By Nelson Velez at 2:21 pm, May 10, 2023

- 1. Continue with O & M schedule.
- 2. Submit next quarterly report by August 1, 2023.

April 25, 2023

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: First Quarter 2023 – Remediation System Quarterly Report

Federal 18 #1T

San Juan County, New Mexico Hilcorp Energy Company

NMOCD Incident Number: NCS2103335776

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *First Quarter 2023 – Remediation System Quarterly Report* summarizing first quarter 2023 activities at the former Federal 18 #1T coalbed methane gas well (Site), located in Unit M, Section 18, Township 30 North, Range 12 West in the City of Farmington, New Mexico. The casing of the original gas well has been modified to vent gas and purge water from the Ojo Alamo and Nacimiento Formations. Since initiation of the remediation system in 2010, quarterly reports have been submitted to the New Mexico Oil Conservation Division (NMOCD) to record activities performed at the Site, as well as document well-casing pressures from nearby domestic water well SJ-01737, the volume of gas vented from the Site's well, and groundwater analytical results collected from the Site's well.

SITE BACKGROUND

As part of an ongoing effort between the NMOCD and Hilcorp (Site originally owned and operated by XTO Energy, Inc. [XTO]), the agreed upon remedial option for the Site was to install a vacuum system at the Site to vent gas from the Nacimiento formation, which overlies the Ojo Alamo Formation. Gas found in the Nacimiento formation could have originated from several contributing sources in the area including existing and abandoned gas wells near the Site. In agreement with the NMOCD, XTO modified the Site's production well to vent gas and recover contaminated groundwater by setting a plug at a depth of approximately 513 feet below ground surface (bgs). Perforations were made in the casing at 437 feet to 452 feet bgs and 457 feet to 473 feet bgs in order to monitor groundwater and vent gas from the Nacimiento Formation. Based on initial groundwater sampling results, XTO recommended pumping the aquifer until groundwater results were below the New Mexico Water Quality Control Commission (NMWQCC) standards for applicable chemicals of concern (COCs).

A submersible water pump was installed in the Site's well in November 2010 at a depth of approximately 485 feet bgs in order to recover impacted groundwater. Based on aquifer tests performed by XTO, the water pump was set to maintain a static water level of approximately 473 feet bgs. The water pump is plumbed into the existing water lines and stored in the on-Site 210-barrel (bbl) water tank, which is regularly emptied for off-Site disposal. A vacuum pump was subsequently installed at the Site's well to also remove gas entrained in the formation. A portable

generator was originally placed at the Site to power both the vacuum and water pumps. Generator maintenance issues led to the system being electrified on February 3, 2011.

Operation and maintenance (O&M) inspections are conducted by Hilcorp personnel regularly to check the system and verify proper water and vacuum pump operation, record water meter volumes, and verify that no other Site conditions dictate system maintenance and/or adjustment. Possible pressure variations in the subsurface due to the vacuum pump are monitored using nearby water well SJ-01737. Casing pressure measurements from the SJ-01737 well are included in Table 1.

FIRST QUARTER 2023 SITE ACTIVITIES AND RESULTS

Approximately 19,046 gallons (453 bbls) of water were removed from the Site's well between the fourth quarter 2022 and first quarter 2023 sampling events. To date, approximately 1,229,525 gallons (29,274 bbls) of impacted water have been removed from the Site. A water sample from the well was collected on January 12, 2023 and submitted to Hall Environmental Analysis Laboratory (Hall) for laboratory analysis. Specifically, the water sample was analyzed for the following constituents: volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes (BTEX), following Environmental Protection Agency (EPA) Method 8260B, specific conductance (or electrical conductivity) following Standard Method (SM) 2510B, pH following Method SM4500-H+B, and total dissolved solids (TDS) following Method SM2540C.

Based on results from the January 2023 sampling event, benzene and TDS remain at concentrations exceeding the applicable NMWQCC standards and appear to be similar to historical results. Analytical results are summarized in Table 2, with complete laboratory reports attached as Appendix A.

The Site vacuum pump has been operating based on a setting of 690 minutes on and 30 minutes off (totaling 23 hours runtime per day). During the first quarter of 2023, the pump operated at an average flow rate of 3.9 actual cubic feet per minute (acfm). Approximately 33,132 thousand cubic feet (MCF) of gas/air have been emitted from the Site's well since the system began operating in 2010. Gas/air volumes vented by the system are summarized in Table 3.

RECOMMENDATIONS

O&M visits will continue to be performed by Hilcorp personnel to verify the system is operating as designed. Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.

Page 3

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this proposal, please contact the undersigned.

Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com

Attachments:

Table 1 Well SJ-01737 Casing Pressure Readings

Table 2 Water Analytical Results
Table 3 Gas and Air Vented

Appendix A Laboratory Analytical Reports

Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

TABLES

TABLE 1 WELL SJ-01737 CASING PRESSURE READINGS Federal 18 #1T

Hilcorp Energy Company San Juan County, New Mexico

	0	
Sample Date	Casing Pressure (ounces)	Average
1/4/2022	0	0.000
1/11/2022	0	0.000
1/24/2022	0	0.000
1/31/2022	0	0.000
2/7/2022	0	0.000
2/17/2022	0	0.000
3/2/2022	0	0.000
3/7/2022	0	0.000
3/14/2022	0	0.000
3/21/2022	0	0.000
3/28/2022	0	0.000
4/7/2022	0	0.000
4/19/2022	0	0.000
4/25/2022	0	0.000
5/2/2022	0	0.000
5/11/2022	0	0.000
5/16/2022	0	0.000
5/24/2022	0	0.000
6/2/2022	0	0.000
6/8/2022	0	0.000
6/14/2022	0	0.000
7/1/2022	0	0.000
7/1/2022	0	0.000
7/15/2022	0	
7/15/2022	0	0.000
	· · · · · · · · · · · · · · · · · · ·	0.000
7/28/2022 8/3/2022	0 0	0.000
8/3/2022	0	0.000
8/12/2022	0	0.000
	-	0.000
9/2/2022	0	0.000
9/6/2022	0	0.000
9/16/2022	0	0.000
9/21/2022	0	0.000
9/30/2022	0	0.000
10/7/2022	0	0.000
10/11/2023	0	0.000
10/20/2022	0	0.000
10/31/2022	0	0.000
11/17/2022	0	0.000
12/1/2022	0	0.000
12/9/2022	0	0.000
12/16/2022	0	0.000
12/24/2022	0	0.000
12/31/2022	0	0.000
1/6/2023	0	0.000
1/12/2023	0	0.000
1/23/2023	0	0.000
2/2/2023	0	0.000
2/9/2023	0	0.000
2/23/2023	0	0.000
3/7/2023	0	0.000
3/17/2023	0	0.000
3/27/2023	0	0.000

ENSOLUM

			Hilcorp	ALYTICAL RES ederal 18 #1T Energy Company County, New Mex				
Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylene (μg/L)	TDS (mg/L)	Electrical Conductivity (umhos/cm)	pН	Purge Water Volume (gallons)
NMWQCC Standards	5.0	1,000	700	620	1,000	-	6 thru 9	-
11/5/2010	ND	5.2	ND	ND	1,400	2,600	7.2	NM
9/24/2010 9/24/2010	150 190	ND 170	76 24	670 210	13,000	18,000	6.1	NM NM
9/24/2010	143	221	63.6	950				NM
9/24/2010	320	377	31.8	568	11,100	16,000	5.84	NM
12/10/2011					7,610	8,900	6.36	3,033
1/5/2011	67	93	7.9	25				7,798
1/5/2011 1/29/2011	73 60	99 93	10 10	39 33	4,800	6,000 4,900	6.6 6.4	7,798 10,791
2/28/2011	42	60	6.1	20	3,400	4,000	6.7	14,795
4/1/2011	23	27	1.8	6.8	2,700	3,100	6.8	31,238
4/29/2011	29	28	2.4	7.3	2,600	2,900	6.9	50,217
5/31/2011	14	19	1.4	4.9	2,500	2,800	6.7	76,513
6/14/2011	55	81	2.8	15	2,500	2,700	6.7	88,120
6/30/2011	52 21	67 25	2.6 1.2	12 5.8	2,500 2,500	2,700	6.9 6.8	101,209
8/15/2011 9/2/2011	10	12	0.64	3.2	2,500	2,600 2,600	7.2	140,267 155,801
9/16/2011	9.6	11	0.64	3	2,400	2,500	7.2	168,040
9/30/2011	7.2	8.7	0.64	2.5	2,500	2,600	7	180,393
10/28/2011	5.1	ND	1.8	2.7	2,300	2,600	6.9	205,220
11/30/2011	4	ND	3.9	2	2,500	2,600	7.1	233,488
12/30/2011	3.4 6	ND ND	ND ND	2.9	2,500	2,500	7.5	261,391
4/3/2012 4/9/2012		ND 	ND 	1.6	2,400	2,400	7.4	351,300 NM
7/3/2012	5.3	ND	ND	ND	2,300	2,400	7.4	NM
7/6/2012								441,053
9/19/2012								521,271
9/27/2012	6.2	ND	ND	ND	2,300	2,500	7.1	NM
12/14/2012	13.9		 ND		2.000		7.05	598,540
12/31/2012 1/23/2013	160	1.1 190	ND ND	3.3 26	2,690 2,400	2,440 2,500	7.05	604,689 NM
2/22/2013	7.1	77	ND	1.8	2,100	2,500	7.1	605,860
5/2/2013	9	6.9	ND	ND	2,400	2,600	7.5	612,601
8/19/2013	20	11	ND	2.3	2,200	2,600	7.2	NM
9/23/2013	13	11	ND	2.2	2,300	2,500	7.1	621,744
11/25/2013 2/4/2014	4.6 15	5.2 17	ND 0.72	ND 3.1	2,200 2,200	2,700 2,500	7.7 7.3	631,430 636,120
10/1/2015	54.2	57	1.37	9.77	2,260	2,640	6.98	639,410
10/20/2015	42.3	39.9	0.964	7.06	2,330	1,460	7.09	642,650
3/28/2016	38	34.1	0.835	4.82	2,230	2,570	6.86	650,850
6/14/2016	78.3	58.4	1.16	7.22	2,890	2,600	6.89	704,371
8/29/2016	19	ND	ND	2.18	2,410	2,590	7.02	763,261
11/18/2016	13.2 9.61	5.61	ND ND	2.33 ND	2,470 2,300	2,580	7.03	842,610
3/31/2017 6/16/2017	9.61 64.6	7.87 29.2	ND 0.781	ND 5.4	2,300	2,570 2,570	7.28 7.05	858,190 927,854
9/7/2017	4.61	1.73	ND	ND	2,030	2,450	7.14	997,330
12/5/2017	138	51.5	1.65	9.378	2,230	2,590	7.2	1,080,550
3/6/2018	19.9	14.8	0.543	2.71	2,290	2,620	7.13	1,080,840
8/7/2018	7.9	8.06	<0.5	<1.5	2,200	2,300	7.19	1,082,751
1/3/2019 2/22/2019	7.07 19.8	3.29 11.1	0.177	1.08 3.97	2,080 2,270	6,750 2,710	6.35 7.46	1,120,220 1,120,366
5/24/2019	11.9	10.8	<0.5 ND	3.97 ND	2,380	2,710	7.46	1,120,366
9/10/2019	23.2	18.8	ND	ND	2,260	2,600	7.37	1,125,478
10/29/2019	5.41	5.68	ND	ND	2,300	2,530	7.09	1,127,076
2/27/2020	20.7	19.3	ND	ND	2,280	2,580	7.06	1,128,506
5/15/2020	10.3	8.91	ND	ND	2,460	2,570	7.27	1,131,033
8/25/2020 10/27/2020	3.9 31.1	3.5 24.4	ND ND	ND ND	2,190 2,240	2,640 2,530	7.62 7.43	1,131,100 1,131,119
2/17/2021	73	24.4 <1	ND <1	ND <1.5	2,240	2,400	7.43	1,131,119
6/29/2021 (2)						2,400	1.42	1,134,031
9/30/2021	130	87	<5.0	8.1	2,300	2,500	7.20	1,134,167
12/6/2021	33	20	<1.0	6.0	2,430	2,500	7.15	1,143,239
2/17/2022	25	3.1	<1.0	2.7	2,380	2,600	7.17	1,156,355
4/12/2022	27	4.3	<1.0	2.0	2,360	2,500	7.13	1,169,456
7/15/2022 10/11/2022	33 47	4.3 4.6	<1.0 <1.0	1.3 2.0	2,480 2,320	2,600 2,600	7.13 7.24	1,191,754 1,210,479
1/12/2023	40	1.7	<1.0	<1.5	2,330	2,600	7.17	1,229,525

- (1): initial water sample
- (2): water pump not functioning
- μg/L: micrograms per liter
- mg/L: milligrams per liter
- ND: not detected, practical quantitation limit unknown
 NMWQCC: New Mexico Water Quality Control Commission
- <0.037: indicates result less than the stated laboratory reporting limit (RL)

Concentrations in bold and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.6.2 of the New Mexico Administrative Code

TABLE 3 GAS AND AIR VENTED Federal 18 #1T Hilcorp Energy Company San Juan County, New Mexico

			Total Vented Gas
Date	SCFM	ACFM	and Air (MCF)
9/17/2019	3	6	26,677
10/7/2019	3	6	26,849
10/21/2019	3	6	26,969
10/28/2019	3	6	27,030
12/5/2019	3	6	27,356
12/19/2019	3	6	27,477
1/7/2020	3	6	27,954
1/17/2020	3	6	28,040
1/30/2020	3	6	28,153
2/12/2020	3	6	28,265
2/25/2020	3	6	28,377
4/3/2020	3	6	28,705
4/9/2020	3	6	28,756
4/15/2020	3	6	28,808
4/23/2020	3	6	28,877
4/30/2020	3	6	28,937
5/15/2020	3	6	29,067
5/21/2020	3	6	29,118
5/29/2020	3	6	29,179
6/5/2020	3	6	29,239
6/29/2020	0	0	Hot, not running
7/8/2020	0	0	Unit Down
8/11/2020	0	0	Unit Down
8/25/2020	0	0	Unit Down
9/16/2020	0	0	Unit Down
9/22/2020	0	0	Unit Down
10/26/2020	0	0	Unit Down
11/9/2020	0	0	Unit Down
12/8/2020	0	0	Unit Down
1/5/2021	0	0	Unit Down
1/20/2021	0	0	Unit Down
2/11/2021	0	0	Unit Down
2/17/2021	0	0	Unit Down
3/22/2021	0	0	Unit Down
*3/31/2021	5.6	7	29,241
6/29/2021	5.6	7	29,262
9/30/2021	5.6	7	29,281
12/31/2021	5.6	7	29,320
1/19/2022	5.6	7	29,328
1/24/2022	5.6	7	29,353
3/31/2022	5.6	7	29,991
6/14/2022	5.6	7	30,715
9/30/2022	5.6	7	31,759
12/31/2022	5.6	7	32,647
3/31/2023	3.1	3.9	33,132

Notes:

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

Ensolum 1 of 1

^{* -} Pump operated from 3/23 - 3/31/2021.

APPENDIX A

Laboratory Analytical Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 20, 2023

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Federal 18 1T OrderNo.: 2301553

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/14/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 2301553

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/20/2023

CLIENT: HILCORP ENERGY Client Sample ID: W-1

 Project:
 Federal 18 1T
 Collection Date: 1/12/2023 10:45:00 AM

 Lab ID:
 2301553-001
 Matrix: AQUEOUS
 Received Date: 1/14/2023 9:20:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	40	1.0	μg/L	1	1/16/2023 7:10:00 PM
Toluene	1.7	1.0	μg/L	1	1/16/2023 7:10:00 PM
Ethylbenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Naphthalene	ND	2.0	μg/L	1	1/16/2023 7:10:00 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/16/2023 7:10:00 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	1/16/2023 7:10:00 PM
Acetone	ND	10	μg/L	1	1/16/2023 7:10:00 PM
Bromobenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Bromoform	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Bromomethane	ND	3.0	μg/L	1	1/16/2023 7:10:00 PM
2-Butanone	ND	10	μg/L	1	1/16/2023 7:10:00 PM
Carbon disulfide	ND	10	μg/L	1	1/16/2023 7:10:00 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Chlorobenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Chloroethane	ND	2.0	μg/L	1	1/16/2023 7:10:00 PM
Chloroform	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Chloromethane	ND	3.0	μg/L	1	1/16/2023 7:10:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
cis-1,2-DCE	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/16/2023 7:10:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Dibromomethane	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/16/2023 7:10:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/16/2023 7:10:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Analytical Report Lab Order 2301553

Date Reported: 1/20/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: W-1

 Project:
 Federal 18 1T
 Collection Date: 1/12/2023 10:45:00 AM

 Lab ID:
 2301553-001
 Matrix: AQUEOUS
 Received Date: 1/14/2023 9:20:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: CCM
1,1-Dichloropropene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
Hexachlorobutadiene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
2-Hexanone	ND	10		μg/L	1	1/16/2023 7:10:00 PM
Isopropylbenzene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
4-Isopropyltoluene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
4-Methyl-2-pentanone	ND	10		μg/L	1	1/16/2023 7:10:00 PM
Methylene Chloride	ND	3.0		μg/L	1	1/16/2023 7:10:00 PM
n-Butylbenzene	ND	3.0		μg/L	1	1/16/2023 7:10:00 PM
n-Propylbenzene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
sec-Butylbenzene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
Styrene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
tert-Butylbenzene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0		μg/L	1	1/16/2023 7:10:00 PM
Tetrachloroethene (PCE)	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
trans-1,2-DCE	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
1,2,3-Trichlorobenzene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
1,2,4-Trichlorobenzene	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
1,1,1-Trichloroethane	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
1,1,2-Trichloroethane	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
Trichloroethene (TCE)	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
Trichlorofluoromethane	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
1,2,3-Trichloropropane	ND	2.0		μg/L	1	1/16/2023 7:10:00 PM
Vinyl chloride	ND	1.0		μg/L	1	1/16/2023 7:10:00 PM
Xylenes, Total	ND	1.5		μg/L	1	1/16/2023 7:10:00 PM
Surr: 1,2-Dichloroethane-d4	114	70-130		%Rec	1	1/16/2023 7:10:00 PM
Surr: 4-Bromofluorobenzene	99.9	70-130		%Rec	1	1/16/2023 7:10:00 PM
Surr: Dibromofluoromethane	114	70-130		%Rec	1	1/16/2023 7:10:00 PM
Surr: Toluene-d8	98.5	70-130		%Rec	1	1/16/2023 7:10:00 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: CAS
Conductivity	2600	10		µmhos/c	1	1/17/2023 3:24:29 PM
SM4500-H+B / 9040C: PH						Analyst: CAS
рН	7.17		Н	pH units	1	1/17/2023 3:24:29 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: SNS
Total Dissolved Solids	2330	40.0	*D	mg/L	1	1/20/2023 9:09:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 7

Hall Environmental Analysis Laboratory, Inc.

2301553 20-Jan-23

WO#:

Client: HILCORP ENERGY

Project: Federal 18 1T

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8260B: VOLA	ATILES		
Client ID: LCSW	Batch	n ID: R9 :	3966	F	RunNo: 93	3966				
Prep Date:	Analysis D	Date: 1/1	16/2023	9	SeqNo: 33	392866	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130			
Toluene	21	1.0	20.00	0	105	70	130			
Chlorobenzene	21	1.0	20.00	0	105	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	101	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		103	70	130			
Surr: Toluene-d8	9.8		10.00		98.0	70	130			

Sample ID: mb	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES
Client ID: PBW	Batch ID: R93966	RunNo: 93966
Prep Date:	Analysis Date: 1/16/2023	SeqNo: 3392899 Units: μg/L
Analyte	Result PQL SPK value SP	K Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

,		
Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0
2-Chlorotoluene	ND	1.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2301553 20-Jan-23**

Client: HILCORP ENERGY

Project: Federal 18 1T

Sample ID: mb	SampT	уре: МЕ	BLK	Tes	stCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	n ID: R9	3966	i	RunNo: 93	3966				
Prep Date:	Analysis D	oate: 1/	16/2023	;	SeqNo: 33	392899	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
, ,										

Qualifiers:

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

2.0

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: 2301553 20-Jan-23

Client: HILCORP ENERGY

Project: Federal 18 1T

Sample ID: mb	SampT	уре: МВ	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	n ID: R9 :	3966	F	RunNo: 93	3966				
Prep Date:	Analysis D	Date: 1/1	16/2023	5	SeqNo: 33	392899	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.9		10.00		99.2	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2301553 20-Jan-23**

Client: HILCORP ENERGY

Project: Federal 18 1T

Sample ID: Ics-1 99.4uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R94014 RunNo: 94014

Prep Date: Analysis Date: 1/17/2023 SeqNo: 3394192 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 99.40 0 104 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2301553**

20-Jan-23

Client: HILCORP ENERGY

Project: Federal 18 1T

Sample ID: MB-72687 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 72687 RunNo: 94078

Prep Date: 1/18/2023 Analysis Date: 1/20/2023 SeqNo: 3396259 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-72687 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 72687 RunNo: 94078

Prep Date: 1/18/2023 Analysis Date: 1/20/2023 SeqNo: 3396260 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 999 20.0 1000 0 99.9 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Released to Imaging: 5/10/2023 2:24:39 PM

LABORATORY	Website: www	v.hallenvironmental	.com		
Client Name: HILCORP ENERGY	Work Order Num	ber: 2301553		RcptNo: 1	
Received By: Sean Livingston	1/14/2023 9:20:00	AM	Salva	sol-	
Completed By: Sean Livingston	1/14/2023 9:45:23	AM	Sulv. Sulv.	rot-	
Reviewed By: 1-16-23					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗌	No 🗹	Not Present	
2. How was the sample delivered?		<u>Courier</u>			
<u>Log In</u>			🗆	🗖	
Was an attempt made to cool the sample	s?	Yes 🗹	No 🗆	na 🗆	
4. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes 🗹	No 🗌	na 🗆	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗆		
5. Sufficient sample volume for indicated tes	t(s)?	Yes 🗸	No 🗌		
7. Are samples (except VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes 🗌	No 🗹	NA □	
9. Received at least 1 vial with headspace <	1/4" for AQ VOA?	Yes 🗹	No 🗌	NA 🗆	
0. Were any sample containers received bro	ken?	Yes	No 🗹 🛭	# of preserved	
				bottles checked	
1. Does paperwork match bottle labels?		Yes 🗹	No ∐	for pH: (<2 or >1	12 unless noted
(Note discrepancies on chain of custody)	of Countries do O	Yes 🗹	No □	Adjusted?	12 diless notes
2. Are matrices correctly identified on Chain	or Custody?	res ⊻ Yes ⊻	No 🗆		
3. Is it clear what analyses were requested?			No 🗆	Checked by:	nilia
4. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	NO L	GRECITED BY.	
pecial Handling (if applicable)					
15. Was client notified of all discrepancies wi	th this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified:	Date	:			
By Whom:	Via:	eMail F	Phone Fax	☐ In Person	
Regarding:					
Client Instructions:		Scale and the American			
16. Additional remarks:					
17. Cooler Information					
Cooler No Temp °C Condition	Seal Intact Seal No	Seal Date	Signed By		

1.6

Good

Yes

YOGI

<u> </u>	
\sim	
_	
9	
5	
17.3	
• •	
113	
00	
200	
0	
0	
V	
1	
2.	
	
4	
4	
4	
0	
0	
0	
0	
0	
0	
0	
0	
, OCD:	
y OCD:	
y OCD:	
y OCD:	
, OCD:	
by OCD:	
1 by OCD:	
d by OCD:	
d by OCD:	
ed by OCD:	
ed by OCD:	
ed by OCD:	
ved by OCD:	
ived by OCD:	
ived by OCD:	
eived by OCD:	
eived by OCD:	
ceived by OCD:	
ceived by OCD:	
eived by OCD:	

Chain-of-Custody Record	Lurn-Around Lime:	HALL FNVTRONMENTAL
Client: Hilcorp Farmington NM	X Standard	ANALYSIS LABORATORY
	Project Name:	www.hallenvironmental.com
Mailing Address: 382 Road 3100 Aztec, NM 87410	Federal 18 1T	4901 Hawkins NE - Albuquerque, NM 87109
Billing Address: PO Box 61529 Houston, TX 77208	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #: 505-486-9543		Analysis Request
Fax#:	Project Manager:	
QA/QC Package: □ Standard □ Level 4 (Full Validation)	Mitch Killonah	SO
Accreditation: ☐ Az Compliance	Sampler: Brandon Sinclair	III.ce, II
T EDD (Tyte)	# of Coolers: 1	note
	Cooler Temp(incutaing cp.: (,5+0,1=1,0°c	
Date Time Matrix Sample Name	Container Type Preservativ HEAL No. and # 2301573	pH, Specific
1045 Water	(3) 40ml VOA HCI (1) 500ml Cool	×
Date: Time: Relinquished by: $i-(5)$ $i=0$ $i=0$	V/a 1/1933	Kemarks: Special Pricing See Andy
Date: Time: Relinquished by:	Received by: Via: Date Time	

if necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Released to Imaging: 5/10/2023 2:24:39 PM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 211125

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	211125
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created	Condition	Condition
Ву		Date
nvelez	1. Continue with O & M schedule. 2. Submit next quarterly report by August 1, 2023.	5/10/2023