>20<br>Rec. |
| •                                                                                                                                                                                                                                            | spike<br>F | F<br>resu<br>C<br>1 | R<br>1<br>1<br>Da<br>QC<br>1<br>t. RP1<br>LCSI<br>Resul<br>19.4<br>t. RP1<br>I<br>R   | te Ana<br>C Prep<br>LCS<br>Resul<br>21.3<br>D is ba<br>D is ba<br>D is ba                     | 1.94<br>1.92<br>alyzed:<br>aration:<br>aration:<br>blt U<br>3 m<br>ased on<br>Units<br>g/Kg<br>ased on                                         | Inits<br>201<br>201<br>201<br>Jnits<br>g/Kg<br>the sp<br>Dil.<br>1<br>the sp                           | ng/Kg<br>ng/Kg<br>15-03-05<br>15-03-04<br>Dil.<br>5 1<br>pike and<br>Spike<br>Amoun<br>20.0             | 1<br>1<br>spike<br>t R<br><          | 2.0<br>2.0<br>Spike<br>mount<br>20.0<br>duplica<br>Iatrix<br>cesult<br><2.32<br>duplica                | $\frac{M}{R}$ ate res $\frac{Rec.}{97}$ ate res ke punt | $98 \\ 94$ 94 $100 \\ 94$ $100 \\ 94$ $100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9<br>9<br>Prepa<br>Re<br>10<br>ec.<br>nit<br>130       | 7<br>6<br>vzed B<br>ured B<br>ec.<br>9<br>8<br>SD<br>ec.          | 70 - 130<br>70 - 130<br>70 - 130<br>y: AK<br>y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>Limit<br>20         |

| Report Date: March 9, 2015<br>7250715022.001 |              |              |         | Work Or<br>30 | der: 15<br>0137 #3 |          |         |         |                       | Pa     | ge Numb  | er: 24 of 34 |
|----------------------------------------------|--------------|--------------|---------|---------------|--------------------|----------|---------|---------|-----------------------|--------|----------|--------------|
| Laboratory Control Spike (I                  | LCS-1        | .)           |         |               |                    |          |         |         |                       |        |          |              |
| QC Batch: 119849                             |              |              | Date    | Analyzed      | l: 20              | 15-03-09 | )       |         |                       |        | Analyzed | By: AK       |
| Prep Batch: 101336                           |              |              | QC I    | Preparatio    | on: 20             | 15-03-05 | 5       |         |                       | ]      | Prepared | By: AK       |
|                                              |              |              |         | LCS           |                    |          |         | Spike   | N                     | Iatrix |          | Rec.         |
| Param                                        |              | F            |         | Result        | Units              | Dil      |         | mount   | R                     | lesult | Rec.     | Limit        |
| GRO                                          |              |              | 1       | 20.6          | mg/Kg              | g 1      |         | 20.0    | <                     | <2.32  | 103      | 70 - 130     |
| Percent recovery is based on the             | spike        | resu         | lt. RPD | is based o    | n the s            | pike and | d spike | duplica | te res                | sult.  |          |              |
|                                              |              |              | LCSD    |               |                    | Spik     | e M     | Iatrix  |                       | Re     | c.       | RPD          |
| Param                                        | $\mathbf{F}$ | $\mathbf{C}$ | Result  | Units         | Dil.               | Amou     | int R   | lesult  | $\operatorname{Rec.}$ | Lin    | nit Rl   | PD Limit     |
| GRO                                          |              | 1            | 21.1    | mg/Kg         | 1                  | 20.0     | ) <     | <2.32   | 106                   | 70 -   | 130      | 2 20         |
| Percent recovery is based on the             | spike        | resu         | lt. RPD | is based o    | n the s            | pike and | d spike | duplica | te res                | sult.  |          |              |
|                                              |              |              | LC      | S LCS         | SD                 |          |         | Spil    | ke                    | LCS    | LCSD     | Rec.         |
| Surrogate                                    |              |              | Rest    | ilt Res       | ult                | Units    | Dil.    | Amo     |                       | Rec.   | Rec.     | Limit        |
| Buildgaid                                    |              |              |         |               |                    |          |         |         |                       |        |          |              |
| Trifluorotoluene (TFT)                       |              |              | 1.8     | 4 1.9         | 2 n                | ng/Kg    | 1       | 2.0     | 0                     | 92     | 96       | 70 - 130     |

Report Date: March 9, 2015

.

Page Number: 25 of 34

| 7250715022.001                                                  |                |                                        | 30137 #3           |                           |                                          |                             | Tage Ivun        | ilber. 25 01 54          |
|-----------------------------------------------------------------|----------------|----------------------------------------|--------------------|---------------------------|------------------------------------------|-----------------------------|------------------|--------------------------|
| Matrix Spike                                                    | es             |                                        |                    |                           |                                          |                             |                  |                          |
| Matrix Spike (MS-1)                                             | Spiked Sample  | : 387694                               |                    |                           |                                          |                             |                  |                          |
| QC Batch: 119724<br>Prep Batch: 101249                          |                | Date Analyz<br>QC Prepara              |                    | 15-03-03<br>15-03-02      |                                          |                             | •                | zed By: SC<br>red By: SC |
|                                                                 |                | MS                                     |                    |                           | Spike                                    | Matr                        | rix              | Rec.                     |
| Param                                                           | F              | C Result                               | Units              | Dil.                      | Amount                                   | Resu                        |                  |                          |
| DRO                                                             |                | 1 512                                  | mg/Kg              | 1                         | 250                                      | 292                         | 2 88             | 70 - 130                 |
| Percent recovery is based on                                    | the spike resu | lt. RPD is based                       | on the $s_{\rm I}$ | oike and sp               | oike duplica                             | ate result                  |                  |                          |
|                                                                 |                | MCD                                    |                    | а. <b>1</b>               |                                          |                             | D                | DDD                      |
| D                                                               | E C            | MSD                                    | וית                | Spike                     | Matrix                                   | р                           | Rec.             | RPD L: '                 |
| Param                                                           | F C            | Result Units                           |                    | Amount                    | Result                                   |                             |                  | RPD Limit                |
| DRO                                                             | 1              | 527 mg/K                               | -                  | 250                       | 292                                      |                             | 70 - 130         | 3 20                     |
| Percent recovery is based on                                    | the spike resu | lt. RPD is based                       | on the sp          | pike and sp               | oike duplica                             | ate result                  |                  |                          |
|                                                                 | MS             | MSD                                    |                    |                           | Spike                                    | MS                          | MSD              | Rec.                     |
| Surrogate                                                       | Result         |                                        | Units              | Dil.                      | Amount                                   | Rec.                        | Rec.             | Limit                    |
| n-Tricosane                                                     | 97.1           |                                        | ng/Kg              | 1                         | 100                                      | 97                          | 101              | 70 - 130                 |
| Matrix Spike (MS-1) S<br>QC Batch: 119733<br>Prep Batch: 101275 | spiked Sample  | : 387688<br>Date Analyz<br>QC Preparat |                    | 5-03-03<br>5-03-03        |                                          |                             | Analyz<br>Prepar | *                        |
|                                                                 |                |                                        |                    |                           |                                          |                             |                  |                          |
| D                                                               | <b>F</b>       | MS                                     | TT •               | <b>D</b> .1               | Spike                                    | Matri                       |                  | Rec.                     |
| Param                                                           | F              | C Result                               | Units              | Dil.                      | Amount                                   | Result                      | t Rec.           | Limit                    |
| Param<br>Chloride                                               | F<br>Qs Qs     |                                        | Units<br>mg/Kg     | Dil.                      | -                                        |                             |                  |                          |
|                                                                 | Qs Qs          | C Result<br>574                        | mg/Kg              | 5                         | Amount<br>2500                           | Result<br>383               | t Rec.           | Limit                    |
| Chloride                                                        | Qs Qs          | C Result<br>574                        | mg/Kg              | 5<br>pike and sp<br>Spike | Amount<br>2500                           | Result<br>383               | t Rec.           | Limit                    |
| Chloride                                                        | Qs Qs          | C Result<br>574<br>lt. RPD is based    | mg/Kg<br>on the sp | 5<br>bike and sp          | Amount<br>2500<br>Dike duplica<br>Matrix | Result<br>383<br>ate result | t Rec.           | Limit<br>78.9 - 121      |

Work Order: 15022625

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: March 9, 2015

Page Number: 26 of 34

| 7250715022.001                         |                     | 30137 ‡                 | #3                     |             |              |                                    |
|----------------------------------------|---------------------|-------------------------|------------------------|-------------|--------------|------------------------------------|
| Matrix Spike (MS-1)                    | Spiked Sample:      | 387692                  |                        |             |              |                                    |
| QC Batch: 119741<br>Prep Batch: 101283 |                     | v                       | 015-03-03<br>015-03-03 |             |              | Analyzed By: EM<br>Prepared By: EM |
|                                        |                     | MS                      |                        | Spike       | Matrix       | Rec.                               |
| Param                                  | F                   | C Result Unit           |                        | Amount      |              | Rec. Limit                         |
| Chloride                               | Qs Qs               | 1150 mg/K               | lg 5                   | 2500        | <19.2        | 46 78.9 - 121                      |
| Percent recovery is based              | on the spike result | lt. RPD is based on the | spike and s            | pike dupli  | cate result. |                                    |
|                                        |                     | MSD                     | Spike                  | Matrix      | Re           | c. RPD                             |
| Param                                  | F C                 | Result Units Dil.       | Amount                 | Result      | Rec. Lin     | nit RPD Limit                      |
| Chloride                               | Qs Qs               | 1250  mg/Kg 5           | 2500                   | $<\!19.2$   | -73 78.9 -   | 121 8 20                           |
| Percent recovery is based              | on the spike resu   | lt. RPD is based on the | spike and s            | pike duplio | cate result. |                                    |
| Matrix Spike (MS-1)                    | Spiked Sample:      | 387690                  |                        |             |              |                                    |
| QC Batch: 119761<br>Prep Batch: 101285 |                     | v                       | 015-03-04<br>015-03-03 |             |              | Analyzed By: AK<br>Prepared By: AK |

Work Order: 15022625

|              |              |   | MS     |                  |      | Spike  | Matrix   |      | Rec.     |
|--------------|--------------|---|--------|------------------|------|--------|----------|------|----------|
| Param        | $\mathbf{F}$ | С | Result | Units            | Dil. | Amount | Result   | Rec. | Limit    |
| Benzene      |              | 1 | 1.63   | m mg/Kg          | 1    | 2.00   | 0.027    | 80   | 70 - 130 |
| Toluene      |              | 1 | 1.68   | m mg/Kg          | 1    | 2.00   | 0.0436   | 82   | 70 - 130 |
| Ethylbenzene |              | 1 | 1.81   | $\mathrm{mg/Kg}$ | 1    | 2.00   | < 0.0116 | 90   | 70 - 130 |
| Xylene       |              | 1 | 5.48   | mg/Kg            | 1    | 6.00   | 0.0334   | 91   | 70 - 130 |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|              |              |              | MSD    |                  |      | Spike  | Matrix   |      | Rec.     |     | RPD   |
|--------------|--------------|--------------|--------|------------------|------|--------|----------|------|----------|-----|-------|
| Param        | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units            | Dil. | Amount | Result   | Rec. | Limit    | RPD | Limit |
| Benzene      |              | 1            | 1.48   | mg/Kg            | 1    | 2.00   | 0.027    | 73   | 70 - 130 | 10  | 20    |
| Toluene      |              | 1            | 1.54   | $\mathrm{mg/Kg}$ | 1    | 2.00   | 0.0436   | 75   | 70 - 130 | 9   | 20    |
| Ethylbenzene |              | 1            | 1.66   | $\mathrm{mg/Kg}$ | 1    | 2.00   | < 0.0116 | 83   | 70 - 130 | 9   | 20    |
| Xylene       |              | 1            | 5.01   | $\mathrm{mg/Kg}$ | 1    | 6.00   | 0.0334   | 83   | 70 - 130 | 9   | 20    |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|                              | MS     | MSD    |         |      | Spike  | MS   | MSD  | Rec.     |
|------------------------------|--------|--------|---------|------|--------|------|------|----------|
| Surrogate                    | Result | Result | Units   | Dil. | Amount | Rec. | Rec. | Limit    |
| Trifluorotoluene (TFT)       | 1.77   | 1.64   | mg/Kg   | 1    | 2      | 88   | 82   | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB) | 2.16   | 2.03   | m mg/Kg | 1    | 2      | 108  | 102  | 70 - 130 |

| Report Date: March 9, 2015<br>7250715022.001                                                                                                                                                                             |              | Work Order: 15022625<br>30137 #3 |                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Page Number: 27 of 34                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Matrix Spike (MS-1) Spike                                                                                                                                                                                                | ed Sa        | mple                             | 387690                                                                                                                                                                                             |                                                                                                                       |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                                  |
| QC Batch: 119764<br>Prep Batch: 101285                                                                                                                                                                                   |              |                                  |                                                                                                                                                                                                    | e Analyz<br>Preparat                                                                                                  |                                                                                                                                                                                                                                                                  | )15-03-04<br>)15-03-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyzed<br>Prepared                                                             |                                                                                                  |
|                                                                                                                                                                                                                          |              | F                                | a                                                                                                                                                                                                  | MS                                                                                                                    | <b>TT 1</b> .                                                                                                                                                                                                                                                    | DU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                             |                                                                                          | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ð                                                                                | Rec.                                                                                             |
| Param                                                                                                                                                                                                                    |              | F                                |                                                                                                                                                                                                    | Result                                                                                                                | Units                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rec.                                                                             | Limit                                                                                            |
| GRO                                                                                                                                                                                                                      |              |                                  | 1                                                                                                                                                                                                  | 14.7                                                                                                                  | mg/K                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                            |                                                                                          | <2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74                                                                               | 70 - 130                                                                                         |
| Percent recovery is based on the                                                                                                                                                                                         | spike        | e resu                           | lt. RPD                                                                                                                                                                                            | is based                                                                                                              | l on the                                                                                                                                                                                                                                                         | spike and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | spike du                                                                      | iplicate r                                                                               | esult.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                                                                                  |
|                                                                                                                                                                                                                          |              |                                  | MSD                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                  | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mat                                                                           | rix                                                                                      | Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c.                                                                               | RPD                                                                                              |
| Param                                                                                                                                                                                                                    | $\mathbf{F}$ | С                                | Result                                                                                                                                                                                             | Units                                                                                                                 | 5 Dil.                                                                                                                                                                                                                                                           | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | PD Limit                                                                                         |
| GRO                                                                                                                                                                                                                      |              | 1                                | 15.2                                                                                                                                                                                               | mg/K                                                                                                                  | g 1                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <2.                                                                           | 32 76                                                                                    | 70 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130                                                                              | 3 20                                                                                             |
| Percent recovery is based on the                                                                                                                                                                                         | spike        | e resu                           | lt. RPD                                                                                                                                                                                            | is based                                                                                                              | on the                                                                                                                                                                                                                                                           | spike and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | spike dr                                                                      | plicate r                                                                                | esult.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                                                                                  |
| l'oreent recovery is pased on the                                                                                                                                                                                        | opine        | 1000                             |                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                                                                                                                                                                  | opine and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | opine at                                                                      | -                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                                  |
| _                                                                                                                                                                                                                        |              |                                  |                                                                                                                                                                                                    |                                                                                                                       | MSD                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | Spike                                                                                    | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MSD                                                                              | Rec.                                                                                             |
| Surrogate                                                                                                                                                                                                                |              |                                  |                                                                                                                                                                                                    |                                                                                                                       | lesult                                                                                                                                                                                                                                                           | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dil.                                                                          | Amount                                                                                   | Rec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rec.                                                                             | Limit                                                                                            |
|                                                                                                                                                                                                                          |              |                                  |                                                                                                                                                                                                    |                                                                                                                       | 1 67                                                                                                                                                                                                                                                             | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                             | 2                                                                                        | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84                                                                               | 70 - 130                                                                                         |
| ( )                                                                                                                                                                                                                      |              |                                  |                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                                                                                                                                                                  | mg/Kg<br>mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                             | 2                                                                                        | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94                                                                               | 70 - 130                                                                                         |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791                                                                                                                                            | ed Sa        | mple                             | 1<br>: 387700<br>Dat                                                                                                                                                                               | 94<br>e Analyz                                                                                                        | 1.88<br>ed: 20                                                                                                                                                                                                                                                   | mg/Kg<br>015-03-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |                                                                                          | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94<br>Analyzed                                                                   | 70 - 130<br>  By: AK                                                                             |
| , , -                                                                                                                                                                                                                    | ed Sa        | mple                             | 1<br>: 387700<br>Dat                                                                                                                                                                               | 94                                                                                                                    | 1.88<br>ed: 20                                                                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |                                                                                          | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94                                                                               | 70 - 130<br>  By: AK                                                                             |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317                                                                                                                      | ed Sa        | -                                | 1<br>: 387700<br>Dat<br>QC                                                                                                                                                                         | 94<br>e Analyz<br>Preparat<br>MS                                                                                      | 1.88<br>ed: 20<br>tion: 20                                                                                                                                                                                                                                       | mg/Kg<br>015-03-05<br>015-03-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>Sp                                                                       | 2<br>ike                                                                                 | 97<br>H<br>H<br>Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94<br>Analyzed<br>Prepared                                                       | 70 - 130<br>  By: AK<br>  By: AK<br>  Rec.                                                       |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param                                                                                                             | ed Sa        | mple:<br>F                       | 1<br>: 387700<br>Dat<br>QC                                                                                                                                                                         | 94<br>e Analyz<br>Preparat<br>MS<br>Result                                                                            | 1.88<br>ed: 20<br>tion: 20<br>Units                                                                                                                                                                                                                              | mg/Kg<br>015-03-05<br>015-03-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>Sp<br>Ame                                                                | 2<br>ike                                                                                 | 97<br>H<br>Matrix<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94<br>Analyzed<br>Prepared<br>Rec.                                               | 70 - 130<br>l By: AK<br>By: AK<br>Rec.<br>Limit                                                  |
| 4-Bromofluorobenzene (4-BFB)<br><b>Matrix Spike (MS-1)</b> Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO                                                                                               |              | F                                | 1<br>: 387700<br>Dat<br>QC<br>1                                                                                                                                                                    | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6                                                                    | $\frac{1.88}{\text{red:} 20}$ tion: 20<br>Units<br><u>mg/K</u>                                                                                                                                                                                                   | mg/Kg<br>015-03-05<br>015-03-04<br>s Dil.<br>g 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>Sp<br>Amo<br>20                                                          | 2<br>ike<br>punt                                                                         | 97<br>A<br>H<br>Matrix<br>Result<br><2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94<br>Analyzed<br>Prepared                                                       | 70 - 130<br>  By: AK<br>  By: AK<br>  Rec.                                                       |
| 4-Bromofluorobenzene (4-BFB)<br><b>Matrix Spike (MS-1)</b> Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO                                                                                               |              | F                                | 1<br>: 387700<br>Dat<br>QC<br>1                                                                                                                                                                    | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6                                                                    | $\frac{1.88}{\text{red:} 20}$ tion: 20<br>Units<br><u>mg/K</u>                                                                                                                                                                                                   | mg/Kg<br>015-03-05<br>015-03-04<br>s Dil.<br>g 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>Sp<br>Amo<br>20                                                          | 2<br>ike<br>punt                                                                         | 97<br>A<br>H<br>Matrix<br>Result<br><2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94<br>Analyzed<br>Prepared<br>Rec.                                               | 70 - 130<br>l By: AK<br>By: AK<br>Rec.<br>Limit                                                  |
| 4-Bromofluorobenzene (4-BFB)<br><b>Matrix Spike (MS-1)</b> Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO                                                                                               |              | F                                | 1<br>= 387700<br>Dat<br>QC<br>                                                                                                                                                                     | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6                                                                    | $\frac{1.88}{\text{red:} 20}$ tion: 20<br>Units<br><u>mg/K</u>                                                                                                                                                                                                   | $\frac{\text{mg/Kg}}{\text{015-03-05}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>Sp<br>Amo<br>20<br>spike du                                              | 2<br>ike<br>punt<br>0.0<br>uplicate r                                                    | 97 $H$ H Matrix Result $<2.32$ esult.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94<br>Analyzed<br>Prepared<br><u>Rec.</u><br>78                                  | 70 - 130<br>l By: AK<br>By: AK<br>Rec.<br>Limit<br>70 - 130                                      |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the                                                                  |              | F                                | 1<br>= 387700<br>Dat<br>QC<br>                                                                                                                                                                     | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6<br>is based                                                        | $\frac{1.88}{\text{ed:} 20}$ $\frac{1.88}{\text{tion:} 20}$ $\frac{1.88}{\text{mg/K}}$ $\frac{1.88}{\text{mg/K}}$                                                                                                                                                | mg/Kg<br>015-03-05<br>015-03-04<br>s Dil.<br>g 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>Sp<br>Amo<br>20<br>spike du<br>Mat                                       | 2<br>ike 5<br>ount<br>0.0<br>uplicate r                                                  | 97 $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94<br>Analyzed<br>Prepared<br><u>Rec.</u><br>78<br>c.                            | 70 - 130<br>  By: AK<br>  By: AK<br>  Rec.<br>  Limit<br>  70 - 130<br>  RPD                     |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the<br>Param                                                         | spike        | F<br>e resu                      | 1<br>= 387700<br>Dat<br>QC<br>                                                                                                                                                                     | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6<br>is based                                                        | $\frac{1.88}{\text{ed:} 20}$ $\frac{1.88}{\text{tion:} 20}$ $\frac{1.88}{\text{mg/K}}$ $\frac{1.88}{\text{mg/K}}$ $\frac{1.88}{\text{mg/K}}$                                                                                                                     | $\frac{mg/Kg}{015-03-05}$ $\frac{g}{2}$ $\frac{1}{3}$ spike and a Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>Sp<br>Amo<br>20<br>spike du<br>Mat:                                      | 2<br>ike<br>ount<br>.0<br>uplicate r<br>rix<br>ılt Rec                                   | 97<br>Matrix<br>Result<br><2.32<br>esult.<br>Rec<br><br>Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94<br>Analyzed<br>Prepared<br>Rec.<br>78<br>c.<br>nit RI                         | 70 - 130<br>  By: AK<br>By: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD                               |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the<br>Param<br>GRO                                                  | spike<br>F   | F<br>e resu<br>C<br>1            | 1<br>387700<br>Dat<br>QC<br>1<br>It. RPD<br>MSD<br>Result<br>16.6                                                                                                                                  | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6<br>is based<br>Units<br>mg/K                                       | $\frac{1.88}{\text{red:}} = 20$ tion:= 20 $\frac{\text{Units}}{\text{mg/K}}$ l on the s $\frac{\text{s}}{\text{g}} = 1$                                                                                                                                          | $\frac{mg/Kg}{0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{1}$ Sp<br>Amo<br>20<br>spike du<br>Mat<br>t Resu<br><2.3            | 2<br>ike 5<br>ount<br>pplicate r<br>rix<br>1lt Rec<br>32 83                              | 97 $Matrix$ $Result$ $<2.32$ $esult.$ $Rec$ $2.52$ $Rec$ $2.52$ $Rec$ $2.52$ $Rec$ $2.52$ $Rec$ $2.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94<br>Analyzed<br>Prepared<br>Rec.<br>78<br>c.<br>nit RI                         | 70 - 130<br>l By: AK<br>By: AK<br>Rec.<br>Limit<br>70 - 130<br>PD Limit                          |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the<br>Param<br>GRO                                                  | spike<br>F   | F<br>e resu<br>C<br>1            | 1<br>387700<br>Dat<br>QC<br>1<br>1<br>1<br>MSD<br>Result<br>16.6<br>lt. RPD                                                                                                                        | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6<br>is based<br>Units<br>mg/K                                       | $\frac{1.88}{\text{red:}} = 20$ tion:= 20 $\frac{\text{Units}}{\text{mg/K}}$ l on the s $\frac{\text{s}}{\text{g}} = 1$ l on the s                                                                                                                               | $\frac{mg/Kg}{0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{1}$ Sp<br>Amo<br>20<br>spike du<br>Mat<br>t Resu<br><2.3            | 2<br>ike<br>ount<br>plicate r<br>rix<br><u>nlt Rec</u><br>32 83<br>uplicate r            | 97 Matrix Result <2.32 esult. Rea To a constraint of the second secon | 94<br>Analyzed<br>Prepared<br>Rec.<br>78<br>c.<br>hit RI<br>130 0                | 70 - 130<br>l By: AK<br>By: AK<br>Rec.<br>Limit<br>70 - 130<br>PD Limit<br>5 20                  |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the<br>Param<br>GRO<br>Percent recovery is based on the              | spike<br>F   | F<br>e resu<br>C<br>1            | 1<br>387700<br>Dat<br>QC<br>1<br>1<br>1<br>MSD<br>Result<br>16.6<br>It. RPD                                                                                                                        | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6<br>is based<br>Units<br>mg/K<br>is based<br>AS                     | $\frac{1.88}{\text{red:} 20}$ $\frac{\text{Units}}{\text{mg/K}}$ $\frac{\text{MSD}}{\text{I on the s}}$                                                                                                                                                          | $\frac{mg/Kg}{015-03-05}$ $\frac{35}{15-03-04}$ $\frac{35}{2}$ $$ | 1<br>Sp<br>Amo<br>20<br>spike du<br>Mat<br>t Resu<br><2.3<br>spike du         | 2<br>ike<br>ount<br>0.0<br>uplicate r<br>ilt Rec<br>32 83<br>uplicate r<br>Spike         | 97 $Matrix$ $Result$ $<2.32$ $esult.$ $Result$ $c.$ $Lim$ $70 - 1$ $ms$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94<br>Analyzed<br>Prepared<br>Rec.<br>78<br>c.<br>nit RI<br>130 0<br>MSD         | 70 - 130<br>By: AK<br>By: AK<br>Rec.<br>Limit<br>70 - 130<br>PD Limit<br>5 20<br>Rec.            |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791<br>Prep Batch: 101317<br>Param<br>GRO<br>Percent recovery is based on the<br>Param<br>GRO<br>Percent recovery is based on the<br>Surrogate | spike<br>F   | F<br>e resu<br>C<br>1            | 1<br>387700<br>Dat<br>QC<br>1<br>1<br>1<br>1<br>MSD<br>Result<br>16.6<br>1<br>1. RPD<br>MSD<br>Result<br>16.6<br>1<br>1<br>Result<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6<br>is based<br>Units<br>mg/K<br>is based<br>IS I<br>sult R         | $\frac{1.88}{\text{ed:} 20}$ $\frac{\text{Units}}{\text{mg/K}}$ $\frac{\text{mg/K}}{\text{l on the s}}$ $\frac{\text{s} \text{Dil.}}{\text{g} 1}$ $\frac{\text{s} \text{Dil.}}{\text{l on the s}}$                                                               | mg/Kg $015-03-05$ $015-03-04$ $g$ Dil. $g$ 1 spike and s Spike Amount 20.0 spike and s Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>Sp<br>Amo<br>20<br>spike du<br>Mat<br>t Resu<br>c2.3<br>spike du<br>Dil. | 2<br>ike<br>ount<br>.0<br>uplicate r<br>it Rec<br>32 83<br>uplicate r<br>Spike<br>Amount | 97<br>Matrix<br>Result<br><2.32<br>esult.<br>Esult.<br>TO - 1<br>esult.<br>MS<br>Rec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94<br>Analyzed<br>Prepared<br>Rec.<br>78<br>c.<br>hit RI<br>130 0<br>MSD<br>Rec. | 70 - 130<br>l By: AK<br>By: AK<br>Rec.<br>Limit<br>70 - 130<br>PD Limit<br>5 20<br>Rec.<br>Limit |
| 4-Bromofluorobenzene (4-BFB)<br>Matrix Spike (MS-1) Spike<br>QC Batch: 119791                                                                                                                                            | spike<br>F   | F<br>e resu<br>C<br>1            | 1<br>387700<br>Dat<br>QC<br>1<br>It. RPD<br>MSD<br>Result<br>16.6<br>It. RPD<br>MSD<br>Result<br>16.7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                             | 94<br>e Analyz<br>Preparat<br>MS<br>Result<br>15.6<br>is based<br>Units<br>mg/K<br>is based<br>4S<br>fsult<br>R<br>68 | $\frac{1.88}{\text{ed:} 20}$ $\frac{\text{Units}}{\text{mg/K}}$ $\frac{\text{mg/K}}{\text{l on the s}}$ $\frac{\text{s} \text{Dil.}}{\text{g} 1}$ $\frac{\text{s} \text{Dil.}}{\text{l on the s}}$ $\frac{\text{MSD}}{\text{tesult}}$ $\frac{1.76}{\text{mg/K}}$ | $\frac{mg/Kg}{015-03-05}$ $\frac{35}{15-03-04}$ $\frac{35}{2}$ $$ | 1<br>Sp<br>Amo<br>20<br>spike du<br>Mat<br>t Resu<br><2.3<br>spike du         | 2<br>ike<br>ount<br>0.0<br>uplicate r<br>ilt Rec<br>32 83<br>uplicate r<br>Spike         | 97 $Matrix$ $Result$ $<2.32$ $esult.$ $Result$ $c.$ $Lim$ $70 - 1$ $ms$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94<br>Analyzed<br>Prepared<br>Rec.<br>78<br>c.<br>nit RI<br>130 0<br>MSD         | 70 - 130<br>By: AK<br>By: AK<br>Rec.<br>Limit<br>70 - 130<br>PD Limit<br>5 20<br>Rec.            |

| Report Date: March 9, 2015<br>7250715022.001 | W                  | ork Order: 1<br>30137 # |                        | Page Number: 28 of 34 |          |        |                        |          |
|----------------------------------------------|--------------------|-------------------------|------------------------|-----------------------|----------|--------|------------------------|----------|
| Matrix Spike (MS-1) Spiked Sample            | 387705             |                         |                        |                       |          |        |                        |          |
| QC Batch: 119849<br>Prep Batch: 101336       | Date An<br>QC Prep | v                       | )15-03-09<br>)15-03-05 |                       |          |        | nalyzed l<br>repared l | v        |
|                                              | MS                 |                         |                        | Spike                 |          | atrix  |                        | Rec.     |
| Param F                                      | C Resu             |                         |                        | Amour                 |          | esult  | Rec.                   | Limit    |
| GRO                                          | 1 15.2             | 2 mg/K                  | g 1                    | 20.0                  | <        | 2.32   | 76                     | 70 - 130 |
| Percent recovery is based on the spike resu  | lt. RPD is b       | based on the s          | spike and s            | pike dupli            | cate res | ult.   |                        |          |
|                                              | MSD                |                         | Spike                  | Matrix                |          | Rec    |                        | RPD      |
| Param F C                                    |                    | Units Dil.              | Amount                 |                       | Rec.     | Lim    |                        | -        |
| GRO Qs Qs 1                                  | 13.4 r             | ng/Kg 1                 | 20.0                   | <2.32                 | 67       | 70 - 1 | 30 13                  | 20       |
| Percent recovery is based on the spike resu  | lt. RPD is b       | pased on the s          | spike and s            | pike dupli            | cate res | ult.   |                        |          |
|                                              | MS                 | MSD                     |                        | S                     | pike     | MS     | MSD                    | Rec.     |
| Surrogate                                    | Result             | Result                  | Units                  | Dil. Ar               | nount    | Rec.   | Rec.                   | Limit    |
| Trifluorotoluene (TFT)                       | 1.81               | 1.83                    | mg/Kg                  | 1                     | 2        | 90     | 92                     | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB)                 | 1.94               |                         | mg/Kg                  | 1                     | 2        | 97     | 98                     | 70 - 130 |

| Report Date: March 9, 2015 | Work Order: 15022625 | Page Number: 29 of 34 |
|----------------------------|----------------------|-----------------------|
| 7250715022.001             | 30137 #3             |                       |

# **Calibration Standards**

## Standard (CCV-1)

| QC Batch: | 119724 |      | Date  | Analyzed: | 2015-03-03      |                 | Analy    | vzed By: SC |
|-----------|--------|------|-------|-----------|-----------------|-----------------|----------|-------------|
|           |        |      |       | CCVs      | $\mathrm{CCVs}$ | $\mathrm{CCVs}$ | Percent  |             |
|           |        |      |       | True      | Found           | Percent         | Recovery | Date        |
| Param     | Flag   | Cert | Units | Conc.     | Conc.           | Recovery        | Limits   | Analyzed    |
| DRO       |        | 1    | mg/Kg | 250       | 224             | 90              | 80 - 120 | 2015-03-03  |

## Standard (CCV-2)

| QC Batch: 119724 |      |      | Date    | Analyzed: | 2015-03-03 |          | Analyzed By: SC |            |  |
|------------------|------|------|---------|-----------|------------|----------|-----------------|------------|--|
|                  |      |      |         | CCVs      | $\rm CCVs$ | CCVs     | Percent         |            |  |
|                  |      |      |         | True      | Found      | Percent  | Recovery        | Date       |  |
| Param            | Flag | Cert | Units   | Conc.     | Conc.      | Recovery | Limits          | Analyzed   |  |
| DRO              |      | 1    | m mg/Kg | 250       | 218        | 87       | 80 - 120        | 2015-03-03 |  |

## Standard (ICV-1)

| QC Batch: | 119733 | 33   Date Analyze |      |         |       | 2015-03-03 |          | Analyz   | zed By: EM |
|-----------|--------|-------------------|------|---------|-------|------------|----------|----------|------------|
|           |        |                   |      |         | ICVs  | ICVs       | ICVs     | Percent  |            |
|           |        |                   |      |         | True  | Found      | Percent  | Recovery | Date       |
| Param     |        | Flag              | Cert | Units   | Conc. | Conc.      | Recovery | Limits   | Analyzed   |
| Chloride  |        |                   |      | m mg/Kg | 100   | 100        | 100      | 85 - 115 | 2015-03-03 |

## Standard (CCV-1)

| QC Batch: | h: 119733 |      | QC Batch: 119733 |       |              | Date A        | analyzed:       | 2015-03-03          |            | Analy | zed By: EM |
|-----------|-----------|------|------------------|-------|--------------|---------------|-----------------|---------------------|------------|-------|------------|
|           |           |      |                  |       | CCVs<br>True | CCVs<br>Found | CCVs<br>Percent | Percent<br>Recovery | Date       |       |            |
| Param     |           | Flag | Cert             | Units | Conc.        | Conc.         | Recovery        | Limits              | Analyzed   |       |            |
| Chloride  |           | -0   |                  | mg/Kg | 100          | 100           | 100             | 85 - 115            | 2015-03-03 |       |            |

| Report Date: March<br>7250715022.001 | n 9, 2015 |      | V                |                              | Page Number: 30 of 34         |                                    |                                           |                                |
|--------------------------------------|-----------|------|------------------|------------------------------|-------------------------------|------------------------------------|-------------------------------------------|--------------------------------|
| Standard (ICV-1)                     |           |      |                  |                              |                               |                                    |                                           |                                |
| QC Batch: 119741                     |           |      | Date A           | nalyzed: 20                  | 015-03-03                     |                                    | Analyz                                    | zed By: EM                     |
| Param<br>Chloride                    | Flag      | Cert | Units<br>mg/Kg   | ICVs<br>True<br>Conc.<br>100 | ICVs<br>Found<br>Conc.<br>101 | ICVs<br>Percent<br>Recovery<br>101 | Percent<br>Recovery<br>Limits<br>85 - 115 | Date<br>Analyzed<br>2015-03-03 |
| Standard (CCV-1                      | )         |      |                  |                              |                               |                                    |                                           |                                |
| QC Batch: 119741                     |           |      | Date A           | nalyzed: 20                  | 015-03-03                     |                                    | Analyz                                    | zed By: EM                     |
| Param                                | Flag      | Cert | Units            | CCVs<br>True<br>Conc.        | CCVs<br>Found<br>Conc.        | CCVs<br>Percent<br>Recovery        | Percent<br>Recovery<br>Limits             | Date<br>Analyzed               |
| Chloride                             | -0        |      | mg/Kg            | 100                          | 99.0                          | 99                                 | 85 - 115                                  | 2015-03-03                     |
| Standard (CCV-1<br>QC Batch: 119761  | )         |      | Date A           | nalyzed: 2                   | 015-03-04                     |                                    | Analy                                     | zed By: AK                     |
|                                      |           |      |                  | CCVs<br>True                 | CCVs<br>Found                 | CCVs<br>Percent                    | Percent<br>Recovery                       | Date                           |
| Param                                | Flag      | Cert | Units            | Conc.                        | Conc.                         | Recovery                           | Limits                                    | Analyzed                       |
| Benzene                              |           | 1    | mg/kg            | 0.100                        | 0.103                         | 103                                | 80 - 120                                  | 2015-03-04                     |
| Toluene                              |           | 1    | $\mathrm{mg/kg}$ | 0.100                        | 0.0995                        | 100                                | 80 - 120                                  | 2015-03-04                     |
| Ethylbenzene                         |           | 1    | mg/kg            | 0.100                        | 0.101                         | 101                                | 80 - 120                                  | 2015-03-04                     |
| V 1                                  |           |      | /1               | 0.000                        | 0.004                         | 101                                | 00 100                                    | 0015 00                        |

## Standard (CCV-2)

Xylene

| QC Batch: 119761 |      |      | Date An | alyzed: 20      | 15-03-04 |          | Analyzed By: AK |            |  |  |
|------------------|------|------|---------|-----------------|----------|----------|-----------------|------------|--|--|
|                  |      |      |         | $\mathrm{CCVs}$ | Percent  |          |                 |            |  |  |
|                  |      |      |         | True            | Found    | Percent  | Recovery        | Date       |  |  |
| Param            | Flag | Cert | Units   | Conc.           | Conc.    | Recovery | Limits          | Analyzed   |  |  |
| Benzene          |      | 1    | mg/kg   | 0.100           | 0.0987   | 99       | 80 - 120        | 2015-03-04 |  |  |
| Toluene          |      | 1    | m mg/kg | 0.100           | 0.0978   | 98       | 80 - 120        | 2015-03-04 |  |  |
| Ethylbenzene     |      | 1    | m mg/kg | 0.100           | 0.0987   | 99       | 80 - 120        | 2015-03-04 |  |  |
| Xylene           |      | 1    | m mg/kg | 0.300           | 0.297    | 99       | 80 - 120        | 2015-03-04 |  |  |

0.300

0.304

101

80 - 120

2015-03-04

 $\mathrm{mg/kg}$ 

1

•

| Report Date<br>7250715022.                                   | e: March 9, 2<br>001               | 2015 |                | Ţ.                                | Work Order:<br>30137                                                                         |                                                                                              |                                                               | Page Nu:                                                                                     | mber: 31 of 3                                                                      |
|--------------------------------------------------------------|------------------------------------|------|----------------|-----------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Standard (                                                   | CCV-3)                             |      |                |                                   |                                                                                              |                                                                                              |                                                               |                                                                                              |                                                                                    |
| QC Batch:                                                    | 119761                             |      |                | Date A                            | analyzed: 2                                                                                  | 015-03-04                                                                                    |                                                               | Analy                                                                                        | zed By: AK                                                                         |
|                                                              |                                    |      |                |                                   | CCVs                                                                                         | CCVs                                                                                         | CCVs                                                          | Percent                                                                                      |                                                                                    |
|                                                              |                                    |      |                |                                   | True                                                                                         | Found                                                                                        | Percent                                                       | Recovery                                                                                     | Date                                                                               |
| Param                                                        |                                    | Flag | Cert           | Units                             | Conc.                                                                                        | Conc.                                                                                        | Recovery                                                      | Limits                                                                                       | Analyzed                                                                           |
| Benzene                                                      |                                    |      | 1              | mg/kg                             | 0.100                                                                                        | 0.102                                                                                        | 102                                                           | 80 - 120                                                                                     | 2015-03-04                                                                         |
| Toluene                                                      |                                    |      | 1              | mg/kg                             | 0.100                                                                                        | 0.0984                                                                                       | 98                                                            | 80 - 120                                                                                     | 2015-03-0                                                                          |
| Ethylbenzen                                                  | e                                  |      | 1              | mg/kg                             | 0.100                                                                                        | 0.101                                                                                        | 101                                                           | 80 - 120                                                                                     | 2015-03-0                                                                          |
| Xylene                                                       |                                    |      | 1              | mg/kg                             | 0.300                                                                                        | 0.302                                                                                        | 101                                                           | 80 - 120                                                                                     | 2015-03-0                                                                          |
| Standard (                                                   | CCV-1)                             |      |                |                                   |                                                                                              |                                                                                              |                                                               |                                                                                              |                                                                                    |
| QC Batch:                                                    |                                    |      | Date A         | analyzed: 2                       | 015-03-04                                                                                    |                                                                                              | Analy                                                         | zed By: AK                                                                                   |                                                                                    |
|                                                              |                                    |      |                |                                   | CCVs                                                                                         | $\mathrm{CCVs}$                                                                              | $\mathrm{CCVs}$                                               | Percent                                                                                      |                                                                                    |
|                                                              |                                    |      |                |                                   |                                                                                              |                                                                                              | 0015                                                          | I CICCIII                                                                                    |                                                                                    |
|                                                              |                                    |      |                |                                   |                                                                                              |                                                                                              | Percent                                                       | Recovery                                                                                     | Date                                                                               |
| Param                                                        | Flag                               | C    | lert           | Units                             | True                                                                                         | Found                                                                                        | Percent<br>Becovery                                           | Recovery<br>Limits                                                                           | Date<br>Analyzed                                                                   |
| GRO                                                          | Flag                               | (    | Cert<br>1      | Units<br>mg/Kg                    |                                                                                              |                                                                                              | Percent<br>Recovery<br>104                                    | Recovery<br>Limits<br>80 - 120                                                               | Analyzed                                                                           |
| GRO<br>Standard (                                            | CCV-2)                             |      |                | mg/Kg                             | True<br>Conc.<br>1.00                                                                        | Found<br>Conc.                                                                               | Recovery                                                      | Limits<br>80 - 120                                                                           | Analyzed<br>2015-03-0                                                              |
| Param<br>GRO<br>Standard (<br>QC Batch:                      | CCV-2)                             |      |                | mg/Kg                             | True<br>Conc.<br>1.00                                                                        | Found<br>Conc.<br>1.04                                                                       | Recovery<br>104                                               | Limits<br>80 - 120<br>Analy                                                                  | Analyzed<br>2015-03-0                                                              |
| GRO<br>Standard (                                            | CCV-2)                             |      |                | mg/Kg                             | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs                                                 | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs                                                 | Recovery<br>104<br>CCVs                                       | Limits<br>80 - 120<br>Analy<br>Percent                                                       | Analyzed<br>2015-03-0<br>zed By: AK                                                |
| GRO<br>Standard (<br>QC Batch:                               | <b>CCV-2)</b><br>119764            |      | 1              | mg/Kg<br>Date A                   | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs<br>True                                         | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs<br>Found                                        | Recovery<br>104<br>CCVs<br>Percent                            | Limits<br>80 - 120<br>Analy<br>Percent<br>Recovery                                           | Analyzed<br>2015-03-0<br>zed By: AK<br>Date                                        |
| GRO<br>Standard (<br>QC Batch:<br>Param                      | CCV-2)                             |      |                | mg/Kg                             | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs                                                 | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs                                                 | Recovery<br>104<br>CCVs                                       | Limits<br>80 - 120<br>Analy<br>Percent                                                       | Analyzed<br>2015-03-0<br>zed By: AK                                                |
| GRO<br>Standard (<br>QC Batch:<br>Param<br>GRO               | <b>CCV-2)</b><br>119764<br>Flag    |      | 1<br>Cert      | mg/Kg<br>Date A<br>Units          | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs<br>True<br>Conc.                                | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs<br>Found<br>Conc.                               | Recovery<br>104<br>CCVs<br>Percent<br>Recovery                | Limits<br>80 - 120<br>Analy<br>Percent<br>Recovery<br>Limits                                 | Analyzed<br>2015-03-0<br>zed By: AK<br>Date<br>Analyzed                            |
| GRO<br>Standard (                                            | CCV-2)<br>119764<br>Flag<br>CCV-3) |      | 1<br>Cert      | mg/Kg<br>Date A<br>Units<br>mg/Kg | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs<br>True<br>Conc.<br>1.00                        | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs<br>Found<br>Conc.                               | Recovery<br>104<br>CCVs<br>Percent<br>Recovery                | Limits<br>80 - 120<br>Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120                     | Analyzed<br>2015-03-0<br>zed By: AK<br>Date<br>Analyzed<br>2015-03-0               |
| GRO<br>Standard (<br>QC Batch:<br>Param<br>GRO<br>Standard ( | CCV-2)<br>119764<br>Flag<br>CCV-3) |      | 1<br>Cert      | mg/Kg<br>Date A<br>Units<br>mg/Kg | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs<br>True<br>Conc.<br>1.00                        | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs<br>Found<br>Conc.<br>1.09<br>2015-03-04<br>CCVs | Recovery<br>104<br>CCVs<br>Percent<br>Recovery                | Limits<br>80 - 120<br>Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120                     | Analyzed<br>2015-03-0<br>zed By: AK<br>Date<br>Analyzed<br>2015-03-0               |
| GRO<br>Standard (<br>QC Batch:<br>Param<br>GRO<br>Standard ( | CCV-2)<br>119764<br>Flag<br>CCV-3) | C    | 1<br>Cert<br>1 | mg/Kg<br>Date A<br>Units<br>mg/Kg | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs<br>True<br>Conc.<br>1.00<br>Analyzed: 2         | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs<br>Found<br>Conc.<br>1.09                       | Recovery<br>104<br>CCVs<br>Percent<br>Recovery<br>109         | Limits<br>80 - 120<br>Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>Analy            | Analyzed<br>2015-03-0<br>zed By: AK<br>Date<br>Analyzed<br>2015-03-0               |
| GRO<br>Standard (<br>QC Batch:<br>Param<br>GRO<br>Standard ( | CCV-2)<br>119764<br>Flag<br>CCV-3) | C    | 1<br>Cert      | mg/Kg<br>Date A<br>Units<br>mg/Kg | True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs<br>True<br>Conc.<br>1.00<br>Analyzed: 2<br>CCVs | Found<br>Conc.<br>1.04<br>2015-03-04<br>CCVs<br>Found<br>Conc.<br>1.09<br>2015-03-04<br>CCVs | Recovery<br>104<br>CCVs<br>Percent<br>Recovery<br>109<br>CCVs | Limits<br>80 - 120<br>Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>Analy<br>Percent | Analyzed<br>2015-03-0<br>zed By: AK<br>Date<br>Analyzed<br>2015-03-0<br>zed By: AK |

•

| Report Date: M<br>7250715022.001 | [arch 9, 201 | 5    |                  |                       | er: 15022625<br>37 #3  |                             | Page Number: 32 of            |                     |  |
|----------------------------------|--------------|------|------------------|-----------------------|------------------------|-----------------------------|-------------------------------|---------------------|--|
| Standard (CC                     | V-1)         |      |                  |                       |                        |                             |                               |                     |  |
| QC Batch: 119                    | 791          |      | Date             | Analyzed:             | 2015-03-05             |                             | Analy                         | zed By: AK          |  |
| Param                            | Flag         | Cert | Units            | CCVs<br>True<br>Conc. | CCVs<br>Found<br>Conc. | CCVs<br>Percent<br>Recovery | Percent<br>Recovery<br>Limits | Date<br>Analyzed    |  |
| GRO                              | Flag         | 1    | mg/Kg            | 1.00                  | 1.04                   | 104                         | 80 - 120                      | 2015-03-05          |  |
| Standard (CC                     | V-2)         |      |                  |                       |                        |                             |                               |                     |  |
| QC Batch: 119                    | 791          |      | Date             | Analyzed:             | 2015-03-05             |                             | Analy                         | zed By: AK          |  |
|                                  |              |      |                  | CCVs<br>True          | CCVs<br>Found          | CCVs<br>Percent             | Percent<br>Recovery           | Date                |  |
| Param<br>GRO                     | Flag         | Cert | Units<br>mg/Kg   | Conc.<br>1.00         | Conc.<br>1.01          | Recovery<br>101             | Limits<br>80 - 120            | Analyzed 2015-03-05 |  |
|                                  |              |      |                  |                       |                        |                             |                               |                     |  |
| Standard (CC                     | V-1)         |      |                  |                       |                        |                             |                               |                     |  |
| QC Batch: 119                    | 849          |      | Date             | Analyzed:             | 2015-03-09             |                             | Analy                         | zed By: AK          |  |
| Param                            | Flag         | Cert | Units            | CCVs<br>True<br>Conc. | CCVs<br>Found<br>Conc. | CCVs<br>Percent             | Percent<br>Recovery<br>Limits | Date<br>Analyzed    |  |
| GRO                              | Flag         |      | mg/Kg            | 1.00                  | 1.05                   | Recovery<br>105             | 80 - 120                      | 2015-03-09          |  |
| Standard (CC<br>QC Batch: 119    | ,            |      | Date             | Analyzed:             | 2015-03-09             |                             | Analy                         | zed By: AK          |  |
|                                  |              |      |                  | CCVs                  | $\rm CCVs$             | $\operatorname{CCVs}$       | Percent                       | *                   |  |
| Param                            | Flag         | Cert | Units            | True<br>Conc.         | Found<br>Conc.         | Percent<br>Recovery         | Recovery<br>Limits            | Date<br>Analyzed    |  |
| GRO                              |              | 1    | $\mathrm{mg/Kg}$ | 1.00                  | 0.979                  | 98                          | 80 - 120                      | 2015-03-09          |  |

Report Date: March 9, 2015 7250715022.001 Work Order: 15022625  $30137 \ #3$ 

Page Number: 33 of 34

# Appendix

# **Report Definitions**

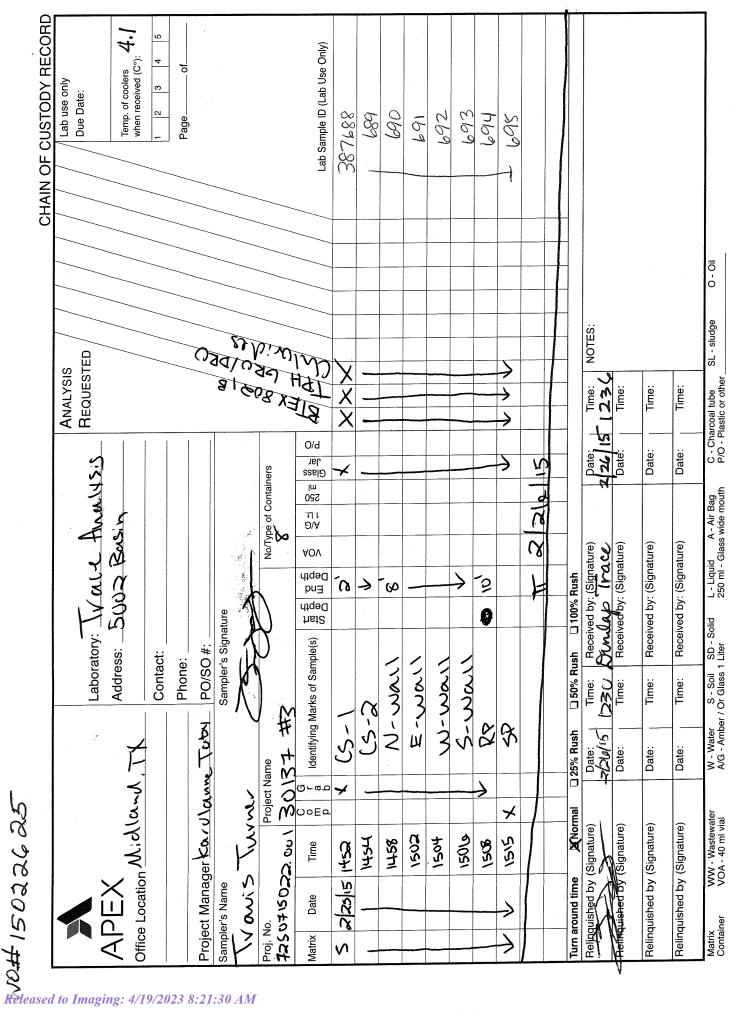
NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

# Laboratory Certifications

|              | Certifying | Certification       | Laboratory    |
|--------------|------------|---------------------|---------------|
| $\mathbf{C}$ | Authority  | Number              | Location      |
| -            | NCTRCA     | WFWB384444Y0909     | TraceAnalysis |
| -            | DBE        | VN 20657            | TraceAnalysis |
| -            | HUB        | 1752439743100-86536 | TraceAnalysis |
| -            | WBE        | 237019              | TraceAnalysis |
| 1            | NELAP      | T104704392-14-8     | Midland       |

# Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL


# Attachments

| Report Date: March 9, 2015 | Work Order: 15022625 | Page Number: 34 of 34 |
|----------------------------|----------------------|-----------------------|
| 7250715022.001             | 30137 #3             |                       |

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.





Apex TITAN, Inc. • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

Page 57 of 190



6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Midland. Texas 79703 Texas 75006 Carroliton. E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443 FAX 915 • 585 • 4944 432-689-6301 FAX 432 • 689 • 6313 972-242 -7750

Certifications

HUB NCTRCA DBE NELAP DoD LELAP Oklahoma ISO 17025 WBE Kansas

# Analytical and Quality Control Report

Karolanne Toby APEX/Titan 2351 W. Northwest Hwy. Suite 3321 Dallas, Tx, 75220

Report Date: June 23, 2015

Work Order: 15061712 

**Project Name:** 30137 #3 Project Number: 7250715022.001

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

|        |             |        | Date       | Time  | Date       |
|--------|-------------|--------|------------|-------|------------|
| Sample | Description | Matrix | Taken      | Taken | Received   |
| 395922 | BKG-1       | soil   | 2015-06-16 | 10:15 | 2015-06-17 |
| 395923 | BKG-2       | soil   | 2015-06-16 | 10:30 | 2015-06-17 |
| 395924 | STP-2       | soil   | 2015-06-16 | 10:30 | 2015-06-17 |

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 22 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lefturich

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Page 2 of 22

# **Report Contents**

| Case Narrative                                            | 4        |
|-----------------------------------------------------------|----------|
| Analytical Report                                         | <b>5</b> |
| Sample 395922 (BKG-1)                                     | 5        |
| Sample 395923 (BKG-2)                                     | 6        |
| Sample 395924 (STP-2)                                     | 7        |
| Method Blanks                                             | 10       |
| QC Batch 122418 - Method Blank (1)                        | 10       |
| QC Batch 122539 - Method Blank (1)                        | 10       |
|                                                           | 10       |
| QC Batch 122545 - Method Blank (1) $\ldots$               | 11       |
| Laboratory Control Spikes                                 | 12       |
| QC Batch 122418 - LCS (1)                                 | 12       |
| QC Batch 122539 - LCS (1)                                 | 12       |
| QC Batch 122540 - LCS (1)                                 | 13       |
| QC Batch 122545 - LCS (1)                                 | 13       |
| Matrix Spikes                                             | 15       |
| •                                                         | 15       |
| $\overrightarrow{QC}$ Batch 122539 - MS $\overbrace{(1)}$ | 15       |
| QC Batch 122540 - MS (1)                                  | 16       |
| QC Batch 122545 - MS (1)                                  | 16       |
| Calibration Standards                                     | 18       |
| QC Batch 122418 - ICV (1)                                 | 18       |
| QC Batch 122418 - CCV (1)                                 | 18       |
| QC Batch 122539 - CCV (1)                                 | 18       |
| QC Batch 122539 - CCV (2)                                 | 18       |
|                                                           | 19       |
|                                                           | 19       |
|                                                           | 19       |
|                                                           | 19       |
| QC Batch 122545 - CCV (3)                                 | 20       |
|                                                           | 21       |
| Report Definitions                                        | 21       |
| Laboratory Certifications                                 | 21       |
|                                                           | 21       |
| Attachments                                               | 21       |

Page 3 of 22

•

# Case Narrative

Samples for project 30137 #3 were received by TraceAnalysis, Inc. on 2015-06-17 and assigned to work order 15061712. Samples for work order 15061712 were received intact at a temperature of 2.1 C.

Samples were analyzed for the following tests using their respective methods.

|                      |                 | $\operatorname{Prep}$ | Prep                  | $\mathbf{QC}$ | Analysis              |
|----------------------|-----------------|-----------------------|-----------------------|---------------|-----------------------|
| Test                 | Method          | Batch                 | Date                  | Batch         | Date                  |
| BTEX                 | S 8021B         | 103647                | 2015-06-22 at 15:12   | 122539        | 2015-06-23 at 07:18   |
| Chloride (Titration) | SM 4500-Cl B $$ | 103564                | 2015-06-18 at $08:35$ | 122418        | 2015-06-18 at $09:30$ |
| TPH DRO - NEW        | S 8015 D        | 103612                | 2015-06-19 at $15:26$ | 122545        | 2015-06-23 at $09:48$ |
| TPH GRO              | S 8015 D        | 103647                | 2015-06-22 at 15:12   | 122540        | 2015-06-23 at 07:21   |

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15061712 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

•

| Report Date: June 23, 2015<br>7250715022.001 | Work Order: 15061712<br>30137 #3 | Page Number: 5 of 22 |
|----------------------------------------------|----------------------------------|----------------------|
| Analytical Report                            |                                  |                      |

## Sample: 395922 - BKG-1

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch:               | Midland<br>BTEX<br>122539<br>103647                                      |       | Γ    | Date Ana | l Method:<br>lyzed:<br>reparation   |                     | )21B<br>5-06-23<br>5-06-22 |         |                 | Prep Method<br>Analyzed By<br>Prepared By: | AK                  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------|-------|------|----------|-------------------------------------|---------------------|----------------------------|---------|-----------------|--------------------------------------------|---------------------|
|                                                                    |                                                                          |       |      |          |                                     | $\operatorname{RL}$ |                            |         |                 |                                            |                     |
| Parameter                                                          |                                                                          | Flag  |      | Cert     |                                     | Result              |                            | Units   |                 | Dilution                                   | $\operatorname{RL}$ |
| Benzene                                                            |                                                                          | U     |      | 1        | <                                   | 0.0200              |                            | mg/Kg   |                 | 1                                          | 0.0200              |
| Toluene                                                            |                                                                          | U     |      | 1        | <                                   | 0.0200              |                            | m mg/Kg |                 | 1                                          | 0.0200              |
| Ethylbenzene                                                       | )                                                                        | U     |      | 1        |                                     | 0.0200              |                            | mg/Kg   |                 | 1                                          | 0.0200              |
| Xylene                                                             |                                                                          | U     |      | 1        | <                                   | 0.0200              |                            | mg/Kg   |                 | 1                                          | 0.0200              |
| Surrogate                                                          |                                                                          |       | Flag | Cert     | Result                              | Unit                | s D                        | ilution | Spike<br>Amount | Percent<br>Recovery                        | Recovery<br>Limits  |
| Trifluorotolue                                                     | ene (TFT)                                                                |       | 0    |          | 2.03                                | mg/ł                |                            | 1       | 2.00            | 102                                        | 70 - 130            |
|                                                                    | obenzene (4-BFB)                                                         |       |      |          | 2.08                                | mg/ł                |                            | 1       | 2.00            | 104                                        | 70 - 130            |
| Sample: 39<br>Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | <b>5922 - BKG-1</b><br>Midland<br>Chloride (Titratic<br>122418<br>103564 | m)    |      | Date     | ytical Me<br>Analyzed<br>ple Prepar | l:                  | SM 45<br>2015-0<br>2015-0  |         |                 | Prep Methe<br>Analyzed E<br>Prepared E     | By: AK              |
|                                                                    |                                                                          |       |      |          |                                     | $\operatorname{RL}$ |                            |         |                 |                                            |                     |
|                                                                    |                                                                          | Floor |      | Cert     |                                     | Result              |                            | Units   | ;               | Dilution                                   | RL                  |
| Parameter                                                          |                                                                          | Flag  |      |          |                                     |                     |                            |         |                 |                                            |                     |

## Sample: 395922 - BKG-1

| Laboratory: | Midland       |                  |          |                     |            |              |                     |
|-------------|---------------|------------------|----------|---------------------|------------|--------------|---------------------|
| Analysis:   | TPH DRO - NEW | τ                | Analytic | al Method:          | S 8015 D   | Prep Method: | N/A                 |
| QC Batch:   | 122545        |                  | Date An  | alyzed:             | 2015-06-23 | Analyzed By: | $\mathbf{SC}$       |
| Prep Batch: | 103612        |                  | Sample I | Preparation:        | 2015-06-19 | Prepared By: | $\mathbf{SC}$       |
|             |               |                  |          |                     |            |              |                     |
|             |               |                  |          | $\operatorname{RL}$ |            |              |                     |
| Parameter   |               | Flag             | Cert     | Result              | Units      | Dilution     | $\operatorname{RL}$ |
| DRO         |               | $_{\rm Qr,Qs,U}$ | 1        | <50.0               | mg/Kg      | 1            | 50.0                |
|             |               |                  |          |                     |            |              |                     |

| Report Date: June 23, 7250715022.001                                                                    | Report Date: June 23, 2015<br>250715022.001 |               |      | Work Order: 15061712<br>30137 #3 |                                      |                     |          |                 | Page Number: 6 of 22                     |                     |  |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|------|----------------------------------|--------------------------------------|---------------------|----------|-----------------|------------------------------------------|---------------------|--|
| Surrogate                                                                                               | Flag                                        | Ce            | rt   | Result                           | Units                                | Dilu                | tion A   | Spike<br>Amount | Percent<br>Recovery                      | Recovery<br>Limits  |  |
| n-Tricosane <sub>Qsr</sub>                                                                              | Qsr                                         |               |      | 68.6                             | mg/Kg                                |                     | 1        | 50.0            | 137                                      | 70 - 130            |  |
| Sample: 395922 - B<br>Laboratory: Midland<br>Analysis: TPH GF<br>QC Batch: 122540<br>Prep Batch: 103647 |                                             |               |      | Date An                          | al Method:<br>alyzed:<br>Preparation | 2015-0              | 6-23     |                 | Prep Metho<br>Analyzed By<br>Prepared By | v: AK               |  |
|                                                                                                         |                                             |               |      |                                  |                                      | $\operatorname{RL}$ |          |                 |                                          |                     |  |
| Parameter                                                                                               |                                             | Flag          |      | Cert                             | F                                    | lesult              | Ur       | nits            | Dilution                                 | $\operatorname{RL}$ |  |
| GRO                                                                                                     |                                             | $_{\rm Qs,U}$ |      | 1                                | •                                    | <4.00               | mg/      | Kg              | 1                                        | 4.00                |  |
| Surrogate                                                                                               |                                             |               | Flag | Cert                             | Result                               | Units               | Dilution | Spike<br>Amount | Percent<br>Recovery                      | Recovery<br>Limits  |  |
| Trifluorotoluene (TFT)                                                                                  |                                             |               | -    |                                  | 2.54                                 | mg/Kg               | 1        | 2.00            | 127                                      | 70 - 130            |  |
|                                                                                                         | (                                           |               |      |                                  |                                      | /                   |          |                 |                                          |                     |  |

 $\mathrm{mg}/\mathrm{Kg}$ 

1

2.00

109

70 - 130

#### Sample: 395923 - BKG-2

4-Bromofluorobenzene (4-BFB)

| Laboratory:MidlandAnalysis:BTEXQC Batch:122539Prep Batch:103647 |      | Date Ana | l Method:<br>lyzed:<br>reparation: | S 8021E<br>2015-06<br>2015-06 | -23              |        | Prep Method<br>Analyzed By<br>Prepared By | : AK                |
|-----------------------------------------------------------------|------|----------|------------------------------------|-------------------------------|------------------|--------|-------------------------------------------|---------------------|
|                                                                 |      |          |                                    | RL                            |                  |        |                                           |                     |
| Parameter                                                       | Flag | Cert     | ]                                  | Result                        | Unit             | s      | Dilution                                  | $\operatorname{RL}$ |
| Benzene                                                         | U    | 1        | <                                  | 0.0200                        | mg/Kg            | g      | 1                                         | 0.0200              |
| Toluene                                                         | U    | 1        | <                                  | 0.0200                        | $\mathrm{mg/Kg}$ | g      | 1                                         | 0.0200              |
| Ethylbenzene                                                    |      | 1        | 0                                  | 0.0517                        | $mg/K_{2}$       | g      | 1                                         | 0.0200              |
| Xylene                                                          | U    | 1        | <                                  | 0.0200                        | $mg/K_{s}$       |        | 1                                         | 0.0200              |
|                                                                 |      |          |                                    |                               |                  | Spike  | Percent                                   | Recovery            |
| Surrogate                                                       | Fla  | g Cert   | Result                             | Units                         | Dilution         | Amount | Recovery                                  | Limits              |
| Trifluorotoluene (TFT)                                          |      |          | 1.95                               | mg/Kg                         | 1                | 2.00   | 98                                        | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                    |      |          | 2.05                               | mg/Kg                         | 1                | 2.00   | 102                                       | 70 - 130            |

 $\mathbf{RL}$ 

•

Dilution

Units

| Report Date<br>7250715022.0                          | e: June 23, 2015<br>001                     |                       | V        | Vork Order:<br>30137 <del>7</del>             |             |         | Page Nun                        | nber: 7 of 22 |
|------------------------------------------------------|---------------------------------------------|-----------------------|----------|-----------------------------------------------|-------------|---------|---------------------------------|---------------|
| Sample: 39                                           | 5923 - BKG-2                                |                       |          |                                               |             |         |                                 |               |
| Laboratory:                                          | Midland                                     |                       |          |                                               |             |         |                                 |               |
| Analysis:                                            | Chloride (Titrat                            | tion)                 |          | ytical Metho                                  |             | 00-Cl B | Prep Me                         | /             |
| QC Batch:                                            | 122418                                      |                       |          | Analyzed:                                     | 2015-06     |         | Analyzed                        |               |
| Prep Batch:                                          | 103564                                      |                       | Samp     | ple Preparati                                 | on: 2015-06 | 5-18    | Prepared                        | By: AK        |
|                                                      |                                             |                       |          |                                               | RL          |         |                                 |               |
| Parameter                                            |                                             | Flag                  | Cert     | Res                                           |             | Units   | Dilution                        | RL            |
| Chloride                                             |                                             | $_{\rm Qs,U}$         |          | <2                                            | 0.0         | m mg/Kg | 5                               | 4.00          |
| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>TPH DRO - NE<br>122545<br>103612 | ΣW                    | Dat      | ılytical Meth<br>e Analyzed:<br>ıple Preparat | 2015-0      | 06-23   | Prep Me<br>Analyzed<br>Prepared | l By: SC      |
|                                                      |                                             |                       |          |                                               | RL          |         |                                 |               |
| Parameter                                            |                                             | Flag                  | Cert     |                                               | sult        | Units   | Dilution                        | RL            |
| DRO                                                  |                                             | $_{\mathrm{Qr,Qs,U}}$ | 1        | <:                                            | 50.0        | mg/Kg   | 1                               | 50.0          |
|                                                      |                                             |                       |          |                                               |             | Spike   | Percent                         | Recovery      |
| Surrogate                                            | Flag                                        | Cert                  | Result   | Units                                         | Dilution    | Amount  | Recovery                        | Limits        |
| n-Tricosane                                          |                                             |                       | 54.6     | m mg/Kg                                       | 1           | 50.0    | 109                             | 70 - 130      |
| Sample: 39                                           | 5923 - BKG-2                                |                       |          |                                               |             |         |                                 |               |
| Laboratory:                                          | Midland                                     |                       |          |                                               |             |         |                                 |               |
| Analysis:                                            | TPH GRO                                     |                       |          | al Method:                                    | S 8015 D    |         | Prep Meth                       |               |
| QC Batch:                                            | 122540                                      |                       | Date Ana | •                                             | 2015-06-23  |         | Analyzed I                      | •             |
| Prep Batch:                                          | 103647                                      |                       | Sample I | Preparation:                                  | 2015-06-22  |         | Prepared E                      | By: AK        |
|                                                      |                                             |                       |          |                                               | RL          |         |                                 |               |
| D .                                                  |                                             |                       | ~        |                                               | •           |         | <b>D</b> 11                     |               |

| GRO                          | Qs,U |      | 1    |        | <4.00 | mg/k     | Γg              | 1                   | 4.00               |
|------------------------------|------|------|------|--------|-------|----------|-----------------|---------------------|--------------------|
| Surrogate                    |      | Flag | Cert | Result | Units | Dilution | Spike<br>Amount | Percent<br>Recovery | Recovery<br>Limits |
| Trifluorotoluene (TFT)       |      |      |      | 2.47   | mg/Kg | 1        | 2.00            | 124                 | 70 - 130           |
| 4-Bromofluorobenzene (4-BFB) |      |      |      | 2.14   | mg/Kg | 1        | 2.00            | 107                 | 70 - 130           |

Result

 $\operatorname{Cert}$ 

Flag

Parameter

| Report Date: June 23, 2015<br>7250715022.001                    |      |      | W        | ork Order<br>3013              | r: 15061712<br>7 #3             | 2                |        | Page Numl                                | ber: 8 of 22        |
|-----------------------------------------------------------------|------|------|----------|--------------------------------|---------------------------------|------------------|--------|------------------------------------------|---------------------|
| Sample: 395924 - STP-2                                          |      |      |          |                                |                                 |                  |        |                                          |                     |
| Laboratory:MidlandAnalysis:BTEXQC Batch:122539Prep Batch:103647 |      | Da   | te Analy | Method:<br>yzed:<br>eparation: | S 8021B<br>2015-06-<br>2015-06- |                  |        | Prep Metho<br>Analyzed By<br>Prepared By | y: AK               |
|                                                                 |      |      |          |                                | $\operatorname{RL}$             |                  |        |                                          |                     |
| Parameter                                                       | Flag |      | Cert     | F                              | Result                          | Units            |        | Dilution                                 | $\operatorname{RL}$ |
| Benzene                                                         |      |      | 1        |                                | 4.22                            | mg/Kg            |        | 1                                        | 0.0200              |
| Toluene                                                         |      |      | 1        |                                | <b>20.4</b>                     | mg/Kg            |        | 1                                        | 0.0200              |
| Ethylbenzene                                                    |      |      | 1        |                                | 7.34                            | m mg/Kg          |        | 1                                        | 0.0200              |
| Xylene                                                          | Je   |      | 1        |                                | 34.0                            | $\mathrm{mg/Kg}$ |        | 1                                        | 0.0200              |
|                                                                 |      |      |          |                                |                                 |                  | Spike  | Percent                                  | Recovery            |
| Surrogate                                                       |      | Flag | Cert     | Result                         | Units                           | Dilution         | Amount | Recovery                                 | Limits              |
| Trifluorotoluene (TFT)                                          |      |      |          | 1.72                           | mg/Kg                           | 1                | 2.00   | 86                                       | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                    | Qsr  | Qsr  |          | 6.49                           | m mg/Kg                         | 1                | 2.00   | 324                                      | 70 - 130            |

### Sample: 395924 - STP-2

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>Chloride (Titration)<br>122418<br>103564 | Date A | ical Method:<br>nalyzed:<br>Preparation: | SM 4500-Cl B<br>2015-06-18<br>2015-06-18 | Prep Method:<br>Analyzed By:<br>Prepared By: | ÁK                  |
|------------------------------------------------------|-----------------------------------------------------|--------|------------------------------------------|------------------------------------------|----------------------------------------------|---------------------|
|                                                      |                                                     |        | RL                                       |                                          |                                              |                     |
| Parameter                                            | Flag                                                | Cert   | Result                                   | Units                                    | Dilution                                     | $\operatorname{RL}$ |
| Chloride                                             | Qs                                                  |        | 98.0                                     | mg/Kg                                    | 5                                            | 4.00                |

### Sample: 395924 - STP-2

| H DRO - NEV | W                    | Anal                       | ytical Metho                                                                          | d: $S 8015$                                                                            | D                                                                                                                                           | Prep Me                                                                                                                                                         | thod: N/A                                                                                                                                                                                                              |
|-------------|----------------------|----------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 545         |                      | Date                       | Analyzed:                                                                             | 2015-06                                                                                | -23                                                                                                                                         | Analyzed                                                                                                                                                        | l By: SC                                                                                                                                                                                                               |
| 612         |                      | Sam                        | ple Preparati                                                                         | on: 2015-06                                                                            | -19                                                                                                                                         | Prepared                                                                                                                                                        | By: SC                                                                                                                                                                                                                 |
|             |                      |                            | F                                                                                     | RL                                                                                     |                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                        |
|             | Flag                 | Cert                       | Resu                                                                                  | ılt                                                                                    | Units                                                                                                                                       | Dilution                                                                                                                                                        | $\operatorname{RL}$                                                                                                                                                                                                    |
|             | $_{ m Qr,Qs}$        | 1                          | 57                                                                                    | 75                                                                                     | mg/Kg                                                                                                                                       | 1                                                                                                                                                               | 50.0                                                                                                                                                                                                                   |
| Flag        | Cert                 | Result                     | Units                                                                                 | Dilution                                                                               | Spike<br>Amount                                                                                                                             | Percent<br>Recovery                                                                                                                                             | Recovery<br>Limits                                                                                                                                                                                                     |
| ×           | 0.010                | 81.9                       |                                                                                       | 1                                                                                      | 50.0                                                                                                                                        | 164                                                                                                                                                             | 70 - 130                                                                                                                                                                                                               |
|             | 2545<br>6612<br>Flag | Flag<br>Qr,Qs<br>Flag Cert | 545 Date<br>5612 Samp<br>Flag Cert<br>Qr,Qs 1<br>Flag Cert Result<br>Flag Cert Result | 2545 Date Analyzed:<br>2612 Sample Preparation From From From From From From From From | 2545 Date Analyzed: 2015-06<br>2612 Sample Preparation: 2015-06<br>RL<br>Flag Cert Result<br>Qr,Qs 1 575<br>Flag Cert Result Units Dilution | 2545 Date Analyzed: 2015-06-23<br>Sample Preparation: 2015-06-19<br>RL<br>Flag Cert Result Units<br>Qr,Qs 1 575 mg/Kg<br>Flag Cert Result Units Dilution Amount | 2545 Date Analyzed: 2015-06-23 Analyzed<br>2612 Date Analyzed: 2015-06-19 Prepared<br>RL<br>Flag Cert Result Units Dilution<br>Qr,Qs 1 575 mg/Kg 1<br>Spike Percent<br>Flag Cert Result Units Dilution Amount Recovery |

•

| Report Date: June 23, 2015<br>7250715022.001                       |                |      | W        | Vork Order<br>3013               | r: 15061712<br>7 #3 | 2        |        | Page Num                               | ber: 9 of 22        |
|--------------------------------------------------------------------|----------------|------|----------|----------------------------------|---------------------|----------|--------|----------------------------------------|---------------------|
| Sample: 395924 - STP-2                                             |                |      |          |                                  |                     |          |        |                                        |                     |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:122540Prep Batch:103647 |                | Γ    | Date Ana | l Method<br>lyzed:<br>reparation | 2015-00             | 3-23     |        | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |
|                                                                    |                |      |          |                                  | $\operatorname{RL}$ |          |        |                                        |                     |
| Parameter                                                          | Flag           |      | Cert     | I                                | Result              | Unit     | 5      | Dilution                               | $\operatorname{RL}$ |
| GRO                                                                | $_{\rm Je,Qs}$ |      | 1        |                                  | 1190                | m mg/Kg  | r<br>S | 1                                      | 4.00                |
|                                                                    |                |      |          |                                  |                     |          | Spike  | Percent                                | Recovery            |
| Surrogate                                                          |                | Flag | Cert     | Result                           | Units               | Dilution | Amount | Recovery                               | Limits              |
| Trifluorotoluene (TFT)                                             |                |      |          | 11.4                             | mg/Kg               | 1        | 10.0   | 114                                    | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                       | Qsr            | Qsr  |          | 25.6                             | $\mathrm{mg/Kg}$    | 1        | 10.0   | 256                                    | 70 - 130            |

Report Date: June 23, 2015

Page Number: 10 of 22  $\,$ 

| 7250715022.001     |                  | 30137           | 7 #3       |              |                     |
|--------------------|------------------|-----------------|------------|--------------|---------------------|
| Method             | Blanks           |                 |            |              |                     |
| Method Blank (1)   | QC Batch: 122418 |                 |            |              |                     |
| QC Batch: 122418   | 3                | Date Analyzed:  | 2015-06-18 | Analyzed By: | AK                  |
| Prep Batch: 103564 | Ł                | QC Preparation: | 2015-06-18 | Prepared By: | AK                  |
|                    |                  |                 | MDL        |              |                     |
| Parameter          | Flag             | Cert            | Result     | Units        | $\operatorname{RL}$ |
| Chloride           |                  |                 | <3.85      | mg/Kg        | 4                   |

Work Order: 15061712

| Method Blank (1) | QC Batch: 122539 |
|------------------|------------------|
|------------------|------------------|

| QC Batch: 122539<br>Prep Batch: 103647 |      |      | analyzed:<br>eparation: | 2015-06-2<br>2015-06-2 | -            |                 | Analyzed<br>Prepared | 0                   |
|----------------------------------------|------|------|-------------------------|------------------------|--------------|-----------------|----------------------|---------------------|
|                                        |      |      |                         |                        | MDL          |                 |                      |                     |
| Parameter                              | Flag |      | Cert                    |                        | Result       |                 | Units                | $\operatorname{RL}$ |
| Benzene                                |      |      | 1                       |                        | < 0.00533    | 1               | mg/Kg                | 0.02                |
| Toluene                                |      |      | 1                       |                        | $<\!0.00645$ | 1               | m mg/Kg              | 0.02                |
| Ethylbenzene                           |      |      | 1                       |                        | < 0.0116     | 1               | m mg/Kg              | 0.02                |
| Xylene                                 |      |      | 1                       |                        | < 0.00874    | ]               | mg/Kg                | 0.02                |
| Surrogate                              | Flag | Cert | Result                  | Units                  | Dilution     | Spike<br>Amount | Percent<br>Recovery  | Recovery<br>Limits  |
| Trifluorotoluene (TFT)                 | -0   |      | 1.82                    | mg/Kg                  | 1            | 2.00            | 91                   | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)           |      |      | 1.88                    | mg/Kg                  | 1            | 2.00            | 94                   | 70 - 130            |

## Method Blank (1) QC Batch: 122540

| QC Batch: 122<br>Prep Batch: 103 |      | Date Analyzed:<br>QC Preparation: |        | Analyzed By:<br>Prepared By: |                     |
|----------------------------------|------|-----------------------------------|--------|------------------------------|---------------------|
|                                  |      |                                   | MDL    |                              |                     |
| Parameter                        | Flag | Cert                              | Result | Units                        | $\operatorname{RL}$ |
| GRO                              |      | 1                                 | <2.32  | mg/Kg                        | 4                   |

| Report Date: June 23.<br>7250715022.001                    | 2015    |                      | T.              | Work Order<br>30137      |                        | 2                            |                | Page Numb          | per: 11 of | 22                         |
|------------------------------------------------------------|---------|----------------------|-----------------|--------------------------|------------------------|------------------------------|----------------|--------------------|------------|----------------------------|
|                                                            |         |                      |                 |                          |                        |                              | Spike          | Percent            | Recove     | ry                         |
| Surrogate                                                  |         | Fla                  | g Cert          | Result                   | Units                  | Dilution                     | Amount         | Recovery           | Limit      | 3                          |
| Trifluorotoluene (TFT)                                     |         |                      |                 | 2.33                     | mg/Kg                  | 1                            | 2.00           | 116                | 70 - 13    | 60                         |
| 4-Bromofluorobenzene                                       | (4-BFB) |                      |                 | 1.99                     | $\mathrm{mg/Kg}$       | 1                            | 2.00           | 100                | 70 - 13    | 0                          |
| Method Blank (1)                                           | QC E    | Batch: $1225_{4}$    | 45              |                          |                        |                              |                |                    |            |                            |
| Method Blank (1)<br>QC Batch: 122545<br>Prep Batch: 103612 | QC E    | 3atch: 1225          | Date A          | Analyzed:<br>reparation: | 2015-06-2<br>2015-06-2 | 19                           |                | Analyze<br>Prepare | v          |                            |
| QC Batch: 122545                                           | QC E    | Batch: 1225          | Date A          | v                        |                        | -                            |                | •                  | v          |                            |
| QC Batch: 122545<br>Prep Batch: 103612<br>Parameter        | QC E    | Batch: 12254<br>Flag | Date A<br>QC Pr | v                        |                        | 19                           |                | Prepare            | d By: So   |                            |
| QC Batch: 122545<br>Prep Batch: 103612                     | QC F    |                      | Date A<br>QC Pr | reparation:              |                        | 19<br>MDL                    |                | Prepare            | d By: So   | С                          |
| QC Batch: 122545<br>Prep Batch: 103612<br>Parameter        | QC E    |                      | Date A<br>QC Pr | reparation:<br>Cert      |                        | 19<br>MDL<br>Result<br><7.41 | Spike<br>mount | Prepare            | d By: So   | C<br><u>RL</u><br>50<br>ry |

| Report Date: June 23, 2015 | Work Order: 15061712 | Page Number: 12 of 22 |
|----------------------------|----------------------|-----------------------|
| 7250715022.001             | $30137 \ #3$         |                       |
|                            |                      |                       |

# Laboratory Control Spikes

### Laboratory Control Spike (LCS-1)

| QC Batch: 122418<br>Prep Batch: 103564 | Date Analyzed:2015-06-18Analyzed ByQC Preparation:2015-06-18Prepared By |          |             |           |             |             |          |          |         |          |
|----------------------------------------|-------------------------------------------------------------------------|----------|-------------|-----------|-------------|-------------|----------|----------|---------|----------|
| The Bateria 100001                     |                                                                         | Q U      | roparati    | 201       | 0 00 10     |             |          | 110p     | area Dj | v: AK    |
|                                        |                                                                         |          | LCS         |           |             | Spike       | M        | atrix    |         | Rec.     |
| Param                                  | F                                                                       | С        | Result      | Units     | Dil.        | Amount      | Re       | esult R  | .ec.    | Limit    |
| Chloride                               |                                                                         |          | 2350        | mg/Kg     | 5           | 2500        | <        | 19.2     | 94 8    | 85 - 115 |
| Percent recovery is based on the sp    | oike re                                                                 | ult. RPD | is based of | on the sp | pike and sp | ike duplica | ate resi | ult.     |         |          |
|                                        |                                                                         | LCSD     |             |           | Spike       | Matrix      |          | Rec.     |         | RPD      |
| Param                                  | F C                                                                     | Result   | Units       | Dil.      | Amount      | Result      | Rec.     | Limit    | RPD     | Limit    |
| Chloride                               |                                                                         | 2350     | mg/Kg       | 5         | 2500        | $<\!19.2$   | 94       | 85 - 115 | 0       | 20       |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

#### Laboratory Control Spike (LCS-1)

| QC Batch: 122539   |              | Ι            | Date Analy | zed: 2015    | 5-06-23 |                        | A             | nalyzed | By: AK   |
|--------------------|--------------|--------------|------------|--------------|---------|------------------------|---------------|---------|----------|
| Prep Batch: 103647 |              | C            | QC Prepara | ation: $201$ | 5-06-22 |                        | Р             | repared | By: AK   |
|                    |              |              |            |              |         |                        |               |         |          |
|                    |              |              | тос        |              |         | G .1                   | <b>NT</b> + 1 |         | D        |
|                    |              |              | LCS        |              |         | $\operatorname{Spike}$ | Matrix        |         | Rec.     |
| Param              | $\mathbf{F}$ | $\mathbf{C}$ | Result     | Units        | Dil.    | Amount                 | Result        | Rec.    | Limit    |
| Benzene            |              | 1            | 1.89       | mg/Kg        | 1       | 2.00                   | < 0.00533     | 94      | 70 - 130 |
| Toluene            |              | 1            | 1.80       | m mg/Kg      | 1       | 2.00                   | $<\!0.00645$  | 90      | 70 - 130 |
| Ethylbenzene       |              | 1            | 1.73       | m mg/Kg      | 1       | 2.00                   | < 0.0116      | 86      | 70 - 130 |
| Xylene             |              | 1            | 5.64       | m mg/Kg      | 1       | 6.00                   | < 0.00874     | 94      | 70 - 130 |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|              |              |              | LCSD   |       |      | Spike  | Matrix    |      | Rec.     |     | RPD   |
|--------------|--------------|--------------|--------|-------|------|--------|-----------|------|----------|-----|-------|
| Param        | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units | Dil. | Amount | Result    | Rec. | Limit    | RPD | Limit |
| Benzene      |              | 1            | 1.93   | mg/Kg | 1    | 2.00   | < 0.00533 | 96   | 70 - 130 | 2   | 20    |
| Toluene      |              | 1            | 1.81   | mg/Kg | 1    | 2.00   | < 0.00645 | 90   | 70 - 130 | 1   | 20    |
| Ethylbenzene |              | 1            | 1.74   | mg/Kg | 1    | 2.00   | < 0.0116  | 87   | 70 - 130 | 1   | 20    |
| Xylene       |              | 1            | 5.70   | mg/Kg | 1    | 6.00   | < 0.00874 | 95   | 70 - 130 | 1   | 20    |
|              |              |              |        |       | -    |        |           |      | -        |     |       |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

| Report Date: June 23, 2015<br>7250715022.001                                                                                                                                                                                                     |                     |                 |                                                                                              | Wor                                                                                            | rk Order<br>30137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 15061712<br>7#3                                                                                                            |                                                          |                                                                                                                 | Pa                                                                                       | age Numbe                                                                   | er: 13 of 2                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| control spikes continued                                                                                                                                                                                                                         |                     |                 |                                                                                              |                                                                                                | 1 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                                          | <i>a</i>                                                                                                        | - 00                                                                                     | 1 005                                                                       |                                                                                                                             |
| 9                                                                                                                                                                                                                                                |                     |                 | LC<br>Res                                                                                    |                                                                                                | LCSD<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TT:+                                                                                                                         | Dil.                                                     | Spike                                                                                                           | LCS                                                                                      | LCSD                                                                        | Rec.                                                                                                                        |
| Surrogate                                                                                                                                                                                                                                        |                     |                 | nes                                                                                          | un                                                                                             | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                                                                                        | DII.                                                     | Amount                                                                                                          | Rec.                                                                                     | Rec.                                                                        | Limit                                                                                                                       |
|                                                                                                                                                                                                                                                  |                     |                 | LC                                                                                           | CS                                                                                             | LCSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                          | Spike                                                                                                           | LCS                                                                                      | LCSD                                                                        | Rec.                                                                                                                        |
| Surrogate                                                                                                                                                                                                                                        |                     |                 | Res                                                                                          | ult                                                                                            | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                                                                                        | Dil.                                                     | Amount                                                                                                          | Rec.                                                                                     | Rec.                                                                        | Limit                                                                                                                       |
| Trifluorotoluene (TFT)                                                                                                                                                                                                                           |                     |                 | 1.8                                                                                          |                                                                                                | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m mg/Kg                                                                                                                      | 1                                                        | 2.00                                                                                                            | 93                                                                                       | 88                                                                          | 70 - 130                                                                                                                    |
| 4-Bromofluorobenzene (4-BFB)                                                                                                                                                                                                                     |                     |                 | 1.8                                                                                          | 83                                                                                             | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                                                                        | 1                                                        | 2.00                                                                                                            | 92                                                                                       | 88                                                                          | 70 - 130                                                                                                                    |
| Laboratory Control Spike (L<br>QC Batch: 122540<br>Prep Batch: 103647                                                                                                                                                                            | CS-1                | )               |                                                                                              |                                                                                                | dyzed:<br>aration:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2015-06-23<br>2015-06-22                                                                                                     |                                                          |                                                                                                                 |                                                                                          | Analyzed<br>Prepared                                                        | v                                                                                                                           |
|                                                                                                                                                                                                                                                  |                     |                 |                                                                                              | LCS                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                          | Spike                                                                                                           | Matrix                                                                                   |                                                                             | Rec.                                                                                                                        |
|                                                                                                                                                                                                                                                  |                     |                 |                                                                                              |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                          | 10 Io 0                                                                                                         |                                                                                          |                                                                             |                                                                                                                             |
| Param                                                                                                                                                                                                                                            |                     | F               |                                                                                              |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nits Dil                                                                                                                     | . A                                                      | Amount                                                                                                          | Result                                                                                   | Rec.                                                                        | $\operatorname{Limit}$                                                                                                      |
| GRO                                                                                                                                                                                                                                              |                     |                 | $\frac{C}{1}$ It. RPD                                                                        | Resul<br>15.5                                                                                  | t Ur<br>mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                            | l spike                                                  | -                                                                                                               |                                                                                          | Rec.<br>78                                                                  | Limit<br>70 - 130                                                                                                           |
| GRO<br>Percent recovery is based on the s<br>Param                                                                                                                                                                                               |                     |                 |                                                                                              | Result<br>15.5<br>is ba<br>U                                                                   | t U1 mg     ng     sed on t     nits I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /Kg 1                                                                                                                        | l spike<br>e M<br>nt R                                   | 20.0                                                                                                            | <2.32<br>result.<br>Rec. Lin                                                             | 78                                                                          | 70 - 130<br>RPD<br>PD Limit                                                                                                 |
| GRO<br>Percent recovery is based on the s<br>Param<br>GRO                                                                                                                                                                                        | spike<br>F          | resul<br>C<br>1 | C I<br>1<br>lt. RPD<br>LCSD<br>Result<br>15.3                                                | Resul<br>15.5<br>is ba<br>U<br>mg                                                              | t Un mg     mg     sed on t     nits I     g/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0                                                                        | l spike<br>e M<br>nt R<br><                              | 20.0<br>e duplicate<br>Matrix<br>Result Re<br><2.32 7                                                           | <2.32<br>result.<br>ec. Lin<br>6 70 -                                                    | 78<br>ec.<br>mit RF                                                         | 70 - 130<br>RPD<br>PD Limit                                                                                                 |
| GRO<br>Percent recovery is based on the s<br>Param<br>GRO                                                                                                                                                                                        | spike<br>F          | resul<br>C<br>1 | C I<br>1<br>1<br>LCSD<br>Result<br>15.3<br>It. RPD                                           | Result<br>15.5<br>is ba<br>Ut<br>mg<br>is ba                                                   | t Un mg mg sed on th nits D g/Kg sed on th sed on th g/Kg sed on th sed on the sed on | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0                                                                        | l spike<br>e M<br>nt R<br><                              | 20.0 e duplicate Matrix Result Re <2.32 7 e duplicate                                                           | <2.32<br>result.<br>Rec. Lin<br>6 70 -<br>result.                                        | 78<br>ec.<br>mit RF<br>130 1                                                | 70 - 130<br>RPD<br>PD Limit<br>1 20                                                                                         |
| GRO<br>Percent recovery is based on the s<br>Param<br>GRO<br>Percent recovery is based on the s                                                                                                                                                  | spike<br>F          | resul<br>C<br>1 | C I<br>1<br>lt. RPD<br>LCSD<br>Result<br>15.3<br>lt. RPD<br>LC                               | Result<br>15.5<br>is ba<br>Ut<br>mg<br>is ba                                                   | t Un mg mg sed on the sed | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0<br>he spike and                                                        | l spike<br>e M<br>nt F<br><<br>l spike                   | 20.0<br>e duplicate<br>Aatrix<br>Result Re<br><2.32 7<br>e duplicate<br>Spike                                   | <2.32<br>result.<br>Rec. Lin<br>6 70 -<br>result.<br>LCS                                 | 78<br>ec.<br>nit RF<br>130 1<br>LCSD                                        | 70 - 130<br>RPD<br>PD Limit<br>20<br>Rec.                                                                                   |
| GRO<br>Percent recovery is based on the s<br>Param<br>GRO<br>Percent recovery is based on the s<br>Surrogate                                                                                                                                     | spike<br>F          | resul<br>C<br>1 | C I<br>1<br>LCSD<br>Result<br>15.3<br>It. RPD<br>LC<br>Res                                   | Result<br>15.5<br>is ba<br>Un<br>mg<br>is ba<br>CS<br>ult                                      | t Un<br>mg<br>sed on th<br>nits D<br>g/Kg<br>sed on th<br>LCSD<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0<br>he spike and<br>Units                                               | l spike<br>e M<br>nt F<br>d spike<br>Dil.                | 20.0<br>e duplicate<br>Matrix<br>Result Re<br><2.32 7<br>e duplicate<br>Spike<br>Amount                         | <2.32<br>result.<br>Rec. Lin<br>6 70 -<br>result.<br>LCS<br>Rec.                         | 78<br>ec.<br><u>mit RF</u><br>130 1<br>LCSD<br>Rec.                         | 70 - 130<br>PD Limit<br>L 20<br>Rec.<br>Limit                                                                               |
| Param<br>GRO<br>Percent recovery is based on the s<br>Param<br>GRO<br>Percent recovery is based on the s<br>Surrogate<br>Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)                                                                  | spike<br>F          | resul<br>C<br>1 | C I<br>1<br>lt. RPD<br>LCSD<br>Result<br>15.3<br>lt. RPD<br>LC                               | Result<br>15.5<br>is ba<br>Ut<br>mg<br>is ba<br>CS<br>ult<br>34                                | t Un mg mg sed on the sed | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0<br>he spike and                                                        | l spike<br>e M<br>nt F<br><<br>l spike                   | 20.0<br>e duplicate<br>Aatrix<br>Result Re<br><2.32 7<br>e duplicate<br>Spike                                   | <2.32<br>result.<br>Rec. Lin<br>6 70 -<br>result.<br>LCS                                 | 78<br>ec.<br>nit RF<br>130 1<br>LCSD                                        | 70 - 130<br>RPD<br>PD Limit<br>20<br>Rec.                                                                                   |
| GRO<br>Percent recovery is based on the s<br>Param<br>GRO<br>Percent recovery is based on the s<br>Surrogate<br>Trifluorotoluene (TFT)                                                                                                           | spike<br>F<br>spike | C<br>1<br>resu  | C I<br>1<br>1<br>LCSD<br>Result<br>15.3<br>1t. RPD<br>LC<br>Res<br>2.3<br>2.0<br>Date        | Result<br>15.5<br>is ba<br>Un<br>mg<br>is ba<br>CS<br>ult<br>34<br>09<br>e Ana                 | t Un<br>mg<br>sed on th<br>nits D<br>g/Kg<br>sed on th<br>LCSD<br>Result<br>2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0<br>he spike and<br>Units<br>mg/Kg                                      | l spike<br>e M<br>nt F<br><<br>d spike<br>Dil.<br>1<br>1 | 20.0<br>e duplicate<br>Matrix<br>Result Re<br><2.32 7<br>e duplicate<br>Spike<br>Amount<br>2.00                 | <2.32<br>result.<br>Rec. Lin<br>6 70 -<br>result.<br>LCS<br>Rec.<br>117                  | 78<br>ec.<br><u>mit RF</u><br>130 1<br>LCSD<br><u>Rec.</u><br>118           | 70 - 130<br>RPD<br>Limit<br>20<br>Rec.<br>Limit<br>70 - 130<br>70 - 130<br>1 By: SC                                         |
| GRO<br>Percent recovery is based on the s<br>Param<br>GRO<br>Percent recovery is based on the s<br>Surrogate<br>Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (LO<br>QC Batch: 122545<br>Prep Batch: 103612 | spike<br>F<br>spike | C<br>1<br>resul | C I<br>1<br>LCSD<br>Result<br>15.3<br>lt. RPD<br>LC<br>Res<br>2.3<br>2.0<br>Date<br>QC       | Result<br>15.5<br>is ba<br>Un<br>mg<br>is ba<br>CS<br>ult<br>34<br>09<br>e Ana<br>Prepa<br>LCS | t Un<br>mg<br>sed on th<br>nits D<br>g/Kg<br>sed on th<br>LCSD<br>Result<br>2.35<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0<br>he spike and<br>Units<br>mg/Kg<br>mg/Kg<br>2015-06-23<br>2015-06-19 | l spike<br>e M<br>spike<br>Dil.<br>1<br>1                | 20.0<br>e duplicate<br>Matrix<br>Result Re<br><2.32 7<br>e duplicate<br>Spike<br>Amount<br>2.00<br>2.00<br>2.00 | <2.32<br>result.<br>Rec. Lin<br>6 70 -<br>result.<br>LCS<br>Rec.<br>117<br>104<br>Matrix | 78<br>mit RF<br>130 1<br>LCSD<br>Rec.<br>118<br>106<br>Analyzed<br>Prepared | 70 - 130<br>PD Limit<br>20<br>Rec.<br>Limit<br>70 - 130<br>70 - 130<br>70 - 130<br>1 By: SC<br>1 By: SC<br>1 By: SC<br>Rec. |
| GRO<br>Percent recovery is based on the s<br>Param<br>GRO<br>Percent recovery is based on the s<br>Surrogate<br>Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (LO<br>QC Batch: 122545                       | spike<br>F<br>spike | C<br>1<br>resu  | C I<br>It. RPD<br>LCSD<br>Result<br>15.3<br>It. RPD<br>LC<br>Res<br>2.3<br>2.0<br>Date<br>QC | Result<br>15.5<br>is ba<br>Un<br>mg<br>is ba<br>CS<br>ult<br>34<br>D9<br>e Ana<br>Prepa        | t Un<br>mg<br>sed on th<br>nits D<br>g/Kg<br>sed on th<br>LCSD<br>Result<br>2.35<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /Kg 1<br>he spike and<br>Spike<br>Dil. Amou<br>1 20.0<br>he spike and<br>Units<br>mg/Kg<br>mg/Kg<br>2015-06-23               | l spike<br>e M<br>spike<br>Dil.<br>1<br>1                | 20.0<br>e duplicate<br>Aatrix<br>Result Re<br><2.32 7<br>e duplicate<br>Spike<br>Amount<br>2.00<br>2.00         | <2.32<br>result.<br>Rec. Lin<br>6 70 -<br>result.<br>LCS<br>Rec.<br>117<br>104           | 78<br>ec.<br>mit RF<br>130 1<br>LCSD<br>Rec.<br>118<br>106                  | 70 - 130<br>RPD<br>Limit<br>20<br>Rec.<br>Limit<br>70 - 130<br>70 - 130<br>70 - 130<br>1 By: SC<br>1 By: SC                 |

| Report Date: June 23, 2015<br>7250715022.001 |              |      |         | Work On<br>30 | der: 15<br>)137 #3    |            |             |           | Page Nu  | ımber:               | 14 of 22 |
|----------------------------------------------|--------------|------|---------|---------------|-----------------------|------------|-------------|-----------|----------|----------------------|----------|
| control spikes continued                     |              |      |         |               |                       |            |             |           |          |                      |          |
|                                              |              |      | LCSD    |               |                       | Spike      | Matrix      |           | Rec.     |                      | RPD      |
| Param                                        | $\mathbf{F}$ | С    | Result  | Units         | Dil.                  | Amount     | Result      | Rec.      | Limit    | $\operatorname{RPD}$ | Limit    |
|                                              |              |      | LCSD    |               |                       | Spike      | Matrix      |           | Rec.     |                      | RPD      |
| Param                                        | $\mathbf{F}$ | С    | Result  | Units         | Dil.                  | Amount     | Result      | Rec.      | Limit    | RPD                  | Limit    |
| DRO                                          |              | 1    | 249     | mg/Kg         | 1                     | 250        | <7.41       | 100       | 70 - 130 | 4                    | 20       |
| Percent recovery is based on th              | e spike      | resu | lt. RPD | is based o    | on the s              | pike and s | pike duplic | cate resu | lt.      |                      |          |
|                                              | LO           | CS   | LCSI    | )             |                       |            | Spike       | LCS       | LCS      | D                    | Rec.     |
| Surrogate                                    | Res          | sult | Resul   | lt U          | $\operatorname{nits}$ | Dil.       | Amount      | Rec       | . Rec    |                      | Limit    |
| n-Tricosane                                  | 58           | 3.5  | 61.9    | mg            | g/Kg                  | 1          | 50.0        | 117       | 124      | : '                  | 70 - 130 |

Report Date: June 23, 2015

Page Number: 15 of 22

| 7250715022.001                 |             |              |              | ę         |           |            |             |              |       |            |
|--------------------------------|-------------|--------------|--------------|-----------|-----------|------------|-------------|--------------|-------|------------|
| Matrix Spike                   | S           |              |              |           |           |            |             |              |       |            |
| Matrix Spike (MS-1) Sp         | oiked Sε    | ample        | : 396009     | 1         |           |            |             |              |       |            |
| QC Batch: 122418               |             |              |              | e Analyze |           | 5-06-18    |             |              | v     | zed By: AK |
| Prep Batch: 103564             |             |              | QC           | Preparat  | ion: 201  | 5-06-18    |             |              | Prepa | red By: AK |
|                                |             |              |              | MS        |           |            | Spike       | Matrix       |       | Rec.       |
| Param                          |             | $\mathbf{F}$ | $\mathbf{C}$ | Result    | Units     | Dil.       | Amount      | Result       | Rec.  | Limit      |
| Chloride                       | $_{\rm Qs}$ | $_{\rm Qs}$  |              | 19700     | mg/Kg     | 5          | 2500        | 16600        | 124   | 78.9 - 121 |
| Percent recovery is based on t | he spik     | e resu       | ılt. RPE     | is based  | on the sp | pike and s | pike duplie | cate result. |       |            |
|                                |             |              | MSD          |           |           | Spike      | Matrix      | ]            | Rec.  | RPD        |
| Param                          | F           | C            | Result       | t Units   | Dil       | Amount     | Result      |              | imit  | RPD Limit  |

Work Order: 15061712

|          |             |              |              | MSD    |                  |      | Spike  | Matrix |      | Rec.       |     | RPD   |
|----------|-------------|--------------|--------------|--------|------------------|------|--------|--------|------|------------|-----|-------|
| Param    |             | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units            | Dil. | Amount | Result | Rec. | Limit      | RPD | Limit |
| Chloride | $_{\rm Qs}$ | $_{\rm Qs}$  |              | 19900  | $\mathrm{mg/Kg}$ | 5    | 2500   | 16600  | 132  | 78.9 - 121 | 1   | 20    |
|          |             |              |              |        |                  |      |        |        |      |            |     |       |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

### Matrix Spike (MS-1) Spiked Sample: 395922

| QC Batch:   | 122539 | Date Analyzed:  | 2015-06-23 | Analyzed By: | AK |
|-------------|--------|-----------------|------------|--------------|----|
| Prep Batch: | 103647 | QC Preparation: | 2015-06-22 | Prepared By: | AK |

|              |              |   | MS     |                  |      | Spike  | Matrix       |      | Rec.     |
|--------------|--------------|---|--------|------------------|------|--------|--------------|------|----------|
| Param        | $\mathbf{F}$ | С | Result | Units            | Dil. | Amount | Result       | Rec. | Limit    |
| Benzene      |              | 1 | 1.78   | mg/Kg            | 1    | 2.00   | < 0.00533    | 89   | 70 - 130 |
| Toluene      |              | 1 | 1.72   | m mg/Kg          | 1    | 2.00   | $<\!0.00645$ | 86   | 70 - 130 |
| Ethylbenzene |              | 1 | 1.70   | m mg/Kg          | 1    | 2.00   | < 0.0116     | 85   | 70 - 130 |
| Xylene       |              | 1 | 5.63   | $\mathrm{mg/Kg}$ | 1    | 6.00   | < 0.00874    | 94   | 70 - 130 |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|              |   |              | MSD    |                  |      | Spike  | Matrix    |      | Rec.     |     | RPD   |
|--------------|---|--------------|--------|------------------|------|--------|-----------|------|----------|-----|-------|
| Param        | F | $\mathbf{C}$ | Result | Units            | Dil. | Amount | Result    | Rec. | Limit    | RPD | Limit |
| Benzene      |   | 1            | 1.66   | mg/Kg            | 1    | 2.00   | < 0.00533 | 83   | 70 - 130 | 7   | 20    |
| Toluene      |   | 1            | 1.59   | $\mathrm{mg/Kg}$ | 1    | 2.00   | < 0.00645 | 80   | 70 - 130 | 8   | 20    |
| Ethylbenzene |   | 1            | 1.59   | mg/Kg            | 1    | 2.00   | < 0.0116  | 80   | 70 - 130 | 7   | 20    |
| Xylene       |   | 1            | 5.25   | $\mathrm{mg/Kg}$ | 1    | 6.00   | < 0.00874 | 88   | 70 - 130 | 7   | 20    |
|              |   |              |        |                  | -    |        |           |      | -        |     |       |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

.

| Report Date: June 23, 20<br>7250715022.001                                                                                                                                                          | 15                   |                                       | W                                                                                                                | Vork Order:<br>30137                                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 | Pag                                                                     | ge Numbe                                                                   | er: 16 of 25                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| matrix spikes continued                                                                                                                                                                             |                      |                                       |                                                                                                                  |                                                                                                                                                                         |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>a u</b>                                                                                      | 2.60                                                                    |                                                                            | D                                                                                                               |
| Surrogate                                                                                                                                                                                           |                      |                                       | MS<br>Result                                                                                                     | MSD<br>Result                                                                                                                                                           | Units                                                                                                                            | Dil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spike<br>Amount                                                                                 | MS<br>Rec.                                                              | MSD<br>Rec.                                                                | Rec.<br>Limit                                                                                                   |
| Surrogate                                                                                                                                                                                           |                      |                                       | nesun                                                                                                            | itesuit                                                                                                                                                                 | Onits                                                                                                                            | DII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amount                                                                                          | nec.                                                                    | nec.                                                                       | LIIIII                                                                                                          |
|                                                                                                                                                                                                     |                      |                                       | MS                                                                                                               | MSD                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spike                                                                                           | MS                                                                      | MSD                                                                        | Rec.                                                                                                            |
| Surrogate                                                                                                                                                                                           |                      |                                       | Result                                                                                                           |                                                                                                                                                                         | Units                                                                                                                            | Dil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amount                                                                                          | Rec.                                                                    | Rec.                                                                       | Limit                                                                                                           |
| Trifluorotoluene (TFT)                                                                                                                                                                              |                      |                                       | 1.84                                                                                                             | 1.89                                                                                                                                                                    | mg/Kg                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                               | 92                                                                      | 94                                                                         | 70 - 130                                                                                                        |
| 4-Bromofluorobenzene (4-I                                                                                                                                                                           | BFB)                 |                                       | 1.92                                                                                                             | 1.96                                                                                                                                                                    | mg/Kg                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                               | 96                                                                      | 98                                                                         | 70 - 130                                                                                                        |
| <b>Matrix Spike (MS-1)</b><br>QC Batch: 122540<br>Prep Batch: 103647                                                                                                                                | Spiked               | Sample:                               | Date A                                                                                                           | nalyzed:<br>eparation:                                                                                                                                                  | 2015-06-23<br>2015-06-22                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                         | Analyzed<br>Prepared                                                       | v                                                                                                               |
|                                                                                                                                                                                                     |                      | Б                                     | M                                                                                                                |                                                                                                                                                                         | ., D.1                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                               | Matrix                                                                  | D                                                                          | Rec.                                                                                                            |
| Param                                                                                                                                                                                               |                      | $\mathbf{F}$                          | C Res                                                                                                            | ult Un                                                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 | Result                                                                  | Rec.                                                                       | Limit                                                                                                           |
|                                                                                                                                                                                                     |                      |                                       | 14                                                                                                               | 0                                                                                                                                                                       | /TZ 1                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 | -0.00                                                                   |                                                                            |                                                                                                                 |
| GRO                                                                                                                                                                                                 | .,                   |                                       | 1 14                                                                                                             | 0,                                                                                                                                                                      | ~                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.0                                                                                            | <2.32                                                                   | 74                                                                         | 70 - 130                                                                                                        |
| GRO                                                                                                                                                                                                 | on the sp            | oike resul                            |                                                                                                                  | 0,                                                                                                                                                                      | ~                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                         | 74                                                                         | 70 - 130                                                                                                        |
| GRO                                                                                                                                                                                                 | on the sp            | oike resul                            |                                                                                                                  | 0,                                                                                                                                                                      | ~                                                                                                                                | spike o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |                                                                         |                                                                            |                                                                                                                 |
| GRO<br>Percent recovery is based o                                                                                                                                                                  | on the sp            | oike resul                            | t. RPD is                                                                                                        | based on th                                                                                                                                                             | ne spike and                                                                                                                     | spike o<br>e Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | duplicate r                                                                                     | esult.<br>Re                                                            | с.                                                                         | RPD                                                                                                             |
| GRO<br>Percent recovery is based o<br>Param                                                                                                                                                         | on the sp<br>$_{Qs}$ |                                       | lt. RPD is<br>MSD<br>Result                                                                                      | based on th<br>Units I                                                                                                                                                  | ne spike and<br>Spike                                                                                                            | spike o<br>e Ma<br>nt Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | duplicate r<br>atrix                                                                            | esult.<br>Re<br>c. Lin                                                  | c.<br>nit RP                                                               | RPD<br>D Limit                                                                                                  |
| GRO<br>Percent recovery is based o<br>Param<br>GRO                                                                                                                                                  | Qs                   | F C                                   | tt. RPD is<br>MSD<br>Result<br>13.8                                                                              | based on th<br>Units I<br>mg/Kg                                                                                                                                         | ne spike and<br>Spike<br>Dil. Amou<br>1 20.0                                                                                     | spike o<br>e Ma<br>nt Re<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | duplicate re<br>atrix<br>esult Rec<br>2.32 69                                                   | esult.<br>Re<br>c. Lin<br>0 70 -                                        | c.<br>nit RP                                                               | RPD<br>D Limit                                                                                                  |
| GRO<br>Percent recovery is based o<br>Param<br>GRO                                                                                                                                                  | Qs                   | F C                                   | tt. RPD is<br>MSD<br>Result<br>13.8<br>It. RPD is                                                                | based on th<br>Units I<br>mg/Kg<br>based on th                                                                                                                          | ne spike and<br>Spike<br>Dil. Amou<br>1 20.0                                                                                     | spike o<br>e Ma<br>nt Re<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | duplicate r<br>atrix<br>esult Rec<br>2.32 69<br>duplicate r                                     | esult.<br>Re<br>c. Lim<br>70 -<br>esult.                                | c.<br>nit RP<br>130 7                                                      | RPD<br>D Limit<br>20                                                                                            |
| GRO<br>Percent recovery is based of<br>Param<br>GRO<br>Percent recovery is based of                                                                                                                 | Qs                   | F C                                   | t. RPD is<br>MSD<br>Result<br>13.8<br>t. RPD is<br>MS                                                            | based on th<br>Units I<br>mg/Kg<br>based on th<br>MSD                                                                                                                   | ne spike and<br>Spike<br>Dil. Amou:<br>1 20.0<br>ne spike and                                                                    | spike of the spike | luplicate r<br>atrix<br>esult Rec<br>2.32 69<br>duplicate r<br>Spike                            | esult.<br>Re<br>c. Lin<br>70 -<br>esult.<br>MS                          | c.<br>hit RP<br>130 7<br>MSD                                               | RPD<br>D Limit<br>20<br>Rec.                                                                                    |
| GRO<br>Percent recovery is based of<br>Param<br>GRO<br>Percent recovery is based of<br>Surrogate                                                                                                    | Qs                   | F C                                   | It. RPD is<br>MSD<br>Result<br>13.8<br>It. RPD is<br>MS<br>Result                                                | based on th<br>Units I<br>mg/Kg<br>based on th<br>MSD<br>c Result                                                                                                       | ne spike and<br>Spike<br>Dil. Amou:<br>1 20.0<br>ne spike and<br>Units                                                           | spike of the spike | luplicate r<br>atrix<br>esult Rec<br>2.32 69<br>luplicate r<br>Spike<br>Amount                  | esult.<br>Re<br>c. Lin<br>70 -<br>esult.<br>MS<br>Rec.                  | c.<br>nit RP<br>130 7<br>MSD<br>Rec.                                       | RPD<br>D Limit<br>20<br>Rec.<br>Limit                                                                           |
| GRO<br>Percent recovery is based of<br>Param<br>GRO<br>Percent recovery is based of<br>Surrogate<br>Trifluorotoluene (TFT)                                                                          | Qs<br>on the sp      | F C                                   | t. RPD is<br>MSD<br>Result<br>13.8<br>t. RPD is<br>MS                                                            | based on th<br>Units I<br>mg/Kg<br>based on th<br>MSD                                                                                                                   | ne spike and<br>Spike<br>Dil. Amou:<br>1 20.0<br>ne spike and                                                                    | spike of the spike | luplicate r<br>atrix<br>esult Rec<br>2.32 69<br>duplicate r<br>Spike                            | esult.<br>Re<br>c. Lin<br>70 -<br>esult.<br>MS                          | c.<br>hit RP<br>130 7<br>MSD                                               | RPI<br>D Limi<br>20<br>Rec.<br>Limit<br>70 - 13                                                                 |
| GRO<br>Percent recovery is based of<br>Param<br>GRO<br>Percent recovery is based of<br>Surrogate<br>Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-1)<br>Matrix Spike (MS-1)<br>QC Batch: 122545 | on the sp<br>BFB)    | F C                                   | It. RPD is<br>MSD<br>Result<br>13.8<br>It. RPD is<br>MS<br>Result<br>2.49<br>2.20<br>395908<br>Date A            | based on th<br>Units I<br>mg/Kg<br>based on th<br>MSD<br>Result<br>2.48<br>2.21                                                                                         | he spike and<br>Spike<br>Dil. Amour<br>1 20.0<br>he spike and<br>Units<br>mg/Kg<br>mg/Kg<br>2015-06-23                           | spike of market spike spike of market spike spik | duplicate reatrix<br>esult Rea<br>2.32 69<br>duplicate re<br>Spike<br>Amount<br>2               | esult.<br>Re<br>C. Lin<br>70 -<br>esult.<br>MS<br>Rec.<br>124<br>110    | c.<br>nit RP<br>130 7<br>MSD<br>Rec.<br>124<br>110                         | RPD<br>D Limii<br>20<br>Rec.<br>Limit<br>70 - 130<br>70 - 130                                                   |
| GRO<br>Percent recovery is based of<br>Param<br>GRO<br>Percent recovery is based of<br>Surrogate<br>Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-1)<br>Matrix Spike (MS-1)<br>QC Batch: 122545 | on the sp<br>BFB)    | F C<br>Qs 1<br>pike resu              | It. RPD is<br>MSD<br>Result<br>13.8<br>It. RPD is<br>MS<br>Result<br>2.49<br>2.20<br>395908<br>Date A            | based on th<br>Units I<br>mg/Kg<br>based on th<br>MSD<br>Result<br>2.48<br>2.21                                                                                         | he spike and<br>Spike<br>Dil. Amou<br>1 20.0<br>he spike and<br>Units<br>mg/Kg<br>mg/Kg                                          | spike of market spike spike of market spike spik | duplicate reatrix<br>esult Rea<br>2.32 69<br>duplicate re<br>Spike<br>Amount<br>2               | esult.<br>Re<br>C. Lin<br>70 -<br>esult.<br>MS<br>Rec.<br>124<br>110    | c.<br>nit RP<br>130 7<br>MSD<br>Rec.<br>124<br>110                         | RPD<br>D Limit<br>20<br>Rec.<br>Limit<br>70 - 130<br>70 - 130                                                   |
| GRO Percent recovery is based of Param GRO Percent recovery is based of Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-1) Matrix Spike (MS-1) QC Batch: 122545 Prep Batch: 103612         | on the sp<br>BFB)    | F C<br><sub>Qs 1</sub><br>bike result | It. RPD is<br>MSD<br>Result<br>13.8<br>It. RPD is<br>MS<br>Result<br>2.49<br>2.20<br>395908<br>Date A<br>QC Pro- | based on th<br>Units I<br>mg/Kg<br>based on th<br>MSD<br>Result<br>2.48<br>2.21<br>nalyzed:<br>eparation:<br>S                                                          | he spike and<br>Spike<br>Dil. Amour<br>1 20.0<br>he spike and<br>Units<br>mg/Kg<br>mg/Kg<br>2015-06-23<br>2015-06-19             | spike of<br>e Ma<br>nt Ro<br>spike of<br>Dil.<br>1<br>1<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | duplicate ra<br>atrix<br>esult Rec<br>2.32 69<br>duplicate ra<br>Spike<br>Amount<br>2<br>2<br>2 | esult.<br>Re<br>c. Lin<br>70 -<br>esult.<br>MS<br>Rec.<br>124<br>110    | c.<br>nit RP<br>130 7<br>MSD<br>Rec.<br>124<br>110<br>Analyzed<br>Prepared | RPD<br>D Limit<br>20<br>Rec.<br>Limit<br>70 - 130<br>70 - 130<br>70 - 130<br>89: SC<br>By: SC<br>By: SC<br>Rec. |
| GRO<br>Percent recovery is based of<br>Param<br>GRO<br>Percent recovery is based of<br>Surrogate<br>Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-1<br>Matrix Spike (MS-1)<br>QC Batch: 122545  | on the sp<br>BFB)    | F C<br>Qs 1<br>pike resu              | It. RPD is<br>MSD<br>Result<br>13.8<br>It. RPD is<br>MS<br>Result<br>2.49<br>2.20<br>395908<br>Date A<br>QC Pro  | based on the<br>Units I<br>mg/Kg<br>based on the<br>MSD<br>Result<br>2.48<br>2.21<br>analyzed:<br>eparation:<br>S<br>ult Units<br>Units I<br>MSD<br>MSD<br>2.48<br>2.21 | he spike and<br>Spike<br>Dil. Amour<br>1 20.0<br>he spike and<br>Units<br>mg/Kg<br>mg/Kg<br>2015-06-23<br>2015-06-19<br>its Dil. | spike of<br>e Ma<br>nt Ro<br>spike of<br>Dil.<br>1<br>1<br>S<br>Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | duplicate ra<br>atrix<br>esult Rec<br>2.32 69<br>duplicate ra<br>Spike<br>Amount<br>2<br>2<br>2 | esult.<br>Re<br>2. Lin<br>0. 70 -<br>esult.<br>MS<br>Rec.<br>124<br>110 | c.<br>nit RP<br>130 7<br>MSD<br>Rec.<br>124<br>110                         | RPD<br>D Limit<br>20<br>Rec.<br>Limit<br>70 - 130<br>70 - 130<br>70 - 130<br>89: SC<br>By: SC                   |

| Report Date: June 23, 2015<br>7250715022.001 | Work Order: 15061712<br>30137 #3 |       |          |            |         | Page Nu     | mber:      | 17 of 22 |          |                      |          |
|----------------------------------------------|----------------------------------|-------|----------|------------|---------|-------------|------------|----------|----------|----------------------|----------|
| matrix spikes continued                      |                                  |       |          |            |         |             |            |          |          |                      |          |
|                                              |                                  |       | MSD      |            |         | Spike       | Matrix     |          | Rec.     |                      | RPD      |
| Param                                        | $\mathbf{F}$                     | С     | Result   | Units      | Dil.    | Amount      | Result     | Rec.     | Limit    | RPD                  | Limit    |
|                                              |                                  |       | MSD      |            |         | Spike       | Matrix     |          | Rec.     |                      | RPD      |
| Param                                        | $\mathbf{F}$                     | С     | Result   | Units      | Dil.    | Amount      | Result     | Rec.     | Limit    | $\operatorname{RPD}$ | Limit    |
| DRO                                          | Qr,Qs Qr,Qs                      | 1     | 163      | mg/Kg      | 1       | 250         | <7.41      | 65       | 70 - 130 | 27                   | 20       |
| Percent recovery is based on the             | e spike resu                     | lt. I | RPD is b | ased on th | ne spil | te and spil | ke duplica | te resul | t.       |                      |          |
|                                              | MS                               |       | MSD      |            |         |             | Spike      | MS       | MSI      | )                    | Rec.     |
| Surrogate                                    | Result                           |       | Result   | Units      | ;       | Dil.        | Amount     | Rec      | . Rec    |                      | Limit    |
| n-Tricosane                                  | 57.2                             |       | 59.8     | mg/K       | g       | 1           | 50         | 114      | 120      | 7                    | 70 - 130 |

| Report Date: June 23, 2015 | Work Order: 15061712 | Page Number: 18 of 22 |
|----------------------------|----------------------|-----------------------|
| 7250715022.001             | 30137 #3             |                       |

# **Calibration Standards**

## Standard (ICV-1)

| QC Batch: | 122418 |      | Date Analyzed: |       |       | 2015-06-18 |          | Analy    | Analyzed By: AK |  |  |
|-----------|--------|------|----------------|-------|-------|------------|----------|----------|-----------------|--|--|
|           |        |      |                |       | ICVs  | ICVs       | ICVs     | Percent  |                 |  |  |
|           |        |      |                |       | True  | Found      | Percent  | Recovery | Date            |  |  |
| Param     |        | Flag | Cert           | Units | Conc. | Conc.      | Recovery | Limits   | Analyzed        |  |  |
| Chloride  |        |      |                | mg/Kg | 100   | 100        | 100      | 85 - 115 | 2015-06-18      |  |  |

## Standard (CCV-1)

| QC Batch: | 122418 |      | Date Analyzed: 2015-06-18 |         |                 |                 | Analy           | zed By: AK |            |
|-----------|--------|------|---------------------------|---------|-----------------|-----------------|-----------------|------------|------------|
|           |        |      |                           |         | $\mathrm{CCVs}$ | $\mathrm{CCVs}$ | $\mathrm{CCVs}$ | Percent    |            |
|           |        |      |                           |         | True            | Found           | Percent         | Recovery   | Date       |
| Param     |        | Flag | Cert                      | Units   | Conc.           | Conc.           | Recovery        | Limits     | Analyzed   |
| Chloride  |        |      |                           | m mg/Kg | 100             | 100             | 100             | 85 - 115   | 2015-06-18 |

### Standard (CCV-1)

| QC Batch: 122539 |      |      | Date An | alyzed: 20      | Analyzed By: AK |          |          |            |
|------------------|------|------|---------|-----------------|-----------------|----------|----------|------------|
|                  |      |      |         | $\mathrm{CCVs}$ | CCVs            | CCVs     | Percent  |            |
|                  |      |      |         | True            | Found           | Percent  | Recovery | Date       |
| Param            | Flag | Cert | Units   | Conc.           | Conc.           | Recovery | Limits   | Analyzed   |
| Benzene          |      | 1    | mg/kg   | 0.100           | 0.0958          | 96       | 80 - 120 | 2015-06-23 |
| Toluene          |      | 1    | m mg/kg | 0.100           | 0.0891          | 89       | 80 - 120 | 2015-06-23 |
| Ethylbenzene     |      | 1    | m mg/kg | 0.100           | 0.0848          | 85       | 80 - 120 | 2015-06-23 |
| Xylene           |      | 1    | m mg/kg | 0.300           | 0.278           | 93       | 80 - 120 | 2015-06-23 |

#### Standard (CCV-2)

QC Batch: 122539

Date Analyzed: 2015-06-23

Analyzed By: AK

| Report Date: June 23, 2015<br>7250715022.001 |      |      | We    | ork Order: 1<br>30137 # | Page Number: 19 of 22 |                 |                     |            |
|----------------------------------------------|------|------|-------|-------------------------|-----------------------|-----------------|---------------------|------------|
|                                              |      |      |       | CCVs<br>True            | CCVs<br>Found         | CCVs<br>Percent | Percent<br>Recovery | Date       |
| Param                                        | Flag | Cert | Units | Conc.                   | Conc.                 | Recovery        | Limits              | Analyzed   |
| Benzene                                      |      | 1    | mg/kg | 0.100                   | 0.0950                | 95              | 80 - 120            | 2015-06-23 |
| Toluene                                      |      | 1    | mg/kg | 0.100                   | 0.0905                | 90              | 80 - 120            | 2015-06-23 |
| Ethylbenzene                                 |      | 1    | mg/kg | 0.100                   | 0.0861                | 86              | 80 - 120            | 2015-06-23 |
| Xylene                                       |      | 1    | mg/kg | 0.300                   | 0.283                 | 94              | 80 - 120            | 2015-06-23 |

### Standard (CCV-3)

| QC Batch: 122539 |      |      | Date An | alyzed: 20      | Analyzed By: AK |                       |          |            |
|------------------|------|------|---------|-----------------|-----------------|-----------------------|----------|------------|
|                  |      |      |         | $\mathrm{CCVs}$ | CCVs            | $\operatorname{CCVs}$ | Percent  |            |
|                  |      |      |         | True            | Found           | Percent               | Recovery | Date       |
| Param            | Flag | Cert | Units   | Conc.           | Conc.           | Recovery              | Limits   | Analyzed   |
| Benzene          |      | 1    | mg/kg   | 0.100           | 0.0924          | 92                    | 80 - 120 | 2015-06-23 |
| Toluene          |      | 1    | m mg/kg | 0.100           | 0.0894          | 89                    | 80 - 120 | 2015-06-23 |
| Ethylbenzene     |      | 1    | m mg/kg | 0.100           | 0.0856          | 86                    | 80 - 120 | 2015-06-23 |
| Xylene           |      | 1    | mg/kg   | 0.300           | 0.279           | 93                    | 80 - 120 | 2015-06-23 |

## Standard (CCV-1)

| QC Batch: | 122540 |      | Date Analyzed: |                 |                 |          | Analyzed By: AK |            |  |
|-----------|--------|------|----------------|-----------------|-----------------|----------|-----------------|------------|--|
|           |        |      |                | $\mathrm{CCVs}$ | $\mathrm{CCVs}$ | CCVs     | Percent         |            |  |
|           |        |      |                | True            | Found           | Percent  | Recovery        | Date       |  |
| Param     | Flag   | Cert | Units          | Conc.           | Conc.           | Recovery | Limits          | Analyzed   |  |
| GRO       |        | 1    | m mg/Kg        | 1.00            | 0.968           | 97       | 80 - 120        | 2015-06-23 |  |

## Standard (CCV-2)

| QC Batch: | 122540 | Date Analyzed: |         |       | 2015-06-23 |          | Analyzed By: AK |            |  |
|-----------|--------|----------------|---------|-------|------------|----------|-----------------|------------|--|
|           |        |                |         | CCVs  | CCVs       | CCVs     | Percent         | _          |  |
|           |        |                |         | True  | Found      | Percent  | Recovery        | Date       |  |
| Param     | Flag   | Cert           | Units   | Conc. | Conc.      | Recovery | Limits          | Analyzed   |  |
| GRO       |        | 1              | m mg/Kg | 1.00  | 0.964      | 96       | 80 - 120        | 2015-06-23 |  |

| Report Date:<br>7250715022.0 | June 23, 2015<br>01 |      |                |                       | er: 15061712<br>37 #3  |                             | Page Nu                       | mber: 20 of 22         |
|------------------------------|---------------------|------|----------------|-----------------------|------------------------|-----------------------------|-------------------------------|------------------------|
| Standard (C                  | CV-2)               |      |                |                       |                        |                             |                               |                        |
| QC Batch: 1                  | 22545               |      | Date           | Analyzed:             | 2015-06-23             |                             | Anal                          | yzed By: SC            |
| Param                        | Flag                | Cert | Units          | CCVs<br>True<br>Conc. | CCVs<br>Found<br>Conc. | CCVs<br>Percent<br>Recovery | Percent<br>Recovery<br>Limits | Date<br>Analyzed       |
| DRO                          | 0                   | 1    | mg/Kg          | 250                   | 243                    | 97                          | 80 - 120                      | 2015-06-23             |
| Standard (C                  | CV-3)               |      |                |                       |                        |                             |                               |                        |
| QC Batch: 1                  | 22545               |      | Date           | Analyzed:             | 2015-06-23             |                             | Anal                          | yzed By: SC            |
|                              |                     | ~    |                | CCVs<br>True          | CCVs<br>Found          | CCVs<br>Percent             | Percent<br>Recovery           | Date                   |
| Param<br>DRO                 | Flag                | Cert | Units<br>mg/Kg | Conc.<br>250          | Conc.<br>249           | Recovery<br>100             | Limits<br>80 - 120            | Analyzed<br>2015-06-23 |

|       |      |      |       | Inte  | round | rercent  | necovery |
|-------|------|------|-------|-------|-------|----------|----------|
| Param | Flag | Cert | Units | Conc. | Conc. | Recovery | Limits   |
| DRO   |      | 1    | mg/Kg | 250   | 249   | 100      | 80 - 120 |
|       |      |      |       |       |       |          |          |

Report Date: June 23, 2015 7250715022.001 Work Order: 15061712  $30137 \ #3$ 

Page Number: 21 of 22  $\,$ 

# Appendix

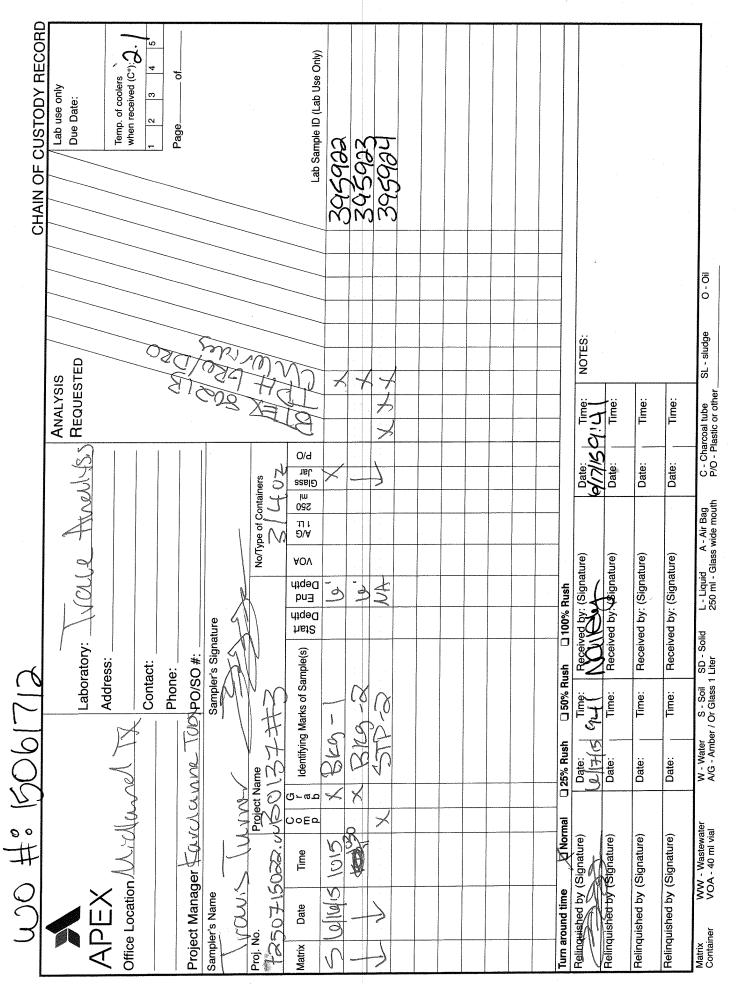
## **Report Definitions**

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

## Laboratory Certifications

|              | Certifying | Certification       | Laboratory    |
|--------------|------------|---------------------|---------------|
| $\mathbf{C}$ | Authority  | Number              | Location      |
| -            | NCTRCA     | WFWB384444Y0909     | TraceAnalysis |
| -            | DBE        | VN 20657            | TraceAnalysis |
| -            | HUB        | 1752439743100-86536 | TraceAnalysis |
| -            | WBE        | 237019              | TraceAnalysis |
| 1            | NELAP      | T104704392-14-8     | Midland       |

## Standard Flags


- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

## Attachments

| Report Date: June 23, 2015 | Work Order: 15061712 | Page Number: 22 of 22 |
|----------------------------|----------------------|-----------------------|
| 7250715022.001             | 30137 #3             |                       |

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.



Page 80 of 190

Apex TITAN, Inc. • 505 N. Big Springs Drive, Suite 301A • Midland, Texas 79701 • Office: 432-695-6016

**Released to Imaging: 4/19/2023 8:21:30 AM** 



6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

 
 Lubbock
 Texas 79424
 800-378-1296
 806-915-915-915-Midland

 Midland
 Texas 79922
 915-432-972-972-E-Mail: lab@traceanalysis.com

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

# Analytical and Quality Control Report

Karolanne Toby APEX/Titan 2351 W. Northwest Hwy. Suite 3321 Dallas, Tx, 75220

Report Date: June 23, 2015

FAX 915 • 585 • 4944

FAX 432 • 689 • 6313

Work Order: 15061711

915-585-3443

432-689-6301

972-242 -7750

Project Name: 30137 #4 Project Number: 7250715053

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

|        |             |        | Date       | Time  | Date       |
|--------|-------------|--------|------------|-------|------------|
| Sample | Description | Matrix | Taken      | Taken | Received   |
| 395914 | N-Wall      | soil   | 2015-06-15 | 13:15 | 2015-06-17 |
| 395915 | W-Wall      | soil   | 2015-06-15 | 13:17 | 2015-06-17 |
| 395916 | E-Wall      | soil   | 2015-06-15 | 13:19 | 2015-06-17 |
| 395917 | S-Wall      | soil   | 2015-06-15 | 13:22 | 2015-06-17 |
| 395918 | RP          | soil   | 2015-06-15 | 13:25 | 2015-06-17 |
| 395919 | STP         | soil   | 2015-06-15 | 13:27 | 2015-06-17 |

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 28 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Left wich

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Page 2 of 28

# **Report Contents**

| Case Narrative                                                                                                                               | 5         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Analytical Report                                                                                                                            | 6         |
| Sample 395914 (N-Wall)                                                                                                                       | . 6       |
| Sample 395915 (W-Wall)                                                                                                                       | . 7       |
| Sample 395916 (E-Wall)                                                                                                                       |           |
| Sample 395917 (S-Wall)                                                                                                                       |           |
| Sample 395918 (RP)                                                                                                                           |           |
| Sample 395919 $(STP)$                                                                                                                        |           |
| Method Blanks                                                                                                                                | 15        |
| QC Batch 122418 - Method Blank (1)                                                                                                           |           |
| •                                                                                                                                            |           |
|                                                                                                                                              | -         |
| QC Batch 122475 - Method Blank (1) $\ldots$                                                                                                  | -         |
| QC Batch 122488 - Method Blank (1) $\ldots$                                                                                                  |           |
| QC Batch 122489 - Method Blank (1) $\ldots$                                                                                                  | -         |
| QC Batch 122545 - Method Blank (1)                                                                                                           | . 16      |
| Laboratory Control Spikes                                                                                                                    | 17        |
| QC Batch 122418 - LCS (1)                                                                                                                    | . 17      |
| QC Batch 122419 - LCS (1)                                                                                                                    | . 17      |
| QC Batch 122475 - LCS (1)                                                                                                                    | . 17      |
| QC Batch 122488 - LCS (1)                                                                                                                    | . 18      |
| QC Batch 122489 - LCS (1)                                                                                                                    |           |
| $\overrightarrow{QC}$ Batch 122545 - LCS $(1)$                                                                                               | . 19      |
| Matrix Spikes                                                                                                                                | 20        |
| QC Batch 122418 - MS (1)                                                                                                                     |           |
| QC Batch 122419 - MS (1)                                                                                                                     |           |
| QC Batch 122475 - MS (1) $\dots \dots \dots$ |           |
| QC Batch 122488 - $xMS(1)$                                                                                                                   |           |
| •                                                                                                                                            |           |
| QC Batch 122489 - $xMS(1)$                                                                                                                   |           |
| QC Batch 122545 - MS (1)                                                                                                                     | . 22      |
| Calibration Standards                                                                                                                        | <b>23</b> |
| QC Batch 122418 - ICV (1)                                                                                                                    | . 23      |
| QC Batch 122418 - CCV (1)                                                                                                                    | . 23      |
| QC Batch 122419 - ICV (1)                                                                                                                    | . 23      |
| QC Batch 122419 - CCV (1)                                                                                                                    | . 23      |
| QC Batch 122475 - ICV (1)                                                                                                                    | . 23      |
| QC Batch 122475 - CCV (1)                                                                                                                    |           |
| QC Batch 122488 - CCV (2)                                                                                                                    |           |
| QC Batch 122488 - CCV (3)                                                                                                                    |           |
| QC Batch 122489 - CCV (2)                                                                                                                    |           |
| QC Batch 122489 - CCV (3)                                                                                                                    |           |
| QC Batch 122545 - CCV (1)                                                                                                                    |           |
|                                                                                                                                              | . 40      |

Page 3 of 28

.

| QC Batch 122545 - CCV (2) |           |
|---------------------------|-----------|
| Appendix                  | <b>27</b> |
| Report Definitions        | 27        |
| Laboratory Certifications |           |
| Standard Flags            |           |
| Attachments               | 28        |

Page 4 of 28

## Case Narrative

Samples for project 30137 #4 were received by TraceAnalysis, Inc. on 2015-06-17 and assigned to work order 15061711. Samples for work order 15061711 were received intact at a temperature of 2.1 C.

Samples were analyzed for the following tests using their respective methods.

|                      |                 | Prep   | Prep                  | QC     | Analysis              |
|----------------------|-----------------|--------|-----------------------|--------|-----------------------|
| Test                 | Method          | Batch  | Date                  | Batch  | Date                  |
| BTEX                 | S 8021B         | 103596 | 2015-06-19 at 08:14   | 122488 | 2015-06-20 at 12:17   |
| Chloride (Titration) | SM 4500-Cl B $$ | 103564 | 2015-06-18 at $08:35$ | 122418 | 2015-06-18 at $09:30$ |
| Chloride (Titration) | SM 4500-Cl B $$ | 103564 | 2015-06-18 at $08:35$ | 122419 | 2015-06-18 at $09:55$ |
| Chloride (Titration) | SM 4500-Cl B $$ | 103564 | 2015-06-18 at $08:35$ | 122475 | 2015-06-19 at 12:51   |
| TPH DRO - NEW        | S 8015 D        | 103612 | 2015-06-19 at 15:26   | 122545 | 2015-06-23 at $09:48$ |
| TPH GRO              | S 8015 D        | 103596 | 2015-06-19 at $08:14$ | 122489 | 2015-06-20 at $12:28$ |

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15061711 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

| Report Date: June 23, 2015<br>7250715053 | Work Order: 15061711<br>30137 $#4$ | Page Number: 6 of 28 |  |  |
|------------------------------------------|------------------------------------|----------------------|--|--|
| Analytical Report                        |                                    |                      |  |  |

# Analytical Report

#### Sample: 395914 - N-Wall

| Laboratory: Midland          |               |           |            |                     |          |        |             |                     |
|------------------------------|---------------|-----------|------------|---------------------|----------|--------|-------------|---------------------|
| Analysis: BTEX               |               | Analytica | l Method:  | S 8021E             | 3        |        | Prep Metho  | d: S 5035           |
| QC Batch: 122488             |               | Date Ana  | lyzed:     | 2015-06             | -20      |        | Analyzed B  | y: AK               |
| Prep Batch: 103596           |               | Sample P  | reparation | : 2015-06           | -19      |        | Prepared By | y: AK               |
|                              |               |           |            | $\operatorname{RL}$ |          |        |             |                     |
| Parameter                    | Flag          | Cert      |            | Result              | Unit     | s      | Dilution    | $\operatorname{RL}$ |
| Benzene                      | U             | 5         | <          | 0.0200              | mg/K     | g      | 1           | 0.0200              |
| Toluene                      | U             | 5         | <          | 0.0200              | mg/K     | g      | 1           | 0.0200              |
| Ethylbenzene                 | $_{\rm Qs,U}$ | 5         | <          | 0.0200              | mg/K     | g      | 1           | 0.0200              |
| Xylene                       | U             | 5         | <          | 0.0200              | mg/K     | g.     | 1           | 0.0200              |
|                              |               |           |            |                     |          | Spike  | Percent     | Recovery            |
| Surrogate                    | Fla           | g Cert    | Result     | Units               | Dilution | Amount | Recovery    | Limits              |
| Trifluorotoluene (TFT)       |               |           | 1.86       | mg/Kg               | 1        | 2.00   | 93          | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB) |               |           | 1.95       | $\mathrm{mg/Kg}$    | 1        | 2.00   | 98          | 70 - 130            |
|                              |               |           |            |                     |          |        |             |                     |
|                              |               |           |            |                     |          |        |             |                     |
| Sample: 395914 - N-Wall      |               |           |            |                     |          |        |             |                     |

#### Sample: 395914 - N-Wall

| Midland              |                          |                                                      |                                                                                                                  |                                                                                                                                          |                                                                                                                                                                                     |
|----------------------|--------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chloride (Titration) | Anal                     | ytical Method:                                       | SM 4500-Cl B $$                                                                                                  | Prep Method                                                                                                                              | : N/A                                                                                                                                                                               |
| 122419               | Date                     | Analyzed:                                            | 2015-06-18                                                                                                       | Analyzed By:                                                                                                                             | AK                                                                                                                                                                                  |
| 103564               | Samj                     | ole Preparation:                                     | 2015-06-18                                                                                                       | Prepared By:                                                                                                                             | AK                                                                                                                                                                                  |
|                      |                          |                                                      |                                                                                                                  |                                                                                                                                          |                                                                                                                                                                                     |
|                      |                          | $\operatorname{RL}$                                  |                                                                                                                  |                                                                                                                                          |                                                                                                                                                                                     |
| Flag                 | Cert                     | Result                                               | Units                                                                                                            | Dilution                                                                                                                                 | $\operatorname{RL}$                                                                                                                                                                 |
| U                    |                          | <20.0                                                | mg/Kg                                                                                                            | 5                                                                                                                                        | 4.00                                                                                                                                                                                |
|                      | 122419<br>103564<br>Flag | Chloride (Titration)Anal122419Date103564SampFlagCert | Chloride (Titration)Analytical Method:<br>Date Analyzed:<br>Sample Preparation:103564Sample Preparation:FlagCert | Chloride (Titration)Analytical Method:SM 4500-Cl B122419Date Analyzed:2015-06-18103564Sample Preparation:2015-06-18RLFlagCertResultUnits | Chloride (Titration)Analytical Method:SM 4500-Cl BPrep Method122419Date Analyzed:2015-06-18Analyzed By:103564Sample Preparation:2015-06-18Prepared By:RLFlagCertResultUnitsDilution |

### Sample: 395914 - N-Wall

| Midland          |                         |                                           |                                                        |                                                                                              |                                                                                                                               |                                                                                                                                                                           |
|------------------|-------------------------|-------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TPH DRO - NE     | W                       | Analytic                                  | eal Method:                                            | S 8015 D                                                                                     | Prep Method:                                                                                                                  | N/A                                                                                                                                                                       |
| 122545           |                         | Date Ar                                   | nalyzed:                                               | 2015-06-23                                                                                   | Analyzed By:                                                                                                                  | $\mathbf{SC}$                                                                                                                                                             |
| ep Batch: 103612 |                         | Sample                                    | Sample Preparation:                                    |                                                                                              | Prepared By:                                                                                                                  | $\mathbf{SC}$                                                                                                                                                             |
|                  |                         |                                           |                                                        |                                                                                              |                                                                                                                               |                                                                                                                                                                           |
|                  |                         |                                           | $\operatorname{RL}$                                    |                                                                                              |                                                                                                                               |                                                                                                                                                                           |
|                  | Flag                    | Cert                                      | Result                                                 | Units                                                                                        | Dilution                                                                                                                      | $\operatorname{RL}$                                                                                                                                                       |
|                  | $_{\rm Qr,Qs,U}$        | 5                                         | <50.0                                                  | mg/Kg                                                                                        | 1                                                                                                                             | 50.0                                                                                                                                                                      |
|                  | TPH DRO - NEV<br>122545 | TPH DRO - NEW<br>122545<br>103612<br>Flag | TPH DRO - NEWAnalytic122545Date Ar103612SampleFlagCert | TPH DRO - NEWAnalytical Method:122545Date Analyzed:103612Sample Preparation:RLFlagCertResult | TPH DRO - NEWAnalytical Method:S 8015 D122545Date Analyzed:2015-06-23103612Sample Preparation:2015-06-19RLFlagCertResultUnits | TPH DRO - NEWAnalytical Method:S 8015 DPrep Method:122545Date Analyzed:2015-06-23Analyzed By:103612Sample Preparation:2015-06-19Prepared By:RLFlagCertResultUnitsDilution |

| Report Date: June 23, 2015<br>7250715053                           | Work Order: 15061711<br>30137 #4 |                                                                                 |                |               | Page Number: 7 of 28                  |                            |                                |
|--------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------|----------------|---------------|---------------------------------------|----------------------------|--------------------------------|
| Surrogate Flag                                                     | g Cert                           | Result<br>61.2                                                                  | Units<br>mg/Kg | Dilution<br>1 | Spike<br>Amount<br>50.0               | Percent<br>Recovery<br>122 | Recovery<br>Limits<br>70 - 130 |
|                                                                    |                                  |                                                                                 | 0/0            |               |                                       |                            |                                |
| Sample: 395914 - N-Wal                                             | 1                                |                                                                                 |                |               |                                       |                            |                                |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:122489Prep Batch:103596 |                                  | Analytical Method:S 8015 DDate Analyzed:2015-06-20Sample Preparation:2015-06-19 |                |               | Prep Meth<br>Analyzed I<br>Prepared I | By: AK                     |                                |
|                                                                    |                                  |                                                                                 |                | RL            |                                       |                            |                                |
| Parameter                                                          | Flag                             | Cert                                                                            | Res            | sult          | Units                                 | Dilution                   | $\operatorname{RL}$            |
| GRO                                                                | $_{\rm Qs,U}$                    | 5                                                                               | <4             | 4.00          | mg/Kg                                 | 1                          | 4.00                           |

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      | <i>a</i> |        |                  |          | Spike  | Percent  | Recovery |
|----------------------------------------|------|----------|--------|------------------|----------|--------|----------|----------|
| Surrogate                              | Flag | Cert     | Result | Units            | Dilution | Amount | Recovery | Limits   |
| Trifluorotoluene (TFT)                 |      |          | 2.31   | mg/Kg            | 1        | 2.00   | 116      | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB)           |      |          | 2.02   | $\mathrm{mg/Kg}$ | 1        | 2.00   | 101      | 70 - 130 |

#### Sample: 395915 - W-Wall

| Laboratory:MidlandAnalysis:BTEXQC Batch:122488Prep Batch:103596 |             | Date Ana | l Method:<br>lyzed:<br>reparation: | S 8021E<br>2015-06<br>2015-06 | -20      |                 | Prep Methoo<br>Analyzed By<br>Prepared By | : AK                |
|-----------------------------------------------------------------|-------------|----------|------------------------------------|-------------------------------|----------|-----------------|-------------------------------------------|---------------------|
|                                                                 |             |          |                                    | $\operatorname{RL}$           |          |                 |                                           |                     |
| Parameter                                                       | Flag        | Cert     | ]                                  | Result                        | Unit     | 5               | Dilution                                  | $\operatorname{RL}$ |
| Benzene                                                         | U           | 5        | <                                  | 0.0200                        | mg/Kg    | S               | 1                                         | 0.0200              |
| Toluene                                                         |             | 5        | 0                                  | .0221                         | m mg/Kg  | g               | 1                                         | 0.0200              |
| Ethylbenzene                                                    | $_{\rm Qs}$ | 5        | 0                                  | .0389                         | mg/Kg    |                 | 1                                         | 0.0200              |
| Xylene                                                          |             | 5        | 0                                  | .0681                         | mg/Kg    | 5               | 1                                         | 0.0200              |
| Surrogate                                                       | Fla         | ıg Cert  | Result                             | Units                         | Dilution | Spike<br>Amount | Percent<br>Recovery                       | Recovery<br>Limits  |
| Trifluorotoluene (TFT)                                          |             | 0        | 1.84                               | mg/Kg                         | 1        | 2.00            | 92                                        | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                    |             |          | 1.95                               | mg/Kg                         | 1        | 2.00            | 98                                        | 70 - 130            |

| Report Date<br>7250715053                                          | e: June 23, 2015                                               | June 23, 2015         Work Order: 15061711           30137 #4 |         |                                         |                     |                                      | Page Numb       | er: 8 of 28                                 |                    |
|--------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------|-----------------------------------------|---------------------|--------------------------------------|-----------------|---------------------------------------------|--------------------|
| Sample: 39                                                         | 5915 - W-Wall                                                  |                                                               |         |                                         |                     |                                      |                 |                                             |                    |
| Laboratory:                                                        | Midland                                                        |                                                               |         |                                         |                     |                                      |                 |                                             |                    |
| Analysis:                                                          | Chloride (Titrati                                              | on)                                                           | Anal    | ytical Met                              | hod: SI             | M 4500-Cl B                          |                 | Prep Methe                                  | od: N/A            |
| QC Batch:                                                          | 122419                                                         |                                                               | Date    | Analyzed:                               | : 20                | )15-06-18                            |                 | Analyzed E                                  | By: AK             |
| Prep Batch:                                                        | 103564                                                         |                                                               | Sam     | ple Prepara                             | ation: 20           | )15-06-18                            |                 | Prepared B                                  | By: AK             |
|                                                                    |                                                                |                                                               |         |                                         | $\operatorname{RL}$ |                                      |                 |                                             |                    |
| Parameter                                                          |                                                                | Flag                                                          | Cert    |                                         | Result              | Uni                                  |                 | Dilution                                    | RL                 |
| Chloride                                                           |                                                                | U                                                             |         | •                                       | <20.0               | mg/K                                 | lg              | 5                                           | 4.00               |
| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch:               | Midland<br>TPH DRO - NEV<br>122545<br>103612                   | W                                                             | Dat     | dytical Me<br>e Analyzec<br>pple Prepar | l: 2                | S 8015 D<br>2015-06-23<br>2015-06-19 |                 | Prep Metho<br>Analyzed E<br>Prepared B      | By: SC             |
| Parameter                                                          |                                                                | Flag                                                          | Cert    | ]                                       | RL<br>Result        | Uni                                  | ts              | Dilution                                    | RL                 |
| DRO                                                                |                                                                | Qr,Qs,U                                                       | 5       |                                         | <50.0               | mg/ł                                 | Kg              | 1                                           | 50.0               |
|                                                                    |                                                                |                                                               |         |                                         |                     | S                                    | Spike           | Percent                                     | Recovery           |
| Surrogate                                                          | Flag                                                           | Cert                                                          | Result  | Units                                   | Dilu                | ition Ai                             | nount           | Recovery                                    | Limits             |
| n-Tricosane                                                        |                                                                |                                                               | 53.9    | mg/Kg                                   |                     | 1                                    | 50.0            | 108                                         | 70 - 130           |
| Sample: 39<br>Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | <b>5915 - W-Wall</b><br>Midland<br>TPH GRO<br>122489<br>103596 |                                                               | Date An | al Method:<br>alyzed:<br>Preparation    | 2015-               | 06-20                                |                 | Prep Method<br>Analyzed By:<br>Prepared By: | : AK               |
| Parameter                                                          |                                                                | Flag                                                          | Cert    | Б                                       | RL<br>Result        | Uni                                  | te              | Dilution                                    | RL                 |
| GRO                                                                |                                                                | Qs                                                            | 5       | 1                                       | 9.34                | mg/K                                 |                 | 1                                           | 4.00               |
| Surrogate                                                          |                                                                | Fla                                                           |         | Result                                  | Units               | Dilution                             | Spike<br>Amount | Percent<br>Recovery                         | Recovery<br>Limits |
| Trifluorotolu                                                      |                                                                |                                                               |         | 2.30                                    | mg/Kg               | 1                                    | 2.00            | 115                                         | 70 - 130           |
| Bromofluor                                                         | cohonzono (1 BFB)                                              |                                                               |         | 9 1 9                                   | ma /Ka              | 1                                    | 2.00            | 106                                         | 70 12              |

2.12

 $\mathrm{mg/Kg}$ 

1

2.00

106

70 - 130

4-Bromofluorobenzene (4-BFB)

| Report Date: June 23, 2015<br>7250715053                        | Work Order: 15061711<br>30137 #4 |          |                                      |          |          |                 | Page Numb                                | per: 9 of 28        |
|-----------------------------------------------------------------|----------------------------------|----------|--------------------------------------|----------|----------|-----------------|------------------------------------------|---------------------|
| Sample: 395916 - E-Wall                                         |                                  |          |                                      |          |          |                 |                                          |                     |
| Laboratory:MidlandAnalysis:BTEXQC Batch:122488Prep Batch:103596 |                                  | Date Ana | al Method:<br>alyzed:<br>Preparation | 2015-06  | -20      |                 | Prep Metho<br>Analyzed By<br>Prepared By | y: AK               |
|                                                                 |                                  |          |                                      | RL       |          |                 |                                          |                     |
| Parameter                                                       | Flag                             | Cert     |                                      | Result   | Units    | ;               | Dilution                                 | $\operatorname{RL}$ |
| Benzene                                                         | U                                | 5        | <                                    | < 0.0200 | mg/Kg    |                 | 1                                        | 0.0200              |
| Toluene                                                         |                                  | 5        |                                      | 0.0231   | mg/Kg    |                 | 1                                        | 0.0200              |
| Ethylbenzene                                                    | $_{\rm Qs}$                      | 5        |                                      | 0.0528   | m mg/Kg  |                 | 1                                        | 0.0200              |
| Xylene                                                          |                                  | 5        |                                      | 0.0585   | mg/Kg    |                 | 1                                        | 0.0200              |
| Surrogate                                                       | Fl                               | ag Cert  | Result                               | Units    | Dilution | Spike<br>Amount | Percent<br>Recovery                      | Recovery<br>Limits  |
| Trifluorotoluene (TFT)                                          |                                  | ~        | 1.87                                 | mg/Kg    | 1        | 2.00            | 94                                       | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                    |                                  |          | 1.95                                 | mg/Kg    | 1        | 2.00            | 98                                       | 70 - 130            |

#### Sample: 395916 - E-Wall

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>Chloride (Titration)<br>122419<br>103564 | Date | rtical Method:<br>Analyzed:<br>le Preparation: | SM 4500-Cl B<br>2015-06-18<br>2015-06-18 | Prep Method:<br>Analyzed By:<br>Prepared By: | ÁK                  |
|------------------------------------------------------|-----------------------------------------------------|------|------------------------------------------------|------------------------------------------|----------------------------------------------|---------------------|
|                                                      |                                                     |      | $\operatorname{RL}$                            |                                          |                                              |                     |
| Parameter                                            | Flag                                                | Cert | Result                                         | Units                                    | Dilution                                     | $\operatorname{RL}$ |
| Chloride                                             | U                                                   |      | <20.0                                          | m mg/Kg                                  | 5                                            | 4.00                |

#### Sample: 395916 - E-Wall

| Laboratory: | Midland     |                 |        |              |                       |                 |                     |                     |
|-------------|-------------|-----------------|--------|--------------|-----------------------|-----------------|---------------------|---------------------|
| Analysis:   | TPH DRO - N | ΈW              | Anal   | lytical Meth | od: S 8015            | 5 D             | Prep Me             | thod: N/A           |
| QC Batch:   | 122545      |                 | Date   | e Analyzed:  | 2015-0                | 6-23            | Analyzeo            | l By: SC            |
| Prep Batch: | 103612      |                 | Sam    | ple Preparat | Prepared              | l By: SC        |                     |                     |
|             |             |                 |        |              | RL                    |                 |                     |                     |
| Parameter   |             | Flag            | Cert   | Re           | $\operatorname{sult}$ | Units           | Dilution            | $\operatorname{RL}$ |
| DRO         |             | $_{ m Qr,Qs,U}$ | 5      | <;           | 50.0                  | mg/Kg           | 1                   | 50.0                |
| Surrogate   | Flag        | Cert            | Result | Units        | Dilution              | Spike<br>Amount | Percent<br>Recovery | Recovery<br>Limits  |
|             | Flag        | Cert            |        |              | Dilution              |                 | ĩ                   |                     |
| n-Tricosane |             |                 | 64.6   | m mg/Kg      | 1                     | 50.0            | 129                 | 70 - 130            |

| Report Date: June 23, 2015<br>7250715053                           | e 23, 2015<br>Work Order: 15061711<br>30137 #4 |      |         |                                    |                     |          | Page Numb | er: 10 of 28                           |                     |
|--------------------------------------------------------------------|------------------------------------------------|------|---------|------------------------------------|---------------------|----------|-----------|----------------------------------------|---------------------|
| Sample: 395916 - E-Wall                                            |                                                |      |         |                                    |                     |          |           |                                        |                     |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:122489Prep Batch:103596 |                                                |      | Date An | al Methoo<br>alyzed:<br>Preparatio | 2015-0              | 06-20    |           | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |
|                                                                    |                                                |      |         |                                    | $\operatorname{RL}$ |          |           |                                        |                     |
| Parameter                                                          | Flag                                           |      | Cert    |                                    | Result              | Unit     | s         | Dilution                               | $\operatorname{RL}$ |
| GRO                                                                | Qs                                             |      | 5       |                                    | 8.14                | mg/K     | g         | 1                                      | 4.00                |
| C                                                                  |                                                |      | C I     | D li                               | TT •/               | D'1 ('   | Spike     | Percent                                | Recovery            |
| Surrogate                                                          |                                                | Flag | Cert    | Result                             | Units               | Dilution | Amount    | Recovery                               | Limits              |
| Trifluorotoluene (TFT)                                             |                                                |      |         | 2.33                               | mg/Kg               | 1        | 2.00      | 116                                    | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                       |                                                |      |         | 2.13                               | $\mathrm{mg/Kg}$    | 1        | 2.00      | 106                                    | 70 - 130            |

#### Sample: 395917 - S-Wall

| Laboratory: Midland<br>Analysis: BTEX |               | Analytica | l Method: | S 8021E                 | 3                |        | Prep Metho  | d: S 5035           |
|---------------------------------------|---------------|-----------|-----------|-------------------------|------------------|--------|-------------|---------------------|
| QC Batch: 122488                      |               | Date Ana  |           | 2015-06                 |                  |        | Analyzed By |                     |
| Prep Batch: 103596                    |               | v         |           |                         | -                |        | Prepared By |                     |
|                                       |               |           |           | RL                      |                  |        |             |                     |
| Parameter                             | Flag          | Cert      |           | $\operatorname{Result}$ | Unit             | s      | Dilution    | $\operatorname{RL}$ |
| Benzene                               | U             | 5         | <         | 0.0200                  | mg/Kg            | g      | 1           | 0.0200              |
| Toluene                               | U             | 5         | <         | 0.0200                  | $\mathrm{mg/Kg}$ | g      | 1           | 0.0200              |
| Ethylbenzene                          | $_{\rm Qs,U}$ | 5         | <         | 0.0200                  | $mg/K_{2}$       | g      | 1           | 0.0200              |
| Xylene                                | U             | 5         | <         | 0.0200                  | $mg/K_{s}$       | g<br>S | 1           | 0.0200              |
|                                       |               |           |           |                         |                  | Spike  | Percent     | Recovery            |
| Surrogate                             | Flag          | g Cert    | Result    | Units                   | Dilution         | Amount | Recovery    | Limits              |
| Trifluorotoluene (TFT)                |               |           | 2.01      | mg/Kg                   | 1                | 2.00   | 100         | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)          |               |           | 2.03      | $\mathrm{mg/Kg}$        | 1                | 2.00   | 102         | 70 - 130            |
|                                       |               |           |           |                         |                  |        |             |                     |

#### Sample: 395917 - S-Wall

| Laboratory: | Midland              |                     |              |              |     |
|-------------|----------------------|---------------------|--------------|--------------|-----|
| Analysis:   | Chloride (Titration) | Analytical Method:  | SM 4500-Cl B | Prep Method: | N/A |
| QC Batch:   | 122475               | Date Analyzed:      | 2015-06-19   | Analyzed By: | AK  |
| Prep Batch: | 103564               | Sample Preparation: | 2015-06-18   | Prepared By: | AK  |
|             |                      |                     |              |              |     |

continued ...

| Report Date:<br>7250715053            | June 23, 2015                                                      |         | Work Order: 15061711<br>30137 #4 |                                             |                        |                         | Page Number: 11 o                |                                |  |
|---------------------------------------|--------------------------------------------------------------------|---------|----------------------------------|---------------------------------------------|------------------------|-------------------------|----------------------------------|--------------------------------|--|
| sample 395917                         | $7 \ continued \ \ldots$                                           |         |                                  |                                             |                        |                         |                                  |                                |  |
| Parameter                             |                                                                    | Flag    | Cert                             | Res                                         | RL<br>sult             | Units                   | Dilution                         | RI                             |  |
| Parameter                             |                                                                    | Flag    | Cert                             |                                             | RL<br>sult             | Units                   | Dilution                         | RI                             |  |
| Chloride                              |                                                                    | U       | Cert                             |                                             | 20.0                   | mg/Kg                   | 5                                | 4.00                           |  |
| Laboratory:<br>Analysis:<br>QC Batch: | <b>917 - S-Wall</b><br>Midland<br>TPH DRO - NE<br>122545<br>103612 | ΞW      | Date                             | lytical Meth<br>e Analyzed:<br>ple Preparat | 2015-0                 | 06-23                   | Prep Met<br>Analyzed<br>Prepared | By: SC                         |  |
| Parameter                             |                                                                    | Flag    | Cert                             | Re                                          | RL<br>sult             | Units                   | Dilution                         | RI                             |  |
| DRO                                   |                                                                    | Qr,Qs,U | 5                                |                                             | 50.0                   | mg/Kg                   | 1                                | 50.0                           |  |
| Surrogate<br>n-Tricosane              | Flag                                                               | Cert    | Result<br>56.2                   | Units<br>mg/Kg                              | Dilution<br>1          | Spike<br>Amount<br>50.0 | Percent<br>Recovery<br>112       | Recovery<br>Limits<br>70 - 130 |  |
| Laboratory:<br>Analysis:              | <b>917 - S-Wall</b><br>Midland<br>TPH GRO<br>122489                |         | Analytica<br>Date Ana            | ıl Method:<br>ılyzed:                       | S 8015 D<br>2015-06-20 |                         | Prep Metho<br>Analyzed E         |                                |  |
| •                                     | 103596                                                             |         |                                  | reparation:                                 | 2015-06-19             |                         | Prepared B                       | v                              |  |
| Parameter                             |                                                                    | Flag    | Cert                             |                                             | RL<br>sult             | Units                   | Dilution                         | RI                             |  |
| GRO                                   |                                                                    | Qs,U    | 5                                |                                             | 1.00                   | mg/Kg                   | 1                                | 4.00                           |  |

|                              |      |      |        |         |          | Spike  | Percent  | Recovery |
|------------------------------|------|------|--------|---------|----------|--------|----------|----------|
| Surrogate                    | Flag | Cert | Result | Units   | Dilution | Amount | Recovery | Limits   |
| Trifluorotoluene (TFT)       |      |      | 2.47   | mg/Kg   | 1        | 2.00   | 124      | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB) |      |      | 2.13   | m mg/Kg | 1        | 2.00   | 106      | 70 - 130 |

| Report Date: June 23, 2015<br>7250715053                        | Work Order:<br>30137 <sub>7</sub> |                                    |        |                               | 1        |                 | Page Number                                 | :: 12 of 28        |
|-----------------------------------------------------------------|-----------------------------------|------------------------------------|--------|-------------------------------|----------|-----------------|---------------------------------------------|--------------------|
| Sample: 395918 - RP                                             |                                   |                                    |        |                               |          |                 |                                             |                    |
| Laboratory:MidlandAnalysis:BTEXQC Batch:122488Prep Batch:103596 |                                   | Analytica<br>Date Ana<br>Sample Pr |        | S 8021E<br>2015-06<br>2015-06 | -20      |                 | Prep Method<br>Analyzed By:<br>Prepared By: | AK                 |
| Parameter                                                       | Flag                              | Cert                               |        | RL<br>Result                  | Units    | 5               | Dilution                                    | RL                 |
| Benzene                                                         | U                                 | 5                                  |        | 0.0200                        | mg/Kg    |                 | 1                                           | 0.0200             |
| Toluene                                                         | U                                 | 5                                  | <      | 0.0200                        | mg/Kg    |                 | 1                                           | 0.0200             |
| Ethylbenzene                                                    | Qs,U                              | 5                                  | <      | 0.0200                        | mg/Kg    |                 | 1                                           | 0.0200             |
| Xylene                                                          | U                                 | 5                                  | <      | 0.0200                        | mg/Kg    | 5               | 1                                           | 0.0200             |
| Surrogate                                                       | Flag                              | g Cert                             | Result | Units                         | Dilution | Spike<br>Amount | Percent<br>Recovery                         | Recovery<br>Limits |
| Trifluorotoluene (TFT)                                          |                                   |                                    | 1.94   | mg/Kg                         | 1        | 2.00            | 97                                          | 70 - 130           |
| 4-Bromofluorobenzene (4-BFB)                                    |                                   |                                    | 2.03   | mg/Kg                         | 1        | 2.00            | 102                                         | 70 - 130           |
| Sample: 395918 - RP<br>Laboratory: Midland                      |                                   |                                    |        |                               |          |                 |                                             |                    |

| Analysis:   | Chloride (Titration | n)   | Analytic | al Method:          | SM 4500-Cl B $$ | Prep Meth  | od: N/A             |
|-------------|---------------------|------|----------|---------------------|-----------------|------------|---------------------|
| QC Batch:   | 122475              | ,    | Date Ana | alyzed:             | 2015-06-19      | Analyzed H | By: AK              |
| Prep Batch: | 103564              |      | Sample I | Preparation:        | 2015-06-18      | Prepared E | By: AK              |
|             |                     |      |          |                     |                 |            |                     |
|             |                     |      |          | $\operatorname{RL}$ |                 |            |                     |
| Parameter   |                     | Flag | Cert     | Result              | Units           | Dilution   | $\operatorname{RL}$ |
| Chloride    |                     | U    |          | <20.0               | m mg/Kg         | 5          | 4.00                |

#### Sample: 395918 - RP

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>TPH DRO - NI<br>122545<br>103612 | EW               | Date   | lytical Metho<br>e Analyzed:<br>ple Preparat | 2015-0   | 06-23           | Prep Me<br>Analyzec<br>Prepared | l By: SC            |
|------------------------------------------------------|---------------------------------------------|------------------|--------|----------------------------------------------|----------|-----------------|---------------------------------|---------------------|
|                                                      |                                             |                  |        |                                              | RL       |                 |                                 |                     |
| Parameter                                            |                                             | Flag             | Cert   | Res                                          | sult     | Units           | Dilution                        | $\operatorname{RL}$ |
| DRO                                                  |                                             | $_{\rm Qr,Qs,U}$ | 5      | <5                                           | 60.0     | m mg/Kg         | 1                               | 50.0                |
| Surrogate                                            | Flag                                        | Cert             | Result | Units                                        | Dilution | Spike<br>Amount | Percent<br>Recovery             | Recovery<br>Limits  |
| n-Tricosane                                          |                                             |                  | 58.0   | m mg/Kg                                      | 1        | 50.0            | 116                             | 70 - 130            |

| Report Date: June 23, 2015<br>7250715053                           | Work Order: 15061711<br>30137 #4 |      |         |                                    |                     |          |        |                                        | per: 13 of 28       |
|--------------------------------------------------------------------|----------------------------------|------|---------|------------------------------------|---------------------|----------|--------|----------------------------------------|---------------------|
| Sample: 395918 - RP                                                |                                  |      |         |                                    |                     |          |        |                                        |                     |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:122489Prep Batch:103596 |                                  |      | Date An | al Methoo<br>alyzed:<br>Preparatio | 2015-0              | 6-20     |        | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |
|                                                                    |                                  |      |         |                                    | $\operatorname{RL}$ |          |        |                                        |                     |
| Parameter                                                          | Flag                             |      | Cert    |                                    | Result              | Unit     | ts     | Dilution                               | $\operatorname{RL}$ |
| GRO                                                                | $_{\rm Qs,U}$                    |      | 5       |                                    | <4.00               | mg/K     | g      | 1                                      | 4.00                |
|                                                                    |                                  |      |         |                                    |                     |          | Spike  | Percent                                | Recovery            |
| Surrogate                                                          |                                  | Flag | Cert    | Result                             | Units               | Dilution | Amount | Recovery                               | Limits              |
| Trifluorotoluene (TFT)                                             |                                  |      |         | 2.42                               | mg/Kg               | 1        | 2.00   | 121                                    | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                       |                                  |      |         | 2.08                               | mg/Kg               | 1        | 2.00   | 104                                    | 70 - 130            |

### Sample: 395919 - STP

| Laboratory: Midland          |             |      |                     |         |          |          |        |              |                     |
|------------------------------|-------------|------|---------------------|---------|----------|----------|--------|--------------|---------------------|
| Analysis: BTEX               |             | An   | alytical            | Method: | S 8021B  |          |        | Prep Method  | : S 5035            |
| QC Batch: 122488             |             | Da   | te Anal             | yzed:   | 2015-06- | 20       |        | Analyzed By: | : AK                |
| Prep Batch: 103596           |             | Sa   | Sample Preparation: |         | 2015-06- | 19       |        | Prepared By: | AK                  |
|                              |             |      |                     |         | RL       |          |        |              |                     |
| Parameter                    | Flag        |      | Cert                | F       | Result   | Units    |        | Dilution     | $\operatorname{RL}$ |
| Benzene                      |             |      | 5                   | 0.      | 0248     | mg/Kg    |        | 1            | 0.0200              |
| Toluene                      |             |      | 5                   | (       | ).777    | m mg/Kg  |        | 1            | 0.0200              |
| Ethylbenzene                 | $_{\rm Qs}$ |      | 5                   |         | 1.13     | m mg/Kg  |        | 1            | 0.0200              |
| Xylene                       |             |      | 5                   |         | 1.22     | m mg/Kg  |        | 1            | 0.0200              |
|                              |             |      |                     |         |          |          | Spike  | Percent      | Recovery            |
| Surrogate                    |             | Flag | Cert                | Result  | Units    | Dilution | Amount | Recovery     | Limits              |
| Trifluorotoluene (TFT)       |             |      |                     | 1.71    | mg/Kg    | 1        | 2.00   | 86           | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB) | Qsr         | Qsr  |                     | 3.35    | mg/Kg    | 1        | 2.00   | 168          | 70 - 130            |

#### Sample: 395919 - STP

| Laboratory: | Midland              |                     |                 |              |     |
|-------------|----------------------|---------------------|-----------------|--------------|-----|
| Analysis:   | Chloride (Titration) | Analytical Method:  | SM 4500-Cl B $$ | Prep Method: | N/A |
| QC Batch:   | 122418               | Date Analyzed:      | 2015-06-18      | Analyzed By: | AK  |
| Prep Batch: | 103564               | Sample Preparation: | 2015-06-18      | Prepared By: | AK  |

continued ...

| Sample: 395919 - STP         Laboratory:       Midland         Analysis:       TPH DRO - NEW       Analytical Method:       S 8015 D       Prep Method:       1         QC Batch:       122545       Date Analyzed:       2015-06-23       Analyzed By:       S         Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       S         Parameter       Flag       Cert       Result       Units       Dilution         DRO $qr.qs$ 5       <50.0       mg/Kg       1       1         Surogate       Flag       Cert       Result       Units       Dilution       Amount       Recovery       Lim         Sample:       395919 - STP       Sample       Sample Reparation:       2015-06-20       Analyzed By:       A         Analysis:       TPH GRO       Analytical Method:       S 8015 D       Prep Method:       S 2         QC Batch:       122489       Date Analyzed:       2015-06-20       Analyzed By:       A         Prep Batch:       103596       Sample Preparation:       2015-06-19       Prepared By:       A         Parameter       Flag       Cert       Result       Units       Dilution <td< th=""><th>Report Date:<br/>7250715053</th><th>June 23, 2015</th><th></th><th>W</th><th>Vork Order:<br/>30137</th><th></th><th>1</th><th></th><th></th><th>Page Numbe</th><th>er: 14 of 28</th></td<>      | Report Date:<br>7250715053            | June 23, 2015                |                       | W     | Vork Order:<br>30137 |             | 1        |           |                     | Page Numbe   | er: 14 of 28 |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|-----------------------|-------|----------------------|-------------|----------|-----------|---------------------|--------------|--------------|--------------------|
| Parameter         Flag         Cert         Result         Units         Dilution           Parameter         Flag         Cert         Result         Units         Dilution           Chloride $q_*$ 588         mg/Kg         5         5           Sample:         395919 - STP         Laboratory:         Midland         Analysis:         TPH DRO - NEW         Analytical Method:         S 8015 D         Prep Method:         N           QC Batch:         122545         Date Analyzed:         2015-06-23         Analyzed By:         S           Prep Batch:         103612         Sample Preparation:         2015-06-19         Prepared By:         S           Parameter         Flag         Cert         Result         Units         Dilution           DRO $q_r \cdot q_*$ $s$ <50.0         mg/Kg         1         -           Surrogate         Flag         Cert         Result         Units         Dilution         Amalyzed By:         S           Sample:         395919 - STP         Laboratory:         Midland         Amalyzed:         2015-06-20         Analyzed By:         AF           Analysis:         TPH GRO         Analytical Method:         S 8015 D                                                                                                                                                                | sample 39591                          | 9 continued                  |                       |       |                      |             |          |           |                     |              |              |                    |
| Parameter       Flag       Cert       Result       Units       Dilution         Chloride $q_{s}$ 588       mg/Kg       5       5         Sample:       395919 - STP       Laboratory:       Midland       Analytical Method:       S 8015 D       Prep Method:       N         QC Batch:       122545       Date Analyzed:       2015-06-23       Analyzed By:       S         Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       S         Parameter       Flag       Cert       Result       Units       Dilution         DRO $q_{e}, q_{e}$ $s$ <50.0       mg/Kg       1 $\sigma$ Surrogate       Flag       Cert       Result       Units       Dilution       Recovery       Lim         n-Tricosane       60.6       mg/Kg       1       50.0       121       70 -         Sample:       395919 - STP       Laboratory:       Midland       Analysis:       TPH GRO       Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch:       122489       Date Analyzed:       2015-06-20       Analyzed By:       A         Prep Batch:       103596       <                                                                                                                                                                                                                                        | Parameter                             |                              | Flag                  |       | Cert                 | Re          |          |           | Units               |              | Dilution     | RL                 |
| Chloride $q_e$ 588       mg/Kg       5         Sample:       395919 - STP         Laboratory:       Midland         Analysis:       TPH DRO - NEW       Analytical Method:       S 8015 D       Prep Method:       N         QC Batch:       122545       Date Analyzed:       2015-06-23       Analyzed By:       S         Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       S         Parameter       Flag       Cert       Result       Units       Dilution         DRO $q \cdot q_*$ $z$ <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                       |       |                      |             | RL       |           |                     |              |              |                    |
| Sample: 395919 - STP         Laboratory:       Midland         Analysis:       TPH DRO - NEW       Analytical Method:       S 8015 D       Prep Method:       I         QC Batch:       122545       Date Analyzed:       2015-06-23       Analyzed By:       S         Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       S         Parameter       Flag       Cert       Result       Units       Dilution         DRO $q_{r,Q_{P}}$ $s$ <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | Flag                  |       | Cert                 | Re          |          |           |                     |              |              | RL                 |
| Laboratory:       Midland<br>Analysis:       TPH DRO - NEW<br>QC Batch:       Analytical Method:       S 8015 D<br>2015-06-23<br>2015-06-19       Prep Method:       I         QC Batch:       122545<br>103612       Date Analyzed:       2015-06-23<br>2015-06-19       Analyzed By:       S         Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       S         Parameter       Flag       Cert       Result       Units       Dilution         DRO $q_{e}.q_{*}$ $s$ $<50.0$ mg/Kg       1 $<$ Surrogate       Flag       Cert       Result       Units       Dilution       Amount       Recovery       Lim         Sample:       395919 - STP       Laboratory:       Midland       Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch:       123596       Date Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch:       103596       Sample Preparation:       2015-06-20       Analyzed By:       AF         Prep Batch:       103596       Sample Preparation:       2015-06-19       Prepared By:       AF         GRO $q_{s}$ s       314       mg/Kg       1                                                                                                                                                                                            | Chloride                              |                              | $_{\rm Qs}$           |       |                      |             | 588      | n         | ng/Kg               |              | 5            | 4.00               |
| Analysis:       TPH DRO - NEW       Analytical Method:       S 8015 D       Prep Method:       I         QC Batch:       122545       Date Analyzed:       2015-06-23       Analyzed By:       S         Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       S         Parameter       Flag       Cert       Result       Units       Dilution         DRO $Qr.Qe$ 5       <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample: 395                           | 919 - STP                    |                       |       |                      |             |          |           |                     |              |              |                    |
| QC Batch:       122545       Date Analyzed:       2015-06-23       Analyzed By:       S         Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       S         Parameter       Flag       Cert       Result       Units       Dilution         DRO $qr.qs$ s $<50.0$ mg/Kg       1         DRO $qr.qs$ s $<50.0$ mg/Kg       1         DRO $qr.qs$ s $<50.0$ mg/Kg       1         DRO $qr.qs$ s $<50.0$ mg/Kg       1 $<$ Surrogate       Flag       Cert       Result       Units       Dilution       Amount       Recovery       Lim         Sample:       395919 - STP       Laboratory:       Midland       Analyzed       S       S         Analysis:       TPH GRO       Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch:       122489       Date Analyzed:       2015-06-20       Analyzed By:       Af         Prep Batch:       103596       Sample Preparation:       2015-06-19       Prepared By:       Af         Barameter       Flag                                                                                                                                                                                                                                                                                                                                             | Laboratory:                           | Midland                      |                       |       |                      |             |          |           |                     |              |              |                    |
| Prep Batch:       103612       Sample Preparation:       2015-06-19       Prepared By:       Sample By:       Sample:       Sample By:       Sample By:       Sample By:       Sample By:       Sample By:       Sample:       Sample By:       Sample By: | v                                     |                              | V                     |       |                      | •           |          |           |                     |              | -            | '                  |
| RL       RL         Parameter       Flag       Cert       Result       Units       Dilution         DRO $q_r.q_s$ s $<50.0$ mg/Kg       1 $recorr         Surrogate       Flag       Cert       Result       Units       Dilution       Amount       Recovery       Lim         n_rTricosane 60.6       mg/Kg       1       50.0       121       70         Sample:       395919 - STP       Eaboratory:       Midland       Analysis:       TPH GRO       Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch:       122489       Date Analyzed:       2015-06-20       Analyzed By:       AF         Prep Batch:       103596       Sample Preparation:       2015-06-19       Prepared By:       AF         Parameter       Flag       Cert       Result       Units       Dilution       GRO       q_* s 314       mg/Kg       1 s         Surrogate       Flag       Cert       Result       Units       Dilution       GRO       q_* s 314       mg/Kg       1 s         Surrogate       Flag       Cert       <$                                                                                                                                                                                                                                                                                                                       | •                                     |                              |                       |       |                      |             |          |           |                     |              |              |                    |
| ParameterFlagCertResultUnitsDilutionDRO $Qr,Qs$ 5 $<50.0$ mg/Kg1DRO $Qr,Qs$ 5 $<50.0$ mg/Kg1SurrogateFlagCertResultUnitsDilutionAmountRecoveryLimn-Tricosane $60.6$ mg/Kg1 $50.0$ 1217070Sample: 395919 - STPLaboratory:MidlandAnalysis:TPH GROAnalytical Method:S 8015 DPrep Method:S 5QC Batch:122489Date Analyzed:2015-06-20Analyzed By:AFPrep Batch:103596Sample Preparation:2015-06-19Prepared By:AFParameterFlagCertResultUnitsDilutionGRO $Qs$ $s$ 314mg/Kg1 $ds$ GRO $Qs$ $s$ 2.00mg/Kg1 $ds$ SurrogateFlagCertResultUnitsDilutionTrifluorotoluene (TFT) $2.00$ mg/Kg1 $2.00$ 10070 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prep Batch:                           | 103612                       |                       |       | San                  | ple Prepara | ation: 2 | 2015-06-1 | 19                  |              | Prepared 1   | By: SC             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                     |                              | <b>E</b> 1            |       | Cart                 | D           |          |           | TT:+                |              | Dilation     | DI                 |
| SurrogateFlagCertResultUnitsDilutionAmountRecoveryLimn-Tricosane $60.6$ mg/Kg1 $50.0$ $121$ $70$ -Sample:395919 - STPLaboratory:MidlandAnalysis:TPH GROAnalytical Method:S 8015 DPrep Method:S 5QC Batch: $122489$ Date Analyzed: $2015-06-20$ Analyzed By:AFPrep Batch: $103596$ Sample Preparation: $2015-06-19$ Prepared By:AFGRO $Q_*$ $5$ $314$ mg/Kg $1$ $-1$ SurrogateFlagCertResultUnitsDilutionTrifluorotoluene (TFT) $2.00$ mg/Kg $1$ $2.00$ $100$ $70$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                              |                       |       |                      |             |          | n         |                     |              |              | RL<br>50.0         |
| SurrogateFlagCertResultUnitsDilutionAmountRecoveryLimn-Tricosane $60.6$ mg/Kg1 $50.0$ $121$ $70$ Sample: 395919 - STPLaboratory:MidlandAnalysis:TPH GROAnalytical Method:S 8015 DPrep Method:S 5QC Batch: $122489$ Date Analyzed: $2015-06-20$ Analyzed By:AFPrep Batch: $103596$ Sample Preparation: $2015-06-19$ Prepared By:AFGROQ*5 $314$ mg/Kg1 $5000$ $1000$ SurrogateFlagCertResultUnitsDilutionTrifluorotoluene (TFT) $2.00$ mg/Kg1 $2.00$ $100$ $70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                              | Qr,Qs                 |       | ъ                    |             | .50.0    | 11        | ig/itg              |              | 1            | 50.0               |
| n-Tricosane $60.6$ mg/Kg       1 $50.0$ $121$ $70$ -         Sample: $395919$ - STP         Laboratory:       Midland         Analysis:       TPH GRO       Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch: $122489$ Date Analyzed: $2015-06-20$ Analyzed By:       AF         Prep Batch: $103596$ Sample Preparation: $2015-06-19$ Prepared By:       AF         Parameter       Flag       Cert       Result       Units       Dilution         GRO $Q^{*}$ $5$ $314$ mg/Kg $1$ Surrogate       Flag       Cert       Result       Units       Dilution         Surrogate       Flag       Cert       Result       Units       Dilution       Amount       Recovery       Lim         Trifluorotoluene (TFT) $2.00$ $mg/Kg$ $1$ $2.00$ $100$ $70$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                              |                       |       |                      |             |          |           | $\operatorname{Sp}$ | ike          | Percent      | Recovery           |
| Sample: 395919 - STP         Laboratory:       Midland         Analysis:       TPH GRO       Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch:       122489       Date Analyzed:       2015-06-20       Analyzed By:       A F         Prep Batch:       103596       Sample Preparation:       2015-06-19       Prepared By:       A F         Parameter       Flag       Cert       Result       Units       Dilution         GRO $q_8$ $5$ 314       mg/Kg       1       -         Surrogate       Flag       Cert       Result       Units       Dilution       Recovery       Lim         Trifluorotoluene (TFT)       2.00       mg/Kg       1       2.00       100       70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate                             | Flag                         | $\operatorname{Cert}$ | R     | esult                | Units       | Dilu     | tion      | Ame                 | ount         | Recovery     | Limits             |
| Laboratory:       Midland         Analysis:       TPH GRO       Analytical Method:       S 8015 D       Prep Method:       S 5         QC Batch:       122489       Date Analyzed:       2015-06-20       Analyzed By:       A F         Prep Batch:       103596       Sample Preparation:       2015-06-19       Prepared By:       A F         Parameter       Flag       Cert       Result       Units       Dilution         GRO $Q_8$ 5 <b>314</b> mg/Kg       1       -         Surrogate       Flag       Cert       Result       Units       Dilution       Recovery       Lim         Trifluorotoluene (TFT)       2.00       mg/Kg       1       2.00       100       70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n-Tricosane                           |                              |                       |       | 60.6                 | mg/Kg       | 1        | 1         | 50                  | 0.0          | 121          | 70 - 130           |
| ParameterFlagCertResultUnitsDilutionGROQs5 <b>314</b> mg/Kg11SurrogateFlagCertResultUnitsDilutionAmountRecoveryLimTrifluorotoluene (TFT)2.00mg/Kg12.0010070 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratory:<br>Analysis:<br>QC Batch: | Midland<br>TPH GRO<br>122489 |                       | Ι     | Date An              | alyzed:     | 2015-0   | 06-20     |                     |              | Analyzed By  | v: AK              |
| GRO     Qs     5     314     mg/Kg     1       Surrogate     Flag     Cert     Result     Units     Dilution     Amount     Recovery     Lim       Trifluorotoluene (TFT)     2.00     mg/Kg     1     2.00     100     70 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                              | -                     |       | C .                  | Ð           |          |           | <b>TT 1</b> .       |              |              | DI                 |
| SurrogateFlagCertResultUnitsDilutionAmountRecoveryLimTrifluorotoluene (TFT)2.00mg/Kg12.0010070 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                              | ~                     |       |                      | Re          |          |           |                     |              |              | RL                 |
| SurrogateFlagCertResultUnitsDilutionAmountRecoveryLimTrifluorotoluene (TFT)2.00mg/Kg12.0010070 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | экО                                   |                              | Qs                    |       | 5                    |             | 314      | n         | ng/Kg               |              | 1            | 4.00               |
| Trifluorotoluene (TFT) $2.00 \text{ mg/Kg}$ $1$ $2.00 \text{ for } 70 \text{ -}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surrogate                             |                              |                       | Flao  | Cert                 | Result      | Units    | Dilut     | ion                 | -            |              | Recovery<br>Limits |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | ne (TFT)                     |                       | 1 145 | 0010                 |             |          |           |                     |              | *            | 70 - 130           |
| t = D(U) U(U) U(U) U(U) U(U) U(U) U(U) U(U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                              | Qsr                   | Qsr   |                      | 7.56        | mg/Kg    | 1         |                     | 2.00<br>2.00 | 378          | 70 - 130           |

| Report Date: June 23, 2<br>7250715053  | 2015             | Work Order<br>30137               |                          | Page Number: 15 of           |          |  |
|----------------------------------------|------------------|-----------------------------------|--------------------------|------------------------------|----------|--|
| Method B                               | lanks            |                                   |                          |                              |          |  |
| Method Blank (1)                       | QC Batch: 122418 |                                   |                          |                              |          |  |
| QC Batch: 122418<br>Prep Batch: 103564 |                  | Date Analyzed:<br>QC Preparation: | 2015-06-18<br>2015-06-18 | Analyzed By:<br>Prepared By: | AK<br>AK |  |
| Parameter                              | Flag             | Cert                              | MDL<br>Result            | Units                        | RL       |  |
| Chloride                               |                  |                                   | <3.85                    | mg/Kg                        | 4        |  |
| Method Blank (1)                       | QC Batch: 122419 |                                   |                          |                              |          |  |
| QC Batch: 122419<br>Prep Batch: 103564 |                  | Date Analyzed:<br>QC Preparation: | 2015-06-18<br>2015-06-18 | Analyzed By:<br>Prepared By: | AK<br>AK |  |
| Parameter                              | Flag             | Cert                              | MDL<br>Result            | Units                        | RL       |  |
| Chloride                               |                  |                                   | <3.85                    | mg/Kg                        | 4        |  |
| Method Blank (1)                       | QC Batch: 122475 |                                   |                          |                              |          |  |
| QC Batch: 122475<br>Prep Batch: 103564 |                  | Date Analyzed:<br>QC Preparation: | 2015-06-19<br>2015-06-18 | Analyzed By:<br>Prepared By: | AK<br>AK |  |
| Parameter                              | Flag             | Cert                              | MDL<br>Result            | Units                        | RL       |  |
| Chloride                               |                  |                                   | < 3.85                   | m mg/Kg                      | 4        |  |

| Method Blank (1) | QC Batch: $122488$ |
|------------------|--------------------|
|                  |                    |

| QC Batch:   | 122488 | Date Analyzed:  | 2015-06-20 | Analyzed By: | AK |
|-------------|--------|-----------------|------------|--------------|----|
| Prep Batch: | 103596 | QC Preparation: | 2015-06-19 | Prepared By: | AK |

| Report Date: June 23, 2015<br>7250715053                                                                                              | V              | Vork Order<br>30137 |                                             | Page Number: 16 of 28                                                                                                                                                                               |                              |        |                                       |                               |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|---------------------------------------|-------------------------------|
| -                                                                                                                                     |                |                     | ~                                           |                                                                                                                                                                                                     | MDL                          |        |                                       |                               |
| Parameter                                                                                                                             | Flag           |                     | Cert                                        |                                                                                                                                                                                                     | Result                       |        | Units                                 | RL                            |
| Benzene                                                                                                                               |                |                     | 5                                           |                                                                                                                                                                                                     | < 0.00533                    |        | mg/Kg                                 | 0.02                          |
| Toluene                                                                                                                               |                |                     | 5                                           |                                                                                                                                                                                                     | < 0.00645                    |        | mg/Kg                                 | 0.02                          |
| Ethylbenzene                                                                                                                          |                |                     | 5                                           |                                                                                                                                                                                                     | < 0.0116                     |        | m mg/Kg                               | 0.02                          |
| Xylene                                                                                                                                |                |                     | 5                                           |                                                                                                                                                                                                     | < 0.00874                    | ]      | mg/Kg                                 | 0.02                          |
|                                                                                                                                       |                |                     |                                             |                                                                                                                                                                                                     |                              | Spike  | Percent                               | Recovery                      |
| Surrogate                                                                                                                             | Flag           | Cert                | Result                                      | Units                                                                                                                                                                                               | Dilution                     | Amount | Recovery                              | Limits                        |
|                                                                                                                                       |                |                     | 2.00                                        | mg/Kg                                                                                                                                                                                               | 1                            | 2.00   | 100                                   | 70 - 130                      |
| Influorotoluene (IFI)                                                                                                                 |                |                     | 2.08                                        | $\mathrm{mg/Kg}$                                                                                                                                                                                    | 1                            | 2.00   | 104                                   | 70 - 130                      |
| 4-Bromofluorobenzene (4-BFB)                                                                                                          | 199490         |                     | 2.00                                        | 0, 0                                                                                                                                                                                                |                              |        |                                       |                               |
| 4-Bromofluorobenzene (4-BFB)<br>Method Blank (1) QC Batch<br>QC Batch: 122489                                                         | ı: 122489      |                     | nalyzed:                                    | 2015-06-2                                                                                                                                                                                           |                              |        | Analyzee                              |                               |
|                                                                                                                                       | ı: 122489      |                     |                                             |                                                                                                                                                                                                     |                              |        | Analyzec<br>Preparec                  |                               |
| 4-Bromofluorobenzene (4-BFB)<br>Method Blank (1) QC Batch<br>QC Batch: 122489                                                         |                |                     | nalyzed:                                    | 2015-06-2                                                                                                                                                                                           |                              |        |                                       |                               |
| 4-Bromofluorobenzene (4-BFB)<br>Method Blank (1) QC Batch<br>QC Batch: 122489<br>Prep Batch: 103596<br>Parameter                      | 122489<br>Flag |                     | nalyzed:                                    | 2015-06-2                                                                                                                                                                                           | 19                           |        | Prepared                              | By: AK                        |
| 4-Bromofluorobenzene (4-BFB)<br>Method Blank (1) QC Batch<br>QC Batch: 122489                                                         |                |                     | nalyzed:<br>eparation:                      | 2015-06-2                                                                                                                                                                                           | 19<br>MDL                    |        | Prepared                              |                               |
| 4-Bromofluorobenzene (4-BFB)<br><b>Method Blank (1)</b> QC Batch<br>QC Batch: 122489<br>Prep Batch: 103596<br>Parameter               |                |                     | nalyzed:<br>eparation:<br>Cert              | 2015-06-2                                                                                                                                                                                           | 19<br>MDL<br>Result          | Spike  | Prepared                              | By: AK                        |
| 4-Bromofluorobenzene (4-BFB)<br><b>Method Blank (1)</b> QC Batch<br>QC Batch: 122489<br>Prep Batch: 103596<br>Parameter<br><u>GRO</u> |                |                     | nalyzed:<br>eparation:<br>Cert              | 2015-06-2                                                                                                                                                                                           | 19<br>MDL<br>Result          |        | Prepared<br>Units<br>mg/Kg            | By: AK<br>RL<br>4             |
| 4-Bromofluorobenzene (4-BFB)<br>Method Blank (1) QC Batch<br>QC Batch: 122489<br>Prep Batch: 103596<br>Parameter                      | Flag           | QC Pro              | analyzed:<br>eparation:<br><u>Cert</u><br>5 | 2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-2015-06-20000000000000000000000000000000000 | 19<br>MDL<br>Result<br><2.32 | Spike  | Prepared<br>Units<br>mg/Kg<br>Percent | By: AK<br>RL<br>4<br>Recovery |

## Method Blank (1) QC Batch: 122545

| QC Batch:   | 122545 |      |      | Date A | Analyzed:   | 2015-06-23 |                 | Analyz              | ed By: SC           |
|-------------|--------|------|------|--------|-------------|------------|-----------------|---------------------|---------------------|
| Prep Batch: | 103612 |      |      | QC Pi  | reparation: | 2015-06-19 |                 | Prepare             | ed By: SC           |
|             |        |      |      |        |             |            | MDL             |                     |                     |
| Parameter   |        |      | Fla  | g      | Cert        | 1          | Result          | Units               | $\operatorname{RL}$ |
| DRO         |        |      |      |        | 5           |            | <7.41           | m mg/Kg             | 50                  |
| Surrogate   |        | Flag | Cert | Result | Units       | Dilution   | Spike<br>Amount | Percent<br>Recovery | Recovery<br>Limits  |
| n-Tricosane |        |      |      | 57.1   | mg/Kg       | 1          | 50.0            | 114                 | 70 - 130            |

| Report Date: June 23, 2015<br>7250715053 | Work Order: 15061711<br>30137 $#4$ | Page Number: 17 of 28 |
|------------------------------------------|------------------------------------|-----------------------|
|                                          |                                    |                       |

# Laboratory Control Spikes

#### Laboratory Control Spike (LCS-1)

| QC Batch: 122418         |                                        | Dat          | e Analyzeo | d: 201    | 5-06-18     |              |           |          | yzed By |          |  |
|--------------------------|----------------------------------------|--------------|------------|-----------|-------------|--------------|-----------|----------|---------|----------|--|
| Prep Batch: 103564       | QC Preparation: 2015-06-18 Prepared By |              |            |           |             |              |           |          |         |          |  |
|                          |                                        |              |            |           |             |              |           |          |         |          |  |
|                          |                                        |              | LCS        |           |             | Spike        | Mat       | rix      |         | Rec.     |  |
| Param                    | F                                      | $\mathbf{C}$ | Result     | Units     | Dil.        | Amount       | Res       | ult Re   | ec.     | Limit    |  |
| Chloride                 |                                        |              | 2350       | mg/Kg     | 5           | 2500         | <19       | 9.2 9    | 4 8     | 85 - 115 |  |
| Percent recovery is base | ed on the spike res                    | sult. RPD    | is based o | on the sp | pike and sp | oike duplica | ate resul | t.       |         |          |  |
|                          |                                        | LCSD         |            |           | Spike       | Matrix       |           | Rec.     |         | RPD      |  |
| Param                    | F C                                    | Result       | Units      | Dil.      | Amount      | Result       | Rec.      | Limit    | RPD     | Limit    |  |
| Chloride                 |                                        | 2350         | mg/Kg      | 5         | 2500        | $<\!19.2$    | 94        | 85 - 115 | 0       | 20       |  |
|                          |                                        |              |            |           |             |              |           |          |         |          |  |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

#### Laboratory Control Spike (LCS-1)

| QC Batch:<br>Prep Batch: | 122419<br>103564          |              |         |             |               |           |                |           |      | By: AK<br>By: AK |
|--------------------------|---------------------------|--------------|---------|-------------|---------------|-----------|----------------|-----------|------|------------------|
|                          |                           |              |         | LCS         |               |           | Spike          | Matrix    |      | Rec.             |
| Param                    |                           | $\mathbf{F}$ | С       | Result      | Units         | Dil.      | Amount         | Result    | Rec. | Limit            |
| Chloride                 |                           |              |         | 2520        | mg/Kg         | 5         | 2500           | <19.2     | 101  | 85 - 115         |
| Percent recov            | very is based on the spik | æ resi       | ılt. RI | PD is based | l on the spil | ke and sp | oike duplicate | e result. |      |                  |

|          |              |              | LCSD   |                  |      | Spike  | Matrix |      | Rec.     |     | RPD   |
|----------|--------------|--------------|--------|------------------|------|--------|--------|------|----------|-----|-------|
| Param    | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units            | Dil. | Amount | Result | Rec. | Limit    | RPD | Limit |
| Chloride |              |              | 2430   | $\mathrm{mg/Kg}$ | 5    | 2500   | <19.2  | 97   | 85 - 115 | 4   | 20    |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

#### Laboratory Control Spike (LCS-1)

| QC Batch:   | 122475 | Date Analyzed:  | 2015-06-19 | Analyzed By: | AK                     |
|-------------|--------|-----------------|------------|--------------|------------------------|
| Prep Batch: | 103564 | QC Preparation: | 2015-06-18 | Prepared By: | $\mathbf{A}\mathbf{K}$ |

.

| 7250715053                                                                                                                    |            |                       |                                                                     |                                                                    | 30137 #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                                                                 |                                  |                                             |                                                                                       |                                              |
|-------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                                                               |            | F                     | G                                                                   | LCS                                                                | <b>T</b> T •/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.1                                                | Spike                                                                                           |                                  | latrix                                      | D                                                                                     | Rec.                                         |
| Param                                                                                                                         |            | F                     | С                                                                   | Result                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dil.                                               | Amoun                                                                                           |                                  | tesult                                      | Rec.                                                                                  | Limit                                        |
| Chloride                                                                                                                      |            |                       |                                                                     | 2560                                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    | 2500                                                                                            |                                  | <19.2                                       | 102                                                                                   | 85 - 115                                     |
| Percent recovery is based on the                                                                                              | spike      | e resu                | ılt. RPI                                                            | D is based                                                         | on the sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pike and                                           | spike dupli                                                                                     | cate res                         | sult.                                       |                                                                                       |                                              |
|                                                                                                                               |            |                       | LCSI                                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spike                                              | Matrix                                                                                          |                                  | Rec                                         |                                                                                       | RPD                                          |
| Param                                                                                                                         | F          | С                     | Resul                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amoun                                              |                                                                                                 | Rec.                             | Lim                                         |                                                                                       |                                              |
| Chloride                                                                                                                      |            |                       | 2370                                                                | mg/K                                                               | g 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2500                                               | <19.2                                                                                           | 95                               | 85 - 1                                      | 115 8                                                                                 | 20                                           |
| aboratory Control Spike (L<br>C Batch: 122488<br>rep Batch: 103596                                                            | CS-1       | 1)                    |                                                                     | te Analyz<br>2 Preparat                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15-06-20<br>15-06-19                               |                                                                                                 |                                  |                                             | Analyzed F<br>Prepared F                                                              | v                                            |
| aram                                                                                                                          |            | F                     | С                                                                   | LCS<br>Result                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dil.                                               | Spike<br>Amount                                                                                 |                                  | atrix<br>esult                              | Rec.                                                                                  | Rec.<br>Limit                                |
| Benzene                                                                                                                       |            |                       | 5                                                                   | 1.99                                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                  | 2.00                                                                                            |                                  | 00533                                       | 100                                                                                   | 70 - 130                                     |
| Coluene                                                                                                                       |            |                       | 5                                                                   | 1.88                                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                  | 2.00                                                                                            |                                  | 00645                                       | 94                                                                                    | 70 - 130                                     |
| Ethylbenzene                                                                                                                  |            |                       | 5                                                                   | $1.76 \\ 5.80$                                                     | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                  | 2.00                                                                                            |                                  | .0116                                       | 88                                                                                    | 70 - 130                                     |
|                                                                                                                               |            |                       | 5<br>1+ PP                                                          |                                                                    | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>nike and                                      | 6.00<br>spike dupli                                                                             |                                  | 00874<br>sult                               | 97                                                                                    | 70 - 130                                     |
| Xylene<br>Percent recovery is based on the                                                                                    | spike      | rest                  |                                                                     | J ID DUDOU                                                         | on one of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pine and                                           | opino dupin                                                                                     | 0000 100                         | Juio.                                       |                                                                                       |                                              |
| •                                                                                                                             | spike      | e resu                |                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C :1                                               | N / - + <b>:</b>                                                                                |                                  | D -                                         | _                                                                                     | DDD                                          |
| Percent recovery is based on the                                                                                              | -          |                       | LCSD                                                                |                                                                    | Dil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spike                                              | Matrix<br>Besult                                                                                | Rec                              | Ree<br>Lin                                  |                                                                                       |                                              |
| Percent recovery is based on the<br>Param                                                                                     | spike<br>F | С                     | LCSD<br>Result                                                      | Units                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amount                                             | Result                                                                                          | Rec.<br>98                       | Lin                                         | nit RPI                                                                               | D Limi                                       |
| Percent recovery is based on the<br>Param<br>Benzene                                                                          | -          | C<br>5                | LCSD<br>Result<br>1.97                                              | Units<br>mg/Kg                                                     | ; 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amount<br>2.00                                     | Result<br><0.00533                                                                              | 98                               | Lim<br>70 -                                 | $\begin{array}{cc} \text{nit} & \text{RPI} \\ 130 & 1 \end{array}$                    | $\frac{D}{20}$                               |
| Percent recovery is based on the<br>Param<br>Benzene<br>Coluene                                                               | -          | С                     | LCSD<br>Result                                                      | Units<br>mg/Kg<br>mg/Kg                                            | 5 1<br>5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amount                                             | Result                                                                                          | 98                               | Lin                                         | $\begin{array}{c c} \text{nit} & \text{RPI} \\ \hline 130 & 1 \\ 130 & 2 \end{array}$ | D Limi                                       |
| Xylene<br>Percent recovery is based on the<br>Param<br>Benzene<br>Coluene<br>Ethylbenzene<br>Xylene                           | -          | C<br>5<br>5           | LCSD<br>Result<br>1.97<br>1.91                                      | Units<br>mg/Kg                                                     | $\begin{array}{ccc} 1 \\ 5 & 1 \\ 5 & 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Amount<br>2.00<br>2.00                             | Result<br><0.00533<br><0.00645                                                                  | 98<br>96<br>89                   | Lim<br>70 -<br>70 -                         | nit RPI<br>130 1<br>130 2<br>130 1                                                    | D Limi<br>20<br>20                           |
| Percent recovery is based on the<br>Param<br>Benzene<br>Coluene<br>Cthylbenzene<br>Kylene                                     | F          | C<br>5<br>5<br>5<br>5 | LCSD<br>Result<br>1.97<br>1.91<br>1.78<br>5.83                      | Units<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                          | $     \begin{array}{c}       1 \\       1 \\       1 \\       1 \\       1     \end{array}     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount<br>2.00<br>2.00<br>2.00<br>6.00             | $\begin{array}{r} \text{Result} \\ < 0.00533 \\ < 0.00645 \\ < 0.0116 \\ < 0.00874 \end{array}$ | 98<br>96<br>89<br>97             | Lim<br>70 -<br>70 -<br>70 -<br>70 -         | nit RPI<br>130 1<br>130 2<br>130 1                                                    | D Limit<br>20<br>20<br>20<br>20              |
| Percent recovery is based on the<br>Param<br>Benzene<br>Coluene<br>Cthylbenzene                                               | F          | C<br>5<br>5<br>5<br>5 | LCSD<br>Result<br>1.97<br>1.91<br>1.78<br>5.83<br>Ilt. RPI          | Units<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>D is based                     | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Amount<br>2.00<br>2.00<br>2.00<br>6.00             | Result<br><0.00533<br><0.00645<br><0.0116<br><0.00874<br>spike duplie                           | 98<br>96<br>89<br>97<br>cate res | Lim<br>70 -<br>70 -<br>70 -<br>70 -         | nit RPI<br>130 1<br>130 2<br>130 1<br>130 0                                           | D Limi<br>20<br>20<br>20<br>20<br>20         |
| Percent recovery is based on the<br>Param<br>Benzene<br>Coluene<br>Cthylbenzene<br>Cylene<br>Percent recovery is based on the | F          | C<br>5<br>5<br>5<br>5 | LCSD<br>Result<br>1.97<br>1.91<br>1.78<br>5.83<br>Ilt. RPI          | Units<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>D is based                     | (5 1)<br>(5 1)<br>(5 1)<br>(5 1)<br>(5 1)<br>(5 1)<br>(5 1)<br>(6 1)<br>(7 1) | Amount<br>2.00<br>2.00<br>2.00<br>6.00             | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                           | 98<br>96<br>89<br>97             | Lim<br>70 -<br>70 -<br>70 -<br>sult.<br>LCS | hit RPI<br>130 1<br>130 2<br>130 1<br>130 0<br>LCSD                                   | 20<br>20<br>20                               |
| Percent recovery is based on the<br>Param<br>Benzene<br>Coluene<br>Cthylbenzene<br>Kylene                                     | F          | C<br>5<br>5<br>5<br>5 | LCSD<br>Result<br>1.97<br>1.91<br>1.78<br>5.83<br>dt. RPI<br>I<br>R | Units<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>D is based<br>CS Le<br>esult R | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>Amount<br/>2.00<br/>2.00<br/>2.00<br/>6.00<br/>pike and</td><td>Result           &lt;0.00533</td>           &lt;0.00645</t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Amount<br>2.00<br>2.00<br>2.00<br>6.00<br>pike and | Result           <0.00533                                                                       | 98<br>96<br>89<br>97<br>cate res | Lim<br>70 -<br>70 -<br>70 -<br>70 -         | nit RPI<br>130 1<br>130 2<br>130 1<br>130 0                                           | D Limi<br>20<br>20<br>20<br>20<br>20<br>Rec. |

| QC Batch:   | 122489 | Date Analyzed:  | 2015-06-20 | Analyzed By: | AK |
|-------------|--------|-----------------|------------|--------------|----|
| Prep Batch: | 103596 | QC Preparation: | 2015-06-19 | Prepared By: | AK |

| Report Date: June 23, 2015<br>7250715053                                                                                                  |                     |                        |                                                                                                                                                                                         |                                                                              | Order: 13<br>30137 #                                                                                                                                                               |                                                                    |                                                                              |                                        | Pε                                                       | age Nu                               | umber                                     | : 19 of 28                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| Param                                                                                                                                     |                     | F                      | C ]                                                                                                                                                                                     | LCS<br>Result                                                                | Units                                                                                                                                                                              |                                                                    | Spike<br>Amount                                                              | R                                      | atrix<br>esult                                           |                                      | ec.                                       | Rec.<br>Limit                                             |
| GRO                                                                                                                                       |                     |                        | 5                                                                                                                                                                                       | 14.6                                                                         | mg/K                                                                                                                                                                               | g 1                                                                | 20.0                                                                         | <                                      | (2.32)                                                   | 7                                    | '3                                        | 70 - 130                                                  |
| Percent recovery is based on the                                                                                                          | spike               | resu                   | ılt. RPD                                                                                                                                                                                | is based                                                                     | d on the s                                                                                                                                                                         | spike and                                                          | spike duplic                                                                 | ate res                                | ult.                                                     |                                      |                                           |                                                           |
|                                                                                                                                           |                     |                        | LCSD                                                                                                                                                                                    |                                                                              |                                                                                                                                                                                    | Spike                                                              | Matrix                                                                       |                                        |                                                          | ec.                                  |                                           | RPD                                                       |
| Param                                                                                                                                     | F                   | С                      | Result                                                                                                                                                                                  | Unit                                                                         |                                                                                                                                                                                    | Amount                                                             |                                                                              | Rec.                                   |                                                          | mit                                  | RPI                                       |                                                           |
| GRO                                                                                                                                       |                     | 5                      | 15.7                                                                                                                                                                                    | mg/K                                                                         | Kg 1                                                                                                                                                                               | 20.0                                                               | < 2.32                                                                       | 78                                     | 70 -                                                     | 130                                  | 7                                         | 20                                                        |
| Percent recovery is based on the                                                                                                          | spike               | resu                   | lt. RPD                                                                                                                                                                                 | is based                                                                     | d on the s                                                                                                                                                                         | spike and                                                          | spike duplic                                                                 | ate res                                | ult.                                                     |                                      |                                           |                                                           |
| Surrogate                                                                                                                                 |                     |                        | LC<br>Res                                                                                                                                                                               |                                                                              | CSD<br>Lesult                                                                                                                                                                      | Units                                                              | Spi<br>Dil. Amo                                                              |                                        | LCS<br>Rec.                                              |                                      | CSD<br>ec.                                | Rec.<br>Limit                                             |
| Trifluorotoluene (TFT)                                                                                                                    |                     |                        | 2.4                                                                                                                                                                                     | 13 1                                                                         | 2.40                                                                                                                                                                               | ng/Kg                                                              | 1 2.0                                                                        | )0                                     | 122                                                      | 1                                    | 20                                        | 70 - 130                                                  |
|                                                                                                                                           |                     |                        | 2.1                                                                                                                                                                                     | 6                                                                            | 2.13                                                                                                                                                                               | ng/Kg                                                              | 1 2.0                                                                        | 00                                     | 108                                                      | 1                                    | 06                                        | 70 - 130                                                  |
| 4-Bromofluorobenzene (4-BFB)<br>Laboratory Control Spike (L                                                                               | CS-1                | )                      |                                                                                                                                                                                         |                                                                              |                                                                                                                                                                                    |                                                                    |                                                                              |                                        |                                                          |                                      |                                           |                                                           |
|                                                                                                                                           | CS-1                | 1)                     |                                                                                                                                                                                         | e Analyz<br>Prepara                                                          |                                                                                                                                                                                    | )15-06-23<br>)15-06-19                                             |                                                                              |                                        |                                                          |                                      | lyzed 1<br>bared 1                        |                                                           |
| Laboratory Control Spike (L<br>QC Batch: 122545                                                                                           | CS-1                | )                      |                                                                                                                                                                                         | Prepara                                                                      |                                                                                                                                                                                    |                                                                    | Spike                                                                        | М                                      | atriv                                                    |                                      |                                           | By: SC                                                    |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612                                                                     | CS-1                | ,                      | $\rm QC$                                                                                                                                                                                | Prepara<br>LCS                                                               | tion: 20                                                                                                                                                                           | )15-06-19                                                          | Spike<br>Amount                                                              |                                        | atrix                                                    | Prep                                 | ared 1                                    | By: SC<br>Rec.                                            |
| Laboratory Control Spike (L<br>QC Batch: 122545                                                                                           | CS-1                | L)<br>F                | $\rm QC$                                                                                                                                                                                | Prepara                                                                      | ution: 20<br>Units                                                                                                                                                                 | )15-06-19<br>Dil.                                                  | Spike<br>Amount<br>250                                                       | R                                      | atrix<br>esult<br>7.41                                   | Prep<br>Re                           |                                           | By: SC<br>Rec.<br>Limit                                   |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param                                                            |                     | F                      | QC<br>C                                                                                                                                                                                 | Prepara<br>LCS<br>Result<br>239                                              | ution: 20<br>Units<br>mg/K                                                                                                                                                         | Dil.<br>g 1                                                        | Amount<br>250                                                                | R<br><                                 | esult<br>7.41                                            | Prep<br>Re                           | ec.                                       | By: SC<br>Rec.<br>Limit                                   |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO                                                     |                     | F                      | QC<br>C                                                                                                                                                                                 | Prepara<br>LCS<br>Result<br>239                                              | ution: 20<br>Units<br>mg/K                                                                                                                                                         | Dil.<br>g 1                                                        | Amount<br>250                                                                | R<br><                                 | esult<br>7.41<br>ult.                                    | Prep<br>Re                           | ec.                                       | By: SC<br>Rec.<br>Limit                                   |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO                                                     |                     | F                      | $\frac{C}{\frac{5}{1}}$                                                                                                                                                                 | Prepara<br>LCS<br>Result<br>239                                              | $\frac{\text{Units}}{\text{mg/K}}$                                                                                                                                                 | Di5-06-19<br>Dil.<br>g 1<br>spike and s                            | Amount<br>250<br>spike duplica<br>Matrix                                     | R<br><                                 | esult<br>7.41<br>ult.<br>Re                              | Prep<br>Ra<br>9                      | ec.                                       | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD                |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the                 | spike               | F                      | $\begin{array}{c} \text{QC} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \text{lt. RPD} \\ \\ \\ \text{LCSD} \end{array}$                                                    | Prepara<br>LCS<br>Result<br>239<br>is based                                  | tion: 20<br>Units<br>$M = \frac{M}{M}$<br>d on the s<br>s Dil.                                                                                                                     | $\frac{\text{Dil.}}{\text{g}  1}$ spike and s                      | Amount<br>250<br>spike duplica<br>Matrix                                     | $\frac{R}{<}$ ate res                  | esult<br>7.41<br>ult.<br>Ra<br>Lin                       | Prep<br>Ra<br>9<br>ec.               | ec.<br>96                                 | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD                |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the<br>Param        | spike<br>F          | F<br>resu<br>C<br>5    | QC<br><u>5</u><br>lt. RPD<br>LCSD<br>Result<br>249                                                                                                                                      | Prepara<br>LCS<br>Result<br>239<br>is based<br>Unit<br>mg/K                  | $\begin{array}{c} \text{Units} \\ \hline \\ \text{Units} \\ \hline \\ \text{mg/K} \\ \text{l on the s} \\ \hline \\ \text{s} \\ \hline \\ \hline \\ \text{Sg} \\ 1 \\ \end{array}$ | Dits-06-19<br>Dil.<br>g 1<br>spike and s<br>Spike<br>Amount<br>250 | Amount<br>250<br>spike duplica<br>Matrix<br>Result<br><7.41                  | R<br>ate res<br>Rec.<br>100            | esult<br>7.41<br>ult.<br>Ra<br>Lin<br>70 -               | Prep Ra g ec. mit                    | ec.<br>06<br>RPI                          | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>D Limit     |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the<br>Param<br>DRO | spike<br>F          | F<br>resu<br>5<br>resu | QC<br><u>5</u><br>lt. RPD<br>LCSD<br>Result<br>249                                                                                                                                      | Prepara<br>LCS<br>Result<br>239<br>is based<br>Unit<br>mg/K<br>is based      | $\begin{array}{c} \text{Units} \\ \hline \\ \text{Units} \\ \hline \\ \text{mg/K} \\ \text{l on the s} \\ \hline \\ \text{s} \\ \hline \\ \hline \\ \text{Sg} \\ 1 \\ \end{array}$ | Dits-06-19<br>Dil.<br>g 1<br>spike and s<br>Spike<br>Amount<br>250 | Amount<br>250<br>spike duplica<br>Matrix<br>Result<br><7.41                  | R<br>ate res<br>Rec.<br>100            | esult<br>7.41<br>ult.<br>Ra<br>Lin<br>70 -<br>ult.       | Prep Ra g ec. mit                    | ec.<br><u>6</u><br><u>RPI</u><br><u>4</u> | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>D Limit     |
| Laboratory Control Spike (L<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the<br>Param<br>DRO | spike<br>F<br>spike | F<br>resu<br>5<br>resu | $\begin{array}{c c} QC \\ \hline C \\ \hline 5 \\ \hline 1 \\ LCSD \\ \hline Result \\ \hline 249 \\ \hline 1 \\ LCSD \\ Result \\ \hline 249 \\ \hline 1 \\ RPD \\ \hline \end{array}$ | Prepara<br>LCS<br>Result<br>239<br>is based<br>Unit<br>mg/K<br>is based<br>D | $\begin{array}{c} \text{Units} \\ \hline \\ \text{Units} \\ \hline \\ \text{mg/K} \\ \text{l on the s} \\ \hline \\ \text{s} \\ \hline \\ \hline \\ \text{Sg} \\ 1 \\ \end{array}$ | Dits-06-19<br>Dil.<br>g 1<br>spike and s<br>Spike<br>Amount<br>250 | Amount<br>250<br>spike duplica<br>Matrix<br>Result<br><7.41<br>spike duplica | R<br>ate res<br>Rec.<br>100<br>ate res | esult<br>77.41<br>ult.<br>Ra<br>Lin<br>70 -<br>ult.<br>S | Prep<br>Ra<br>9<br>ec.<br>mit<br>130 | ec.<br>06<br>RPI<br>4                     | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>Limit<br>20 |

| Report Date: June 23, 2015<br>7250715053 | ,     |                    |       |                        |                      | Order: 15<br>30137 #4 |                      |                 | Page Number: 20 of |                |             |                    |                    |
|------------------------------------------|-------|--------------------|-------|------------------------|----------------------|-----------------------|----------------------|-----------------|--------------------|----------------|-------------|--------------------|--------------------|
| Matrix Spike                             | S     |                    |       |                        |                      |                       |                      |                 |                    |                |             |                    |                    |
| Matrix Spike (MS-1) Sp                   | oiked | Sar                | nple: | 396009                 | )                    |                       |                      |                 |                    |                |             |                    |                    |
| QC Batch: 122418<br>Prep Batch: 103564   |       |                    |       |                        | e Analyz<br>Preparat |                       | 15-06-18<br>15-06-18 |                 |                    |                | •           | zed By:<br>red By: |                    |
| Param                                    |       |                    | F     | С                      | MS<br>Result         | Units                 | Dil.                 | Spike<br>Amount | Re                 | atrix<br>esult | Rec.        | Ι                  | Rec.<br>Limit      |
| Chloride                                 | Qs    | :1                 | Qs    |                        | 19700                | mg/Kg                 |                      | 2500            |                    | 5600           | 124         | 78.                | 9 - 121            |
| Percent recovery is based on t           | he sp | ıke                | resu  |                        |                      | on the s              | pike and s           | spike dupli     | cate res           | sult.          |             |                    |                    |
|                                          |       | Б                  | a     | MSD                    |                      | D'1                   | Spike                | Matrix          | D                  | Re             |             | DDD                | RPE                |
| Param<br>Chloride                        | Qs    | F<br><sub>Qs</sub> | С     | Resul<br>19900         |                      |                       | Amount<br>2500       | Result<br>16600 | Rec.<br>132        | Lin<br>78.9 -  |             | RPD<br>1           | Limi<br>20         |
| 2C Batch: 122419                         | oiked | Sar                | mple: |                        | e Analyze            |                       | 15-06-18             |                 |                    |                |             | zed By:            |                    |
| Prep Batch: 103564                       |       |                    |       | QC                     | Preparat             | ion: 20               | 15-06-18             |                 |                    |                | Prepa       | red By:            | AK                 |
| _                                        |       |                    | _     |                        | MS                   |                       |                      | Spike           |                    | atrix          | _           |                    | Rec.               |
| Param<br>Chloride                        |       |                    | F     |                        | Result<br>14800      | Units<br>mg/Kg        | Dil.<br>5            | Amount<br>2500  |                    | esult<br>233   | Rec.<br>103 |                    | Limit<br>9 - 121   |
| Percent recovery is based on t           | hom   | ike                | rocu  |                        |                      |                       |                      |                 |                    |                | 109         | 10.                | 9 - 12             |
| ercent recovery is based on t            | ne sp | INC                | resu. |                        | o is based           | on the s              | -                    | spike dupin     |                    | suit.          |             |                    |                    |
|                                          |       |                    |       | 1 COD                  |                      |                       | C :1                 | Matrix          |                    | Re             | c           |                    |                    |
| ) - man                                  | 1     | F                  | C     | MSD<br>Degult          | TT *+                | D:1                   | Spike                |                 | Da-                |                |             | ססס                |                    |
| Param<br>Chloride                        | ]     | F                  | С     | MSD<br>Result<br>15000 | Units<br>mg/Kg       | Dil.                  | Amount<br>2500       | Result<br>12233 | Rec.               | Lin<br>78.9 -  | nit         | RPD<br>1           | RPD<br>Limit<br>20 |

| matrix spike (mb i) spiked sample. 555516 | Matrix Spike (MS-1) | Spiked Sample: 395918 |
|-------------------------------------------|---------------------|-----------------------|
|-------------------------------------------|---------------------|-----------------------|

| QC Batch:   | 122475 | Date Analyzed:  | 2015-06-19 | Analyzed By: | AK |
|-------------|--------|-----------------|------------|--------------|----|
| Prep Batch: | 103564 | QC Preparation: | 2015-06-18 | Prepared By: | AK |

| 7250715053                                                                                                                                                    |              |                  |                                    |                                                                      | Order: 15<br>30137 #4                 |                                            |                                                      |                                            | Pag                                      | ge Nun                 | nber:               | 21 of 28                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------------------------------------|----------------------------------------------------------------------|---------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------|---------------------|---------------------------------|
|                                                                                                                                                               |              |                  |                                    | MS                                                                   |                                       |                                            | Spike                                                | Ma                                         | trix                                     |                        |                     | Rec.                            |
| Param                                                                                                                                                         |              | $\mathbf{F}$     | С                                  | Result                                                               | Units                                 | Dil.                                       | Amount                                               | Res                                        |                                          | Rec.                   |                     | Limit                           |
| Chloride                                                                                                                                                      |              |                  |                                    | 2370                                                                 | mg/Kg                                 | 5                                          | 2500                                                 |                                            | 9.2                                      | 95                     |                     | .9 - 121                        |
| Percent recovery is based on th                                                                                                                               | ne spike     | e resi           | ılt. RPI                           |                                                                      | -, -                                  |                                            |                                                      |                                            |                                          |                        |                     | -                               |
|                                                                                                                                                               |              |                  | MSD                                |                                                                      |                                       | Spike                                      | Matrix                                               |                                            | Rec                                      |                        |                     | RPD                             |
| Param                                                                                                                                                         | F            | С                | Result                             |                                                                      | Dil.                                  | Amount                                     | Result                                               | Rec.                                       | Limi                                     |                        | RPD                 | Limit                           |
| Chloride                                                                                                                                                      |              |                  | 2370                               | m mg/Kg                                                              | 5                                     | 2500                                       | $<\!19.2$                                            | 95                                         | 78.9 -                                   | 121                    | 0                   | 20                              |
| Aatrix Spike (xMS-1)         Spike           QC Batch:         122488           Prep Batch:         103596                                                    | piked S      | Jamp             |                                    | 08<br>te Analyze<br>C Preparati                                      |                                       | 15-06-20<br>15-06-19                       |                                                      |                                            |                                          | Analyz<br>Prepar       |                     |                                 |
|                                                                                                                                                               |              | F                | G                                  | MS                                                                   | TT •.                                 |                                            | Spike                                                |                                            | atrix                                    | D                      |                     | Rec.                            |
| Param                                                                                                                                                         |              | F                | С                                  | Result                                                               | Units                                 | Dil.                                       | Amount                                               |                                            | esult                                    | Rec                    |                     | Limit                           |
| Senzene                                                                                                                                                       |              |                  | 5                                  | 1.51                                                                 | mg/Kg                                 |                                            | 2.00                                                 |                                            | 00533                                    | 76                     |                     | 70 - 130                        |
| oluene                                                                                                                                                        |              |                  | 5                                  | $1.53 \\ 1.42$                                                       | mg/Kg                                 |                                            | 2.00                                                 |                                            | 0628<br>0413                             | 73<br>60               |                     | 70 - 130                        |
| Cthylbenzene<br>Cylene                                                                                                                                        | $_{\rm Qs}$  | Qs               | 5<br>5                             | $1.42 \\ 4.64$                                                       | mg/Kg<br>mg/Kg                        |                                            | $2.00 \\ 6.00$                                       |                                            | )413<br>)429                             | 69<br>77               |                     | 70 - 130<br>70 - 130            |
| ercent recovery is based on th                                                                                                                                | ne spike     | e resi           |                                    |                                                                      | -, -                                  |                                            |                                                      |                                            |                                          |                        |                     | 10 100                          |
|                                                                                                                                                               |              |                  | MSD                                |                                                                      |                                       | Spike                                      | Matrix                                               |                                            | Re                                       |                        |                     | RPD                             |
|                                                                                                                                                               | $\mathbf{F}$ | С                | Result                             |                                                                      |                                       | Amount                                     | Result                                               | Rec.                                       | Lin                                      |                        | RPD                 | Limit                           |
| aram                                                                                                                                                          |              | 5                | 1.74                               | mg/Kg                                                                |                                       | 2.00                                       | < 0.00533                                            |                                            | 70 -                                     |                        | 14                  | 20                              |
| enzene                                                                                                                                                        |              | 0                |                                    |                                                                      |                                       |                                            |                                                      | 00                                         | 70 -                                     | 130                    | 9                   | 20                              |
| enzene<br>oluene                                                                                                                                              |              | 5                | 1.67                               | mg/Kg                                                                |                                       | 2.00                                       | 0.0628                                               | 80                                         |                                          |                        |                     |                                 |
| enzene<br>oluene<br>thylbenzene                                                                                                                               |              |                  | 1.63                               | mg/Kg                                                                | 1                                     | 2.00                                       | 0.0413                                               | 79                                         | 70 -                                     |                        | 14                  | 20                              |
| enzene<br>oluene<br>thylbenzene<br>ylene                                                                                                                      |              | 5<br>5<br>5      | $1.63 \\ 5.35$                     | mg/Kg<br>mg/Kg                                                       | 1<br>1                                | $2.00 \\ 6.00$                             | $0.0413 \\ 0.0429$                                   | 79<br>88                                   | 70 -<br>70 -                             |                        |                     | 20<br>20                        |
| Benzene<br>Foluene<br>Sthylbenzene<br>Tylene                                                                                                                  | ıe spike     | 5<br>5<br>5      | 1.63<br>5.35<br>ult. RPI           | mg/Kg<br>mg/Kg<br>D is based                                         | $\frac{1}{1}$ on the s                | $2.00 \\ 6.00$                             | 0.0413<br>0.0429<br>spike dupli                      | 79<br>88<br>cate res                       | 70 -<br>70 -                             | 130                    | 14<br>14            |                                 |
| Benzene<br>Foluene<br>Cthylbenzene<br>Cylene<br>Percent recovery is based on th                                                                               | ıe spike     | 5<br>5<br>5      | 1.63<br>5.35<br>ult. RPI           | mg/Kg<br>mg/Kg<br>D is based<br>MS M                                 | $ \frac{1}{1} $ on the s $ 4SD $      | 2.00<br>6.00<br>pike and                   | 0.0413<br>0.0429<br>spike dupli<br>S                 | 79<br>88<br>cate res<br>pike               | 70 -<br>70 -<br>ult.<br>MS               | 130<br>MS              | 14<br>14<br>D       | 20<br>Rec.                      |
| Benzene<br>Coluene<br>Cthylbenzene<br>Cylene<br>Percent recovery is based on th<br>urrogate                                                                   | ıe spike     | 5<br>5<br>5      | 1.63<br>5.35<br>ult. RPI<br>R      | mg/Kg<br>mg/Kg<br>D is based<br>MS M<br>esult Re                     | 1<br>0 n the s<br>ASD<br>esult        | 2.00<br>6.00<br>pike and to<br>Units       | 0.0413<br>0.0429<br>spike dupli<br>S<br>Dil. Ar      | 79<br>88<br>cate res<br>pike<br>nount      | 70 -<br>70 -<br>ult.<br>MS<br>Rec.       | 130<br>MS<br>Rec       | 14<br>14<br>D<br>c. | 20<br>Rec.<br>Limit             |
| enzene<br>oluene<br>thylbenzene<br>ylene<br>ercent recovery is based on th<br>urrogate<br>rifluorotoluene (TFT)                                               |              | 5<br>5<br>5      | 1.63<br>5.35<br>ilt. RPI<br>R<br>1 | mg/Kg<br>mg/Kg<br>D is based<br>MS M<br>esult Re<br>1.81 1           | 1<br>on the s<br>ASD<br>esult<br>1.92 | $\begin{array}{c} 2.00\\ 6.00 \end{array}$ | 0.0413<br>0.0429<br>spike dupli<br>S<br>Dil. Ar<br>1 | 79<br>88<br>cate res<br>pike<br>nount<br>2 | 70 -<br>70 -<br>ult.<br>MS<br>Rec.<br>90 | 130<br>MS<br>Rec<br>96 | 14<br>14<br>D<br>c. | 20<br>Rec.<br>Limit<br>70 - 130 |
| Param<br>Benzene<br>Coluene<br>Cthylbenzene<br>Cylene<br>Percent recovery is based on th<br>Currogate<br>Crifluorotoluene (TFT)<br>-Bromofluorobenzene (4-BFB |              | 5<br>5<br>5      | 1.63<br>5.35<br>ilt. RPI<br>R<br>1 | mg/Kg<br>mg/Kg<br>D is based<br>MS M<br>esult Re<br>1.81 1           | 1<br>on the s<br>ASD<br>esult<br>1.92 | 2.00<br>6.00<br>pike and to<br>Units       | 0.0413<br>0.0429<br>spike dupli<br>S<br>Dil. Ar      | 79<br>88<br>cate res<br>pike<br>nount      | 70 -<br>70 -<br>ult.<br>MS<br>Rec.       | 130<br>MS<br>Rec       | 14<br>14<br>D<br>c. | 20<br>Rec.                      |
| Benzene<br>Coluene<br>Cthylbenzene<br>Cylene<br>Percent recovery is based on th<br>Currogate<br>Crifluorotoluene (TFT)<br>-Bromofluorobenzene (4-BFB          | )            | 5<br>5<br>e rest | 1.63<br>5.35<br>ilt. RPI<br>R<br>1 | mg/Kg<br>mg/Kg<br>D is based<br>MS N<br>esult Ro<br>1.81 1<br>1.92 1 | 1<br>on the s<br>ASD<br>esult<br>1.92 | $\begin{array}{c} 2.00\\ 6.00 \end{array}$ | 0.0413<br>0.0429<br>spike dupli<br>S<br>Dil. Ar<br>1 | 79<br>88<br>cate res<br>pike<br>nount<br>2 | 70 -<br>70 -<br>ult.<br>MS<br>Rec.<br>90 | 130<br>MS<br>Rec<br>96 | 14<br>14<br>D<br>c. | 20<br>Rec.<br>Limit<br>70 - 130 |

.

| Report Date: June 23, 2015<br>7250715053                                                                                            |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wo                                                                                   | rk Order<br>30137       |                                                     | 61711                                                       |                                                                                                                       |                                                    |                                                | Page 1                                                                                                                                                         | Number             | r: 22 of 28                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------|
| Param                                                                                                                               |                                      | F                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MS<br>Resu                                                                           | ilt U                   | nits                                                | Dil.                                                        | Spil<br>Amor                                                                                                          | ınt                                                | Mat<br>Res                                     | ult                                                                                                                                                            | Rec.               | Rec.                                                        |
| GRO                                                                                                                                 | Qs                                   | $_{\rm Qs}$            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.8                                                                                 |                         | g/Kg                                                | 1                                                           | 20.                                                                                                                   |                                                    | 11                                             |                                                                                                                                                                | 1                  | 70 - 130                                                    |
| Percent recovery is based on the                                                                                                    | he spike                             | resu                   | lt. RPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D is ba                                                                              | ised on t               | he spi                                              | ike and s                                                   | pike dup                                                                                                              | licate                                             | resul                                          | t.                                                                                                                                                             |                    |                                                             |
|                                                                                                                                     |                                      |                        | MSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                                                                    |                         |                                                     | Spike                                                       | Matri                                                                                                                 | x                                                  |                                                | Rec.                                                                                                                                                           |                    | RPD                                                         |
| Param                                                                                                                               | $\mathbf{F}$                         | $\mathbf{C}$           | Resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      | Jnits 1                 | Dil.                                                | Amount                                                      |                                                                                                                       |                                                    | ec.                                            | Limit                                                                                                                                                          | RPI                |                                                             |
| GRO                                                                                                                                 | Qs Qs                                | 5                      | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      | g/Kg                    | 1                                                   | 20.0                                                        | 11.6                                                                                                                  | 8                                                  | 3                                              | 70 - 130                                                                                                                                                       | ) 11               | 20                                                          |
| Percent recovery is based on the                                                                                                    | he spike                             | resu                   | lt. RPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                         | he spi                                              | ike and s                                                   | pike dup                                                                                                              | licate                                             | resul                                          | t.                                                                                                                                                             |                    |                                                             |
| v                                                                                                                                   | -                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                         | -                                                   | -                                                           |                                                                                                                       |                                                    |                                                |                                                                                                                                                                | MOD                | р                                                           |
| Sumorato                                                                                                                            |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS<br>esult                                                                          | MSD<br>Result           | T                                                   | Jnits                                                       | Dil. A                                                                                                                | Spike                                              |                                                |                                                                                                                                                                | MSD<br>Boo         | Rec.<br>Limit                                               |
| Surrogate<br>Trifluorotoluene (TFT)                                                                                                 |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.26                                                                                 | 2.45                    | -                                                   | g/Kg                                                        | $\frac{D\Pi}{1}$                                                                                                      | $\frac{1}{2}$                                      |                                                | nec.<br>113                                                                                                                                                    | Rec.<br>122        | $\frac{111111}{70 - 130}$                                   |
|                                                                                                                                     |                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.20                                                                                 | $2.45 \\ 2.15$          |                                                     | g/Kg                                                        | 1                                                                                                                     | $\frac{2}{2}$                                      |                                                | 102                                                                                                                                                            | 108                | 70 - 130                                                    |
|                                                                                                                                     | ,                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                    |                         |                                                     |                                                             |                                                                                                                       |                                                    |                                                |                                                                                                                                                                |                    |                                                             |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545                                                                                          | iked San                             | nple:                  | Dε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ite Ana                                                                              | alyzed:                 |                                                     | 5-06-23                                                     |                                                                                                                       |                                                    |                                                |                                                                                                                                                                | alyzed             |                                                             |
| - ( ) -                                                                                                                             | ,                                    | nple:                  | Dε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ite Ana                                                                              | alyzed:<br>aration:     |                                                     | 5-06-23<br>5-06-19                                          |                                                                                                                       |                                                    |                                                |                                                                                                                                                                | alyzed             |                                                             |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545                                                                                          | ,                                    | nple:                  | Dε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ite Ana                                                                              | v                       |                                                     |                                                             | Spik                                                                                                                  | e                                                  | Mat                                            | Pre                                                                                                                                                            | v                  | •                                                           |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612                                                                    | iked San                             | nple:<br>F             | Dε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | te Ana<br>C Prep                                                                     | aration:                |                                                     |                                                             | Spik<br>Amou                                                                                                          |                                                    | Mat<br>Res                                     | Pre                                                                                                                                                            | v                  | By: SC                                                      |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param                                                           | iked San                             | -                      | Da<br>Q(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ute Ana<br>C Prep<br>MS                                                              | aration:<br>t U         | 2015                                                | 5-06-19                                                     | -                                                                                                                     | int                                                |                                                | Pre<br>rix<br>ult 1                                                                                                                                            | epared 1           | By: SC<br>Rec.<br>Limit                                     |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO                                                    | iked San                             | F                      | Da<br>Qa<br>C<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tte Ana<br>C Prep<br>MS<br>Resul<br>213                                              | aration:<br>t Ui<br>mg  | 2015<br>nits<br>/Kg                                 | 5-06-19<br>Dil.<br>1                                        | Amou<br>250                                                                                                           | int                                                | Res<br><7.                                     | Pre<br>rix<br>ult 1<br>41                                                                                                                                      | epared i           | By: SC<br>Rec.                                              |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545                                                                                          | iked San                             | F                      | $\frac{C}{\frac{5}{11. \text{ RPI}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tte Ana<br>C Prep<br>MS<br>Resul<br>213<br>D is ba                                   | aration:<br>t Ui<br>mg  | 2015<br>nits<br>/Kg                                 | 5-06-19<br>Dil.<br>1<br>ike and sj                          | Amou<br>250<br>pike dup                                                                                               | licate 1                                           | Res<br><7.                                     | $\frac{\text{Pre}}{41}$ t.                                                                                                                                     | epared i           | By: SC<br>Rec.<br>Limit<br>70 - 130                         |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on th                 | iked San                             | F                      | $\frac{C}{\frac{5}{1t. RPI}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tte Ana<br>C Prep<br>MS<br>Resul<br>213                                              | aration:<br>t Ui<br>mg  | 2015<br>nits<br>/Kg                                 | 5-06-19<br>Dil.<br>1<br>ike and spike                       | Amou<br>250<br>pike dup<br>e Mat                                                                                      | int<br>licate r<br>rix                             | Res<br><7.                                     | Pre<br>rix<br>ult 1<br>41                                                                                                                                      | Rec.               | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD                  |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on th<br>Param        | iked San                             | F                      | $\frac{C}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tte Ana<br>C Prep<br>MS<br>Resul<br>213<br>D is ba                                   | t Ur<br>mg<br>used on t | 2015<br>nits<br>/Kg<br>he spi                       | 5-06-19<br>Dil.<br>1<br>ike and spike                       | Amou<br>250<br>pike dup<br>e Mat                                                                                      | licate r<br>rix<br>ult R                           | Rest<br><7.<br>resul                           | $\frac{\text{Pre}}{41}$ t. Rec.                                                                                                                                | Rec.<br>85<br>RP   | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>D Limit       |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO                                                    | iked San<br>he spike                 | F<br>resu<br>F         | $\frac{C}{5}$ $\frac{C}{C}$ $\frac{S}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tte Ana<br>C Prep<br>MS<br>Resul<br>213<br>D is ba<br>ASD<br>esult<br>163            | t Units                 | $2013$ $\frac{1}{/\text{Kg}}$ he spi<br>Dil.<br>1   | 5-06-19<br>Dil.<br>1<br>ike and sp<br>Spike<br>Amoun<br>250 | Amou<br>250<br>pike dup<br>e Mat<br>nt Res<br><7.                                                                     | licate r<br>rix<br>ult R<br>41                     | Res<br><7.<br>resul <sup>*</sup><br>Rec.<br>65 | $\frac{\text{Pre}}{41}$ t.<br>Rec.<br>Limit<br>70 - 13                                                                                                         | Rec.<br>85<br>RP   | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>D Limit       |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on th<br>Param<br>DRO | iked San<br>he spike<br><br>he spike | F<br>resu<br>F<br>resu | $\frac{C}{5}$ It. RPI $\frac{C}{5}$ It. RPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ate Ana<br>C Prep<br>MS<br>Resul<br>213<br>D is ba<br>ASD<br>esult<br>163<br>D is ba | t Units                 | $2013$ $\frac{1}{/\text{Kg}}$ he spi<br>Dil.<br>1   | 5-06-19<br>Dil.<br>1<br>ike and sp<br>Spike<br>Amoun<br>250 | $\begin{array}{c} Amou \\ \hline 250 \\ pike dup \\ e & Mat \\ \hline nt & Res \\ \hline <7. \\ pike dup \end{array}$ | nt<br>licate r<br>rix<br>ult R<br>41 (<br>licate r | Res<br><7.<br>resul<br>dec.<br>65<br>resul     | $\frac{\text{Pre}}{41}$ t.<br>$\frac{\text{Rec.}}{13}$ t.                                                                                                      | Rec.<br>85<br>0 27 | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>D Limit<br>20 |
| Matrix Spike (MS-1) Sp<br>QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on th<br>Param<br>DRO | iked San<br>he spike                 | F<br>resu<br>F<br>resu | $\frac{C}{1}$ $\frac{C}{1}$ $\frac{C}{1}$ $\frac{K}{2}$ $\frac{K}$ | tte Ana<br>C Prep<br>MS<br>Resul<br>213<br>D is ba<br>ASD<br>esult<br>163            | t Units                 | $2018$ $\frac{M}{Kg}$ he spi<br>Dil.<br>1<br>he spi | 5-06-19<br>Dil.<br>1<br>ike and sp<br>Spike<br>Amoun<br>250 | Amou<br>250<br>pike dup<br>e Mat<br>nt Res<br><7.                                                                     | licate r<br>rix<br>ult R<br>41 (<br>licate r       | Res<br><7.<br>resul <sup>*</sup><br>Rec.<br>65 | $\begin{array}{c} \text{Pre}\\ \text{trix}\\ \text{ult} & 1\\ 41\\ \text{t.}\\ \text{Rec.}\\ \text{Limit}\\ \hline 70 - 13\\ \text{t.}\\ \text{M} \end{array}$ | Rec.<br>85<br>RP   | By: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>D Limit       |

| Report Date: June 23, 2015 | Work Order: 15061711 | Page Number: 23 of 28 |
|----------------------------|----------------------|-----------------------|
| 7250715053                 | $30137 \ \#4$        |                       |

# **Calibration Standards**

## Standard (ICV-1)

| QC Batch: | 122418 |      |      | Date A | Analyzed: | 2015-06-18 |          | Analy    | zed By: AK |
|-----------|--------|------|------|--------|-----------|------------|----------|----------|------------|
|           |        |      |      |        | ICVs      | ICVs       | ICVs     | Percent  |            |
|           |        |      |      |        | True      | Found      | Percent  | Recovery | Date       |
| Param     |        | Flag | Cert | Units  | Conc.     | Conc.      | Recovery | Limits   | Analyzed   |
| Chloride  |        |      |      | mg/Kg  | 100       | 100        | 100      | 85 - 115 | 2015-06-18 |

## Standard (CCV-1)

| QC Batch: | 122418 |      |      | Date A  | Analyzed:       | 2015-06-18 |                 | Analy    | zed By: AK |
|-----------|--------|------|------|---------|-----------------|------------|-----------------|----------|------------|
|           |        |      |      |         | $\mathrm{CCVs}$ | CCVs       | $\mathrm{CCVs}$ | Percent  |            |
|           |        |      |      |         | True            | Found      | Percent         | Recovery | Date       |
| Param     |        | Flag | Cert | Units   | Conc.           | Conc.      | Recovery        | Limits   | Analyzed   |
| Chloride  |        |      |      | m mg/Kg | 100             | 100        | 100             | 85 - 115 | 2015-06-18 |

### Standard (ICV-1)

| QC Batch: | 122419 |      |      | Date A  | Analyzed: | 2015-06-18 |          | Analy    | zed By: AK |
|-----------|--------|------|------|---------|-----------|------------|----------|----------|------------|
|           |        |      |      |         | ICVs      | ICVs       | ICVs     | Percent  |            |
|           |        |      |      |         | True      | Found      | Percent  | Recovery | Date       |
| Param     |        | Flag | Cert | Units   | Conc.     | Conc.      | Recovery | Limits   | Analyzed   |
| Chloride  |        |      |      | m mg/Kg | 100       | 100        | 100      | 85 - 115 | 2015-06-18 |

### Standard (CCV-1)

| QC Batch: | 122419 |      |      | Date A | Analyzed:    | 2015-06-18    |                 | Analy               | zed By: AK |
|-----------|--------|------|------|--------|--------------|---------------|-----------------|---------------------|------------|
|           |        |      |      |        | CCVs<br>True | CCVs<br>Found | CCVs<br>Percent | Percent<br>Recovery | Date       |
| Param     |        | Flag | Cert | Units  | Conc.        | Conc.         | Recovery        | Limits              | Analyzed   |
| Chloride  |        | 0    |      | mg/Kg  | 100          | 100           | 100             | 85 - 115            | 2015-06-18 |

| Report Date: June 23, 2015<br>7250715053                                                                                                                            |            |                          | W                                                                               | Vork Order:<br>30137                                                                                                    | Page Number: 24 of 28                                                                                                       |                                                                                                |                                                                                                                                                          |                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Standard (ICV-1)                                                                                                                                                    | )          |                          |                                                                                 |                                                                                                                         |                                                                                                                             |                                                                                                |                                                                                                                                                          |                                                                                                                    |
| QC Batch: 122475                                                                                                                                                    |            |                          | Date A                                                                          | nalyzed: 2                                                                                                              | 015-06-19                                                                                                                   |                                                                                                | Analy                                                                                                                                                    | zed By: AK                                                                                                         |
|                                                                                                                                                                     |            |                          |                                                                                 | ICVs                                                                                                                    | ICVs                                                                                                                        | ICVs                                                                                           | Percent                                                                                                                                                  |                                                                                                                    |
|                                                                                                                                                                     |            |                          |                                                                                 | True                                                                                                                    | Found                                                                                                                       | Percent                                                                                        | Recovery                                                                                                                                                 | Date                                                                                                               |
| Param                                                                                                                                                               | Flag       | Cert                     | Units                                                                           | Conc.                                                                                                                   | Conc.                                                                                                                       | Recovery                                                                                       | Limits                                                                                                                                                   | Analyzed                                                                                                           |
| Chloride                                                                                                                                                            |            |                          | mg/Kg                                                                           | 100                                                                                                                     | 100                                                                                                                         | 100                                                                                            | 85 - 115                                                                                                                                                 | 2015-06-19                                                                                                         |
| Standard (CCV-1                                                                                                                                                     | .)         |                          |                                                                                 |                                                                                                                         |                                                                                                                             |                                                                                                |                                                                                                                                                          |                                                                                                                    |
| QC Batch: 122475                                                                                                                                                    |            |                          | Date A                                                                          | nalyzed: 2                                                                                                              | 015-06-19                                                                                                                   |                                                                                                | Analy                                                                                                                                                    | zed By: AK                                                                                                         |
|                                                                                                                                                                     |            |                          |                                                                                 | CCVs                                                                                                                    | CCVs                                                                                                                        | $\mathrm{CCVs}$                                                                                | Percent                                                                                                                                                  |                                                                                                                    |
|                                                                                                                                                                     |            |                          |                                                                                 | True                                                                                                                    | Found                                                                                                                       | Percent                                                                                        | Recovery                                                                                                                                                 | Date                                                                                                               |
| Param                                                                                                                                                               | Flag       | Cert                     | Units                                                                           | Conc.                                                                                                                   | Conc.                                                                                                                       | Recovery                                                                                       | Limits                                                                                                                                                   | Analyzed                                                                                                           |
| гагаш                                                                                                                                                               |            | 0                        | mg/Kg                                                                           | 100                                                                                                                     | 100                                                                                                                         | 100                                                                                            | 85 - 115                                                                                                                                                 | 2015-06-19                                                                                                         |
| Chloride<br>Standard (CCV-2                                                                                                                                         |            |                          | mg/ Kg                                                                          | 100                                                                                                                     | 100                                                                                                                         | 100                                                                                            | 00 110                                                                                                                                                   | 2010/00/10                                                                                                         |
| Chloride                                                                                                                                                            | :)         |                          |                                                                                 | nalyzed: 2                                                                                                              |                                                                                                                             |                                                                                                |                                                                                                                                                          | zed By: AK                                                                                                         |
| Chloride<br>Standard (CCV-2                                                                                                                                         | :)         |                          |                                                                                 |                                                                                                                         |                                                                                                                             | CCVs                                                                                           |                                                                                                                                                          |                                                                                                                    |
| Chloride<br>Standard (CCV-2                                                                                                                                         | :)         |                          |                                                                                 | nalyzed: 2                                                                                                              | 015-06-20                                                                                                                   |                                                                                                | Analy                                                                                                                                                    |                                                                                                                    |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488                                                                                                                     | :)         | Cert                     |                                                                                 | nalyzed: 2<br>CCVs<br>True<br>Conc.                                                                                     | 015-06-20<br>CCVs<br>Found<br>Conc.                                                                                         | m CCVs                                                                                         | Analy<br>Percent<br>Recovery<br>Limits                                                                                                                   | zed By: AK<br>Date<br>Analyzed                                                                                     |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene                                                                                                 | :)         | Cert<br>5                | Date A<br>Units<br>mg/kg                                                        | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100                                                                            | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986                                                                               | CCVs<br>Percent<br>Recovery<br>99                                                              | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120                                                                                                       | zed By: AK<br>Date<br>Analyzed<br>2015-06-20                                                                       |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene                                                                                      | :)         |                          | Date A<br>Units<br>mg/kg<br>mg/kg                                               | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100                                                                   | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920                                                                     | CCVs<br>Percent<br>Recovery<br>99<br>92                                                        | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120                                                                                           | zed By: AK<br>Date<br><u>Analyzed</u><br>2015-06-20<br>2015-06-20                                                  |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene                                                                      | :)         | 5                        | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg                                      | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100                                                          | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857                                                           | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86                                                  | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120                                                                               | zed By: AK<br>Date<br>Analyzed<br>2015-06-20<br>2015-06-20<br>2015-06-20                                           |
| Chloride<br>Standard (CCV-2                                                                                                                                         | :)         | 5<br>5                   | Date A<br>Units<br>mg/kg<br>mg/kg                                               | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100                                                                   | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920                                                                     | CCVs<br>Percent<br>Recovery<br>99<br>92                                                        | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120                                                                                           | zed By: AK<br>Date<br><u>Analyzed</u><br>2015-06-20<br>2015-06-20                                                  |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene                                                                      | e)<br>Flag | 5<br>5<br>5              | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg                                      | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100                                                          | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857                                                           | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86                                                  | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120                                                                               | zed By: AK<br>Date<br><u>Analyzed</u><br>2015-06-20<br>2015-06-20<br>2015-06-20                                    |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>Standard (CCV-3                                         | Flag       | 5<br>5<br>5              | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                             | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100                                                          | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857<br>0.282                                                  | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86                                                  | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120                                                       | zed By: AK<br>Date<br><u>Analyzed</u><br>2015-06-20<br>2015-06-20<br>2015-06-20                                    |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene                                                            | Flag       | 5<br>5<br>5              | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                             | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100<br>0.300                                                 | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857<br>0.282                                                  | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86                                                  | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120                                                       | zed By: AK<br>Date<br>Analyzed<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>2015-06-20                             |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>Standard (CCV-3                                         | Flag       | 5<br>5<br>5              | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                             | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100<br>0.300                                                 | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857<br>0.282                                                  | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86<br>94                                            | Analy:<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120                                                      | zed By: AK<br>Date<br>Analyzed<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>2015-06-20                             |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>Standard (CCV-3<br>QC Batch: 122488                     | Flag       | 5<br>5<br>5              | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                             | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100<br>0.300<br>nalyzed: 2<br>CCVs                           | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857<br>0.282<br>015-06-20<br>CCVs                             | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86<br>94<br>94                                      | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>Percent                                            | zed By: AK<br>Date<br>Analyzed<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>2015-06-20                             |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>Standard (CCV-3<br>QC Batch: 122488<br>Param            | ?)<br>Flag | 5<br>5<br>5              | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                             | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.300<br>nalyzed: 2<br>CCVs<br>True                            | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857<br>0.282<br>015-06-20<br>CCVs<br>Found                    | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86<br>94<br>94<br>CCVs<br>Percent                   | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>Analy<br>Percent<br>Recovery                                   | zed By: AK<br>Date<br>Analyzed<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>zonts-06-20              |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>Standard (CCV-3<br>QC Batch: 122488<br>Param<br>Benzene | ?)<br>Flag | 5<br>5<br>5<br>Cert      | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>Date A<br>Units                   | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100<br>0.300<br>nalyzed: 2<br>CCVs<br>True<br>Conc.          | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857<br>0.282<br>015-06-20<br>CCVs<br>Found<br>Conc.           | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86<br>94<br>94<br>CCVs<br>Percent<br>Recovery       | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>Percent<br>Recovery<br>Limits                      | zed By: AK<br>Date<br>Analyzed<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>zed By: AK               |
| Chloride<br>Standard (CCV-2<br>QC Batch: 122488<br>Param<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylene<br>Standard (CCV-3                                         | ?)<br>Flag | 5<br>5<br>5<br>5<br>Cert | Date A<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>Date A<br>Units<br>mg/kg | nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100<br>0.100<br>0.100<br>0.300<br>nalyzed: 2<br>CCVs<br>True<br>Conc.<br>0.100 | 015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0986<br>0.0920<br>0.0857<br>0.282<br>015-06-20<br>CCVs<br>Found<br>Conc.<br>0.0978 | CCVs<br>Percent<br>Recovery<br>99<br>92<br>86<br>94<br>94<br>CCVs<br>Percent<br>Recovery<br>98 | Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>80 - 120<br>Analy<br>Percent<br>Recovery<br>Limits<br>80 - 120 | zed By: AK<br>Date<br>Analyzed<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>2015-06-20<br>zo15-06-20<br>Zo15-06-20 |

| Report Date: June 23, 2015<br>7250715053 |               |      |         | Work Orde<br>3013         | Page Number: 25 of 28       |                 |                              |                     |
|------------------------------------------|---------------|------|---------|---------------------------|-----------------------------|-----------------|------------------------------|---------------------|
| Standard (C                              | CV-2)         |      |         |                           |                             |                 |                              |                     |
| QC Batch: 1                              | 22489         |      | Date    | Analyzed:                 | 2015-06-20                  |                 | Analy                        | zed By: AK          |
|                                          |               |      |         | CCVs<br>True              | CCVs<br>Found               | CCVs<br>Percent | Percent<br>Recovery          | Date                |
| Param                                    | Flag          | Cert | Units   | Conc.                     | Conc.                       | Recovery        | Limits                       | Analyzed            |
| GRO                                      |               | 5    | m mg/Kg | 1.00                      | 0.940                       | 94              | 80 - 120                     | 2015-06-20          |
| Standard (C                              | CV-3)         |      |         |                           |                             |                 |                              |                     |
| QC Batch: 1                              | 22489         |      | Date    | Analyzed:                 | 2015-06-20                  |                 | Analy                        | zed By: AK          |
|                                          |               |      |         | CCVs                      | $\rm CCVs$                  | CCVs            | Percent                      |                     |
|                                          |               |      |         | True                      | Found                       | Percent         | Recovery                     | Date                |
| Param                                    | Flag          | Cert | Units   | Conc.                     | Conc.                       | Recovery        | Limits                       | Analyzed            |
| GRO                                      | 0             | 5    | mg/Kg   | 1.00                      | 0.900                       | 90              | 80 - 120                     | 2015-06-20          |
| Standard (C<br>QC Batch: 1               | ,             |      | Date    | Analyzed:<br>CCVs<br>True | 2015-06-23<br>CCVs<br>Found | CCVs<br>Percent | Analy<br>Percent<br>Recovery | yzed By: SC<br>Date |
| Param                                    | Flag          | Cert | Units   | Conc.                     | Conc.                       | Recovery        | Limits                       | Analyzed            |
| DRO                                      |               | 5    | m mg/Kg | 250                       | 275                         | 110             | 80 - 120                     | 2015-06-23          |
|                                          | CV-2)         |      |         |                           |                             |                 |                              |                     |
| Standard (C                              |               |      | Date    | Analyzed:                 | 2015-06-23                  |                 | Analy                        | yzed By: SC         |
| ,                                        | 22545         |      |         |                           |                             |                 |                              |                     |
| Standard (C<br>QC Batch: 1               | 22545         |      |         | $\mathrm{CCVs}$           | $\mathrm{CCVs}$             | $\mathrm{CCVs}$ | Percent                      |                     |
| ,                                        | 22545         |      |         | CCVs<br>True              | $\operatorname{CCVs}$ Found | CCVs<br>Percent | Percent<br>Recovery          | Date                |
| ,                                        | 22545<br>Flag | Cert | Units   |                           |                             |                 |                              | Date<br>Analyzed    |

## Standard (CCV-3)

QC Batch: 122545

Date Analyzed: 2015-06-23

Analyzed By: SC

.

| Report Date:<br>7250715053 | June 23, 2015 | June 23, 2015 |         |              | Work Order: 15061711<br>30137 #4 |                 |                     | Page Number: 26 of 28 |  |  |
|----------------------------|---------------|---------------|---------|--------------|----------------------------------|-----------------|---------------------|-----------------------|--|--|
|                            |               |               |         | CCVs<br>True | CCVs<br>Found                    | CCVs<br>Percent | Percent<br>Recovery | Date                  |  |  |
| Param                      | Flag          | Cert          | Units   | Conc.        | Conc.                            | Recovery        | Limits              | Analyzed              |  |  |
| DRO                        |               | 5             | m mg/Kg | 250          | 249                              | 100             | 80 - 120            | 2015-06-23            |  |  |

Report Date: June 23, 2015 7250715053

Work Order: 15061711  $30137 \ #4$ 

Page Number: 27 of 28  $\,$ 

# Appendix

## **Report Definitions**

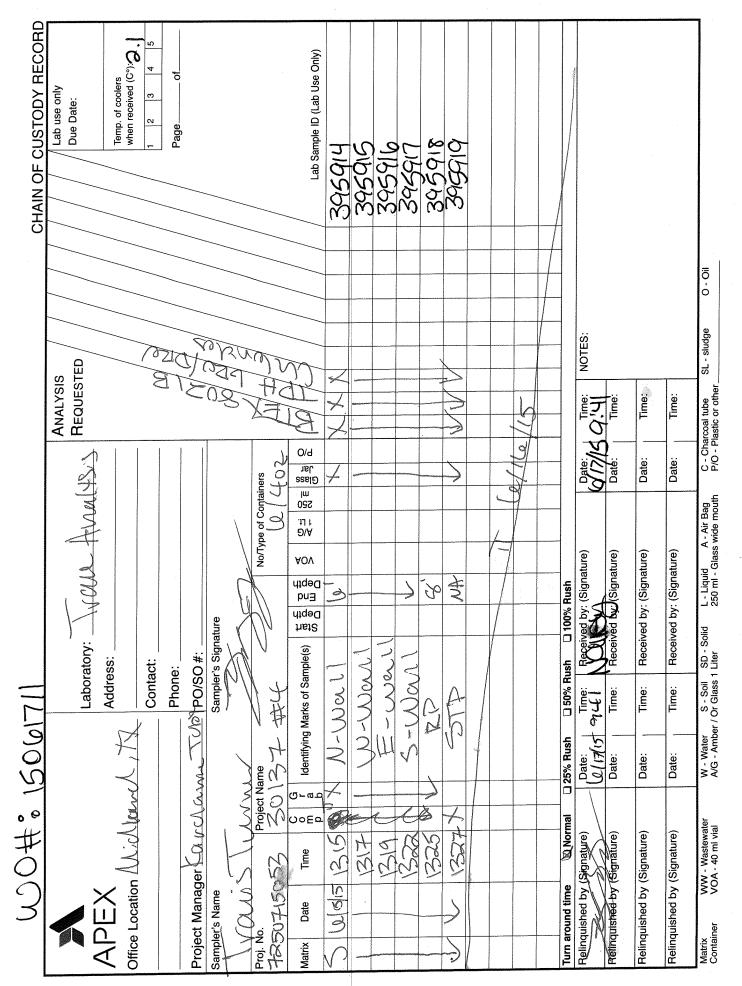
| Name | Definition                 |
|------|----------------------------|
| MDL  | Method Detection Limit     |
| MQL  | Minimum Quantitation Limit |
| SDL  | Sample Detection Limit     |

## Laboratory Certifications

|   | Certifying | Certification       | Laboratory    |
|---|------------|---------------------|---------------|
| С | Authority  | Number              | Location      |
| - | NCTRCA     | WFWB384444Y0909     | TraceAnalysis |
| - | DBE        | VN 20657            | TraceAnalysis |
| - | HUB        | 1752439743100-86536 | TraceAnalysis |
| - | WBE        | 237019              | TraceAnalysis |
| 1 | L-A-B      | L2418               | Lubbock       |
| 2 | Kansas     | Kansas E-10317      | Lubbock       |
| 3 | LELAP      | LELAP-02003         | Lubbock       |
| 4 | NELAP      | T104704219-15-11    | Lubbock       |
| 5 | NELAP      | T104704392-14-8     | Midland       |
| 6 |            | 2014-018            | Lubbock       |

## Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.


| Report Date: June 23, 2015 | Work Order: 15061711 | Page Number: 28 of 28 |
|----------------------------|----------------------|-----------------------|
| 7250715053                 | $30137 \ \#4$        |                       |
|                            |                      |                       |
|                            |                      |                       |

F Description

Qsr Surrogate recovery outside of laboratory limits.U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.



#### Received by OCD: 4/19/2023 7:30:52 AM

Page 109 of 190

Apex TITAN, Inc. • 505 N. Big Springs Drive, Suite 301A • Midland, Texas 79701 • Office: 432-695-6016

*Released to Imaging: 4/19/2023 8:21:30 AM* 



6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Texas 79703 Midland. Texas 75006 Carroliton. E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443 432-689-6301 972-242 -7750

806 • 794 • 1296 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Oklahoma ISO 17025 Kansas

# Analytical and Quality Control Report

Karolanne Toby APEX/Titan 2351 W. Northwest Hwy. Suite 3321 Dallas, Tx, 75220

Report Date: June 23, 2015

Work Order: 15061709 

**Project** Name: 30137 #5 Project Number: 7250715061

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

|        |             |        | Date       | Time  | Date       |
|--------|-------------|--------|------------|-------|------------|
| Sample | Description | Matrix | Taken      | Taken | Received   |
| 395908 | N-Wall      | soil   | 2015-06-15 | 13:30 | 2015-06-17 |
| 395909 | E-Wall      | soil   | 2015-06-15 | 13:33 | 2015-06-17 |
| 395910 | S-Wall      | soil   | 2015-06-15 | 13:36 | 2015-06-17 |
| 395911 | W-Wall      | soil   | 2015-06-15 | 13:40 | 2015-06-17 |
| 395912 | RP          | soil   | 2015-06-15 | 13:45 | 2015-06-17 |
| 395913 | STP         | soil   | 2015-06-15 | 13:50 | 2015-06-17 |

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 32 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lefturich

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Page 2 of 32

# **Report Contents**

| Case Narrative                       | 5         |
|--------------------------------------|-----------|
| Analytical Report                    | 6         |
| Sample 395908 (N-Wall)               | 6         |
| Sample 395909 $(E-Wall)$             | 7         |
| Sample 395910 (S-Wall)               | 8         |
| Sample 395911 (W-Wall)               | 10        |
| Sample 395912 (RP)                   | 11        |
| Sample 395913 (STP)                  | 13        |
|                                      | 10        |
| Method Blanks                        | 15        |
| QC Batch 122419 - Method Blank (1)   | 15        |
| QC Batch 122430 - Method Blank (1)   | 15        |
| QC Batch 122488 - Method Blank (1)   | 15        |
| QC Batch 122489 - Method Blank (1)   | 15        |
| QC Batch 122539 - Method Blank (1)   | 16        |
| QC Batch 122540 - Method Blank (1)   | 16        |
| QC Batch 122545 - Method Blank $(1)$ | 17        |
|                                      |           |
| Laboratory Control Spikes            | <b>18</b> |
| QC Batch 122419 - LCS (1)            | 18        |
| QC Batch 122430 - LCS (1)            | 18        |
| QC Batch 122488 - LCS (1)            | 18        |
| QC Batch 122489 - LCS (1)            | 19        |
| QC Batch 122539 - LCS (1)            | 19        |
| QC Batch 122540 - LCS (1)            | 20        |
| QC Batch 122545 - LCS (1)            | 21        |
|                                      |           |
| Matrix Spikes                        | 22        |
| QC Batch 122419 - MS $(1)$           | 22        |
| QC Batch 122430 - MS $(1)$           | 22        |
| QC Batch 122488 - $xMS(1)$           | 22        |
| QC Batch 122489 - xMS (1)            | 23        |
| QC Batch 122539 - MS (1)             | 23        |
| QC Batch 122540 - MS (1)             | 24        |
| QC Batch 122545 - MS (1)             | 25        |
| Calibration Standards                | 26        |
| QC Batch 122419 - ICV (1)            | 26        |
| QC Batch 122419 - CCV (1)            | 26<br>26  |
|                                      |           |
| QC Batch 122430 - ICV (1) $\ldots$   | 26<br>26  |
| QC Batch 122430 - CCV (1) $\ldots$   | 26<br>26  |
| QC Batch 122488 - CCV (1) $\ldots$   | 26        |
| QC Batch 122488 - CCV $(2)$          | 27        |
| QC Batch 122488 - CCV $(3)$          | 27        |
| QC Batch 122489 - CCV (1)            | 27        |

Page 3 of 32

•

| QC Batch 122489 - CCV (2) | 28 |
|---------------------------|----|
| QC Batch 122489 - CCV (3) | 28 |
| QC Batch 122539 - CCV (1) | 28 |
| QC Batch 122539 - CCV (2) | 28 |
| QC Batch 122540 - CCV (1) | 29 |
| QC Batch 122540 - CCV (2) | 29 |
| QC Batch 122545 - CCV (1) | 29 |
| QC Batch 122545 - CCV (2) | 29 |
| Appendix                  | 31 |
| Report Definitions        | 31 |
| Laboratory Certifications | 31 |
| Standard Flags            | 31 |
| Result Comments           | 32 |
| Attachments               | 32 |

Page 4 of 32

# Case Narrative

Samples for project 30137 #5 were received by TraceAnalysis, Inc. on 2015-06-17 and assigned to work order 15061709. Samples for work order 15061709 were received intact at a temperature of 2.1 C.

Samples were analyzed for the following tests using their respective methods.

|                      |                 | Prep   | $\operatorname{Prep}$ | QC     | Analysis              |
|----------------------|-----------------|--------|-----------------------|--------|-----------------------|
| Test                 | Method          | Batch  | Date                  | Batch  | Date                  |
| BTEX                 | S 8021B         | 103596 | 2015-06-19 at 08:14   | 122488 | 2015-06-20 at 12:17   |
| BTEX                 | S 8021B         | 103647 | 2015-06-22 at $15:12$ | 122539 | 2015-06-23 at $07:18$ |
| Chloride (Titration) | SM 4500-Cl B $$ | 103564 | 2015-06-18 at $08:35$ | 122419 | 2015-06-18 at $09:55$ |
| Chloride (Titration) | SM 4500-Cl B $$ | 103564 | 2015-06-18 at $08:35$ | 122430 | 2015-06-18 at $11:20$ |
| TPH DRO - NEW        | S 8015 D        | 103612 | 2015-06-19 at $15:26$ | 122545 | 2015-06-23 at $09:48$ |
| TPH GRO              | S 8015 D        | 103596 | 2015-06-19 at $08:14$ | 122489 | 2015-06-20 at $12:28$ |
| TPH GRO              | S 8015 D        | 103647 | 2015-06-22 at $15:12$ | 122540 | 2015-06-23 at $07:21$ |

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15061709 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: June 23, 2015

7250715061

Xylene

Page Number: 6 of 32

1

0.0200

| Analytical Re                                                   | eport | -<br>,                                              |          |                            |                                           |           |
|-----------------------------------------------------------------|-------|-----------------------------------------------------|----------|----------------------------|-------------------------------------------|-----------|
| Sample: 395908 - N-Wall                                         |       |                                                     |          |                            |                                           |           |
| Laboratory:MidlandAnalysis:BTEXQC Batch:122539Prep Batch:103647 |       | Analytical Metl<br>Date Analyzed:<br>Sample Prepara | 2015     | 021B<br>5-06-23<br>5-06-22 | Prep Method<br>Analyzed By<br>Prepared By | v: AK     |
| 2                                                               |       | <i>a</i>                                            | RL       |                            |                                           | 5.5       |
| Parameter                                                       | Flag  | Cert                                                | Result   |                            |                                           | RL        |
| Benzene                                                         | U     | 5                                                   | < 0.0200 | 0/                         | 0                                         | 0.0200    |
| Toluene                                                         | U     | 5                                                   | < 0.0200 | 0/                         | -                                         | 0.0200    |
| Ethylbenzene                                                    | U     | 5                                                   | < 0.0200 | mg/K                       | g 1                                       | 0.0200    |
| 37 1                                                            |       |                                                     | 0.0000   |                            | 4                                         | 0 0 0 0 0 |

Work Order: 15061709

30137~#5

| Surrogate                                              | Flag | Cert | Result         | Units          | Dilution | Spike<br>Amount | Percent<br>Recovery | Recovery<br>Limits   |
|--------------------------------------------------------|------|------|----------------|----------------|----------|-----------------|---------------------|----------------------|
| Trifluorotoluene (TFT)<br>4-Bromofluorobenzene (4-BFB) |      |      | $1.91 \\ 1.99$ | mg/Kg<br>mg/Kg | 1<br>1   | $2.00 \\ 2.00$  | 96<br>100           | 70 - 130<br>70 - 130 |

5

< 0.0200

 $\mathrm{mg/Kg}$ 

### Sample: 395908 - N-Wall

U

| Laboratory: | Midland              |      |                     |                 |              |                     |
|-------------|----------------------|------|---------------------|-----------------|--------------|---------------------|
| Analysis:   | Chloride (Titration) | Ana  | lytical Method:     | SM 4500-Cl B $$ | Prep Method: | N/A                 |
| QC Batch:   | 122430               | Dat  | e Analyzed:         | 2015-06-18      | Analyzed By: | AK                  |
| Prep Batch: | 103564               | Sam  | ple Preparation:    | 2015-06-18      | Prepared By: | AK                  |
|             |                      |      |                     |                 |              |                     |
|             |                      |      | $\operatorname{RL}$ |                 |              |                     |
| Parameter   | Flag                 | Cert | Result              | Units           | Dilution     | $\operatorname{RL}$ |
| Chloride    |                      |      | 193                 | mg/Kg           | 5            | 4.00                |

### Sample: 395908 - N-Wall

| Laboratory: | Midland      |                  |           |                     |            |              |                     |
|-------------|--------------|------------------|-----------|---------------------|------------|--------------|---------------------|
| Analysis:   | TPH DRO - NE | EW               | Analytica | al Method:          | S 8015 D   | Prep Method: | N/A                 |
| QC Batch:   | 122545       |                  | Date Ana  | alyzed:             | 2015-06-23 | Analyzed By: | $\mathbf{SC}$       |
| Prep Batch: | 103612       |                  | Sample F  | Preparation:        | 2015-06-19 | Prepared By: | $\mathbf{SC}$       |
|             |              |                  |           |                     |            |              |                     |
|             |              |                  |           | $\operatorname{RL}$ |            |              |                     |
| Parameter   |              | Flag             | Cert      | Result              | Units      | Dilution     | $\operatorname{RL}$ |
| DRO         |              | $_{\rm Qr,Qs,U}$ | 5         | <50.0               | mg/Kg      | 1            | 50.0                |

| Report Date: June 23, 2015<br>7250715061                           |                                                   |      |      |      | V       | Page Number: 7 of 32              |        |         |                    |                                        |                     |
|--------------------------------------------------------------------|---------------------------------------------------|------|------|------|---------|-----------------------------------|--------|---------|--------------------|----------------------------------------|---------------------|
| Surrogate                                                          |                                                   | Flag | Ce   | rt   | Result  | Unit                              | s Dilı | ution   | Spike<br>Amount    | Percent<br>Recovery                    | Recovery<br>Limits  |
| n-Tricosane                                                        | Qsr                                               | Qsr  |      |      | 69.3    | mg/K                              | g      | 1       | 50.0               | 139                                    | 70 - 130            |
| Sample: 39<br>Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | 5908 - N<br>Midland<br>TPH GR<br>122540<br>103647 |      |      |      | Date An | al Metho<br>alyzed:<br>Preparatio | 2015-0 | 06-23   |                    | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |
|                                                                    |                                                   |      |      |      |         |                                   | RL     |         |                    |                                        |                     |
| Parameter                                                          |                                                   |      | Flag |      | Cert    |                                   | Result | 1       | Units              | Dilution                               | $\operatorname{RL}$ |
| GRO                                                                |                                                   |      | Qs,U |      | 5       |                                   | <4.00  | mg      | g/Kg               | 1                                      | 4.00                |
| Surrogate                                                          |                                                   |      |      | Flag | Cert    | Result                            | Units  | Dilutio | Spike<br>on Amount | Percent<br>Recovery                    | Recovery<br>Limits  |
| Trifluorotolue                                                     | ene (TFT)                                         |      |      | 0    |         | 2.42                              | mg/Kg  | 1       | 2.00               | 121                                    | 70 - 130            |

 $\mathrm{mg/Kg}$ 

1

2.00

105

70 - 130

#### Sample: 395909 - E-Wall

4-Bromofluorobenzene (4-BFB)

| Laboratory:MidlandAnalysis:BTEXQC Batch:122488Prep Batch:103596 |               | Date Ana | l Method:<br>lyzed:<br>reparation: | S 8021E<br>2015-06<br>2015-06 | -20              |        | Prep Method<br>Analyzed By<br>Prepared By | : AK                |
|-----------------------------------------------------------------|---------------|----------|------------------------------------|-------------------------------|------------------|--------|-------------------------------------------|---------------------|
|                                                                 |               |          |                                    | $\operatorname{RL}$           |                  |        |                                           |                     |
| Parameter                                                       | Flag          | Cert     | ]                                  | Result                        | Units            | 5      | Dilution                                  | $\operatorname{RL}$ |
| Benzene                                                         | U             | 5        | <                                  | 0.0200                        | mg/Kg            | r      | 1                                         | 0.0200              |
| Toluene                                                         | U             | 5        | <                                  | 0.0200                        | $\mathrm{mg/Kg}$ | S      | 1                                         | 0.0200              |
| Ethylbenzene                                                    | $_{\rm Qs,U}$ | 5        | <                                  | 0.0200                        | mg/Kg            | r      | 1                                         | 0.0200              |
| Xylene                                                          | U             | 5        | <                                  | 0.0200                        | mg/Kg            | S      | 1                                         | 0.0200              |
|                                                                 |               |          |                                    |                               |                  | Spike  | Percent                                   | Recovery            |
| Surrogate                                                       | Fla           | g Cert   | Result                             | Units                         | Dilution         | Amount | Recovery                                  | Limits              |
| Trifluorotoluene (TFT)                                          |               |          | 2.08                               | mg/Kg                         | 1                | 2.00   | 104                                       | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                    |               |          | 2.14                               | mg/Kg                         | 1                | 2.00   | 107                                       | 70 - 130            |

| Report Date<br>7250715061                            | : June 23, 2015                                   |                         | V       | Work Order: 15061709<br>30137 #5       |                     |                                     |                 | Page Num                               | ber: 8 of 32       |
|------------------------------------------------------|---------------------------------------------------|-------------------------|---------|----------------------------------------|---------------------|-------------------------------------|-----------------|----------------------------------------|--------------------|
| Sample: 39                                           | 5909 - E-Wall                                     |                         |         |                                        |                     |                                     |                 |                                        |                    |
| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>Chloride (Titratic<br>122419<br>103564 | on)                     | Date    | ytical Met<br>Analyzed<br>ple Prepara  | : 20                | M 4500-Cl B<br>15-06-18<br>15-06-18 |                 | Prep Met<br>Analyzed<br>Prepared       | By: AK             |
|                                                      |                                                   |                         |         |                                        | RL                  |                                     |                 |                                        |                    |
| Parameter<br>Chloride                                |                                                   | Flag<br>u               | Cert    |                                        | Result<br><20.0     | Uni<br>mg/k                         |                 | Dilution<br>5                          | RL<br>4.00         |
|                                                      |                                                   |                         |         |                                        |                     | 0,                                  | 0               |                                        |                    |
| Sample: 39                                           | 5909 - E-Wall                                     |                         |         |                                        |                     |                                     |                 |                                        |                    |
| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>TPH DRO - NEV<br>122545<br>103612      | V                       | Dat     | lytical Me<br>e Analyzeo<br>pple Prepa | d: 2                | 8015 D<br>015-06-23<br>015-06-19    |                 | Prep Met<br>Analyzed<br>Prepared       | By: SC             |
|                                                      |                                                   |                         |         |                                        | $\operatorname{RL}$ |                                     |                 |                                        |                    |
| Parameter<br>DRO                                     |                                                   | Flag                    | Cert    | ]                                      | Result              | Un                                  |                 | Dilution                               | RL<br>50.0         |
| DRU                                                  |                                                   | Qr,Qs,U                 | 5       |                                        | <50.0               | mg/I                                | Ag              | 1                                      | 50.0               |
| Surrogate                                            | Flag                                              | Cert                    | Result  | Units                                  | Dilu                | tion A:                             | Spike<br>mount  | Percent<br>Recovery                    | Recovery<br>Limits |
| n-Tricosane                                          |                                                   |                         | 61.1    | mg/Kg                                  | 1                   |                                     | 50.0            | 122                                    | 70 - 130           |
| Sample: 39                                           | 5909 - E-Wall                                     |                         |         |                                        |                     |                                     |                 |                                        |                    |
| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>TPH GRO<br>122489<br>103596            |                         | Date An | al Method:<br>alyzed:<br>Preparation   | 2015-0              | 06-20                               |                 | Prep Metho<br>Analyzed B<br>Prepared B | y: AK              |
| Parameter                                            |                                                   | Flog                    | Cert    | т                                      | RL<br>Result        | Uni                                 | ta              | Dilution                               | RL                 |
| GRO                                                  |                                                   | Flag<br><sub>Qs,U</sub> | 5       |                                        | $\frac{1}{4.00}$    | mg/k                                |                 | 1                                      | 4.00               |
| Surrogate                                            |                                                   | Fla                     | g Cert  | Result                                 | Units               | Dilution                            | Spike<br>Amount | Percent<br>Recovery                    | Recovery<br>Limits |
| Trifluorotolue                                       | ene (TFT)                                         | r la                    | g Oert  | 2.46                                   | mg/Kg               | 1                                   | 2.00            | 123                                    | 70 - 130           |
|                                                      |                                                   |                         |         |                                        |                     |                                     |                 |                                        |                    |

| Report Date: June 23, 2015<br>7250715061 | 15 Work Order: 15061709<br>30137 #5 |                        |                          |                     |          | Page Number: 9 of 32 |             |                     |
|------------------------------------------|-------------------------------------|------------------------|--------------------------|---------------------|----------|----------------------|-------------|---------------------|
| Sample: 395910 - S-Wall                  |                                     |                        |                          |                     |          |                      |             |                     |
| Laboratory: Midland                      |                                     |                        |                          |                     |          |                      |             |                     |
| Analysis: BTEX                           |                                     | Analytica              | Analytical Method: S 802 |                     |          |                      | Prep Method | : S 5035            |
| QC Batch: 122488                         |                                     | Date Analyzed: 2015-06 |                          |                     | -20      |                      | Analyzed By | : AK                |
| Prep Batch: 103596                       |                                     | Sample P               | reparation:              | 2015-06             | -19      |                      | Prepared By | AK                  |
|                                          |                                     |                        |                          | $\operatorname{RL}$ |          |                      |             |                     |
| Parameter                                | Flag                                | Cert                   | ]                        | Result              | Unit     | s                    | Dilution    | $\operatorname{RL}$ |
| Benzene                                  | U                                   | 5                      | <(                       | 0.0200              | mg/K     | g                    | 1           | 0.0200              |
| Toluene                                  | U                                   | 5                      | <(                       | 0.0200              | mg/K     |                      | 1           | 0.0200              |
| Ethylbenzene                             | $_{\rm Qs,U}$                       | 5                      | <(                       | 0.0200              | mg/K     | g                    | 1           | 0.0200              |
| Xylene                                   | U                                   | 5                      | <(                       | 0.0200              | mg/K     | g                    | 1           | 0.0200              |
|                                          |                                     |                        |                          |                     |          | Spike                | Percent     | Recovery            |
| Surrogate                                | Fl                                  | ag Cert                | Result                   | Units               | Dilution | Amount               | Recovery    | Limits              |
| Trifluorotoluene (TFT)                   |                                     |                        | 2.04                     | mg/Kg               | 1        | 2.00                 | 102         | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)             |                                     |                        | 2.09                     | mg/Kg               | 1        | 2.00                 | 104         | 70 - 130            |

### Sample: 395910 - S-Wall

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Chloride (Titration)<br>122419 |      | ical Method:<br>analyzed:<br>e Preparation: | SM 4500-Cl B<br>2015-06-18<br>2015-06-18 | Prep Method:<br>Analyzed By:<br>Prepared By: | ÁK                  |
|------------------------------------------------------|--------------------------------|------|---------------------------------------------|------------------------------------------|----------------------------------------------|---------------------|
|                                                      |                                |      | RL                                          |                                          |                                              |                     |
| Parameter                                            | Flag                           | Cert | Result                                      | Units                                    | Dilution                                     | $\operatorname{RL}$ |
| Chloride                                             | U                              |      | <20.0                                       | mg/Kg                                    | 5                                            | 4.00                |

## Sample: 395910 - S-Wall

| Laboratory: | Midland       |         |        |        |                |             |        |          |                     |
|-------------|---------------|---------|--------|--------|----------------|-------------|--------|----------|---------------------|
| Analysis:   | TPH DRC       | ) - NEW |        | Analy  | vtical Method: | S 8015 I    | )      | Prep Me  | thod: N/A           |
| QC Batch:   | 122545        |         |        | Date   | Analyzed:      | 2015-06-    | 23     | Analyzed | By: SC              |
| Prep Batch: | 103612        |         |        | Samp   | le Preparation | n: 2015-06- | 19     | Prepared | By: SC              |
|             |               |         |        |        | RI             | L           |        |          |                     |
| Parameter   |               | ]       | Flag   | Cert   | Resul          | t           | Units  | Dilution | $\operatorname{RL}$ |
| DRO         |               | Q       | r,Qs,U | 5      | <50.           | 0 :         | mg/Kg  | 1        | 50.0                |
| C .         |               |         |        |        | TT •/          |             | Spike  | Percent  | Recovery            |
| Surrogate   |               | Flag    | Cert   | Result | Units          | Dilution    | Amount | Recovery | Limits              |
| n-Tricosane | $1_{\rm Qsr}$ | Qsr     |        | 135    | m mg/Kg        | 1           | 100    | 135      | 70 - 130            |

| Report Date: June 23, 2015<br>7250715061                           | Work Order: 15061709<br>$30137 \ \#5$ |      |         |                                    |                     |                 | Page Number: 10 of 32 |                                          |                      |
|--------------------------------------------------------------------|---------------------------------------|------|---------|------------------------------------|---------------------|-----------------|-----------------------|------------------------------------------|----------------------|
| Sample: 395910 - S-Wall                                            |                                       |      |         |                                    |                     |                 |                       |                                          |                      |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:122489Prep Batch:103596 |                                       |      | Date An | al Methoo<br>alyzed:<br>Preparatio | 2015-0              | 6-20            |                       | Prep Metho<br>Analyzed By<br>Prepared By | y: AK                |
|                                                                    |                                       |      |         |                                    | $\operatorname{RL}$ |                 |                       |                                          |                      |
| Parameter                                                          | Flag                                  |      | Cert    |                                    | Result              | Unit            | s                     | Dilution                                 | $\operatorname{RL}$  |
| GRO                                                                | Qs,U                                  |      | 5       |                                    | <4.00               | $\mathrm{mg/K}$ | g                     | 1                                        | 4.00                 |
| Cumponto                                                           |                                       | Flam | Cont    | Dogult                             | IIn:ta              | Dilution        | Spike                 | Percent                                  | Recovery             |
| Surrogate<br>Trifluorotoluene (TFT)                                |                                       | Flag | Cert    | Result<br>2.42                     | Units<br>mg/Kg      | 1               | Amount<br>2.00        | Recovery<br>121                          | Limits<br>70 - 130   |
| 4-Bromofluorobenzene (4-BFB)                                       |                                       |      |         | 2.42<br>2.06                       | mg/Kg               | 1               | 2.00<br>2.00          | $121 \\ 103$                             | 70 - 130<br>70 - 130 |

## Sample: 395911 - W-Wall

| Laboratory: Midland          |               |           |            |                  |                 |        |             |                     |
|------------------------------|---------------|-----------|------------|------------------|-----------------|--------|-------------|---------------------|
| Analysis: BTEX               |               | Analytica | l Method:  | S 8021E          | 3               |        | Prep Method | l: S 5035           |
| QC Batch: 122488             |               | Date Ana  | lyzed:     | 2015-06          | -20             |        | Analyzed By | r: AK               |
| Prep Batch: 103596           |               | Sample P  | reparation | : 2015-06        | -19             |        | Prepared By | : AK                |
|                              |               |           |            | RL               |                 |        |             |                     |
| Parameter                    | Flag          | Cert      |            | Result           | Unit            | s      | Dilution    | $\operatorname{RL}$ |
| Benzene                      | U             | 5         | <          | 0.0200           | mg/K            | g      | 1           | 0.0200              |
| Toluene                      | U             | 5         | <          | 0.0200           | $\mathrm{mg/K}$ | r<br>S | 1           | 0.0200              |
| Ethylbenzene                 | $_{\rm Qs,U}$ | 5         | <          | 0.0200           | $\mathrm{mg/K}$ | r<br>S | 1           | 0.0200              |
| Xylene                       | U             | 5         | <          | 0.0200           | mg/K            | 5      | 1           | 0.0200              |
|                              |               |           |            |                  |                 | Spike  | Percent     | Recovery            |
| Surrogate                    | Fla           | g Cert    | Result     | Units            | Dilution        | Amount | Recovery    | Limits              |
| Trifluorotoluene (TFT)       |               |           | 1.79       | mg/Kg            | 1               | 2.00   | 90          | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB) |               |           | 1.90       | $\mathrm{mg/Kg}$ | 1               | 2.00   | 95          | 70 - 130            |
|                              |               |           |            |                  |                 |        |             |                     |

#### Sample: 395911 - W-Wall

| Laboratory: | Midland              |                     |              |              |     |
|-------------|----------------------|---------------------|--------------|--------------|-----|
| Analysis:   | Chloride (Titration) | Analytical Method:  | SM 4500-Cl B | Prep Method: | N/A |
| QC Batch:   | 122419               | Date Analyzed:      | 2015-06-18   | Analyzed By: | AK  |
| Prep Batch: | 103564               | Sample Preparation: | 2015-06-18   | Prepared By: | AK  |
|             |                      |                     |              |              |     |

continued ...

| Report Date<br>7250715061 | : June 23, 2015                 |                  | W        | Vork Order:<br>30137 |                     | 09         |        | Page Numbe  | r: 11 of 32 |
|---------------------------|---------------------------------|------------------|----------|----------------------|---------------------|------------|--------|-------------|-------------|
| sample 39591              | 1 continued                     |                  |          |                      |                     |            |        |             |             |
| Parameter                 |                                 | Flag             | Cert     | R                    | RL<br>esult         | Unit       | 2      | Dilution    | RL          |
|                           |                                 | Thag             | Cert     | 1                    | csuit               | 0111       | 60     | Dilution    |             |
|                           |                                 |                  |          |                      | $\operatorname{RL}$ |            |        |             |             |
| Parameter                 |                                 | Flag             | Cert     |                      | lesult              | Unit       |        | Dilution    | RL          |
| Chloride                  |                                 | U                |          | <                    | <20.0               | mg/K       | g      | 5           | 4.00        |
| Sample: 39                | 5911 - W-Wall                   |                  |          |                      |                     |            |        |             |             |
| Laboratory:               | Midland                         |                  |          |                      |                     |            |        |             |             |
| Analysis:                 | TPH DRO - NEV                   | N                | Ana      | alytical Me          | thod:               | S 8015 D   |        | Prep Meth   | od: N/A     |
| QC Batch:                 | 122545                          |                  |          | e Analyzed           |                     | 2015-06-23 |        | Analyzed I  | ,           |
| Prep Batch:               | 103612                          |                  | San      | nple Prepar          | ation:              | 2015-06-19 |        | Prepared E  | By: SC      |
|                           |                                 |                  |          |                      | $\operatorname{RL}$ |            |        |             |             |
| Parameter                 |                                 | Flag             | Cert     |                      | Result              | Uni        |        | Dilution    | RL          |
| DRO                       |                                 | $_{\rm Qr,Qs,U}$ | 5        |                      | <50.0               | mg/k       | Kg     | 1           | 50.0        |
|                           |                                 |                  |          |                      |                     | S          | pike   | Percent     | Recovery    |
| Surrogate                 | Flag                            | Cert             | Result   | Units                | Dil                 | ution Ar   | nount  | Recovery    | Limits      |
| n-Tricosane               |                                 |                  | 63.8     | mg/Kg                |                     | 1 5        | 50.0   | 128         | 70 - 130    |
| Sample: 39                | <b>5911 - W-Wall</b><br>Midland |                  |          |                      |                     |            |        |             |             |
| Analysis:                 | TPH GRO                         |                  | Analytic | al Method:           | S 801               | 5 D        |        | Prep Method | l: S 5035   |
| QC Batch:                 | 122489                          |                  | Date An  |                      |                     | -06-20     |        | Analyzed By |             |
| Prep Batch:               | 103596                          |                  |          | Preparation          |                     | -06-19     |        | Prepared By |             |
|                           |                                 |                  |          |                      | $\operatorname{RL}$ |            |        |             |             |
| Parameter                 |                                 | Flag             | Cert     | R                    | esult               | Unit       | ts     | Dilution    | RL          |
| GRO                       |                                 | Qs,U             | 5        |                      | <4.00               | mg/K       | g      | 1           | 4.00        |
| 2                         |                                 |                  | ~        | <b>D</b>             | <b>TT T</b>         |            | Spike  | Percent     | Recovery    |
| Surrogate                 |                                 | Flag             | cert     | Result               | Units               | Dilution   | Amount | Recovery    | Limits      |
| Trifluorotolue            | ene (TFT)<br>ebenzene (4 PFP)   |                  |          | 2.23                 | mg/Kg               | 1          | 2.00   | 112         | 70 - 130    |

mg/Kg

1

2.00

100

70 - 130

4-Bromofluorobenzene (4-BFB)

| Report Date: June 23, 2015<br>7250715061                                        |               | W                                  | Vork Order<br>3013 | r: 15061709<br>7 #5 | )                |        | Page Number                                 | r: 12 of 32 |
|---------------------------------------------------------------------------------|---------------|------------------------------------|--------------------|---------------------|------------------|--------|---------------------------------------------|-------------|
| Sample: 395912 - RP                                                             |               |                                    |                    |                     |                  |        |                                             |             |
| Laboratory: Midland<br>Analysis: BTEX<br>QC Batch: 122488<br>Prep Batch: 103596 |               | Analytica<br>Date Ana<br>Sample P: | lyzed:             | 2015-06             | -20              |        | Prep Method<br>Analyzed By:<br>Prepared By: | : AK        |
|                                                                                 |               |                                    |                    | $\operatorname{RL}$ |                  |        |                                             |             |
| Parameter                                                                       | Flag          | Cert                               |                    | Result              | Units            |        | Dilution                                    | RL          |
| Benzene                                                                         | U             | 5                                  |                    | (0.0200)            | mg/Kg            |        | 1                                           | 0.0200      |
| Toluene                                                                         | U             | 5                                  | <                  | (0.0200)            | m mg/Kg          |        | 1                                           | 0.0200      |
| Ethylbenzene                                                                    | $_{\rm Qs,U}$ | 5                                  | <                  | (0.0200)            | $\mathrm{mg/Kg}$ |        | 1                                           | 0.0200      |
| Xylene                                                                          | U             | 5                                  | <                  | (0.0200             | mg/Kg            |        | 1                                           | 0.0200      |
|                                                                                 |               | a i                                |                    | <b>TT 1</b>         |                  | Spike  | Percent                                     | Recovery    |
| Surrogate                                                                       | Flag          | g Cert                             | Result             | Units               | Dilution         | Amount |                                             | Limits      |
| Trifluorotoluene (TFT)                                                          |               |                                    | 1.90               | mg/Kg               | 1                | 2.00   | 95                                          | 70 - 130    |
| 4-Bromofluorobenzene (4-BFB)                                                    |               |                                    | 2.01               | m mg/Kg             | 1                | 2.00   | 100                                         | 70 - 130    |

| Analysis:   | Chloride (Titration) | Ana    | lytical Method:     | SM 4500-Cl B | Prep Method: | N/A                 |
|-------------|----------------------|--------|---------------------|--------------|--------------|---------------------|
| QC Batch:   | 122419               | Date   | e Analyzed:         | 2015-06-18   | Analyzed By: | AK                  |
| Prep Batch: | 103564               | Sam    | ple Preparation:    | 2015-06-18   | Prepared By: | AK                  |
|             |                      |        | $\operatorname{RL}$ |              |              |                     |
| Parameter   | Flag                 | g Cert | Result              | Units        | Dilution     | $\operatorname{RL}$ |
| Chloride    |                      |        | 5630                | mg/Kg        | 5            | 4.00                |

#### Sample: 395912 - RP

| Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | Midland<br>TPH DRO - N<br>122545<br>103612 | EW              | Date   | lytical Methe<br>e Analyzed:<br>ple Preparat | 2015-0                | )6-23           | Prep Me<br>Analyzed<br>Prepared | •                   |
|------------------------------------------------------|--------------------------------------------|-----------------|--------|----------------------------------------------|-----------------------|-----------------|---------------------------------|---------------------|
|                                                      |                                            |                 |        |                                              | RL                    |                 |                                 |                     |
| Parameter                                            |                                            | Flag            | Cert   | Re                                           | $\operatorname{sult}$ | Units           | Dilution                        | $\operatorname{RL}$ |
| DRO                                                  |                                            | $_{ m Qr,Qs,U}$ | 5      | <5                                           | 50.0                  | m mg/Kg         | 1                               | 50.0                |
| Surrogate                                            | Flag                                       | Cert            | Result | Units                                        | Dilution              | Spike<br>Amount | Percent<br>Recovery             | Recovery<br>Limits  |
| n-Tricosane                                          |                                            |                 | 50.3   | m mg/Kg                                      | 1                     | 50.0            | 101                             | 70 - 130            |

| Report Date: June 23, 2015<br>7250715061                           |      | Work Order: 15061709<br>30137 #5 |         |                                   |                     |          |        | Page Numb                              | per: 13 of 32       |
|--------------------------------------------------------------------|------|----------------------------------|---------|-----------------------------------|---------------------|----------|--------|----------------------------------------|---------------------|
| Sample: 395912 - RP                                                |      |                                  |         |                                   |                     |          |        |                                        |                     |
| Laboratory:MidlandAnalysis:TPH GROQC Batch:122489Prep Batch:103596 |      |                                  | Date An | al Metho<br>alyzed:<br>Preparatio | 2015-0              | 06-20    |        | Prep Metho<br>Analyzed B<br>Prepared B | y: AK               |
|                                                                    |      |                                  |         |                                   | $\operatorname{RL}$ |          |        |                                        |                     |
| Parameter                                                          | Flag |                                  | Cert    |                                   | Result              | Unit     | ts     | Dilution                               | $\operatorname{RL}$ |
| GRO                                                                | Qs,U |                                  | 5       |                                   | <4.00               | mg/K     | g      | 1                                      | 4.00                |
|                                                                    |      |                                  |         |                                   |                     |          | Spike  | Percent                                | Recovery            |
| Surrogate                                                          |      | Flag                             | Cert    | Result                            | Units               | Dilution | Amount | Recovery                               | Limits              |
| Trifluorotoluene (TFT)                                             |      |                                  |         | 2.36                              | mg/Kg               | 1        | 2.00   | 118                                    | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB)                                       |      |                                  |         | 2.07                              | mg/Kg               | 1        | 2.00   | 104                                    | 70 - 130            |

# Sample: 395913 - STP

| Laboratory: Midland          |               |           |             |                  |          |        |             |                     |
|------------------------------|---------------|-----------|-------------|------------------|----------|--------|-------------|---------------------|
| Analysis: BTEX               |               | Analytica | l Method:   | S 8021E          | 3        |        | Prep Method | l: S 5035           |
| QC Batch: 122488             |               | Date Ana  | lyzed:      | 2015-06          | -20      |        | Analyzed By | : AK                |
| Prep Batch: 103596           |               | Sample P  | reparation: | : 2015-06        | -19      |        | Prepared By | : AK                |
|                              |               |           |             | RL               |          |        |             |                     |
| Parameter                    | Flag          | Cert      |             | Result           | Unit     | s      | Dilution    | $\operatorname{RL}$ |
| Benzene                      | U             | 5         | <           | 0.0200           | mg/K     | r      | 1           | 0.0200              |
| Toluene                      | U             | 5         | <           | 0.0200           | mg/K     | r<br>5 | 1           | 0.0200              |
| Ethylbenzene                 | $_{\rm Qs,U}$ | 5         | <           | 0.0200           | mg/K     | r<br>5 | 1           | 0.0200              |
| Xylene                       | U             | 5         | <           | 0.0200           | mg/K     | 5      | 1           | 0.0200              |
|                              |               |           |             |                  |          | Spike  | Percent     | Recovery            |
| Surrogate                    | Fla           | g Cert    | Result      | Units            | Dilution | Amount | Recovery    | Limits              |
| Trifluorotoluene (TFT)       |               |           | 1.86        | mg/Kg            | 1        | 2.00   | 93          | 70 - 130            |
| 4-Bromofluorobenzene (4-BFB) |               |           | 1.95        | $\mathrm{mg/Kg}$ | 1        | 2.00   | 98          | 70 - 130            |
|                              |               |           |             |                  |          |        |             |                     |

#### Sample: 395913 - STP

| Laboratory: | Midland              |                     |                 |              |     |
|-------------|----------------------|---------------------|-----------------|--------------|-----|
| Analysis:   | Chloride (Titration) | Analytical Method:  | SM 4500-Cl B $$ | Prep Method: | N/A |
| QC Batch:   | 122419               | Date Analyzed:      | 2015-06-18      | Analyzed By: | AK  |
| Prep Batch: | 103564               | Sample Preparation: | 2015-06-18      | Prepared By: | AK  |

continued ...

•

| Report Date<br>7250715061                                          | : June 23, 2015                                      |               |      | W                         | Vork Order<br>30137                 |                  | 709                         |                      |                      | Page Number: 14 of 32                  |                     |  |
|--------------------------------------------------------------------|------------------------------------------------------|---------------|------|---------------------------|-------------------------------------|------------------|-----------------------------|----------------------|----------------------|----------------------------------------|---------------------|--|
| sample 39591                                                       | 13 continued                                         |               |      |                           |                                     |                  |                             |                      |                      |                                        |                     |  |
| Parameter                                                          |                                                      | Flag          |      | Cert                      | Ι                                   | RL<br>Result     |                             | Unit                 | S                    | Dilution                               | RL                  |  |
| Parameter                                                          |                                                      | Flag          |      | Cert                      | Η                                   | RL<br>Result     |                             | Unit                 | S                    | Dilution                               | $\operatorname{RL}$ |  |
| Chloride                                                           |                                                      | U             |      |                           |                                     | <20.0            |                             | mg/K                 |                      | 5                                      | 4.00                |  |
| Sample: 39                                                         | 5913 - STP                                           |               |      |                           |                                     |                  |                             |                      |                      |                                        |                     |  |
| Laboratory:<br>Analysis:<br>QC Batch:                              | V                                                    |               | Dat  | alytical Me<br>e Analyzeo | d:                                  | S 8015<br>2015-0 | 6-23                        |                      | Prep Met<br>Analyzed | By: SC                                 |                     |  |
| Prep Batch:                                                        | 103612                                               |               |      | San                       | nple Prepa                          | ration:          | 2015-0                      | 6-19                 |                      | Prepared By: SC                        |                     |  |
| Parameter                                                          |                                                      | Flag          |      | Cert                      | ]                                   | RL<br>Result     |                             | Uni                  | ts                   | Dilution                               | RL                  |  |
| DRO                                                                |                                                      | Qr,Qs,U       |      | 5                         |                                     | <50.0            |                             | m mg/Kg              |                      | 1                                      | 50.0                |  |
| Surrogate                                                          | Flag                                                 | Cert          |      | Result                    | Units                               | Units Dilutio    |                             | Spike<br>tion Amount |                      | Percent<br>Recovery                    | Recovery<br>Limits  |  |
| n-Tricosane                                                        | ~                                                    |               |      | 62.3                      | mg/Kg                               |                  | 1                           |                      |                      | 125                                    | 70 - 130            |  |
| Sample: 39<br>Laboratory:<br>Analysis:<br>QC Batch:<br>Prep Batch: | 5913 - STP<br>Midland<br>TPH GRO<br>122489<br>103596 |               |      | Date An                   | al Method<br>alyzed:<br>Preparation | 201              | 015 D<br>5-06-20<br>5-06-19 |                      |                      | Prep Metho<br>Analyzed E<br>Prepared B | y: AK               |  |
| Parameter                                                          |                                                      | Flag          |      | Cert                      | Т                                   | RL<br>Result     |                             | Unit                 | G                    | Dilution                               | RL                  |  |
| GRO                                                                |                                                      | L lag<br>Qs,U |      | 5                         |                                     | <4.00            |                             | mg/K                 |                      | 1                                      | 4.00                |  |
| Surrogate                                                          |                                                      |               | Flag | Cert                      | Result                              | Units            |                             | ution                | Spike<br>Amount      | Percent<br>Recovery                    | Recovery<br>Limits  |  |
| Trifluorotolue<br>4-Bromofluor                                     |                                                      |               |      | $2.32 \\ 2.04$            | mg/K<br>mg/K                        |                  | 1<br>1                      | $2.00 \\ 2.00$       | $\frac{116}{102}$    | 70 - 130<br>70 - 130                   |                     |  |

Report Date: June 23, 2015

Page Number: 15 of 32

| 7250715061                             |                  | 30137                             | 7 #5                     |           |                              |                     |  |  |  |  |  |  |
|----------------------------------------|------------------|-----------------------------------|--------------------------|-----------|------------------------------|---------------------|--|--|--|--|--|--|
| Method Blanks                          |                  |                                   |                          |           |                              |                     |  |  |  |  |  |  |
| Method Blank (1)                       | QC Batch: 122419 |                                   |                          |           |                              |                     |  |  |  |  |  |  |
| QC Batch: 122419<br>Prep Batch: 103564 |                  | Date Analyzed:<br>QC Preparation: | 2015-06-18<br>2015-06-18 |           | Analyzed By:<br>Prepared By: | АК<br>АК            |  |  |  |  |  |  |
| Parameter                              | Flag             | Cert                              | MI<br>Rest               | DL<br>ult | Units                        | $\operatorname{RL}$ |  |  |  |  |  |  |
| Chloride                               |                  |                                   | <3.                      | .85       | mg/Kg                        | 4                   |  |  |  |  |  |  |
|                                        |                  |                                   |                          |           |                              |                     |  |  |  |  |  |  |
| Method Blank (1)                       | QC Batch: 122430 |                                   |                          |           |                              |                     |  |  |  |  |  |  |
| QC Batch: 122430<br>Prep Batch: 103564 |                  | Date Analyzed:<br>QC Preparation: | 2015-06-18<br>2015-06-18 |           | Analyzed By:<br>Prepared By: | AK<br>AK            |  |  |  |  |  |  |

Work Order: 15061709

|           |      |      | MDL    |         |                     |
|-----------|------|------|--------|---------|---------------------|
| Parameter | Flag | Cert | Result | Units   | $\operatorname{RL}$ |
| Chloride  |      |      | <3.85  | m mg/Kg | 4                   |

# Method Blank (1) QC Batch: 122488

| QC Batch: 122488<br>Prep Batch: 103596 |      |      | analyzed:<br>eparation: | 2015-06-2<br>2015-06-2 | -            |        | Analyzed By:<br>Prepared By: |                     |  |  |
|----------------------------------------|------|------|-------------------------|------------------------|--------------|--------|------------------------------|---------------------|--|--|
|                                        |      |      |                         |                        | MDL          |        |                              |                     |  |  |
| Parameter                              | Flag |      | Cert                    |                        | Result       |        | Units                        | $\operatorname{RL}$ |  |  |
| Benzene                                |      |      | 5                       |                        | < 0.00533    | 1      | mg/Kg                        |                     |  |  |
| Toluene                                |      |      | 5                       |                        | $<\!0.00645$ | 1      | 0.02                         |                     |  |  |
| Ethylbenzene                           |      |      | 5                       |                        | < 0.0116     | 1      | m mg/Kg                      | 0.02                |  |  |
| Xylene                                 |      |      | 5                       |                        | < 0.00874    | 1      | mg/Kg                        | 0.02                |  |  |
|                                        |      |      |                         |                        |              | Spike  | Percent                      | Recovery            |  |  |
| Surrogate                              | Flag | Cert | Result                  | Units                  | Dilution     | Amount | Recovery                     | Limits              |  |  |
| Trifluorotoluene (TFT)                 |      |      | 2.00                    | mg/Kg                  | 1            | 2.00   | 100                          | 70 - 130            |  |  |
| 4-Bromofluorobenzene (4-BFB)           |      |      | 2.08                    | $\mathrm{mg/Kg}$       | 1            | 2.00   | 70 - 130                     |                     |  |  |

Prepared By: AK

| Report Date: June 23, 2015<br>7250715061 | I      | Work Order<br>3013'       |                  | Page Number: 16 of 32 |        |                 |          |  |  |
|------------------------------------------|--------|---------------------------|------------------|-----------------------|--------|-----------------|----------|--|--|
| Method Blank (1) QC Batch: 12248         | 39     |                           |                  |                       |        |                 |          |  |  |
| QC Batch: 122489                         | Date A | Analyzed:                 | 2015-06-2        | 20                    |        | Analyzed        | l By: AK |  |  |
| Prep Batch: 103596                       |        | eparation:                | 2015-06-2        | 19                    |        | Prepared        | By: AK   |  |  |
|                                          |        |                           |                  | MDL                   |        |                 |          |  |  |
| Parameter Flag                           |        | Cert                      |                  | Result                |        | Units           | RL       |  |  |
| GRO                                      |        | 5                         |                  | <2.32                 |        | mg/Kg           | 4        |  |  |
|                                          |        |                           |                  |                       | Spike  | Percent         | Recovery |  |  |
| Surrogate Fla                            | g Cert | Result                    | Units            | Dilution              | Amount | Recovery        | Limits   |  |  |
| Trifluorotoluene (TFT)                   |        | 2.41                      | mg/Kg            | 1                     | 2.00   | 120             | 70 - 130 |  |  |
| 4-Bromofluorobenzene (4-BFB)             |        | 2.06                      | $\mathrm{mg/Kg}$ | 1                     | 2.00   | 103             | 70 - 130 |  |  |
| Method Blank (1) QC Batch: 12253         | 39     |                           |                  |                       |        |                 |          |  |  |
| QC Batch: 122539                         | Date A | Date Analyzed: 2015-06-23 |                  |                       |        | Analyzed By: AK |          |  |  |

|                              |      |      |        |       | MDL       |        |                     |          |  |  |
|------------------------------|------|------|--------|-------|-----------|--------|---------------------|----------|--|--|
| Parameter                    | Flag |      | Cert   |       | Result    |        | $\operatorname{RL}$ |          |  |  |
| Benzene                      |      |      | 5      |       | < 0.00533 | ]      | mg/Kg               | 0.02     |  |  |
| Toluene                      |      |      | 5      |       | < 0.00645 | 1      | mg/Kg               | 0.02     |  |  |
| Ethylbenzene                 |      |      | 5      |       | < 0.0116  | 1      | mg/Kg               |          |  |  |
| Xylene                       |      |      | 5      |       | < 0.00874 | ]      | mg/Kg               | 0.02     |  |  |
|                              |      |      |        |       |           | Spike  | Percent             | Recovery |  |  |
| Surrogate                    | Flag | Cert | Result | Units | Dilution  | Amount | Recovery            | Limits   |  |  |
| Trifluorotoluene (TFT)       |      |      | 1.82   | mg/Kg | 1         | 2.00   | 91                  | 70 - 130 |  |  |
| 4-Bromofluorobenzene (4-BFB) |      |      | 1.88   | mg/Kg | 1         | 2.00   | 94                  | 70 - 130 |  |  |

QC Preparation: 2015-06-22

# Method Blank (1) QC Batch: 122540

Prep Batch: 103647

| QC Batch: 122540<br>Prep Batch: 103647 |      | Date Analyzed:<br>QC Preparation: |        | Analyzed By:<br>Prepared By: |                     |
|----------------------------------------|------|-----------------------------------|--------|------------------------------|---------------------|
|                                        |      |                                   | MDL    |                              |                     |
| Parameter                              | Flag | Cert                              | Result | Units                        | $\operatorname{RL}$ |
| GRO                                    |      | 5                                 | <2.32  | mg/Kg                        | 4                   |

| Report Date: June 23<br>7250715061                         | , 2015                      |                     | Ţ               | Work Order<br>30137      |                      |                              | Page Number: 17 of 32 |                     |             |                         |
|------------------------------------------------------------|-----------------------------|---------------------|-----------------|--------------------------|----------------------|------------------------------|-----------------------|---------------------|-------------|-------------------------|
| Surrogate                                                  |                             | Fla                 | g Cert          | Result                   | Units                | Dilution                     | Spike<br>Amount       | Percent<br>Recovery | Reco<br>Lin |                         |
| Trifluorotoluene (TFT                                      | )                           | 1 la                | g Oert          | 2.33                     | mg/Kg                | 1                            | 2.00                  | 116                 |             | $\frac{1105}{130}$      |
|                                                            | -Bromofluorobenzene (4-BFB) |                     |                 |                          | mg/Kg                | 1                            | 2.00<br>2.00          | 100                 |             | $130 \\ 130$            |
| Method Blank (1)                                           | QC E                        | Batch: 12254        | 15              |                          |                      |                              |                       |                     |             |                         |
| Method Blank (1)<br>QC Batch: 122545<br>Prep Batch: 103612 | QC B                        | Batch: 12254        | Date A          | Analyzed:<br>reparation: | 2015-06-<br>2015-06- | -                            |                       | Analyze<br>Prepare  | v           | SC<br>SC                |
| QC Batch: 122545                                           | QC E                        | Batch: 12254        | Date A          |                          |                      | -                            |                       | •                   | v           |                         |
| QC Batch: 122545<br>Prep Batch: 103612<br>Parameter        | QC E                        | atch: 12254<br>Flag | Date A<br>QC Pr |                          |                      | 19<br>MDL<br>Result          |                       | Prepare             | v           | SC<br>RL                |
| QC Batch: 122545<br>Prep Batch: 103612                     | QC E                        |                     | Date A<br>QC Pr | reparation:              |                      | 19<br>MDL                    |                       | Prepare             | v           | SC                      |
| QC Batch: 122545<br>Prep Batch: 103612<br>Parameter        | QC E                        |                     | Date A<br>QC Pr | reparation:<br>Cert      |                      | 19<br>MDL<br>Result<br><7.41 | Spike<br>mount        | Prepare             | v           | SC<br>RL<br>50<br>overy |

| Report Date: June 23, 2015<br>7250715061 | Work Order: 15061709<br>30137 #5 | Page Number: 18 of 32 |
|------------------------------------------|----------------------------------|-----------------------|
|                                          |                                  |                       |

# Laboratory Control Spikes

### Laboratory Control Spike (LCS-1)

| -0               |                         |              |         |            |           |             |                        |          |          |         |          |
|------------------|-------------------------|--------------|---------|------------|-----------|-------------|------------------------|----------|----------|---------|----------|
| Prep Batch: 10   | 03564                   |              | QC I    | Preparatio | on: 201   | 5-06-18     |                        |          | Prep     | ared By | : AK     |
|                  |                         |              |         |            |           |             |                        |          |          |         |          |
|                  |                         |              |         | LCS        |           |             | $\operatorname{Spike}$ | Mε       | atrix    |         | Rec.     |
| Param            |                         | F            | C I     | Result     | Units     | Dil.        | Amount                 | Re       | sult R   | ec.     | Limit    |
| Chloride         |                         |              |         | 2520       | mg/Kg     | 5           | 2500                   | <        | 19.2 1   | 01 8    | 85 - 115 |
| Percent recovery | r is based on the spike | resu         | lt. RPD | is based o | on the sp | pike and sp | oike duplica           | ate resu | ılt.     |         |          |
|                  |                         |              | LCSD    |            |           | Spike       | Matrix                 |          | Rec.     |         | RPD      |
| Param            | $\mathbf{F}$            | $\mathbf{C}$ | Result  | Units      | Dil.      | Amount      | Result                 | Rec.     | Limit    | RPD     | Limit    |
| Chloride         |                         |              | 2430    | mg/Kg      | 5         | 2500        | <19.2                  | 97       | 85 - 115 | 4       | 20       |
|                  |                         |              |         |            |           |             |                        |          |          |         |          |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

#### Laboratory Control Spike (LCS-1)

| QC Batch:<br>Prep Batch:                                                                             | • |              |              |        |       |      |        |        |      | By: AK<br>By: AK |
|------------------------------------------------------------------------------------------------------|---|--------------|--------------|--------|-------|------|--------|--------|------|------------------|
|                                                                                                      |   |              |              | LCS    |       |      | Spike  | Matrix |      | Rec.             |
| Param                                                                                                |   | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units | Dil. | Amount | Result | Rec. | Limit            |
| Chloride                                                                                             |   |              |              | 2320   | mg/Kg | 5    | 2500   | <19.2  | 93   | 85 - 115         |
| Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. |   |              |              |        |       |      |        |        |      |                  |

|          |              |              | LCSD   |                  |      | Spike  | Matrix |      | Rec.     |     | RPD   |
|----------|--------------|--------------|--------|------------------|------|--------|--------|------|----------|-----|-------|
| Param    | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units            | Dil. | Amount | Result | Rec. | Limit    | RPD | Limit |
| Chloride |              |              | 2420   | $\mathrm{mg/Kg}$ | 5    | 2500   | <19.2  | 97   | 85 - 115 | 4   | 20    |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

### Laboratory Control Spike (LCS-1)

| QC Batch:   | 122488 | Date Analyzed:  | 2015-06-20 | Analyzed By: | AK |
|-------------|--------|-----------------|------------|--------------|----|
| Prep Batch: | 103596 | QC Preparation: | 2015-06-19 | Prepared By: | AK |

| Report Date: June 23, 2015<br>7250715061 |   |   | Work          | Order: 150<br>30137 #5 | Page Number: 19 of 32 |                 |                  |      |               |
|------------------------------------------|---|---|---------------|------------------------|-----------------------|-----------------|------------------|------|---------------|
| Param                                    | F | С | LCS<br>Result | Units                  | Dil.                  | Spike<br>Amount | Matrix<br>Result | Rec. | Rec.<br>Limit |
| Benzene                                  |   | 5 | 1.99          | mg/Kg                  | 1                     | 2.00            | < 0.00533        | 100  | 70 - 130      |
| Toluene                                  |   | 5 | 1.88          | mg/Kg                  | 1                     | 2.00            | < 0.00645        | 94   | 70 - 130      |
| Ethylbenzene                             |   | 5 | 1.76          | mg/Kg                  | 1                     | 2.00            | < 0.0116         | 88   | 70 - 130      |
| Xylene                                   |   | 5 | 5.80          | mg/Kg                  | 1                     | 6.00            | < 0.00874        | 97   | 70 - 130      |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|              |              |              | LCSD   |                  |      | Spike  | Matrix    |      | Rec.     |     | RPD   |
|--------------|--------------|--------------|--------|------------------|------|--------|-----------|------|----------|-----|-------|
| Param        | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units            | Dil. | Amount | Result    | Rec. | Limit    | RPD | Limit |
| Benzene      |              | 5            | 1.97   | mg/Kg            | 1    | 2.00   | < 0.00533 | 98   | 70 - 130 | 1   | 20    |
| Toluene      |              | 5            | 1.91   | $\mathrm{mg/Kg}$ | 1    | 2.00   | < 0.00645 | 96   | 70 - 130 | 2   | 20    |
| Ethylbenzene |              | 5            | 1.78   | $\mathrm{mg/Kg}$ | 1    | 2.00   | < 0.0116  | 89   | 70 - 130 | 1   | 20    |
| Xylene       |              | 5            | 5.83   | $\mathrm{mg/Kg}$ | 1    | 6.00   | < 0.00874 | 97   | 70 - 130 | 0   | 20    |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|                              | LCS    | LCSD   |                  |      | Spike  | LCS  | LCSD | Rec.     |
|------------------------------|--------|--------|------------------|------|--------|------|------|----------|
| Surrogate                    | Result | Result | Units            | Dil. | Amount | Rec. | Rec. | Limit    |
| Trifluorotoluene (TFT)       | 1.90   | 1.84   | mg/Kg            | 1    | 2.00   | 95   | 92   | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB) | 1.93   | 1.87   | $\mathrm{mg/Kg}$ | 1    | 2.00   | 96   | 94   | 70 - 130 |

#### Laboratory Control Spike (LCS-1)

| QC Batch:   | 122489 | Date Analyzed:  | 2015-06-20 |                        | Analyzed B  | y: AK |
|-------------|--------|-----------------|------------|------------------------|-------------|-------|
| Prep Batch: | 103596 | QC Preparation: | 2015-06-19 |                        | Prepared By | y: AK |
|             |        |                 |            |                        |             |       |
|             |        |                 |            |                        |             |       |
|             |        | LCS             |            | $\operatorname{Spike}$ | Matrix      | Rec.  |

| Param | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units | Dil. | Amount | Result | Rec. | Limit    |
|-------|--------------|--------------|--------|-------|------|--------|--------|------|----------|
| GRO   |              | 5            | 14.6   | mg/Kg | 1    | 20.0   | <2.32  | 73   | 70 - 130 |
|       |              | -            | _      |       |      |        |        |      |          |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

|                                          | LCSD         |            | $\operatorname{Sp}$ | ike                   | Matrix               |         | $\operatorname{Re}$ | с.     | RPD      |
|------------------------------------------|--------------|------------|---------------------|-----------------------|----------------------|---------|---------------------|--------|----------|
| Param F                                  | C Result     | Units      | Dil. Amo            | $\operatorname{ount}$ | Result               | Rec.    | Lin                 | nit RH | PD Limit |
| GRO                                      | 5 15.7       | m mg/Kg    | 1 20                | .0                    | $<\!2.32$            | 78      | 70 -                | 130 7  | 7 20     |
| Percent recovery is based on the spike r | esult. RPD i | s based on | the spike a         | nd spik               | ke duplic            | ate res | ult.                |        |          |
|                                          | LCS          | 5 LCSD     |                     |                       | $\operatorname{Spi}$ | ke      | LCS                 | LCSD   | Rec.     |
| Surrogate                                | Resu         | lt Result  | Units               | Dil                   | . Amo                | ount    | Rec.                | Rec.   | Limit    |
| Trifluorotoluene (TFT)                   | 2.43         | 3 2.40     | mg/Kg               | ; 1                   | 2.0                  | )0      | 122                 | 120    | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB)             | 2.16         | 5 2.13     | mg/Kg               | ; 1                   | 2.0                  | 00      | 108                 | 106    | 70 - 130 |

|            |                       |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       | Page                                                             | Number:                                                | 20 of 32                                               |
|------------|-----------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| CS-1       | 1)                    |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        |                                                        |
|            |                       | Dat                                                  | e Analyz                                                                                                                                                                                               | zed: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )15-06-23                                                                                                                                                   |                                                        |                                                       | Ar                                                               | nalvzed By                                             | : AK                                                   |
|            |                       |                                                      | v                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        |                                                        |
|            |                       | Ŭ                                                    | 1                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  | 1 0                                                    |                                                        |
|            |                       |                                                      | T CC                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | Crite                                                  | Ма                                                    |                                                                  |                                                        | Rec.                                                   |
|            | F                     |                                                      |                                                                                                                                                                                                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dil                                                                                                                                                         | -                                                      |                                                       |                                                                  | Rec                                                    | Limit                                                  |
|            |                       |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | 70 - 130                                               |
|            |                       |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | 70 - 130                                               |
|            |                       |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | 70 - 130                                               |
|            |                       |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | 70 - 130<br>70 - 130                                   |
| anile      |                       | -                                                    |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  | 54                                                     | 10 - 100                                               |
| spike      | e rest                |                                                      | ) is based                                                                                                                                                                                             | 1 on the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                           |                                                        | ate res                                               |                                                                  |                                                        |                                                        |
| Б          | a                     |                                                      | <b>T</b> T •,                                                                                                                                                                                          | D.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                           |                                                        | D                                                     |                                                                  |                                                        | RPD                                                    |
| F'         | <u> </u>              |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | Limit                                                  |
|            | 5                     |                                                      |                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | 20                                                     |
|            | 5                     |                                                      |                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | 20                                                     |
|            | 5                     |                                                      |                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        | 20                                                     |
|            | 5                     | 5.70                                                 | mg/Kg                                                                                                                                                                                                  | g 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.00                                                                                                                                                        | < 0.00874                                              | 95                                                    | 70 - 13                                                          | 30 1                                                   | 20                                                     |
|            |                       | 1.                                                   | .86                                                                                                                                                                                                    | 1.76 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/Kg                                                                                                                                                       | 1 2.0                                                  | 00                                                    | 93                                                               | 88                                                     | Limit<br>70 - 130<br>70 - 130                          |
|            |                       |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                        |                                                       |                                                                  |                                                        |                                                        |
| CS-1       | 1)                    |                                                      | te Analyz<br>Prepara                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )15-06-23<br>)15-06-22                                                                                                                                      |                                                        |                                                       |                                                                  | nalyzed By<br>repared By                               |                                                        |
| CS-I       | 1)                    |                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | Spike                                                  | М                                                     |                                                                  |                                                        |                                                        |
| CS-:       | 1)<br>F               |                                                      | Prepara                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )15-06-22                                                                                                                                                   | Spike<br>Amount                                        |                                                       | Pr                                                               |                                                        | r: AK                                                  |
| CS-:       |                       | QC                                                   | Prepara                                                                                                                                                                                                | tion: 20<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 015-06-22                                                                                                                                                   | -                                                      | R                                                     | Pr<br>atrix                                                      | repared By<br>Rec.                                     | r: AK<br>Rec.                                          |
|            | F                     | QC<br>C<br>5                                         | Preparat<br>LCS<br>Result<br>15.5                                                                                                                                                                      | tion: 20<br>Units<br>mg/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 015-06-22<br>s Dil.<br>g 1                                                                                                                                  | Amount                                                 | ; Re                                                  | Pr<br>atrix<br>esult<br>2.32                                     | repared By<br>Rec.                                     | r: AK<br>Rec.<br>Limit                                 |
|            | F                     | $\frac{C}{\frac{5}{1}}$                              | Prepara<br>LCS<br>Result<br>15.5<br>D is based                                                                                                                                                         | tion: 20<br>Units<br>mg/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{15-06-22}{g}$                                                                                                                                        | Amount<br>20.0<br>spike duplic                         | ; Re                                                  | Pr<br>atrix<br>esult<br>2.32<br>ult.                             | repared By<br>Rec.                                     | r: AK<br>Rec.<br>Limit<br>70 - 130                     |
| spike      | F<br>e resu           | QC<br><u>5</u><br>ilt. RPI<br>LCSD                   | Prepara<br>LCS<br>Result<br>15.5<br>) is based                                                                                                                                                         | tion: 20<br>Units<br>Mg/K<br>d on the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} \text{D15-06-22} \\ \hline \text{g} & \text{Dil.} \\ \hline \text{g} & 1 \\ \hline \text{spike and} \\ \hline \text{Spike} \end{array}$ | Amount<br>20.0<br>spike duplic<br>Matrix               | ate res                                               | Pr<br>atrix<br>esult<br>2.32<br>ult.<br>Rec.                     | Rec.                                                   | r: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD              |
|            | F<br>e resu<br>C      | QC<br><u>5</u><br>Ilt. RPI<br>LCSD<br>Result         | Prepara<br>LCS<br>Result<br>15.5<br>D is based<br>t Units                                                                                                                                              | tion: 20<br>Units<br>mg/K<br>d on the s<br>s Dil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )15-06-22<br>g Dil.<br>g 1<br>spike and s<br>Spike<br>Amount                                                                                                | Amount<br>20.0<br>spike duplic<br>Matrix<br>t Result   | ate res                                               | Pr<br>atrix<br>esult<br>2.32<br>ult.<br>Rec.<br>Limit            | Rec.<br>78<br>RPD                                      | r: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>Limit     |
| spike<br>F | F<br>e resu<br>C<br>5 | QC<br><u>5</u><br>ilt. RPI<br>LCSD<br>Result<br>15.3 | Prepara<br>LCS<br>Result<br>15.5<br>D is based<br>t Units<br>mg/K                                                                                                                                      | tion: 20<br>Units<br>mg/K<br>d on the s<br>s Dil.<br>$\chi$ g 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DI5-06-22<br><u>g 1</u><br>spike and spike<br>Amount<br>20.0                                                                                                | Amount<br>20.0<br>spike duplic<br>Matrix               | ate res                                               | Pr<br>atrix<br>esult<br>2.32<br>ult.<br>Rec.<br>Limit<br>70 - 13 | Rec.<br>78<br>RPD                                      | r: AK<br>Rec.<br>Limit<br>70 - 130                     |
|            | spike<br>F            | F C<br>5<br>5<br>5<br>5                              | F C I $5$ $5$ spike result. RPD $F C Result$ $5 1.93$ $5 1.81$ $5 1.74$ $5 5.70$ spike result. RPD $LCSD$ $F C Result$ $5 1.93$ $5 1.81$ $5 1.74$ $5 5.70$ spike result. RPD $Lt$ $RPD$ $Lt$ $Re$ $Lt$ | CS-1)<br>Date Analyz<br>QC Prepara<br>ECS<br>F C Result<br>5 1.89<br>5 1.80<br>5 1.73<br>5 5.64<br>Spike result. RPD is based<br>ECSD<br>F C Result Units<br>5 1.93 mg/Kg<br>5 1.81 mg/Kg<br>5 1.74 mg/Kg<br>5 1.74 mg/Kg<br>5 5.70 mg/Kg<br>5 1.74 mg/Kg<br>5 1.70 mg/Kg<br>5 1.74 mg/Kg<br>5 1.70 mg/Kg | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$            | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| Report Date: June 23, 2015<br>7250715061 |         | Work Order:         15061709         Page Number:         2           30137 #5         45         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <th>per: 21 of 32</th> |           |          |                  |         |                       |                      | per: 21 of 32 |         |          |
|------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------------------|---------|-----------------------|----------------------|---------------|---------|----------|
| control spikes continued                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          |                  |         |                       |                      |               |         |          |
|                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | LCSD     |                  |         | $\operatorname{Spik}$ |                      | LCS           | LCSD    |          |
| Surrogate                                |         | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | esult I   | Result   | Units            | Dil.    | Amou                  | int                  | Rec.          | Rec.    | Limit    |
|                                          |         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LCS I     | LCSD     |                  |         | Spik                  | æ                    | LCS           | LCSD    | Rec.     |
| Surrogate                                |         | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | esult I   | Result   | Units            | Dil.    | Amou                  | $\operatorname{int}$ | Rec.          | Rec.    | Limit    |
| Trifluorotoluene (TFT)                   |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.34      | 2.35     | mg/Kg            | 1       | 2.00                  | 0                    | 117           | 118     | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB)             |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.09      | 2.12     | $\mathrm{mg/Kg}$ | 1       | 2.00                  | 0                    | 104           | 106     | 70 - 130 |
| Prep Batch: 103612                       |         | QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C Prepara | ation: 2 | 2015-06-19       | )       |                       |                      |               | Prepare | d By: SC |
|                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LCS       |          |                  |         | Spike                 | Μ                    | [atrix        |         | Rec.     |
| Param                                    | F       | $\mathbf{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result    | Unit     |                  | . 1     | Amount                | R                    | esult         | Rec.    | Limit    |
| DRO                                      |         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 239       | mg/I     | Kg 1             |         | 250                   | <                    | (7.41         | 96      | 70 - 130 |
| Percent recovery is based on the spil    | ke resu | lt. RPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D is base | d on the | spike and        | l spike | e duplica             | te res               | ult.          |         |          |
|                                          |         | LCSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )         |          | Spike            | e N     | Aatrix                |                      | Re            | ec.     | RPD      |
| Param I                                  | FC      | Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |          | . Amou           | nt F    | Result                | Rec.                 | Lin           | nit R   | PD Limit |
| DRO                                      | 5       | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/I      | Kg 1     | 250              | <       | <7.41                 | 100                  | 70 -          | 130     | 4 20     |
| Percent recovery is based on the spil    | ke resu | lt. RPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D is base | d on the | spike and        | l spike | e duplica             | te res               | ult.          |         |          |
|                                          | LCS     | LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SD        |          |                  | S       | bike                  | LC                   | S             | LCSD    | Bec      |

|             | LCS    | LCSD   |         |      | Spike  | LCS  | LCSD | Rec.     |
|-------------|--------|--------|---------|------|--------|------|------|----------|
| Surrogate   | Result | Result | Units   | Dil. | Amount | Rec. | Rec. | Limit    |
| n-Tricosane | 58.5   | 61.9   | m mg/Kg | 1    | 50.0   | 117  | 124  | 70 - 130 |

•

| Report Date: June 23, 2015<br>7250715061                                                                                                     | Work Order: 15061709 Page Nur<br>30137 #5 |                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |                                                           |                                   | mber: 2                                            | 22 of 32                        |                           |                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|----------------------------------------------------|---------------------------------|---------------------------|--------------------------------------------|
| Matrix Spike                                                                                                                                 | S                                         |                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |                                                           |                                   |                                                    |                                 |                           |                                            |
| Matrix Spike (MS-1) Spi                                                                                                                      | ked Sample                                | e: 39601                                              | 11                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |                                                           |                                   |                                                    |                                 |                           |                                            |
| QC Batch: 122419<br>Prep Batch: 103564                                                                                                       |                                           |                                                       | ate Analyz<br>C Prepara                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )15-06-18<br>)15-06-18                                          |                                                           |                                   |                                                    | •                               | vzed By:<br>ared By:      |                                            |
| Param                                                                                                                                        | F                                         | С                                                     | MS<br>Result                                                                                                                | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dil.                                                            | Spike<br>Amount                                           | Re                                | atrix<br>sult                                      | Rec                             | . I                       | Rec.                                       |
| Chloride<br>Percent recovery is based on th                                                                                                  | e spike res                               | ult. RP                                               | 14800<br>D is based                                                                                                         | mg/Kg on the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | 2500<br>spike dupli                                       |                                   | 233<br>sult.                                       | 103                             | 78.                       | 9 - 121                                    |
|                                                                                                                                              |                                           | MSE                                                   | ,                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spike                                                           | Matrix                                                    |                                   | R                                                  | ec.                             |                           | RPD                                        |
|                                                                                                                                              | F C                                       | Resul                                                 | t Units                                                                                                                     | Dil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amount                                                          | Result                                                    | Rec.                              | Lii                                                | mit<br>- 121                    | RPD 1                     | Limit                                      |
| Chloride                                                                                                                                     |                                           | Resul<br>15000                                        | t Units<br>0 mg/Kg                                                                                                          | g 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Amount<br>2500                                                  | Result<br>12233                                           | 112                               | Liı<br>78.9                                        | mit<br>- 121                    | RPD<br>1                  |                                            |
| Chloride<br>Percent recovery is based on th<br><b>Matrix Spike (MS-1)</b> Spi<br>QC Batch: 122430                                            |                                           | Resul<br>15000<br>ult. RP<br>e: 39575<br>D:           | t Units<br>D mg/Kg<br>D is based                                                                                            | $\frac{5}{5}$ l on the state of th | Amount<br>2500                                                  | Result<br>12233                                           | 112                               | Liı<br>78.9                                        | - 121<br>Analy                  |                           | Limit<br>20                                |
| QC Batch: 122430<br>Prep Batch: 103564<br>Param                                                                                              | ie spike res                              | Resul<br>15000<br>ult. RP<br>e: 39575<br>D:           | t Units<br><u>mg/Ka</u><br>D is based<br>50<br>ate Analyz<br>C Prepara<br>MS<br>Result                                      | $\frac{5}{5}$ for the state of the | Amount<br>2500<br>spike and s<br>015-06-18<br>015-06-18<br>Dil. | Result<br>12233<br>spike dupli<br>Spike<br>Amount         | 112<br>cate res<br>Ma<br>Re       | Lin<br>78.9<br>sult.<br>sult.                      | - 121<br>Analy<br>Prepa<br>Rec. | 1<br>vzed By:<br>ured By: | Limit<br>20<br>: AK<br>AK<br>Rec.<br>.imit |
| Chloride<br>Percent recovery is based on th<br><b>Matrix Spike (MS-1)</b> Spi<br>QC Batch: 122430<br>Prep Batch: 103564<br>Param<br>Chloride | e spike res<br>ked Sample<br>F            | Resul<br>15000<br>ult. RP<br>e: 39578<br>D:<br>Q<br>C | t Units<br><u>)</u> mg/Kg<br>2D is based<br>50<br>ate Analyz<br>C Prepara<br><u>MS</u><br><u>Result</u><br>10100            | $\frac{g  5}{1 \text{ on the }}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount<br>2500<br>spike and s<br>015-06-18<br>015-06-18<br>Dil. | Result<br>12233<br>spike dupli<br>Spike<br>Amount<br>2500 | 112<br>cate res<br>Ma<br>Re<br>74 | Lin<br>78.9<br>sult.<br>sult.<br>sult<br>440       | - 121<br>Analy<br>Prepa         | 1<br>vzed By:<br>ured By: | Limit<br>20<br>: AK<br>AK<br>Rec.<br>.imit |
| Chloride<br>Percent recovery is based on th<br><b>Matrix Spike (MS-1)</b> Spi<br>QC Batch: 122430<br>Prep Batch: 103564                      | e spike res<br>ked Sample<br>F            | Resul<br>15000<br>ult. RP<br>e: 39578<br>D:<br>Q<br>C | t Units<br><u>mg/Ka</u><br>D is based<br>50<br>ate Analyz<br>C Prepara<br><u>MS</u><br><u>Result</u><br>10100<br>D is based | $\frac{g  5}{1 \text{ on the }}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount<br>2500<br>spike and s<br>015-06-18<br>015-06-18<br>Dil. | Result<br>12233<br>spike dupli<br>Spike<br>Amount<br>2500 | 112<br>cate res<br>Ma<br>Re<br>74 | Lin<br>78.9<br>sult.<br>sult.<br>440<br>sult.<br>R | - 121<br>Analy<br>Prepa<br>Rec. | 1<br>vzed By:<br>ured By: | Limit<br>20<br>: AK<br>AK<br>Rec.          |

| Matrix Spike (xMS-1) | Spiked Sample: 395908 |
|----------------------|-----------------------|
|----------------------|-----------------------|

| QC Batch:   | 122488 | Date Analyzed:  | 2015-06-20 | Analyzed By: | AK |
|-------------|--------|-----------------|------------|--------------|----|
| Prep Batch: | 103596 | QC Preparation: | 2015-06-19 | Prepared By: | AK |

| Report Date: June 23, 201<br>7250715061 | Work Order: 15061709<br>30137 #5 |              |          |            |          |             | Page Number: 23 of 32 |          |          |      |          |
|-----------------------------------------|----------------------------------|--------------|----------|------------|----------|-------------|-----------------------|----------|----------|------|----------|
| D                                       |                                  | Б            | G        | MS         | TT •/    | D.1         | Spike                 |          | trix     |      | Rec.     |
| Param                                   |                                  | F            | С        | Result     | Units    | Dil.        | Amount                |          |          | Rec. | Limit    |
| Benzene                                 |                                  |              | 5        | 1.51       | mg/Kg    |             | 2.00                  |          | 0533     | 76   | 70 - 130 |
| Toluene                                 |                                  |              | 5        | 1.53       | mg/Kg    |             | 2.00                  | 0.0      | 628      | 73   | 70 - 130 |
| Ethylbenzene                            | $_{\rm Qs}$                      | $_{\rm Qs}$  | 5        | 1.42       | mg/Kg    | ; 1         | 2.00                  | 0.0      | 413      | 69   | 70 - 130 |
| Xylene                                  |                                  |              | 5        | 4.64       | mg/Kg    | ; 1         | 6.00                  | 0.0      | 429      | 77   | 70 - 130 |
| Percent recovery is based of            | n the spik                       | e res        | ult. RPI | ) is based | on the s | spike and s | spike duplica         | ate resu | ılt.     |      |          |
|                                         |                                  |              | MSD      |            |          | Spike       | Matrix                |          | Rec.     |      | RPD      |
| Param                                   | F                                | $\mathbf{C}$ | Result   | Units      | Dil.     | Amount      | Result                | Rec.     | Limit    | RPD  | Limit    |
| Benzene                                 |                                  | 5            | 1.74     | mg/Kg      | 1        | 2.00        | < 0.00533             | 87       | 70 - 130 | 14   | 20       |
| Toluene                                 |                                  | 5            | 1.67     | mg/Kg      | 1        | 2.00        | 0.0628                | 80       | 70 - 130 | 9    | 20       |
| Ethylbenzene                            |                                  | 5            | 1.63     | mg/Kg      | 1        | 2.00        | 0.0413                | 79       | 70 - 130 | 14   | 20       |
| Xylène                                  |                                  | 5            | 5.35     | mg/Kg      | 1        | 6.00        | 0.0429                | 88       | 70 - 130 | 14   | 20       |
| Percent recovery is based of            | n the spik                       | e res        | ult. RPI | ) is based | on the s | spike and s | spike duplica         | ate resu | ılt.     |      |          |

|           | ${ m MS}$ | MSD    |       |      | Spike  | MS   | MSD  | Rec.  |
|-----------|-----------|--------|-------|------|--------|------|------|-------|
| Surrogate | Result    | Result | Units | Dil. | Amount | Rec. | Rec. | Limit |

|                              | MID    | MOD    |                  |      | opike  | IVID | MOD  | nee.     |
|------------------------------|--------|--------|------------------|------|--------|------|------|----------|
| Surrogate                    | Result | Result | Units            | Dil. | Amount | Rec. | Rec. | Limit    |
| Trifluorotoluene (TFT)       | 1.81   | 1.92   | mg/Kg            | 1    | 2      | 90   | 96   | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB) | 1.92   | 1.97   | $\mathrm{mg/Kg}$ | 1    | 2      | 96   | 98   | 70 - 130 |
|                              |        |        |                  |      |        |      |      |          |

#### Matrix Spike (xMS-1) Spiked Sample: 395908

| QC Batch:   | 122489 | Date Analyzed:  | 2015-06-20 | Analyzed By: | $\mathbf{A}\mathbf{K}$ |
|-------------|--------|-----------------|------------|--------------|------------------------|
| Prep Batch: | 103596 | QC Preparation: | 2015-06-19 | Prepared By: | AK                     |

|       |    |              |              | MS     |         |      | Spike  | Matrix |      | Rec.     |
|-------|----|--------------|--------------|--------|---------|------|--------|--------|------|----------|
| Param |    | $\mathbf{F}$ | $\mathbf{C}$ | Result | Units   | Dil. | Amount | Result | Rec. | Limit    |
| GRO   | Qs | $_{\rm Qs}$  | 5            | 11.8   | m mg/Kg | 1    | 20.0   | 11.6   | 1    | 70 - 130 |

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

| 2                                  | Б           | a      | MSD       | <b>TT</b> • | <b>D</b> '1 | Spike    |         | atrix                 | Ð                    | Rec    |     | DDD | RPD      |
|------------------------------------|-------------|--------|-----------|-------------|-------------|----------|---------|-----------------------|----------------------|--------|-----|-----|----------|
| Param                              | F           | С      | Result    | Units       | Dil.        | Amour    | nt Re   | esult                 | Rec.                 | Lim    | it  | RPD | Limit    |
| GRO Qs                             | $_{\rm Qs}$ | 5      | 13.2      | mg/Kg       | 1           | 20.0     | 1       | 1.6                   | 8                    | 70 - 1 | 130 | 11  | 20       |
| Percent recovery is based on the s | pike        | result | t. RPD is | based or    | the s       | pike and | spike o | duplicat              | e rest               | ılt.   |     |     |          |
|                                    |             |        | MS        | MS          | D           |          |         | $\operatorname{Spil}$ | xe                   | MS     | MS  | SD  | Rec.     |
| Surrogate                          |             |        | Resu      | lt Resu     | ılt         | Units    | Dil.    | Amou                  | $\operatorname{unt}$ | Rec.   | Re  | ec. | Limit    |
| Trifluorotoluene (TFT)             |             |        | 2.26      | 2.4         | 5 r         | ng/Kg    | 1       | 2                     |                      | 113    | 12  | 22  | 70 - 130 |
| 4-Bromofluorobenzene (4-BFB)       |             |        | 2.03      | 2.1         | 5 r         | m ng/Kg  | 1       | 2                     |                      | 102    | 1(  | )8  | 70 - 130 |

| Report Date: June 23, 2015<br>7250715061                                        |          |              |                                                   | Work                                                          | Corder: 1<br>30137 #                                                                                                                                                                     |                                                                                                               |                                                            |                                        | Page Number: 24 of 32                                         |                     |                                                    |  |
|---------------------------------------------------------------------------------|----------|--------------|---------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|---------------------|----------------------------------------------------|--|
| Matrix Spike (MS-1) Spike                                                       | ed Sε    | mple         | e: 39592                                          | 2                                                             |                                                                                                                                                                                          |                                                                                                               |                                                            |                                        |                                                               |                     |                                                    |  |
| QC Batch: 122539<br>Prep Batch: 103647                                          |          |              |                                                   | ate Analy<br>C Prepar                                         |                                                                                                                                                                                          | 015-06-23<br>015-06-22                                                                                        |                                                            |                                        |                                                               | lyzed B<br>pared By |                                                    |  |
|                                                                                 |          |              |                                                   | MS                                                            |                                                                                                                                                                                          |                                                                                                               | Spike                                                      | Ma                                     | trix                                                          |                     | Rec.                                               |  |
| Param                                                                           |          | $\mathbf{F}$ | $\mathbf{C}$                                      | Result                                                        | Units                                                                                                                                                                                    | Dil.                                                                                                          | Amount                                                     |                                        |                                                               | Rec.                | Limit                                              |  |
| Benzene                                                                         |          |              | 5                                                 | 1.78                                                          | mg/Kg                                                                                                                                                                                    |                                                                                                               | 2.00                                                       |                                        |                                                               |                     | 70 - 130                                           |  |
| Toluene                                                                         |          |              | 5                                                 | 1.72                                                          | mg/Kg                                                                                                                                                                                    |                                                                                                               | 2.00                                                       |                                        |                                                               |                     | 70 - 130                                           |  |
| Ethylbenzene                                                                    |          |              | 5                                                 | 1.70                                                          | mg/Kg                                                                                                                                                                                    |                                                                                                               | 2.00                                                       |                                        |                                                               |                     | 70 - 130                                           |  |
| Xylene                                                                          |          |              | 5                                                 | 5.63                                                          | mg/Kg                                                                                                                                                                                    |                                                                                                               | 6.00                                                       |                                        |                                                               |                     | 70 - 130                                           |  |
| Percent recovery is based on the                                                | spik     | e res        | ult. RP                                           |                                                               |                                                                                                                                                                                          |                                                                                                               |                                                            |                                        |                                                               |                     |                                                    |  |
|                                                                                 |          |              | MSD                                               |                                                               |                                                                                                                                                                                          | Spike                                                                                                         | Matrix                                                     |                                        | Rec.                                                          |                     | RPD                                                |  |
| Param                                                                           | F        | С            | Result                                            |                                                               |                                                                                                                                                                                          | Amount                                                                                                        | Result                                                     | Rec.                                   | Limit                                                         | RPD                 | Limi                                               |  |
| Benzene                                                                         |          | 5            | 1.66                                              | mg/ŀ                                                          |                                                                                                                                                                                          | 2.00                                                                                                          | < 0.00533                                                  |                                        | 70 - 130                                                      |                     | 20                                                 |  |
| Toluene                                                                         |          | 5            | 1.59                                              | mg/ŀ                                                          |                                                                                                                                                                                          | 2.00                                                                                                          | < 0.00645                                                  |                                        | 70 - 130                                                      |                     | 20                                                 |  |
| Ethylbenzene                                                                    |          | 5            | 1.59                                              | mg/F                                                          |                                                                                                                                                                                          | 2.00                                                                                                          | < 0.0116                                                   |                                        | 70 - 130                                                      |                     | 20                                                 |  |
| Xylene                                                                          |          | 5            | 5.25                                              | mg/ŀ                                                          | Kg 1                                                                                                                                                                                     | 6.00                                                                                                          | < 0.00874                                                  | 4 88                                   | 70 - 130                                                      | 7                   | 20                                                 |  |
| Surrogate<br>Frifluorotoluene (TFT)                                             |          |              |                                                   | tesult<br>1.84                                                | Result<br>1.89                                                                                                                                                                           | Units<br>mg/Kg                                                                                                |                                                            | Spike<br>mount<br>2                    | Rec. 1<br>92                                                  | Rec.<br>94          | Limit<br>70 - 130                                  |  |
| 4-Bromofluorobenzene (4-BFB)                                                    |          |              |                                                   | 1.92                                                          | 1.96                                                                                                                                                                                     | mg/Kg                                                                                                         | 1                                                          | 2                                      | 96                                                            |                     | 70 - 130                                           |  |
| Matrix Spike (MS-1) Spike<br>QC Batch: 122540                                   | ed Sa    | ample        | e: 39592<br>Dε                                    | 2<br>ate Analy                                                |                                                                                                                                                                                          |                                                                                                               |                                                            |                                        | Ana                                                           | lyzed B             | y: AK                                              |  |
| -                                                                               |          |              | Q                                                 | C Prepar                                                      | ,<br>,                                                                                                                                                                                   | 015-06-23<br>015-06-22                                                                                        |                                                            |                                        | Prep                                                          | pared By            |                                                    |  |
| Prep Batch: 103647<br>Param                                                     |          | F            | С                                                 | C Prepar<br>MS<br>Result                                      | ration: 20<br>Units                                                                                                                                                                      | 015-06-22<br>s Dil.                                                                                           | Spike<br>Amour                                             | nt Re                                  | atrix<br>esult F                                              | lec.                | y: AK<br>Rec.<br>Limit                             |  |
| Prep Batch: 103647<br>Param                                                     |          | F            | ·                                                 | C Prepar<br>MS                                                | ration: 20                                                                                                                                                                               | 015-06-22<br>s Dil.                                                                                           | -                                                          | nt Re                                  | atrix<br>esult F                                              | lec.                | y: AK<br>Rec.                                      |  |
| Prep Batch: 103647<br>Param<br>GRO                                              | spike    |              | C<br>5                                            | C Prepar<br>MS<br>Result<br>14.8                              | eation: 20<br>Units<br>mg/K                                                                                                                                                              | 015-06-22<br>5 Dil.<br>5 1                                                                                    | Amour<br>20.0                                              | nt Re                                  | atrix<br>esult F<br>2.32<br>ult.                              | lec.                | y: AK<br>Rec.<br>Limit                             |  |
| Prep Batch: 103647<br>Param<br>GRO<br>Percent recovery is based on the          | -        | e res        | C<br>5<br>1lt. RP<br>MS                           | MS<br>Result<br>14.8<br>D is base                             | $\frac{\text{Units}}{\text{Mg/K}}$                                                                                                                                                       | $\begin{array}{c c} 015-06-22 \\ \hline s \\ \hline g \\ 1 \\ \hline spike and s \\ \hline Spike \end{array}$ | Amoun<br>20.0<br>spike dupl<br>Matrix                      | nt Re                                  | atrix<br>esult F<br>2.32<br>                                  | Rec.                | y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD          |  |
| Prep Batch: 103647<br>Param<br>GRO<br>Percent recovery is based on the<br>Param | Ē        | e rest       | C<br>5<br>1lt. RP<br>MS<br>Resu                   | C Prepar<br>MS<br>Result<br>14.8<br>D is base<br>D<br>is base | $\begin{array}{c} \text{Tration:} & 20 \\ \hline & \text{Unit:} \\ \hline & \text{mg/K} \\ \hline & \text{mg/K} \\ \hline & \text{ed on the} \\ \\ \text{nits} & \text{Dil} \end{array}$ | 015-06-22<br>s Dil.<br>g 1<br>spike and s<br>Spike<br>. Amoun                                                 | Amoun<br>20.0<br>spike dupl<br>Matrix<br>t Result          | t Rec.                                 | atrix<br>esult F<br>2.32<br>ult.<br>Rec.<br>Limit             | tec.<br>74<br>RPD   | y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>Limit |  |
| Prep Batch: 103647                                                              | F<br>s Q | e res<br>r C | C<br><sup>5</sup><br>ilt. RP<br>MS<br>Resu<br>13. | MS<br>Result<br>14.8<br>D is base<br>D<br>ilt Ur<br>8 mg      | $\begin{array}{c} \text{Tration:} & 20 \\ \hline & \text{Units} \\ \hline & \text{mg/K} \\ \text{ed on the} \\ \\ \text{nits} & \text{Dil} \\ \hline & \text{Kg} & 1 \end{array}$        | 015-06-22<br><u>s</u> Dil.<br><u>g</u> 1<br>spike and s<br>Spike<br><u>Spike</u><br><u>Amoun</u><br>20.0      | Amoun<br>20.0<br>spike dupl<br>Matrix<br>t Result<br><2.32 | nt Re<br>icate rest<br>:<br>Rec.<br>69 | atrix<br>esult F<br>2.32<br>ult.<br>Rec.<br>Limit<br>70 - 130 | Rec.                | y: AK<br>Rec.<br>Limit<br>70 - 130<br>RPD          |  |

| Report Date: June 23, 2015<br>7250715061                                                                   |                                                             | Work Order: 15061709<br>30137 #5 |                                                                                           |                                             |                                                                   |                                                            |                                                                        | Page Number: 25 of 3.                               |                                                                 |                                          |                    | 25 of 32                                                 |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|--------------------|----------------------------------------------------------|
| matrix spikes continued                                                                                    |                                                             |                                  |                                                                                           |                                             |                                                                   |                                                            |                                                                        |                                                     |                                                                 |                                          |                    |                                                          |
|                                                                                                            |                                                             |                                  | MS                                                                                        | MSD                                         |                                                                   |                                                            | Spil                                                                   | ke                                                  | MS                                                              | MS                                       | D                  | Rec.                                                     |
| Surrogate                                                                                                  |                                                             |                                  | Result                                                                                    | Result                                      | Units                                                             | s Di                                                       | l. Amo                                                                 | unt                                                 | Rec.                                                            | Rec                                      | з.                 | Limit                                                    |
|                                                                                                            |                                                             |                                  | MS                                                                                        | MSD                                         |                                                                   |                                                            | Spil                                                                   | ke                                                  | MS                                                              | MS                                       | D                  | Rec.                                                     |
| Surrogate                                                                                                  |                                                             |                                  | Result                                                                                    | Result                                      | Units                                                             | s Di                                                       | l. Amo                                                                 | $\operatorname{unt}$                                | Rec.                                                            | Rec                                      | з.                 | Limit                                                    |
| Trifluorotoluene (TFT)                                                                                     |                                                             |                                  | 2.49                                                                                      | 2.48                                        | mg/K                                                              |                                                            | 2                                                                      |                                                     | 124                                                             | 124                                      | 4 7                | 70 - 130                                                 |
| 4-Bromofluorobenzene (4-BFB)                                                                               |                                                             |                                  | 2.20                                                                                      | 2.21                                        | mg/K                                                              | lg 1                                                       | 2                                                                      |                                                     | 110                                                             | 11(                                      | ) 7                | 70 - 130                                                 |
| Matrix Spike (MS-1) Spil<br>QC Batch: 122545<br>Prep Batch: 103612                                         | ked Sample                                                  | Ι                                | 908<br>Date Ana<br>QC Prep                                                                | v                                           | 2015-06<br>2015-06                                                |                                                            |                                                                        |                                                     |                                                                 | Analyz<br>Prepar                         | •                  |                                                          |
| QC Batch: 122545                                                                                           | ked Sample<br>F                                             | Ι                                | Date Ana                                                                                  | aration:                                    | 2015-06                                                           |                                                            | Spike<br>Amount                                                        |                                                     |                                                                 | •                                        | red By             |                                                          |
| QC Batch: 122545<br>Prep Batch: 103612                                                                     | -                                                           | 1<br>(                           | Date Ana<br>QC Prep<br>MS                                                                 | aration:                                    | 2015-06                                                           | -19                                                        | -                                                                      | Re                                                  | atrix                                                           | Prepar                                   | red By             | r: SC<br>Rec.                                            |
| QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO                                                     | F                                                           | I<br>C<br>5                      | Date Ana<br>QC Prep<br>MS<br><u>Resul</u><br>213                                          | aration:<br>t Un<br>mg/                     | 2015-06<br>its<br>/Kg                                             | -19<br>Dil.<br>1                                           | Amount<br>250                                                          | Re<br><7                                            | atrix<br>sult<br>7.41                                           | Prepar<br>Rec                            | red By             | r: SC<br>Rec.<br>Limit                                   |
| QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO                                                     | F                                                           | I<br>C<br>5                      | Date Ana<br>QC Prep<br>MS<br><u>Resul</u><br>213                                          | aration:<br>t Un<br>mg/                     | 2015-06<br>its I<br>/Kg<br>ae spike a                             | -19<br>Dil.<br>1                                           | Amount<br>250                                                          | Re<br><7                                            | atrix<br>sult<br>7.41                                           | Prepar<br>Rec<br>85                      | red By             | r: SC<br>Rec.<br>Limit                                   |
| QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the                 | F                                                           | $\frac{C}{\frac{5}{1}}$          | Date Ana<br>QC Prep<br>MS<br>Resul<br>213<br>PD is ba                                     | aration:<br>t Un<br>mg/                     | 2015-06<br>its<br>Kg<br>te spike a                                | -19<br>Dil.<br>1<br>and spik                               | Amount<br>250<br>& duplicat                                            | Re<br><7                                            | atrix<br>sult<br>7.41<br>ılt.<br>Ro                             | Prepar<br>Rec<br>85<br>ec.               | red By             | r: SC<br>Rec.<br>Limit<br>70 - 130                       |
| QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the<br>Param        | F<br>e spike resu                                           | $\frac{C}{\frac{5}{1}}$          | Date Ana<br>QC Prep<br>MS<br>Resul<br>213<br>PD is ba<br>MSD                              | t Un<br>mg/<br>used on th                   | 2015-06<br>its<br>Kg<br>le spike a                                | -19<br>Dil.<br>1<br>and spik<br>Spike                      | Amount<br>250<br>xe duplicat<br>Matrix                                 | Re<br><7<br>te resu                                 | atrix<br>sult<br>7.41<br>Ilt.<br>Ra<br>Lin                      | Prepar<br>Rec<br>85<br>ec.               | red By             | r: SC<br>Rec.<br><u>Limit</u><br>70 - 130<br>RPD         |
| QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the<br>Param        | F<br>e spike resu<br>F<br><sub>Qr,Qs</sub> <sub>Qr,Qs</sub> | $\frac{C}{\frac{5}{5}}$          | Date Ana<br>QC Prep<br>MS<br>Resul<br>213<br>PD is ba<br>MSD<br>Result<br>163             | t Un<br>mg/<br>used on th<br>Units<br>mg/Kg | 2015-06<br>its I<br>/Kg<br>ne spike a<br>Dil. A<br>1              | -19<br>Dil.<br>1<br>and spike<br>amount<br>250             | Amount<br>250<br>& duplicat<br>Matrix<br>Result<br><7.41               | Re<br><7<br>te resu<br>Rec.<br>65                   | atrix<br>sult<br>7.41<br>Ilt.<br>Ra<br>Lin<br>70 -              | Prepar<br>Rec<br>85<br>ec.<br>mit        | red By<br>7<br>RPD | Rec.<br>Limit<br>0 - 130<br>RPD<br>Limit                 |
| QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the<br>Param<br>DRO | F<br>e spike resu<br>F<br><sub>Qr,Qs</sub> <sub>Qr,Qs</sub> | $\frac{C}{\frac{5}{1}}$          | Date Ana<br>QC Prep<br>MS<br>Resul<br>213<br>PD is ba<br>MSD<br>Result<br>163             | t Un<br>mg/<br>used on th<br>Units<br>mg/Kg | 2015-06<br>its I<br>/Kg<br>ne spike a<br>Dil. A<br>1              | -19<br>Dil.<br>1<br>and spike<br>amount<br>250             | Amount<br>250<br>& duplicat<br>Matrix<br>Result<br><7.41               | Re<br><7<br>te resu<br>Rec.<br>65                   | atrix<br>sult<br>7.41<br>ilt.<br>Ra<br>Lin<br>70 -<br>ilt.      | Prepar<br>Rec<br>85<br>ec.<br>mit        | red By<br>7<br>RPD | Rec.<br>Limit<br>0 - 130<br>RPD<br>Limit                 |
| QC Batch: 122545<br>Prep Batch: 103612<br>Param<br>DRO<br>Percent recovery is based on the<br>Param<br>DRO | F<br>e spike resu<br>F<br>Qr,Qs Qr,Qs<br>e spike resu       | $\frac{C}{\frac{5}{1}}$          | Date Ana<br>QC Prep<br>MS<br>Resul<br>213<br>PD is ba<br>MSD<br>Result<br>163<br>PD is ba | t Un<br>mg/<br>used on th<br>Units<br>mg/Kg | 2015-06<br>its I<br>Kg<br>te spike a<br>Dil. A<br>1<br>te spike a | -19<br>Dil.<br>1<br>and spike<br>amount<br>250<br>and spik | Amount<br>250<br>& duplicat<br>Matrix<br>Result<br><7.41<br>& duplicat | Re<br><7<br>te resu<br><u>Rec.</u><br>65<br>te resu | atrix<br>sult<br>7.41<br>ilt.<br>Ra<br>Lin<br>70 -<br>ilt.<br>S | Prepar<br>Rec<br>85<br>ec.<br>mit<br>130 | red By<br>7<br>RPD | r: SC<br>Rec.<br>Limit<br>70 - 130<br>RPD<br>Limit<br>20 |

| Report Date: June 23, 2015 | Work Order: 15061709 | Page Number: 26 of 32 |
|----------------------------|----------------------|-----------------------|
| 7250715061                 | $30137 \ \#5$        |                       |

# **Calibration Standards**

# Standard (ICV-1)

| QC Batch: | 122419 |      | Date Analy |       |       | 2015-06-18 |          | Analy    | zed By: AK |
|-----------|--------|------|------------|-------|-------|------------|----------|----------|------------|
|           |        |      |            |       | ICVs  | ICVs       | ICVs     | Percent  |            |
|           |        |      |            |       | True  | Found      | Percent  | Recovery | Date       |
| Param     |        | Flag | Cert       | Units | Conc. | Conc.      | Recovery | Limits   | Analyzed   |
| Chloride  |        |      |            | mg/Kg | 100   | 100        | 100      | 85 - 115 | 2015-06-18 |

# Standard (CCV-1)

| QC Batch: | 122419 | Date Ana |      |         | Analyzed:       | 2015-06-18 |          | Analy    | zed By: AK |
|-----------|--------|----------|------|---------|-----------------|------------|----------|----------|------------|
|           |        |          |      |         | $\mathrm{CCVs}$ | CCVs       | CCVs     | Percent  |            |
|           |        |          |      |         | True            | Found      | Percent  | Recovery | Date       |
| Param     |        | Flag     | Cert | Units   | Conc.           | Conc.      | Recovery | Limits   | Analyzed   |
| Chloride  |        |          |      | m mg/Kg | 100             | 100        | 100      | 85 - 115 | 2015-06-18 |

# Standard (ICV-1)

| QC Batch: 122430 |  |      |      | Date A  | Analyzed: | 2015-06-18 |          | Analy    | Analyzed By: AK |  |  |
|------------------|--|------|------|---------|-----------|------------|----------|----------|-----------------|--|--|
|                  |  |      |      |         | ICVs      | ICVs       | ICVs     | Percent  |                 |  |  |
|                  |  |      |      |         | True      | Found      | Percent  | Recovery | Date            |  |  |
| Param            |  | Flag | Cert | Units   | Conc.     | Conc.      | Recovery | Limits   | Analyzed        |  |  |
| Chloride         |  |      |      | m mg/Kg | 100       | 100        | 100      | 85 - 115 | 2015-06-18      |  |  |

# Standard (CCV-1)

| QC Batch: | 122430 |      |      | Date Analyzed: |              |               |                 | Analy               | Analyzed By: AK |  |  |
|-----------|--------|------|------|----------------|--------------|---------------|-----------------|---------------------|-----------------|--|--|
|           |        |      |      |                | CCVs<br>True | CCVs<br>Found | CCVs<br>Percent | Percent<br>Recovery | Date            |  |  |
| Param     |        | Flag | Cert | Units          | Conc.        | Conc.         | Recovery        | Limits              | Analyzed        |  |  |
| Chloride  |        |      |      | mg/Kg          | 100          | 100           | 100             | 85 - 115            | 2015-06-18      |  |  |

| Report Date: June 23, 2015<br>7250715061 | Work Order: 15061709<br>30137 #5 | Page Number: 27 of 32 |
|------------------------------------------|----------------------------------|-----------------------|
|------------------------------------------|----------------------------------|-----------------------|

## Standard (CCV-1)

| QC Batch: 122488 |      |      | Analyz  | Analyzed By: AK |                 |          |          |            |
|------------------|------|------|---------|-----------------|-----------------|----------|----------|------------|
|                  |      |      |         | $\mathrm{CCVs}$ | $\mathrm{CCVs}$ | CCVs     | Percent  |            |
|                  |      |      |         | True            | Found           | Percent  | Recovery | Date       |
| Param            | Flag | Cert | Units   | Conc.           | Conc.           | Recovery | Limits   | Analyzed   |
| Benzene          |      | 5    | mg/kg   | 0.100           | 0.0984          | 98       | 80 - 120 | 2015-06-20 |
| Toluene          |      | 5    | mg/kg   | 0.100           | 0.0928          | 93       | 80 - 120 | 2015-06-20 |
| Ethylbenzene     |      | 5    | m mg/kg | 0.100           | 0.0874          | 87       | 80 - 120 | 2015-06-20 |
| Xylene           |      | 5    | mg/kg   | 0.300           | 0.287           | 96       | 80 - 120 | 2015-06-20 |

# Standard (CCV-2)

| QC Batch: 122488 |      |      | Analyzed By: AK |                 |        |          |          |            |
|------------------|------|------|-----------------|-----------------|--------|----------|----------|------------|
|                  |      |      |                 | $\mathrm{CCVs}$ | CCVs   | CCVs     | Percent  |            |
|                  |      |      |                 | True            | Found  | Percent  | Recovery | Date       |
| Param            | Flag | Cert | Units           | Conc.           | Conc.  | Recovery | Limits   | Analyzed   |
| Benzene          |      | 5    | mg/kg           | 0.100           | 0.0986 | 99       | 80 - 120 | 2015-06-20 |
| Toluene          |      | 5    | m mg/kg         | 0.100           | 0.0920 | 92       | 80 - 120 | 2015-06-20 |
| Ethylbenzene     |      | 5    | m mg/kg         | 0.100           | 0.0857 | 86       | 80 - 120 | 2015-06-20 |
| Xylene           |      | 5    | mg/kg           | 0.300           | 0.282  | 94       | 80 - 120 | 2015-06-20 |

# Standard (CCV-3)

| QC Batch: 122488 |      |      | Date An | Analyzed By: AK |        |          |          |            |
|------------------|------|------|---------|-----------------|--------|----------|----------|------------|
|                  |      |      |         | $\mathrm{CCVs}$ | CCVs   | CCVs     | Percent  |            |
|                  |      |      |         | True            | Found  | Percent  | Recovery | Date       |
| Param            | Flag | Cert | Units   | Conc.           | Conc.  | Recovery | Limits   | Analyzed   |
| Benzene          |      | 5    | mg/kg   | 0.100           | 0.0978 | 98       | 80 - 120 | 2015-06-20 |
| Toluene          |      | 5    | m mg/kg | 0.100           | 0.0933 | 93       | 80 - 120 | 2015-06-20 |
| Ethylbenzene     |      | 5    | m mg/kg | 0.100           | 0.0887 | 89       | 80 - 120 | 2015-06-20 |
| Xylene           |      | 5    | m mg/kg | 0.300           | 0.289  | 96       | 80 - 120 | 2015-06-20 |

#### Standard (CCV-1)

QC Batch: 122489

Date Analyzed: 2015-06-20

Analyzed By: AK

| Report Date: J<br>7250715061  | eport Date: June 23, 2015<br>50715061 |      |      | V              | Vork Order<br>30137   | :: 15061709<br>7 #5    |                             | Page Number: 28 of 32         |                        |  |
|-------------------------------|---------------------------------------|------|------|----------------|-----------------------|------------------------|-----------------------------|-------------------------------|------------------------|--|
| Param                         | Flag                                  | С    | ert  | Units          | CCVs<br>True<br>Conc. | CCVs<br>Found<br>Conc. | CCVs<br>Percent<br>Recovery | Percent<br>Recovery<br>Limits | Date<br>Analyzed       |  |
| GRO                           |                                       |      | 5    | mg/Kg          | 1.00                  | 0.881                  | 88                          | 80 - 120                      | 2015-06-20             |  |
| Standard (CC                  | V-2)                                  |      |      |                |                       |                        |                             |                               |                        |  |
| QC Batch: 122489              |                                       |      |      | Date A         | analyzed:             | 2015-06-20             |                             | Analy                         | zed By: AK             |  |
|                               |                                       |      |      |                | CCVs<br>True          | CCVs<br>Found          | CCVs<br>Percent             | Percent<br>Recovery           | Date                   |  |
| Param<br>GRO                  | Flag                                  | С    | ert  | Units<br>mg/Kg | Conc.<br>1.00         | Conc.<br>0.940         | Recovery<br>94              | Limits<br>80 - 120            | Analyzed<br>2015-06-20 |  |
| QC Batch: 122                 | 2489                                  |      |      | Date A         | analyzed:             | 2015-06-20             |                             | Analy                         | zed By: AK             |  |
|                               |                                       |      |      |                | CCVs                  | CCVs                   | CCVs                        | Percent                       |                        |  |
| Param                         | Flag                                  | C    | ert  | Units          | True<br>Conc.         | Found<br>Conc.         | Percent<br>Recovery         | Recovery<br>Limits            | Date<br>Analyzed       |  |
| GRO                           | 1 103                                 |      | 5    | mg/Kg          | 1.00                  | 0.900                  | 90                          | 80 - 120                      | 2015-06-20             |  |
| Standard (CC<br>QC Batch: 122 | ,                                     |      |      | Date A         | analyzed:             | 2015-06-23             |                             | Ansly                         | zed By: AK             |  |
|                               | 1000                                  |      |      | Date 1         | CCVs                  |                        | $\operatorname{CCVs}$       | Percent                       | Zeu Dy. Am             |  |
|                               |                                       |      |      |                | True                  | Found                  | Percent                     | Recovery                      | Date                   |  |
| Param                         |                                       | Flag | Cert | Units          | Conc.                 | Conc.                  | Recovery                    | Limits                        | Analyzed               |  |
| Benzene                       |                                       | 0    | 5    | mg/kg          | 0.100                 | 0.0958                 | 96                          | 80 - 120                      | 2015-06-23             |  |
| Toluene                       |                                       |      | 5    | mg/kg          | 0.100                 | 0.0891                 | 89                          | 80 - 120                      | 2015-06-23             |  |
| Ethylbenzene                  |                                       |      | 5    | mg/kg          | 0.100                 | 0.0848                 | 85                          | 80 - 120                      | 2015-06-23             |  |
| V 1                           |                                       |      |      | 0, 0           | 0.200                 |                        | 0.9                         | 00 100                        | 0015 00 0              |  |

## Standard (CCV-2)

Xylene

QC Batch: 122539

Date Analyzed: 2015-06-23

0.300

0.278

93

mg/kg

 $\mathbf{5}$ 

Analyzed By: AK

2015-06-23

80 - 120

| Report Date: June<br>7250715061 | 23, 2015 |      | Wo      | Page Number: 29 of 32 |        |          |          |            |
|---------------------------------|----------|------|---------|-----------------------|--------|----------|----------|------------|
|                                 |          |      |         | $\rm CCVs$            | CCVs   | CCVs     | Percent  |            |
|                                 |          |      |         | True                  | Found  | Percent  | Recovery | Date       |
| Param                           | Flag     | Cert | Units   | Conc.                 | Conc.  | Recovery | Limits   | Analyzed   |
| Benzene                         |          | 5    | mg/kg   | 0.100                 | 0.0950 | 95       | 80 - 120 | 2015-06-23 |
| Toluene                         |          | 5    | m mg/kg | 0.100                 | 0.0905 | 90       | 80 - 120 | 2015-06-23 |
| Ethylbenzene                    |          | 5    | m mg/kg | 0.100                 | 0.0861 | 86       | 80 - 120 | 2015-06-23 |
| Xylene                          |          | 5    | mg/kg   | 0.300                 | 0.283  | 94       | 80 - 120 | 2015-06-23 |

# Standard (CCV-1)

| QC Batch: | 122540 |      | Date    | Analyzed:       | 2015-06-23 |          | Analyzed By: AK |            |  |
|-----------|--------|------|---------|-----------------|------------|----------|-----------------|------------|--|
|           |        |      |         | $\mathrm{CCVs}$ | CCVs       | CCVs     | Percent         |            |  |
|           |        |      |         | True            | Found      | Percent  | Recovery        | Date       |  |
| Param     | Flag   | Cert | Units   | Conc.           | Conc.      | Recovery | Limits          | Analyzed   |  |
| GRO       |        | 5    | m mg/Kg | 1.00            | 0.968      | 97       | 80 - 120        | 2015-06-23 |  |

## Standard (CCV-2)

| QC Batch: | 122540 |      | Date    | Analyzed:  | 2015-06-23 |                 | Analyzed By: AK |            |  |
|-----------|--------|------|---------|------------|------------|-----------------|-----------------|------------|--|
|           |        |      |         | $\rm CCVs$ | CCVs       | $\mathrm{CCVs}$ | Percent         |            |  |
|           |        |      |         | True       | Found      | Percent         | Recovery        | Date       |  |
| Param     | Flag   | Cert | Units   | Conc.      | Conc.      | Recovery        | Limits          | Analyzed   |  |
| GRO       |        | 5    | m mg/Kg | 1.00       | 0.964      | 96              | 80 - 120        | 2015-06-23 |  |

# Standard (CCV-1)

| QC Batch: | 122545 |      | Date    | Analyzed: | 2015-06-23 |                 | Analyzed By: SC |            |
|-----------|--------|------|---------|-----------|------------|-----------------|-----------------|------------|
|           |        |      |         | CCVs      | $\rm CCVs$ | $\mathrm{CCVs}$ | Percent         |            |
|           |        |      |         | True      | Found      | Percent         | Recovery        | Date       |
| Param     | Flag   | Cert | Units   | Conc.     | Conc.      | Recovery        | Limits          | Analyzed   |
| DRO       |        | 5    | m mg/Kg | 250       | 275        | 110             | 80 - 120        | 2015-06-23 |

## Standard (CCV-2)

## QC Batch: 122545

Date Analyzed: 2015-06-23

Analyzed By: SC

| Report Date:<br>7250715061 | June 23, 2015 |      |         | Work Order<br>30137 |               | Page Number: 30 of 32 |                     |            |
|----------------------------|---------------|------|---------|---------------------|---------------|-----------------------|---------------------|------------|
|                            |               |      |         | CCVs<br>True        | CCVs<br>Found | CCVs<br>Percent       | Percent<br>Recovery | Date       |
| Param                      | Flag          | Cert | Units   | Conc.               | Conc.         | Recovery              | Limits              | Analyzed   |
| DRO                        |               | 5    | m mg/Kg | 250                 | 243           | 97                    | 80 - 120            | 2015-06-23 |

Report Date: June 23, 2015 7250715061

Work Order: 15061709  $30137 \ \#5$ 

Page Number: 31 of 32  $\,$ 

# Appendix

# **Report Definitions**

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

# Laboratory Certifications

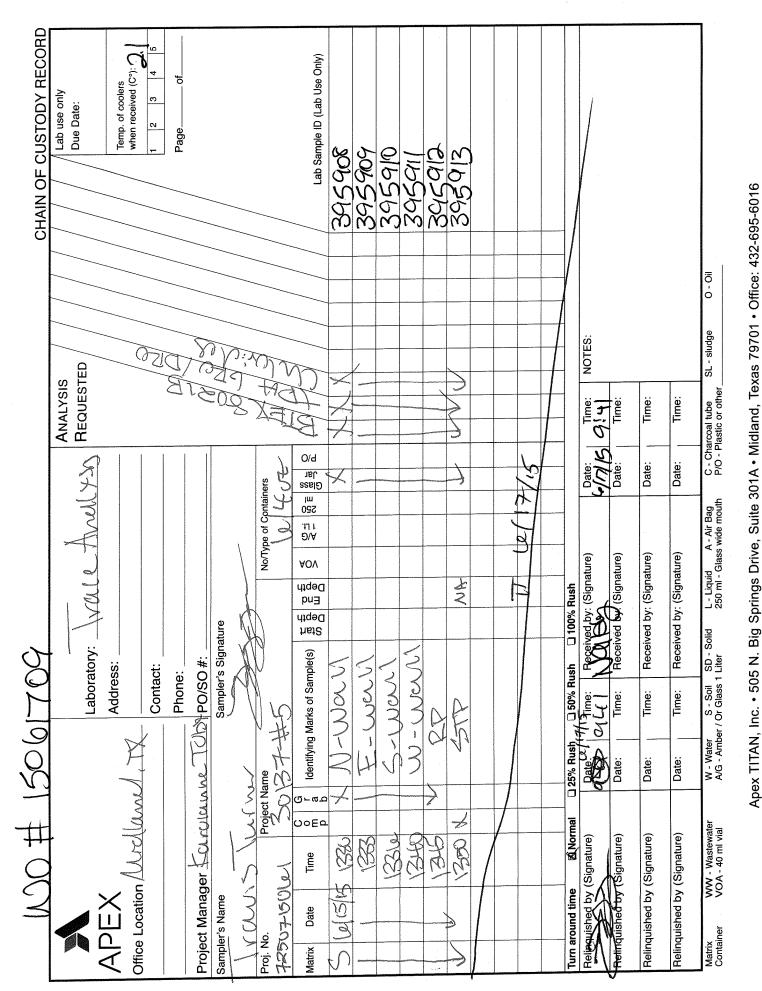
|   | Certifying | Certification       | Laboratory    |
|---|------------|---------------------|---------------|
| С | Authority  | Number              | Location      |
| - | NCTRCA     | WFWB384444Y0909     | TraceAnalysis |
| - | DBE        | VN 20657            | TraceAnalysis |
| - | HUB        | 1752439743100-86536 | TraceAnalysis |
| - | WBE        | 237019              | TraceAnalysis |
| 1 | L-A-B      | L2418               | Lubbock       |
| 2 | Kansas     | Kansas E-10317      | Lubbock       |
| 3 | LELAP      | LELAP-02003         | Lubbock       |
| 4 | NELAP      | T104704219-15-11    | Lubbock       |
| 5 | NELAP      | T104704392-14-8     | Midland       |
| 6 |            | 2014-018            | Lubbock       |

# Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.

| Report Date: June 23, 2015<br>7250715061 | Work Order: 15061709<br>30137 #5 | Page Number: 32 of 32 |
|------------------------------------------|----------------------------------|-----------------------|
|                                          |                                  |                       |

FDescriptionQsrSurrogate recovery outside of laboratory limits.


U The analyte is not detected above the SDL

# **Result Comments**

1 Analyst double spiked surrogate.

# Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.



# Analytical Report 522956

for APEX/Titan

**Project Manager: Karolanne Toby** 

**30137 Pipeline Release** 

725010112096

28-JAN-16

Collected By: Client





# 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-15-19), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534-15-1) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD ( L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Received by OCD: 4/19/2023 7:30:52 AM



28-JAN-16

Project Manager: **Karolanne Toby APEX/Titan** 505 N. Big Spring Ste. 301 A Midland, TX 79701

Reference: XENCO Report No(s): **522956 30137 Pipeline Release** Project Address: NM

### Karolanne Toby:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 522956. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

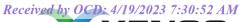
The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 522956 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager


Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America



Page 144 of 190

Page 2 of 24





## Sample Cross Reference 522956



#### APEX/Titan, Midland, TX

30137 Pipeline Release

| Sample Id | Matrix | Date Collected | Sample Depth | Lab Sample Id |
|-----------|--------|----------------|--------------|---------------|
| CS-1      | S      | 01-14-16 11:06 | - 6 ft       | 522956-001    |
| CS-2      | S      | 01-14-16 11:12 | - 6 ft       | 522956-002    |
| CS-3      | S      | 01-14-16 11:18 | - 10 ft      | 522956-003    |
| CS-4      | S      | 01-14-16 11:24 | - 6 ft       | 522956-004    |
| CS-5      | S      | 01-14-16 11:30 | - 6 ft       | 522956-005    |
| CS-6      | S      | 01-14-16 11:36 | - 6 ft       | 522956-006    |
| CS-7      | S      | 01-14-16 11:42 | - 6 ft       | 522956-007    |
| CS-8      | S      | 01-14-16 11:48 | - 6 ft       | 522956-008    |
| CS-9      | S      | 01-14-16 11:59 | - 10 ft      | 522956-009    |
| CS-10     | S      | 01-14-16 12:00 | - 6 ft       | 522956-010    |
| CS-11     | S      | 01-14-16 12:03 | - 6 ft       | 522956-011    |
| CS-12     | S      | 01-14-16 12:06 | - 10 ft      | 522956-012    |
| CS-13     | S      | 01-14-16 12:12 | - 6 ft       | 522956-013    |
| CS-14     | S      | 01-14-16 12:18 | - 6 ft       | 522956-014    |
| SP-1      | S      | 01-14-16 12:40 |              | 522956-015    |
| SP-2      | S      | 01-14-16 12:50 |              | 522956-016    |
| SP-3      | S      | 01-14-16 12:59 |              | 522956-017    |

.





CASE NARRATIVE



Client Name: APEX/Titan Project Name: 30137 Pipeline Release

 Project ID:
 725010112096

 Work Order Number(s):
 522956

Report Date:28-JAN-16Date Received:01/15/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None





## Certificate of Analysis Summary 522956

APEX/Titan, Midland, TX Project Name: 30137 Pipeline Release



Date Received in Lab:Fri Jan-15-16 08:40 amReport Date:28-JAN-16Project Manager:Kelsey Brooks

|                                    | Lab Id:    | 522956-0  | 001     | 522956-0    | 02       | 522956-0    | 003      | 522956-0    | 04       | 522956-0    | 005      | 522956-   | 006     |
|------------------------------------|------------|-----------|---------|-------------|----------|-------------|----------|-------------|----------|-------------|----------|-----------|---------|
|                                    | Field Id:  | CS-1      |         | CS-2        |          | CS-3        |          | CS-4        |          | CS-5        |          | CS-6      |         |
| Analysis Requested                 | Depth:     | 6 ft      |         | 6 ft        |          | 10 ft       |          | 6 ft        |          | 6 ft        |          | 6 ft      |         |
|                                    | Matrix:    | SOIL      | ,       | SOIL        |          | SOIL        |          | SOIL        |          | SOIL        |          | SOIL      |         |
|                                    | Sampled:   | Jan-14-16 | 11:06   | Jan-14-16 1 | 1:12     | Jan-14-16   | 11:18    | Jan-14-16   | 1:24     | Jan-14-16 1 | 1:30     | Jan-14-16 | 11:36   |
| BTEX by EPA 8021B                  | Extracted: | Jan-18-16 | 09:00   | Jan-18-16 0 | 9:00     | Jan-18-16 ( | )9:00    | Jan-18-16 ( | 9:00     | Jan-18-16 0 | 9:00     | Jan-18-16 | 09:00   |
|                                    | Analyzed:  | Jan-18-16 | 18:57   | Jan-18-16 1 | 2:58     | Jan-18-16   | 1:50     | Jan-18-16   | 9:12     | Jan-18-16 1 | 2:07     | Jan-18-16 | 13:14   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg     | RL      |
| Benzene                            |            | 0.0142    | 0.00101 | ND          | 0.000990 | ND          | 0.000998 | 0.00150     | 0.000990 | ND          | 0.000990 | ND        | 0.00101 |
| Toluene                            |            | 0.0637    | 0.00202 | ND          | 0.00198  | ND          | 0.00200  | ND          | 0.00198  | ND          | 0.00198  | ND        | 0.00202 |
| Ethylbenzene                       |            | 0.0147    | 0.00101 | ND          | 0.000990 | ND          | 0.000998 | ND          | 0.000990 | ND          | 0.000990 | ND        | 0.00101 |
| m,p-Xylenes                        |            | 0.122     | 0.00202 | ND          | 0.00198  | ND          | 0.00200  | 0.312       | 0.00198  | ND          | 0.00198  | ND        | 0.00202 |
| o-Xylene                           |            | 0.0198    | 0.00101 | ND          | 0.000990 | ND          | 0.000998 | 0.193       | 0.000990 | ND          | 0.000990 | ND        | 0.00101 |
| Total Xylenes                      |            | 0.142     | 0.00101 | ND          | 0.000990 | ND          | 0.000998 | 0.505       | 0.000990 | ND          | 0.000990 | ND        | 0.00101 |
| Total BTEX                         |            | 0.234     | 0.00101 | ND          | 0.000990 | ND          | 0.000998 | 0.507       | 0.000990 | ND          | 0.000990 | ND        | 0.00101 |
| Inorganic Anions by EPA 300/300.1  | Extracted: | Jan-22-16 | 10:00   | Jan-22-16 1 | 0:00     | Jan-22-16   | 10:00    | Jan-22-16   | 0:00     | Jan-22-16 1 | 0:00     | Jan-22-16 | 10:00   |
|                                    | Analyzed:  | Jan-26-16 | 20:02   | Jan-26-16 2 | 0:28     | Jan-27-16   | 15:41    | Jan-26-16 2 | 20:53    | Jan-26-16 2 | 21:06    | Jan-26-16 | 21:19   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg     | RL      |
| Chloride                           |            | 56.5      | 2.00    | 13.7        | 2.00     | 6.74        | 2.00     | 9.42        | 2.00     | ND          | 2.00     | ND        | 2.00    |
| TPH by SW 8015B                    | Extracted: | Jan-19-16 | 11:30   | Jan-19-16 1 | 1:30     | Jan-19-16   | 1:30     | Jan-19-16   | 1:30     | Jan-19-16 1 | 1:30     | Jan-19-16 | 11:30   |
|                                    | Analyzed:  | Jan-20-16 | 02:53   | Jan-20-16 0 | 3:27     | Jan-20-16 ( | 03:59    | Jan-21-16   | 4:12     | Jan-20-16 0 | 05:02    | Jan-20-16 | 05:35   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg     | RL      |
| C6-C10 Gasoline Range Hydrocarbons | ·          | 24.3      | 14.9    | ND          | 15.0     | ND          | 15.0     | 149         | 15.0     | ND          | 15.0     | ND        | 14.9    |
| C10-C28 Diesel Range Organics      |            | ND        | 14.9    | 40.7        | 15.0     | ND          | 15.0     | 300         | 15.0     | 101         | 15.0     | ND        | 14.9    |
| Total TPH                          |            | 24.3      | 14.9    | 40.7        | 15.0     | ND          | 15.0     | 449         | 15.0     | 101         | 15.0     | ND        | 14.9    |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Page 5 of 24





## Certificate of Analysis Summary 522956

APEX/Titan, Midland, TX Project Name: 30137 Pipeline Release



Date Received in Lab:Fri Jan-15-16 08:40 amReport Date:28-JAN-16Project Manager:Kelsey Brooks

|                                    | Lab Id:    | 522956-0  | 007     | 522956-0    | 08      | 522956-0    | 009      | 522956-0    | 10       | 522956-0    | 11      | 522956-0  | 012     |
|------------------------------------|------------|-----------|---------|-------------|---------|-------------|----------|-------------|----------|-------------|---------|-----------|---------|
| Analysis Requested                 | Field Id:  | CS-7      |         | CS-8        |         | CS-9        |          | CS-10       |          | CS-11       |         | CS-12     | 2       |
| Anulysis Kequesieu                 | Depth:     | 6 ft      |         | 6 ft        |         | 10 ft       |          | 6 ft        |          | 6 ft        |         | 10 ft     |         |
|                                    | Matrix:    | SOIL      | ,       | SOIL        |         | SOIL        |          | SOIL        |          | SOIL        |         | SOIL      | ,       |
|                                    | Sampled:   | Jan-14-16 | 11:42   | Jan-14-16 1 | 1:48    | Jan-14-16   | 11:59    | Jan-14-16 1 | 2:00     | Jan-14-16 1 | 2:03    | Jan-14-16 | 12:06   |
| BTEX by EPA 8021B                  | Extracted: | Jan-18-16 | 09:00   | Jan-18-16 0 | 9:00    | Jan-18-16 ( | )9:00    | Jan-18-16 0 | 9:00     | Jan-18-16 0 | 9:00    | Jan-18-16 | 09:00   |
|                                    | Analyzed:  | Jan-18-16 | 15:24   | Jan-18-16 1 | 5:41    | Jan-18-16   | 15:57    | Jan-18-16 1 | 6:14     | Jan-18-16 1 | 6:30    | Jan-18-16 | 16:47   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg       | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL      | mg/kg     | RL      |
| Benzene                            |            | ND        | 0.00100 | ND          | 0.00100 | ND          | 0.000996 | ND          | 0.000994 | ND          | 0.00100 | ND        | 0.00101 |
| Toluene                            |            | ND        | 0.00201 | ND          | 0.00200 | ND          | 0.00199  | ND          | 0.00199  | ND          | 0.00200 | ND        | 0.00202 |
| Ethylbenzene                       |            | ND        | 0.00100 | ND          | 0.00100 | ND          | 0.000996 | ND          | 0.000994 | ND          | 0.00100 | ND        | 0.00101 |
| m,p-Xylenes                        |            | ND        | 0.00201 | ND          | 0.00200 | ND          | 0.00199  | ND          | 0.00199  | ND          | 0.00200 | ND        | 0.00202 |
| o-Xylene                           |            | ND        | 0.00100 | ND          | 0.00100 | ND          | 0.000996 | ND          | 0.000994 | ND          | 0.00100 | ND        | 0.00101 |
| Total Xylenes                      |            | ND        | 0.00100 | ND          | 0.00100 | ND          | 0.000996 | ND          | 0.000994 | ND          | 0.00100 | ND        | 0.00101 |
| Total BTEX                         |            | ND        | 0.00100 | ND          | 0.00100 | ND          | 0.000996 | ND          | 0.000994 | ND          | 0.00100 | ND        | 0.00101 |
| Inorganic Anions by EPA 300/300.1  | Extracted: | Jan-22-16 | 10:00   | Jan-22-16 1 | 0:00    | Jan-22-16   | 10:00    | Jan-22-16 1 | 0:00     | Jan-22-16 1 | 0:00    | Jan-22-16 | 10:00   |
|                                    | Analyzed:  | Jan-27-16 | 16:18   | Jan-26-16 2 | 2:10    | Jan-26-16   | 16:23    | Jan-26-16 2 | 2:22     | Jan-26-16 1 | 7:55    | Jan-26-16 | 18:59   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg       | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL      | mg/kg     | RL      |
| Chloride                           |            | 2.84      | 2.00    | 5.66        | 2.00    | ND          | 2.00     | 2.63        | 2.00     | ND          | 2.00    | 7.29      | 2.00    |
| TPH by SW 8015B                    | Extracted: | Jan-19-16 | 11:30   | Jan-20-16 0 | 9:00    | Jan-20-16 ( | )9:00    | Jan-20-16 0 | 9:00     | Jan-20-16 0 | 9:00    | Jan-20-16 | 09:00   |
|                                    | Analyzed:  | Jan-20-16 | 06:09   | Jan-21-16 0 | 1:27    | Jan-21-16 ( | 01:51    | Jan-21-16 0 | 2:16     | Jan-21-16 0 | 2:41    | Jan-21-16 | 03:08   |
|                                    | Units/RL:  | mg/kg     | RL      | mg/kg       | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL      | mg/kg     | RL      |
| C6-C10 Gasoline Range Hydrocarbons |            | ND        | 15.0    | ND          | 15.0    | ND          | 15.0     | ND          | 15.0     | ND          | 15.0    | ND        | 14.9    |
| C10-C28 Diesel Range Organics      |            | ND        | 15.0    | ND          | 15.0    | ND          | 15.0     | ND          | 15.0     | ND          | 15.0    | ND        | 14.9    |
| Total TPH                          |            | ND        | 15.0    | ND          | 15.0    | ND          | 15.0     | ND          | 15.0     | ND          | 15.0    | ND        | 14.9    |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 6 of 24







APEX/Titan, Midland, TX

Project Name: 30137 Pipeline Release



Date Received in Lab:Fri Jan-15-16 08:40 amReport Date:28-JAN-16Project Manager:Kelsey Brooks

|                                    | Lab Id:    | 522956-0    | )13     | 522956-0    | 14       | 522956-0    | 015      | 522956-0    | 16       | 522956-0    | )17     |  |
|------------------------------------|------------|-------------|---------|-------------|----------|-------------|----------|-------------|----------|-------------|---------|--|
| An aluaia Do au catod              | Field Id:  | CS-13       |         | CS-14       |          | SP-1        |          | SP-2        |          | SP-3        |         |  |
| Analysis Requested                 | Depth:     | 6 ft        |         | 6 ft        |          |             |          |             |          |             |         |  |
|                                    | Matrix:    | SOIL        |         | SOIL        |          | SOIL        |          | SOIL        |          | SOIL        |         |  |
|                                    | Sampled:   | Jan-14-16   | 12:12   | Jan-14-16 1 | 2:18     | Jan-14-16 1 | 2:40     | Jan-14-16 1 | 2:50     | Jan-14-16   | 12:59   |  |
| BTEX by EPA 8021B                  | Extracted: | Jan-18-16 ( | 09:00   | Jan-18-16 0 | 9:00     | Jan-18-16 0 | 9:00     | Jan-18-16 0 | 9:00     | Jan-18-16 ( | )9:00   |  |
|                                    | Analyzed:  | Jan-19-16 ( | 09:47   | Jan-18-16 1 | 7:20     | Jan-18-16 1 | 7:35     | Jan-18-16 1 | 7:51     | Jan-18-16 1 | 18:41   |  |
|                                    | Units/RL:  | mg/kg       | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL      |  |
| Benzene                            |            | ND          | 0.00101 | ND (        | ).000992 | ND          | 0.000996 | ND (        | ).000996 | ND          | 0.00101 |  |
| Toluene                            |            | ND          | 0.00202 | ND          | 0.00198  | ND          | 0.00199  | ND          | 0.00199  | ND          | 0.00201 |  |
| Ethylbenzene                       |            | ND          | 0.00101 | ND (        | 0.000992 | ND          | 0.000996 | ND (        | ).000996 | ND          | 0.00101 |  |
| m,p-Xylenes                        |            | ND          | 0.00202 | ND          | 0.00198  | ND          | 0.00199  | ND          | 0.00199  | ND          | 0.00201 |  |
| o-Xylene                           |            | ND          | 0.00101 | ND (        | 0.000992 | ND          | 0.000996 | ND (        | ).000996 | ND          | 0.00101 |  |
| Total Xylenes                      |            | ND          | 0.00101 | ND (        | 0.000992 | ND          | 0.000996 | ND (        | ).000996 | ND          | 0.00101 |  |
| Total BTEX                         |            | ND          | 0.00101 | ND (        | 0.000992 | ND          | 0.000996 | ND (        | ).000996 | ND          | 0.00101 |  |
| Inorganic Anions by EPA 300/300.1  | Extracted: | Jan-22-16   | 10:00   | Jan-22-16 1 | 0:00     | Jan-22-16 1 | 0:00     | Jan-22-16 1 | 0:00     | Jan-22-16 1 | 10:00   |  |
|                                    | Analyzed:  | Jan-26-16   | 18:20   | Jan-26-16 1 | 8:33     | Jan-26-16 1 | 8:46     | Jan-26-16 1 | 9:37     | Jan-27-16 2 | 21:15   |  |
|                                    | Units/RL:  | mg/kg       | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL      |  |
| Chloride                           |            | 2.47        | 2.00    | 5.75        | 2.00     | 364         | 100      | 141         | 40.0     | 37.0        | 10.0    |  |
| TPH by SW 8015B                    | Extracted: | Jan-20-16 ( | 09:00   | Jan-20-16 0 | 9:00     | Jan-20-16 0 | 9:00     | Jan-20-16 0 | 9:00     | Jan-20-16 ( | )9:00   |  |
|                                    | Analyzed:  | Jan-21-16 ( | 03:37   | Jan-21-16 0 | 3:34     | Jan-21-16 1 | 3:42     | Jan-21-16 0 | 4:47     | Jan-21-16 ( | 05:21   |  |
|                                    | Units/RL:  | mg/kg       | RL      | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL       | mg/kg       | RL      |  |
| C6-C10 Gasoline Range Hydrocarbons |            | ND          | 15.0    | ND          | 15.0     | ND          | 15.0     | ND          | 15.0     | ND          | 15.0    |  |
| C10-C28 Diesel Range Organics      |            | ND          | 15.0    | ND          | 15.0     | ND          | 15.0     | ND          | 15.0     | ND          | 15.0    |  |
| Total TPH                          |            | ND          | 15.0    | ND          | 15.0     | ND          | 15.0     | ND          | 15.0     | ND          | 15.0    |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 7 of 24



# **Flagging Criteria**



Page 150 of 190

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

#### A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

|                                                 | FIIOIIC        | Tax            |
|-------------------------------------------------|----------------|----------------|
| 4147 Greenbriar Dr, Stafford, TX 77477          | (281) 240-4200 | (281) 240-4280 |
| 9701 Harry Hines Blvd , Dallas, TX 75220        | (214) 902 0300 | (214) 351-9139 |
| 5332 Blackberry Drive, San Antonio TX 78238     | (210) 509-3334 | (210) 509-3335 |
| 1211 W Florida Ave, Midland, TX 79701           | (432) 563-1800 | (432) 563-1713 |
| 2525 W. Huntington Dr Suite 102, Tempe AZ 85282 | (602) 437-0330 |                |
|                                                 |                |                |



| Work Or<br>Lab Batch # | <b>ders :</b> 52295<br>#: 985838 | 6,<br>Sample: 522956-003 / SMP       | Batch                  |                       | : 7250101120<br>: Soil | )96                     |       |
|------------------------|----------------------------------|--------------------------------------|------------------------|-----------------------|------------------------|-------------------------|-------|
| Units:                 | mg/kg                            | Date Analyzed: 01/18/16 11:50        | SU                     | RROGATE R             | ECOVERY                | STUDY                   |       |
|                        | BTEX                             | X by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |
|                        |                                  | Analytes                             |                        |                       | [D]                    |                         |       |
| 1,4-Difluoro           | benzene                          |                                      | 0.0321                 | 0.0300                | 107                    | 80-120                  |       |
| 4-Bromofluo            | orobenzene                       |                                      | 0.0296                 | 0.0300                | 99                     | 80-120                  |       |
| Lab Batch #            | #: 985838                        | Sample: 522956-005 / SMP             | Batch                  | n: 1 Matrix           | : Soil                 |                         |       |
| Units:                 | mg/kg                            | Date Analyzed: 01/18/16 12:07        | SU                     | RROGATE R             | ECOVERYS               | STUDY                   |       |
|                        | BTEX                             | X by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 1.4-Difluoro           | benzene                          | Analytes                             | 0.0323                 | 0.0300                | 108                    | 80-120                  |       |
| 4-Bromofluo            |                                  |                                      | 0.0299                 | 0.0300                | 100                    | 80-120                  |       |
| Lab Batch #            |                                  | Sample: 522956-002 / SMP             | Batch                  |                       |                        | 00 120                  |       |
| Units:                 | mg/kg                            | <b>Date Analyzed:</b> 01/18/16 12:58 |                        | RROGATE R             |                        | STUDY                   |       |
|                        | BTE                              | X by EPA 8021B                       | Amount<br>Found        | True<br>Amount        | Recovery               | Control<br>Limits<br>%R | Flags |
|                        |                                  | Analytes                             | [ <b>A</b> ]           | [B]                   | %R<br>[D]              | 70K                     |       |
| 1,4-Difluoro           | benzene                          |                                      | 0.0352                 | 0.0300                | 117                    | 80-120                  |       |
| 4-Bromofluo            | orobenzene                       |                                      | 0.0297                 | 0.0300                | 99                     | 80-120                  |       |
| Lab Batch #            | #: 985838                        | Sample: 522956-006 / SMP             | Batch                  | n: 1 Matrix           | : Soil                 |                         |       |
| Units:                 | mg/kg                            | Date Analyzed: 01/18/16 13:14        | SU                     | RROGATE R             | ECOVERY                | STUDY                   |       |
|                        | втех                             | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 1,4-Difluoro           | benzene                          |                                      | 0.0345                 | 0.0300                | 115                    | 80-120                  |       |
| 4-Bromofluo            | orobenzene                       |                                      | 0.0294                 | 0.0300                | 98                     | 80-120                  |       |
| Lab Batch #            | #: 985838                        | Sample: 522956-007 / SMP             | Batch                  | n: 1 Matrix           | : Soil                 |                         |       |
| U <b>nits:</b>         | mg/kg                            | Date Analyzed: 01/18/16 15:24        | SU                     | RROGATE R             | ECOVERYS               | STUDY                   |       |
|                        | BTEX                             | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
|                        |                                  |                                      | 0.0240                 | 0.0200                | 113                    | 80-120                  |       |
| 1,4-Difluoro           | benzene                          |                                      | 0.0340                 | 0.0300                | 115                    | 00-120                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



| Work Ore<br>Lab Batch # | <b>ders :</b> 52295<br>#: 985838 | 6,<br>Sample: 522956-008 / SMP       | Batch                    |                       | : 7250101120<br>: Soil | )96                     |       |  |
|-------------------------|----------------------------------|--------------------------------------|--------------------------|-----------------------|------------------------|-------------------------|-------|--|
| Units:                  | mg/kg                            | <b>Date Analyzed:</b> 01/18/16 15:41 | SU                       | RROGATE R             | ECOVERYS               | STUDY                   |       |  |
|                         | втех                             | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |  |
|                         |                                  | Analytes                             |                          |                       | [D]                    |                         |       |  |
| 1,4-Difluoro            | benzene                          |                                      | 0.0340                   | 0.0300                | 113                    | 80-120                  |       |  |
| 4-Bromofluo             | robenzene                        |                                      | 0.0295                   | 0.0300                | 98                     | 80-120                  |       |  |
| Lab Batch #             | <b>#:</b> 985838                 | Sample: 522956-009 / SMP             | Batch                    | n: 1 Matrix           | : Soil                 |                         |       |  |
| Units:                  | mg/kg                            | Date Analyzed: 01/18/16 15:57        | SURROGATE RECOVERY STUDY |                       |                        |                         |       |  |
|                         | ВТЕУ                             | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |  |
| 1,4-Difluorol           | benzene                          | Anaryus                              | 0.0345                   | 0.0300                | 115                    | 80-120                  |       |  |
| 4-Bromofluo             | robenzene                        |                                      | 0.0299                   | 0.0300                | 100                    | 80-120                  |       |  |
| Lab Batch #             | #: 985838                        | Sample: 522956-010 / SMP             | Batch                    | n: 1 Matrix           | : Soil                 |                         |       |  |
| Units:                  | mg/kg                            | <b>Date Analyzed:</b> 01/18/16 16:14 |                          | RROGATE R             | ECOVERY                | STUDY                   |       |  |
|                         | ВТЕУ                             | X by EPA 8021B Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |  |
| 1,4-Difluoro            | henzene                          |                                      | 0.0335                   | 0.0300                | 112                    | 80-120                  |       |  |
| 4-Bromofluo             |                                  |                                      | 0.0335                   | 0.0300                | 98                     | 80-120                  |       |  |
| Lab Batch #             |                                  | Sample: 522956-011 / SMP             | Batch                    |                       |                        | 80-120                  |       |  |
| Units:                  | mg/kg                            | <b>Date Analyzed:</b> 01/18/16 16:30 |                          | RROGATE R             |                        | STUDY                   |       |  |
|                         | ВТЕХ                             | X by EPA 8021B Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |  |
| 1,4-Difluoro            | benzene                          |                                      | 0.0355                   | 0.0300                | 118                    | 80-120                  |       |  |
| 4-Bromofluo             | robenzene                        |                                      | 0.0303                   | 0.0300                | 101                    | 80-120                  |       |  |
| Lab Batch #             | #: 985838                        | Sample: 522956-012 / SMP             | Batch                    | n: 1 Matrix           | : Soil                 |                         |       |  |
| Units:                  | mg/kg                            | Date Analyzed: 01/18/16 16:47        | SU                       | RROGATE R             | ECOVERY                | STUDY                   |       |  |
|                         | BTEX                             | X by EPA 8021B Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |  |
|                         |                                  | -                                    |                          |                       |                        |                         |       |  |
| 1,4-Difluorol           | benzene                          |                                      | 0.0336                   | 0.0300                | 112                    | 80-120                  |       |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



| Work Ore<br>Lab Batch # | <b>ders :</b> 52295<br>#: 985838 | 6,<br>Sample: 522956-014 / SMP       | Batch                  |                       | : 7250101120<br>: Soil | )96                     |       |
|-------------------------|----------------------------------|--------------------------------------|------------------------|-----------------------|------------------------|-------------------------|-------|
| Units:                  | mg/kg                            | Date Analyzed: 01/18/16 17:20        | SU                     | RROGATE R             | ECOVERY S              | STUDY                   |       |
|                         | BTEX                             | X by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |
|                         |                                  | Analytes                             |                        |                       | [D]                    |                         |       |
| 1,4-Difluoro            | benzene                          |                                      | 0.0359                 | 0.0300                | 120                    | 80-120                  |       |
| 4-Bromofluo             | orobenzene                       |                                      | 0.0305                 | 0.0300                | 102                    | 80-120                  |       |
| Lab Batch #             | <b>#:</b> 985838                 | Sample: 522956-015 / SMP             | Batch                  | n: 1 Matrix           | : Soil                 |                         |       |
| Units:                  | mg/kg                            | Date Analyzed: 01/18/16 17:35        | SU                     | RROGATE R             | ECOVERY S              | STUDY                   |       |
|                         | BTEX                             | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 1,4-Difluorol           | benzene                          |                                      | 0.0283                 | 0.0300                | 94                     | 80-120                  |       |
| 4-Bromofluo             |                                  |                                      | 0.0241                 | 0.0300                | 80                     | 80-120                  |       |
| Lab Batch #             | #: 985838                        | Sample: 522956-016 / SMP             | Batch                  |                       |                        |                         |       |
| Units:                  | mg/kg                            | <b>Date Analyzed:</b> 01/18/16 17:51 |                        | RROGATE R             | ECOVERY S              | STUDY                   |       |
|                         | BTEX                             | X by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
|                         |                                  | Analytes                             |                        |                       |                        |                         |       |
| 1,4-Difluorol           |                                  |                                      | 0.0312                 | 0.0300                | 104                    | 80-120                  |       |
| 4-Bromofluo             |                                  |                                      | 0.0273                 | 0.0300                | 91                     | 80-120                  |       |
| Lab Batch #             |                                  | Sample: 522956-017 / SMP             | Batch                  | n: 1 Matrix           | : Soil                 |                         |       |
| Units:                  | mg/kg                            | Date Analyzed: 01/18/16 18:41        | SU                     | RROGATE R             | ECOVERY S              | STUDY                   |       |
|                         | BTE                              | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 1,4-Difluorol           | benzene                          |                                      | 0.0276                 | 0.0300                | 92                     | 80-120                  |       |
| 4-Bromofluo             | orobenzene                       |                                      | 0.0241                 | 0.0300                | 80                     | 80-120                  |       |
| Lab Batch #             | #: 985838                        | Sample: 522956-001 / SMP             | Batch                  | n: 1 Matrix           | : Soil                 |                         |       |
| Units:                  | mg/kg                            | Date Analyzed: 01/18/16 18:57        | SU                     | RROGATE R             | ECOVERY S              | STUDY                   |       |
|                         | BTEX                             | X by EPA 8021B Analytes              | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 140.0                   | benzene                          |                                      | 0.0268                 | 0.0300                | 89                     | 80-120                  |       |
| 1,4-Difluoro            | oenzene                          |                                      |                        | 0.0500                |                        |                         |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



| Euo Duten #1   | 985838  | Sample: 522956-004 / SMP      | Batc                   | h: 1 Matrix           | : 5011                |                         |       |
|----------------|---------|-------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| Units:         | mg/kg   | Date Analyzed: 01/18/16 19:12 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|                | BTEX    | K by EPA 8021B                | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |         | Analytes                      |                        |                       | [D]                   |                         |       |
| 1,4-Difluorobe | nzene   |                               | 0.0263                 | 0.0300                | 88                    | 80-120                  |       |
| 4-Bromofluoro  | benzene |                               | 0.0351                 | 0.0300                | 117                   | 80-120                  |       |
| Lab Batch #:   | 985838  | Sample: 522956-013 / SMP      | Batc                   | h: 1 Matrix           | : Soil                |                         |       |
| Units:         | mg/kg   | Date Analyzed: 01/19/16 09:47 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|                | втех    | X by EPA 8021B                | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluorobe | nzene   | Analytes                      | 0.0340                 | 0.0300                | 113                   | 80-120                  |       |
| 4-Bromofluoro  |         |                               | 0.0311                 | 0.0300                | 104                   | 80-120                  |       |
| Lab Batch #:   |         | Sample: 522956-001 / SMP      | Batc                   |                       |                       | 00 120                  |       |
| Units:         | mg/kg   | Date Analyzed: 01/20/16 02:53 |                        | RROGATE R             |                       | STUDY                   |       |
|                | TPE     | I by SW 8015B                 | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1 (11)         |         | Analytes                      |                        |                       |                       |                         |       |
| 1-Chlorooctane |         |                               | 87.5                   | 99.6                  | 88                    | 70-135                  |       |
| o-Terphenyl    | 00(000  |                               | 46.6                   | 49.8                  | 94                    | 70-135                  |       |
| Lab Batch #:   |         | Sample: 522956-002 / SMP      | Batc                   |                       |                       |                         |       |
| Units:         | mg/kg   | Date Analyzed: 01/20/16 03:27 | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | TPE     | I by SW 8015B<br>Analytes     | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1-Chlorooctane | 1       |                               | 103                    | 99.9                  | 103                   | 70-135                  |       |
| o-Terphenyl    |         |                               | 54.5                   | 50.0                  | 109                   | 70-135                  |       |
| Lab Batch #:   | 986082  | Sample: 522956-003 / SMP      | Batc                   | h: 1 Matrix           | : Soil                |                         |       |
| Units:         | mg/kg   | Date Analyzed: 01/20/16 03:59 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|                | TPE     | I by SW 8015B<br>Analytes     | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|                |         | J                             |                        |                       |                       |                         |       |
| 1-Chlorooctane |         |                               | 106                    | 99.7                  | 106                   | 70-135                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



| Work Orde<br>Lab Batch #: |          | 6,<br>Sample: 522956-005 / SMP       | Batch                  |                       | 7250101120<br>Soil    | )96                                   |       |  |  |
|---------------------------|----------|--------------------------------------|------------------------|-----------------------|-----------------------|---------------------------------------|-------|--|--|
| Units:                    | mg/kg    | <b>Date Analyzed:</b> 01/20/16 05:02 | SU                     | RROGATE R             | ECOVERY S             | STUDY                                 |       |  |  |
|                           | TPH      | I by SW 8015B                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R               | Flags |  |  |
|                           |          | Analytes                             |                        |                       | [D]                   |                                       |       |  |  |
| 1-Chlorooctane            | e        |                                      | 88.8                   | 99.8                  | 89                    | 70-135                                |       |  |  |
| o-Terphenyl               |          |                                      | 47.1                   | 49.9                  | 94                    | 70-135                                |       |  |  |
| Lab Batch #:              | 986082   | Sample: 522956-006 / SMP             | Batch                  | n: 1 Matrix           | : Soil                | · · · · · · · · · · · · · · · · · · · |       |  |  |
| Units:                    | mg/kg    | Date Analyzed: 01/20/16 05:35        | SU                     | RROGATE R             | RECOVERY STUDY        |                                       |       |  |  |
|                           | TPH      | I by SW 8015B<br>Analytes            | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R               | Flags |  |  |
| 1-Chlorooctane            | e        | Anarytes                             | 91.4                   | 99.6                  | 92                    | 70-135                                |       |  |  |
| o-Terphenyl               |          |                                      | 48.7                   | 49.8                  | 98                    | 70-135                                |       |  |  |
| Lab Batch #:              | 986082   | Sample: 522956-007 / SMP             | Batch                  | n: 1 Matrix           | : Soil                |                                       |       |  |  |
| U <b>nits:</b>            | mg/kg    | <b>Date Analyzed:</b> 01/20/16 06:09 | SU                     | RROGATE R             | ECOVERY S             | STUDY                                 |       |  |  |
|                           | TPH      | I by SW 8015B<br>Analytes            | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R               | Flags |  |  |
| 1-Chlorooctane            | <u>,</u> | Anarytes                             | 93.1                   | 99.8                  | 93                    | 70-135                                |       |  |  |
| o-Terphenyl               |          |                                      | 49.9                   | 49.9                  | 93                    | 70-135                                |       |  |  |
| Lab Batch #:              | 986086   | Sample: 522956-008 / SMP             | 49.9<br>Batch          |                       |                       | /0-155                                |       |  |  |
| Units:                    | mg/kg    | Date Analyzed: 01/21/16 01:27        |                        | RROGATE R             |                       | STUDY                                 |       |  |  |
|                           | TPH      | I by SW 8015B Analytes               | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R               | Flags |  |  |
| 1-Chlorooctane            | e        |                                      | 115                    | 99.9                  | 115                   | 70-135                                |       |  |  |
| o-Terphenyl               |          |                                      | 47.7                   | 50.0                  | 95                    | 70-135                                |       |  |  |
| Lab Batch #:              | 986086   | Sample: 522956-009 / SMP             | Batch                  | n: 1 Matrix           | : Soil                |                                       |       |  |  |
| Units:                    | mg/kg    | Date Analyzed: 01/21/16 01:51        | SU                     | RROGATE R             | ECOVERY S             | STUDY                                 |       |  |  |
|                           | TPH      | I by SW 8015B<br>Analytes            | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R               | Flags |  |  |
|                           |          |                                      |                        |                       | 1                     | 50.105                                |       |  |  |
| 1-Chlorooctane            | e        |                                      | 115                    | 100                   | 115                   | 70-135                                |       |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



Project Name: 30137 Pipeline Release

| Work Orders Lab Batch #: 98    |       | 5,<br>Sample: 522956-010 / SMP       | Batc                     |                       | : 7250101120<br>: Soil | )96                     |       |  |
|--------------------------------|-------|--------------------------------------|--------------------------|-----------------------|------------------------|-------------------------|-------|--|
|                                | g/kg  | <b>Date Analyzed:</b> 01/21/16 02:16 |                          | JRROGATE R            | -                      | STUDY                   |       |  |
|                                | ТРН   | by SW 8015B                          | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |  |
|                                |       | Analytes                             |                          |                       | [D]                    |                         |       |  |
| 1-Chlorooctane                 |       |                                      | 106                      | 99.8                  | 106                    | 70-135                  |       |  |
| o-Terphenyl                    |       |                                      | 44.0                     | 49.9                  | 88                     | 70-135                  |       |  |
| Lab Batch #: 98                | 86086 | Sample: 522956-011 / SMP             | Batc                     | h: 1 Matrix           | : Soil                 |                         |       |  |
| Units: m                       | g/kg  | Date Analyzed: 01/21/16 02:41        | SU                       | JRROGATE R            | ECOVERY                | STUDY                   |       |  |
|                                |       | by SW 8015B Analytes                 | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |  |
| 1-Chlorooctane                 |       |                                      | 102                      | 100                   | 102                    | 70-135                  |       |  |
| o-Terphenyl                    |       |                                      | 42.7                     | 50.0                  | 85                     | 70-135                  |       |  |
| Lab Batch #: 98                | 36086 | Sample: 522956-012 / SMP             | Batc                     | h: 1 Matrix           | : Soil                 |                         |       |  |
| Units: m                       | g/kg  | Date Analyzed: 01/21/16 03:08        | SURROGATE RECOVERY STUDY |                       |                        |                         |       |  |
|                                |       | by SW 8015B Analytes                 | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flage |  |
| 1-Chlorooctane                 |       | Analytes                             | 104                      | 00.6                  |                        | 70.125                  |       |  |
|                                |       |                                      | 104                      | 99.6                  | 104                    | 70-135                  |       |  |
| o-Terphenyl<br>Lab Batch #: 98 | 26086 | Sample: 522956-014 / SMP             | 44.1<br>Batc             | 49.8<br>h: 1 Matrix   | 89<br>• Soil           | 70-135                  |       |  |
|                                |       | <b>Date Analyzed:</b> 01/21/16 03:34 |                          |                       |                        |                         |       |  |
|                                | g/kg  | Date Analyzet: 01/21/10 05.54        | SU                       | JRROGATE R            | ECOVERY                | STUDY                   |       |  |
|                                |       | by SW 8015B<br>Analytes              | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |  |
| 1-Chlorooctane                 |       |                                      | 106                      | 100                   | 106                    | 70-135                  |       |  |
| o-Terphenyl                    |       |                                      | 55.7                     | 50.0                  | 111                    | 70-135                  |       |  |
| Lab Batch #: 98                | 86086 | Sample: 522956-013 / SMP             | Batc                     | h: 1 Matrix           | : Soil                 |                         |       |  |
| Units: m                       | g/kg  | Date Analyzed: 01/21/16 03:37        | SU                       | JRROGATE R            | ECOVERY                | STUDY                   |       |  |
|                                |       | by SW 8015B                          | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flag  |  |
| 1.011                          |       | Analytes                             |                          |                       |                        |                         |       |  |
| 1-Chlorooctane                 |       |                                      | 105                      | 99.9                  | 105                    | 70-135                  |       |  |
| o-Terphenyl                    |       |                                      | 44.0                     | 50.0                  | 88                     | 70-135                  |       |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



Project Name: 30137 Pipeline Release

| Work Orde<br>Lab Batch #:     |         | Sample: 522956-016 / SMP             | Batc                     |                       | : 7250101120<br>: Soil | // 0                                                                                                                                                                                                                   |       |  |  |
|-------------------------------|---------|--------------------------------------|--------------------------|-----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Units:                        | mg/kg   | <b>Date Analyzed:</b> 01/21/16 04:47 | SU                       | JRROGATE R            | ECOVERY S              | STUDY                                                                                                                                                                                                                  |       |  |  |
|                               | TPH     | I by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R                                                                                                                                                                                                | Flags |  |  |
|                               |         | Analytes                             |                          |                       | [D]                    | Control<br>Limits<br>%R70-13570-13570-135STUDYControl<br>Limits<br>%R70-135STUDYControl<br>Limits<br>%R70-135STUDYSTUDYControl<br>Limits<br>%R70-13570-13570-13570-13570-13570-13570-13570-13570-13570-13570-13570-135 |       |  |  |
| 1-Chlorooctane                | •       |                                      | 84.4                     | 99.9                  | 84                     | 70-135                                                                                                                                                                                                                 |       |  |  |
| o-Terphenyl                   |         |                                      | 44.6                     | 50.0                  | 89                     | 70-135                                                                                                                                                                                                                 |       |  |  |
| Lab Batch #:                  | 986086  | Sample: 522956-017 / SMP             | Batc                     | h: 1 Matrix           | : Soil                 |                                                                                                                                                                                                                        |       |  |  |
| Units:                        | mg/kg   | Date Analyzed: 01/21/16 05:21        | SU                       | JRROGATE R            | E RECOVERY STUDY       |                                                                                                                                                                                                                        |       |  |  |
|                               | TPH     | l by SW 8015B<br>Analytes            | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Limits                                                                                                                                                                                                                 | Flags |  |  |
| 1-Chlorooctane                | ;       | Anarytes                             | 85.2                     | 100                   | 85                     | 70-135                                                                                                                                                                                                                 |       |  |  |
| o-Terphenyl                   |         |                                      | 44.4                     | 50.0                  | 89                     |                                                                                                                                                                                                                        |       |  |  |
| Lab Batch #:                  | 986086  | Sample: 522956-015 / SMP             | Batc                     |                       |                        |                                                                                                                                                                                                                        |       |  |  |
| Units:                        | mg/kg   | <b>Date Analyzed:</b> 01/21/16 13:42 | SURROGATE RECOVERY STUDY |                       |                        |                                                                                                                                                                                                                        |       |  |  |
|                               | TPH     | l by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R         | Limits                                                                                                                                                                                                                 | Flags |  |  |
|                               |         | Analytes                             |                          |                       | [D]                    |                                                                                                                                                                                                                        |       |  |  |
| 1-Chlorooctane                | •       |                                      | 93.8                     | 99.9                  | 94                     | 70-135                                                                                                                                                                                                                 |       |  |  |
| o-Terphenyl                   |         |                                      | 49.5                     | 50.0                  | 99                     | 70-135                                                                                                                                                                                                                 |       |  |  |
| Lab Batch #:                  | 986082  | Sample: 522956-004 / SMP             | Batc                     | h: 1 Matrix           | : Soil                 |                                                                                                                                                                                                                        |       |  |  |
| Units:                        | mg/kg   | Date Analyzed: 01/21/16 14:12        | SU                       | JRROGATE R            | ECOVERY S              | STUDY                                                                                                                                                                                                                  |       |  |  |
|                               | TPH     | I by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Limits                                                                                                                                                                                                                 | Flags |  |  |
| 1 Chlorocotory                |         | Analytes                             | 105                      | 100                   |                        | 70.125                                                                                                                                                                                                                 |       |  |  |
| 1-Chlorooctane<br>o-Terphenyl | 5       |                                      | 125                      | 100                   | 125                    |                                                                                                                                                                                                                        |       |  |  |
| Lab Batch #:                  | 985838  | Sample: 703579-1-BLK / BL            | 63.6<br>K Bate           | 50.0<br>b: 1 Matrix   | 127<br>• Solid         | /0-135                                                                                                                                                                                                                 |       |  |  |
| Units:                        | mg/kg   | Date Analyzed: 01/18/16 09:05        |                          | JRROGATE R            |                        | STUDY                                                                                                                                                                                                                  |       |  |  |
|                               |         | K by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits                                                                                                                                                                                                      | Flags |  |  |
|                               |         | Analytes                             |                          |                       | [D]                    |                                                                                                                                                                                                                        |       |  |  |
| 1,4-Difluorobe                | nzene   |                                      | 0.0337                   | 0.0300                | 112                    | 80-120                                                                                                                                                                                                                 |       |  |  |
| 4-Bromofluoro                 | benzene |                                      | 0.0329                   | 0.0300                | 110                    | 80-120                                                                                                                                                                                                                 |       |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



| 17                  | Л          |                                      |                        |                       |                       |                                         |      |
|---------------------|------------|--------------------------------------|------------------------|-----------------------|-----------------------|-----------------------------------------|------|
| Units:              | mg/kg      | Date Analyzed: 01/19/16 13:06        | SU                     | RROGATE R             | ECOVERY S             | STUDY                                   |      |
|                     | TPH        | I by SW 8015B                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R                 | Flag |
|                     |            | Analytes                             |                        |                       | [D]                   |                                         |      |
| 1-Chlorooct         | ane        |                                      | 91.7                   | 100                   | 92                    | 70-135                                  |      |
| o-Terpheny          | l          |                                      | 48.2                   | 50.0                  | 96                    | 70-135                                  |      |
| Lab Batch           | #: 986086  | Sample: 703716-1-BLK / B             | LK Bate                | h: 1 Matrix           | : Solid               |                                         |      |
| Units:              | mg/kg      | Date Analyzed: 01/20/16 09:11        | SU                     | RROGATE R             | ECOVERY S             | STUDY                                   |      |
|                     | TPH        | I by SW 8015B                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R                 | Flag |
| 1-Chlorooct         | 000        | Analytes                             | 110                    | 100                   |                       | 70.125                                  |      |
|                     |            |                                      | 110                    | 100                   | 110                   | 70-135                                  |      |
| o-Terpheny          | #: 985838  | Sample: 703579-1-BKS / Bl            | 45.9<br>KS Batcl       | 50.0<br>50.0          | 92<br>Solid           | 70-135                                  |      |
| Lab Batch<br>Units: |            | <b>Date Analyzed:</b> 01/18/16 08:15 |                        |                       |                       |                                         |      |
| Units:              | mg/kg      | Date Analyzed: 01/18/10 08.15        | SU                     | RROGATE R             | ECOVERY S             | STUDY                                   |      |
|                     | втеу       | K by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R                 | Flag |
|                     |            | Analytes                             | []                     | [2]                   | [D]                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      |
| 1,4-Difluor         | obenzene   |                                      | 0.0334                 | 0.0300                | 111                   | 80-120                                  |      |
| 4-Bromoflu          | orobenzene |                                      | 0.0334                 | 0.0300                | 111                   | 80-120                                  |      |
| Lab Batch           | #: 986082  | Sample: 703714-1-BKS / BI            | KS Bate                | h: 1 Matrix           | : Solid               |                                         |      |
| Units:              | mg/kg      | Date Analyzed: 01/19/16 13:37        | SU                     | RROGATE R             | ECOVERY S             | STUDY                                   |      |
|                     | TPH        | I by SW 8015B                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R                 | Flag |
|                     |            | Analytes                             |                        |                       | [D]                   |                                         |      |
| 1-Chlorooct         |            |                                      | 97.5                   | 100                   | 98                    | 70-135                                  |      |
| o-Terpheny          |            |                                      | 48.3                   | 50.0                  | 97                    | 70-135                                  |      |
|                     | #: 986086  | Sample: 703716-1-BKS / BI            |                        |                       | : Solid               |                                         |      |
| Units:              | mg/kg      | Date Analyzed: 01/20/16 09:38        | SU                     | RROGATE R             | ECOVERY S             | STUDY                                   |      |
|                     | TPH        | I by SW 8015B                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R                 | Flag |
|                     |            | Analytes                             |                        |                       | [D]                   |                                         |      |
| 1-Chlorooct         | ane        |                                      | 127                    | 100                   | 127                   | 70-135                                  |      |
| o-Terpheny          |            |                                      | 49.6                   | 50.0                  | 99                    | 70-135                                  |      |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



Project Name: 30137 Pipeline Release

| Work Or<br>Lab Batch | <b>ders :</b> 52295<br>#: 985838 | 6,<br>Sample: 703579-1-BSD / BS | SD Batch               | -                     | : 7250101120<br>: Solid | 096                     |       |
|----------------------|----------------------------------|---------------------------------|------------------------|-----------------------|-------------------------|-------------------------|-------|
| Units:               | mg/kg                            | Date Analyzed: 01/18/16 08:32   | SU                     | RROGATE R             | RECOVERY                | STUDY                   |       |
|                      | BTE                              | X by EPA 8021B                  | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R          | Control<br>Limits<br>%R | Flags |
|                      |                                  | Analytes                        |                        |                       | [D]                     |                         |       |
| 1,4-Difluoro         | obenzene                         |                                 | 0.0338                 | 0.0300                | 113                     | 80-120                  |       |
| 4-Bromoflue          | orobenzene                       |                                 | 0.0326                 | 0.0300                | 109                     | 80-120                  |       |
| Lab Batch            | #: 986082                        | Sample: 703714-1-BSD / BS       | SD Batch               | n: 1 Matrix           | c: Solid                |                         |       |
| Units:               | mg/kg                            | Date Analyzed: 01/19/16 14:04   | SU                     | RROGATE R             | RECOVERY                | STUDY                   |       |
|                      | TPH                              | I by SW 8015B                   | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]   | Control<br>Limits<br>%R | Flags |
|                      |                                  | Analytes                        |                        |                       |                         |                         |       |
| 1-Chlorooct          |                                  |                                 | 93.6                   | 100                   | 94                      | 70-135                  |       |
| o-Terphenyl          |                                  |                                 | 46.4                   | 50.0                  | 93                      | 70-135                  |       |
| Lab Batch            |                                  | Sample: 703716-1-BSD / BS       | SD Batch               | n: 1 Matrix           | : Solid                 |                         |       |
| Units:               | mg/kg                            | Date Analyzed: 01/20/16 10:06   | SU                     | RROGATE R             | RECOVERY                | STUDY                   |       |
|                      | TPH                              | I by SW 8015B                   | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R          | Control<br>Limits<br>%R | Flags |
|                      |                                  | Analytes                        |                        |                       | [D]                     |                         |       |
| 1-Chlorooct          | ane                              |                                 | 135                    | 100                   | 135                     | 70-135                  |       |
| o-Terphenyl          | l                                |                                 | 57.3                   | 50.0                  | 115                     | 70-135                  |       |
| Lab Batch            | #: 985838                        | Sample: 522956-002 S / MS       | Batch                  | n: 1 Matrix           | <b>x:</b> Soil          |                         |       |
| Units:               | mg/kg                            | Date Analyzed: 01/18/16 13:30   | SU                     | RROGATE R             | RECOVERY                | STUDY                   |       |
|                      | BTE                              | X by EPA 8021B                  | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]   | Control<br>Limits<br>%R | Flags |
| 1.4.5.0              | ,                                | Analytes                        |                        |                       |                         |                         |       |
| 1,4-Difluoro         |                                  |                                 | 0.0335                 | 0.0300                | 112                     | 80-120                  |       |
| 4-Bromoflue          |                                  | Somela, 500056 007 8 / Mg       | 0.0338                 | 0.0300                | 113                     | 80-120                  |       |
|                      |                                  | Sample: 522956-007 S / MS       |                        |                       |                         |                         |       |
| Units:               | mg/kg                            | Date Analyzed: 01/20/16 06:41   | SU                     | RROGATE R             | RECOVERY                | STUDY                   |       |
|                      | TPH                              | I by SW 8015B                   | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R          | Control<br>Limits<br>%R | Flags |
|                      |                                  | Analytes                        |                        |                       | [D]                     |                         |       |
| 1-Chlorooct          | ane                              |                                 | 98.1                   | 99.7                  | 98                      | 70-135                  |       |
| o-Terphenyl          |                                  |                                 | 48.7                   | 49.9                  | 98                      | 70-135                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



|                | rders : 52295    |                               |                        |                       | : 7250101120          | 096                     |       |
|----------------|------------------|-------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| Lab Batch      | #: 986086        | Sample: 522956-010 S / M      | S Batc                 | h: 1 Matrix           | : Soil                |                         |       |
| U <b>nits:</b> | mg/kg            | Date Analyzed: 01/21/16 05:57 | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | TPH              | I by SW 8015B                 | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |                  | Analytes                      |                        |                       | [D]                   |                         |       |
| 1-Chlorooc     | etane            |                               | 103                    | 99.6                  | 103                   | 70-135                  |       |
| o-Terpheny     | /1               |                               | 49.9                   | 49.8                  | 100                   | 70-135                  |       |
| Lab Batch      | #: 985838        | Sample: 522956-002 SD / N     | MSD Bate               | h: 1 Matrix           | : Soil                |                         |       |
| U <b>nits:</b> | mg/kg            | Date Analyzed: 01/18/16 13:45 | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | BTEX             | X by EPA 8021B                | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 145.0          | 1                | Analytes                      |                        |                       |                       |                         |       |
| 1,4-Difluor    |                  |                               | 0.0351                 | 0.0300                | 117                   | 80-120                  |       |
|                | lorobenzene      |                               | 0.0349                 | 0.0300                | 116                   | 80-120                  |       |
|                | <b>#:</b> 986082 | Sample: 522956-007 SD / N     |                        |                       |                       |                         |       |
| Units:         | mg/kg            | Date Analyzed: 01/20/16 07:13 | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | TPF              | I by SW 8015B                 | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |                  | Analytes                      |                        |                       | [D]                   |                         |       |
| 1-Chlorooc     | etane            |                               | 105                    | 100                   | 105                   | 70-135                  |       |
| o-Terpheny     | /1               |                               | 51.4                   | 50.0                  | 103                   | 70-135                  |       |
| Lab Batch      | #: 986086        | Sample: 522956-010 SD / N     | MSD Bate               | h: 1 Matrix           | : Soil                |                         |       |
| U <b>nits:</b> | mg/kg            | Date Analyzed: 01/21/16 08:14 | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | TPH              | I by SW 8015B<br>Analytes     | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1-Chlorooc     | tane             |                               | 103                    | 99.7                  | 103                   | 70-135                  |       |
| o-Terpheny     |                  |                               | 50.8                   | 49.9                  | 103                   | 70-135                  |       |
| 5 respicing    | -                |                               | 50.0                   | +7.7                  | 102                   | 10-135                  |       |

\* Surrogate outside of Laboratory QC limits

- \*\* Surrogates outside limits; data and surrogates confirmed by reanalysis
- \*\*\* Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 \* A / B



## **BS / BSD Recoveries**



.

#### Project Name: 30137 Pipeline Release

| Work Order   | ·#: 522956                           |                               |                       |                                 |                             |                       |                                           | Proj                          | ect ID:  | 725010112               | 096                       |      |
|--------------|--------------------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|----------|-------------------------|---------------------------|------|
| Analyst:     | SYG                                  | D                             | ate Prepar            | ed: 01/18/20                    | 16                          |                       |                                           | Date A                        | nalyzed: | 01/18/2016              |                           |      |
| Lab Batch ID | : 985838 Sample: 703579-             | 1-BKS                         | Batcl                 | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix:  | Solid                   |                           |      |
| Units:       | mg/kg                                |                               | BLAN                  | K /BLANK                        | SPIKE / ]                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOV    | ERY STU                 | DY                        |      |
|              | BTEX by EPA 8021B                    | Blank<br>Sample Result<br>[A] | Spike<br>Added        | Blank<br>Spike<br>Result        | Blank<br>Spike<br>%R        | Spike<br>Added        | Blank<br>Spike<br>Duplicate               | Blk. Spk<br>Dup.<br>%R        | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Analy        | vtes                                 |                               | [B]                   | [C]                             | [D]                         | [E]                   | Result [F]                                | [G]                           |          |                         |                           |      |
| Benzene      |                                      | < 0.00100                     | 0.100                 | 0.0805                          | 81                          | 0.100                 | 0.0820                                    | 82                            | 2        | 70-130                  | 35                        |      |
| Toluene      |                                      | < 0.00200                     | 0.100                 | 0.0810                          | 81                          | 0.100                 | 0.0812                                    | 81                            | 0        | 70-130                  | 35                        |      |
| Ethylbenz    | ene                                  | < 0.00100                     | 0.100                 | 0.0842                          | 84                          | 0.100                 | 0.0839                                    | 84                            | 0        | 71-129                  | 35                        |      |
| m,p-Xyler    | nes                                  | < 0.00200                     | 0.200                 | 0.172                           | 86                          | 0.200                 | 0.171                                     | 86                            | 1        | 70-135                  | 35                        |      |
| o-Xylene     |                                      | <0.00100                      | 0.100                 | 0.0852                          | 85                          | 0.100                 | 0.0849                                    | 85                            | 0        | 71-133                  | 35                        |      |
| Analyst:     | MNR                                  | D                             | ate Prepar            | ed: 01/22/20                    | 16                          | •                     |                                           | Date A                        | nalyzed: | 01/26/2016              |                           |      |
| Lab Batch ID | : 986585 Sample: 703750-             | 1-BKS                         | Batcl                 | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix:  | Solid                   |                           |      |
| Units:       | mg/kg                                |                               | BLAN                  | K/BLANK                         | SPIKE / ]                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOV    | ERY STU                 | DY                        |      |
| Inorga       | anic Anions by EPA 300/300.1<br>/tes | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Chloride     |                                      | <2.00                         | 50.0                  | 49.1                            | 98                          | 50.0                  | 48.0                                      | 96                            | 2        | 90-110                  | 20                        |      |

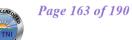
Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] =  $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] =  $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes



## **BS / BSD Recoveries**

# FILA BERGER DE LES 162 of 190

#### **Project Name: 30137 Pipeline Release**


| Work Order #: 4   | 522956               |                               |                       |                                 |                             |                       |                                           | Pro                           | ect ID:    | 725010112               | 096                       |      |
|-------------------|----------------------|-------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|------------|-------------------------|---------------------------|------|
| Analyst: PJB      |                      | D                             | ate Prepai            | ed: 01/19/20                    | 16                          |                       |                                           | Date A                        | nalyzed: ( | 01/19/2016              |                           |      |
| Lab Batch ID: 986 | 082 Sample: 703714-1 | -BKS                          | Batc                  | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix:    | Solid                   |                           |      |
| Units: mg/        | kg                   |                               | BLAN                  | K /BLANK                        | SPIKE /                     | BLANK                 | SPIKE DUP                                 | LICATE                        | RECOV      | ERY STU                 | DY                        |      |
| Analytes          | PH by SW 8015B       | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| C6-C10 Gasoline   | e Range Hydrocarbons | <15.0                         | 1000                  | 802                             | 80                          | 1000                  | 840                                       | 84                            | 5          | 70-135                  | 35                        |      |
| C10-C28 Diesel    | Range Organics       | <15.0                         | 1000                  | 982                             | 98                          | 1000                  | 973                                       | 97                            | 1          | 70-135                  | 35                        |      |
| Analyst: PJB      |                      | D                             | ate Prepai            | red: 01/20/20                   | 16                          | 1                     |                                           | Date A                        | nalyzed:   | 01/20/2016              | 4                         |      |
| Lab Batch ID: 986 | 086 Sample: 703716-1 | -BKS                          | Bate                  | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix:    | Solid                   |                           |      |
| Units: mg/        | kg                   |                               | BLAN                  | K /BLANK                        | SPIKE /                     | BLANK                 | SPIKE DUP                                 | LICATE                        | RECOV      | ERY STUI                | DY                        |      |
| Analytes          | PH by SW 8015B       | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| C6-C10 Gasoline   | e Range Hydrocarbons | <15.0                         | 1000                  | 801                             | 80                          | 1000                  | 879                                       | 88                            | 9          | 70-135                  | 35                        |      |
| C10-C28 Diesel    | Range Organics       | <15.0                         | 1000                  | 1040                            | 104                         | 1000                  | 1140                                      | 114                           | 9          | 70-135                  | 35                        |      |

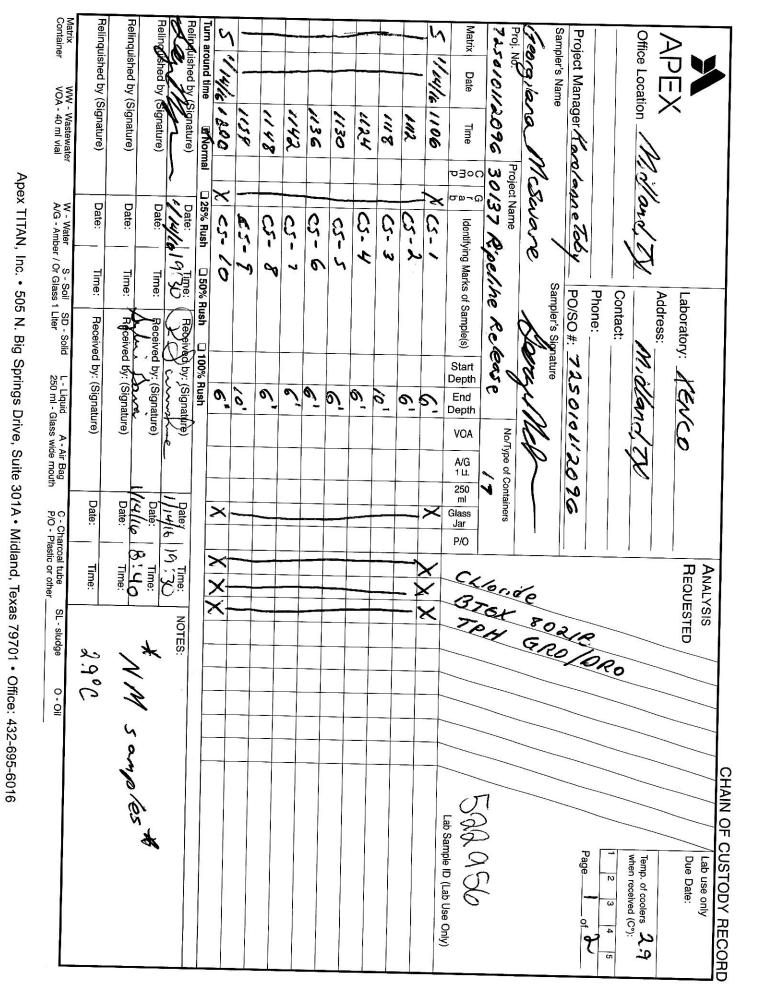
Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] =  $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] =  $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

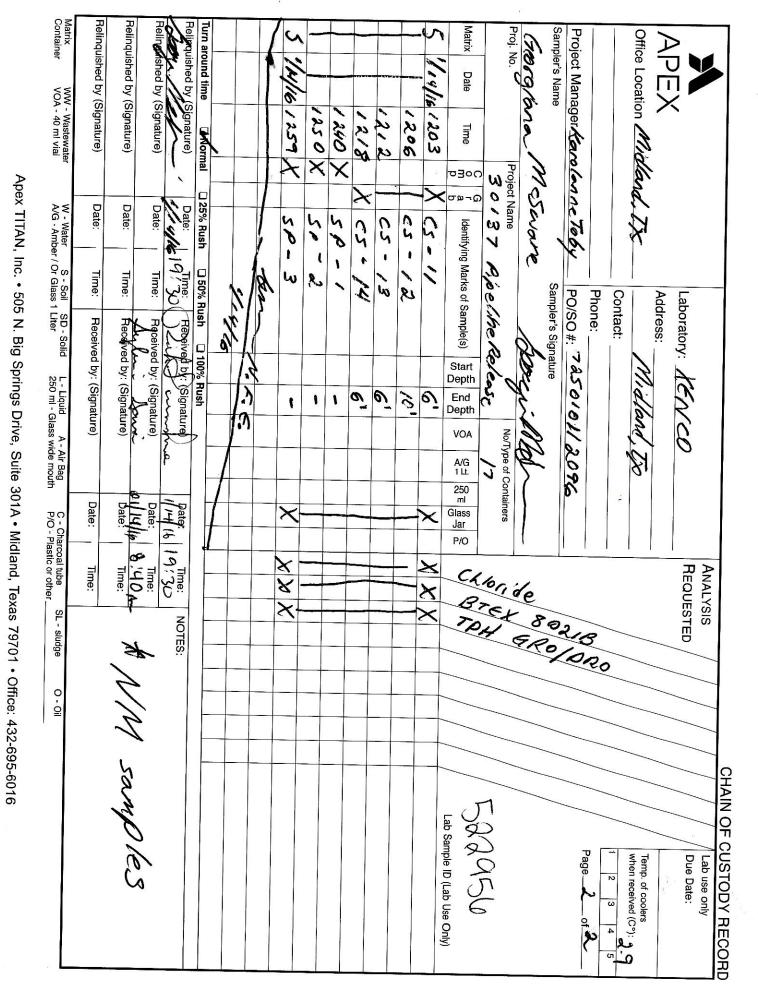


## Form 3 - MS / MSD Recoveries

#### **Project Name: 30137 Pipeline Release**




.


| Work Order # :                                                                                            | 522956                                                                                                              |                                                                                                                       |                                                                                                                                                |                                                                                                                        |                                                                                                       |                                                                                                       | Project II                                                                                            | <b>D:</b> 72501                                                                          | 0112096                                                               |                                                                           |                                                 |      |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|------|
| Lab Batch ID:                                                                                             | 985838                                                                                                              | QC- Sample ID:                                                                                                        | 522956                                                                                                                                         | -002 S                                                                                                                 | Ba                                                                                                    | tch #:                                                                                                | 1 Matri                                                                                               | x: Soil                                                                                  |                                                                       |                                                                           |                                                 |      |
| Date Analyzed:                                                                                            | 01/18/2016                                                                                                          | Date Prepared:                                                                                                        | 01/18/2                                                                                                                                        | 016                                                                                                                    | Ar                                                                                                    | alyst: S                                                                                              | SYG                                                                                                   |                                                                                          |                                                                       |                                                                           |                                                 |      |
| <b>Reporting Units:</b>                                                                                   | mg/kg                                                                                                               |                                                                                                                       | Ν                                                                                                                                              | IATRIX SPIK                                                                                                            | E / MAT                                                                                               | RIX SPI                                                                                               | KE DUPLICA                                                                                            | TE REC                                                                                   | OVERY                                                                 | STUDY                                                                     |                                                 |      |
|                                                                                                           | BTEX by EPA 8021B                                                                                                   | Parent<br>Sample<br>Result                                                                                            | Spike<br>Added                                                                                                                                 | Spiked Sample<br>Result<br>[C]                                                                                         | Spiked<br>Sample<br>%R                                                                                | Spike<br>Added                                                                                        | Duplicate<br>Spiked Sample<br>Result [F]                                                              | Spiked<br>Dup.<br>%R                                                                     | RPD<br>%                                                              | Control<br>Limits<br>%R                                                   | Control<br>Limits<br>%RPD                       | Flag |
|                                                                                                           | Analytes                                                                                                            | [A]                                                                                                                   | [B]                                                                                                                                            |                                                                                                                        | [D]                                                                                                   | [E]                                                                                                   |                                                                                                       | [G]                                                                                      |                                                                       |                                                                           |                                                 |      |
| Benzene                                                                                                   |                                                                                                                     | <0.000992                                                                                                             | 0.0992                                                                                                                                         | 0.0836                                                                                                                 | 84                                                                                                    | 0.0992                                                                                                | 0.0837                                                                                                | 84                                                                                       | 0                                                                     | 70-130                                                                    | 35                                              |      |
| Toluene                                                                                                   |                                                                                                                     | <0.00198                                                                                                              | 0.0992                                                                                                                                         | 0.0796                                                                                                                 | 80                                                                                                    | 0.0992                                                                                                | 0.0803                                                                                                | 81                                                                                       | 1                                                                     | 70-130                                                                    | 35                                              |      |
| Ethylbenzene                                                                                              |                                                                                                                     | < 0.000992                                                                                                            | 0.0992                                                                                                                                         | 0.0802                                                                                                                 | 81                                                                                                    | 0.0992                                                                                                | 0.0817                                                                                                | 82                                                                                       | 2                                                                     | 71-129                                                                    | 35                                              |      |
| m,p-Xylenes                                                                                               |                                                                                                                     | <0.00198                                                                                                              | 0.198                                                                                                                                          | 0.163                                                                                                                  | 82                                                                                                    | 0.198                                                                                                 | 0.166                                                                                                 | 84                                                                                       | 2                                                                     | 70-135                                                                    | 35                                              |      |
| o-Xylene                                                                                                  |                                                                                                                     | <0.000992                                                                                                             | 0.0992                                                                                                                                         | 0.0795                                                                                                                 | 80                                                                                                    | 0.0992                                                                                                | 0.0800                                                                                                | 81                                                                                       | 1                                                                     | 71-133                                                                    | 35                                              |      |
| Lab Batch ID:                                                                                             | 986082                                                                                                              | QC- Sample ID:                                                                                                        | 522956                                                                                                                                         | -007 S                                                                                                                 | Ba                                                                                                    | tch #:                                                                                                | 1 Matri                                                                                               | x: Soil                                                                                  |                                                                       |                                                                           |                                                 |      |
| Date Analyzed:                                                                                            | 01/20/2016                                                                                                          | Date Prepared:                                                                                                        | 01/19/2                                                                                                                                        | 016                                                                                                                    | Ar                                                                                                    | alyst: F                                                                                              | PIR                                                                                                   |                                                                                          |                                                                       |                                                                           |                                                 |      |
|                                                                                                           | 01/20/2010                                                                                                          | ···· · · · · · · · · · · · · · · · · ·                                                                                |                                                                                                                                                | 010                                                                                                                    |                                                                                                       | alyst. 1                                                                                              | <b>3D</b>                                                                                             |                                                                                          |                                                                       |                                                                           |                                                 |      |
| ·                                                                                                         | mg/kg                                                                                                               |                                                                                                                       |                                                                                                                                                | IATRIX SPIK                                                                                                            |                                                                                                       | -                                                                                                     |                                                                                                       | TE REC                                                                                   | OVERY                                                                 | STUDY                                                                     |                                                 |      |
| ·                                                                                                         |                                                                                                                     | Parent<br>Sample                                                                                                      | N<br>Spike                                                                                                                                     | IATRIX SPIK<br>Spiked Sample<br>Result                                                                                 | E / MAT<br>Spiked<br>Sample                                                                           | RIX SPI<br>Spike                                                                                      | KE DUPLICA<br>Duplicate<br>Spiked Sample                                                              | Spiked<br>Dup.                                                                           | RPD                                                                   | Control<br>Limits                                                         | Control<br>Limits                               | Flag |
| ·                                                                                                         | mg/kg                                                                                                               | Parent                                                                                                                | N                                                                                                                                              | IATRIX SPIK<br>Spiked Sample                                                                                           | E / MAT<br>Spiked                                                                                     | RIX SPI                                                                                               | KE DUPLICA<br>Duplicate                                                                               | Spiked                                                                                   |                                                                       | Control                                                                   |                                                 | Flag |
| Reporting Units:                                                                                          | mg/kg<br><b>TPH by SW 8015B</b>                                                                                     | Parent<br>Sample<br>Result                                                                                            | N<br>Spike<br>Added                                                                                                                            | IATRIX SPIK<br>Spiked Sample<br>Result                                                                                 | E / MAT<br>Spiked<br>Sample<br>%R                                                                     | RIX SPI<br>Spike<br>Added                                                                             | KE DUPLICA<br>Duplicate<br>Spiked Sample                                                              | Spiked<br>Dup.<br>%R                                                                     | RPD                                                                   | Control<br>Limits                                                         | Limits                                          | Flag |
| Reporting Units:<br>C6-C10 Gasoli                                                                         | mg/kg<br>TPH by SW 8015B<br>Analytes                                                                                | Parent<br>Sample<br>Result<br>[A]                                                                                     | N<br>Spike<br>Added<br>[B]                                                                                                                     | IATRIX SPIK<br>Spiked Sample<br>Result<br>[C]                                                                          | E / MAT<br>Spiked<br>Sample<br>%R<br>[D]                                                              | RIX SPI<br>Spike<br>Added<br>[E]                                                                      | KE DUPLICA<br>Duplicate<br>Spiked Sample<br>Result [F]                                                | Spiked<br>Dup.<br>%R<br>[G]                                                              | RPD<br>%                                                              | Control<br>Limits<br>%R                                                   | Limits<br>%RPD                                  | Flag |
| Reporting Units:<br>C6-C10 Gasoli<br>C10-C28 Diese                                                        | mg/kg<br>TPH by SW 8015B<br>Analytes<br>ne Range Hydrocarbons                                                       | Parent<br>Sample<br>Result<br>[A]<br><15.0                                                                            | M<br>Spike<br>Added<br>[B]<br>997<br>997                                                                                                       | ATRIX SPIK<br>Spiked Sample<br>Result<br>[C]<br>782<br>918                                                             | E / MAT<br>Spiked<br>Sample<br>%R<br>[D]<br>78<br>92                                                  | RIX SPI<br>Spike<br>Added<br>[E]<br>1000                                                              | KE DUPLICA<br>Duplicate<br>Spiked Sample<br>Result [F]<br>724<br>962                                  | Spiked<br>Dup.<br>%R<br>[G]<br>72                                                        | <b>RPD</b> %                                                          | Control<br>Limits<br>%R<br>70-135                                         | Limits<br>%RPD<br>35                            | Flag |
| Reporting Units:<br>C6-C10 Gasoli<br>C10-C28 Diese<br>Lab Batch ID:                                       | mg/kg<br>TPH by SW 8015B<br>Analytes<br>ne Range Hydrocarbons<br>el Range Organics                                  | Parent<br>Sample<br>Result<br>[A]<br><15.0<br><15.0                                                                   | N.<br>Spike<br>Added<br>[B]<br>997<br>997<br>522956                                                                                            | ATRIX SPIK<br>Spiked Sample<br>Result<br>[C]<br>782<br>918<br>-010 S                                                   | E / MAT<br>Spiked<br>Sample<br>%R<br>[D]<br>78<br>92<br>Ba                                            | RIX SPI<br>Spike<br>Added<br>[E]<br>1000<br>1000                                                      | KE DUPLICA<br>Duplicate<br>Spiked Sample<br>Result [F]<br>724<br>962<br>1 Matri                       | Spiked           Dup.           %R           [G]           72           96               | <b>RPD</b> %                                                          | Control<br>Limits<br>%R<br>70-135                                         | Limits<br>%RPD<br>35                            | Flag |
| Reporting Units:<br>C6-C10 Gasoli<br>C10-C28 Diese<br>Lab Batch ID:<br>Date Analyzed:                     | mg/kg TPH by SW 8015B Analytes ne Range Hydrocarbons el Range Organics 986086                                       | Parent<br>Sample<br>Result<br>[A]           <15.0                                                                     | Spike           Added           [B]           997           997           522956           01/20/2                                             | ATRIX SPIK<br>Spiked Sample<br>Result<br>[C]<br>782<br>918<br>-010 S                                                   | E / MAT<br>Spiked<br>Sample<br>%R<br>[D]<br>78<br>92<br>Ba<br>Ar                                      | RIX SPI<br>Spike<br>Added<br>[E]<br>1000<br>1000<br>itch #:<br>nalyst: F                              | KE DUPLICA<br>Duplicate<br>Spiked Sample<br>Result [F]<br>724<br>962<br>1 Matri<br>PJB                | <b>Spiked</b><br><b>Dup.</b><br>% <b>R</b><br>[ <b>G</b> ]<br>72<br>96<br><b>x:</b> Soil | <b>RPD</b> %                                                          | Control<br>Limits<br>%R<br>70-135<br>70-135                               | Limits<br>%RPD<br>35                            | Flag |
| Reporting Units:<br>C6-C10 Gasoli                                                                         | mg/kg TPH by SW 8015B Analytes ne Range Hydrocarbons el Range Organics 986086 01/21/2016                            | Parent<br>Sample<br>Result<br>[A]<br><15.0<br><15.0<br>QC- Sample ID:<br>Date Prepared:<br>Parent<br>Sample           | N.<br>Spike<br>Added<br>[B]<br>997<br>997<br>522956<br>01/20/2<br>N.<br>Spike                                                                  | IATRIX SPIK<br>Spiked Sample<br>Result<br>[C]<br>782<br>918<br>-010 S<br>016<br>IATRIX SPIK<br>Spiked Sample<br>Result | E / MAT<br>Spiked<br>Sample<br>%R<br>[D]<br>78<br>92<br>Ba<br>Ar<br>E / MAT<br>Spiked<br>Sample       | RIX SPI<br>Spike<br>Added<br>[E]<br>1000<br>1000<br>itch #:<br>nalyst: F<br>RIX SPI<br>Spike          | KE DUPLICA Duplicate Spiked Sample Result [F] 724 962 1 Matri: PJB KE DUPLICA Duplicate Spiked Sample | Spiked<br>Dup.<br>%R<br>[G]<br>72<br>96<br>x: Soil<br>TE REC<br>Spiked<br>Dup.           | RPD           %           8           5           OVERY           RPD | Control<br>Limits<br>%R<br>70-135<br>70-135<br>STUDY<br>Control<br>Limits | Limits<br>%RPD<br>35<br>35<br>Control<br>Limits |      |
| C6-C10 Gasoli<br>C10-C28 Diese<br>Lab Batch ID:<br>Date Analyzed:                                         | mg/kg<br>TPH by SW 8015B<br>Analytes<br>ne Range Hydrocarbons<br>el Range Organics<br>986086<br>01/21/2016<br>mg/kg | Parent<br>Sample<br>Result<br>[A]<br><15.0<br><15.0<br>QC- Sample ID:<br>Date Prepared:<br>Parent                     | N.<br>Spike<br>Added<br>[B]<br>997<br>997<br>522956<br>01/20/2<br>N.                                                                           | IATRIX SPIK<br>Spiked Sample<br>Result<br>[C]<br>782<br>918<br>-010 S<br>016<br>IATRIX SPIK<br>Spiked Sample           | E / MAT<br>Spiked<br>Sample<br>%R<br>[D]<br>78<br>92<br>Ba<br>Ar<br>E / MAT<br>Spiked                 | RIX SPI<br>Spike<br>Added<br>[E]<br>1000<br>1000<br>itch #:<br>nalyst: F<br>RIX SPI                   | KE DUPLICA Duplicate Spiked Sample Result [F] 724 962 1 Matri PJB KE DUPLICA Duplicate                | Spiked<br>Dup.<br>%R<br>[G]<br>72<br>96<br>x: Soil<br>TE REC<br>Spiked                   | RPD           %           8           5                               | Control<br>Limits<br>%R<br>70-135<br>70-135<br>STUDY<br>Control           | Limits<br>%RPD<br>35<br>35<br>Control           |      |
| Reporting Units:<br>C6-C10 Gasoli<br>C10-C28 Diese<br>Lab Batch ID:<br>Date Analyzed:<br>Reporting Units: | mg/kg TPH by SW 8015B Analytes ne Range Hydrocarbons El Range Organics 986086 01/21/2016 mg/kg TPH by SW 8015B      | Parent<br>Sample<br>Result<br>[A]<br><15.0<br><15.0<br>QC- Sample ID:<br>Date Prepared:<br>Parent<br>Sample<br>Result | Spike           Added           [B]           997           997           522956           01/20/2           M           Spike           Added | IATRIX SPIK<br>Spiked Sample<br>Result<br>[C]<br>782<br>918<br>-010 S<br>016<br>IATRIX SPIK<br>Spiked Sample<br>Result | E / MAT<br>Spiked<br>Sample<br>%R<br>[D]<br>78<br>92<br>Ba<br>Ar<br>E / MAT<br>Spiked<br>Sample<br>%R | RIX SPI<br>Spike<br>Added<br>[E]<br>1000<br>1000<br>itch #:<br>nalyst: F<br>RIX SPI<br>Spike<br>Added | KE DUPLICA Duplicate Spiked Sample Result [F] 724 962 1 Matri: PJB KE DUPLICA Duplicate Spiked Sample | Spiked<br>Dup.<br>%R<br>[G]<br>72<br>96<br>x: Soil<br>TE REC<br>Spiked<br>Dup.<br>%R     | RPD           %           8           5           OVERY           RPD | Control<br>Limits<br>%R<br>70-135<br>70-135<br>STUDY<br>Control<br>Limits | Limits<br>%RPD<br>35<br>35<br>Control<br>Limits | Flag |

Matrix Spike Percent Recovery  $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$  Matrix Spike Duplicate Percent Recovery [G] = 100\*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 21 of 24





Received by OCD: 4/19/2023 7:30:52 AM



## **XENCO Laboratories**



Prelogin/Nonconformance Report- Sample Log-In

| Client: APEX/Titan                                                                                                                   | Acceptable Temperature Ra  | nge: 0 - 6 deaC |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|
| Date/ Time Received: 01/15/2016 08:40:00 AM                                                                                          | Air and Metal samples Acce |                 |
| Work Order #: 522956                                                                                                                 | Temperature Measuring dev  | rice used:r8    |
| Sample Recei                                                                                                                         | pt Checklist               | Comments        |
| #1 *Temperature of cooler(s)?                                                                                                        | 2.9                        |                 |
| #2 *Shipping container in good condition?                                                                                            | Yes                        |                 |
| #3 *Samples received on ice?                                                                                                         | Yes                        |                 |
| #4 *Custody Seals intact on shipping container/ cooler?                                                                              | N/A                        |                 |
| #5 Custody Seals intact on sample bottles?                                                                                           | N/A                        |                 |
| #6 *Custody Seals Signed and dated?                                                                                                  | N/A                        |                 |
| #7 *Chain of Custody present?                                                                                                        | Yes                        |                 |
| #8 Sample instructions complete on Chain of Custody?                                                                                 | Yes                        |                 |
| #9 Any missing/extra samples?                                                                                                        | No                         |                 |
| #10 Chain of Custody signed when relinquished/ received?                                                                             | Yes                        |                 |
| #11 Chain of Custody agrees with sample label(s)?                                                                                    | Yes                        |                 |
| #12 Container label(s) legible and intact?                                                                                           | Yes                        |                 |
| #13 Sample matrix/ properties agree with Chain of Custody?                                                                           | Yes                        |                 |
| #14 Samples in proper container/ bottle?                                                                                             | Yes                        |                 |
| #15 Samples properly preserved?                                                                                                      | Yes                        |                 |
| #16 Sample container(s) intact?                                                                                                      | Yes                        |                 |
| #17 Sufficient sample amount for indicated test(s)?                                                                                  | Yes                        |                 |
| #18 All samples received within hold time?                                                                                           | Yes                        |                 |
| #19 Subcontract of sample(s)?                                                                                                        | No                         |                 |
| #20 VOC samples have zero headspace (less than 1/4 inch b                                                                            | bubble)? N/A               |                 |
| #21 <2 for all samples preserved with HNO3,HCL, H2SO4? E<br>samples for the analysis of HEM or HEM-SGT which are verifi<br>analysts. |                            |                 |
| #22 >10 for all samples preserved with NaAsO2+NaOH, ZnA                                                                              | c+NaOH? N/A                |                 |

#### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 01/15/2016

 Checklist completed by:
 Carley Owens

 Carley Owens
 Carley Owens

 Checklist reviewed by:
 Mass Moat

 Kelsey Brooks
 Kelsey Brooks

Date: 01/15/2016

# Analytical Report 526802

for APEX/Titan

**Project Manager: Karolanne Toby** 

30137 #3, #4, #5

725010112096

#### 16-MAR-16

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-15-19), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534-15-1) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD ( L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)





16-MAR-16

Project Manager: **Karolanne Toby APEX/Titan** 505 N. Big Spring Ste. 301 A Midland, TX 79701

Reference: XENCO Report No(s): **526802 30137 #3, #4, #5** Project Address: NM

#### Karolanne Toby:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 526802. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 526802 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America







## Sample Cross Reference 526802



#### APEX/Titan, Midland, TX

30137 #3, #4, #5

| Sample Id        | Matrix | Date Collected | Sample Depth | Lab Sample Id |
|------------------|--------|----------------|--------------|---------------|
| CS-1 (2015) (RE) | S      | 03-14-16 10:49 | - 10 ft      | 526802-001    |
| S-Wall (RE)      | S      | 03-14-16 11:35 | - 8 ft       | 526802-002    |
| CS-2 (2015) (RE) | S      | 03-14-16 11:52 | - 14 ft      | 526802-003    |
| R.P. (RE)        | S      | 03-14-16 12:04 | - 13 ft      | 526802-004    |
| SP-4             | S      | 03-14-16 14:00 |              | 526802-005    |
| SP-5             | S      | 03-14-16 12:40 |              | 526802-006    |
| SP-6             | S      | 03-14-16 12:45 |              | 526802-007    |



CASE NARRATIVE



Client Name: APEX/Titan Project Name: 30137 #3, #4, #5

 Project ID:
 725010112096

 Work Order Number(s):
 526802

ATORIES

Report Date:16-MAR-16Date Received:03/15/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None





## Certificate of Analysis Summary 526802

APEX/Titan, Midland, TX Project Name: 30137 #3, #4, #5



Date Received in Lab:Tue Mar-15-16 08:40 amReport Date:16-MAR-16Project Manager:Kelsey Brooks

|                                    | 1          |            |         |             |      |            |         |             |      |             |        |           |         |
|------------------------------------|------------|------------|---------|-------------|------|------------|---------|-------------|------|-------------|--------|-----------|---------|
|                                    | Lab Id:    | 526802-    | 001     | 526802-0    | 02   | 526802-0   | 003     | 526802-0    | 04   | 526802-0    | 05     | 526802-   | 006     |
| Analysis Requested                 | Field Id:  | CS-1 (2015 | ) (RE)  | S-Wall (R   | E)   | CS-2 (2015 | ) (RE)  | R.P. (RE    | E)   | SP-4        |        | SP-5      |         |
| Anutysis Requested                 | Depth:     | 10 ft      |         | 8 ft        |      | 14 ft      |         | 13 ft       |      |             |        |           |         |
|                                    | Matrix:    | SOIL       |         | SOIL        |      | SOIL       | ,       | SOIL        |      | SOIL        |        | SOIL      |         |
|                                    | Sampled:   | Mar-14-16  | 10:49   | Mar-14-16   | 1:35 | Mar-14-16  | 11:52   | Mar-14-16   | 2:04 | Mar-14-16   | 14:00  | Mar-14-16 | 12:40   |
| BTEX by EPA 8021B                  | Extracted: | Mar-15-16  | 14:00   |             |      | Mar-15-16  | 14:00   |             |      | Mar-15-16   | 14:00  | Mar-15-16 | 14:00   |
|                                    | Analyzed:  | Mar-15-16  | 18:42   |             |      | Mar-15-16  | 18:58   |             |      | Mar-16-16   | 15:08  | Mar-16-16 | 11:08   |
|                                    | Units/RL:  | mg/kg      | RL      |             |      | mg/kg      | RL      |             |      | mg/kg       | RL     | mg/kg     | RL      |
| Benzene                            |            | ND         | 0.00150 |             |      | ND         | 0.00149 |             |      | ND          | 0.0299 | ND        | 0.00150 |
| Toluene                            |            | ND         | 0.00200 |             |      | ND         | 0.00199 |             |      | 1.95        | 0.0399 | 0.0137    | 0.00200 |
| Ethylbenzene                       |            | ND         | 0.00200 |             |      | ND         | 0.00199 |             |      | 2.77        | 0.0399 | 0.0174    | 0.00200 |
| m,p-Xylenes                        |            | ND         | 0.00200 |             |      | ND         | 0.00199 |             |      | 11.2        | 0.0399 | 0.126     | 0.00200 |
| o-Xylene                           |            | ND         | 0.00299 |             |      | ND         | 0.00298 |             |      | 3.30        | 0.0599 | ND        | 0.00299 |
| Total Xylenes                      |            | ND         | 0.00200 |             |      | ND         | 0.00199 |             |      | 14.5        | 0.0399 | 0.126     | 0.00200 |
| Total BTEX                         |            | ND         | 0.00150 |             |      | ND         | 0.00149 |             |      | 19.2        | 0.0299 | 0.157     | 0.00150 |
| Inorganic Anions by EPA 300/300.1  | Extracted: |            |         | Mar-15-16 1 | 4:00 | Mar-15-16  | 14:00   | Mar-15-16 1 | 4:00 | Mar-15-16   | 14:00  | Mar-15-16 | 14:00   |
|                                    | Analyzed:  |            |         | Mar-15-16 1 | 4:43 | Mar-15-16  | 14:24   | Mar-15-16 1 | 4:44 | Mar-15-16   | 15:04  | Mar-15-16 | 15:24   |
|                                    | Units/RL:  |            |         | mg/kg       | RL   | mg/kg      | RL      | mg/kg       | RL   | mg/kg       | RL     | mg/kg     | RL      |
| Chloride                           |            |            |         | 254         | 20.0 | 343        | 100     | 403         | 100  | 107         | 100    | 344       | 100     |
| TPH by SW 8015B                    | Extracted: | Mar-15-16  | 09:00   |             |      | Mar-15-16  | 09:00   |             |      | Mar-15-16 ( | 09:00  | Mar-15-16 | 09:00   |
|                                    | Analyzed:  | Mar-15-16  | 18:02   |             |      | Mar-15-16  | 18:29   |             |      | Mar-15-16   | 19:21  | Mar-15-16 | 19:49   |
|                                    | Units/RL:  | mg/kg      | RL      |             |      | mg/kg      | RL      |             |      | mg/kg       | RL     | mg/kg     | RL      |
| C6-C10 Gasoline Range Hydrocarbons |            | ND         | 25.0    |             |      | ND         | 24.9    |             |      | 583         | 24.9   | 215       | 25.0    |
| C10-C28 Diesel Range Hydrocarbons  |            | 34.3       | 25.0    |             |      | 135        | 24.9    |             |      | 122         | 24.9   | 561       | 25.0    |
| Total TPH                          |            | 34.3       | 25.0    |             |      | 135        | 24.9    |             |      | 705         | 24.9   | 829       | 25.0    |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 5 of 17



## Certificate of Analysis Summary 526802

APEX/Titan, Midland, TX Project Name: 30137 #3, #4, #5



Date Received in Lab:Tue Mar-15-16 08:40 amReport Date:16-MAR-16Project Manager:Kelsey Brooks

|                                    | Lab Id:    | 526802-007      |   |  |  |
|------------------------------------|------------|-----------------|---|--|--|
|                                    | Field Id:  | SP-6            |   |  |  |
| Analysis Requested                 | Depth:     |                 |   |  |  |
|                                    | Matrix:    | SOIL            |   |  |  |
|                                    | Sampled:   | Mar-14-16 12:45 |   |  |  |
|                                    |            |                 | 1 |  |  |
| BTEX by EPA 8021B                  | Extracted: | Mar-15-16 14:00 |   |  |  |
|                                    | Analyzed:  | Mar-16-16 14:52 |   |  |  |
|                                    | Units/RL:  | mg/kg RL        |   |  |  |
| Benzene                            |            | ND 0.00150      |   |  |  |
| Toluene                            |            | 0.0140 0.00200  |   |  |  |
| Ethylbenzene                       |            | 0.0193 0.00200  |   |  |  |
| m,p-Xylenes                        |            | 0.211 0.00200   |   |  |  |
| o-Xylene                           |            | 0.0221 0.00300  |   |  |  |
| Total Xylenes                      |            | 0.233 0.00200   |   |  |  |
| Total BTEX                         |            | 0.266 0.00150   |   |  |  |
| Inorganic Anions by EPA 300/300.1  | Extracted: | Mar-15-16 14:00 |   |  |  |
|                                    | Analyzed:  | Mar-15-16 15:45 |   |  |  |
|                                    | Units/RL:  | mg/kg RL        |   |  |  |
| Chloride                           |            | 207 100         |   |  |  |
| TPH by SW 8015B                    | Extracted: | Mar-15-16 09:00 |   |  |  |
|                                    | Analyzed:  | Mar-15-16 20:14 |   |  |  |
|                                    | Units/RL:  | mg/kg RL        |   |  |  |
| C6-C10 Gasoline Range Hydrocarbons |            | 198 24.9        |   |  |  |
| C10-C28 Diesel Range Hydrocarbons  |            | 229 24.9        |   |  |  |
| Total TPH                          |            | 455 24.9        |   |  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Page 6 of 17



# **Flagging Criteria**



Page 173 of 190

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- \* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

#### A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

| rioie ra                                                            | ix.     |
|---------------------------------------------------------------------|---------|
| 4147 Greenbriar Dr, Stafford, TX 77477 (281) 240-4200 (281) 24      | 0-4280  |
| 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 35    | 1-9139  |
| 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 50 | )9-3335 |
| 1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 56       | 53-1713 |
| 2525 W. Huntington Dr Suite 102, Tempe AZ 85282 (602) 437-0330      |         |



Project Name: 30137 #3, #4, #5

| Work Orders :<br>Lab Batch #: 990 |     | 2,<br>Sample: 526802-001 / SMP       | Batel                  |                       | : 7250101120<br>: Soil | )96                     |       |
|-----------------------------------|-----|--------------------------------------|------------------------|-----------------------|------------------------|-------------------------|-------|
| Units: mg/                        | kg  | Date Analyzed: 03/15/16 18:02        | SU                     | RROGATE R             | ECOVERY S              | STUDY                   |       |
|                                   | ТРН | by SW 8015B                          | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |
|                                   |     | Analytes                             |                        |                       | [D]                    |                         |       |
| 1-Chlorooctane                    |     |                                      | 115                    | 100                   | 115                    | 70-130                  |       |
| o-Terphenyl                       |     |                                      | 56.7                   | 50.0                  | 113                    | 70-130                  |       |
| Lab Batch #: 990                  | 381 | Sample: 526802-003 / SMP             | Batch                  | h: 1 Matrix           | : Soil                 | <u>.</u>                |       |
| Units: mg/                        | kg  | Date Analyzed: 03/15/16 18:29        | SU                     | RROGATE R             | ECOVERY S              | STUDY                   |       |
|                                   |     | by SW 8015B                          | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 1 Chlorocatana                    |     | Analytes                             | 116                    | 00.7                  |                        | 70.120                  |       |
| 1-Chlorooctane                    |     |                                      | 116                    | 99.7                  | 116                    | 70-130                  |       |
| o-Terphenyl<br>Lab Batch #: 990   | 373 | Sample: 526802-001 / SMP             | 57.3<br>Batcl          | 49.9<br>h: 1 Matrix   | 115                    | 70-130                  |       |
| Units: mg/                        |     | Date Analyzed: 03/15/16 18:42        |                        |                       |                        |                         |       |
| Units: ing/                       | ĸg  | Date Analyzeu: 05/15/10 18.42        | SU                     | RROGATE R             | ECOVERY                | STUDY                   |       |
|                                   |     | by EPA 8021B                         | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |
|                                   |     | Analytes                             |                        |                       | [D]                    |                         |       |
| 1,4-Difluorobenzene               | •   |                                      | 0.0287                 | 0.0300                | 96                     | 80-120                  |       |
| 4-Bromofluorobenze                |     |                                      | 0.0294                 | 0.0300                | 98                     | 80-120                  |       |
| Lab Batch #: 990                  | 323 | Sample: 526802-003 / SMP             | Batcl                  | h: 1 Matrix           | : Soil                 |                         |       |
| Units: mg/                        | kg  | Date Analyzed: 03/15/16 18:58        | SU                     | <b>RROGATE R</b>      | ECOVERY S              | STUDY                   |       |
|                                   |     | by EPA 8021B<br>Analytes             | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 1.4-Difluorobenzene               |     |                                      | 0.0285                 | 0.0300                | 95                     | 80-120                  |       |
| 4-Bromofluorobenze                |     |                                      | 0.0306                 | 0.0300                | 102                    | 80-120                  |       |
| Lab Batch #: 990                  |     | Sample: 526802-005 / SMP             | Batcl                  |                       |                        |                         |       |
| Units: mg/                        | kg  | <b>Date Analyzed:</b> 03/15/16 19:21 |                        | RROGATE R             |                        | STUDY                   |       |
|                                   |     | by SW 8015B                          | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |
|                                   |     | Analytes                             |                        |                       | [D]                    |                         |       |
| 1-Chlorooctane                    |     |                                      | 123                    | 99.7                  | 123                    | 70-130                  |       |
| o-Terphenyl                       |     |                                      | 57.1                   | 49.9                  | 114                    | 70-130                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



Project Name: 30137 #3, #4, #5

| Work Orders Lab Batch #: 9 |                 | 2, Sample: 526802-006 / SMP          | Batcl                  |                       | : 7250101120<br>: Soil | )96                     |       |
|----------------------------|-----------------|--------------------------------------|------------------------|-----------------------|------------------------|-------------------------|-------|
| Units: m                   | ng/kg           | <b>Date Analyzed:</b> 03/15/16 19:49 | SU                     | RROGATE R             | ECOVERYS               | STUDY                   |       |
|                            | TPH             | I by SW 8015B                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |
|                            |                 | Analytes                             |                        |                       | [D]                    |                         |       |
| 1-Chlorooctane             |                 |                                      | 116                    | 99.8                  | 116                    | 70-130                  |       |
| o-Terphenyl                |                 |                                      | 56.4                   | 49.9                  | 113                    | 70-130                  |       |
| Lab Batch #: 9             | 90381           | Sample: 526802-007 / SMP             | Batcl                  | h: 1 Matrix           | : Soil                 |                         |       |
| Units: m                   | ng/kg           | <b>Date Analyzed:</b> 03/15/16 20:14 | SU                     | RROGATE R             | ECOVERY                | STUDY                   |       |
|                            | TPE             | I by SW 8015B<br>Analytes            | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 1-Chlorooctane             |                 | Analytes                             | 114                    | 99.7                  | 114                    | 70-130                  |       |
| o-Terphenyl                |                 |                                      | 54.7                   | 49.9                  | 114                    | 70-130                  |       |
| Lab Batch #: 9             | 90323           | Sample: 526802-006 / SMP             | Batcl                  |                       |                        | /0-130                  |       |
|                            | ng/kg           | <b>Date Analyzed:</b> 03/16/16 11:08 |                        |                       |                        |                         |       |
|                            | 1 <u>6</u> / Kg | Date Analyzet. 05/10/10 11:00        | 50                     | RROGATE R             | ECOVERY                |                         | 1     |
|                            | BTEX            | K by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
|                            |                 | Analytes                             |                        |                       | [10]                   |                         |       |
| 1,4-Difluorobenzo          |                 |                                      | 0.0342                 | 0.0300                | 114                    | 80-120                  |       |
| 4-Bromofluorobe            |                 |                                      | 0.0338                 | 0.0300                | 113                    | 80-120                  |       |
| Lab Batch #: 9             |                 | Sample: 526802-007 / SMP             | Batcl                  |                       |                        |                         |       |
| Units: m                   | ng/kg           | Date Analyzed: 03/16/16 14:52        | SU                     | <b>RROGATE R</b>      | ECOVERY                | STUDY                   |       |
|                            | втех            | X by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R         | Control<br>Limits<br>%R | Flags |
|                            |                 | Analytes                             |                        |                       | [D]                    |                         |       |
| 1,4-Difluorobenzo          |                 |                                      | 0.0278                 | 0.0300                | 93                     | 80-120                  |       |
| 4-Bromofluorobe            |                 |                                      | 0.0325                 | 0.0300                | 108                    | 80-120                  |       |
| Lab Batch #: 9             |                 | Sample: 526802-005 / SMP             | Batcl                  | h: 1 Matrix           | : Soil                 |                         |       |
| Units: m                   | ng/kg           | Date Analyzed: 03/16/16 15:08        | SU                     | <b>RROGATE R</b>      | ECOVERY                | STUDY                   |       |
|                            | BTEX            | X by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]  | Control<br>Limits<br>%R | Flags |
| 140.0                      |                 | Analytes                             | 0.001-                 | 0.0000                |                        |                         |       |
| 1,4-Difluorobenze          |                 |                                      | 0.0242                 | 0.0300                | 81                     | 80-120                  |       |
| 4-Bromofluorobe            | nzene           |                                      | 0.0294                 | 0.0300                | 98                     | 80-120                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



Project Name: 30137 #3, #4, #5

| Work Orde<br>Lab Batch #: |        | 2,<br>Sample: 706407-1-BLK / Bl      | LK Batc                  |                       | 7250101120<br>Solid   | )96                     |       |
|---------------------------|--------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|
| U <b>nits:</b>            | mg/kg  | Date Analyzed: 03/15/16 08:42        | SU                       | RROGATE R             | ECOVERY               | STUDY                   |       |
|                           | TPH    | I by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage |
|                           |        | Analytes                             |                          |                       | [D]                   |                         |       |
| 1-Chlorooctane            |        |                                      | 92.7                     | 100                   | 93                    | 70-130                  |       |
| o-Terphenyl               |        |                                      | 45.7                     | 50.0                  | 91                    | 70-130                  |       |
| Lab Batch #:              | 990323 | Sample: 706394-1-BLK / B             | LK Bate                  | h: 1 Matrix           | : Solid               |                         |       |
| Units:                    | mg/kg  | Date Analyzed: 03/15/16 14:26        | SURROGATE RECOVERY STUDY |                       |                       |                         |       |
|                           | BTE    | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flage |
| 1 4 D'flee and an         |        | Analytes                             | 0.0074                   | 0.0200                |                       | 00.100                  |       |
| 1,4-Difluorober           |        |                                      | 0.0274                   | 0.0300                | 91                    | 80-120                  |       |
| 4-Bromofluorol            |        | 01- 70/407 1 DZC / D                 | 0.0287                   | 0.0300                | 96                    | 80-120                  |       |
| Lab Batch #:              |        | Sample: 706407-1-BKS / BI            |                          |                       |                       |                         |       |
| Units:                    | mg/kg  | Date Analyzed: 03/15/16 09:14        | SU                       | RROGATE R             | ECOVERY               | STUDY                   |       |
|                           | TPH    | I by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage |
|                           |        | Analytes                             |                          |                       | [D]                   |                         |       |
| 1-Chlorooctane            |        |                                      | 115                      | 100                   | 115                   | 70-130                  |       |
| o-Terphenyl               |        |                                      | 50.0                     | 50.0                  | 100                   | 70-130                  |       |
| Lab Batch #:              | 990323 | Sample: 706394-1-BKS / BI            | KS Bate                  | h: 1 Matrix           | : Solid               |                         |       |
| Units:                    | mg/kg  | Date Analyzed: 03/15/16 13:05        | SU                       | RROGATE R             | ECOVERY               | STUDY                   |       |
|                           | BTE    | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flage |
| 1,4-Difluorober           | 176196 | Timity (CS                           | 0.0274                   | 0.0300                | 91                    | 80-120                  |       |
| 4-Bromofluorol            |        |                                      | 0.0274                   | 0.0300                | 104                   | 80-120                  |       |
| Lab Batch #:              |        | Sample: 706407-1-BSD / BS            |                          |                       |                       | 00-120                  |       |
|                           | mg/kg  | <b>Date Analyzed:</b> 03/15/16 09:48 |                          | RROGATE R             |                       | TUDV                    |       |
|                           | 8      | 2 and 11 mary 2001 001 101 10 07.10  | 50                       | ARUGAIE K             |                       | 51001                   |       |
|                           | TPE    | I by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flag  |
| [                         |        | Analytes                             |                          |                       | נען                   |                         |       |
| 1-Chlorooctane            |        |                                      | 118                      | 100                   | 118                   | 70-130                  |       |
| o-Terphenyl               |        |                                      | 50.9                     | 50.0                  | 102                   | 70-130                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



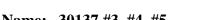
Project Name: 30137 #3, #4, #5

|             | rders : 52680<br>#: 990323 | 2,<br>Sample: 706394-1-BSD / B       | SD Batcl                 | -                     | : 7250101120<br>:: Solid | )96                     |       |
|-------------|----------------------------|--------------------------------------|--------------------------|-----------------------|--------------------------|-------------------------|-------|
| Units:      | mg/kg                      | Date Analyzed: 03/15/16 13:21        | SU                       | RROGATE R             | ECOVERY                  | STUDY                   |       |
|             | BTE                        | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R           | Control<br>Limits<br>%R | Flags |
|             |                            | Analytes                             |                          |                       | [D]                      |                         |       |
| 1,4-Difluor | obenzene                   |                                      | 0.0267                   | 0.0300                | 89                       | 80-120                  |       |
| 4-Bromoflu  | orobenzene                 |                                      | 0.0300                   | 0.0300                | 100                      | 80-120                  |       |
| Lab Batch   | #: 990323                  | Sample: 526801-001 S / MS            | S Bate                   | h: 1 Matrix           | : Soil                   |                         |       |
| Units:      | mg/kg                      | Date Analyzed: 03/15/16 13:38        | SURROGATE RECOVERY STUDY |                       |                          |                         |       |
|             | BTEX                       | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]    | Control<br>Limits<br>%R | Flags |
|             |                            | Analytes                             |                          |                       |                          |                         |       |
| 1,4-Difluor |                            |                                      | 0.0262                   | 0.0300                | 87                       | 80-120                  |       |
| 4-Bromoflu  |                            |                                      | 0.0297                   | 0.0300                | 99                       | 80-120                  |       |
|             | #: 990381                  | Sample: 526801-001 S / MS            | <b>B</b> Batel           | h: 1 Matrix           | : Soil                   |                         |       |
| Units:      | mg/kg                      | Date Analyzed: 03/15/16 13:58        | SU                       | RROGATE R             | ECOVERY                  | STUDY                   |       |
|             | TPE                        | I by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R           | Control<br>Limits<br>%R | Flags |
|             |                            | Analytes                             |                          |                       | [D]                      |                         |       |
| 1-Chlorooct | tane                       |                                      | 128                      | 99.8                  | 128                      | 70-130                  |       |
| o-Terpheny  | 1                          |                                      | 57.5                     | 49.9                  | 115                      | 70-130                  |       |
| Lab Batch   | #: 990323                  | Sample: 526801-001 SD / N            | ASD Bate                 | h: 1 Matrix           | : Soil                   |                         | 1     |
| Units:      | mg/kg                      | Date Analyzed: 03/15/16 13:53        | SU                       | RROGATE R             | ECOVERY                  | STUDY                   |       |
|             | BTEX                       | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D]    | Control<br>Limits<br>%R | Flags |
| 1,4-Difluor | obenzene                   | v                                    | 0.0275                   | 0.0300                | 92                       | 80-120                  |       |
| 4-Bromoflu  |                            |                                      | 0.0336                   | 0.0300                | 112                      | 80-120                  |       |
| Lab Batch   | #: 990381                  | Sample: 526801-001 SD / M            |                          |                       |                          |                         |       |
| Units:      | mg/kg                      | <b>Date Analyzed:</b> 03/15/16 14:25 | SU                       | RROGATE R             | ECOVERY                  | STUDY                   |       |
|             | TPE                        | I by SW 8015B                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R           | Control<br>Limits<br>%R | Flags |
|             |                            | Analytes                             |                          |                       | [D]                      |                         |       |
| 1-Chlorooct | tane                       |                                      | 129                      | 100                   | 129                      | 70-130                  |       |
| o-Terpheny  | 1                          |                                      | 55.7                     | 50.0                  | 111                      | 70-130                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution


Surrogate Recovery [D] = 100 \* A / B

All results are based on MDL and validated for QC purposes.

Page 177 of 190



## **BS / BSD Recoveries**





Project Name: 30137 #3, #4, #5

| Work Order #: 526802                          |                               |                       |                                 |                             |                       |                                           | Proj                          | ect ID:    | 725010112               | 096                       |      |
|-----------------------------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|------------|-------------------------|---------------------------|------|
| Analyst: PJB                                  | D                             | ate Prepa             | red: 03/15/20                   | 16                          |                       |                                           | Date A                        | nalyzed: ( | 03/15/2016              |                           |      |
| Lab Batch ID: 990323 Sample: 706394           | 1-BKS                         | Batc                  | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix: S  | Solid                   |                           |      |
| Units: mg/kg                                  |                               | BLAN                  | K /BLANK                        | SPIKE / I                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOV      | ERY STUI                | DY                        |      |
| BTEX by EPA 8021B                             | Blank<br>Sample Result<br>[A] | Spike<br>Added        | Blank<br>Spike<br>Result        | Blank<br>Spike<br>%R        | Spike<br>Added        | Blank<br>Spike<br>Duplicate               | Blk. Spk<br>Dup.<br>%R        | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Analytes                                      |                               | [B]                   | [C]                             | [D]                         | [E]                   | Result [F]                                | [G]                           |            |                         |                           |      |
| Benzene                                       | < 0.00150                     | 0.100                 | 0.0840                          | 84                          | 0.100                 | 0.0827                                    | 83                            | 2          | 70-130                  | 35                        |      |
| Toluene                                       | < 0.00200                     | 0.100                 | 0.0831                          | 83                          | 0.100                 | 0.0829                                    | 83                            | 0          | 70-130                  | 35                        |      |
| Ethylbenzene                                  | < 0.00200                     | 0.100                 | 0.0877                          | 88                          | 0.100                 | 0.0850                                    | 85                            | 3          | 71-129                  | 35                        |      |
| m,p-Xylenes                                   | <0.00200                      | 0.200                 | 0.184                           | 92                          | 0.200                 | 0.178                                     | 89                            | 3          | 70-135                  | 35                        |      |
| o-Xylene                                      | <0.00300                      | 0.100                 | 0.0854                          | 85                          | 0.100                 | 0.0831                                    | 83                            | 3          | 71-133                  | 35                        |      |
| Analyst: MNR                                  | D                             | ate Prepa             | red: 03/15/20                   | 16                          | •                     |                                           | Date A                        | nalyzed: ( | )3/15/2016              | •                         |      |
| Lab Batch ID: 990333 Sample: 706395           | 1-BKS                         | Batc                  | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix: S  | Solid                   |                           |      |
| Units: mg/kg                                  |                               | BLAN                  | K /BLANK                        | SPIKE / 1                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOVI     | ERY STUI                | DY                        |      |
| Inorganic Anions by EPA 300/300.1<br>Analytes | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Chloride                                      | <2.00                         | 50.0                  | 48.1                            | 96                          | 50.0                  | 48.0                                      | 96                            | 0          | 90-110                  | 20                        |      |

Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] =  $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] =  $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes



## **BS / BSD Recoveries**



Project Name: 30137 #3, #4, #5

| Work Order    | #: 526802                  |                                                           |                |                          |                      |                                  |                             | Pro                    | ect ID: 7 | 7250101120              | 096                       |      |
|---------------|----------------------------|-----------------------------------------------------------|----------------|--------------------------|----------------------|----------------------------------|-----------------------------|------------------------|-----------|-------------------------|---------------------------|------|
| Analyst:      | ARM                        | Da                                                        | ate Prepai     | red: 03/15/201           | .6                   | <b>Date Analyzed:</b> 03/15/2016 |                             |                        |           |                         |                           |      |
| Lab Batch ID: | 990381 Sample: 706407-1-E  | 706407-1-BKS         Batch #: 1         Matrix: Solid     |                |                          |                      |                                  |                             |                        |           |                         |                           |      |
| Units:        | mg/kg                      | BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY |                |                          |                      |                                  |                             |                        |           |                         |                           |      |
|               | TPH by SW 8015B            | Blank<br>Sample Result<br>[A]                             | Spike<br>Added | Blank<br>Spike<br>Result | Blank<br>Spike<br>%R | Spike<br>Added                   | Blank<br>Spike<br>Duplicate | Blk. Spk<br>Dup.<br>%R | RPD<br>%  | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Analy         | tes                        |                                                           | [ <b>B</b> ]   | [C]                      | [D]                  | [E]                              | Result [F]                  | [G]                    |           |                         |                           |      |
| C6-C10 Ga     | asoline Range Hydrocarbons | <25.0                                                     | 1000           | 818                      | 82                   | 1000                             | 875                         | 88                     | 7         | 75-125                  | 35                        |      |
| C10-C28 E     | Diesel Range Hydrocarbons  | <25.0                                                     | 1000           | 851                      | 85                   | 1000                             | 920                         | 92                     | 8         | 75-125                  | 35                        |      |

Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] =  $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] =  $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

| Received by | OCD: 4/19/2023 | 7:30:52 AM |
|-------------|----------------|------------|
|-------------|----------------|------------|

ATORIES

## Form 3 - MS Recoveries



Project Name: 30137 #3, #4, #5

Work Order #: 526802 990333 Lab Batch #: **Date Analyzed:** 03/15/2016 QC Rep

Chloride

#### Project ID: 725010112096

80-120

99

| <b>Date Analyzed:</b> 03/15/2016   | <b>Date Prepared:</b> 03/15/201 | 16 Analyst                                            | : MNR                        |
|------------------------------------|---------------------------------|-------------------------------------------------------|------------------------------|
| <b>QC- Sample ID:</b> 526801-005 S | <b>Batch #:</b> 1               | Matrix                                                | : Soil                       |
| Reporting Units: mg/kg             | COVERY STUDY                    |                                                       |                              |
| Inorganic Anions by EPA 300        | Sample Sp<br>Result Ad          | Spiked Sample<br>Dike Result %R<br>Ided [C] [D]<br>B] | Control<br>Limits Flag<br>%R |
| Analytes                           |                                 | -                                                     |                              |
| Chloride                           | 65.5 5                          | 500 547 96                                            | 80-120                       |
| Lab Batch #: 990333                |                                 |                                                       |                              |
| <b>Date Analyzed:</b> 03/15/2016   | Date Prepared: 03/15/201        | 16 Analyst                                            | : MNR                        |
| <b>QC- Sample ID:</b> 526802-002 S | <b>Batch #:</b> 1               | Matrix                                                | : Soil                       |
| Reporting Units: mg/kg             | MATRIX                          | / MATRIX SPIKE REC                                    | OVERY STUDY                  |
| Inorganic Anions by EPA 300        | Sample Sp                       | pike Spiked Sample<br>Result %R                       | Control<br>Limits Flag       |
| Analytes                           |                                 | lded [C] [D]<br>B]                                    | %R                           |

254

500

747

Matrix Spike Percent Recovery [D] = 100\*(C-A)/B Relative Percent Difference [E] = 200\*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit



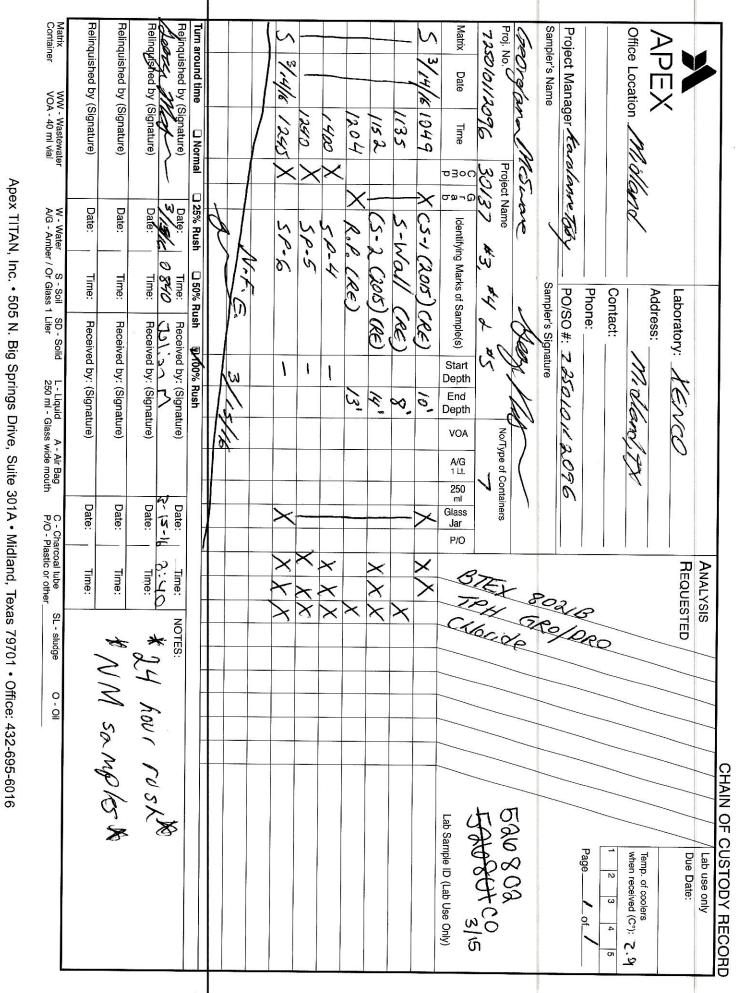
#### Form 3 - MS / MSD Recoveries



.

#### Project Name: 30137 #3, #4, #5

| Work Order # :          | 526802            |                            |              |                         |           |              | Project II                 | <b>):</b> 72501 | 0112096 |                         |                   |      |
|-------------------------|-------------------|----------------------------|--------------|-------------------------|-----------|--------------|----------------------------|-----------------|---------|-------------------------|-------------------|------|
| Lab Batch ID:           | 990323            | QC- Sample ID:             | 526801       | -001 S                  | Ba        | tch #:       | 1 Matrix                   | k: Soil         |         |                         |                   |      |
| Date Analyzed:          | 03/15/2016        | Date Prepared:             | 03/15/2      | 016                     | An        | alyst: F     | PJB                        |                 |         |                         |                   |      |
| <b>Reporting Units:</b> | mg/kg             |                            | N            | IATRIX SPIK             | E / MAT   | RIX SPI      | KE DUPLICA                 | TE REC          | OVERY   | STUDY                   |                   |      |
|                         | BTEX by EPA 8021B | Parent<br>Sample<br>Result | Spike        | Spiked Sample<br>Result | Sample    | Spike        | Duplicate<br>Spiked Sample |                 | RPD     | Control<br>Limits       | Control<br>Limits | Flag |
|                         | Analytes          | [A]                        | Added<br>[B] | [C]                     | %R<br>[D] | Added<br>[E] | Result [F]                 | %R<br>[G]       | %       | %R                      | %RPD              |      |
| Benzene                 |                   | <0.00144                   | 0.0962       | 0.0939                  | 98        | 0.0962       | 0.0616                     | 64              | 42      | 70-130                  | 35                | XF   |
| Toluene                 |                   | 0.00209                    | 0.0962       | 0.0978                  | 99        | 0.0962       | 0.0651                     | 65              | 40      | 70-130                  | 35                | XF   |
| Ethylbenzene            |                   | <0.00192                   | 0.0962       | 0.108                   | 112       | 0.0962       | 0.0719                     | 75              | 40      | 71-129                  | 35                | F    |
| m,p-Xylenes             |                   | 0.00228                    | 0.192        | 0.227                   | 117       | 0.192        | 0.153                      | 79              | 39      | 70-135                  | 35                | F    |
| o-Xylene                |                   | <0.00288                   | 0.0962       | 0.108                   | 112       | 0.0962       | 0.0717                     | 75              | 40      | 71-133                  | 35                | F    |
| Lab Batch ID:           | 990381            | QC- Sample ID:             | 526801       | -001 S                  | Ba        | tch #:       | 1 Matrix                   | <b>k:</b> Soil  |         |                         |                   |      |
| Date Analyzed:          | 03/15/2016        | Date Prepared:             | 03/15/2      | 016                     | An        | alyst: A     | ARM                        |                 |         |                         |                   |      |
| <b>Reporting Units:</b> | mg/kg             |                            | N            | IATRIX SPIK             | E / MAT   | RIX SPI      | KE DUPLICA                 | TE REC          | OVERY   | STUDY                   |                   |      |
|                         | TPH by SW 8015B   | Parent<br>Sample<br>Result | Spike        | Spiked Sample<br>Result | Sample    | Spike        | Duplicate<br>Spiked Sample |                 | RPD     | Control<br>Limits<br>%R | Control<br>Limits | Flag |
|                         | Analytes          | [A]                        | Added<br>[B] | [C]                     | %R<br>[D] | Added<br>[E] | Result [F]                 | %R<br>[G]       | %       | 70K                     | %RPD              | 1    |


| Analytes                           | Result<br>[A] | Added<br>[B] | [C]  | %R<br>[D] | Added<br>[E] | Result [F] | %R<br>[G] | % | %R     | %RPD |  |
|------------------------------------|---------------|--------------|------|-----------|--------------|------------|-----------|---|--------|------|--|
| C6-C10 Gasoline Range Hydrocarbons | <25.0         | 998          | 921  | 92        | 1000         | 926        | 93        | 1 | 75-125 | 35   |  |
| C10-C28 Diesel Range Hydrocarbons  | <25.0         | 998          | 1070 | 107       | 1000         | 1040       | 104       | 3 | 75-125 | 35   |  |

 $\begin{array}{ll} Matrix \ Spike \ Percent \ Recovery \quad [D] = 100*(C-A)/B \\ Relative \ Percent \ Difference \quad RPD = 200*|(C-F)/(C+F)| \end{array}$ 

Matrix Spike Duplicate Percent Recovery  $[G] = 100^{*}(F-A)/E$ 

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 15 of 17



Page 16 of 17

Final 1.000

•

Received by OCD: 4/19/2023 7:30:52 AM



## **XENCO Laboratories**



Prelogin/Nonconformance Report- Sample Log-In

| Client: APEX/Titan                                                                                                                  | Acceptable Temperature Range: 0 - 6 degC       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|
| Date/ Time Received: 03/15/2016 08:40:00 AM                                                                                         | Air and Metal samples Acceptable Range: Ambien |  |  |  |  |  |
| Work Order #: 526802                                                                                                                | Temperature Measuring device used : r8         |  |  |  |  |  |
| Sample Recei                                                                                                                        | pt Checklist Comments                          |  |  |  |  |  |
| #1 *Temperature of cooler(s)?                                                                                                       | 2.9                                            |  |  |  |  |  |
| #2 *Shipping container in good condition?                                                                                           | Yes                                            |  |  |  |  |  |
| #3 *Samples received on ice?                                                                                                        | Yes                                            |  |  |  |  |  |
| #4 *Custody Seals intact on shipping container/ cooler?                                                                             | N/A                                            |  |  |  |  |  |
| #5 Custody Seals intact on sample bottles?                                                                                          | N/A                                            |  |  |  |  |  |
| #6 *Custody Seals Signed and dated?                                                                                                 | N/A                                            |  |  |  |  |  |
| #7 *Chain of Custody present?                                                                                                       | Yes                                            |  |  |  |  |  |
| #8 Sample instructions complete on Chain of Custody?                                                                                | Yes                                            |  |  |  |  |  |
| #9 Any missing/extra samples?                                                                                                       | Νο                                             |  |  |  |  |  |
| #10 Chain of Custody signed when relinquished/ received?                                                                            | Yes                                            |  |  |  |  |  |
| #11 Chain of Custody agrees with sample label(s)?                                                                                   | Yes                                            |  |  |  |  |  |
| #12 Container label(s) legible and intact?                                                                                          | Yes                                            |  |  |  |  |  |
| #13 Sample matrix/ properties agree with Chain of Custody?                                                                          | Yes                                            |  |  |  |  |  |
| #14 Samples in proper container/ bottle?                                                                                            | Yes                                            |  |  |  |  |  |
| #15 Samples properly preserved?                                                                                                     | Yes                                            |  |  |  |  |  |
| #16 Sample container(s) intact?                                                                                                     | Yes                                            |  |  |  |  |  |
| #17 Sufficient sample amount for indicated test(s)?                                                                                 | Yes                                            |  |  |  |  |  |
| #18 All samples received within hold time?                                                                                          | Yes                                            |  |  |  |  |  |
| #19 Subcontract of sample(s)?                                                                                                       | Νο                                             |  |  |  |  |  |
| #20 VOC samples have zero headspace (less than 1/4 inch                                                                             | bubble)? N/A                                   |  |  |  |  |  |
| #21 <2 for all samples preserved with HNO3,HCL, H2SO4? I<br>samples for the analysis of HEM or HEM-SGT which are verif<br>analysts. | •                                              |  |  |  |  |  |
| #22 >10 for all samples preserved with NaAsO2+NaOH, ZnA                                                                             | IC+NaOH? N/A                                   |  |  |  |  |  |

#### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 03/15/2016

 Checklist completed by:
 Carley Owens

 Carley Owens
 Carley Owens

 Checklist reviewed by:
 Mass Moath

 Kelsey Brooks
 Kelsey Brooks

Date: 03/15/2016



APPENDIX E

Initial C-141 Documentation

| Received b | v OCL | ): 4/19/202 | 3 7:30:52 AM   |
|------------|-------|-------------|----------------|
| ALCOUTON D |       |             | C THOUSDALLAND |

5 of 190

| nived by OCD: 4/19/2023 7:30:52 AM                                              | Page 185                                                                                                                                                                       |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | NM OIL CONSERVATION<br>ARTESIA DISTRICT                                                                                                                                        |
| 625 N. French Dr., Hobbs, NM 88240                                              | ate of New Mexico<br>nerals and Natural Resources FEB <b>2 4</b> 2015 Form C-141<br>Revised August 8, 2011                                                                     |
| 301 W. Grand Avenue, Artesia, NM 88210                                          | Conservation Division Submit 1 Copy to appropriate District Office in                                                                                                          |
| 000 Rio Brazos Road, Aztec, NM 87410                                            | South St. Francis Dr.                                                                                                                                                          |
| 330 C D4 Press F- Conta F- MD4 97808                                            | anta Fe, NM 87505                                                                                                                                                              |
|                                                                                 | cation and Corrective Action                                                                                                                                                   |
| AB1506228797                                                                    | OPERATOR Initial Report Final Report                                                                                                                                           |
| Name of Company Enterprise Field Services LLC<br>PO Box 4324, Houston, TX 77210 | Contact         Dina Babinski           Telephone No.         210-528-3824                                                                                                     |
| Facility Name Pipeline ROW, 30137 Gathering Later                               |                                                                                                                                                                                |
| Surface Owner State of New Mexico Mineral C                                     | Dwner         NA - Pipeline         Lease No.         NA                                                                                                                       |
| · · · · · · · · · · · · · · · · · · ·                                           | TION OF RELEASE                                                                                                                                                                |
| Unit LetterSectionTownshipRangeFeet from theO1319S28E97                         | North/South Line         Feet from the         East/West Line         County           South         562         West         Eddy                                             |
| Latitude: <u>N3</u>                                                             | <u></u>                                                                                                                                                                        |
|                                                                                 | TURE OF RELEASE                                                                                                                                                                |
| Type of Release Natural Gas, Pipeline Liquids                                   | Volume of Release: 1581 MCF, Volume Recovered: N/A                                                                                                                             |
| Source of Release Pipeline Leak.                                                | 3 BBL Liquids           Date and Hour of Occurrence         Date and Hour of Discovery                                                                                         |
| Was Immediate Notice Given?                                                     | 02/15/2015 @ 09:10 MST 02/15/2015 @ 09:10 MST<br>If YES, To Whom?                                                                                                              |
| 🛛 Yes 🗌 No 🗌 Not R                                                              |                                                                                                                                                                                |
| By Whom? Dina Babinski<br>Was a Watercourse Reached?                            | Date and Hour 02/15/2015 @ 12:43 MST<br>If YES, Volume Impacting the Watercourse.                                                                                              |
| Yes X No                                                                        | If YES, volume impacting the watercourse.                                                                                                                                      |
| f a Watercourse was Impacted, Describe Fully.*                                  |                                                                                                                                                                                |
| Describe Cause of Problem and Remedial Action Taken.*                           |                                                                                                                                                                                |
|                                                                                 | ent was clamped and blown down, and leaking portion was repaired.                                                                                                              |
| Describe Area Affected and Cleanup Action Taken.*                               |                                                                                                                                                                                |
| Liquid spill occurred within pipeline ROW. Cleanup activities a                 | re currently being performed and additional sampling has been requested to confirm                                                                                             |
| cleanup is satisfactory.                                                        | lete to the best of my knowledge and understand that pursuant to NMOCD rules and                                                                                               |
| egulations all operators are required to report and/or file certain r           | elease notifications and perform corrective actions for releases which may endanger                                                                                            |
|                                                                                 | ort by the NMOCD marked as "Final Report" does not relieve the operator of liability<br>emediate contamination that pose a threat to ground water, surface water, human health |
| or the environment. In addition, NMOCD acceptance of a C-141                    | report does not relieve the operator of responsibility for compliance with any other                                                                                           |
| ederal, state, or local laws and/or regulations.                                | OIL CONSERVATION DIVISION                                                                                                                                                      |
|                                                                                 |                                                                                                                                                                                |
| Signature                                                                       | Approved by District Supervise Fility Enemanter                                                                                                                                |
| Printed Name: Ivan W. Zirbes                                                    |                                                                                                                                                                                |
| Fitle: Sr. Director, Field Environmental                                        | Approval Date: 3315 Expiration Date: NA                                                                                                                                        |
| ,                                                                               | Conditions of Approval:                                                                                                                                                        |
| E-mail Address: snolan@eprod.com                                                |                                                                                                                                                                                |
| Date: 1. 94 2015 Phone: 713 381 6595                                            | Remediation per O.C.D. Rules & Guidelines                                                                                                                                      |

| Received the Oceptad 2033 Trites Report only                                                                                                                                                                                                                                                                                                                                                                                   | Received 8/<br>NMOCD D                                                                                                                                                 |                                                                    | <b>Page 186 of 190</b>                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| District II Energy Minera                                                                                                                                                                                                                                                                                                                                                                                                      | of New Mexico<br>Is and Natural Resources                                                                                                                              | /15t 2                                                             | Form C-141<br>Revised August 8, 2011                                                                                  |
| District IV<br>1220 Sou                                                                                                                                                                                                                                                                                                                                                                                                        | servation Division St<br>uth St. Francis Dr.<br>Fe, NM 87505                                                                                                           | ıbmit 1 Copy<br>a                                                  | y to appropriate District Office in coordance with 19,15,29 NMAC.                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                | on and Corrective Actio                                                                                                                                                |                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                 |
| nMLB1521930490                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        | _                                                                  | _                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                | OPERATOR                                                                                                                                                               | 🛛 Initi                                                            | al Report - Final Report                                                                                              |
| Name of Company Enterprise Field Services LLC<br>PO Box 4324, Houston, TX 77210                                                                                                                                                                                                                                                                                                                                                | ContactDina FergusonTelephone No. 210-528-3824                                                                                                                         |                                                                    |                                                                                                                       |
| Facility Name Pipeline ROW, 30137 Gathering Lateral                                                                                                                                                                                                                                                                                                                                                                            | Facility Type: Gas Gathering P                                                                                                                                         | inolino                                                            |                                                                                                                       |
| Surface Owner State of New Mexico Mineral Owne                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        | Lease 1                                                            | No. NA                                                                                                                |
| LOCATI                                                                                                                                                                                                                                                                                                                                                                                                                         | ON OF RELEASE                                                                                                                                                          |                                                                    |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        | /West Line                                                         | County                                                                                                                |
| 0 13 19S 28E 97                                                                                                                                                                                                                                                                                                                                                                                                                | South 562                                                                                                                                                              | West                                                               | Eddy                                                                                                                  |
| Latitude: <u>N 32.6538</u>                                                                                                                                                                                                                                                                                                                                                                                                     | <u>6</u> Longitude: <u><i>W-104.12857</i></u>                                                                                                                          |                                                                    |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                | E OF RELEASE                                                                                                                                                           |                                                                    |                                                                                                                       |
| Type of Release Natural Gas, Pipeline Liquids                                                                                                                                                                                                                                                                                                                                                                                  | Volume of Release: 1,257 MCF,<br>2 BBL Liquids                                                                                                                         |                                                                    | Recovered: N/A                                                                                                        |
| Source of Release Pipeline Leak.                                                                                                                                                                                                                                                                                                                                                                                               | Date and Hour of Occurrence<br>04/29/2015 @ 10:05 MDT                                                                                                                  |                                                                    | Hour of Discovery<br>(5 @ 10:05 MDT                                                                                   |
| Was Immediate Notice Given?                                                                                                                                                                                                                                                                                                                                                                                                    | If YES, To Whom?                                                                                                                                                       |                                                                    | <u>5 @ 10.05 MD1</u>                                                                                                  |
| Yes 🗌 No 🗌 Not Require                                                                                                                                                                                                                                                                                                                                                                                                         | d Mike Bratcher – NMOCD Distric                                                                                                                                        | 2                                                                  |                                                                                                                       |
| By Whom? Osman De Leon                                                                                                                                                                                                                                                                                                                                                                                                         | Date and Hour 04/29/2015 @ 12                                                                                                                                          |                                                                    |                                                                                                                       |
| Was a Watercourse Reached?                                                                                                                                                                                                                                                                                                                                                                                                     | If YES, Volume Impacting the Wa                                                                                                                                        | tercourse.                                                         |                                                                                                                       |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                                    |                                                                                                                       |
| If a watercourse was impacted, Describe Funy.*                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                        |                                                                    |                                                                                                                       |
| Describe Cause of Problem and Remedial Action Taken.*                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                    |                                                                                                                       |
| Pipeline leak was detected by pumper passing by. Pipeline segment was standard One-Call.                                                                                                                                                                                                                                                                                                                                       | as clamped and blown down, and leaki                                                                                                                                   | ng portion w                                                       | vas repaired following                                                                                                |
| Describe Area Affected and Cleanup Action Taken.*<br>Liquid spill occurred within pipeline ROW. Clean-up activities will be<br>Response and Remediation Plan according to housekeeping standards<br>documentation, and will make available to NMOCD upon request.                                                                                                                                                              | s. Enterprise will maintain records of s                                                                                                                               | ampling res                                                        | ults and disposal                                                                                                     |
| I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by t should their operations have failed to adequately investigate and remediator the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations. | notifications and perform corrective ac<br>the NMOCD marked as "Final Report"<br>ate contamination that pose a threat to g<br>does not relieve the operator of respons | tions for rele<br>does not reli-<br>round water<br>sibility for co | ases which may endanger<br>eve the operator of liability<br>, surface water, human health<br>ompliance with any other |
| Signature: Jon Kulds                                                                                                                                                                                                                                                                                                                                                                                                           | OIL CONSERV                                                                                                                                                            |                                                                    |                                                                                                                       |
| Printed Name Jon E. Fields                                                                                                                                                                                                                                                                                                                                                                                                     | Approved by District Supervisor: Acc                                                                                                                                   | cepted as                                                          | Initial Report only                                                                                                   |
| Title: Director, Field Environmental                                                                                                                                                                                                                                                                                                                                                                                           | Approval Date: 8/7/15                                                                                                                                                  | Expiration I                                                       | Date:                                                                                                                 |
| E-mail Address: jefields@eprod.com                                                                                                                                                                                                                                                                                                                                                                                             | Conditions of Approval: Remediati                                                                                                                                      | on per                                                             | Attached                                                                                                              |
| Date: 3 - 15 - 70/5 Phone: 713-381-6684<br>Attach Additional Sheets If Necessary                                                                                                                                                                                                                                                                                                                                               | OCD Rules and Guidelines                                                                                                                                               |                                                                    |                                                                                                                       |
| Attach Additional Sheets If Necessary                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                    | 2RP-3191                                                                                                              |

.

| Received by OCD: 4/19/2023 7:30:52 AREVISED                                                                                                                                       | ]                                                     | Rec'd 8/12/2          | 2015 Page 187 of 190                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|-------------------------------------------------------------------|
| District II Energy Mine                                                                                                                                                           | e of New Mexico ]<br>prals and Natural Resources      | NMOCD D               | Pist 2<br>Form C-141<br>Revised August 8, 2011                    |
| 1301 W. Grand Avenue, Artesia, NM 88210         District III         1000 Rio Brazos Road, Aztec, NM 87410         District IV         1220 S. St. Francis Dr. Santa Fo. NM 87505 | nservation Division<br>outh St. Francis Dr.           | Submit 1 Cop<br>a     | y to appropriate District Office in coordance with 19.15.29 NMAC. |
|                                                                                                                                                                                   | ta Fe, NM 87505<br>tion and Corrective A              | Action                |                                                                   |
| nMLB1521930490                                                                                                                                                                    | OPERATOR                                              |                       | ial Report 🔲 Final Report                                         |
| Name of Company Enterprise Field Services LLC                                                                                                                                     | Contact Dina Fer                                      |                       | ial Report Final Report                                           |
| PO Box 4324, Houston, TX 77210                                                                                                                                                    | Telephone No. 210-528-3                               | 824                   |                                                                   |
| Facility Name         Pipeline ROW, 30137 Gathering Lateral                                                                                                                       | Facility Type: Gas Gathe                              | ering Pipeline        |                                                                   |
| Surface Owner State of New Mexico Mineral Ow                                                                                                                                      | ner NA - Pipeline                                     | Lease 1               | No. NA                                                            |
|                                                                                                                                                                                   | <b>'ION OF RELEASE</b>                                |                       |                                                                   |
| Unit LetterSectionTownshipRangeFeet from theN01319528E97                                                                                                                          | Jorth/South LineFeet from theSouth562                 | East/West Line        | County                                                            |
|                                                                                                                                                                                   |                                                       | West                  | Eddy                                                              |
| Latitude: <u>N 32.65</u>                                                                                                                                                          |                                                       | <u>857</u>            |                                                                   |
| Type of Release Natural Gas, Pipeline Liquids                                                                                                                                     | RE OF RELEASE                                         |                       |                                                                   |
|                                                                                                                                                                                   | Volume of Release: 1,257<br>8.5 BBL Liquids (updated) |                       | Recovered: N/A                                                    |
| Source of Release Pipeline Leak.                                                                                                                                                  | Date and Hour of Occurren                             | ce Date and           | Hour of Discovery                                                 |
| Was Immediate Notice Given?                                                                                                                                                       | 04/29/2015 @ 10:05 MDT<br>If YES, To Whom?            | 04/29/201             | 15 @ 10:05 MDT                                                    |
| Yes 🗌 No 🗌 Not Requ                                                                                                                                                               | ired Mike Bratcher - NMOCD                            | District 2            |                                                                   |
| By Whom? Osman De Leon<br>Was a Watercourse Reached?                                                                                                                              | Date and Hour 04/29/201                               | 5@ 12:43 MDT          |                                                                   |
| Yes X No                                                                                                                                                                          | If YES, Volume Impacting                              | the Watercourse.      |                                                                   |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                   |                                                       |                       | · · · · · · · · · · · · · · · · · · ·                             |
|                                                                                                                                                                                   |                                                       |                       | -                                                                 |
| Describe Cause of Problem and Remedial Action Taken.*                                                                                                                             |                                                       |                       |                                                                   |
|                                                                                                                                                                                   |                                                       |                       |                                                                   |
| Pipeline leak was detected by pumper passing by. Pipeline segment standard One-Call.                                                                                              | was clamped and blown down, ar                        | id leaking portion v  | vas repaired following                                            |
| Describe Area Affreded and Olever And The                                                                                                                                         |                                                       |                       |                                                                   |
| Describe Area Affected and Cleanup Action Taken.*<br>Liquid spill occurred within pipeline ROW. Clean-up activities will                                                          | be carried out in accordance with                     | Enternrise's Gene     | ral release Natification                                          |
| <i>Response and Remeatation Plan (dated March 9, 2015). Operations</i>                                                                                                            | personnel originally estimated an                     | proximately 2 bbl r   | nineline liquids spilled to the                                   |
| ground within pipeline right-of-way. After further investigation and pipeline liquids. NMOCD Reference 2RP-3191.                                                                  |                                                       |                       | Ť                                                                 |
| I hereby certify that the information given above is true and complete                                                                                                            | to the best of my knowledge and u                     | inderstand that purs  | uant to NMOCD rules and                                           |
| regulations all operators are required to report and/or file certain relea<br>public health or the environment. The acceptance of a C-141 report b                                | v the NMOCD marked as "Final R                        | enort" does not reli- | eve the operator of lightlity                                     |
| should their operations have failed to adequately investigate and reme                                                                                                            | diate contamination that pose a thr                   | eat to ground water   | surface water human health                                        |
| or the environment. In addition, NMOCD acceptance of a C-141 reported federal, state, or local laws and/or regulations.                                                           | or does not relieve the operator of                   | responsibility for co | ompliance with any other                                          |
|                                                                                                                                                                                   | OIL CON                                               | SERVATION             | DIVISION                                                          |
| Signature: Aon Fulls                                                                                                                                                              |                                                       |                       |                                                                   |
| Printed Name: Jon E. Fields                                                                                                                                                       | Approved by District Supervis                         | or:                   |                                                                   |
| Title: Director, Field Environmental                                                                                                                                              | Approval Date: 8/21/15                                | Expiration [          | Date:                                                             |
| E-mail Address: jefields@eprod.com                                                                                                                                                | Conditions of Approval: Ren                           | · •                   | · · · · · · · · · · · · · · · · · · ·                             |
|                                                                                                                                                                                   | NMOCD Rules & Guid                                    |                       | Attached                                                          |
| Date: 5-12-205 Phone: 713-381-6684<br>Attach Additional Sheets If Necessary                                                                                                       |                                                       |                       |                                                                   |
| A REALED THE CHECKS II INCOUSSELY                                                                                                                                                 |                                                       | 2                     | RP-3191                                                           |

.

| Received l | by OCL | ): 4/19/2 | 2023 7:: | 30:52 AM |
|------------|--------|-----------|----------|----------|

# NM OIL CONSERVATION

Page 188 of 190

•

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARTESIA DISTRICT                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16/N N French Dr. Honns NM XX/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e of New Mexico<br>rals and Natural Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUN 1.0 2015 Form C-<br>Revised August 8, 2                                                                                                                                                                     |
| District III Oil Con<br>1000 Rio Brazos Road, Aztec, NM 87410<br>District IV 1220 Se                                                                                                                                                                                                                                                                                                                                                                                                              | nservation Division<br>outh St. Francis Dr.<br>a Fe, NM 87505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Subreic Einer pappropriate District Offic<br>accordance with 19.15.29 NM.                                                                                                                                       |
| FAB143284154.3 Release Notificat                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion and Corrective A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ction                                                                                                                                                                                                           |
| NAB1516226673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>OPERATOR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 🛛 Initial Report 🛛 Final Re                                                                                                                                                                                     |
| Name of Company Enterprise Field Services LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact Dina Fergi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |
| PO Box 4324, Houston, TX 77210                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Telephone No. 210-528-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |
| Facility Name Pipeline ROW, 30137 Gathering Lateral                                                                                                                                                                                                                                                                                                                                                                                                                                               | Facility Type: Gas Gather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing Pipeline                                                                                                                                                                                                    |
| Surface Owner State of New Mexico Mineral Own                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ner NA - Pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lease No. NA                                                                                                                                                                                                    |
| 1 OCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ION OF RELEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | orth/South Line Feet from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | East/West Line County                                                                                                                                                                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                            | South 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | West Eddy                                                                                                                                                                                                       |
| Latitude: <u>N 32.653</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 899 Longitude: <u>W-104.129</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 186                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| Type of Release Natural Gas, Pipeline Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RE OF RELEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICF. Volume Recovered: N/A                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 BBL Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |
| Source of Release Pipeline Leak.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date and Hour of Occurrenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
| Was Immediate Notice Given?                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06/08/2015 @ 8:50 MDT<br>If YES, To Whom?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06/08/2015 @ 9:38 MDT                                                                                                                                                                                           |
| Yes No Not Requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | District 2                                                                                                                                                                                                      |
| By Whom? Osman De Leon                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date and Hour 06/08/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | @, 9:38 MDT                                                                                                                                                                                                     |
| Was a Watercourse Reached?                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | If YES, Volume Impacting t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
| 🗌 Yes 🖾 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| Describe Cause of Problem and Remedial Action Taken.*                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| Pipeline leak was detected by an Enterprise Inspector. Pipeline seg standard One-Call.                                                                                                                                                                                                                                                                                                                                                                                                            | ment was clamped and blown down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n, and leaking portion will be repaired followin                                                                                                                                                                |
| Describe Area Affected and Cleanup Action Taken.*<br>Liquid spill occurred within pipeline ROW. Clean-up activities will<br>Response and Remediation Plan according as defined in the house<br>documentation and will make available to NMOCD upon request                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| documentation, and will make available to NMOCD upon request.<br>I hereby certify that the information given above is true and complete<br>regulations all operators are required to report and/or file certain relea<br>public health or the environment. The acceptance of a C-141 report to<br>should their operations have failed to adequately investigate and remo<br>or the environment. In addition, NMOCD acceptance of a C-141 rep<br>federal, state, or local laws and/or regulations. | ase notifications and perform correct<br>by the NMOCD marked as "Final Re-<br>ediate contamination that pose a thro-<br>ort does not relieve the operator of the<br>sector of the sector of the sec | tive actions for releases which may endanger<br>eport <sup>®</sup> does not relieve the operator of liability<br>eat to ground water, surface water, human healt<br>esponsibility for compliance with any other |
| 1 co no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OIL CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SERVATION DIVISION                                                                                                                                                                                              |
| Signature: Jan Frelas                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | By Mile Kan                                                                                                                                                                                                     |
| Printed Name: Jon E. Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approved by District Supervise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dy really considered                                                                                                                                                                                            |
| Title: Director, Field Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approval Date: 41111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 Expiration Date: NIA                                                                                                                                                                                          |
| E-mail Address: jefields@eprod.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conditions of Approval:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T FII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Attached                                                                                                                                                                                                        |
| Date: 6-8-2015 Phone: 713-381-6684<br>Attach Additional Sheets If Necessary                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |
| THE TRANSMUM COVER A TRANSMUY                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2RP-30                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                  | M OIL CONSE<br>ARTESIA DIST                                                                                                                                                                           |                                                                                                                                                                    | Page 189 of                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <u>istrict I</u><br>525 N. French Dr., Hobbs, NM 88240<br><u>istrict II</u><br>301 W. Grand Avenue, Artesia, NM 88210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                            | f New Mexico<br>and Natural Resources                                                                                                                                                                                                                                                                              | JUL 07 2                                                                                                                                                                                              | Revised                                                                                                                                                            | Form C-141<br>August 8, 2011                                                   |
| <u>istrict III</u><br>200 Rio Brazos Road, Aztec, NM 87410<br><u>istrict IV</u><br>220 S. St. Francis Dr., Santa Fe, NM 87505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1220 Sout                                                                                                                                                                                                                                                                  | rvation Division<br>h St. Francis Dr.                                                                                                                                                                                                                                                                              | Surrecen                                                                                                                                                                                              | toropropriate Di<br>cordance with 19.                                                                                                                              | strict Office in<br>15.29 NMAC.                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                          | re, NM 87505                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ase Notificatio                                                                                                                                                                                                                                                            | n and Corrective A                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                |
| AB151944-9044-<br>Jame of Company Enterprise Field Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                            | OPERATOR<br>Contact Dina Fera                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                       | l Report 🛛 🛛                                                                                                                                                       | Final Report                                                                   |
| PO Box 4324, Houston,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                            | Contact Dina Ferg<br>Telephone No. 210-528-3                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                |
| acility Name Pipeline ROW, 30137 Gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | Facility Type: Gas Gathe                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                |
| urface Owner State of New Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mineral Owner                                                                                                                                                                                                                                                              | NA - Pipeline                                                                                                                                                                                                                                                                                                      | Lease N                                                                                                                                                                                               | o. <i>NA</i>                                                                                                                                                       |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOCATIO                                                                                                                                                                                                                                                                    | N OF RELEASE                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                |
| Jnit LetterSectionTownshipRange01319S28E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feet from the North 70                                                                                                                                                                                                                                                     | N/South Line Feet from the 388                                                                                                                                                                                                                                                                                     | East/West Line<br>West                                                                                                                                                                                | County<br>Eddy                                                                                                                                                     |                                                                                |
| La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | titude: <u>N 32,653899</u>                                                                                                                                                                                                                                                 | <b>• • • •</b>                                                                                                                                                                                                                                                                                                     | 9186                                                                                                                                                                                                  |                                                                                                                                                                    |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NATURE                                                                                                                                                                                                                                                                     | COF RELEASE                                                                                                                                                                                                                                                                                                        | KCP VI ~                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                |
| ype of Release Natural Gas, Pipeline Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                            | Volume of Release: 1,532<br>3 BBL Liquids                                                                                                                                                                                                                                                                          | MCF, Volume R                                                                                                                                                                                         | ecovered: N/A                                                                                                                                                      |                                                                                |
| ource of Release Pipeline Leak.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            | Date and Hour of Occurren                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       | Hour of Discover<br>5 @ 8:50 MDT                                                                                                                                   | /                                                                              |
| Vas Immediate Notice Given?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            | 07/02/2015 @ 8:50 MDT<br>If YES, To Whom?                                                                                                                                                                                                                                                                          | 07/02/201                                                                                                                                                                                             | 5 (W 0.50 MD)                                                                                                                                                      |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No 🗌 Not Required                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       | (Per e-m                                                                                                                                                           | ail)                                                                           |
| By Whom? Osman De Lean<br>Vas a Watercourse Reached?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                            | Date and Hour 07/02/201                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       | -418/15                                                                                                                                                            | 434AN                                                                          |
| vas a warercourse Reached?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                                                                                                                                                                                                                                                         | If YES, Volume Impacting                                                                                                                                                                                                                                                                                           | the watercourse.                                                                                                                                                                                      |                                                                                                                                                                    |                                                                                |
| f a Watercourse was Impacted, Describe Fully.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·····                                                                                                                                                                                                                                                                      | - <b>1</b>                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                |
| Describe Cause of Problem and Remedial Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                    |                                                                                |
| ipeline leak was detected by an Enterprise Insp<br>andard One-Call.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ector. Pipeline segmer                                                                                                                                                                                                                                                     | nt was clamped and blown dov                                                                                                                                                                                                                                                                                       | vn, and leaking port                                                                                                                                                                                  | ion was repaired                                                                                                                                                   | following                                                                      |
| ipeline leak was detected by an Enterprise Insp<br>tandard One-Call.<br>Describe Area Affected and Cleanup Action Take<br>iquid spill occurred within pipeline ROW. Clea<br>Desponse and Remediation Plan (dated March 9                                                                                                                                                                                                                                                                                                                                                                                             | ector. Pipeline segmer<br>on.*<br>(n-up activities will be o<br>(, 2015) as defined in th                                                                                                                                                                                  | carried out in accordance with<br>he housekeeping standards. Ei                                                                                                                                                                                                                                                    | Bnterprise's Gener                                                                                                                                                                                    | al release Notific                                                                                                                                                 | ation,                                                                         |
| ipeline leak was detected by an Enterprise Insp<br>andard One-Call.<br>escribe Area Affected and Cleanup Action Take<br>iquid spill occurred within pipeline ROW. Clea<br>esponse and Remediation Plan (dated March 9<br>and disposal documentation, and will make avail<br>hereby certify that the information given above i<br>gulations all operators are required to report and<br>ablic health or the environment. The acceptance<br>nould their operations have failed to adequately is<br>the environment. In addition, NMOCD accepts                                                                         | ector. Pipeline segment<br>on.*<br>(n-up activities will be a<br>(2015) as defined in the<br>lable to NMOCD upon<br>is true and complete to<br>(l/or file certain release to<br>(of a C-141 report by the<br>investigate and remedia                                       | carried out in accordance with<br>the housekeeping standards. En<br>request.<br>the best of my knowledge and<br>notifications and perform correct<br>the NMOCD marked as "Final 1<br>the contamination that pose a th                                                                                              | a Enterprise's Gener<br>Interprise will mainta<br>understand that purs<br>ective actions for rele<br>Report" does not relive<br>reat to ground water                                                  | al release Notific<br>tin records of san<br>uant to NMOCD<br>asses which may convert<br>eve the operator of<br>surface water, hu                                   | ation,<br>apling results<br>rules and<br>ndanger<br>f liability<br>uman health |
| ipeline leak was detected by an Enterprise Insp<br>andard One-Call.<br>escribe Area Affected and Cleanup Action Take<br>iquid spill occurred within pipeline ROW. Clea<br>esponse and Remediation Plan (dated March 9<br>and disposal documentation, and will make avail<br>hereby certify that the information given above i<br>egulations all operators are required to report and<br>ublic health or the environment. The acceptance<br>hould their operations have failed to adequately in<br>the environment. In addition, NMOCD accepts<br>ederal, state, or local laws and/or regulations.                    | ector. Pipeline segment<br>on.*<br>(n-up activities will be a<br>(2015) as defined in the<br>lable to NMOCD upon<br>is true and complete to<br>(l/or file certain release to<br>(of a C-141 report by the<br>investigate and remedia                                       | carried out in accordance with<br>the housekeeping standards. En<br>request.<br>the best of my knowledge and<br>notifications and perform correct<br>the NMOCD marked as "Final 1<br>the contamination that pose a the<br>does not relieve the operator of                                                         | a Enterprise's Gener<br>Interprise will mainta<br>understand that purs<br>ective actions for rele<br>Report" does not relive<br>reat to ground water                                                  | al release Notific<br>tin records of san<br>uant to NMOCD<br>asses which may c<br>eve the operator o<br>, surface water, ho<br>ompliance with an                   | ation,<br>apling results<br>rules and<br>ndanger<br>f liability<br>uman health |
| ipeline leak was detected by an Enterprise Insp<br>andard One-Call.<br>escribe Area Affected and Cleanup Action Take<br>iquid spill occurred within pipeline ROW. Clea<br>esponse and Remediation Plan (dated March 9<br>and disposal documentation, and will make avail<br>hereby certify that the information given above i<br>egulations all operators are required to report and<br>ublic health or the environment. The acceptance<br>hould their operations have failed to adequately in<br>the environment. In addition, NMOCD accepts<br>ederal, state, or local laws and/or regulations.                    | ector. Pipeline segment<br>on.*<br>(n-up activities will be a<br>(2015) as defined in the<br>lable to NMOCD upon<br>is true and complete to<br>(l/or file certain release to<br>(of a C-141 report by the<br>investigate and remedia                                       | carried out in accordance with<br>the housekeeping standards. En<br>request.<br>the best of my knowledge and<br>notifications and perform correct<br>the NMOCD marked as "Final 1<br>the contamination that pose a the<br>does not relieve the operator of                                                         | Enterprise's Generaterprise will maintain<br>understand that purs<br>active actions for release<br>Report" does not reliare<br>reat to ground water<br>responsibility for constant<br>ISERVATION      | al release Notific<br>tin records of san<br>uant to NMOCD<br>asses which may c<br>eve the operator o<br>, surface water, ho<br>ompliance with an                   | ation,<br>apling results<br>rules and<br>ndanger<br>f liability<br>uman health |
| Tipeline leak was detected by an Enterprise Insp<br>fandard One-Call.<br>Describe Area Affected and Cleanup Action Take<br>iquid spill occurred within pipeline ROW. Clea<br>Response and Remediation Plan (dated March 9<br>and disposal documentation, and will make avail<br>hereby certify that the information given above i<br>egulations all operators are required to report and<br>ublic health or the environment. The acceptance<br>hould their operations have failed to adequately is<br>r the environment. In addition, NMOCD accepts<br>ederal, state, or local laws and/or regulations.<br>ignature: | ector. Pipeline segment<br>on.*<br>(n-up activities will be a<br>(2015) as defined in the<br>lable to NMOCD upon<br>is true and complete to<br>flor file certain release to<br>of a C-141 report by the<br>investigate and remedia<br>ance of a C-141 report of            | carried out in accordance with<br>the housekeeping standards. En<br>request.<br>the best of my knowledge and<br>notifications and perform correct<br>the NMOCD marked as "Final I<br>the contamination that pose a the<br>does not relieve the operator of<br>OIL CON                                              | Enterprise's Generaterprise will maintain<br>understand that purs<br>active actions for rele<br>Report" does not relive<br>reat to ground water<br>responsibility for con-<br>SERVATION               | al release Notific<br>in records of san<br>uant to NMOCD<br>asses which may c<br>eve the operator of<br>surface water, hu<br>ompliance with an<br>DIVISION<br>MUSE | ation,<br>apling results<br>rules and<br>ndanger<br>f liability<br>uman hcalth |
| Pipeline leak was detected by an Enterprise Insplandard One-Call.<br>Describe Area Affected and Cleanup Action Take<br>iquid spill occurred within pipeline ROW. Clea<br>Response and Remediation Plan (dated March 9<br>and disposal documentation, and will make avail<br>hereby certify that the information given above i<br>egulations all operators are required to report and<br>ublic health or the environment. The acceptance<br>hould their operations have failed to adequately is<br>r the environment. In addition, NMOCD accepts<br>ederal, state, or local laws and/or regulations.<br>ignature:     | ector. Pipeline segment<br>on.*<br>(n-up activities will be of<br>(2, 2015) as defined in the<br>lable to NMOCD upon<br>is true and complete to<br>flor file certain release to<br>of a C-141 report by the<br>investigate and remedia<br>ance of a C-141 report of<br>(1) | carried out in accordance with<br>the housekeeping standards. En<br>request.<br>the best of my knowledge and<br>notifications and perform correct<br>the NMOCD marked as "Final 1<br>the contamination that pose a the<br>does not relieve the operator of<br>OIL CON<br>Signed By<br>Approved by District Supervi | a Enterprise's Gener<br>interprise will mainta<br>understand that purs<br>extive actions for rele<br>Report" does not relive<br>reat to ground water<br>Fresponsibility for construction<br>SERVATION | al release Notific<br>in records of san<br>uant to NMOCD<br>asses which may c<br>eve the operator of<br>surface water, hu<br>ompliance with an<br>DIVISION<br>MUSE | ation,<br>apling results<br>rules and<br>ndanger<br>f liability<br>uman health |

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:                      | OGRID:                                    |
|--------------------------------|-------------------------------------------|
| Enterprise Field Services, LLC | 241602                                    |
| PO Box 4324                    | Action Number:                            |
| Houston, TX 77210              | 208911                                    |
|                                | Action Type:                              |
|                                | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created By | Condition | Condition |
|------------|-----------|-----------|
|            |           | Date      |
| amaxwell   | None      | 4/19/2023 |

Page 190 of 190 CONDITIONS

Action 208911