District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 1 of 91

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

### **Release Notification**

### **Responsible Party**

| Responsible Party: Enterprise Field Services, LLC             | OGRID: <b>241602</b>                        |
|---------------------------------------------------------------|---------------------------------------------|
| Contact Name: Thomas Long                                     | Contact Telephone: 505-599-2286             |
| Contact email:tjlong@eprod.com                                | Incident # (assigned by OCD) nAPP2226445914 |
| Contact mailing address: 614 Reilly Ave, Farmington, NM 87401 |                                             |

### **Location of Release Source**

Latitude 36.858328

Longitude -107.685634

(NAD 83 in decimal degrees to 5 decimal places)

| Site Name <b>Trunk E</b>            | Site Type Natural Gas Gathering Pipeline |
|-------------------------------------|------------------------------------------|
| Date Release Discovered: 09/21/2022 | Serial Number (if applicable): N/A       |

| Unit Letter | Section | Township | Range | County   |
|-------------|---------|----------|-------|----------|
| D           | 33      | 31N      | 8W    | San Juan |

Surface Owner: State Federal Tribal Private (Name: BLM

### Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

| Crude Oil        | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
|------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Produced Water   | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
|                  | Is the concentration of dissolved chloride in the produced water >10,000 mg/l? | Yes No                                  |
| Condensate       | Volume Released (bbls): 5-10 BBLS                                              | Volume Recovered (bbls): None           |
| 🛛 Natural Gas    | Volume Released (Mcf): 0.532 MCF                                               | Volume Recovered (Mcf): None            |
| Other (describe) | Volume/Weight Released (provide units):                                        | Volume/Weight Recovered (provide units) |

**Cause of Release:** On September 10, 2022, Enterprise had a release of natural gas from the Trunk E. The pipeline was isolated, depressurized, locked and tagged out. No liquids were released to the ground surface. No emergency services responded. No fire nor injuries occurred. Remediation and repairs began on September 16, 2022, and Enterprise determined reportable per New Mexico Oil Conservation Division regulation, due to the volume of impacted subsurface soil on September 21, 2022. The remediation was completed on September 27, 2022. The final excavation dimensions measured approximately 13 feet long by 9 feet wide by 12 feet deep. A total of 152 cubic yards of hydrocarbon impacted soil was excavated and transported to a New Mexico Oil Conservation Division (NMOCD) approved land farm. A third party closure report is included with this "Final." C-141.

| Incident ID    |                            |
|----------------|----------------------------|
| District RP    |                            |
| Facility ID    |                            |
| Application ID |                            |
|                | District RP<br>Facility ID |

## Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

| Closure Report Attachment Checklist: Each of the following ite                                                                                                                                | ms must be included in the closure report.                                                                                                                                                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A scaled site and sampling diagram as described in 19.15.29.11 NMAC                                                                                                                           |                                                                                                                                                                                                                                                                                       |  |
| Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) |                                                                                                                                                                                                                                                                                       |  |
| Laboratory analyses of final sampling (Note: appropriate ODC                                                                                                                                  | District office must be notified 2 days prior to final sampling)                                                                                                                                                                                                                      |  |
| Description of remediation activities                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                               | ediate contamination that pose a threat to groundwater, surface water,<br>C-141 report does not relieve the operator of responsibility for<br>ons. The responsible party acknowledges they must substantially<br>ditions that existed prior to the release or their final land use in |  |
| Printed Name: Thomas Long Ti                                                                                                                                                                  | tle: Senior Environmental Scientist                                                                                                                                                                                                                                                   |  |
| Signature:                                                                                                                                                                                    | Date: <u>6-12-2023</u>                                                                                                                                                                                                                                                                |  |
| email: tjlong@eprod.comTele                                                                                                                                                                   | phone <u>: (505) 599-2286</u>                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |  |
| OCD Only                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                       |  |
| Received by:                                                                                                                                                                                  | Date:                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                               | f liability should their operations have failed to adequately investigate and ater, human health, or the environment nor does not relieve the responsible regulations.                                                                                                                |  |
| Closure Approved by: <u>Nelson Velez</u><br>Printed Name: Nelson Velez                                                                                                                        | Date:06/13/2023                                                                                                                                                                                                                                                                       |  |
| Printed Name: Nelson Velez                                                                                                                                                                    | Title:Environmental Specialist – Adv                                                                                                                                                                                                                                                  |  |





#### **CLOSURE REPORT**

Property:

Trunk E (09/21/22) Unit Letter D, S33 T31N R8W San Juan County, New Mexico

#### New Mexico EMNRD OCD Incident ID No. NAPP2226445914

November 28, 2022

Ensolum Project No. 05A1226209

Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

Landon Daniell Staff Geologist

Umm

Kyle Summers Senior Managing Geologist

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants

606 South Rio Grande, Suite A | Aztec, NM 87410 | ensolum.com

Page i

#### TABLE OF CONTENTS

| 1.0 | INTRODUCTION.<br>1.1 Site Description & Background.<br>1.2 Project Objective.                                                                     | 1      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2.0 |                                                                                                                                                   | 1      |
| 3.0 | SOIL REMEDIATION ACTIVITIES                                                                                                                       | 3      |
| 4.0 | SOIL SAMPLING PROGRAM                                                                                                                             | 3      |
| 5.0 | SOIL LABORATORY ANALYTICAL METHODS                                                                                                                | 4      |
| 6.0 | SOIL DATA EVALUATION                                                                                                                              | 5      |
| 7.0 | RECLAMATION AND REVEGETATION                                                                                                                      | 5      |
| 8.0 | FINDINGS AND RECOMMENDATION                                                                                                                       | 5      |
| 9.0 | <ul> <li>STANDARDS OF CARE, LIMITATIONS, AND RELIANCE.</li> <li>9.1 Standard of Care.</li> <li>9.2 Limitations.</li> <li>9.3 Reliance.</li> </ul> | 6<br>6 |

#### LIST OF APPENDICES

| Appendix A – | Figures                                         |  |  |
|--------------|-------------------------------------------------|--|--|
|              | Figure 1: Topographic Map                       |  |  |
|              | Figure 2: Site Vicinity Map                     |  |  |
|              | Figure 3: Site Map with Soil Analytical Results |  |  |

- Appendix B Siting Figures and Documentation
  - Figure A: 1.0 Mile Radius Water Well/POD Location Map Figure B: Cathodic Protection Well Recorded Depth to Water Figure C: 300 Foot Radius Watercourse and Drainage Identification Figure D: 300 Foot Radius Occupied Structure Identification Figure E: Water Well and Natural Spring Location Figure F: Wetlands Figure G: Mines, Mills, and Quarries Figure H: 100-Year Flood Plain Map
- Appendix C Executed C-138 Solid Waste Acceptance Form
- Appendix D Photographic Documentation
- Appendix E Regulatory Correspondence
- Appendix F Table 1 Soil Analytical Summary
- Appendix G Laboratory Data Sheets & Chain of Custody Documentation



| Operator:                       | Enterprise Field Services, LLC / Enterprise Products Operating LLC (Enterprise)                                                 |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Site Name:                      | Trunk E (09/21/22) (Site)                                                                                                       |  |
| NM EMNRD OCD<br>Incident ID No. | NAPP2226445914                                                                                                                  |  |
| Location:                       | 36.858328° North, 107.685634° West<br>Unit Letter D, Section 33, Township 31 North, Range 8 West<br>San Juan County, New Mexico |  |
| Property:                       | United States Bureau of Land Management (BLM)                                                                                   |  |
| Regulatory:                     | New Mexico (NM) Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)                       |  |

On September 10, 2022, Enterprise discovered a release on the Trunk E pipeline. Enterprise personnel subsequently isolated and locked the pipeline out of service. On September 16, 2022, Enterprise initiated activities to repair the pipeline and remediate potential petroleum hydrocarbon impact. On September 21, 2022, Enterprise determined the release was "reportable" due to the estimated volume of impacted soil. The NM EMNRD OCD was subsequently notified.

A **Topographic Map** depicting the location of the Site is included as **Figure 1**, and a **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

#### 1.2 Project Objective

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-site soils to below the applicable NM EMNRD OCD closure criteria.

#### 2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. Ensolum, LLC (Ensolum) referenced New Mexico Administrative Code (NMAC) 19.15.29 *Releases*, which establishes investigation and abatement action requirements for oil and gas release sites that are subject to reporting and/or corrective action, during the evaluation and remediation of the Site. The appropriate closure criteria for sites are determined using the siting requirements outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC. Ensolum utilized the general site characteristics and information available from NM state agency databases and federal agency geospatial databases to determine the appropriate closure criteria for the Site. Supporting figures and documentation associated with the following Siting bullets are provided in **Appendix B**.

- The NM Office of the State Engineer (OSE) tracks the usage and assignment of water rights and water well installations and records this information in the Water Rights Reporting System (WRRS) database. Water wells and other points of diversion (PODs) are each assigned POD numbers in the database (which is searchable and includes an interactive map). No PODs were identified in the same Public Land Survey System (PLSS) section as the Site. One POD (SJ-00198) was identified in an adjacent PLSS section, but no depth to water was recorded (Figure A, Appendix B).
- Numerous cathodic protection wells (CPWs) were identified in the NM EMNRD OCD imaging database in the same PLSS section and in adjacent sections. The two closest CPWs are

ENSOLUM

located within 0.5 miles of the Site and are depicted on **Figure B** (**Appendix B**). Documentation for the cathodic protection well located near the Howell D #1 well location indicates a depth to water of approximately 460 feet bgs. This cathodic protection well is located approximately 0.40 miles north of the Site and is approximately 6 feet higher in elevation than the Site. Documentation for the cathodic protection well located near the Howell D #4 and #353 well locations indicates a depth to water of approximately 0.46 miles east of the Site and is approximately 110 feet bgs. This cathodic protection well is located approximately 0.46 miles east of the Site and is approximately 205 feet lower in elevation than the Site.

- The Site is not located within 300 feet of a NM EMNRD OCD-defined continuously flowing watercourse or significant watercourse (**Figure C**, **Appendix B**).
- The Site is not located within 200 feet of a lakebed, sinkhole, or playa lake.
- The Site is not located within 300 feet of a permanent residence, school, hospital, institution, or church (Figure D, Appendix B).
- No springs, or private domestic freshwater wells used by less than five households for domestic or stock watering purposes were identified within 500 feet of the Site (Figure E, Appendix B).
- No freshwater wells or springs were identified within 1,000 feet of the Site (Figure E, Appendix B).
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to New Mexico Statutes Annotated (NMSA) 1978, Section 3-27-3.
- Based on information identified in the U.S. Fish & Wildlife Service National Wetlands Inventory Wetlands Mapper, the Site is not within 300 feet of a wetland (**Figure F**, **Appendix B**).
- Based on information identified in the NM Mining and Minerals Division's Geographic Information System (GIS) Maps and Mine Data database, the Site is not within an area overlying a subsurface mine (**Figure G**, **Appendix B**).
- The Site is not located within an unstable area per Paragraph (6) of Subsection U of 19.15.2.7 NMAC.
- Based on information provided by the Federal Emergency Management Agency (FEMA) National Flood Hazard Layer (NFHL) geospatial database, the Site is not within a 100-year floodplain (**Figure H**, **Appendix B**).

Based on the identified siting criteria, Enterprise estimates the depth to water at the Site to be greater than 50 feet bgs, resulting in a Tier II ranking. However, the soil requirements of NMAC 19.15.29.13(D)(1) indicate that a minimum of the upper four feet must contain "uncontaminated" soil and that the soils meet Tier I closure criteria listed in Table 1 of NMAC 19.15.29.12. Applicable closure criteria for Tier I soils and Tier II soils (below four feet) remaining in place at the Site include:



Closure Report Enterprise Field Services, LLC Trunk E (09/21/22)

Page 3

| Tier II Closure Criteria for Soils Impacted by a Release |                                |              |  |
|----------------------------------------------------------|--------------------------------|--------------|--|
| Constituent <sup>1</sup>                                 | Method                         | Limit        |  |
| Chloride                                                 | EPA 300.0 or SM4500 CI B       | 10,000 mg/kg |  |
| TPH (GRO+DRO+MRO) <sup>2</sup>                           | EPA SW-846 Method 8015         | 2,500 mg/kg  |  |
| TPH (GRO+DRO)                                            | EPA SW-846 Method 8015         | 1,000 mg/kg  |  |
| BTEX <sup>3</sup>                                        | EPA SW-846 Method 8021 or 8260 | 50 mg/kg     |  |
| Benzene                                                  | EPA SW-846 Method 8021 or 8260 | 10 mg/kg     |  |

<sup>1</sup> – Constituent concentrations are in milligrams per kilogram (mg/kg).

<sup>2</sup> – Total Petroleum Hydrocarbons (TPH). Gasoline Range Organics (GRO). Diesel Range Organics (DRO). Motor Oil/Lube Oil Range Organics (MRO).

<sup>3</sup> – Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX).

| Tier I Closure Criteria for Soils Impacted by a Release |                                |           |
|---------------------------------------------------------|--------------------------------|-----------|
| Constituent <sup>1</sup>                                | Method                         | Limit     |
| Chloride                                                | EPA 300.0 or SM4500 CI B       | 600 mg/kg |
| TPH (GRO+DRO+MRO) <sup>2</sup>                          | EPA SW-846 Method 8015         | 100 mg/kg |
| BTEX <sup>3</sup>                                       | EPA SW-846 Method 8021 or 8260 | 50 mg/kg  |
| Benzene                                                 | EPA SW-846 Method 8021 or 8260 | 10 mg/kg  |

<sup>1</sup> – Constituent concentrations are in milligrams per kilogram (mg/kg).

<sup>2</sup> – Total Petroleum Hydrocarbons (TPH). Gasoline Range Organics (GRO). Diesel Range Organics (DRO). Motor Oil/Lube Oil Range Organics (MRO).

<sup>3</sup> – Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX).

#### 3.0 SOIL REMEDIATION ACTIVITIES

On September 16, 2022, Enterprise initiated activities to remediate petroleum hydrocarbon impact resulting from the release. During the remediation and corrective action activities, Sunland Construction Inc., provided heavy equipment and labor support, while Ensolum provided environmental consulting support.

The final excavation measured approximately 13 feet long and 9 feet wide at the maximum extents. The maximum depth of the excavation measured approximately 12 feet bgs. The lithology encountered during the completion of remediation activities consisted primarily of clay and shale.

Approximately 152 cubic yards ( $yd^3$ ) of petroleum hydrocarbon affected soils and 115 barrels (bbls) of hydro-excavation soil cuttings and water were transported to the Envirotech, Inc., (Envirotech) landfarm near Hilltop, NM for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix C**. The excavation was backfilled with imported fill and was subsequently contoured to the surrounding topography.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation with respect to the pipeline (**Appendix A**). Photographic documentation of the field activities is included in **Appendix D**.

#### 4.0 SOIL SAMPLING PROGRAM

Ensolum field screened the soil samples from the excavation utilizing a calibrated Dexsil PetroFLAG<sup>®</sup> hydrocarbon analyzer system and a photoionization detector (PID) fitted with a 10.6 eV lamp to guide excavation extents.

Ensolum's soil sampling program included the collection of 12 composite soil samples (S-1 through S-12) from the excavation for laboratory analysis. The composite samples were

ENSOLUM

comprised of five aliquots each and represent an estimated 200 square foot ( $ft^2$ ) or less sample area per guidelines outlined in Section D of 19.15.29.12 NMAC. Hand tools and the excavator bucket were utilized to obtain fresh aliquots from each area of the excavation. Regulatory correspondence is provided in **Appendix E**.

#### First Sampling Event

On September 16, 2022, the first sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite soil sample S-2 (5') was collected from the floor of the excavation. Composite soil samples S-1 (0'-5'), S-3 (0'-5'), and S-4 (0'-5') were collected from the walls of the excavation.

Subsequent soil analytical results identified TPH concentrations that exceeded the NM EMNRD OCD closure criteria for composite soil sample S-2. In response to the exceedances the excavation was enlarged. The impacted soils were removed by excavation and transported to the landfarm for disposal/remediation.

#### Second Sampling Event

On September 23, 2022, the second sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite sample S-5 (12') was collected from the floor of the excavation. Composite soil samples S-6 (4'-12'), S-7 (0'-4'), S-8 (5'-12'), S-9 (5'-12'), and S-10 (5'-12') were collected from walls of the excavation.

Subsequent soil analytical results identified TPH concentrations that exceeded the NM EMNRD OCD closure criteria for composite soil sample S-9. In response to the exceedances the excavation was enlarged. The impacted soils were removed by excavation and transported to the landfarm for disposal/remediation.

#### Third Sampling Event

On September 27, 2022, the third sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite samples S-11 (0'-4') and S-12 (4'-12') were collected from the walls of the excavation.

All soil samples were collected and placed in laboratory-prepared glassware. The containers were labeled and sealed using the laboratory-supplied labels and custody seals and were stored on ice in a cooler. The samples were relinquished to the courier for Hall Environmental Analysis Laboratory of Albuquerque, NM, under proper chain-of-custody procedures.

#### 5.0 SOIL LABORATORY ANALYTICAL METHODS

The composite soil samples were analyzed for BTEX using Environmental Protection Agency (EPA) SW-846 Method #8021; TPH GRO/DRO/MRO using EPA SW-846 Method #8015; and chlorides using EPA Method #300.0.

The laboratory analytical results are summarized in **Table 1** (**Appendix F**). The laboratory data sheets and executed chain-of-custody forms are provided in **Appendix G**.



#### 6.0 SOIL DATA EVALUATION

Ensolum compared the benzene, BTEX, TPH, and chloride laboratory analytical results or laboratory practical quantitation limits (PQLs) / reporting limits (RLs) associated with the composite soil samples (S-1, S-4 through S-8, and S-10 through S-12) to the applicable NM EMNRD OCD closure criteria. The soils associated with composite soil samples S-1, S-3, and S-9 were removed from the Site, and therefore, are not included in the following discussion.

- The laboratory analytical results for all composite soil samples associated with soils remaining at the Site indicate benzene is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD criteria of 10 mg/kg.
- The laboratory analytical results for composite soil samples S-5 and S-6 indicate total BTEX concentrations of 32 mg/kg, and 7.3 mg/kg, respectively, which are less than the applicable NM EMNRD OCD closure criteria of 50 mg/kg. The laboratory analytical results for all other composite soil samples associated with soils remaining at the Site indicate that total BTEX is not present in concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 50 mg/kg.
- The laboratory analytical results for composite soil samples S-5, S-6, S-8, and S-10 indicate combined TPH GRO/DRO concentrations ranging from 37 mg/kg (S-8) to 640 mg/kg (S-5), which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 1,000 mg/kg (depending on the depth of the represented soil). The laboratory analytical results for all other composite soil samples associated with soils remaining at the Site indicate combined TPH GRO/DRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 1,000 mg/kg (depending on the depth of the represented soil).
- The laboratory analytical results for composite soil samples S-5, S-6, S-8, and S-10 indicate combined TPH GRO/DRO concentrations ranging from 37 mg/kg (S-8) to 640 mg/kg (S-5), which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 2,500 mg/kg (depending on the depth of the represented soil.) The laboratory analytical results for all other composite soil samples associated with soils remaining at the Site indicate combined TPH GRO/DRO/MRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 2,500 mg/kg (depending on the depth of the represented soil).
- The laboratory analytical results for all composite soil samples associated with soils remaining at the Site indicate chloride is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 600 mg/kg or 10,000 mg/kg (depending on the depth of the represented soil).

#### 7.0 RECLAMATION AND REVEGETATION

The excavation was backfilled with imported fill and then contoured to the surrounding topography. Enterprise will re-seed the Site with an approved seeding mixture.

#### 8.0 FINDINGS AND RECOMMENDATION

• Twelve composite soil samples were collected from the Site. Based on laboratory analytical results, no benzene, BTEX, chloride, or combined TPH GRO/DRO or TPH GRO/DRO/MRO exceedances were identified in the soils remaining at the Site.

ENSOLUM

• Approximately 152 yd<sup>3</sup> of petroleum hydrocarbon affected soils and 115 bbls of hydroexcavation soil cuttings and water were transported to the Envirotech landfarm for disposal/remediation. The excavation was backfilled with imported fill and then contoured to the surrounding topography.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

#### 9.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

#### 9.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g., laboratories, regulatory agencies, or other third parties).

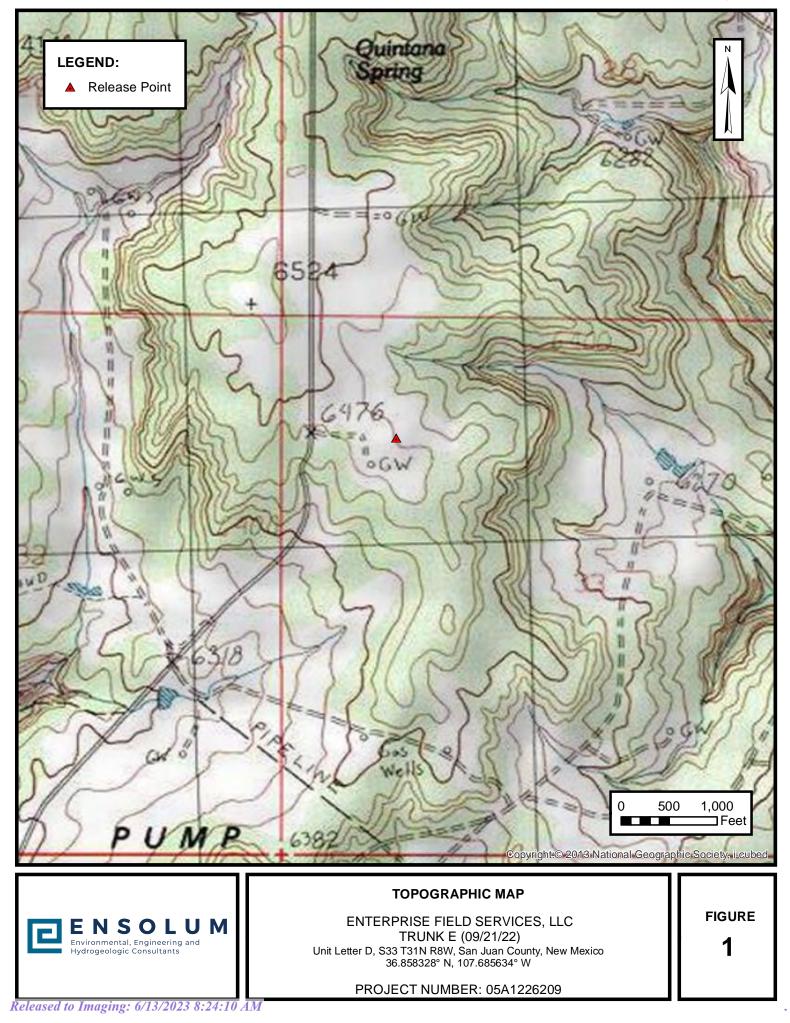
#### 9.2 Limitations

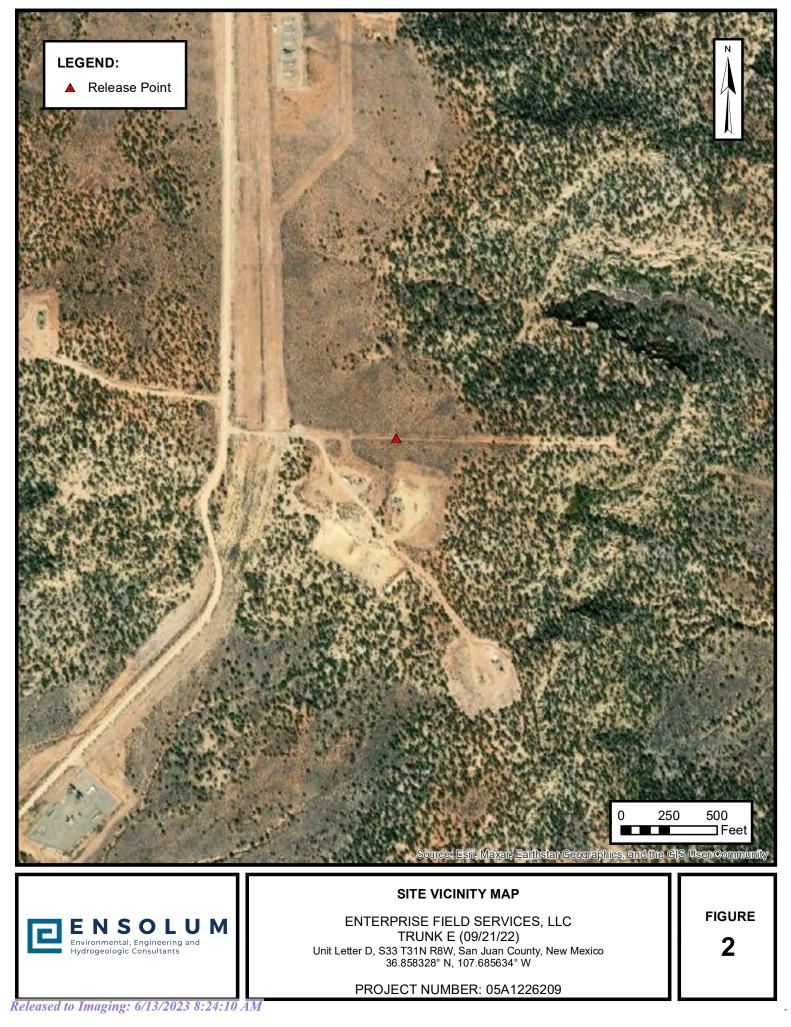
Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work, and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings and recommendation are based solely upon data available to Ensolum at the time of these services.

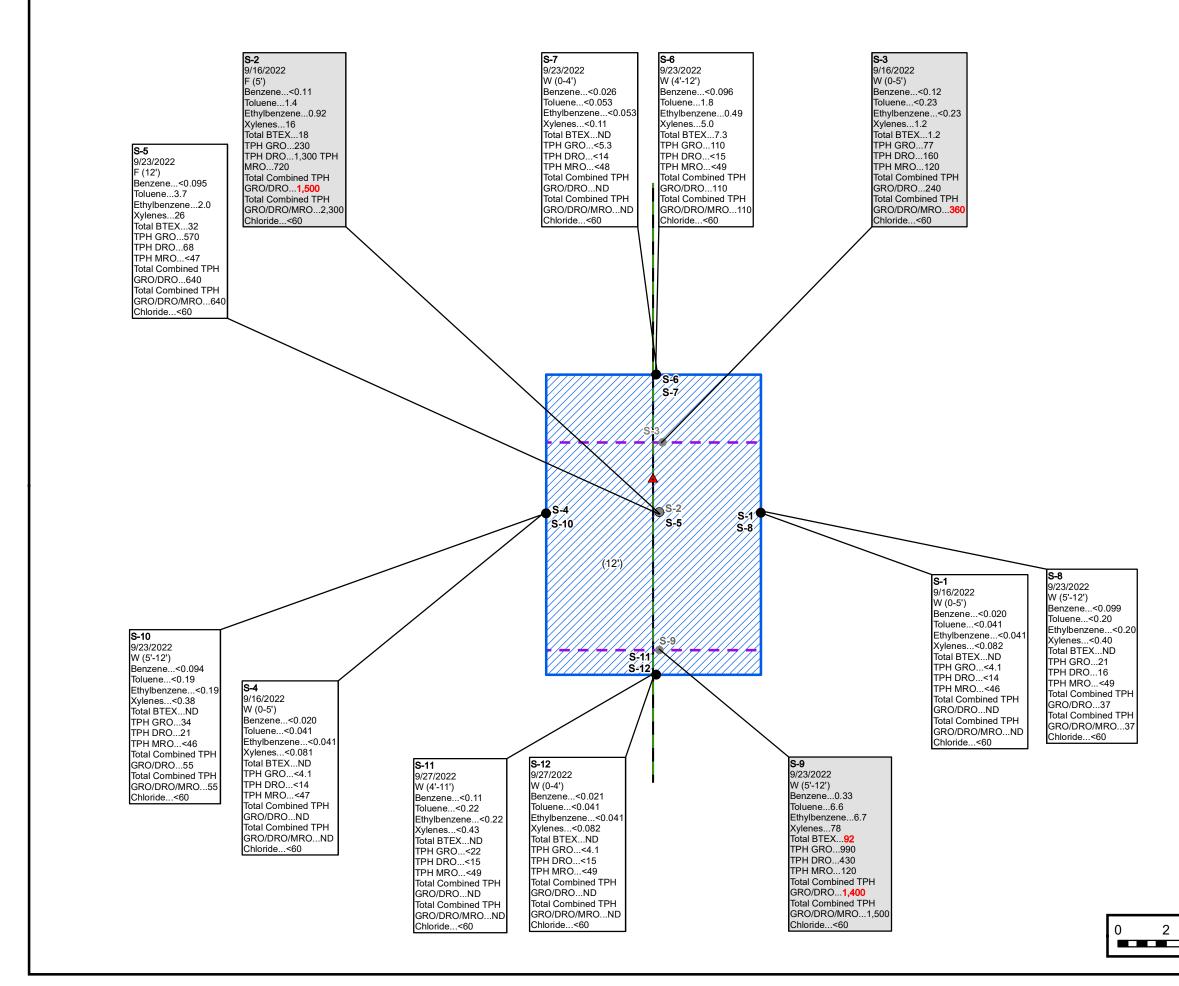
#### 9.3 Reliance

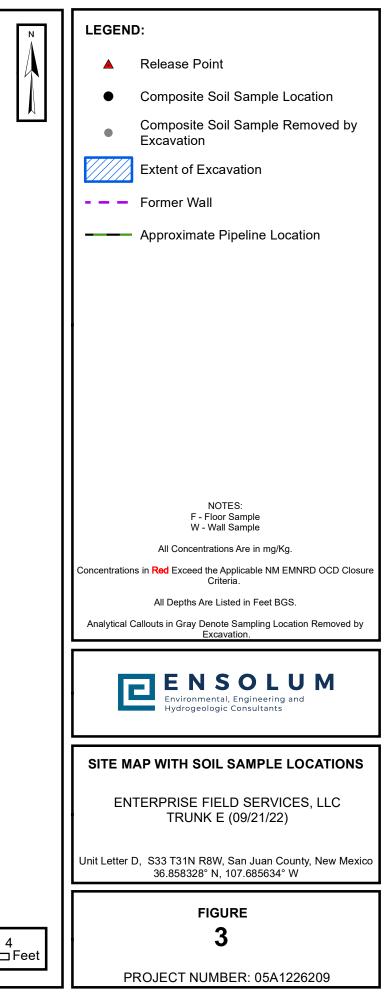
This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the Closure Report and Ensolum's Master Services Agreement. The limitation of liability defined in the agreement is the aggregate limit of Ensolum's liability to the client.







# **APPENDIX A**


# Figures

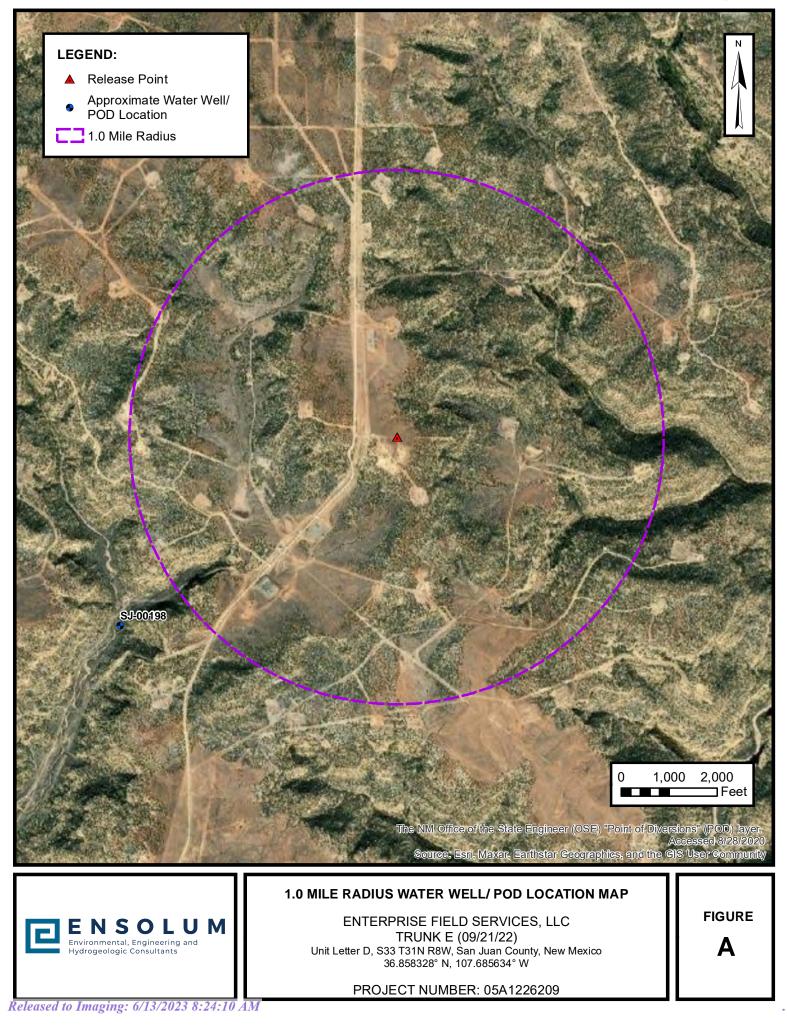

**Released to Imaging: 6/13/2023 8:24:10 AM** 

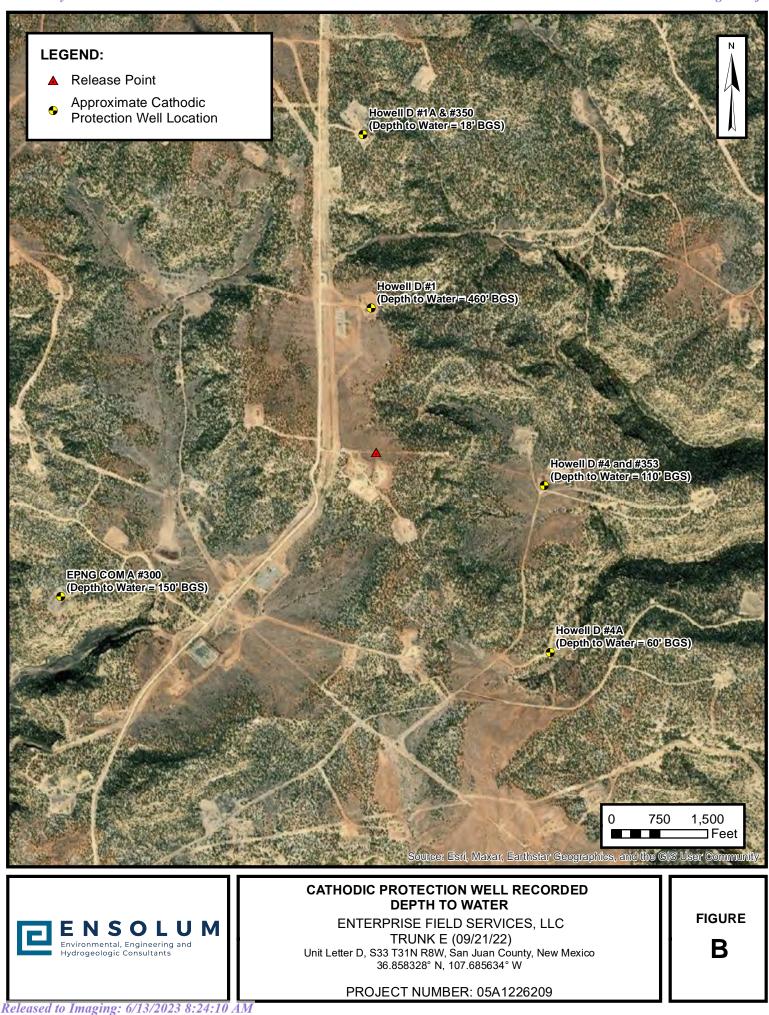
Received by OCD: 6/12/2023 1:46:55 PM

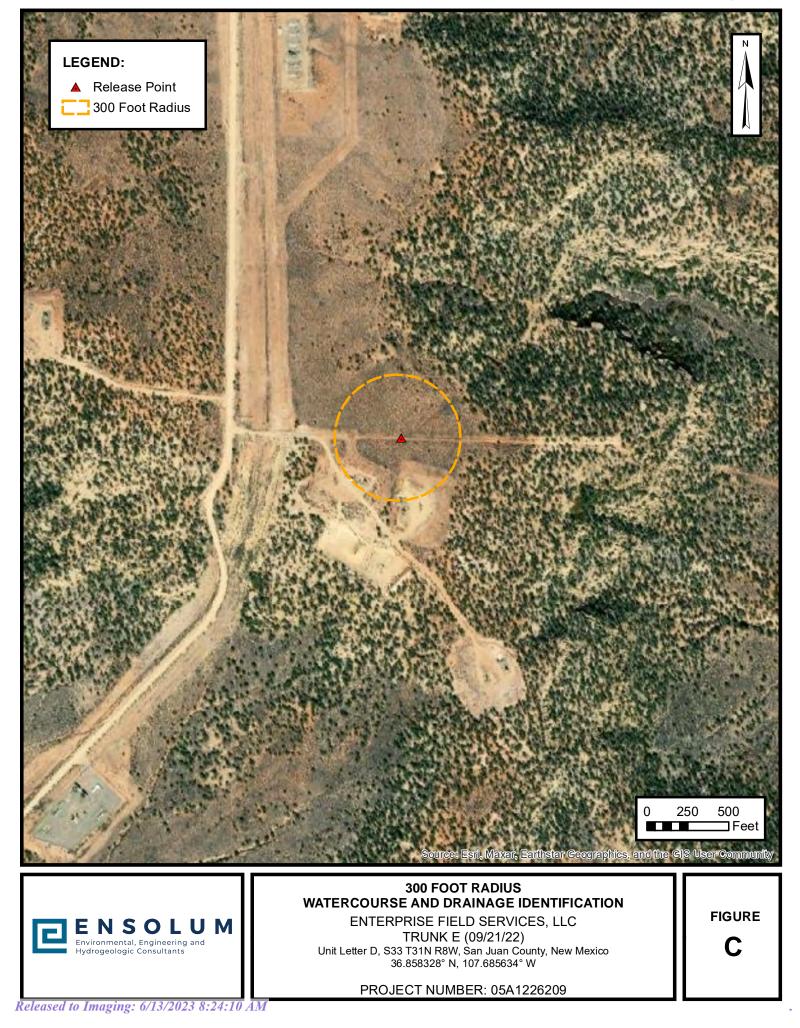


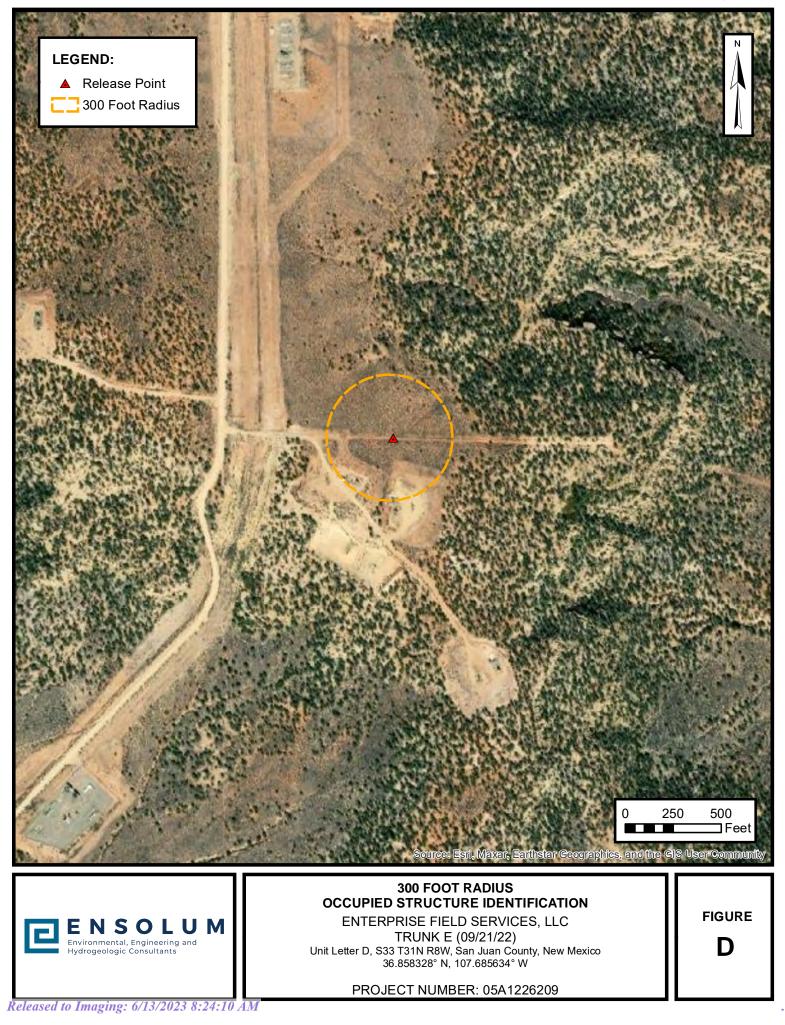


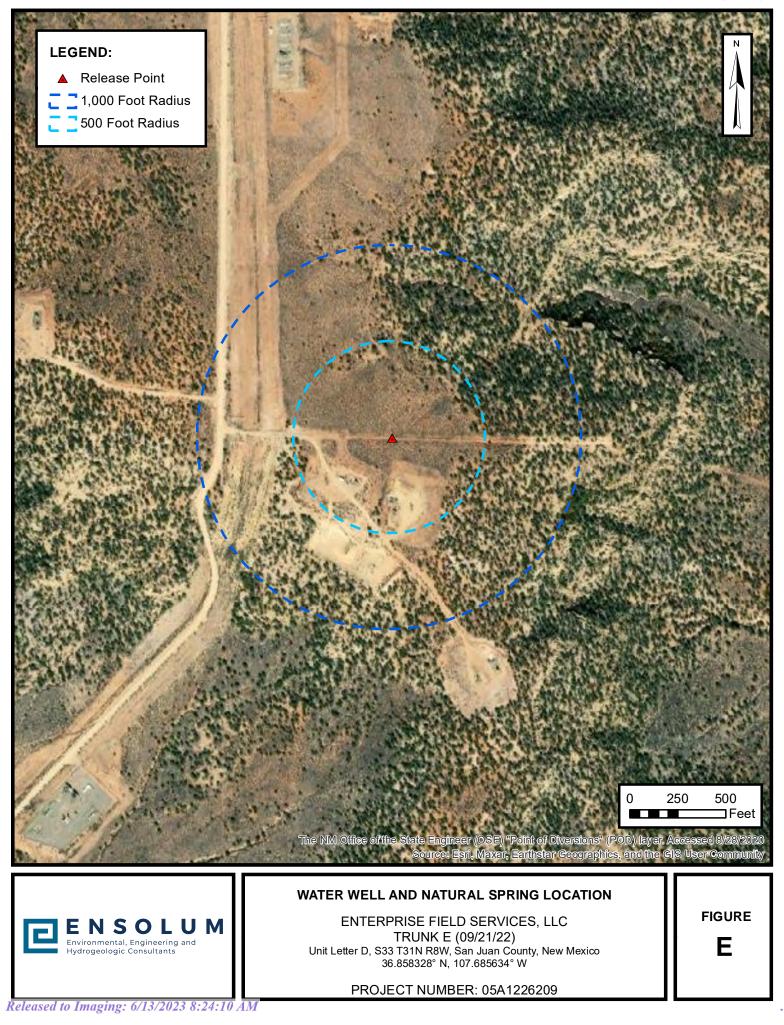






# **APPENDIX B**

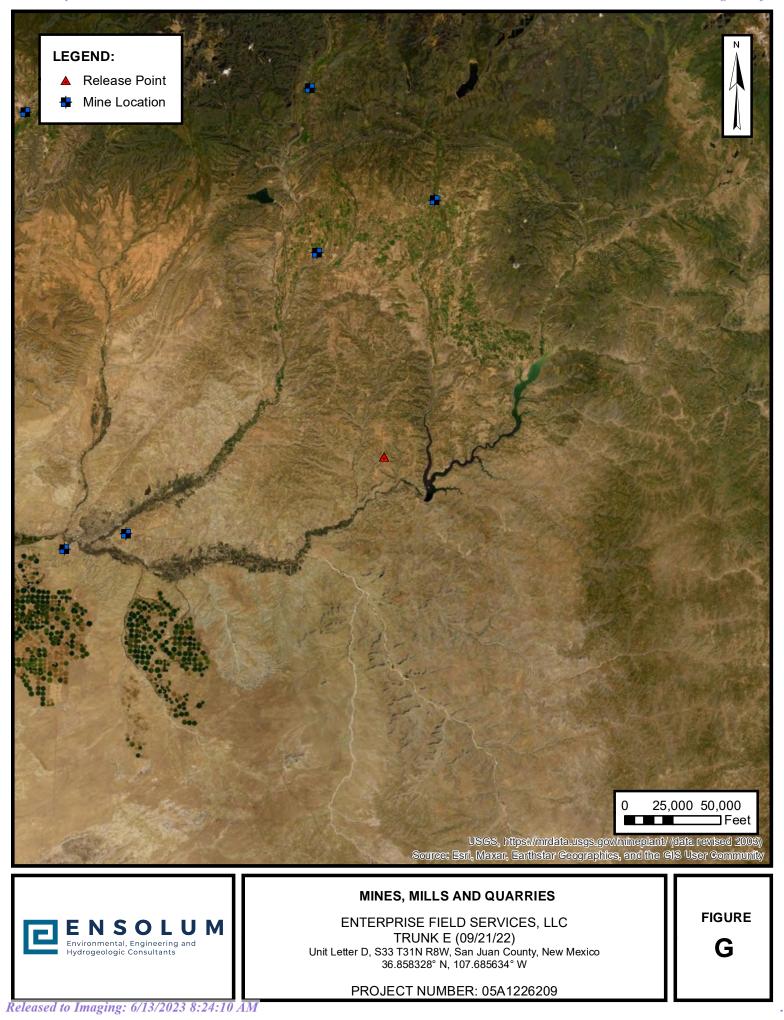

# Siting Figures and Documentation

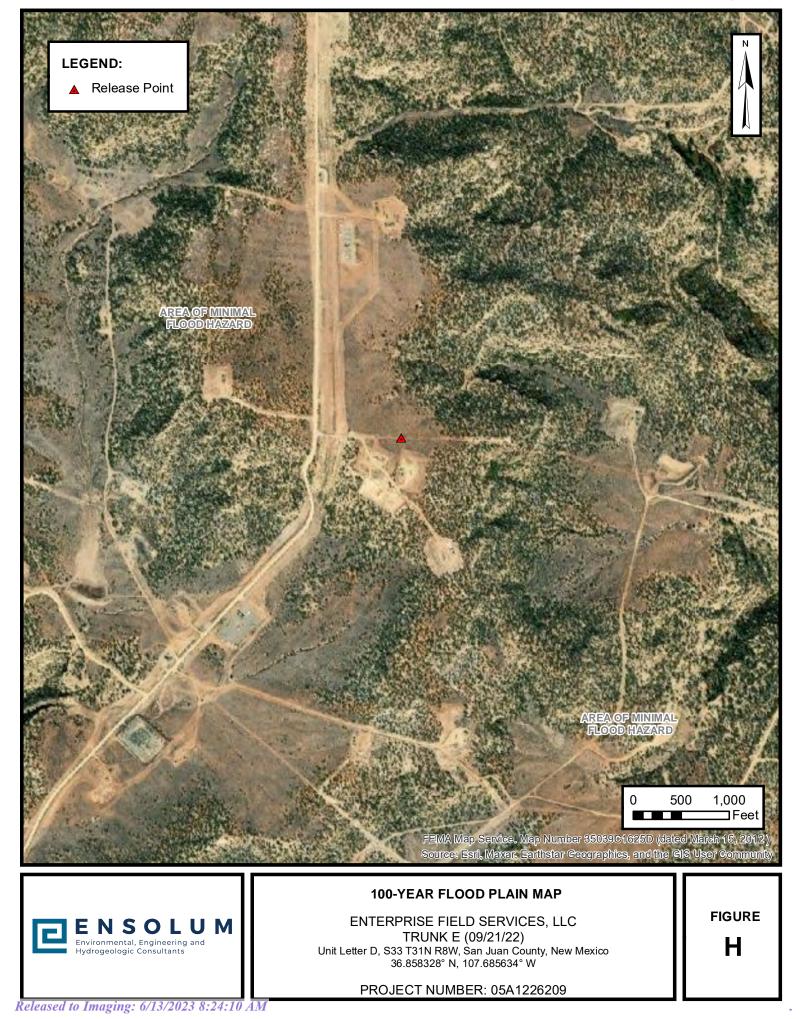

Released to Imaging: 6/13/2023 8:24:10 AM










Received by OCD: 6/12/2023 1:46:55 PM



Released to Imaging: 6/13/2023 8:24:10 AM







# New Mexico Office of the State Engineer Water Column/Average Depth to Water

| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD has<br>been replaced,<br>O=orphaned,<br>C=the file is<br>closed) | (quarters are 1=NW 2=NE 3         | 3=SW 4=SE)<br>gest) (NAD83 UTM in meters)                     | (In feet)                              |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|----------------------------------------|
| POD Number                                                                                                            | POD<br>Sub-<br>Code basin C                                             | Q Q Q<br>county 64 16 4 Sec Tws R | ng X Y                                                        | Depth Depth Water<br>Well Water Column |
| <u>SJ 00198</u>                                                                                                       | SJ                                                                      | SJ 4 3 3 32 31N 08                | W 258895 4081451* 🌍<br>Average Depth to<br>Minimun<br>Maximum | n Depth:                               |
| Record Count: 1                                                                                                       |                                                                         |                                   |                                                               |                                        |

**PLSS Search:** 

| Section(s): 33, 27, 28, 29, | Township: 31N | Range: 08W |
|-----------------------------|---------------|------------|
| 32, 34                      |               |            |

\*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.



# New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

PLSS Search:

Section(s): 3, 4, 5

Township: 30N

Range: 08W

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/16/22 11:43 AM

| If Cement or Bentonite Plugs have be<br>N/A Depths & thickness of water zones wi<br>Fresh, Clear, Salty, Sulphur, Etc<br>Depths gas encountered: N/A Type & amount of coke breeze used:<br>Depths anodes placed: 320', 310', 155',<br>Depths vent pipes placed:<br>Vent pipe perforations:260' | th description of water when po<br>110' NO SAMPLE<br>N/A                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| N/A<br>Depths & thickness of water zones wi<br>Fresh, Clear, Salty, Sulphur, Etc<br>Depths gas encountered:N/A<br>Type & amount of coke breeze used:<br>Depths anodes placed:320', 310', 155',                                                                                                 | th description of water when po<br>110' NO SAMPLE<br>N/A<br>185', 177', 169', 161', 154', ±46', 1 |
| N/A<br>Depths & thickness of water zones wi<br>Fresh, Clear, Salty, Sulphur, Etc<br>Depths gas encountered:N/A<br>Type & amount of coke breeze used:                                                                                                                                           | th description of water when po<br>110' NO SAMPLE<br>N/A                                          |
| N/A<br>Depths & thickness of water zones wi<br>Fresh, Clear, Salty, Sulphur, Etc<br>Depths gas encountered:N/A                                                                                                                                                                                 | th description of water when po<br>110' NO SAMPLE                                                 |
| N/A<br>Depths & thickness of water zones wi<br>Fresh, Clear, Salty, Sulphur, Etc                                                                                                                                                                                                               | th description of water when po                                                                   |
| N/A<br>Depths & thickness of water zones wi                                                                                                                                                                                                                                                    | th description of water when po                                                                   |
| N/A<br>Depths & thickness of water zones wi                                                                                                                                                                                                                                                    | th description of water when po                                                                   |
| -                                                                                                                                                                                                                                                                                              | en placed, show depths & amount                                                                   |
| If Cement or Bentonite Plugs have be                                                                                                                                                                                                                                                           | en placed, show depths & amount                                                                   |
|                                                                                                                                                                                                                                                                                                |                                                                                                   |
| If Casing is cemented, show amounts                                                                                                                                                                                                                                                            | & types used N/A                                                                                  |
|                                                                                                                                                                                                                                                                                                |                                                                                                   |
| Casing, Sizes, Types & Depths                                                                                                                                                                                                                                                                  |                                                                                                   |
| Elevation6272' Completion Date 9/29/88                                                                                                                                                                                                                                                         |                                                                                                   |
| Name of Well/Wells or Pipeline Servi                                                                                                                                                                                                                                                           | ced HOWELL D #4, #353 cps                                                                         |
| Operator <u>MERIDIAN OIL INC.</u>                                                                                                                                                                                                                                                              |                                                                                                   |
| NORTHWESTER<br>(Submit 3 copies t                                                                                                                                                                                                                                                              | N NEW MEXICO<br>o OCD Aztec Office)                                                               |
| DAWA SHEEW FOR DEED CROUND                                                                                                                                                                                                                                                                     | BED CATHODIC PROTECTION WELLS                                                                     |
|                                                                                                                                                                                                                                                                                                | ~350°                                                                                             |
| CD: 6/12/2023 1:46:55 PM<br>4 = 30-045-10139<br>353= 30-045-26904                                                                                                                                                                                                                              | $\sim$ $\sim$ $\sim$                                                                              |

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included

\*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

٩. -

MERIDIAN OIL INC. WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT DAILY LOG

Drulling Log (Attach Hereto)

= Way 1 22 - 8 - 4-94

1.11

2

| 5 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                                                                               |                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                            |                          | Statu:                                     | ويستعدد والأفالة التقالما فمطروه | Ins. Union Check                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | 353                                                                                           |                                                                              |                                                                                                                  |                          |                                            |                                  |                                                   | X 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | # 4                                                                                           |                                                                              | 3103                                                                                                             | 2A                       |                                            |                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2004W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                               |                                                                              |                                                                                                                  | ·.                       |                                            |                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| alson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | node Size:                                                                            | Anode T                                                                                       | ype:                                                                         |                                                                                                                  |                          | Size Bet:                                  |                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1233-31-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2' ×60"                                                                               |                                                                                               | () ') I II                                                                   | ellon                                                                                                            | )                        | 63/4                                       |                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pen Drilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       | Drilling Rig Tin                                                                              |                                                                              | and the second | Lbs. Cofte Used          | Loss Circulatio                            | Mar'l Used                       | No. Secto Med U                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 360'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 256                                                                                   |                                                                                               |                                                                              |                                                                                                                  |                          |                                            |                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| node Cepth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                               |                                                                              |                                                                                                                  |                          |                                            | τ.                               |                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # 3 155                                                                               | ** 185                                                                                        | # 5/                                                                         | MM                                                                                                               | 19                       | 1-1/1                                      | # 8 154                          | 1.111                                             | 1 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>310                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * 3 /33                                                                               | # 4 100                                                                                       | <u>_** 5</u>                                                                 | []                                                                                                               | = e <i>16</i> 9          | =7 161                                     | 1 8 107                          | * 9 /4 <u>6</u>                                   | 1= 10/39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ode Output (Amps)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. 01                                                                                 | 1. 01                                                                                         | 1                                                                            | A                                                                                                                | 1. 10                    | 1 - 110                                    | 1.6                              | 1. 1.                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.1 != 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * 3 2.5                                                                               | 1 4 2.7                                                                                       | * 5 -                                                                        | 3,0                                                                                                              | # 6 3.9                  | 1 7 H.B                                    | ** 43                            | 1=9 4.0                                           | 1= 10 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| node Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | i                                                                                             |                                                                              |                                                                                                                  |                          |                                            |                                  |                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # 13                                                                                  | # 14                                                                                          | # 15                                                                         |                                                                                                                  | # 16                     | <b>⊭</b> ∶17                               | # 18                             | # 19                                              | # 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ode Output (Ames)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                     | •                                                                                             | 1                                                                            |                                                                                                                  |                          | 1                                          | 1                                | 1                                                 | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11 * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # 13                                                                                  | # 14                                                                                          | # 15                                                                         |                                                                                                                  | # 16                     | # 17                                       | æ 18                             | # 19                                              | # 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| al Circuit Resisto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nce :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                              | 1                                                                                             |                                                                              |                                                                                                                  | No. & C.P. Co            | and an |                                  | No. 2 C.P. Ca                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| lts 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 14.2                                                                                | Ohms                                                                                          | .83                                                                          | )                                                                                                                |                          |                                            |                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                               |                                                                              |                                                                                                                  | <u> </u>                 |                                            |                                  |                                                   | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Q/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                               | 1+-+                                                                         | 4: -                                                                                                             | +.4                      |                                            | <u>ll due</u>                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>atta 11</u><br><u>'56' af 1*</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd. 21<br>vert f                                                                      | latero<br>Siper                                                                               | lotte                                                                        |                                                                                                                  | A-110;<br>2/0' p         | no sa<br>xforat                            | A A                              | Instal                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| atod 11<br>256' of 1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PYC .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd. 21<br>vent f                                                                      |                                                                                               | both                                                                         |                                                                                                                  | <u>А-110;</u><br>260° ф. | Λ.                                         | A A                              | Instal                                            | <u>  16 </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| atod 11<br>256' af 1")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nb. 21<br>vent f                                                                      | A 401                                                                                         | y oo                                                                         |                                                                                                                  | A-110;<br>260' p         | Λ.                                         | tal.                             | Instal                                            | <u>  asl</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q                                                                                     | A 401                                                                                         | y oo                                                                         |                                                                                                                  | A-110;<br>260' p         | exforat                                    | tal.                             | Instal                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ctifier Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q                                                                                     | 8 40M                                                                                         | 1,00<br>1,00                                                                 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | teal.                            |                                                   | <u>                                      </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ctifier Size: <u>40</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0_v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1<br>-16                                                                             | <u>8 4011</u><br>_A 669                                                                       | 1,00<br>1,00                                                                 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | teal.                            | Lnstal                                            | <u>lasl</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ctifier Size:/c<br>Idn'l Depth<br>ppth Credit:/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0v<br>H' Ø.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br><br>3.50                                                                         | \$ 4010                                                                                       | 4.00<br>.00<br>.00                                                           |                                                                                                                  | A-110;<br>260' pl        | exforat                                    | teal.                            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ctifier Size: <u>//</u><br>dn'l Depth<br>pth Credit: <u>///</u><br>tra Cable: <u>/</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0v<br>10'@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br><br>3.50                                                                         | \$ 4010                                                                                       | 4.00<br>.00<br>.00                                                           |                                                                                                                  | A-110;<br>260' p         | exforat                                    | teal.                            |                                                   | / <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rtifier Size: <u>//</u><br>dn'l Depth<br>pth Credit: <u>//</u><br>tra Cable: <u>/</u><br>tch & 1 Cable: <u>/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0'@<br>20'@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24<br>24<br>24<br>10                                                                  | <u>8 4011</u><br>_A 669                                                                       | 4.00<br>.00<br>.00                                                           |                                                                                                                  | <u>А-110;</u><br>2/0°р   | exforat                                    | All Consen                       | cuon Complex                                      | 14al<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ctifier Size:<br>dn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>24<br>24<br>10                                                                  | \$ 4010                                                                                       | 4.00<br>.00<br>.00                                                           |                                                                                                                  | <u>А-110;</u><br>2/0'р   | exforat                                    | All Consen                       |                                                   | 14.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ctifier Size:<br>Idn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br><br>3.50                                                                         | \$ 4010                                                                                       | 4.00<br>.00<br>.00                                                           |                                                                                                                  | <u>А-110;</u><br>2/0°р   | exforat                                    | All Consen                       | cuon Complex                                      | 14.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ctifier Size:<br>Idn'l Depth<br>epth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cab<br>i lieter Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0v<br>0'@<br>0'@<br>00'@<br>1e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24<br>24<br>24<br>10                                                                  | \$ 4010                                                                                       | 100<br>100<br>00 -                                                           |                                                                                                                  | <u>А-110;</u><br>2/0'р   | exforat                                    | All Consen                       | cuon Complex                                      | 14al<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ctifier Size:<br>Idn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cab<br>' Heter Pole<br>' Heter Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 24<br>-16<br>3.50<br>24<br>-10<br>-0-<br>-0-<br>-0-                                   | \$ 401<br>\$ 669<br>- 504<br>- 504<br>- 154.0                                                 | 100<br>100<br>00<br>00<br>100<br>100<br>100<br>100<br>100<br>100<br>1        |                                                                                                                  | A-110;<br>2/0' p         | exforat                                    | All Consen                       | cuon Complex                                      | 14al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ctifier Size:<br>Idn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cable:<br>' Heter Pole<br>' Heter Pole<br>' Stub Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | \$ 401<br>\$ 669<br>- 504<br>- 504<br>- 154.0                                                 | 100<br>100<br>00<br>00<br>100<br>100<br>100<br>100<br>100<br>100<br>1        |                                                                                                                  | <u>А-110;</u><br>260' р. | exforat                                    | All Consen                       | cuon Complex                                      | <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ctifier Size:<br>Idn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cable:<br>b' Heter Pole<br>' Heter Pole<br>' Stub Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | <u>A-110;</u><br>260' pl | exforat                                    | All Consen                       | cuon Complex                                      | 104,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tch & 1 Cable: 2<br>tch & 2 Cable: 1<br>tch & 2 Cabl | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | <u>A-110;</u><br>260' pl | exforat                                    | All Consen                       | cuon Complex                                      | lad<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tch & 1 Cable: 2<br>tch & 1 Cable: 2<br>tch & 1 Cable: 2<br>tch & 2 Cabl | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | <u>A-110;</u><br>260' pl | exforat                                    | All Consen                       | cuon Complex                                      | I dad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ectifier Size:/ddn'l Depth<br>epth Credit:/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | All Consen                       | ection Complete<br>)<br><u>oAman</u><br>enasteres | I dad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ctifier Size:<br>ddn'l Depth<br>epth Credit:<br>itch & 1 Cable:<br>itch & 1 Cable:<br>itch & 2 Cab'<br>5' Heter Pole<br>1' ileter Pole<br>1' Stub Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | All Consen                       | cuon Complex                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tch & 1 Cable: 2<br>tch & 1 Cable: 2<br>tch & 1 Cable: 2<br>tch & 2 Cabl | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | All Consen                       | ection Complete<br>)<br><u>oAman</u><br>enasteres | I dad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ctifier Size:<br>Idn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cable:<br>b' Heter Pole<br>' Heter Pole<br>' Stub Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | \$ 401<br>\$ 669<br>- 504<br>- 504<br>- 154.0                                                 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | All Consen                       | ection Complete<br>)<br><u>oAman</u><br>enasteres |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ctifier Size:<br>Idn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cable:<br>' Heter Pole<br>' Heter Pole<br>' Stub Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | All Consen                       | ection Complete<br>)<br><u>oAman</u><br>enasteres | Id<br>July<br>Id<br>In<br>In<br>In<br>In<br>In<br>In<br>In<br>In<br>In<br>In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ctifier Size:<br>dn'l Depth<br>pth Credit:<br>tra Cable:<br>tch & 1 Cable:<br>tch & 2 Cabl<br>' Meter Pole<br>' Meter Pole<br>' Stub Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20'0<br>10'0<br>10'0<br>1e:<br>e:<br>e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24<br>3.50<br>24<br>10<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0-<br>-0- | <u>401</u> <u>669</u> <u>-</u> 504 <u>-</u> 154.0 <u>-</u> 158.2 <u>-</u> 158.2 <u>-</u> 25.0 | 100<br>100<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                                                                                                                  | A-110;<br>260' p         | exforat                                    | All Consen                       | ection Complete<br>)<br><u>oAman</u><br>enasteres | Leps<br>I and<br>Jeps<br>I and<br>I an |

ł

.

### Page 27 of 91

17794 10-3-38

Completion Date 9-29-88

ALL

CPS # good W DArrell CrASS Drilling Diill No. 3 Well No. Howell D#353 Date 9-29-88 client Meridian Oil Co. County SAN JUAN State New Mexico 0.10 C/AY 10-90 SANdstone 90-100 Shale 100-110 SANC 110-140 SANdy Shate 140-190 Shale SANdstore 190-240 SANdy Shale 240.290 SANdstone 290-300 Shple 300 - 330 SANdstore 330-360 Water @ 110'

12

4A-30-045-21769

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

| Operator MERIDIAN OIL                 | Location: Unit SE Sec 33 Twp 31 Rng 8   |
|---------------------------------------|-----------------------------------------|
| Name of Well/Wells or Pipeline Serv:  | iced HOWELL D #4A                       |
|                                       | cps 1001w                               |
| Elevation 6253 Completion Date 8/2/76 | Total Depth <u>320'</u> Land Type*N/A   |
| Casing, Sizes, Types & Depths         | N / A                                   |
|                                       |                                         |
| If Casing is cemented, show amounts   | & types used N/A                        |
|                                       |                                         |
| If Cement or Bentonite Plugs have be  | een placed, show depths & amounts used  |
| N/A                                   |                                         |
| Depths & thickness of water zones w:  | ith description of water when possible: |
|                                       | 60'                                     |
|                                       |                                         |
| Depths gas encountered: N/A           |                                         |
| Type & amount of coke breeze used:    |                                         |
|                                       | 245', 235', 195', 185', 170', 160', 15  |
|                                       |                                         |
| Depths vent pipes placed: N/A         |                                         |
| Vent pipe perforations: 220'          | MAY 81 1991                             |
| Remarks: <u>(gb #1</u>                | OIL CON. DIV.                           |
|                                       | LDIST. 3                                |

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

\*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Received by OCD: 6/12/2023 1:46:55 PM

WELL CASING CI DDIC PROTECTION CONSTRUCTION R DAILY LOG

Page 30 of 91

Completion Date 8-2-76 **Drilling** Log (Attach Hereto). Well Name CPS No. ocation D#4A 5E33-31o wel 00 & Size Bit Used Nork Order No 6 Total Drilling Rig Time de Hole Depth Total Lbs. Coke Used Lost Circulation Mat'l Used No. Sacks Mud Used 19320 do Depth 280 # 2 270 # 3 260 # 4 245 # 5 235 # 6 195 # 7 185 # 8 170 # 9 160 # 10/50 Anode Output (Amps) # 526 #7 2.7 #8 3.4 # 3 3.4 # 4 2.1 # 6 24 # 94,6 # 10 5,2 # 2 3.1 # 1 **2.3** Anode Depth # 11 # 12 # 13 # 14 # 15 # 16 # 17 # 18 # 19 # 20 Anode Output (Amps) # 11 # 12 # 13 # 14 # 15 # 16 # 18 # 20 # 19 No. 8 C.P. Cable Used No. 2 C.P. Cable Used Total Circuit Resistance Amps 13.2 Ohms 1.92 Volts 12.2 Remarks: Driller Soid Blew out at 60' Stort Water injection Drill to 320: Water Next A.M. at 300'- Could Hear Wat Falling - Driller Said Water Coming From 60 Fill to 60' & Log to 320' Vent Perforated 220' Slurig 36 Coke Construction Completed 248.50 (90 00) credent 77.82 Cable 94.60 .38' 2500.92 100.04 To 19.9 2600,96 213.40 lack 336.00 4 194.50 8. 3344.80 2353 Original & 1 Copy All Reports

**Released to Imaging: 6/13/2023 8:24:10 AM** 

|                      |                 | EVENING  | Total Men In Crew C | FORMATION               | Shale /   | La not           | No. No. No. (数) | No. DC SIZE STORE LENG: 14 19 | NO. DC SIZE       | TANDS      | SINGLES | DOWN ON KELLY | TOTAL DEPTH | MUD, ADDITIVES USED AND RECEIVED |               |           |  | TIME BREAKDOWN FUNCTION THE STATE |  | , - |   |               | いた。このでは、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」では、「いい」 |  |  |  |                    |   |                           |
|----------------------|-----------------|----------|---------------------|-------------------------|-----------|------------------|-----------------|-------------------------------|-------------------|------------|---------|---------------|-------------|----------------------------------|---------------|-----------|--|-----------------------------------|--|-----|---|---------------|---------------------------------------------------------------------------------------------------------|--|--|--|--------------------|---|---------------------------|
|                      | REPORT NO.      |          | Driller             | FROM TO                 | 220 240   | 140 200          | 025 025         |                               | BIT NO.           | SERIAL NO. | SI Z E  | ТҮРЕ          | MAKE        | MUD RECORD                       | Time Wt. Vis. | 101010101 |  | FROM TO                           |  |     | - | REMARKS -     |                                                                                                         |  |  |  | Company Supervisor |   |                           |
| DRILLING DEP ARTMENT | ()() RIG NO. 32 | DAYLIGHT | Total Men In Crew   | FORMATION WT-BIT R.P.M. | Sharley   | Shi hal          | Sand            | NO. DC SIZE LENG.             | NO. DC SIZE LENG. | STAN       | SINGLES | DOWN ON KELLY | TOTAL DEPTH | MUD, ADDITIVES USED AND RECEIVED |               |           |  | TIME BREAKDOWN                    |  |     |   |               |                                                                                                         |  |  |  |                    |   | -                         |
| ō                    | CONTRACTOR NA A | DA       | Driller             | FROM TO                 | 120 150   |                  | 190 220         |                               | BIT NO.           | SERIAL NO. | SIZE    | ТҮРЕ          | MAKE        | MUD RECORD                       | Tune Wt. Vis. |           |  | FROM TO                           |  |     |   | REMARKS -     |                                                                                                         |  |  |  | SIGNED: Toolousher |   |                           |
| C DS#1001            | MELL NO. # 4/   | ORNING   | Total Mén In Crew   | FORMATION WT-BIT R.P.M. | Scrolin 1 | Sho weiter       | Sa he           | NO. DC SIZE LENG.             | NO. DC SIZE LENG. | STANDS     | SINGLES | DOWN ON KELLY | TOTAL DEPTH | MUD, ADDITIVES USED AND RECEIVED |               |           |  | TIME BREAKDOWN                    |  |     |   |               |                                                                                                         |  |  |  |                    | - | at the manine of a second |
|                      | LEASE Wir No.   | W        | Driller             | FROM TO                 | 0601      | 01) (COL COL COL | act oal         |                               | BIT NO.           | SERIAL NO. | si z e  | ТҮРЕ          | MAKE        | MUD RECORD                       | Time Wt. Vis. |           |  | FROM TO                           |  |     |   | <br>REMARKS - |                                                                                                         |  |  |  |                    | х |                           |

· ..

**,** .

El Paso Natural Gas Company ENGINEERING CALCULATION

|                                                                                                                 |                                                                   |               |                                                | Ë                    | IGINEERI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atural Gas Company                                 | ON )                                  | Sheet:0707<br>Date: |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|---------------------|
|                                                                                                                 |                                                                   |               |                                                |                      | .* .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                       | By:                 |
|                                                                                                                 | .t                                                                | ۱۹.           | - ,                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                  |                                       | rne                 |
|                                                                                                                 | ÷•••                                                              | _ `           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | · · · · · · · · · · · · · · · · · · · | * x                 |
|                                                                                                                 |                                                                   | · / · · · · · |                                                | ·                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       | •                   |
|                                                                                                                 | 1. A.S                                                            | fore          | 11 0 4                                         | $H_{-}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0010                                               | · · · · · · · · · · · · · · · · · · · |                     |
|                                                                                                                 | 60                                                                | 4             | 8                                              | 5 11                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | Driller Said B                        | ley Water           |
|                                                                                                                 |                                                                   |               |                                                | 70                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | out at 60'- 5                         | tortinj.            |
|                                                                                                                 | 70                                                                | 2             | · · · · · · · · · · · · · · · · · · ·          |                      | 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | Drill to 3                            | 30                  |
| MW gals/mol<br>16.04 C1 6.4                                                                                     |                                                                   | .6            | 3                                              | 00                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······································             | Water Next H.                         | Mat 300'            |
| 30.07 C2 10.12                                                                                                  | 80                                                                | 3             |                                                | Carrier Construction | 61 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | Could Hear M                          | afer                |
| 44.10 C3 10.42<br>58.12 IC4 12.38                                                                               |                                                                   | .2            |                                                | 0                    | 16:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | Falling-Dri                           | ler said            |
| 58.12 nC4 11.93<br>72.15 IC5 13.85                                                                              | 90                                                                | 3             | <u> </u> iii                                   | <u>'</u>  '          | .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                       | n 60'               |
| 72.15 nC5 13.71<br>86.18 iC6 15.50                                                                              | 100                                                               | 5             |                                                | 0                    | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | F-11/+0600                            | 7.009               |
| 86.18 C6 15.57                                                                                                  | 100,                                                              | .6            |                                                | 0                    | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                                       |                     |
| 100.21 · iC7 17.2<br>100.21 · C7 17.46                                                                          | 10                                                                |               | <u>}</u>                                       | Ť                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
| 114.23 C8 19.39<br>28.05 C2 9.64                                                                                |                                                                   | .3            | 4                                              | 8                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
| 42.08 C3 9.67                                                                                                   | 20                                                                | :2:           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 1                                                                 | Z             | · · · ·                                        | 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | I. N                                  | A                   |
|                                                                                                                 | 30                                                                | ٢,            | 1                                              | ļ                    | and the second state of th | 1 .                                                | Venter                                | + 220 i             |
| man and a fing the second s |                                                                   | 4             | 6                                              | 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 40                                                                | 3             |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 36                                    | Core                |
|                                                                                                                 |                                                                   | 4             |                                                | , ,<br>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 52                                                                | 1.5-          |                                                | ·                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 10                                                                | 20-           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 60                                                                | 2.0           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 10                                                                | 14            |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 |                                                                   | 10            | 1                                              | <u> </u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 80                                                                | 7 -           | 1                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
| MISC gals/mol                                                                                                   |                                                                   | 1.3 =         |                                                | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                  | 1 2.80 1.4                            | 2.3                 |
| 32.00 O2 3.37<br>28.01 CO 4.19                                                                                  | 90                                                                |               |                                                | · .                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 2 27:0 2.2                            | 3.1                 |
| 44.01 CO2 6.38<br>64.06 SO2 5.50                                                                                |                                                                   | 1.6           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 3 260 22                              | 34                  |
| 14.08 H2S 5.17<br>28.01 N2 4.16                                                                                 | ZOU                                                               | 6             |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 4 245 114                             | 21                  |
| 2.02 ; H2 3.38 ;                                                                                                |                                                                   | . ,4          |                                                | ·                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 5 235 16                              | 2.6                 |
|                                                                                                                 | 10                                                                | 4             |                                                | ·                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 6.195 1.4                             | 2.4                 |
|                                                                                                                 | 20                                                                |               |                                                | _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 8 1.70 1.4                            | 2.0                 |
|                                                                                                                 |                                                                   | 1<br>.6<br>.8 |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 9 160 72 7                            | 34<br>46<br>5.0     |
|                                                                                                                 | 30                                                                | .8            |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 9 160 72 7                            | 5.0                 |
|                                                                                                                 |                                                                   | 14-           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                  |                                       |                     |
|                                                                                                                 | :40                                                               | 18            |                                                | ٤.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 92                                    |                     |
|                                                                                                                 | 7 1<br>16 1<br>19 1<br>19 1<br>19 1<br>19 1<br>19 1<br>19 1<br>19 | 1.5           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                 |                                       | 7 = 0.92            |
|                                                                                                                 | SD.                                                               | . 9           |                                                |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | 1188                                  |                     |
|                                                                                                                 | 嚴陷                                                                | 6             |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 320                                   |                     |
| 下方在空间                                                                                                           | 60                                                                | 10            |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 |                                                                   | 18            |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 70                                                                | 20            |                                                | l<br>Ifac            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 10                                                                | 19/           |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                       |                     |
|                                                                                                                 | 14 V C                                                            | 17            | na hori ile Alle a<br>Si lava ina attanticatio | r simi sub-          | · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 「「「「「」」<br>「「」」<br>「」」<br>「」」<br>「」」<br>「」」<br>「」」 |                                       |                     |

Released to Imaging: 6/13/2023 8:24:10 AM

-

| 30-045-10250                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------|
| DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS<br>NORTHWESTERN NEW MEXICO<br>(Submit 3 copies to OCD Aztec Office) |
| OperatorMERIDIAN OILLocation: Unit_SW_Sec.28_Twp_31_Rng_8                                                                    |
| Name of Well/Wells or Pipeline Serviced <u>HOWELL D #1</u>                                                                   |
| cps 247w                                                                                                                     |
| Elevation 6483'Completion Date 6/20/74 Total Depth 700' Land Type* N/A                                                       |
| Casing, Sizes, Types & DepthsN/A                                                                                             |
|                                                                                                                              |
| If Casing is cemented, show amounts & types used <u>N/A</u>                                                                  |
| If Cement or Bentonite Plugs have been placed, show depths & amounts used                                                    |
| Depths & thickness of water zones with description of water when possible:<br>Fresh, Clear, Salty, Sulphur, Etc. 460'        |
| Fresh, Clear, Salty, Sulphur, Etc. 460'                                                                                      |
| Depths gas encountered: N/A OIL CON. DIV                                                                                     |
| Type & amount of coke breeze used: <u>12700 lbs.</u>                                                                         |
| Depths anodes placed: <u>660', 650', 640', 630', 620', 495', 485', 475', 465', 455'</u>                                      |
| Depths vent pipes placed: N/A                                                                                                |
| Vent pipe perforations: 495'                                                                                                 |
| Remarks: <u>gb #3</u> FIRST HOLE CAVED AT 430'. LOST LOGGING ANODE AT 600'.                                                  |

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

\*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Received by OCD: 6/12/2023 1:46:55 PM Page 34 of 91 El Paso Natural: Gas Company WELL CASING Form 7-238 (Rev. 1-69) CATHODIC PROTECTION CONSTRUCTION REPORT DAILY LOG 6/20/74 Completion Date\_ Drilling Log (Attach Hereto). Well Name Location owel 5W 18 -311 247 Work Order No. 84 - 52020.19.50 Anode Hole Depth , Total Lbs. Coke Used Lost Circulation Mat'l Used Total Drilling Rig Time No. Sacks Mud Used 700 <u>12, 700 Est.</u> Anode Depth 650 # 3 640 # 4 630 # 5 620 # 6 495 # 7 4 85 # 8 475 = 9 465 # 10 455 # 2 #2 1.9 #3 2.6 #4 2.6 #5 2.4 #6 1.9 #7 2.4 #8 2.4 #9 2.0 # 10 2.0 45 # 12 420 # 13 # 14 # 15 # 16 # 18 # 19 # 20 Anode Output (Amps) **1**, **0** # 12 **1**. **0** # 13 # 14 # 15 # 16 = 18 # 19 # 20 No. 8 C.P. Cable Used Total Circuit Resistance No. 2 C.P. Cable Used Amps /// Ohms 1.15 385 Volts Hole # 1 Drilled With Air Oriller said Remarks: INCredse @ 460'- 480' LOST Logai WATEr @ 360 Hole Coved Moved Rig 20' ANODE IN HOLE. Drill with Mud to TOO'. VONT Hose Porton 495. 320 Drill pipe STUCK in Hole Freed with Diesel and Magcobar Pipe hax CHemical ADDITIVE All Construction Completed \$ 3,409.00 6° dual aulik 154.00 2Able \$ 3,563.00 GROUND BED LAYOUT SKETCH #,1,387.50 EXTRA DEpTh D dd Bed #2 16 Bed #) 180.00 ExtrA ANDDES 4,950.50 5,130.50 5,205.22 TAX 5,335.72 3-80 12-14-83 New Statoc O la Bed # 3 . Releaset 10 Integing" 8/93/2023 8:24:10 AM

| <b>Received</b> by | OCD: 6/12/202. | 3 1:46:55 PM |
|--------------------|----------------|--------------|

• ;

7-1

. مير

| DIAMOND CORE DRILL<br>DIAMOND DRILLING EG<br>GROUTING<br>FOUNDATION TESTING<br>Mining<br>Guarrying<br>Shaft Sinking<br>Water Well Drilling | UIPMENT<br>erstforgigen dat († 202     | CONTRACTORS<br>14991 W. 44TH AVENUE<br>GOLDEN, COLORADO 80401<br>PHONE (303) 278-9505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •<br>_ *• •                                        | GENERAL OFFICE<br>14991 W. 44TH AVENUE<br>Bailey office<br>Call 1-838-4821 |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                            | 15W                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                               | 6-20-74                                                                    |
| Owner <u>C</u> F                                                                                                                           | 25 24                                  | TW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                            |
| Location<br>City                                                                                                                           | mington                                | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Co                                                 | unty                                                                       |
| From                                                                                                                                       | То                                     | Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Color                                              | Hardness                                                                   |
| 0                                                                                                                                          | 20                                     | Supface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Br                                                 | Soft                                                                       |
| 20                                                                                                                                         | leo                                    | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ber                                                | Shaped                                                                     |
| 60                                                                                                                                         | 190                                    | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BL.                                                | Asnd                                                                       |
| 190                                                                                                                                        | 230                                    | Saudy Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bh.                                                | med                                                                        |
| 230                                                                                                                                        | 240                                    | Sony Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                           | Med                                                                        |
| 260                                                                                                                                        | 295                                    | SANdSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Brz                                                | Alsed                                                                      |
| 295                                                                                                                                        | 440                                    | SANdy Shake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BL.                                                | Med.                                                                       |
| 440                                                                                                                                        | 620                                    | SAN de GRAUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Br.                                                | <u> </u>                                                                   |
| (a20                                                                                                                                       | 700                                    | Saudy Shall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BL.                                                | Adre                                                                       |
|                                                                                                                                            |                                        | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······                                             | · .                                                                        |
|                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                            |
|                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                            |
|                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ž.,                                                |                                                                            |
| <u></u>                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                            |
|                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                            |
|                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANJECTIO                                           | JAT 360                                                                    |
| ·                                                                                                                                          |                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WATER &                                            | 1// 2                                                                      |
|                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER &                                            | T HEO                                                                      |
|                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·              |                                                                            |
| Total Hours                                                                                                                                | ·: · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C.P.S. Time                                        |                                                                            |
| Equipment Down                                                                                                                             | Time                                   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S.W.W.D.I. Time                                    | 2 · · · · · · · · · · · · · · · · · · ·                                    |
| Hours Drilling                                                                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Footage                                      |                                                                            |
| Driller Apt                                                                                                                                | Stadney                                | <u>V</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approval of                                        |                                                                            |
| Helper Dalo                                                                                                                                | BATES                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.P.S. Engineer _                                  |                                                                            |
| Helper                                                                                                                                     | D. Polos)                              | and a state of the | an an<br>An an | , Ĕ, w, "m", ', ',<br>pen až, ', ', ', ',                                  |

| Received by QCD:"6/12/2023-1.246:55 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EL PASO NATURAL GAS COMPANY<br>ENGINEERING DEPARTMENT | Sheet Page 36 of 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 3 9 0 0 12/2023 F:40:55 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                     | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 1 247 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · * X = 26.                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 400 51,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80, 4, 4/1 P2; 1/07 5010                              | NOTO2 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I I I TH Jection                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{100}{100} \frac{100}{100} 10$ | 90,4,4 Increase 4<br>566,4,4 M D2, 11 TO 460          | 60-480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600 .41.4 aver Nigh                                   | T hed They                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\frac{\frac{1}{100} \frac{C_{4}}{C_{7}} \frac{15}{17} \frac{27}{C_{7}}}{\frac{11}{14} \frac{C_{7}}{C_{7}} \frac{17}{17} \frac{2}{16}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 4. 4 57 2 4 ding a                                  | 250'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ± 2 18 20 .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 31 5 02 1107 31 d                                  | 0 gal Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02 11 TO 600                                          | BARRANTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A OG A OST A OG                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Avede Aud A                                           | Tenno TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 19 .Z 1,Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360 11 Relog Nole C                                   | 1 Ved @ 4/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 40.3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | and priv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.2 / mith mud s                                     | Tuck 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pring per the pring of the period                     | e Fxeed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | and Magare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 .4 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.4 6/20 02: 11 70 620 2                             | Nd Log Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 90.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 Jours Frough Vent                                   | NOSC Por 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 . 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Woler Ca                                              | Ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 5<br>9<br>b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B 62011 3 640 15 2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3 4 1.30 1.5 2.                                     | 6 the second sec |
| 20.6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D6301,4 5620 1,5 2.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36401.3 7 485 1.5 2                                   | The start is the life start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| .2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 6 4 0 1.3<br>7 4 85 1.5<br>1.3<br>8 41 75 1.5<br>2  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40,2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2 10 155 1.2 2                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0660,9 11 445 1.3 2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.3.3<br>50.3.4<br>60.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 670 · 7 / 20 14 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00,7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S S S S S S S S S S S S S S S S S S S                 | 6-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 70.5,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 680.4                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reterent to Imaging: 6/13/2023-8:24:10/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M 690 . 8<br>698 807                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 73   |    |    | c . | 0.4 |
|------|----|----|-----|-----|
| Page | 37 | 0  | t ( | 97  |
| IUSU | 01 | U. | - 1 |     |

Received by OCD: 6/12/2023 1:46:55 PM 1A-30-045-21776 350-30-045-26921 2 DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office) Operator MERIDIAN OIL Location: Unit E Sec. 28 Twp 31 Rng 8 Name of Well/Wells or Pipeline Serviced HOWELL D #1A, #350 cps 995w Elevation <u>6520</u> Completion Date 9/27/88 Total Depth 520' Land Type\* N/A Casing, Sizes, Types & Depths N/A If Casing is cemented, show amounts & types used <u>N/A</u> If Cement or Bentonite Plugs have been placed, show depths & amounts used N/A Depths & thickness of water zones with description of water when possible: Fresh, Clear, Salty, Sulphur, Etc. 18' Depths gas encountered: \_\_\_\_\_N/A\_\_\_\_\_\_ Depths anodes placed: 485', 475', 467', 460', 452', 365', 358', 350', 230', 220' Depths vent pipes placed: 515' DECEIVE Vent pipe perforations: 515' Remarks: ( 95 #2 MAY 3 1 1991 OIL CON DI

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

\*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Page 38 of 91 Received by OCD: 6/12/2023 1:46:55 PM MERIDIAN OIL INC. مسی مون 3\_2 م ترم Ma . . • WELL CASING Conup 9-28-495 CATHODIC PROTECTION CONSTRUCTION REPORT DAILY LOG Completion Date 9-27-88 Drilling Log (Attach Hereto) M Well Name, Line or Plant Work Order # CPS # las, Uason Cherl State bour HI #350 995 X Bad 2110A Anode Size: Anode Type Suze But 2" × 60\* 34 Junion 1/**M** 9R-21-6 Drilling Rig Time Total Lbs. Coke Uses Depin Drilled Depth Logged on Mat'l Used No. Sacks Mud Used 515 Anode Depth 1 3 46M \* 1 4AS :2 475 = 4460 := 5461 : \$365 1 7.35B 1= 8350 1 10 990 • 9230 Anode Output : Amps # 3.3.7 = 4 2.4 1 2 3.3 \*6 2.0 = 7.3.4 ¥ 5 1= 8 2 \*13.2 \* 10 9. \*9 1 Anode Depth # 14 # 15 # 16 1 17 # 18 # 19 f# 20 # 11 = 12 # 13 Anode Output (Amcs) "# 12 # 13 # 14 # 15 # 16 # 17 # 18 # 19 # 20 # 11 No. 8 C.P. Cable Used No. 2 C.P. Cable Used Total Circuit Resistance 2 Ohms Amos Volts tot insulator unions. Ano. ample. an' TA nstr/len MAT . . OR HOTH OO -'mile 105,00 Rectifier Size:\_ Addn'l Depth 15'6 All Construction Completed 4.80 Depth Credit: Extra Cable: 20'0 15.00 Ditch & 1 Cable: 250'@ 10 (Signatur Ditch & 2 Cable: 25' Meter Pole: 20' Meter Pole: 10' Stub Pole: ā 225.00 Junction Box: 1/0 205.00 GB#1 tax 229.19 4812.99 nø tøx lõt anda

Released to Imaging: 6/13/2023 8:24:10 AM

/12/2023 1:46:55 PM. # 200QW DAriell Crass Drilling Well No. Howoll D 350 Opte 9-22-88 Client Meridian Oil Co. New Mexico County SAN JUAN State Spud 0-20 SANdstore 20-50 Shale 50-60 SANdstone 60-95 Shale. 95-105 SANdstone 105-175 Shale 175-195 Spudstone 195-215 Shale 215-235 SANdstore 235-345 Shale 345-370 SANdstore 370-450 shale 450 490 SANdstone 490-520 WATER @ 18' alante in the case with the first of the state ession is a produce the second

Released to Imaging: 6/13/2023 8:24:10 AM

| DAT<br>Operator<br>Name of Well7<br>Elevation <u>626</u><br>Casing String<br>If Casing String<br>If Casing String<br>If Cement or<br>Depths & thic<br>Salty, Sulphu | DO- 30 -045<br>A SHEET FOR DEEP<br>NORT<br>MERIDIAN OI Wells or Pipeline Completion Date S, Sizes, Types & ings are cemented $MENTBentonite Plugs h$ | GROUND BED<br>HWESTERN NE<br>Loca<br>Serviced<br><u>7-31-91</u> Tot<br>Depths<br>, show amou | W MEXICO                               | Com A<br>509 <sup>1</sup> Lan<br>PVC | 2_Twp <sup>31</sup> Rng<br>1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------|
| Name of Welly<br>Elevation <u>626</u><br>Casing String<br>If Casing String<br>If Casing String<br>Depths & thic<br>Salty, Sulphu                                    | Wells or Pipeline<br>$\frac{1}{2}$ Completion Date<br>s, Sizes, Types &<br>ings are cemented<br>$m \in \mathcal{UT}$                                 | Serviced                                                                                     | EPNG<br>al Depth_<br>8"                | Com A<br>509 <sup>1</sup> Lan<br>PVC | d Type <u>F</u><br>100' DEE  |
| Name of Welly<br>Elevation <u>626</u><br>Casing String<br>If Casing String<br>If Casing String<br>Depths & thic<br>Salty, Sulphu                                    | Wells or Pipeline<br>$\frac{1}{2}$ Completion Date<br>s, Sizes, Types &<br>ings are cemented<br>$m \in \mathcal{UT}$                                 | Serviced                                                                                     | EPNG<br>al Depth_<br>8"                | Com A<br>509 <sup>1</sup> Lan<br>PVC | d Type <u>F</u><br>100' DEE  |
| Elevation <u>626</u><br>Casing String<br>If Casing Str<br><u>NEAT</u> Co<br>If Cement or<br>Depths & thic<br>Salty, Sulphu                                          | Completion Date<br>s, Sizes, Types &<br>ings are cemented<br>$m \in \mathcal{UT}$                                                                    | <u>7-31-91</u> Tot<br>Depths                                                                 | al Depth_<br>8"                        | 509 <sup>1</sup> Lan<br><i>PU</i> C  | d Type <u>F</u><br>100' DEE  |
| Casing String<br>If Casing Str<br><u>NEAT</u> Cr<br>If Cement or<br>Depths & thic<br>Salty, Sulphu                                                                  | ings are cemented $\overline{m \in \mathcal{UT}}$                                                                                                    | Depths                                                                                       | <u> </u>                               | PUC                                  | 100' DEE                     |
| Casing String<br>If Casing Str<br><u>NEAT</u> Cr<br>If Cement or<br>Depths & thic<br>Salty, Sulphu                                                                  | ings are cemented $\overline{m \in \mathcal{UT}}$                                                                                                    | Depths                                                                                       | <u> </u>                               | PUC                                  | 100' DEE                     |
| If Casing Str<br><u>NEAT</u> &<br>If Cement or<br>Depths & thic<br>Salty, Sulphu                                                                                    | ings are cemented $M \in \mathcal{UT}$ ,                                                                                                             | , show amou                                                                                  | · · · · · · · · · · · · · · · · · · ·  |                                      | - 4                          |
| NEAT Or<br>If Cement or<br>Depths & thic<br>Salty, Sulphu                                                                                                           | MENT                                                                                                                                                 |                                                                                              | ints & typ                             | pes used                             | 24 5ACK                      |
| NEAT Or<br>If Cement or<br>Depths & thic<br>Salty, Sulphu                                                                                                           | MENT                                                                                                                                                 |                                                                                              | ints & tyr                             | oes used                             | 24 SACK                      |
| If Cement or<br>Depths & thic<br>Salty, Sulphu                                                                                                                      |                                                                                                                                                      | ave been pl                                                                                  |                                        |                                      |                              |
| Depths & thic<br>Salty, Sulphu                                                                                                                                      | Bentonite Plugs h                                                                                                                                    | ave been pl                                                                                  |                                        |                                      |                              |
| Salty, Sulphu                                                                                                                                                       | <u>AO</u>                                                                                                                                            |                                                                                              | aced, sho                              | w depths                             | & amounts u                  |
| Salty, Sulphu                                                                                                                                                       |                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                        |                                        |                                      | ·                            |
|                                                                                                                                                                     | kness of water zo<br>ar, Etc. $Fres$                                                                                                                 | (                                                                                            | escriptior                             | n of water                           | : Fresh, Clo                 |
| Depths gas er                                                                                                                                                       | countered:                                                                                                                                           | NO                                                                                           | ······································ |                                      |                              |
|                                                                                                                                                                     | pth with type & a                                                                                                                                    |                                                                                              |                                        |                                      | 504' WI                      |
|                                                                                                                                                                     | s) bags Asbur                                                                                                                                        |                                                                                              |                                        |                                      |                              |
| )epths anodes                                                                                                                                                       | placed: 489, 481, 4                                                                                                                                  | 73 465 457                                                                                   | ,449,44                                | 1,410,400                            | , 390, 380,                  |
| Depths vent p                                                                                                                                                       | ipes placed: <u>5</u>                                                                                                                                | <u>04</u>                                                                                    |                                        |                                      |                              |
| /ent pipe per                                                                                                                                                       | forations: 100                                                                                                                                       | <u>то вотт</u>                                                                               | OM                                     | DECE                                 | IVEM                         |
| Remarks:                                                                                                                                                            |                                                                                                                                                      |                                                                                              |                                        | NN<br>FE82                           | 4 1992                       |
|                                                                                                                                                                     |                                                                                                                                                      |                                                                                              |                                        | OIL CO                               | N. DIV.I                     |
|                                                                                                                                                                     |                                                                                                                                                      |                                                                                              |                                        |                                      | r. 3                         |
| logs, includi                                                                                                                                                       | above data is un<br>ng Drillers Log,<br>when available.                                                                                              | Water Analy                                                                                  | ses & Wel                              | Ll Bore Sc                           | hematics she                 |
| Land Type may<br>If Federal or                                                                                                                                      |                                                                                                                                                      | eral: I-Ind                                                                                  | lione C C                              | tate; P-Fe                           | e.                           |

· . ·

.

| <b>CP8</b> #<br>21      | 74.u        | P/L NA       | ME ( 8 ) . 1      |                   | EDN        | 6 Co:                   | n A                                   | ± 300    | 2                                             |              |                       |             |
|-------------------------|-------------|--------------|-------------------|-------------------|------------|-------------------------|---------------------------------------|----------|-----------------------------------------------|--------------|-----------------------|-------------|
| , <u></u> , <del></del> |             | TOTAL        | VOLTS             | 62 "              | ampe<br>19 | ,  -                    |                                       | DA       |                                               | NAME         | nRe                   |             |
|                         |             | tes for      | <b>I</b>          |                   |            |                         |                                       |          |                                               | <u> </u>     | ·······               |             |
|                         |             |              |                   |                   | ····       |                         | <u>) 8'</u>                           | Surt     | ACC                                           | (ASINO       | <u>5 24</u>           | <u>5.</u> 4 |
| 0-00                    | <u> </u>    | Vo llec      | l = 505           | TN                | SOL        | 50                      | 9'1"                                  | ese c    | al ara-                                       |              |                       | 4           |
| (010)                   | <u>ee</u> r | 201 Hec      | $\frac{1}{20}$    |                   |            |                         |                                       | <u> </u> | er futhi                                      | <u>ED 10</u> | Tearr                 | <u> </u>    |
|                         |             |              |                   |                   |            |                         |                                       |          |                                               |              |                       |             |
|                         |             |              |                   |                   |            |                         |                                       | ·····    |                                               |              |                       |             |
| [                       |             | <del>.</del> |                   |                   |            |                         | · · · · · · · · · · · · · · · · · · · | r        | . <u></u>                                     | <del></del>  |                       | <del></del> |
| DEPTH                   | LOG         |              | DEPTH             | LOG               | 1 1        | DEPTH                   | LOG                                   | ANODE    | DEPTH                                         | LOG          | ANODE                 | 1           |
| <u> </u>                | ANODE       |              |                   | ANDDE             |            |                         | ANDDE                                 |          |                                               | ANODE        |                       |             |
| 100                     |             |              | 295               | <u>,8</u>         |            | 490                     | 3.0                                   |          | 685                                           |              |                       |             |
| <u>105</u><br>110       |             | ·]           | <u>300</u><br>305 |                   |            | <u>495</u><br>500       | 26                                    |          | <u>690</u><br>695                             | ]            |                       |             |
| 115                     |             | · [          | 305               | $\frac{1.1}{1.2}$ |            | 505                     | 504                                   |          | 700                                           |              |                       |             |
| 120                     |             |              | 315               | 1.2               |            | 510                     | 1-2-7-                                |          | ANODE                                         | DEPTH        | NO                    | FU          |
| 125                     |             |              | 320               | 1.2               |            | 515                     |                                       |          | *                                             |              | COKE                  | co          |
| 130                     |             |              | 325               | 1.3               |            | 520                     |                                       |          | 1                                             | 489          | 2.8                   | 5           |
| 135                     |             |              | 330               | 1.5               |            | 525                     |                                       | 481      | 2                                             | 450          | 3.5                   | 2           |
| 140                     |             |              | 335               | 1.9               |            | 530                     |                                       | 473      | 3                                             | 474          | 4.0                   | 2           |
| 145                     |             |              | 340               | <u>Z.3</u> -      |            | 535                     |                                       | 465      | 4                                             | 462          | 3.9                   | 6           |
| 150                     |             |              | 345               | 1.9               |            | 540                     |                                       | 457      |                                               |              | 3.6                   | <u>6</u>    |
| 155                     |             |              | 350               | 1.6               |            | 545                     |                                       | 449      | 6                                             |              | 3.9                   | 5           |
| 1 <u>60</u><br>65       |             |              | <u>355</u><br>360 | 1.6               |            | <u>550</u><br>555       |                                       | 441      | <u>7</u><br>8                                 | 4115         | 3.5                   | 43          |
| 170                     |             |              | 365               | 1.7               |            | 560                     |                                       |          | 9                                             | 416 400      | $\frac{1.7}{7.9}$     | 6           |
| 175                     |             |              | 370               | 7.9               |            | 565                     |                                       |          | 10                                            | 390          |                       | 14          |
| 180                     |             |              | 375               | ZZ                |            | 570                     |                                       |          | 11                                            | 380          | 24                    | 4           |
| 185                     |             |              | 380               | 2.5-              |            | 575                     |                                       |          | 12                                            | 340          | 2.2                   | 4.          |
| 190                     |             |              | _385_             | 23                |            | 580                     |                                       |          | 13                                            |              |                       |             |
| 195                     | <u> </u>    |              | 390               | 7.3-              |            | 585                     |                                       |          | 14                                            |              |                       |             |
| 200                     | - A         |              | 395               | $\frac{23}{70}$   |            | 590                     |                                       |          | 15                                            |              | <b> </b> <sup> </sup> |             |
| <u>205</u><br>210       | <u></u>     |              | <u>400</u><br>405 | <u>20-</u><br>1.8 |            | <u>   595   </u><br>600 |                                       |          | <u>    16                                </u> |              |                       |             |
| 210                     | 1.3         |              | 405               | 1.9-              |            | 605                     |                                       |          | <u>17</u><br><u>18</u>                        |              |                       |             |
| 220                     | 1.5         |              | 415               | 1.7               |            | 610                     |                                       |          | 19                                            |              |                       |             |
| 225                     | 1.3         |              | 420               | 7.5               |            | 615                     |                                       |          | 20                                            |              |                       |             |
| 230                     | - 2         |              | 425               | 1.3               |            | 620                     |                                       |          | 21                                            |              |                       |             |
| _235_                   | _9          |              | 430               | <u>1. Z</u>       |            | 625                     |                                       |          |                                               |              |                       |             |
| 240                     | .7_         |              | 435               | <u> /./</u>       |            | 630                     |                                       |          |                                               |              |                       |             |
| 245                     | -5-         |              | 440               | $\frac{1.0}{2.2}$ |            | 635                     |                                       |          | 24                                            |              |                       |             |
| <u>250</u><br>255       |             |              | 445<br>450        | <u>3.2</u><br>4.0 |            | <u>640</u><br>645       |                                       |          | 25                                            |              |                       |             |
| 260                     | -17-        |              | 450               | 4.0               |            | 650                     |                                       |          | <u>26</u><br>27                               |              |                       |             |
| 265                     | 1.5         |              | 460               | 3.9               |            | 655                     |                                       |          | 28                                            |              |                       |             |
| 270                     | .7          |              | 465               | 4.0               |            | 660                     |                                       |          | 29                                            |              |                       |             |
| 275                     | -1          |              | 470               | 40                |            | 665                     |                                       |          | 30                                            |              | <u></u>               |             |
| 280                     | .6          |              | 475               | 4.2               |            | 670                     |                                       |          |                                               |              |                       |             |
| 285                     | _le         |              | 480               | 4.0               |            | 675                     |                                       |          |                                               |              |                       |             |
|                         |             | 1 1          | 485               | 3.4               | 4          | 680                     |                                       |          |                                               |              | 1                     | 1           |

copy - Division Corrosion Supervisor - Region Corresion Specialist

| Laboratory No. 259108<br>Company                            | IDIAN O                       | 11                                      |                       | Sample No.                   | Date S       | ampled<br>7 / 31/91   |                                                                                      |
|-------------------------------------------------------------|-------------------------------|-----------------------------------------|-----------------------|------------------------------|--------------|-----------------------|--------------------------------------------------------------------------------------|
| Field                                                       | Lec                           | al Description                          |                       | County or Parish             |              | State                 |                                                                                      |
|                                                             |                               | K 32-3                                  | 1-8                   | SAN JU                       | HN.          | N.M.                  | TECH, Inc.         S33 East Main         Farmington         New Mexico         87401 |
| Lease or Unit                                               | Well<br>EDN/                  | Com A # 3α                              | Depth                 | Formation                    | Water,       | B/D                   | TECH, Inc.                                                                           |
| Type of Water (Produced, Sup                                | pply, etc.)                   | Sampling F                              | Point                 |                              | Sample       | ed By                 |                                                                                      |
| GROUN                                                       | O BEO                         |                                         |                       |                              |              | nTRW                  | 9                                                                                    |
| DISSOLVED SOLIDS                                            |                               |                                         | OTHER PRO             | PERTIES                      |              |                       |                                                                                      |
| CATIONS                                                     | mg/l                          | me/l                                    | pН                    |                              |              | 7.2                   |                                                                                      |
| Sodium, Na (calc)                                           | 390                           | 1.7                                     | Specific Grav         | ity, 60/60 F.                |              | 7,2<br>1.0041<br>3,85 | 202/327-3311                                                                         |
| Calcium, Ca                                                 | 360                           | 18                                      |                       | m-meters) <u>63</u> F.       |              | 3,85                  |                                                                                      |
| Magnesium, Mg                                               | 120                           | 10                                      |                       |                              |              | <u></u>               |                                                                                      |
| Barium, Ba                                                  |                               |                                         |                       |                              |              |                       |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |
|                                                             |                               |                                         |                       | Total Dissolved So           | lids (calc.) | 3100.                 |                                                                                      |
| ANIONS                                                      |                               | <b>.</b> .                              |                       |                              |              | J100.                 |                                                                                      |
| Chloride, Cl                                                | 150                           | 4,2                                     |                       | Iron, Fe (total)             |              |                       |                                                                                      |
| Sulfate, So <sub>4</sub>                                    | 1600                          |                                         |                       | Sulfide, as H <sub>2</sub> S |              |                       |                                                                                      |
| Carbonate, CO <sub>3</sub><br>Bicarbonate, HCO <sub>3</sub> | 480                           | 7.9                                     |                       |                              |              |                       |                                                                                      |
|                                                             |                               |                                         | REMARKS &             | RECOMMENDATIONS:             |              |                       |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |
| 25 20                                                       | 15 10                         | 5 Q                                     | ) 5                   | 10 15                        | 2,0          | <b>25</b>             |                                                                                      |
|                                                             |                               |                                         |                       |                              |              | 10                    |                                                                                      |
|                                                             |                               | -++++                                   |                       |                              |              |                       |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |
| со                                                          |                               | <u>·</u>                                | ┞╇╅┼┼┼┽┼┼┼┼           | ╋╋╋╗                         | ┟┼┿┿┾┽┽┿┼┥   | HC03                  |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |
| Mg                                                          | ++++++++ <b>1</b> 7 <b>56</b> | ┈╄┽┿┿┽┽┿╋┿┿┿╋┿┾┾┾┤                      | \++++ <b>}</b> \+++++ |                              | ┟┟┟┥┥┥┥┥     | 504                   |                                                                                      |
|                                                             |                               | +++++++++++++++++++++++++++++++++++++++ |                       |                              |              |                       |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |
| <b>F • • • • • • • • • •</b>                                |                               |                                         | $\mathcal{N}$         |                              |              |                       |                                                                                      |
|                                                             |                               |                                         |                       |                              |              | 4                     |                                                                                      |
|                                                             |                               |                                         |                       |                              |              |                       |                                                                                      |

.

Released to Imaging: 6/13/2023 8:24:10 AM



### APPENDIX C

Executed C-138 Solid Waste Acceptance Form Received by OCD: 6/12/2023 1:46:55 PM

| District I<br>1625 N. French Dr., Hobbs, NM 88240                                                                  | State of New Mexico                                                                                                                                       | Form C-138                                                                                |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| District II<br>1301 W. Grand Avenue, Artesia, NM 88210                                                             | Energy Minerals and Natural Resources                                                                                                                     | Revised 08/01/11                                                                          |
| District III<br>1000 Rio Brazos Road, Aztec, NM 87410                                                              | Oil Conservation Division 1220 South St. Francis Dr.                                                                                                      | *Surface Waste Management Facility Operator<br>and Generator shall maintain and make this |
| District IV<br>1220 S. St. Francis Dr., Santa Fe, NM 87505                                                         | Santa Fe, NM 87505                                                                                                                                        | documentation available for Division inspection.<br>97057 - 1125                          |
|                                                                                                                    | OR APPROVAL TO ACCEPT S                                                                                                                                   |                                                                                           |
| 1. Generator Name and Address:                                                                                     |                                                                                                                                                           |                                                                                           |
| Enterprise Field Services, LLC, 614 Reilly                                                                         | v Ave, Farmington NM 87401                                                                                                                                | PayKey: RB21200<br>PM: Marron O'Brien<br>AFE: Pending                                     |
| 2. Originating Site:<br>Trunk E                                                                                    |                                                                                                                                                           |                                                                                           |
| 3. Location of Material (Street Address,                                                                           | City, State or ULSTR):                                                                                                                                    |                                                                                           |
| UL D Section 33 T31N R8W; 36.8583                                                                                  | 28, -107.685634                                                                                                                                           | Sept 2022                                                                                 |
| 4. Source and Description of Waste:                                                                                |                                                                                                                                                           | 1.2                                                                                       |
| Source: Remediation activities associated                                                                          | with a natural gas pipeline leak.<br>acted soil associated natural gas pipeline release.                                                                  | /                                                                                         |
| Estimated Volume <u>50</u> yd/bbls Knowr                                                                           | a Volume (to be entered by the operator at the end                                                                                                        | d of the haul) $\frac{152/115}{yd^3/bbls}$                                                |
| -                                                                                                                  | OR CERTIFICATION STATEMENT OF WA                                                                                                                          |                                                                                           |
| Thomas Long                                                                                                        |                                                                                                                                                           |                                                                                           |
| I, Thomas Long , representative or<br>Generator Signature                                                          | authorized agent for Enterprise Products Operati                                                                                                          | ng do hereby                                                                              |
| certify that according to the Resource Conse                                                                       | rvation and Recovery Act (RCRA) and the US E<br>ed waste is: (Check the appropriate classification)                                                       |                                                                                           |
|                                                                                                                    | nerated from oil and gas exploration and product <i>Waste Acceptance Frequency</i> Monthly                                                                |                                                                                           |
| characteristics established in RCRA reg                                                                            | e which is non-hazardous that does not exceed th<br>ulations, 40 CFR 261.21-261.24, or listed hazard<br>documentation is attached to demonstrate the abo  | ous waste as defined in 40 CFR, part 261,                                                 |
| □ MSDS Information □ RCRA Hazard                                                                                   | ous Waste Analysis 🛛 Process Knowledge                                                                                                                    | □ Other (Provide description in Box 4)                                                    |
| GENERATOR 19.15.36.15 W/                                                                                           | ASTE TESTING CERTIFICATION STATEM                                                                                                                         | IENT FOR LANDFARMS                                                                        |
| I, Thomas Long<br>Generator Signature<br>the required testing/sign the Generator Wast                              | esentative for Enterprise Products Operating auth<br>e Testing Certification.                                                                             | orizes <u>Envirotech, Inc.</u> to complete                                                |
| representative samples of the oil field waste<br>have been found to conform to the specific r                      | have been subjected to the paint filter test and test<br>equirements applicable to landfarms pursuant to<br>demonstrate the above-described waste conform | sted for chloride content and that the samples Section 15 of 19.15.36 NMAC. The results   |
| OCD Permitted Surface Waste Managem                                                                                | ent Facility                                                                                                                                              |                                                                                           |
| Name and Facility Permit #: Envirotect<br>Address of Facility: Hilltop, NM<br>Method of Treatment and/or Disposal: | h Inc. Soil Remediation Facility * Permit #: N                                                                                                            |                                                                                           |
| Waste Acceptance Status:                                                                                           | ] APPROVED DENIED                                                                                                                                         | (Must Be Maintained As Permanent Record)                                                  |
| PRINT NAME: Greg Grabbren<br>SIGNATURE: Surface Waste Management Facil                                             | TITLE: <u>Envivo</u> M                                                                                                                                    | <u>Amagen</u> DATE: <u>9/15/22</u><br>32-0615                                             |

#### **Released to Imaging: 6/13/2023 8:24:10 AM**

Page 44 of 91

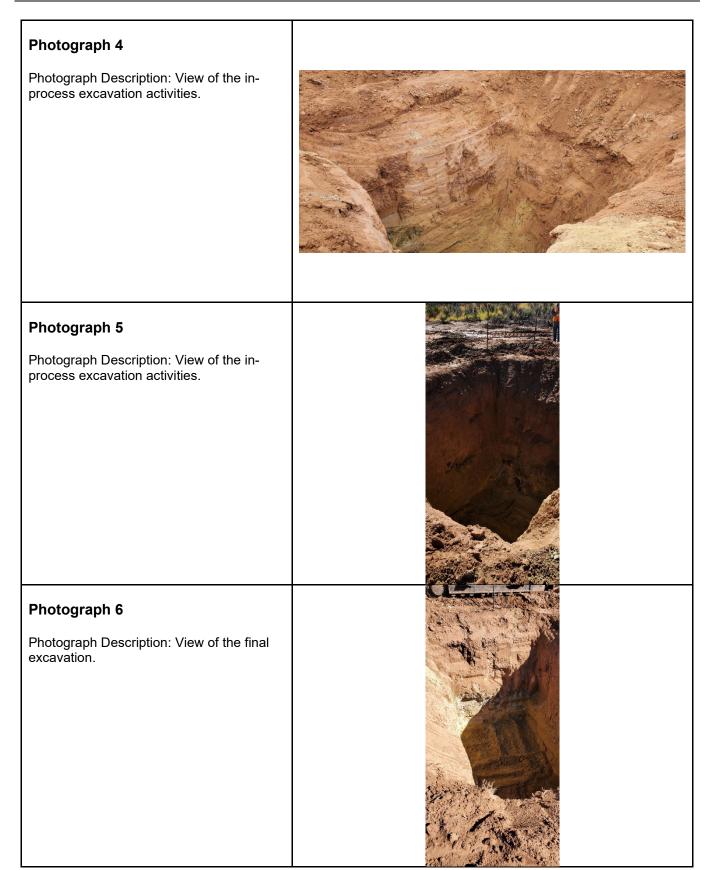
•



## APPENDIX D

# **Photographic Documentation**

Released to Imaging: 6/13/2023 8:24:10 AM


Closure Report Enterprise Field Services, LLC Trunk E (09/21/22) Ensolum Project No. 05A1226209



| Photograph 1                                                              |  |
|---------------------------------------------------------------------------|--|
| Photograph Description: View of the in-<br>process excavation activities. |  |
| Photograph 2                                                              |  |
| Photograph Description: View of the in-                                   |  |
| process excavation activities.                                            |  |
| Photograph 3                                                              |  |
| Photograph Description: View of the in-<br>process excavation activities. |  |

Closure Report Enterprise Field Services, LLC Trunk E (09/21/22) Ensolum Project No. 05A1226209

ENSOLUM



Closure Report Enterprise Field Services, LLC Trunk E (09/21/22) Ensolum Project No. 05A1226209



| Photograph 7<br>Photograph Description: View of the final<br>excavation.               |  |
|----------------------------------------------------------------------------------------|--|
| Photograph 8<br>Photograph Description: View of the site<br>after initial restoration. |  |



### APPENDIX E

## **Regulatory Correspondence**

Released to Imaging: 6/13/2023 8:24:10 AM

| From:        | Kyle Summers                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------|
| To:          | Landon Daniell                                                                                          |
| Cc:          | Ranee Deechilly                                                                                         |
| Subject:     | FW: [EXTERNAL] FW: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634; Incident #nAPP2226445914 |
| Date:        | Monday, September 26, 2022 4:01:16 PM                                                                   |
| Attachments: | image003.png<br>image004.png<br>image005.png                                                            |



Kyle Summers Principal 903-821-5603 Ensolum, LLC in f ¥

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Sent: Monday, September 26, 2022 3:38 PM
To: Long, Thomas <tjlong@eprod.com>; Ryan Joyner <rjoyner@blm.gov>
Cc: Kyle Summers <ksummers@ensolum.com>; Stone, Brian <bmstone@eprod.com>
Subject: RE: [EXTERNAL] FW: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634; Incident #nAPP2226445914

#### [ \*\*EXTERNAL EMAIL\*\*]

Tom,

Thank you for the notice. Your variance request per 19.15.29.12D (1a) NMAC is approved by OCD.

If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards

**Nelson Velez** • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | <u>nelson.velez@emnrd.nm.gov</u>

Office Hrs.: 7:00am - 12:00pm & 1:00 - 3:30 pm Mon.-Thur. 7:00am - 12:00pm & 1:00 - 4:00 pm Fri. From: Long, Thomas <tilong@eprod.com>
Sent: Monday, September 26, 2022 3:03 PM
To: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>; Ryan Joyner <<u>rjoyner@blm.gov</u>>
Cc: Kyle Summers <<u>ksummers@ensolum.com</u>>; Stone, Brian <<u>bmstone@eprod.com</u>>
Subject: RE: [EXTERNAL] FW: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634;
Incident #nAPP2226445914

Nelson/Ryan,

This email is also a sample notification and variance request. We had one sample that did not pass. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect the closure sample tomorrow September 27, 2022 at 12:00 p.m. at the Trunk E excavation. Please acknowledge acceptance of this variance request. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com



From: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>
Sent: Friday, September 23, 2022 8:20 AM
To: Long, Thomas <<u>tilong@eprod.com</u>>
Subject: RE: [EXTERNAL] FW: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634;
Incident #nAPP2226445914

[Use caution with links/attachments]

Good morning Tom,

Thank you for the notice. Your variance request is approved.

If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals

and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Regards

**Nelson Velez** • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | <u>nelson.velez@emnrd.nm.gov</u>

Office Hrs.: 7:00am - 12:00pm & 1:00 - 3:30 pm Mon.-Thur. 7:00am - 12:00pm & 1:00 - 4:00 pm Fri.

From: Long, Thomas <tjlong@eprod.com>
Sent: Friday, September 23, 2022 8:17 AM
To: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Subject: RE: [EXTERNAL] FW: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634;
Incident #nAPP2226445914

Nelson,

Are we good to sample today? We did not yesterday due to the weather. Please see below.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com



From: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>
Sent: Thursday, September 22, 2022 7:42 AM
To: Long, Thomas <<u>tilong@eprod.com</u>>
Subject: RE: [EXTERNAL] FW: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634;
Incident #nAPP2226445914

#### [Use caution with links/attachments]

I did receive. Old email address automatically transmitted to the new domain. Thanks for checking. Have a good day. Regards,

**Nelson Velez** • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | <u>nelson.velez@emnrd.nm.gov</u>

Office Hrs.: 7:00am - 12:00pm & 1:00 - 3:30 pm Mon.-Thur. 7:00am - 12:00pm & 1:00 - 4:00 pm Fri.

From: Long, Thomas <<u>tjlong@eprod.com</u>>

Sent: Thursday, September 22, 2022 7:31 AM

To: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>

**Subject:** [EXTERNAL] FW: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634; Incident #nAPP2226445914

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson,

I am not sure you got this email as that I sent to your old email address. Please see below.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com



From: Long, Thomas
Sent: Wednesday, September 21, 2022 1:00 PM
To: 'Velez, Nelson, EMNRD' <<u>Nelson.Velez@state.nm.us</u>>; Ryan Joyner <<u>rjoyner@blm.gov</u>>
Cc: Stone, Brian <<u>bmstone@eprod.com</u>>; Kyle Summers <<u>ksummers@ensolum.com</u>>
Subject: Trunk E - UL D Section 33 T31N R8W; 36.858328, -107.685634; Incident #nAPP2226445914

Nelson/Ryan,

This email is a notification that Enterprise had a release of natural gas and condensate on the Trunk E pipeline on September 10, 2022. The pipeline was isolated, depressurized, locked and tagged out. No liquids were observed on the ground surface. No water ways were affected. No injuries nor fire resulted from the release. Remediation and repairs began last Friday and Enterprise determined this reportable per NOMCOD regulation due to the volume of impacted subsurface soil on September 21, 2022.

Enterprise collected some soil samples on Friday, September 16, 2022 as delineation samples and would like to use the samples that passed as closure samples.

This email is also a sample notification and variance request. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect closure samples tomorrow September 22, 2022 at 10:00 a.m. at the Trunk E excavation. Please acknowledge acceptance of this variance request. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com



This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.



### APPENDIX F

## Table 1 – Soil Analytical Summary

Released to Imaging: 6/13/2023 8:24:10 AM

### ENSOLUM

|             |                         |                                                                |                        |                    |                    |                         | Trunk              | BLE 1<br>E (09/21/22)<br>YTICAL SUMMAF | RY                    |                       |                       |                                                            |                                                                |                                            |
|-------------|-------------------------|----------------------------------------------------------------|------------------------|--------------------|--------------------|-------------------------|--------------------|----------------------------------------|-----------------------|-----------------------|-----------------------|------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|
| Sample I.D. | Date                    | Sample Type<br>C- Composite<br>G - Grab                        | Sample Depth<br>(feet) | Benzene<br>(mg/kg) | Toluene<br>(mg/kg) | Ethylbenzene<br>(mg/kg) | Xylenes<br>(mg/kg) | Total BTEX <sup>1</sup><br>(mg/kg)     | TPH<br>GRO<br>(mg/kg) | TPH<br>DRO<br>(mg/kg) | TPH<br>MRO<br>(mg/kg) | Total Combined<br>TPH<br>(GRO/DRO) <sup>1</sup><br>(mg/kg) | Total Combined<br>TPH<br>(GRO/DRO/MRO) <sup>1</sup><br>(mg/kg) | Chloride<br>(mg/kg)                        |
|             | Depa<br>onservation Div | neral & Natural R<br>Irtment<br>vision Closure C<br>& Tier II) |                        | 10                 | NE                 | NE                      | NE                 | 50                                     | NE                    | NE                    | NE                    | Tier II - 1,000                                            | Tier I (<4 feet) - 100<br>Tier II - 2,500                      | Tier I (<4 feet) - 600<br>Tier II - 10,000 |
|             |                         |                                                                |                        | Comp               | osite Soil Sam     | ples Removed by         | Excavation a       | nd Transported t                       | o the Landfarm        | n for Disposal/R      | emediation            |                                                            |                                                                |                                            |
| S-2         | 9.16.22                 | С                                                              | 5                      | <0.11              | 1.4                | 0.92                    | 16                 | 18                                     | 230                   | 1,300                 | 720                   | 1,500                                                      | 2,300                                                          | <60                                        |
| S-3         | 9.16.22                 | С                                                              | 0 to 5                 | <0.12              | <0.23              | <0.23                   | 1.2                | 1.2                                    | 77                    | 160                   | 120                   | 240                                                        | 360                                                            | <60                                        |
| S-9         | 9.23.22                 | С                                                              | 5 to 12                | 0.33               | 6.6                | 6.7                     | 78                 | 92                                     | 990                   | 430                   | 120                   | 1,400                                                      | 1,500                                                          | <60                                        |
|             |                         |                                                                |                        |                    |                    | E                       | xcavation Co       | nposite Soil Sam                       | ples                  |                       |                       | -                                                          |                                                                |                                            |
| S-1         | 9.16.22                 | С                                                              | 0 to 5                 | <0.020             | <0.041             | <0.041                  | <0.082             | ND                                     | <4.1                  | <14                   | <46                   | ND                                                         | ND                                                             | <60                                        |
| S-4         | 9.16.22                 | С                                                              | 0 to 5                 | <0.020             | <0.041             | <0.041                  | <0.081             | ND                                     | <4.1                  | <14                   | <47                   | ND                                                         | ND                                                             | <60                                        |
| S-5         | 9.23.22                 | С                                                              | 12                     | <0.095             | 3.7                | 2.0                     | 26                 | 32                                     | 570                   | 68                    | <47                   | 640                                                        | 640                                                            | <60                                        |
| S-6         | 9.23.22                 | С                                                              | 4 to 12                | <0.096             | 1.8                | 0.49                    | 5.0                | 7.3                                    | 110                   | <15                   | <49                   | 110                                                        | 110                                                            | <60                                        |
| S-7         | 9.23.22                 | С                                                              | 0 to 4                 | <0.026             | <0.053             | <0.053                  | <0.11              | ND                                     | <5.3                  | <14                   | <48                   | ND                                                         | ND                                                             | <60                                        |
| S-8         | 9.23.22                 | С                                                              | 5 to 12                | <0.099             | <0.20              | <0.20                   | <0.40              | ND                                     | 21                    | 16                    | <49                   | 37                                                         | 37                                                             | <60                                        |
| S-10        | 9.23.22                 | С                                                              | 5 to 12                | <0.094             | <0.19              | <0.19                   | <0.38              | ND                                     | 34                    | 21                    | <46                   | 55                                                         | 55                                                             | <60                                        |
| S-11        | 9.27.22                 | С                                                              | 4 to 11                | <0.11              | <0.22              | <0.22                   | <0.43              | ND                                     | <22                   | <15                   | <49                   | ND                                                         | ND                                                             | <60                                        |
| S-12        | 9.27.22                 | С                                                              | 0 to 4                 | <0.021             | <0.041             | <0.041                  | <0.082             | ND                                     | <4.1                  | <15                   | <49                   | ND                                                         | ND                                                             | <60                                        |

#### Note: Concentrations in **bold** and yellow exceed the applicable NM EMNRD Closure Criteria

<sup>1</sup> = Total combined concentrations are rounded to two (2) significant figures to match the laboratory resolution of the individual constituents.

ND = Not Detected above the Practical Quantitation Limits (PQLs) or Reporting Limits (RLs)

NE = Not established

mg/kg = milligram per kilogram

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbon

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics



## APPENDIX G

# Laboratory Data Sheets & Chain of Custody Documentation

Released to Imaging: 6/13/2023 8:24:10 AM



September 21, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Trunk E

OrderNo.: 2209880

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 4 sample(s) on 9/17/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209880

Date Reported: 9/21/2022

| CLIENT: ENSOLUM                 |                                       | Cl       | ient Sample II      | D: S-          | 1                     |        |  |
|---------------------------------|---------------------------------------|----------|---------------------|----------------|-----------------------|--------|--|
| <b>Project:</b> Trunk E         | Collection Date: 9/16/2022 1:00:00 PM |          |                     |                |                       |        |  |
| Lab ID: 2209880-001             | Matrix: SOIL                          |          | <b>Received Dat</b> | <b>e: 9</b> /1 | 17/2022 7:45:00 AM    |        |  |
| Analyses                        | Result                                | RL       | Qual Units          | DF             | Date Analyzed         | Batch  |  |
| EPA METHOD 300.0: ANIONS        |                                       |          |                     |                | Analys                | t: JTT |  |
| Chloride                        | ND                                    | 60       | mg/Kg               | 20             | 9/19/2022 11:13:39 AM | 70254  |  |
| EPA METHOD 8015M/D: DIESEL RANG | GE ORGANICS                           |          |                     |                | Analys                | t: DGH |  |
| Diesel Range Organics (DRO)     | ND                                    | 14       | mg/Kg               | 1              | 9/19/2022 10:38:14 AM | 70248  |  |
| Motor Oil Range Organics (MRO)  | ND                                    | 46       | mg/Kg               | 1              | 9/19/2022 10:38:14 AM | 70248  |  |
| Surr: DNOP                      | 91.6                                  | 21-129   | %Rec                | 1              | 9/19/2022 10:38:14 AM | 70248  |  |
| EPA METHOD 8015D: GASOLINE RAN  | GE                                    |          |                     |                | Analys                | t: NSB |  |
| Gasoline Range Organics (GRO)   | ND                                    | 4.1      | mg/Kg               | 1              | 9/19/2022 9:02:29 AM  | 70234  |  |
| Surr: BFB                       | 106                                   | 37.7-212 | %Rec                | 1              | 9/19/2022 9:02:29 AM  | 70234  |  |
| EPA METHOD 8021B: VOLATILES     |                                       |          |                     |                | Analys                | t: NSB |  |
| Benzene                         | ND                                    | 0.020    | mg/Kg               | 1              | 9/19/2022 9:02:29 AM  | 70234  |  |
| Toluene                         | ND                                    | 0.041    | mg/Kg               | 1              | 9/19/2022 9:02:29 AM  | 70234  |  |
| Ethylbenzene                    | ND                                    | 0.041    | mg/Kg               | 1              | 9/19/2022 9:02:29 AM  | 70234  |  |
| Xylenes, Total                  | ND                                    | 0.082    | mg/Kg               | 1              | 9/19/2022 9:02:29 AM  | 70234  |  |
| Surr: 4-Bromofluorobenzene      | 97.6                                  | 70-130   | %Rec                | 1              | 9/19/2022 9:02:29 AM  | 70234  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- \* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 8

.

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209880

Date Reported: 9/21/2022

| CLIENT: ENSOLUM                |              |          |       | ample II |                |                       |       |
|--------------------------------|--------------|----------|-------|----------|----------------|-----------------------|-------|
| Project: Trunk E               |              |          |       |          |                | 16/2022 1:05:00 PM    |       |
| Lab ID: 2209880-002            | Matrix: SOIL |          | Recei | ved Dat  | <b>e:</b> 9/ ] | 17/2022 7:45:00 AM    |       |
| Analyses                       | Result       | RL       | Qual  | Units    | DF             | Date Analyzed         | Batch |
| EPA METHOD 300.0: ANIONS       |              |          |       |          |                | Analys                | : JTT |
| Chloride                       | ND           | 60       |       | mg/Kg    | 20             | 9/19/2022 11:26:04 AM | 70254 |
| EPA METHOD 8015M/D: DIESEL RA  | NGE ORGANICS |          |       |          |                | Analys                | : DGH |
| Diesel Range Organics (DRO)    | 1300         | 29       |       | mg/Kg    | 2              | 9/19/2022 12:56:49 PM | 70248 |
| Motor Oil Range Organics (MRO) | 720          | 96       |       | mg/Kg    | 2              | 9/19/2022 12:56:49 PM | 70248 |
| Surr: DNOP                     | 85.3         | 21-129   |       | %Rec     | 2              | 9/19/2022 12:56:49 PM | 70248 |
| EPA METHOD 8015D: GASOLINE R   | ANGE         |          |       |          |                | Analys                | : NSB |
| Gasoline Range Organics (GRO)  | 230          | 21       |       | mg/Kg    | 5              | 9/19/2022 9:25:57 AM  | 70234 |
| Surr: BFB                      | 350          | 37.7-212 | S     | %Rec     | 5              | 9/19/2022 9:25:57 AM  | 70234 |
| EPA METHOD 8021B: VOLATILES    |              |          |       |          |                | Analys                | : NSB |
| Benzene                        | ND           | 0.11     |       | mg/Kg    | 5              | 9/19/2022 9:25:57 AM  | 70234 |
| Toluene                        | 1.4          | 0.21     |       | mg/Kg    | 5              | 9/19/2022 9:25:57 AM  | 70234 |
| Ethylbenzene                   | 0.92         | 0.21     |       | mg/Kg    | 5              | 9/19/2022 9:25:57 AM  | 70234 |
| Xylenes, Total                 | 16           | 0.42     |       | mg/Kg    | 5              | 9/19/2022 9:25:57 AM  | 70234 |
| Surr: 4-Bromofluorobenzene     | 112          | 70-130   |       | %Rec     | 5              | 9/19/2022 9:25:57 AM  | 70234 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- \* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 8

.

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209880

Date Reported: 9/21/2022

| CLIENT: ENSOLUM                 |              | Cl       | ient Sample II      | <b>D:</b> S-:  | 3                     |       |
|---------------------------------|--------------|----------|---------------------|----------------|-----------------------|-------|
| Project: Trunk E                |              | (        | Collection Dat      | <b>e: 9</b> /1 | 16/2022 1:10:00 PM    |       |
| Lab ID: 2209880-003             | Matrix: SOIL |          | <b>Received Dat</b> | <b>e: 9</b> /1 | 17/2022 7:45:00 AM    |       |
| Analyses                        | Result       | RL       | Qual Units          | DF             | Date Analyzed         | Batch |
| EPA METHOD 300.0: ANIONS        |              |          |                     |                | Analyst               | : JTT |
| Chloride                        | ND           | 60       | mg/Kg               | 20             | 9/19/2022 11:38:28 AM | 70254 |
| EPA METHOD 8015M/D: DIESEL RANG | E ORGANICS   |          |                     |                | Analyst               | : DGH |
| Diesel Range Organics (DRO)     | 160          | 15       | mg/Kg               | 1              | 9/19/2022 11:23:39 AM | 70248 |
| Motor Oil Range Organics (MRO)  | 120          | 49       | mg/Kg               | 1              | 9/19/2022 11:23:39 AM | 70248 |
| Surr: DNOP                      | 93.9         | 21-129   | %Rec                | 1              | 9/19/2022 11:23:39 AM | 70248 |
| EPA METHOD 8015D: GASOLINE RANG | E            |          |                     |                | Analyst               | : NSB |
| Gasoline Range Organics (GRO)   | 77           | 23       | mg/Kg               | 5              | 9/19/2022 9:49:33 AM  | 70234 |
| Surr: BFB                       | 195          | 37.7-212 | %Rec                | 5              | 9/19/2022 9:49:33 AM  | 70234 |
| EPA METHOD 8021B: VOLATILES     |              |          |                     |                | Analyst               | : NSB |
| Benzene                         | ND           | 0.12     | mg/Kg               | 5              | 9/19/2022 9:49:33 AM  | 70234 |
| Toluene                         | ND           | 0.23     | mg/Kg               | 5              | 9/19/2022 9:49:33 AM  | 70234 |
| Ethylbenzene                    | ND           | 0.23     | mg/Kg               | 5              | 9/19/2022 9:49:33 AM  | 70234 |
| Xylenes, Total                  | 1.2          | 0.46     | mg/Kg               | 5              | 9/19/2022 9:49:33 AM  | 70234 |
| Surr: 4-Bromofluorobenzene      | 99.0         | 70-130   | %Rec                | 5              | 9/19/2022 9:49:33 AM  | 70234 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- \* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 8

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209880

Date Reported: 9/21/2022

| CLIENT: ENSOLUM                 |                                              | Cli                                        | ient Sample II | D: S-4 | 4                     |        |  |  |  |  |  |  |  |
|---------------------------------|----------------------------------------------|--------------------------------------------|----------------|--------|-----------------------|--------|--|--|--|--|--|--|--|
| Project: Trunk E                | <b>Collection Date:</b> 9/16/2022 1:15:00 PM |                                            |                |        |                       |        |  |  |  |  |  |  |  |
| Lab ID: 2209880-004             | Matrix: SOIL                                 | <b>Received Date:</b> 9/17/2022 7:45:00 AM |                |        |                       |        |  |  |  |  |  |  |  |
| Analyses                        | Result                                       | RL                                         | Qual Units     | DF     | Date Analyzed         | Batch  |  |  |  |  |  |  |  |
| EPA METHOD 300.0: ANIONS        |                                              |                                            |                |        | Analys                | t: JTT |  |  |  |  |  |  |  |
| Chloride                        | ND                                           | 60                                         | mg/Kg          | 20     | 9/19/2022 11:50:53 AN | 70254  |  |  |  |  |  |  |  |
| EPA METHOD 8015M/D: DIESEL RANG | E ORGANICS                                   |                                            |                |        | Analys                | t: DGH |  |  |  |  |  |  |  |
| Diesel Range Organics (DRO)     | ND                                           | 14                                         | mg/Kg          | 1      | 9/19/2022 11:48:19 AN | 70248  |  |  |  |  |  |  |  |
| Motor Oil Range Organics (MRO)  | ND                                           | 47                                         | mg/Kg          | 1      | 9/19/2022 11:48:19 AN | 70248  |  |  |  |  |  |  |  |
| Surr: DNOP                      | 81.3                                         | 21-129                                     | %Rec           | 1      | 9/19/2022 11:48:19 AN | 70248  |  |  |  |  |  |  |  |
| EPA METHOD 8015D: GASOLINE RAN  | GE                                           |                                            |                |        | Analys                | t: NSB |  |  |  |  |  |  |  |
| Gasoline Range Organics (GRO)   | ND                                           | 4.1                                        | mg/Kg          | 1      | 9/19/2022 10:13:03 AN | 70234  |  |  |  |  |  |  |  |
| Surr: BFB                       | 104                                          | 37.7-212                                   | %Rec           | 1      | 9/19/2022 10:13:03 AN | 70234  |  |  |  |  |  |  |  |
| EPA METHOD 8021B: VOLATILES     |                                              |                                            |                |        | Analys                | t: NSB |  |  |  |  |  |  |  |
| Benzene                         | ND                                           | 0.020                                      | mg/Kg          | 1      | 9/19/2022 10:13:03 AN | 70234  |  |  |  |  |  |  |  |
| Toluene                         | ND                                           | 0.041                                      | mg/Kg          | 1      | 9/19/2022 10:13:03 AN | 70234  |  |  |  |  |  |  |  |
| Ethylbenzene                    | ND                                           | 0.041                                      | mg/Kg          | 1      | 9/19/2022 10:13:03 AN | 70234  |  |  |  |  |  |  |  |
| Xylenes, Total                  | ND                                           | 0.081                                      | mg/Kg          | 1      | 9/19/2022 10:13:03 AN | 70234  |  |  |  |  |  |  |  |
| Surr: 4-Bromofluorobenzene      | 98.6                                         | 70-130                                     | %Rec           | 1      | 9/19/2022 10:13:03 AN | 70234  |  |  |  |  |  |  |  |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- \* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 8

| WO#: <b>2209880</b>       |
|---------------------------|
| $100\pi$ . <b>2203000</b> |

Page 63 of 91

| Client:    | ENSOLU    | ЛМ            |                    |             |                       |                    |      |          |      |
|------------|-----------|---------------|--------------------|-------------|-----------------------|--------------------|------|----------|------|
| Project:   | Trunk E   |               |                    |             |                       |                    |      |          |      |
| Sample ID: | MB-70254  | SampType      | e: MBLK            | Tes         | tCode: EPA Meth       | S                  |      |          |      |
| Client ID: | PBS       | Batch ID      | : <b>70254</b>     | F           | RunNo: <b>91126</b>   |                    |      |          |      |
| Prep Date: | 9/19/2022 | Analysis Date | : <b>9/19/2022</b> | Ş           | SeqNo: <b>3261255</b> | Units: <b>mg/K</b> | g    |          |      |
| Analyte    |           | Result P      | QL SPK value       | SPK Ref Val | %REC LowLin           | nit HighLimit      | %RPD | RPDLimit | Qual |
| Chloride   |           | ND            | 1.5                |             |                       |                    |      |          |      |
| Sample ID: | LCS-70254 | SampType      | : LCS              | Tes         | tCode: EPA Meth       | od 300.0: Anion    | 6    |          |      |
| Client ID: | LCSS      | Batch ID      | : <b>70254</b>     | F           | RunNo: <b>91126</b>   |                    |      |          |      |
| Prep Date: | 9/19/2022 | Analysis Date | : <b>9/19/2022</b> | Ş           | SeqNo: <b>3261256</b> | Units: <b>mg/K</b> | g    |          |      |
| Analyte    |           | Result P      | QL SPK value       | SPK Ref Val | %REC LowLin           | nit HighLimit      | %RPD | RPDLimit | Qual |
| Chloride   |           | 14            | 1.5 15.00          | 0           | 94.7 9                | 90 110             |      |          |      |

Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 8

**Client: Project:** 

### **QC SUMMARY REPORT** Hall En

1

|                                        | WO#: <b>2209880</b> |  |
|----------------------------------------|---------------------|--|
| nvironmental Analysis Laboratory, Inc. | 21-Sep-22           |  |
| ENSOLUM<br>Trunk E                     |                     |  |

| Sample ID: 2209880-001AMS                                                                                             | SampT                                               | ype: MS                                                              | 6                                       | Tes                                                 | estCode: EPA Method 8015M/D: Diesel Range Organics  |                                           |                                           |                   |          |      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------|----------|------|--|--|--|--|
| Client ID: S-1                                                                                                        | Batch                                               | n ID: 702                                                            | 248                                     | F                                                   | RunNo: 91130                                        |                                           |                                           |                   |          |      |  |  |  |  |
| Prep Date: 9/19/2022                                                                                                  | Analysis D                                          | )ate: <b>9/</b> *                                                    | 19/2022                                 | S                                                   | SeqNo: 32                                           | 260197                                    | Units: <b>mg/Kg</b>                       |                   |          |      |  |  |  |  |
| Analyte                                                                                                               | Result                                              | PQL                                                                  | SPK value                               | SPK Ref Val                                         | %REC                                                | LowLimit                                  | HighLimit                                 | %RPD              | RPDLimit | Qual |  |  |  |  |
| Diesel Range Organics (DRO)                                                                                           | 37                                                  | 15                                                                   | 49.12                                   | 0                                                   | 76.2                                                | 36.1                                      | 154                                       |                   |          |      |  |  |  |  |
| Surr: DNOP                                                                                                            | 3.6                                                 |                                                                      | 4.912                                   |                                                     | 74.1                                                | 21                                        | 129                                       |                   |          |      |  |  |  |  |
| Sample ID: 2209880-001AMS                                                                                             | D SampT                                             | уре: МS                                                              | SD.                                     | TestCode: EPA Method 8015M/D: Diesel Range Organics |                                                     |                                           |                                           |                   |          |      |  |  |  |  |
| Client ID: S-1                                                                                                        | Batch                                               | n ID: 702                                                            | 248                                     | RunNo: 91130                                        |                                                     |                                           |                                           |                   |          |      |  |  |  |  |
| Prep Date: 9/19/2022                                                                                                  | Analysis D                                          | )ate: <b>9/</b> *                                                    | 19/2022                                 | S                                                   | SeqNo: 32                                           | 260198                                    | Units: mg/K                               | g                 |          |      |  |  |  |  |
| Analyte                                                                                                               | Result                                              | PQL                                                                  | SPK value                               | SPK Ref Val                                         | %REC                                                | LowLimit                                  | HighLimit                                 | %RPD              | RPDLimit | Qual |  |  |  |  |
| Diesel Range Organics (DRO)                                                                                           | 39                                                  | 15                                                                   | 48.54                                   | 0                                                   | 79.8                                                | 36.1                                      | 154                                       | 3.53              | 33.9     |      |  |  |  |  |
| Surr: DNOP                                                                                                            | 3.6                                                 |                                                                      | 4.854                                   |                                                     | 75.0                                                | 21                                        | 129                                       | 0                 | 0        |      |  |  |  |  |
| Sample ID: LCS-70248                                                                                                  | SampT                                               | ype: LC                                                              | S                                       | Tes                                                 | tCode: EF                                           | PA Method                                 | 8015M/D: Die                              | sel Range         | Organics |      |  |  |  |  |
| Client ID: LCSS                                                                                                       | Batch                                               | n ID: <b>702</b>                                                     | 248                                     | F                                                   | RunNo: <b>9</b> 1                                   | 130                                       |                                           |                   |          |      |  |  |  |  |
| Prep Date: 9/19/2022                                                                                                  | Analysis D                                          | )ate: <b>9/</b> *                                                    | 19/2022                                 | 5                                                   | SeqNo: 32                                           | 260207                                    | Units: mg/K                               |                   |          |      |  |  |  |  |
|                                                                                                                       |                                                     |                                                                      |                                         |                                                     |                                                     |                                           |                                           | 5                 |          |      |  |  |  |  |
| Analyte                                                                                                               | Result                                              | PQL                                                                  | SPK value                               | SPK Ref Val                                         | %REC                                                | LowLimit                                  | HighLimit                                 | %RPD              | RPDLimit | Qual |  |  |  |  |
| Analyte<br>Diesel Range Organics (DRO)                                                                                | Result<br>39                                        | PQL<br>15                                                            | SPK value<br>50.00                      | SPK Ref Val<br>0                                    | %REC<br>77.3                                        | LowLimit<br>64.4                          | HighLimit<br>127                          | 0                 | RPDLimit | Qual |  |  |  |  |
| ,                                                                                                                     |                                                     |                                                                      |                                         |                                                     |                                                     |                                           | 8                                         | 0                 | RPDLimit | Qual |  |  |  |  |
| Diesel Range Organics (DRO)                                                                                           | 39<br>3.7                                           |                                                                      | 50.00<br>5.000                          | 0                                                   | 77.3<br>73.9                                        | 64.4<br>21                                | 127                                       | %RPD              |          | Qual |  |  |  |  |
| Diesel Range Organics (DRO)<br>Surr: DNOP                                                                             | 39<br>3.7<br>SampT                                  | 15                                                                   | 50.00<br>5.000                          | 0<br>Tes                                            | 77.3<br>73.9                                        | 64.4<br>21<br>PA Method                   | 127<br>129                                | %RPD              |          | Qual |  |  |  |  |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: <b>MB-70248</b>                                               | 39<br>3.7<br>SampT                                  | 15<br>Type: ME<br>n ID: 702                                          | 50.00<br>5.000<br>BLK<br>248            | 0<br>Tes<br>F                                       | 77.3<br>73.9<br>tCode: EF                           | 64.4<br>21<br>PA Method                   | 127<br>129                                | %RPD              |          | Qual |  |  |  |  |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: MB-70248<br>Client ID: PBS                                    | 39<br>3.7<br>SampT<br>Batch                         | 15<br>Type: ME<br>n ID: 702                                          | 50.00<br>5.000<br>BLK<br>248<br>19/2022 | 0<br>Tes<br>F                                       | 77.3<br>73.9<br>tCode: EF<br>RunNo: 91<br>SeqNo: 32 | 64.4<br>21<br>PA Method                   | 127<br>129<br>8015M/D: Die                | %RPD              |          | Qual |  |  |  |  |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: MB-70248<br>Client ID: PBS<br>Prep Date: 9/19/2022            | 39<br>3.7<br>SampT<br>Batch<br>Analysis D           | 15<br>Type: ME<br>n ID: 702<br>Date: 9/1                             | 50.00<br>5.000<br>BLK<br>248<br>19/2022 | 0<br>Tes<br>F                                       | 77.3<br>73.9<br>tCode: EF<br>RunNo: 91<br>SeqNo: 32 | 64.4<br>21<br>PA Method<br>1130<br>260209 | 127<br>129<br>8015M/D: Die<br>Units: mg/K | %RPD<br>sel Range | Organics |      |  |  |  |  |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: MB-70248<br>Client ID: PBS<br>Prep Date: 9/19/2022<br>Analyte | 39<br>3.7<br>SampT<br>Batch<br>Analysis D<br>Result | 15<br>Type: <b>ME</b><br>In ID: <b>702</b><br>Date: <b>9/</b><br>PQL | 50.00<br>5.000<br>BLK<br>248<br>19/2022 | 0<br>Tes<br>F                                       | 77.3<br>73.9<br>tCode: EF<br>RunNo: 91<br>SeqNo: 32 | 64.4<br>21<br>PA Method<br>1130<br>260209 | 127<br>129<br>8015M/D: Die<br>Units: mg/K | %RPD<br>sel Range | Organics |      |  |  |  |  |

#### **Qualifiers:**

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 8

**ENSOLUM** 

**Client:** 

| Page | 65 | of        | 91 |
|------|----|-----------|----|
| 1    | 00 | <i>•j</i> |    |

|                                             | WO#: | 2209880   |
|---------------------------------------------|------|-----------|
| all Environmental Analysis Laboratory, Inc. |      | 21-Sep-22 |
|                                             |      |           |

| Project: Trunk E              | Ξ          |                   |           |                                            |                   |          |             |      |          |      |
|-------------------------------|------------|-------------------|-----------|--------------------------------------------|-------------------|----------|-------------|------|----------|------|
| Sample ID: mb-70234           | SampT      | уре: МЕ           | BLK       | Tes                                        |                   |          |             |      |          |      |
| Client ID: PBS                | Batch      | n ID: <b>70</b> 2 | 234       | F                                          | RunNo: <b>9</b> 1 |          |             |      |          |      |
| Prep Date: 9/16/2022          | Analysis D | )ate: <b>9/</b>   | 19/2022   | Ś                                          | SeqNo: 32         | 260359   | Units: mg/K | g    |          |      |
| Analyte                       | Result     | PQL               | SPK value | SPK Ref Val                                | %REC              | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Gasoline Range Organics (GRO) | ND         | 5.0               |           |                                            |                   |          |             |      |          |      |
| Surr: BFB                     | 1000       |                   | 1000      |                                            | 101               | 37.7     | 212         |      |          |      |
| Sample ID: Ics-70234          | SampT      | ype: LC           | S         | TestCode: EPA Method 8015D: Gasoline Range |                   |          |             |      |          |      |
| Client ID: LCSS               | Batch      | n ID: 702         | 234       | F                                          | RunNo: 9          | 1122     |             |      |          |      |
| Prep Date: 9/16/2022          | Analysis D | )ate: <b>9/</b> * | 19/2022   | 5                                          | SeqNo: 32         | 260360   | Units: mg/K | g    |          |      |
| Analyte                       | Result     | PQL               | SPK value | SPK Ref Val                                | %REC              | LowLimit | HighLimit   | %RPD | RPDLimit | Qual |
| Gasoline Range Organics (GRO) | 26         | 5.0               | 25.00     | 0                                          | 0 102 72.3        |          |             |      |          |      |
| Surr: BFB                     | 2000       |                   | 1000      |                                            | 201 37.7 212      |          |             |      |          |      |

**Qualifiers:** 

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 8

Released to Imaging: 6/13/2023 8:24:10 AM

.

|                                       | WO#: | 2209880   |
|---------------------------------------|------|-----------|
| wironmental Analysis Laboratory, Inc. |      | 21-Sep-22 |

| Client:<br>Project: | ENSOLUN<br>Trunk E | Л          |                 |           |                                       |                             |          |               |      |          |      |  |  |
|---------------------|--------------------|------------|-----------------|-----------|---------------------------------------|-----------------------------|----------|---------------|------|----------|------|--|--|
| Sample ID: mb       | -70234             | Samp       | Гуре: МІ        | BLK       | TestCode: EPA Method 8021B: Volatiles |                             |          |               |      |          |      |  |  |
| Client ID: PBS      | s                  | Batc       | h ID: <b>70</b> | 234       | F                                     |                             |          |               |      |          |      |  |  |
| Prep Date: 9/*      | 16/2022            | Analysis [ | Date: 9/        | /19/2022  | S                                     | SeqNo: 3260369 Units: mg/Kg |          |               |      |          |      |  |  |
| Analyte             |                    | Result     | PQL             | SPK value | SPK Ref Val                           | %REC                        | LowLimit | HighLimit     | %RPD | RPDLimit | Qual |  |  |
| Benzene             |                    | ND         | 0.025           |           |                                       |                             |          |               |      |          |      |  |  |
| Toluene             |                    | ND         | 0.050           |           |                                       |                             |          |               |      |          |      |  |  |
| Ethylbenzene        |                    | ND         | 0.050           |           |                                       |                             |          |               |      |          |      |  |  |
| Xylenes, Total      |                    | ND         | 0.10            |           |                                       |                             |          |               |      |          |      |  |  |
| Surr: 4-Bromofluo   | probenzene         | 0.99       |                 | 1.000     |                                       | 98.8                        | 70       | 130           |      |          |      |  |  |
| Sample ID: LCS      | S-70234            | Samp       | Гуре: <b>LC</b> | s         | Tes                                   | tCode: EF                   | A Method | 8021B: Volati | les  |          |      |  |  |
| Client ID: LCS      | SS                 | Batc       | h ID: <b>70</b> | 234       | F                                     | RunNo: <b>9</b> 1           | 122      |               |      |          |      |  |  |
| Prep Date: 9/*      | 16/2022            | Analysis [ | Date: 9/        | /19/2022  | S                                     | SeqNo: 32                   | 260370   | Units: mg/K   | g    |          |      |  |  |
| Analyte             |                    | Result     | PQL             | SPK value | SPK Ref Val                           | %REC                        | LowLimit | HighLimit     | %RPD | RPDLimit | Qual |  |  |
| Benzene             |                    | 0.91       | 0.025           | 1.000     | 0                                     | 91.5                        | 80       | 120           |      |          |      |  |  |
| Toluene             |                    | 0.95       | 0.050           | 1.000     | 0                                     | 95.5                        | 80       | 120           |      |          |      |  |  |
| Ethylbenzene        |                    | 0.97       | 0.050           | 1.000     | 0                                     | 97.3                        | 80       | 120           |      |          |      |  |  |
|                     |                    | 0.57       | 0.000           | 1.000     | -                                     |                             |          |               |      |          |      |  |  |
| Xylenes, Total      |                    | 2.9        | 0.10            | 3.000     | 0                                     | 97.4                        | 80       | 120           |      |          |      |  |  |

**Qualifiers:** 

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 8

| Ceived by OCD: 6/12/2023 1:46:55 PM<br>ENVIRONMENTAL<br>ANALYSIS<br>LABORATORY            | TEL: 505-345-        | ental Analysis Labo<br>4901 Hawk<br>Albuquerque, NM<br>3975 FAX: 505-34,<br>w.hallenvironment | ins NE<br>87109 <b>Sar</b><br>5-4107 | nple Log-In Check              | Page 67<br>List |
|-------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|-----------------|
| Client Name: ENSOLUM                                                                      | Work Order Nun       | nber: 2209880                                                                                 |                                      | RcptNo: 1                      |                 |
| Received By: Juan Rojas                                                                   | 8/17/2022 7:45:00    | АМ                                                                                            | i Juan En g                          |                                |                 |
| Completed By: Juan Rojas                                                                  | 9/17/2022 7:58:23    | AM                                                                                            | Quanta g                             |                                |                 |
| Reviewed By: VP 9/17/22                                                                   |                      |                                                                                               | / -                                  |                                |                 |
| Chain of Custody                                                                          |                      |                                                                                               |                                      |                                |                 |
| 1. Is Chain of Custody complete?                                                          |                      | Yes 🖌                                                                                         | No 🗌                                 | Not Present                    |                 |
| 2. How was the sample delivered?                                                          |                      | Courier                                                                                       |                                      |                                |                 |
| Log In<br>3. Was an attempt made to cool the sample:                                      | 5?                   | Yes 🗸                                                                                         | No 🗌                                 |                                |                 |
| 4. Were all samples received at a temperatu                                               | re of >0° C to 6.0°C | Yes 🗸                                                                                         | No 🗌                                 |                                |                 |
| 5. Sample(s) in proper container(s)?                                                      |                      | Yes 🗸                                                                                         | No                                   |                                |                 |
| 6. Sufficient sample volume for indicated test                                            | (s)?                 | Yes 🗸                                                                                         | No                                   |                                |                 |
| 7. Are samples (except VOA and ONG) prope                                                 | erly preserved?      | Yes 🗸                                                                                         | No 🗌                                 |                                |                 |
| 8. Was preservative added to bottles?                                                     |                      | Yes                                                                                           | No 🔽                                 | NA                             |                 |
| 9. Received at least 1 vial with headspace <1                                             | /4" for AQ VOA?      | Yes                                                                                           | No 🗌                                 | NA 🗸                           |                 |
| 10. Were any sample containers received brok                                              | ken?                 | Yes                                                                                           | No 🗸                                 | # of preserved                 |                 |
| 11. Does paperwork match bottle labels?<br>(Note discrepancies on chain of custody)       |                      | Yes 🖌                                                                                         | No 🗌                                 | bottles checked<br>for pH:     |                 |
| 12. Are matrices correctly identified on Chain of                                         | f Custody2           | Yes 🗸                                                                                         | No 🗌                                 | (<2 or >12 unless<br>Adjusted? | noted)          |
| 13. Is it clear what analyses were requested?                                             |                      | Yes 🗸                                                                                         |                                      | , injudiou .                   |                 |
| 14. Were all holding times able to be met?<br>(If no, notify customer for authorization.) |                      | Yes 🗸                                                                                         |                                      | Checked by: Jn Q               | 17/22           |
| Special Handling (if applicable)                                                          |                      |                                                                                               |                                      |                                |                 |
| 15. Was client notified of all discrepancies with                                         | this order?          | Yes                                                                                           | No 🗌                                 | NA 🗸                           |                 |
| Person Notified:                                                                          | Date                 |                                                                                               |                                      |                                |                 |
| By Whom:                                                                                  | Via:                 | eMail 🗌 P                                                                                     | hone Fax                             | In Person                      |                 |
| Regarding:<br>Client Instructions:                                                        |                      |                                                                                               |                                      |                                |                 |
| 16. Additional remarks:                                                                   |                      |                                                                                               |                                      |                                |                 |
| 17. <u>Cooler Information</u>                                                             | eal Intact Seal No   | Seal Date                                                                                     | Signed By                            |                                |                 |

.

| Receive                 |                   |                     | D: 6/1                                         | 12/2             | 023      | 1:46                          | :55 P)                       | 1         |                                      |                 |                            |                         | r            |            |             |               |   |   |  |      |   |                          | Pamo      | age 68 oj                                  |                                                                                                                                                                                                                                   |
|-------------------------|-------------------|---------------------|------------------------------------------------|------------------|----------|-------------------------------|------------------------------|-----------|--------------------------------------|-----------------|----------------------------|-------------------------|--------------|------------|-------------|---------------|---|---|--|------|---|--------------------------|-----------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | HALL ENVIRONMENTA | ANALI SIS LABORALOR | allenvironmental.com<br>- Alburuteron NM 87100 | ENE 346 4107     | st       |                               | 10001                        |           |                                      |                 |                            |                         |              |            |             |               |   |   |  |      |   |                          | 9 600     | AZ                                         | n the analytical repo                                                                                                                                                                                                             |
| ļ                       | N S               | 5                   | www.hallenvironmental.com                      | hue,             | Request  | (+(                           | 1924A                        | \tue      |                                      |                 |                            | 2) 0728<br>Dotal Co     |              |            | -           |               | - | - |  | <br> |   |                          | 2         | R 1321 ZI                                  | otated o                                                                                                                                                                                                                          |
|                         |                   | 2                   | mno <sup>-</sup>                               |                  | sis R    |                               |                              |           |                                      | 0/1             |                            | A) 0200<br>A) 0928      | -            | -          |             | -             |   | - |  | _    |   |                          | NO        | R                                          | early no                                                                                                                                                                                                                          |
| i                       | ЦУ                | <u>ה</u>            | envii<br>Alhi                                  | ι<br>Γ           | Analysis | ⁺C                            | S '⁺O                        | d '?      | ON                                   | <sup>'8</sup> O |                            | 1-'1'G                  |              | X          | 15          |               |   |   |  | <br> | _ |                          | P         | pay key                                    | ll be cl                                                                                                                                                                                                                          |
| :                       |                   |                     | v.hall<br>uF                                   | 1 -<br>175       | A        |                               |                              |           |                                      |                 |                            | S ARDR                  |              |            |             |               |   |   |  |      |   | -                        | T. Md     | 5                                          | data wi                                                                                                                                                                                                                           |
|                         |                   |                     | www<br>A sui                                   | 15-30            |          |                               | SMI                          | 502       | 28 JC                                | 01              | y 83                       | d eHA9                  |              |            |             |               |   |   |  |      |   |                          | à         | pa                                         | acted o                                                                                                                                                                                                                           |
|                         |                   | 4                   | 4901 Hawkins NF                                | Tel 505-345-3975 |          |                               |                              |           | (1.40                                | g p             | oqtəl                      | N) 803                  |              |            |             |               |   |   |  |      |   |                          |           |                                            | b-contr                                                                                                                                                                                                                           |
|                         |                   |                     | 01 F                                           |                  |          |                               |                              |           |                                      |                 |                            | 9 1808                  |              |            |             |               |   |   |  |      |   |                          |           |                                            | Any sul                                                                                                                                                                                                                           |
|                         |                   |                     | 40                                             | 2 1              |          |                               |                              |           |                                      |                 |                            | 08:HGT                  | $\times$     | X          | X           | X             |   |   |  |      |   |                          | Remarks:  |                                            | oility. A                                                                                                                                                                                                                         |
|                         |                   |                     |                                                | 1                |          | ()                            | .208)                        | s'8       | MT /                                 | ' 38            | ±₩                         | X TEX /                 | X            | $\times$   | X           | X             |   |   |  |      |   |                          | Ren       | )                                          | possit                                                                                                                                                                                                                            |
| Saul                    | 1001              |                     |                                                |                  |          |                               |                              | 512       | No                                   |                 | -+6.2= 6. 8-(°C)           | HEAL No.                | -001         | 100-       | 603         | -co-          |   |   |  |      |   |                          | A TIMU 22 | Date <sup>chime</sup><br>- a 117472 - 7195 | s. This serves as notice of this                                                                                                                                                                                                  |
| ld Time:                | rd 🕅 Rush         |                     | TINK TI                                        |                  |          | nager:                        |                              | ) in when | I Yes                                | A COLOR         | p(including CF): 0.6       | Preservative<br>Type    | <            |            |             | \$            |   |   |  |      |   |                          | N Are     | Arow, 2                                    | accredited laboratories                                                                                                                                                                                                           |
| Turn-Around             | □ Standard        | Project Name        | t                                              | Project #:       |          | Project Manager:              | À                            |           | Sampler:<br>On Ice:                  | # of Coolers:   | Cooler Temp(including CF): | Container<br>Type and # | 1402 /00     | >          |             | -\$           |   |   |  |      |   | -                        |           | Received by:                               | ontracted to other                                                                                                                                                                                                                |
| Chain-of-Custody Record | Ensolum. LC       |                     | Mailing Address: 606 5,200 Errunde, Suited     | , Q1             |          | Fax#: KSummer 20 ensola rucer | ackage:                      |           | ation:  \ Az Compilance C \  D Other |                 |                            | Time Matrix Sample Name | 3:00 5 5-1   | 1305 5 5-2 | 13.10 5 5-3 | 3215 5 S-4    |   |   |  |      |   | Time: Dolinor inched bu: | 0         | 1840 Relinquished by:                      | If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. |
| U                       | Client:           |                     | Mailing                                        | A24              | Phone #: | email or Fax#:                | QA/QC Package:<br>□ Standard | +ipozoov  |                                      | □ EDD (Type)    |                            | Date                    | 9/16/22/3:00 | 3/14/2     | 2/10/22     | 9/11/22/32/52 |   |   |  |      |   | Date.                    | 42        | 9/ 4/22                                    |                                                                                                                                                                                                                                   |



September 28, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2209D34

Dear Kyle Summers:

RE: Trunk E

Hall Environmental Analysis Laboratory received 6 sample(s) on 9/24/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209D34

Date Reported: 9/28/2022

| CLIENT:         | ENSOLUM     | Client Sample ID: S-5                                   |
|-----------------|-------------|---------------------------------------------------------|
| <b>Project:</b> | Trunk E     | Collection Date: 9/23/2022 10:00:00 AM                  |
| Lab ID:         | 2209D34-001 | Matrix: MEOH (SOIL) Received Date: 9/24/2022 7:00:00 AM |

| Analyses                                  | Result | RL       | Qual | Units | DF | Date Analyzed         | Batch  |
|-------------------------------------------|--------|----------|------|-------|----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS                  |        |          |      |       |    | Analyst               | : JMT  |
| Chloride                                  | ND     | 60       |      | mg/Kg | 20 | 9/26/2022 10:33:54 AM | 70397  |
| EPA METHOD 8015M/D: DIESEL RANGE ORGANICS |        |          |      |       |    | Analyst               | DGH    |
| Diesel Range Organics (DRO)               | 68     | 14       |      | mg/Kg | 1  | 9/26/2022 11:01:49 AM | 70394  |
| Motor Oil Range Organics (MRO)            | ND     | 47       |      | mg/Kg | 1  | 9/26/2022 11:01:49 AM | 70394  |
| Surr: DNOP                                | 82.9   | 21-129   |      | %Rec  | 1  | 9/26/2022 11:01:49 AM | 70394  |
| EPA METHOD 8015D: GASOLINE RANGE          |        |          |      |       |    | Analyst               | BRM    |
| Gasoline Range Organics (GRO)             | 570    | 19       |      | mg/Kg | 5  | 9/26/2022 9:23:00 AM  | B91300 |
| Surr: BFB                                 | 298    | 37.7-212 | S    | %Rec  | 5  | 9/26/2022 9:23:00 AM  | B91300 |
| EPA METHOD 8021B: VOLATILES               |        |          |      |       |    | Analyst               | BRM    |
| Benzene                                   | ND     | 0.095    |      | mg/Kg | 5  | 9/26/2022 9:23:00 AM  | D91300 |
| Toluene                                   | 3.7    | 0.19     |      | mg/Kg | 5  | 9/26/2022 9:23:00 AM  | D91300 |
| Ethylbenzene                              | 2.0    | 0.19     |      | mg/Kg | 5  | 9/26/2022 9:23:00 AM  | D91300 |
| Xylenes, Total                            | 26     | 0.38     |      | mg/Kg | 5  | 9/26/2022 9:23:00 AM  | D91300 |
| Surr: 4-Bromofluorobenzene                | 125    | 70-130   |      | %Rec  | 5  | 9/26/2022 9:23:00 AM  | D91300 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 10

.

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209D34

Date Reported: 9/28/2022

| CLIENT:  | ENSOLUM     | Client Sample ID: S-6                                   |
|----------|-------------|---------------------------------------------------------|
| Project: | Trunk E     | Collection Date: 9/23/2022 10:10:00 AM                  |
| Lab ID:  | 2209D34-002 | Matrix: MEOH (SOIL) Received Date: 9/24/2022 7:00:00 AM |

| Analyses                             | Result | RL       | Qual Units | DF      | Date Analyzed         | Batch  |
|--------------------------------------|--------|----------|------------|---------|-----------------------|--------|
| EPA METHOD 300.0: ANIONS             |        |          |            | Analyst | : JMT                 |        |
| Chloride                             | ND     | 60       | mg/Kg      | 20      | 9/26/2022 10:46:19 AM | 70397  |
| EPA METHOD 8015M/D: DIESEL RANGE ORG |        |          |            | Analyst | DGH                   |        |
| Diesel Range Organics (DRO)          | ND     | 15       | mg/Kg      | 1       | 9/26/2022 11:12:19 AM | 70394  |
| Motor Oil Range Organics (MRO)       | ND     | 49       | mg/Kg      | 1       | 9/26/2022 11:12:19 AM | 70394  |
| Surr: DNOP                           | 89.3   | 21-129   | %Rec       | 1       | 9/26/2022 11:12:19 AM | 70394  |
| EPA METHOD 8015D: GASOLINE RANGE     |        |          |            |         | Analyst               | BRM    |
| Gasoline Range Organics (GRO)        | 110    | 19       | mg/Kg      | 5       | 9/26/2022 9:43:00 AM  | B91300 |
| Surr: BFB                            | 178    | 37.7-212 | %Rec       | 5       | 9/26/2022 9:43:00 AM  | B91300 |
| EPA METHOD 8021B: VOLATILES          |        |          |            |         | Analyst               | BRM    |
| Benzene                              | ND     | 0.096    | mg/Kg      | 5       | 9/26/2022 9:43:00 AM  | D91300 |
| Toluene                              | 1.8    | 0.19     | mg/Kg      | 5       | 9/26/2022 9:43:00 AM  | D91300 |
| Ethylbenzene                         | 0.49   | 0.19     | mg/Kg      | 5       | 9/26/2022 9:43:00 AM  | D91300 |
| Xylenes, Total                       | 5.0    | 0.39     | mg/Kg      | 5       | 9/26/2022 9:43:00 AM  | D91300 |
| Surr: 4-Bromofluorobenzene           | 105    | 70-130   | %Rec       | 5       | 9/26/2022 9:43:00 AM  | D91300 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 10

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209D34

Date Reported: 9/28/2022

| CLIENT          | ENSOLUM     | Client Sample ID: S-7                                   |
|-----------------|-------------|---------------------------------------------------------|
| <b>Project:</b> | Trunk E     | Collection Date: 9/23/2022 10:20:00 AM                  |
| Lab ID:         | 2209D34-003 | Matrix: MEOH (SOIL) Received Date: 9/24/2022 7:00:00 AM |

| Analyses                            | Result | RL       | Qual Units | DF     | Date Analyzed         | Batch    |
|-------------------------------------|--------|----------|------------|--------|-----------------------|----------|
| EPA METHOD 300.0: ANIONS            |        |          |            | Analys | t: JMT                |          |
| Chloride                            | ND     | 60       | mg/Kg      | 20     | 9/26/2022 10:58:44 AM | 1 70397  |
| EPA METHOD 8015M/D: DIESEL RANGE OR | GANICS |          |            |        | Analys                | t: DGH   |
| Diesel Range Organics (DRO)         | ND     | 14       | mg/Kg      | 1      | 9/26/2022 11:22:51 AM | 1 70394  |
| Motor Oil Range Organics (MRO)      | ND     | 48       | mg/Kg      | 1      | 9/26/2022 11:22:51 AN | 1 70394  |
| Surr: DNOP                          | 81.6   | 21-129   | %Rec       | 1      | 9/26/2022 11:22:51 AM | 1 70394  |
| EPA METHOD 8015D: GASOLINE RANGE    |        |          |            |        | Analys                | t: BRM   |
| Gasoline Range Organics (GRO)       | ND     | 5.3      | mg/Kg      | 1      | 9/26/2022 10:03:00 AM | 1 B91300 |
| Surr: BFB                           | 104    | 37.7-212 | %Rec       | 1      | 9/26/2022 10:03:00 AM | 1 B91300 |
| EPA METHOD 8021B: VOLATILES         |        |          |            |        | Analys                | t: BRM   |
| Benzene                             | ND     | 0.026    | mg/Kg      | 1      | 9/26/2022 10:03:00 AM | 1 D91300 |
| Toluene                             | ND     | 0.053    | mg/Kg      | 1      | 9/26/2022 10:03:00 AM | 1 D91300 |
| Ethylbenzene                        | ND     | 0.053    | mg/Kg      | 1      | 9/26/2022 10:03:00 AN | 1 D91300 |
| Xylenes, Total                      | ND     | 0.11     | mg/Kg      | 1      | 9/26/2022 10:03:00 AM | 1 D91300 |
| Surr: 4-Bromofluorobenzene          | 93.7   | 70-130   | %Rec       | 1      | 9/26/2022 10:03:00 AM | 1 D91300 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 10

.

## Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209D34

Date Reported: 9/28/2022

| CLIENT:         | ENSOLUM     | Client Sample ID: S-8                                   |
|-----------------|-------------|---------------------------------------------------------|
| <b>Project:</b> | Trunk E     | Collection Date: 9/23/2022 10:30:00 AM                  |
| Lab ID:         | 2209D34-004 | Matrix: MEOH (SOIL) Received Date: 9/24/2022 7:00:00 AM |

| Analyses                            | Result | RL       | Qual Units | DF | Date Analyzed         | Batch  |
|-------------------------------------|--------|----------|------------|----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS            |        |          |            |    | Analyst               | : JMT  |
| Chloride                            | ND     | 60       | mg/Kg      | 20 | 9/26/2022 11:11:09 AN | 70397  |
| EPA METHOD 8015M/D: DIESEL RANGE OR | GANICS |          |            |    | Analyst               | DGH    |
| Diesel Range Organics (DRO)         | 16     | 15       | mg/Kg      | 1  | 9/26/2022 11:33:23 AN | 70394  |
| Motor Oil Range Organics (MRO)      | ND     | 49       | mg/Kg      | 1  | 9/26/2022 11:33:23 AN | 70394  |
| Surr: DNOP                          | 83.0   | 21-129   | %Rec       | 1  | 9/26/2022 11:33:23 AN | 70394  |
| EPA METHOD 8015D: GASOLINE RANGE    |        |          |            |    | Analyst               | BRM    |
| Gasoline Range Organics (GRO)       | 21     | 20       | mg/Kg      | 5  | 9/26/2022 10:23:00 AN | B91300 |
| Surr: BFB                           | 151    | 37.7-212 | %Rec       | 5  | 9/26/2022 10:23:00 AN | B91300 |
| EPA METHOD 8021B: VOLATILES         |        |          |            |    | Analyst               | BRM    |
| Benzene                             | ND     | 0.099    | mg/Kg      | 5  | 9/26/2022 10:23:00 AN | D91300 |
| Toluene                             | ND     | 0.20     | mg/Kg      | 5  | 9/26/2022 10:23:00 AN | D91300 |
| Ethylbenzene                        | ND     | 0.20     | mg/Kg      | 5  | 9/26/2022 10:23:00 AN | D91300 |
| Xylenes, Total                      | ND     | 0.40     | mg/Kg      | 5  | 9/26/2022 10:23:00 AN | D91300 |
| Surr: 4-Bromofluorobenzene          | 99.9   | 70-130   | %Rec       | 5  | 9/26/2022 10:23:00 AN | D91300 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- \* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL
  - Reporting Limit

Page 4 of 10

## Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209D34

Date Reported: 9/28/2022

| CLIENT          | ENSOLUM     | Client Sample ID: S-9                                   |
|-----------------|-------------|---------------------------------------------------------|
| <b>Project:</b> | Trunk E     | Collection Date: 9/23/2022 10:40:00 AM                  |
| Lab ID:         | 2209D34-005 | Matrix: MEOH (SOIL) Received Date: 9/24/2022 7:00:00 AM |

| Analyses                            | Result | RL       | Qual | Units | DF | Date Analyzed         | Batch    |
|-------------------------------------|--------|----------|------|-------|----|-----------------------|----------|
| EPA METHOD 300.0: ANIONS            |        |          |      |       |    | Analys                | t: JMT   |
| Chloride                            | ND     | 60       |      | mg/Kg | 20 | 9/26/2022 11:23:33 AM | 1 70397  |
| EPA METHOD 8015M/D: DIESEL RANGE OR | GANICS |          |      |       |    | Analys                | t: DGH   |
| Diesel Range Organics (DRO)         | 430    | 14       |      | mg/Kg | 1  | 9/26/2022 11:43:57 AM | 1 70394  |
| Motor Oil Range Organics (MRO)      | 120    | 46       |      | mg/Kg | 1  | 9/26/2022 11:43:57 AM | 1 70394  |
| Surr: DNOP                          | 84.0   | 21-129   |      | %Rec  | 1  | 9/26/2022 11:43:57 AM | 1 70394  |
| EPA METHOD 8015D: GASOLINE RANGE    |        |          |      |       |    | Analys                | t: BRM   |
| Gasoline Range Organics (GRO)       | 990    | 19       |      | mg/Kg | 5  | 9/26/2022 10:42:00 AM | A B91300 |
| Surr: BFB                           | 439    | 37.7-212 | S    | %Rec  | 5  | 9/26/2022 10:42:00 AM | A B91300 |
| EPA METHOD 8021B: VOLATILES         |        |          |      |       |    | Analys                | t: BRM   |
| Benzene                             | 0.33   | 0.094    |      | mg/Kg | 5  | 9/26/2022 10:42:00 AN | 1 D91300 |
| Toluene                             | 6.6    | 0.19     |      | mg/Kg | 5  | 9/26/2022 10:42:00 AM | 1 D91300 |
| Ethylbenzene                        | 6.7    | 0.19     |      | mg/Kg | 5  | 9/26/2022 10:42:00 AM | 1 D91300 |
| Xylenes, Total                      | 78     | 3.7      |      | mg/Kg | 50 | 9/26/2022 11:21:00 AM | 1 D91300 |
| Surr: 4-Bromofluorobenzene          | 170    | 70-130   | S    | %Rec  | 5  | 9/26/2022 10:42:00 AM | 1 D91300 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 10

## Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209D34

Date Reported: 9/28/2022

| CLIENT:  | ENSOLUM     | Client Sample ID: S-10                                  |
|----------|-------------|---------------------------------------------------------|
| Project: | Trunk E     | Collection Date: 9/23/2022 10:50:00 AM                  |
| Lab ID:  | 2209D34-006 | Matrix: MEOH (SOIL) Received Date: 9/24/2022 7:00:00 AM |

| Analyses                             | Result | RL       | Qual Units | DF | Date Analyzed         | Batch    |
|--------------------------------------|--------|----------|------------|----|-----------------------|----------|
| EPA METHOD 300.0: ANIONS             |        |          |            |    | Analys                | t: JMT   |
| Chloride                             | ND     | 60       | mg/Kg      | 20 | 9/26/2022 11:35:57 AM | 1 70397  |
| EPA METHOD 8015M/D: DIESEL RANGE ORG | SANICS |          |            |    | Analys                | t: DGH   |
| Diesel Range Organics (DRO)          | 21     | 14       | mg/Kg      | 1  | 9/26/2022 11:54:31 AM | 1 70394  |
| Motor Oil Range Organics (MRO)       | ND     | 46       | mg/Kg      | 1  | 9/26/2022 11:54:31 AN | 1 70394  |
| Surr: DNOP                           | 85.8   | 21-129   | %Rec       | 1  | 9/26/2022 11:54:31 AM | 1 70394  |
| EPA METHOD 8015D: GASOLINE RANGE     |        |          |            |    | Analys                | t: BRM   |
| Gasoline Range Organics (GRO)        | 34     | 19       | mg/Kg      | 5  | 9/26/2022 11:02:00 AM | 1 B91300 |
| Surr: BFB                            | 189    | 37.7-212 | %Rec       | 5  | 9/26/2022 11:02:00 AM | 1 B91300 |
| EPA METHOD 8021B: VOLATILES          |        |          |            |    | Analys                | t: BRM   |
| Benzene                              | ND     | 0.094    | mg/Kg      | 5  | 9/26/2022 11:02:00 AM | 1 D91300 |
| Toluene                              | ND     | 0.19     | mg/Kg      | 5  | 9/26/2022 11:02:00 AM | 1 D91300 |
| Ethylbenzene                         | ND     | 0.19     | mg/Kg      | 5  | 9/26/2022 11:02:00 AM | 1 D91300 |
| Xylenes, Total                       | ND     | 0.38     | mg/Kg      | 5  | 9/26/2022 11:02:00 AM | 1 D91300 |
| Surr: 4-Bromofluorobenzene           | 102    | 70-130   | %Rec       | 5  | 9/26/2022 11:02:00 AM | 1 D91300 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- \* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 10

| L.       | ironmental Analysis Laboratory, Inc. | WO#:                        | 2209D34<br>28-Sep-22 |
|----------|--------------------------------------|-----------------------------|----------------------|
| Client:  | ENSOLUM                              |                             |                      |
| Project: | Trunk E                              |                             |                      |
|          |                                      | de EDA Mathad 000.0. Antana |                      |

| Sample ID: MB-70397                     | SampType                    | : mblk             | TestCode: EPA Method 300.0: Anions |                               |               |                                          |      |          |      |
|-----------------------------------------|-----------------------------|--------------------|------------------------------------|-------------------------------|---------------|------------------------------------------|------|----------|------|
| Client ID: PBS                          | Batch ID:                   | 70397              | R                                  | RunNo: <b>91306</b>           | 6             |                                          |      |          |      |
| Prep Date: 9/26/2022                    | Analysis Date:              | 9/26/2022          | S                                  | SeqNo: <b>326820</b>          | 2 <b>01</b> l | Units: <b>mg/K</b>                       | g    |          |      |
| Analyte                                 | Result P                    | QL SPK value       | SPK Ref Val                        | %REC Low                      | wLimit        | HighLimit                                | %RPD | RPDLimit | Qual |
| Chloride                                | ND                          | 1.5                |                                    |                               |               |                                          |      |          |      |
|                                         |                             |                    |                                    |                               |               |                                          |      |          |      |
| Sample ID: LCS-70397                    | SampType                    | : Ics              | Tes                                | tCode: EPA M                  | lethod 3      | 00.0: Anion                              | S    |          |      |
| Sample ID: LCS-70397<br>Client ID: LCSS | SampType<br>Batch ID:       |                    |                                    | tCode: EPA Me<br>RunNo: 91306 |               | 00.0: Anion:                             | 6    |          |      |
|                                         | 1 71                        | 70397              | R                                  |                               | 6             | <b>00.0: Anion</b><br>Units: <b>mg/K</b> | -    |          |      |
| Client ID: LCSS                         | Batch ID:<br>Analysis Date: | 70397<br>9/26/2022 | R                                  | RunNo: <b>91306</b>           | 5<br>202 (    |                                          | -    | RPDLimit | Qual |

#### **Qualifiers:**

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

# OC SUMMARY REPORT

| <b>L</b>      | ironmental Analysis Labora | tom Ino                                             | 9D34<br>ep-22 |
|---------------|----------------------------|-----------------------------------------------------|---------------|
| Client:       | ENSOLUM                    |                                                     |               |
| Project:      | Trunk E                    |                                                     |               |
| Sample ID: 22 | 209D34-001AMS SampType: MS | TestCode: EPA Method 8015M/D: Diesel Range Organics |               |

| Sample ID: 2209D34-001AMS                                                                                                                  | S SampT                                             | ype. wic                                                            |                                         | Tes                               |                                                             | A Method                                              | 8015M/D: Die                                           | esel Range | e Organics |      |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|------------|------------|------|
| Client ID: S-5                                                                                                                             | Batch                                               | n ID: <b>70</b>                                                     | 394                                     | F                                 | RunNo: <b>9</b> 1                                           | 1307                                                  |                                                        |            |            |      |
| Prep Date: 9/26/2022                                                                                                                       | Analysis D                                          | ate: 9/                                                             | 26/2022                                 | S                                 | SeqNo: 32                                                   | 267727                                                | Units: mg/K                                            | g          |            |      |
| Analyte                                                                                                                                    | Result                                              | PQL                                                                 | SPK value                               | SPK Ref Val                       | %REC                                                        | LowLimit                                              | HighLimit                                              | %RPD       | RPDLimit   | Qual |
| Diesel Range Organics (DRO)                                                                                                                | 79                                                  | 14                                                                  | 47.98                                   | 68.24                             | 23.4                                                        | 36.1                                                  | 154                                                    |            |            | S    |
| Surr: DNOP                                                                                                                                 | 3.9                                                 |                                                                     | 4.798                                   |                                   | 80.4                                                        | 21                                                    | 129                                                    |            |            |      |
| Sample ID: 2209D34-001AMS                                                                                                                  | <b>SD</b> SampT                                     | ype: MS                                                             | SD                                      | Tes                               | tCode: EF                                                   | PA Method                                             | 8015M/D: Die                                           | esel Range | e Organics |      |
| Client ID: S-5                                                                                                                             | Batch                                               | n ID: <b>70</b> :                                                   | 394                                     | F                                 | RunNo: 91                                                   | 1307                                                  |                                                        |            |            |      |
| Prep Date: 9/26/2022                                                                                                                       | Analysis D                                          | ate: 9/                                                             | 26/2022                                 | S                                 | SeqNo: 32                                                   | 267728                                                | Units: mg/K                                            | g          |            |      |
| Analyte                                                                                                                                    | Result                                              | PQL                                                                 | SPK value                               | SPK Ref Val                       | %REC                                                        | LowLimit                                              | HighLimit                                              | %RPD       | RPDLimit   | Qual |
| Diesel Range Organics (DRO)                                                                                                                | 110                                                 | 15                                                                  | 50.00                                   | 68.24                             | 76.0                                                        | 36.1                                                  | 154                                                    | 28.8       | 33.9       |      |
| Surr: DNOP                                                                                                                                 | 3.6                                                 |                                                                     | 5.000                                   |                                   | 72.0                                                        | 21                                                    | 129                                                    | 0          | 0          |      |
| Sample ID: LCS-70394                                                                                                                       | SampT                                               | ype: LC                                                             | S                                       | Tes                               | tCode: EF                                                   | PA Method                                             | 8015M/D: Die                                           | esel Range | e Organics |      |
| Client ID: LCSS                                                                                                                            | Batch                                               | n ID: <b>70</b> :                                                   | 394                                     | F                                 | RunNo: 91                                                   | 1307                                                  |                                                        |            |            |      |
| Prep Date: 9/26/2022                                                                                                                       | Analysis D                                          | ate: 9/                                                             | 26/2022                                 | S                                 | SeqNo: 32                                                   | 267735                                                | Units: mg/K                                            | 'n         |            |      |
|                                                                                                                                            |                                                     |                                                                     |                                         |                                   |                                                             |                                                       |                                                        | .9         |            |      |
| Analyte                                                                                                                                    | Result                                              | PQL                                                                 | SPK value                               | SPK Ref Val                       |                                                             | LowLimit                                              | HighLimit                                              | %RPD       | RPDLimit   | Qual |
| Analyte<br>Diesel Range Organics (DRO)                                                                                                     | Result<br>34                                        | PQL<br>15                                                           | SPK value<br>50.00                      |                                   |                                                             |                                                       | •                                                      | -          | RPDLimit   | Qual |
|                                                                                                                                            |                                                     |                                                                     |                                         | SPK Ref Val                       | %REC                                                        | LowLimit                                              | HighLimit                                              | -          | RPDLimit   | Qual |
| Diesel Range Organics (DRO)                                                                                                                | 34<br>3.4                                           |                                                                     | 50.00<br>5.000                          | SPK Ref Val<br>0                  | %REC<br>68.5<br>67.5                                        | LowLimit<br>64.4<br>21                                | HighLimit<br>127                                       | %RPD       |            | Qual |
| Diesel Range Organics (DRO)<br>Surr: DNOP                                                                                                  | 34<br>3.4<br>SampT                                  | 15                                                                  | 50.00<br>5.000                          | SPK Ref Val<br>0<br>Tes           | %REC<br>68.5<br>67.5                                        | LowLimit<br>64.4<br>21<br>PA Method                   | HighLimit<br>127<br>129                                | %RPD       |            | Qual |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: <b>MB-70394</b>                                                                    | 34<br>3.4<br>SampT                                  | 15<br>Type: <b>ME</b><br>n ID: <b>70</b>                            | 50.00<br>5.000<br>3LK<br>394            | SPK Ref Val<br>0<br>Tes<br>F      | %REC<br>68.5<br>67.5<br>tCode: <b>EF</b>                    | LowLimit<br>64.4<br>21<br>PA Method<br>1307           | HighLimit<br>127<br>129                                | %RPD       |            | Qual |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: <b>MB-70394</b><br>Client ID: <b>PBS</b>                                           | 34<br>3.4<br>SampT<br>Batch                         | 15<br>Type: <b>ME</b><br>n ID: <b>70</b>                            | 50.00<br>5.000<br>3LK<br>394<br>26/2022 | SPK Ref Val<br>0<br>Tes<br>F      | %REC<br>68.5<br>67.5<br>tCode: EF<br>RunNo: 9'<br>SeqNo: 32 | LowLimit<br>64.4<br>21<br>PA Method<br>1307           | HighLimit<br>127<br>129<br>8015M/D: Die                | %RPD       |            | Qual |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: MB-70394<br>Client ID: PBS<br>Prep Date: 9/26/2022                                 | 34<br>3.4<br>SampT<br>Batch<br>Analysis D           | 15<br>Type: <b>ME</b><br>n ID: <b>70</b><br>Date: <b>9</b> /        | 50.00<br>5.000<br>3LK<br>394<br>26/2022 | SPK Ref Val<br>0<br>Tes<br>F<br>S | %REC<br>68.5<br>67.5<br>tCode: EF<br>RunNo: 9'<br>SeqNo: 32 | LowLimit<br>64.4<br>21<br>PA Method<br>1307<br>267737 | HighLimit<br>127<br>129<br>8015M/D: Did<br>Units: mg/K | %RPD       | e Organics |      |
| Diesel Range Organics (DRO)<br>Surr: DNOP<br>Sample ID: <b>MB-70394</b><br>Client ID: <b>PBS</b><br>Prep Date: <b>9/26/2022</b><br>Analyte | 34<br>3.4<br>SampT<br>Batch<br>Analysis D<br>Result | 15<br>Type: <b>ME</b><br>In ID: <b>70</b><br>Pate: <b>9/</b><br>PQL | 50.00<br>5.000<br>3LK<br>394<br>26/2022 | SPK Ref Val<br>0<br>Tes<br>F<br>S | %REC<br>68.5<br>67.5<br>tCode: EF<br>RunNo: 9'<br>SeqNo: 32 | LowLimit<br>64.4<br>21<br>PA Method<br>1307<br>267737 | HighLimit<br>127<br>129<br>8015M/D: Did<br>Units: mg/K | %RPD       | e Organics |      |

#### Qualifiers:

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

**ENSOLUM** 

**Client:** 

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory

| y, Inc. | WO#: | 2209D34<br>28-Sep-22 |
|---------|------|----------------------|
| -       |      | 1                    |

| Sample ID:         2.5ug gro Ics         SampType:         LCS         TestCode:         EPA Method 8015D:         Gasoline Range           Client ID:         LCSS         Batch ID:         B91300         RunNo:         91300           Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268154         Units:         mg/Kg           Analyte         Result         PQL         SPK xalue         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Gasoline Range Organics (GRO)         24         5.0         25.00         0         96.6         72.3         137           Surr: BFB         2100         1000         214         37.7         212         210           Sample ID:         mb         SampType:         MBLK         TestCode:         EPA Method 8015D:         Gasoline Range           Client ID:         PBS         Batch ID:         B91300         RunNo:         91300         RunNo:         91300           Surr: BFB         1100         1000         107         37.7         212         210           Sample ID:         2209d34-001a ms         SampType:         MS         TestCode:         EPA Method 8015D:         Gasoline                                                                                                                                                                 | Project:               | Trunk E             |                  |           |             |                                            |           |             |            |          |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|------------------|-----------|-------------|--------------------------------------------|-----------|-------------|------------|----------|------|
| Prep Date:       Analysis Date:       9/26/2022       SeqNo:       3268154       Units:       mg/Kg         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Gasoline Range Organics (GRO)       24       5.0       25.00       0       96.6       72.3       137         Sur: BFB       2100       1000       214       37.7       212       212       212         Sample ID: mb       SampType:       MBLK       TestCode:       EPA Method       8015D:       Gasoline Range         Client ID:       PBS       Batch ID:       B91300       RunNo:       91300       Prep Date:       Analysis Date:       926/2022       SeqNo:       3268155       Units:       mg/Kg         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Gasoline Range Organics (GRO)       ND       5.0       Surget SeqNo:       3268156       Units:       mg/Kg         Sample ID:       2209d34-001a ms       SampType:       MS       TestCode:       EPA Method       8015D:       Gasoline Range         Client ID:                                                                                                                                                                                                                             | Sample ID: 2.5ug g     | r <b>o ics</b> Sa   | mpType: L        | cs        | Tes         | TestCode: EPA Method 8015D: Gasoline Range |           |             |            |          |      |
| Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Saudine Range Organics (GRO)         24         5.0         25.00         0         96.6         72.3         137           Surr: BFB         2100         1000         214         37.7         212         210           Sample ID: mb         SampType:         MBLK         TestCode:         EPA Method 8015D:         Gasoline Range           Client ID:         PBS         Batch ID:         B91300         RunNo:         91300         Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268155         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sasoline Range Organics (GRO)         ND         5.0         Sasoline Range                                                                                                  | Client ID: LCSS        | E                   | Batch ID: B      | 91300     | F           | RunNo: <b>9</b>                            | 1300      |             |            |          |      |
| Gasoline Range Organics (GR0)         24         5.0         25.00         0         96.6         72.3         137           Surr: BFB         2100         1000         214         37.7         212           Sample ID: mb         SampType:         MBLK         TestCode:         EPA Method 8015D:         Gasoline Range           Client ID:         PBS         Batch ID:         B91300         RunNo:         91300           Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268155         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Gasoline Range Organics (GR0)         ND         5.0         Surr: BFB         1100         1000         107         37.7         212           Sample ID:         2209d34-001a ms         SampType:         MS         TestCode:         EPA Method 8015D:         Gasoline Range           Client ID:         S-5         Batch ID:         B91300         RunNo:         91300            Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268156         Units:         mg/Kg <td>Prep Date:</td> <td>Analy</td> <td>sis Date: 9</td> <td>/26/2022</td> <td>S</td> <td>SeqNo: 3</td> <td>268154</td> <td>Units: mg/ł</td> <td>٢g</td> <td></td> <td></td> | Prep Date:             | Analy               | sis Date: 9      | /26/2022  | S           | SeqNo: 3                                   | 268154    | Units: mg/ł | ٢g         |          |      |
| Surr: BFB         2100         1000         214         37.7         212           Sample ID: mb         SampType:         MBLK         TestCode:         EPA Method         8015D:         Gasoline Range           Client ID:         PBS         Batch ID:         B91300         RunNo:         91300           Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268155         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sasoline Range Organics (GRO)         ND         5.0         Sasoline Range         Sasoline Range         Sasoline Range         Sasoline Range         Sasoline Range         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sasoline Range Organics (GRO)         Sasoline Range Organics (GRO)         660         19         94.70         567.7         94.3         70         130         Sasoline Range           Sasoline Range Organics (GRO)         660         19         94.70         567.7         94.3         70         130         Sasoline Range         Sasoline                                                                                                                     | Analyte                | Resu                | ılt PQL          | SPK value | SPK Ref Val | %REC                                       | LowLimit  | HighLimit   | %RPD       | RPDLimit | Qual |
| Sample ID: mb         SampType:         MBLK         TestCode:         EPA         Method         8015D:         Gasoline Range           Client ID:         PBS         Batch ID:         B91300         RunNo:         91300           Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268155         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sasoline Range Organics (GRO)         ND         5.0         Sur::         SFB         1100         1000         107         37.7         212         212           Sample ID:         2209d34-001a ms         SampType:         MS         TestCode:         EPA         Method         8015D:         Gasoline Range           Client ID:         S-5         Batch ID:         B91300         RunNo:         91300         Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268156         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit               Gaso                                                                                                                                                        | Gasoline Range Organic | s (GRO) 2           | .4 5.0           | 25.00     | 0           | 96.6                                       | 72.3      | 137         |            |          |      |
| Client ID:       PBS       Batch ID:       B91300       RunNo:       91300         Prep Date:       Analysis Date:       9/26/2022       SeqNo:       3268155       Units:       mg/Kg         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Basoline Range Organics (GRO)       ND       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0                                                                                                                                                                                                                                                                                           | Surr: BFB              | 210                 | 0                | 1000      |             | 214                                        | 37.7      | 212         |            |          | S    |
| Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268155         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Gasoline Range Organics (GRO)         ND         5.0         1000         107         37.7         212         212           Sample ID:         2209d34-001a ms         SampType:         MS         TestCode:         EPA Method         8015D:         Gasoline Range           Client ID:         S-5         Batch ID:         B91300         RunNo:         91300         Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268156         Units:< mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample ID: <b>mb</b>   | Sa                  | трТуре: <b>М</b> | BLK       | Tes         | tCode: El                                  | PA Method | 8015D: Gaso | oline Rang | e        |      |
| Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sasoline Range Organics (GRO)         ND         5.0         1000         107         37.7         212         1000           Sample ID:         2209d34-001a ms         SampType:         MS         TestCode:         EPA Method         8015D:         Gasoline Range           Client ID:         S-5         Batch ID:         B91300         RunNo:         91300         Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268156         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sasoline Range Organics (GRO)         660         19         94.70         567.7         94.3         70         130         130           Surr: BFB         15000         3788         408         37.7         212         140         140         140         140         140         140         140         140         140         140         140         140         140         130         140         <                                                                                                                                                               | Client ID: PBS         | E                   | Batch ID: B      | 91300     | F           | RunNo: <b>9</b>                            | 1300      |             |            |          |      |
| Gasoline Range Organics (GRO)         ND         5.0           Surr: BFB         1100         1000         107         37.7         212           Sample ID:         2209d34-001a ms         SampType:         MS         TestCode:         EPA Method 8015D:         Gasoline Range           Client ID:         S-5         Batch ID:         B91300         RunNo:         91300         Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268156         Units:         mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Gasoline Range Organics (GRO)         660         19         94.70         567.7         94.3         70         130           Surr: BFB         15000         3788         408         37.7         212         212           Sample ID:         2209D34-001A MSD         SampType:         MSD         TestCode:         EPA Method 8015D:         Gasoline Range           Client ID:         S-5         Batch ID:         B91300         RunNo:         91300           Prep Date:         Analysis Date:         9/26/2022         SeqNo:         3268157         Units:<                                                                                                                                                       | Prep Date:             | Analys              | sis Date: 9      | /26/2022  | S           | SeqNo: 3                                   | 268155    | Units: mg/k | ٢g         |          |      |
| Surr: BFB         1100         1000         107         37.7         212           Sample ID: 2209d34-001a ms         SampType: MS         TestCode: EPA Method 8015D: Gasoline Range           Client ID:         S-5         Batch ID: B91300         RunNo: 91300           Prep Date:         Analysis Date:         9/26/2022         SeqNo: 3268156         Units: mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sasoline Range Organics (GRO)         660         19         94.70         567.7         94.3         70         130           Sample ID: 2209D34-001A MSD         SampType: MSD         TestCode: EPA Method 8015D: Gasoline Range         Range         Range         Range         Range         Range         Range         Range         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Sample ID: 2209D34-001A MSD         SampType: MSD         TestCode: EPA Method 8015D: Gasoline Range         RAPD         RPDLimit           Glient ID:         S-5                                                                                                        | Analyte                | Resu                | ılt PQL          | SPK value | SPK Ref Val | %REC                                       | LowLimit  | HighLimit   | %RPD       | RPDLimit | Qual |
| Sample ID:       2209d34-001a ms       SampType:       MS       TestCode:       EPA       Method       8015D:       Gasoline Range         Client ID:       S-5       Batch ID:       B91300       RunNo:       91300       Propostation       Value       SeqNo:       3268156       Units:       mg/Kg         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Sasoline Range Organics (GRO)       660       19       94.70       567.7       94.3       70       130       130         Surr: BFB       15000       3788       408       37.7       212       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120                                                                                                                                                                                                                                                                       | Gasoline Range Organic | s (GRO) N           | D 5.0            |           |             |                                            |           |             |            |          |      |
| Client ID:       S-5       Batch ID:       B91300       RunNo:       91300         Prep Date:       Analysis Date:       9/26/2022       SeqNo:       3268156       Units:       mg/Kg         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Gasoline Range Organics (GRO)       660       19       94.70       567.7       94.3       70       130         Surr: BFB       15000       3788       408       37.7       212       120       100         Sample ID:       2209D34-001A MSD       SampType:       MSD       TestCode:       EPA Method       8015D:       Gasoline Range         Client ID:       S-5       Batch ID:       B91300       RunNo:       91300       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1                                                                                                                                                                                                                                                                     | Surr: BFB              | 110                 | 0                | 1000      |             | 107                                        | 37.7      | 212         |            |          |      |
| Prep Date:Analysis Date:9/26/2022SeqNo:3268156Units:mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitGasoline Range Organics (GRO)6601994.70567.794.370130130Surr: BFB15000378840837.721215002121500Sample ID:2209D34-001A MSDSampType:MSDTestCode:EPA Method 8015D:Gasoline RangeClient ID:S-5Batch ID:B91300RunNo:91300130130Prep Date:Analysis Date:9/26/2022SeqNo:3268157Units:mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitGasoline Range Organics (GRO)6201994.70567.758.4701305.3120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample ID: 2209d3      | <b>4-001a ms</b> Sa | mpType: <b>M</b> | S         | Tes         | tCode: El                                  | PA Method | 8015D: Gase | oline Rang | e        |      |
| AnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitGasoline Range Organics (GRO)6601994.70567.794.370130Surr: BFB15000378840837.72121500Sample ID: 2209D34-001A MSDSampType: MSDTestCode: EPA Method 8015D: Gasoline RangeClient ID:S-5Batch ID: B91300RunNo: 91300Prep Date:Analysis Date:9/26/2022SeqNo: 3268157Units: mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitGasoline Range Organics (GRO)6201994.70567.758.4701305.3120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Client ID: S-5         | E                   | Batch ID: B      | 91300     | F           | RunNo: <b>9</b>                            | 1300      |             |            |          |      |
| Gasoline Range Organics (GRO)         660         19         94.70         567.7         94.3         70         130           Surr: BFB         15000         3788         408         37.7         212           Sample ID: 2209D34-001A MSD         SampType: MSD         TestCode: EPA Method 8015D: Gasoline Range           Client ID:         S-5         Batch ID: B91300         RunNo: 91300           Prep Date:         Analysis Date: 9/26/2022         SeqNo: 3268157         Units: mg/Kg           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Gasoline Range Organics (GRO)         620         19         94.70         567.7         58.4         70         130         5.31         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prep Date:             | Analys              | sis Date: 9      | /26/2022  | S           | SeqNo: 3                                   | 268156    | Units: mg/k | ٢g         |          |      |
| Surr: BFB15000378840837.7212Sample ID: 2209D34-001A MSDSampType: MSDTestCode: EPA Method 8015D: Gasoline RangeClient ID:S-5Batch ID: B91300RunNo: 91300Prep Date:Analysis Date:9/26/2022SeqNo: 3268157Units: mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitGasoline Range Organics (GRO)6201994.70567.758.4701305.3120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyte                | Resu                | ılt PQL          | SPK value | SPK Ref Val | %REC                                       | LowLimit  | HighLimit   | %RPD       | RPDLimit | Qual |
| Sample ID: 2209D34-001A MSD       SampType: MSD       TestCode: EPA Method 8015D: Gasoline Range         Client ID:       S-5       Batch ID: B91300       RunNo: 91300         Prep Date:       Analysis Date:       9/26/2022       SeqNo: 3268157       Units: mg/Kg         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Gasoline Range Organics (GRO)       620       19       94.70       567.7       58.4       70       130       5.31       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline Range Organic | s (GRO) 66          | 60 19            | 94.70     | 567.7       | 94.3                                       | 70        | 130         |            |          |      |
| Client ID:       S-5       Batch ID:       B91300       RunNo:       91300         Prep Date:       Analysis Date:       9/26/2022       SeqNo:       3268157       Units:       mg/Kg         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Gasoline Range Organics (GRO)       620       19       94.70       567.7       58.4       70       130       5.31       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surr: BFB              | 1500                | 0                | 3788      |             | 408                                        | 37.7      | 212         |            |          | S    |
| Prep Date:Analysis Date:9/26/2022SeqNo:3268157Units:mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitGasoline Range Organics (GRO)6201994.70567.758.4701305.3120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample ID: 2209D3      | 4-001A MSD Sa       | mpType: <b>M</b> | SD        | Tes         | tCode: El                                  | PA Method | 8015D: Gaso | oline Rang | e        |      |
| AnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitGasoline Range Organics (GRO)6201994.70567.758.4701305.3120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Client ID: S-5         | E                   | Batch ID: B      | 91300     | F           | RunNo: <b>9</b>                            | 1300      |             |            |          |      |
| Gasoline Range Organics (GRO)         620         19         94.70         567.7         58.4         70         130         5.31         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prep Date:             | Analys              | sis Date: 9      | /26/2022  | S           | SeqNo: 3                                   | 268157    | Units: mg/ł | ٢g         |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyte                | Resu                | ılt PQL          | SPK value | SPK Ref Val | %REC                                       | LowLimit  | HighLimit   | %RPD       | RPDLimit | Qual |
| Surr: BFB 15000 3788 400 37.7 212 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline Range Organic | s (GRO) 62          | 20 19            | 94.70     | 567.7       | 58.4                                       | 70        | 130         | 5.31       | 20       | S    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surr: BFB              | 1500                | 0                | 3788      |             | 400                                        | 37.7      | 212         | 0          | 0        | S    |

**Qualifiers:** 

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 9 of 10

**ENSOLUM** 

Trunk E

**Client:** 

**Project:** 

Sample ID: 100ng btex Ics

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

| Campie ID. Toong blex ics  | Gampi           | урс. <b>L</b> С | 0         | 103         |           | Amethou   | 00210. 0010        | lines |          |      |
|----------------------------|-----------------|-----------------|-----------|-------------|-----------|-----------|--------------------|-------|----------|------|
| Client ID: LCSS            | Batch           | n ID: <b>D9</b> | 1300      | F           | RunNo: 9  | 1300      |                    |       |          |      |
| Prep Date:                 | Analysis D      | Date: 9/        | 26/2022   | S           | SeqNo: 3  | 268168    | Units: <b>mg/k</b> | ٢g    |          |      |
| Analyte                    | Result          | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD  | RPDLimit | Qual |
| Benzene                    | 0.88            | 0.025           | 1.000     | 0           | 88.0      | 80        | 120                |       |          |      |
| Toluene                    | 0.90            | 0.050           | 1.000     | 0           | 90.0      | 80        | 120                |       |          |      |
| Ethylbenzene               | 0.90            | 0.050           | 1.000     | 0           | 90.2      | 80        | 120                |       |          |      |
| Xylenes, Total             | 2.7             | 0.10            | 3.000     | 0           | 89.6      | 80        | 120                |       |          |      |
| Surr: 4-Bromofluorobenzene | 0.92            |                 | 1.000     |             | 92.0      | 70        | 130                |       |          |      |
| Sample ID: mb              | SampT           | ype: ME         | BLK       | Tes         | tCode: El | PA Method | 8021B: Volat       | tiles |          |      |
| Client ID: PBS             | Batcl           | n ID: <b>D9</b> | 1300      | F           | RunNo: 9  | 1300      |                    |       |          |      |
| Prep Date:                 | Analysis E      | Date: 9/        | 26/2022   | S           | SeqNo: 3  | 268169    | Units: <b>mg/k</b> | ٢g    |          |      |
| Analyte                    | Result          | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD  | RPDLimit | Qual |
| Benzene                    | ND              | 0.025           |           |             |           |           |                    |       |          |      |
| Toluene                    | ND              | 0.050           |           |             |           |           |                    |       |          |      |
| Ethylbenzene               | ND              | 0.050           |           |             |           |           |                    |       |          |      |
| Xylenes, Total             | ND              | 0.10            |           |             |           |           |                    |       |          |      |
| Surr: 4-Bromofluorobenzene | 0.92            |                 | 1.000     |             | 92.0      | 70        | 130                |       |          |      |
| Sample ID: 2209d34-002a ms | SampT           | уре: М          | 6         | Tes         | tCode: El | PA Method | 8021B: Volat       | tiles |          |      |
| Client ID: S-6             | Batcl           | h ID: <b>D9</b> | 1300      | F           | RunNo: 9  | 1300      |                    |       |          |      |
| Prep Date:                 | Analysis D      | Date: 9/        | 26/2022   | S           | SeqNo: 3  | 268170    | Units: <b>mg/k</b> | ٢g    |          |      |
| Analyte                    | Result          | PQL             | SPK value | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD  | RPDLimit | Qual |
| Benzene                    | 3.4             | 0.096           | 3.855     | 0           | 89.5      | 68.8      | 120                |       |          |      |
| Toluene                    | 5.2             | 0.19            | 3.855     | 1.814       | 87.4      | 73.6      | 124                |       |          |      |
| Ethylbenzene               | 4.0             | 0.19            | 3.855     | 0.4921      | 91.1      | 72.7      | 129                |       |          |      |
| Xylenes, Total             | 15              | 0.39            | 11.57     | 4.991       | 88.0      | 75.7      | 126                |       |          |      |
| Surr: 4-Bromofluorobenzene | 3.9             |                 | 3.855     |             | 101       | 70        | 130                |       |          |      |
| Sample ID: 2209D34-002A MS | <b>5D</b> SampT | уре: М          | SD        | Tes         | tCode: El | PA Method | 8021B: Volat       | tiles |          |      |
| Client ID: S-6             | Batcl           | h ID: <b>D9</b> | 1300      | F           | RunNo: 9  | 1300      |                    |       |          |      |
| Prep Date:                 | Analysis E      | Date: 9/        | 26/2022   | S           | SeqNo: 3  | 268171    | Units: <b>mg/k</b> | ٢g    |          |      |
| Analyte                    | Result          | PQL             |           | SPK Ref Val | %REC      | LowLimit  | HighLimit          | %RPD  | RPDLimit | Qual |
| Benzene                    | 3.3             | 0.096           | 3.855     | 0           | 85.7      | 68.8      | 120                | 4.33  | 20       |      |
| Toluene                    | 4.9             | 0.19            | 3.855     | 1.814       | 81.2      | 73.6      | 124                | 4.66  | 20       |      |
| Ethylbenzene               | 3.8             | 0.19            | 3.855     | 0.4921      | 86.6      | 72.7      | 129                | 4.49  | 20       |      |
| Xylenes, Total             | 15              | 0.39            | 11.57     | 4.991       | 82.5      | 75.7      | 126                | 4.29  | 20       |      |
| Surr: 4-Bromofluorobenzene | 3.6             |                 | 3.855     |             | 94.4      | 70        | 130                | 0     | 0        |      |
|                            |                 |                 |           |             |           |           |                    |       |          |      |

TestCode: EPA Method 8021B: Volatiles

### Qualifiers:

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

| WO#: | 2209D34 |
|------|---------|
|      |         |

| ENVIRONMENTAL<br>ANALYSIS<br>LABORATORY                                                   | Hall Environmental .<br>Albu<br>TEL: 505-345-3975<br>Website: www.hau | 4901 Hawki<br>querque, NM<br>FAX: 505-345 | ins NE<br>87109 Sar<br>5-4107 | nple Log-In Cł | Page 80<br>Neck List |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|-------------------------------|----------------|----------------------|
| Client Name: ENSOLUM                                                                      | Work Order Number:                                                    | 2209D34                                   |                               | RcptNo:        | 1                    |
| Received By: Cheyenne Cason 9/.                                                           | 24/2022 7:00:00 AM                                                    |                                           | Chul                          |                |                      |
| Completed By: Cheyenne Cason 9/                                                           | 24/2022 7:12:47 AM                                                    |                                           | Chul<br>Chul                  |                |                      |
| Reviewed By: TR9/26/22                                                                    |                                                                       |                                           |                               |                |                      |
| Chain of Custody                                                                          |                                                                       |                                           |                               |                |                      |
| 1. Is Chain of Custody complete?                                                          |                                                                       | Yes 🗹                                     | No 🗌                          | Not Present    |                      |
| 2. How was the sample delivered?                                                          |                                                                       | <u>Courier</u>                            |                               |                |                      |
| Log In<br>3. Was an attempt made to cool the samples?                                     |                                                                       | Yes 🗹                                     | No 🗌                          |                |                      |
| <ol> <li>Were all samples received at a temperature of &gt;</li> </ol>                    | •0° C to 6.0°C                                                        | Yes 🗹                                     | No 🗌                          | NA 🗌           |                      |
| 5. Sample(s) in proper container(s)?                                                      |                                                                       | Yes 🗹                                     | No 🗌                          |                |                      |
| 6. Sufficient sample volume for indicated test(s)?                                        |                                                                       | Yes 🗹                                     | No 🗌                          |                |                      |
| 7. Are samples (except VOA and ONG) properly pro                                          | eserved?                                                              | Yes 🗹                                     | No 🗌                          |                |                      |
| 8. Was preservative added to bottles?                                                     |                                                                       | Yes 🗌                                     | No 🗹                          | NA 🗌           |                      |
| 9. Received at least 1 vial with headspace <1/4" for                                      | AQ VOA?                                                               | Yes 🗌                                     | No 🗌                          | NA 🗹           |                      |
| 10. Were any sample containers received broken?                                           |                                                                       | Yes 🗌                                     | No 🗹                          | # of preserved |                      |
| 11.Does paperwork match bottle labels?<br>(Note discrepancies on chain of custody)        |                                                                       | Yes 🗹                                     | No 🗌                          |                | 12 unless noted)     |
| 2. Are matrices correctly identified on Chain of Cust                                     |                                                                       | Yes 🗹                                     | No 🗌                          | Adjusted?      |                      |
| 13. Is it clear what analyses were requested?                                             |                                                                       | Yes 🗹                                     | No 🗌                          |                | a al aut             |
| 14. Were all holding times able to be met?<br>(If no, notify customer for authorization.) |                                                                       | Yes 🗹                                     | No 🗌                          | Checked by:    | ne gleylae           |
| Special Handling (if applicable)                                                          |                                                                       |                                           |                               |                |                      |
| 15. Was client notified of all discrepancies with this                                    | order?                                                                | Yes 🗌                                     | No 🗌                          | NA 🔽           |                      |
| Person Notified:                                                                          | Date:                                                                 |                                           |                               |                |                      |
| By Whom:                                                                                  | Via:                                                                  | eMail                                     | Phone 🗌 Fax                   | In Person      |                      |
| Regarding:<br>Client Instructions:                                                        |                                                                       |                                           |                               |                |                      |
| 16. Additional remarks:                                                                   |                                                                       |                                           |                               |                |                      |
| 17. <u>Cooler Information</u><br>Cooler No Temp ºC Condition Seal I                       | ntact Seal No S                                                       | eal Date                                  | Signed By                     | I              |                      |
| 1 4.3 Good Yes                                                                            | Gearing S                                                             | cal Date                                  | oigned by                     |                |                      |

•

Page 1 of 1

|                         | ANAL ENVIRONMENTAL     |               | www.rialienvironmental.com :0<br>4901 Hawkins NF - Albininierina NM 87100 | Fax 505-345-4107 | Analysis Request |                                       | ) <del>S '</del> †Od | uəsa<br>- <sup> 2</sup> O<br>2520 | or 8<br>;<br>, N   | 10 site | y 83<br>8 Me<br>14, <i>1</i><br>(AO)           | PAHs b<br>RCRA 5<br>8 260 (V<br>8 270 (S<br>Total Co | X                   |                      |                    |                    |                     | X                  |   |   |   |    |   | PM Tan Lang                  | tey RB2                                                    | This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. |
|-------------------------|------------------------|---------------|---------------------------------------------------------------------------|------------------|------------------|---------------------------------------|----------------------|-----------------------------------|--------------------|---------|------------------------------------------------|------------------------------------------------------|---------------------|----------------------|--------------------|--------------------|---------------------|--------------------|---|---|---|----|---|------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                         |                        |               | 1 Haw                                                                     | 505-3            |                  |                                       | SIBOC                |                                   |                    |         |                                                | 9081 P6                                              |                     |                      |                    |                    |                     |                    |   |   |   |    | _ | Q.                           | Pary                                                       | ' sub-con                                                                                                            |
|                         |                        |               | 490                                                                       | Tel.             |                  | (0                                    | NAM / C              |                                   |                    |         |                                                | 170-360 Evidence and accord                          | X                   | Ϋ́                   | $\times$           | X                  | $\times$            | X                  | + | - | + | +- | + | arks:                        |                                                            | lity. Any                                                                                                            |
|                         |                        |               |                                                                           | T                |                  | (                                     | 1208) s              | BM:                               | L /                | 38<br>T | ΤM                                             | N X T R                                              | X                   | X                    | $\searrow$         | ,Х                 | $\mathbf{X}$        | Ń                  |   |   |   |    |   | Remarks                      |                                                            | s possibi                                                                                                            |
| Turn-Around Time:       | D Standard K Rush 100% | Project Name: | Trunk E                                                                   | Project #:       | See Notes        | Project Manager:                      | K. Sammers           | Sampler: L. Davie II              | On Ice: 🞽 Yes 🗆 No | olers:  | Cooler Temp(Including CF): 4, 3 - CD 4, 3 (°C) | Container Preservative HEAL No.<br>Type and # Type   | col Gn              | 200                  | (203               | CDH                | 905                 | 6 CCC              |   |   |   |    |   | Received by: Via: Date Time  | 10                                                         |                                                                                                                      |
| Chain-of-Custody Record | Client: Enselun, LLC   |               | Mailing Address: 606 5. Cic Grande, Sailet                                | 1                | Phone #:         | email or Fax#: KSUMMERS @ CASOLUM LON | QA/QC Package:       | 11.00                             | NELAC     Other    |         |                                                | Date Time Matrix Sample Name                         | 9/22/22 10:00 5 5-5 | 3/22/22 10212 5 5- 6 | 124/22 10:20 5 5-7 | 1/2/22/10:30 5 5-8 | 1/23/22.10:40 5 5-9 | 12122 10-50 5 5-17 |   |   |   |    |   | Date: Time: Relinquished by: | Date: Time: Relinquished by:<br>13122 1810 / Motur Walters | If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.          |

•



September 30, 2022

Kyle Summers ENSOLUM 606 S Rio Grande Ste A Aztec, NM 87410 TEL: (903) 821-5603 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Trunk E

OrderNo.: 2209E89

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 2 sample(s) on 9/28/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

**Analytical Report** Lab Order 2209E89

## Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/30/2022 **CLIENT: ENSOLUM** Client Sample ID: S-11 **Project:** Trunk E Collection Date: 9/27/2022 12:00:00 PM Lab ID: 2209E89-001 Matrix: MEOH (SOIL) Received Date: 9/28/2022 7:05:00 AM

| Analyses                             | Result | RL       | Qual Units | DF | Date Analyzed         | Batch  |
|--------------------------------------|--------|----------|------------|----|-----------------------|--------|
| EPA METHOD 300.0: ANIONS             |        |          |            |    | Analyst               | : JMT  |
| Chloride                             | ND     | 60       | mg/Kg      | 20 | 9/28/2022 10:31:27 AM | 70452  |
| EPA METHOD 8015M/D: DIESEL RANGE ORG | SANICS |          |            |    | Analyst               | DGH    |
| Diesel Range Organics (DRO)          | ND     | 15       | mg/Kg      | 1  | 9/28/2022 10:19:19 AM | 70449  |
| Motor Oil Range Organics (MRO)       | ND     | 49       | mg/Kg      | 1  | 9/28/2022 10:19:19 AM | 70449  |
| Surr: DNOP                           | 84.5   | 21-129   | %Rec       | 1  | 9/28/2022 10:19:19 AM | 70449  |
| EPA METHOD 8015D: GASOLINE RANGE     |        |          |            |    | Analyst               | BRM    |
| Gasoline Range Organics (GRO)        | ND     | 22       | mg/Kg      | 5  | 9/28/2022 9:37:00 AM  | A91349 |
| Surr: BFB                            | 106    | 37.7-212 | %Rec       | 5  | 9/28/2022 9:37:00 AM  | A91349 |
| EPA METHOD 8021B: VOLATILES          |        |          |            |    | Analyst               | BRM    |
| Benzene                              | ND     | 0.11     | mg/Kg      | 5  | 9/28/2022 9:37:00 AM  | B91349 |
| Toluene                              | ND     | 0.22     | mg/Kg      | 5  | 9/28/2022 9:37:00 AM  | B91349 |
| Ethylbenzene                         | ND     | 0.22     | mg/Kg      | 5  | 9/28/2022 9:37:00 AM  | B91349 |
| Xylenes, Total                       | ND     | 0.43     | mg/Kg      | 5  | 9/28/2022 9:37:00 AM  | B91349 |
| Surr: 4-Bromofluorobenzene           | 93.5   | 70-130   | %Rec       | 5  | 9/28/2022 9:37:00 AM  | B91349 |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

\* **Qualifiers:** 

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

## Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209E89

Date Reported: 9/30/2022

| CLIENT          | ENSOLUM     | Client Sample ID: S-12                                  |
|-----------------|-------------|---------------------------------------------------------|
| <b>Project:</b> | Trunk E     | Collection Date: 9/27/2022 12:05:00 PM                  |
| Lab ID:         | 2209E89-002 | Matrix: MEOH (SOIL) Received Date: 9/28/2022 7:05:00 AM |

| Analyses                           | Result   | RL       | Qual Units | DF | Date Analyzed         | Batch         |
|------------------------------------|----------|----------|------------|----|-----------------------|---------------|
| EPA METHOD 300.0: ANIONS           |          |          |            |    | Analys                | t: <b>JMT</b> |
| Chloride                           | ND       | 60       | mg/Kg      | 20 | 9/28/2022 10:43:47 AM | 70452         |
| EPA METHOD 8015M/D: DIESEL RANGE O | ORGANICS |          |            |    | Analys                | t: DGH        |
| Diesel Range Organics (DRO)        | ND       | 15       | mg/Kg      | 1  | 9/28/2022 12:31:42 PM | 70449         |
| Motor Oil Range Organics (MRO)     | ND       | 49       | mg/Kg      | 1  | 9/28/2022 12:31:42 PM | 70449         |
| Surr: DNOP                         | 85.7     | 21-129   | %Rec       | 1  | 9/28/2022 12:31:42 PM | 70449         |
| EPA METHOD 8015D: GASOLINE RANGE   |          |          |            |    | Analys                | t: BRM        |
| Gasoline Range Organics (GRO)      | ND       | 4.1      | mg/Kg      | 1  | 9/28/2022 10:16:00 AM | A91349        |
| Surr: BFB                          | 106      | 37.7-212 | %Rec       | 1  | 9/28/2022 10:16:00 AM | A91349        |
| EPA METHOD 8021B: VOLATILES        |          |          |            |    | Analys                | t: BRM        |
| Benzene                            | ND       | 0.021    | mg/Kg      | 1  | 9/28/2022 10:16:00 AM | B91349        |
| Toluene                            | ND       | 0.041    | mg/Kg      | 1  | 9/28/2022 10:16:00 AM | B91349        |
| Ethylbenzene                       | ND       | 0.041    | mg/Kg      | 1  | 9/28/2022 10:16:00 AM | B91349        |
| Xylenes, Total                     | ND       | 0.082    | mg/Kg      | 1  | 9/28/2022 10:16:00 AM | B91349        |
| Surr: 4-Bromofluorobenzene         | 94.3     | 70-130   | %Rec       | 1  | 9/28/2022 10:16:00 AM | B91349        |

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

\* Value exceeds Maximum Contaminant Level. **Qualifiers:** 

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

| Page | 85 | of 91 |  |
|------|----|-------|--|
|      |    |       |  |

2209E89

WO#:

| Hall Er             | nvironmenta       | l Analy    | vsis L          | aborato   | ory, Inc.   |                   |           |                    |      |          | 30-Sep-2. |
|---------------------|-------------------|------------|-----------------|-----------|-------------|-------------------|-----------|--------------------|------|----------|-----------|
| Client:<br>Project: | ENSOLU<br>Trunk E | ЛМ         |                 |           |             |                   |           |                    |      |          |           |
| Sample ID:          | MB-70452          | SampT      | ype: mt         | olk       | Tes         | stCode: EF        | PA Method | 300.0: Anion:      | 5    |          |           |
| Client ID:          | PBS               | Batch      | n ID: <b>70</b> | 452       | F           | RunNo: <b>9</b> 1 | 1368      |                    |      |          |           |
| Prep Date:          | 9/28/2022         | Analysis D | Date: <b>9/</b> | 28/2022   | S           | SeqNo: 32         | 272046    | Units: <b>mg/K</b> | g    |          |           |
| Analyte             |                   | Result     | PQL             | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit          | %RPD | RPDLimit | Qual      |
| Chloride            |                   | ND         | 1.5             |           |             |                   |           |                    |      |          |           |
| Sample ID:          | LCS-70452         | SampT      | ype: Ics        | 5         | Tes         | tCode: EF         | PA Method | 300.0: Anion:      | \$   |          |           |

| Campie 1D. <b>LC3-70432</b> | Gampi      | ypc. <b>ics</b> |           | 103         |                   | Ameniou  | 500.0. Amons |      |          |      |  |
|-----------------------------|------------|-----------------|-----------|-------------|-------------------|----------|--------------|------|----------|------|--|
| Client ID: LCSS             | Batch      | ID: 704         | 52        | F           | RunNo: <b>9</b> 1 | 368      |              |      |          |      |  |
| Prep Date: 9/28/2022        | Analysis D | ate: 9/2        | 28/2022   | 5           | SeqNo: 32         | 272047   | Units: mg/K  | g    |          |      |  |
| Analyte                     | Result     | PQL             | SPK value | SPK Ref Val | %REC              | LowLimit | HighLimit    | %RPD | RPDLimit | Qual |  |
| Chloride                    | 15         | 1.5             | 15.00     | 0           | 98.4              | 90       | 110          |      |          |      |  |

**Qualifiers:** 

- Value exceeds Maximum Contaminant Level. \*
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 6

# QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

| WO#: | 2209E89   |
|------|-----------|
|      | 20 Can 22 |

30-Sep-22

| Client:        | ENSOLUI          | M             |       |           |             |                   |           |               |           |          |      |
|----------------|------------------|---------------|-------|-----------|-------------|-------------------|-----------|---------------|-----------|----------|------|
| Project:       | Trunk E          |               |       |           |             |                   |           |               |           |          |      |
| Sample ID:     | 2209E89-001AMS   | SampType      | : MS  | 3         | Tes         | tCode: EF         | PA Method | 8015M/D: Die: | sel Range | Organics |      |
| Client ID:     | S-11             | Batch ID      | : 704 | 449       | F           | RunNo: 9          | 1371      |               |           |          |      |
| Prep Date:     | 9/28/2022        | Analysis Date | : 9/  | 28/2022   | S           | SeqNo: 32         | 271135    | Units: mg/K   | g         |          |      |
| Analyte        |                  | Result P      | QL    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| Diesel Range   | Organics (DRO)   | 41            | 15    | 49.70     | 0           | 82.4              | 36.1      | 154           |           |          |      |
| Surr: DNOP     |                  | 3.6           |       | 4.970     |             | 71.9              | 21        | 129           |           |          |      |
| Sample ID:     | 2209E89-001AMSD  | SampType      | : MS  | SD        | Tes         | tCode: EF         | PA Method | 8015M/D: Die: | sel Range | Organics |      |
| Client ID:     | S-11             | Batch ID      | : 70  | 449       | F           | RunNo: <b>9</b> 1 | 1371      |               |           |          |      |
| Prep Date:     | 9/28/2022        | Analysis Date | : 9/  | 28/2022   | Ş           | SeqNo: 32         | 271136    | Units: mg/K   | g         |          |      |
| Analyte        |                  | Result P      | QL    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| Diesel Range   | Organics (DRO)   | 37            | 14    | 45.96     | 0           | 81.6              | 36.1      | 154           | 8.80      | 33.9     |      |
| Surr: DNOP     |                  | 3.2           |       | 4.596     |             | 70.4              | 21        | 129           | 0         | 0        |      |
| Sample ID:     | LCS-70449        | SampType      | : LC  | S         | Tes         | tCode: EF         | PA Method | 8015M/D: Die  | sel Range | Organics |      |
| Client ID:     | LCSS             | Batch ID      | : 70  | 449       | F           | RunNo: <b>9</b> 1 | 1371      |               |           |          |      |
| Prep Date:     | 9/28/2022        | Analysis Date | : 9/  | 28/2022   | 5           | SeqNo: 32         | 271148    | Units: mg/K   | g         |          |      |
| Analyte        |                  | Result P      | QL    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| Diesel Range   | Organics (DRO)   | 34            | 15    | 50.00     | 0           | 68.0              | 64.4      | 127           |           |          |      |
| Surr: DNOP     |                  | 3.2           |       | 5.000     |             | 64.8              | 21        | 129           |           |          |      |
| Sample ID:     | MB-70449         | SampType      | : ME  | BLK       | Tes         | tCode: EF         | PA Method | 8015M/D: Die: | sel Range | Organics |      |
| Client ID:     | PBS              | Batch ID      | : 70  | 449       | F           | RunNo: 9          | 1371      |               |           |          |      |
| Prep Date:     | 9/28/2022        | Analysis Date | : 9/  | 28/2022   | Ś           | SeqNo: 32         | 271156    | Units: mg/K   | g         |          |      |
| Analyte        |                  | Result P      | QL    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| Diesel Range   | Organics (DRO)   | ND            | 15    |           |             |                   |           |               |           |          |      |
| Motor Oil Rang | e Organics (MRO) | ND            | 50    |           |             |                   |           |               |           |          |      |
| Surr: DNOP     |                  | 7.6           |       | 10.00     |             | 75.9              | 21        | 129           |           |          |      |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

# QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

| WO#: | 2209 | E89 |
|------|------|-----|
|      | 20.0 |     |

30-Sep-22

| Client:       | ENSOLU            | М          |                                        |           |             |                   |           |               |           |          |      |
|---------------|-------------------|------------|----------------------------------------|-----------|-------------|-------------------|-----------|---------------|-----------|----------|------|
| Project:      | Trunk E           |            |                                        |           |             |                   |           |               |           |          |      |
| Sample ID:    | 2.5ug gro lcs     | Samp       | Гуре: <b>LC</b>                        | S         | Tes         | tCode: EF         | PA Method | 8015D: Gasoli | ine Range |          |      |
| Client ID:    | LCSS              | Batc       | h ID: <b>A9</b>                        | 1349      | F           | RunNo: 91         | 349       |               |           |          |      |
| Prep Date:    |                   | Analysis [ | Date: 9/2                              | 28/2022   | ç           | SeqNo: 32         | 271436    | Units: mg/K   | g         |          |      |
| Analyte       |                   | Result     | PQL                                    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
|               | ge Organics (GRO) | 24         | 5.0                                    | 25.00     | 0           | 97.6              | 72.3      | 137           |           |          | Qua  |
| Surr: BFB     | ,                 | 2200       |                                        | 1000      | -           | 217               | 37.7      | 212           |           |          | S    |
| Sample ID:    | mb                | Samp       | Гуре: МЕ                               | BLK       | Tes         | tCode: EF         | PA Method | 8015D: Gasoli | ine Range |          |      |
| Client ID:    | PBS               | Batc       | h ID: <b>A9</b>                        | 1349      | F           | RunNo: 91         | 1349      |               |           |          |      |
| Prep Date:    |                   | Analysis [ | Date: 9/2                              | 28/2022   | S           | SeqNo: 32         | 271437    | Units: mg/Kg  | g         |          |      |
| Analyte       |                   | Result     | PQL                                    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| Gasoline Rang | ge Organics (GRO) | ND         | 5.0                                    |           |             |                   |           |               |           |          |      |
| Surr: BFB     |                   | 1100       |                                        | 1000      |             | 105               | 37.7      | 212           |           |          |      |
| Sample ID:    | 2209e89-001ams    | Samp       | Гуре: <b>МS</b>                        | 5         | Tes         | tCode: EF         | PA Method | 8015D: Gasoli | ine Range |          |      |
| Client ID:    | S-11              | Batc       | h ID: <b>A9</b>                        | 1349      | F           | RunNo: <b>9</b> 1 | 349       |               |           |          |      |
| Prep Date:    |                   | Analysis [ | Date: 9/2                              | 28/2022   | 5           | SeqNo: 32         | 271442    | Units: mg/Kg  | g         |          |      |
| Analyte       |                   | Result     | PQL                                    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| Gasoline Rang | ge Organics (GRO) | 22         | 4.3                                    | 21.70     | 0           | 101               | 70        | 130           |           |          |      |
| Surr: BFB     |                   | 1900       |                                        | 868.1     |             | 217               | 37.7      | 212           |           |          | S    |
| Sample ID:    | 2209e89-001amsd   | Samp       | SampType: MSD TestCode: EPA Method 801 |           |             |                   |           |               |           |          |      |
| Client ID:    | S-11              | Batc       | h ID: <b>A9</b>                        | 1349      | F           | RunNo: <b>9</b> 1 | 1349      |               |           |          |      |
| Prep Date:    |                   | Analysis [ | Date: <b>9/</b> 2                      | 28/2022   | S           | SeqNo: 32         | 271443    | Units: mg/K   | g         |          |      |
| Analyte       |                   | Result     | PQL                                    | SPK value | SPK Ref Val | %REC              | LowLimit  | HighLimit     | %RPD      | RPDLimit | Qual |
| -             | ge Organics (GRO) | 21         | 4.3                                    | 21.70     | 0           | 96.0              | 70        | 130           | 5.07      | 20       |      |
| Surr: BFB     |                   | 1900       |                                        | 868.1     |             | 214               | 37.7      | 212           | 0         | 0        | S    |

#### Qualifiers:

- \* Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ENSOLUM

Trunk E

**Client:** 

**Project:** 

Sample ID: 100ng btex lcs

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

| Client ID:                                                                                                                                                                                                               | LCSS                                      | Batc                                                                                                                        | h ID: <b>B9</b> 1                                                                                                                                            | 1349                                                                                                                                    | F                                                                                        | RunNo: 91                                                                                                                           | 1349                                                                                                                        |                                                                                                                               |                                                       |                            |      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|------|--|--|--|
| Prep Date:                                                                                                                                                                                                               |                                           | Analysis [                                                                                                                  | Date: <b>9/</b> 2                                                                                                                                            | 28/2022                                                                                                                                 | 5                                                                                        | SeqNo: 32                                                                                                                           | 271515                                                                                                                      | Units: mg/K                                                                                                                   | g                                                     |                            |      |  |  |  |
| Analyte                                                                                                                                                                                                                  |                                           | Result                                                                                                                      | PQL                                                                                                                                                          | SPK value                                                                                                                               | SPK Ref Val                                                                              | %REC                                                                                                                                | LowLimit                                                                                                                    | HighLimit                                                                                                                     | %RPD                                                  | RPDLimit                   | Qual |  |  |  |
| Benzene                                                                                                                                                                                                                  |                                           | 0.91                                                                                                                        | 0.025                                                                                                                                                        | 1.000                                                                                                                                   | 0                                                                                        | 90.8                                                                                                                                | 80                                                                                                                          | 120                                                                                                                           |                                                       |                            |      |  |  |  |
| Toluene                                                                                                                                                                                                                  |                                           | 0.91                                                                                                                        | 0.050                                                                                                                                                        | 1.000                                                                                                                                   | 0                                                                                        | 90.7                                                                                                                                | 80                                                                                                                          | 120                                                                                                                           |                                                       |                            |      |  |  |  |
| Ethylbenzene                                                                                                                                                                                                             |                                           | 0.93                                                                                                                        | 0.050                                                                                                                                                        | 1.000                                                                                                                                   | 0                                                                                        | 93.1                                                                                                                                | 80                                                                                                                          | 120                                                                                                                           |                                                       |                            |      |  |  |  |
| Xylenes, Total                                                                                                                                                                                                           |                                           | 2.8                                                                                                                         | 0.10                                                                                                                                                         | 3.000                                                                                                                                   | 0                                                                                        | 92.3                                                                                                                                | 80                                                                                                                          | 120                                                                                                                           |                                                       |                            |      |  |  |  |
| Surr: 4-Brom                                                                                                                                                                                                             | ofluorobenzene                            | 0.94                                                                                                                        |                                                                                                                                                              | 1.000                                                                                                                                   |                                                                                          | 94.1                                                                                                                                | 70                                                                                                                          | 130                                                                                                                           |                                                       |                            |      |  |  |  |
| Sample ID:                                                                                                                                                                                                               | mb                                        | Samp                                                                                                                        | Гуре: МЕ                                                                                                                                                     | BLK                                                                                                                                     | Tes                                                                                      | tCode: EF                                                                                                                           | PA Method                                                                                                                   | 8021B: Volati                                                                                                                 | les                                                   |                            |      |  |  |  |
| Client ID:                                                                                                                                                                                                               | PBS                                       | Batc                                                                                                                        | h ID: <b>B9</b> '                                                                                                                                            | 1349                                                                                                                                    | F                                                                                        | RunNo: <b>9</b> 1                                                                                                                   | 1349                                                                                                                        |                                                                                                                               |                                                       |                            |      |  |  |  |
| Prep Date:                                                                                                                                                                                                               |                                           | Analysis [                                                                                                                  | Date: 9/2                                                                                                                                                    | 28/2022                                                                                                                                 | S                                                                                        | SeqNo: 32                                                                                                                           | 271516                                                                                                                      | Units: mg/K                                                                                                                   | g                                                     |                            |      |  |  |  |
| Analyte                                                                                                                                                                                                                  |                                           | Result                                                                                                                      | PQL                                                                                                                                                          | SPK value                                                                                                                               | SPK Ref Val                                                                              | %REC                                                                                                                                | LowLimit                                                                                                                    | HighLimit                                                                                                                     | %RPD                                                  | RPDLimit                   | Qual |  |  |  |
| Benzene                                                                                                                                                                                                                  |                                           | ND                                                                                                                          | 0.025                                                                                                                                                        |                                                                                                                                         |                                                                                          |                                                                                                                                     |                                                                                                                             |                                                                                                                               |                                                       |                            |      |  |  |  |
| Toluene                                                                                                                                                                                                                  |                                           | ND                                                                                                                          | 0.050                                                                                                                                                        |                                                                                                                                         |                                                                                          |                                                                                                                                     |                                                                                                                             |                                                                                                                               |                                                       |                            |      |  |  |  |
| Ethylbenzene                                                                                                                                                                                                             |                                           | ND                                                                                                                          | 0.050                                                                                                                                                        |                                                                                                                                         |                                                                                          |                                                                                                                                     |                                                                                                                             |                                                                                                                               |                                                       |                            |      |  |  |  |
| Xylenes, Total                                                                                                                                                                                                           |                                           | ND                                                                                                                          | 0.10                                                                                                                                                         |                                                                                                                                         |                                                                                          |                                                                                                                                     |                                                                                                                             |                                                                                                                               |                                                       |                            |      |  |  |  |
| Surr: 4-Brom                                                                                                                                                                                                             | ofluorobenzene                            | 0.95                                                                                                                        |                                                                                                                                                              | 1.000                                                                                                                                   |                                                                                          | 94.9                                                                                                                                | 70                                                                                                                          | 130                                                                                                                           |                                                       |                            |      |  |  |  |
| 0                                                                                                                                                                                                                        | 2200e80 002eme                            | Sama                                                                                                                        | Гуре: МS                                                                                                                                                     |                                                                                                                                         | Tos                                                                                      | TestCode: EPA Method 8021B: Volatiles                                                                                               |                                                                                                                             |                                                                                                                               |                                                       |                            |      |  |  |  |
| Sample ID:                                                                                                                                                                                                               | 2209e89-002ams                            | Samp                                                                                                                        | iype. Wis                                                                                                                                                    |                                                                                                                                         | 103                                                                                      |                                                                                                                                     | A Methou                                                                                                                    |                                                                                                                               | 163                                                   |                            |      |  |  |  |
|                                                                                                                                                                                                                          | S-12                                      |                                                                                                                             | h ID: <b>B9</b>                                                                                                                                              |                                                                                                                                         |                                                                                          | RunNo: 91                                                                                                                           |                                                                                                                             |                                                                                                                               | 162                                                   |                            |      |  |  |  |
| •                                                                                                                                                                                                                        |                                           |                                                                                                                             | h ID: <b>B9</b>                                                                                                                                              | 1349                                                                                                                                    | F                                                                                        |                                                                                                                                     | 1349                                                                                                                        | Units: mg/K                                                                                                                   |                                                       |                            |      |  |  |  |
| Client ID:                                                                                                                                                                                                               |                                           | Batc                                                                                                                        | h ID: <b>B9</b>                                                                                                                                              | 1349                                                                                                                                    | F                                                                                        | RunNo: <b>9</b> 1                                                                                                                   | 1349                                                                                                                        |                                                                                                                               |                                                       | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:                                                                                                                                                                                                 |                                           | Batc<br>Analysis [                                                                                                          | h ID: <b>B9</b><br>Date: <b>9/</b> 2                                                                                                                         | 1349<br>28/2022                                                                                                                         | F                                                                                        | RunNo: 91<br>SeqNo: 32                                                                                                              | 1349<br>271521                                                                                                              | Units: mg/K                                                                                                                   | g                                                     | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte                                                                                                                                                                                      |                                           | Batc<br>Analysis [<br>Result                                                                                                | h ID: <b>B9</b><br>Date: <b>9/</b> 2<br>PQL                                                                                                                  | 1349<br>28/2022<br>SPK value                                                                                                            | F<br>S<br>SPK Ref Val                                                                    | RunNo: 9<br>SeqNo: 32<br>%REC                                                                                                       | 1349<br>271521<br>LowLimit                                                                                                  | Units: <b>mg/K</b><br>HighLimit                                                                                               | g                                                     | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene                                                                                                                                                                           |                                           | Batc<br>Analysis I<br>Result<br>0.65                                                                                        | h ID: <b>B9</b><br>Date: <b>9/</b> 2<br>PQL<br>0.018                                                                                                         | 1349<br>28/2022<br>SPK value<br>0.7067                                                                                                  | F<br>SPK Ref Val<br>0                                                                    | RunNo: <b>9</b><br>SeqNo: <b>32</b><br>%REC<br>91.6                                                                                 | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7                                                                                  | Units: <b>mg/K</b><br>HighLimit<br>120                                                                                        | g                                                     | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene                                                                                                                                                                |                                           | Batc<br>Analysis I<br>Result<br>0.65<br>0.66                                                                                | h ID: <b>B9</b><br>Date: <b>9/</b><br>PQL<br>0.018<br>0.035                                                                                                  | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067                                                                                        | F<br>SPK Ref Val<br>0<br>0                                                               | RunNo: <b>9</b><br>SeqNo: <b>32</b><br>%REC<br>91.6<br>93.0                                                                         | 271521<br>LowLimit<br>68.8<br>73.6                                                                                          | Units: <b>mg/K</b><br>HighLimit<br>120<br>124                                                                                 | g                                                     | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total                                                                                                                              |                                           | Batc<br>Analysis I<br>Result<br>0.65<br>0.66<br>0.66                                                                        | h ID: <b>B9</b><br>Date: <b>9</b> /2<br>PQL<br>0.018<br>0.035<br>0.035                                                                                       | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>0.7067                                                                              | F<br>SPK Ref Val<br>0<br>0<br>0                                                          | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8                                                                               | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7                                                                                  | Units: <b>mg/K</b><br>HighLimit<br>120<br>124<br>129                                                                          | g                                                     | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom                                                                                                              | S-12                                      | Batc<br>Analysis I<br>Result<br>0.65<br>0.66<br>0.66<br>2.0<br>0.63                                                         | h ID: <b>B9</b><br>Date: <b>9</b> /2<br>PQL<br>0.018<br>0.035<br>0.035                                                                                       | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>2.120<br>0.7067                                                                     | F<br>SPK Ref Val<br>0<br>0<br>0<br>0                                                     | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0                                                               | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70                                                                    | Units: <b>mg/K</b><br>HighLimit<br>120<br>124<br>129<br>126                                                                   | g<br>%RPD                                             | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom<br>Sample ID:                                                                                                | S-12                                      | Batc<br>Analysis I<br>Result<br>0.65<br>0.66<br>0.66<br>2.0<br>0.63                                                         | h ID: <b>B9</b><br>Date: <b>9/2</b><br>PQL<br>0.018<br>0.035<br>0.035<br>0.071                                                                               | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>0.7067<br>2.120<br>0.7067<br>5D                                                     | F<br>SPK Ref Val<br>0<br>0<br>0<br>0<br>0<br>Tes                                         | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0                                                               | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70<br>PA Method                                                       | Units: <b>mg/K</b><br>HighLimit<br>120<br>124<br>129<br>126<br>130                                                            | g<br>%RPD                                             | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom<br>Sample ID:                                                                                                | S-12<br>ofluorobenzene<br>2209e89-002amsd | Batc<br>Analysis I<br>Result<br>0.65<br>0.66<br>0.66<br>2.0<br>0.63                                                         | h ID: <b>B9</b><br>Date: <b>9</b> /2<br>PQL<br>0.018<br>0.035<br>0.035<br>0.071<br>Fype: <b>MS</b><br>h ID: <b>B9</b>                                        | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>2.120<br>0.7067<br>3D<br>1349                                                       | F<br>SPK Ref Val<br>0<br>0<br>0<br>0<br>Tes<br>F                                         | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0<br>tCode: EF                                                  | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70<br>PA Method<br>1349                                               | Units: <b>mg/K</b><br>HighLimit<br>120<br>124<br>129<br>126<br>130                                                            | g<br>%RPD                                             | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom<br>Sample ID:<br>Client ID:                                                                                  | S-12<br>ofluorobenzene<br>2209e89-002amsd | Batc<br>Analysis I<br>Result<br>0.65<br>0.66<br>0.66<br>2.0<br>0.63<br>Samp<br>Batc<br>Analysis I<br>Result                 | h ID: <b>B9</b><br>Date: <b>9</b> /2<br>0.018<br>0.035<br>0.035<br>0.071<br>Fype: <b>MS</b><br>h ID: <b>B9</b><br>Date: <b>9</b> /2<br>PQL                   | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>2.120<br>0.7067<br>2.120<br>0.7067<br>5D<br>1349<br>28/2022<br>SPK value            | F<br>SPK Ref Val<br>0<br>0<br>0<br>0<br>Tes<br>F<br>SPK Ref Val                          | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0<br>tCode: EF<br>RunNo: 9<br>SeqNo: 32<br>%REC                 | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70<br>PA Method<br>1349<br>271522<br>LowLimit                         | Units: <b>mg/K</b><br>HighLimit<br>120<br>124<br>129<br>126<br>130<br><b>8021B: Volati</b><br>Units: <b>mg/K</b><br>HighLimit | g<br>%RPD<br>les<br>g<br>%RPD                         | RPDLimit                   | Qual |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom<br>Sample ID:<br>Client ID:<br>Prep Date:                                                                    | S-12<br>ofluorobenzene<br>2209e89-002amsd | Batc<br>Analysis I<br>Result<br>0.65<br>0.66<br>2.0<br>0.63<br>Samp<br>Batc<br>Analysis I<br>Result<br>0.60                 | h ID: <b>B9</b><br>Date: <b>9</b> /2<br>PQL<br>0.018<br>0.035<br>0.035<br>0.035<br>0.071<br>Type: <b>MS</b><br>h ID: <b>B9</b><br>Date: <b>9</b> /2          | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>2.120<br>0.7067<br>2.120<br>0.7067<br>3D<br>1349<br>28/2022                         | F<br>SPK Ref Val<br>0<br>0<br>0<br>0<br>0<br>Tes<br>F                                    | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0<br>tCode: EF<br>RunNo: 9<br>SeqNo: 32                         | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70<br>24 Method<br>1349<br>271522                                     | Units: mg/K<br>HighLimit<br>120<br>124<br>129<br>126<br>130<br>8021B: Volati<br>Units: mg/K                                   | g<br>%RPD<br>les<br>g                                 |                            |      |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom<br>Sample ID:<br>Client ID:<br>Prep Date:<br>Analyte                                                         | S-12<br>ofluorobenzene<br>2209e89-002amsd | Batc<br>Analysis I<br>0.65<br>0.66<br>0.66<br>2.0<br>0.63<br>Samp<br>Batc<br>Analysis I<br>Result<br>0.60<br>0.62           | h ID: <b>B9</b><br>Date: <b>9</b> /2<br>0.018<br>0.035<br>0.035<br>0.071<br>Type: <b>MS</b><br>h ID: <b>B9</b><br>Date: <b>9</b> /2<br>PQL<br>0.018<br>0.035 | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>2.120<br>0.7067<br>30<br>1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067           | SPK Ref Val<br>0<br>0<br>0<br>0<br>0<br>Tes<br>SPK Ref Val<br>0<br>0                     | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0<br>tCode: EF<br>RunNo: 9<br>SeqNo: 32<br>%REC<br>85.3<br>87.4 | 1349<br>271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70<br>24 Method<br>1349<br>271522<br>LowLimit<br>68.8<br>73.6 | Units: mg/K<br>HighLimit<br>120<br>124<br>129<br>126<br>130<br>8021B: Volati<br>Units: mg/K<br>HighLimit<br>120<br>124        | g<br>%RPD<br>les<br>g<br>%RPD<br>7.17<br>6.20         | RPDLimit<br>20<br>20       |      |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom<br>Sample ID:<br>Client ID:<br>Prep Date:<br>Analyte<br>Benzene                                              | S-12<br>ofluorobenzene<br>2209e89-002amsd | Batc<br>Analysis I<br>Result<br>0.65<br>0.66<br>2.0<br>0.63<br>Samp<br>Batc<br>Analysis I<br>Result<br>0.60<br>0.62<br>0.63 | h ID: B9<br>Date: 9/2<br>0.018<br>0.035<br>0.035<br>0.035<br>0.071<br>Fype: MS<br>h ID: B9<br>Date: 9/2<br>PQL<br>0.018<br>0.035<br>0.035                    | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>2.120<br>0.7067<br>3D<br>1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>0.7067 | F<br>SPK Ref Val<br>0<br>0<br>0<br>0<br>0<br>Tes<br>5<br>SPK Ref Val<br>0<br>0<br>0<br>0 | RunNo: 9<br>SeqNo: 32<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0<br>tCode: EF<br>RunNo: 9<br>SeqNo: 32<br>%REC<br>85.3<br>87.4<br>88.8 | 271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70<br>24 Method<br>1349<br>271522<br>LowLimit<br>68.8<br>73.6<br>72.7 | Units: mg/K<br>HighLimit<br>120<br>124<br>129<br>126<br>130<br>8021B: Volati<br>Units: mg/K<br>HighLimit<br>120<br>124<br>129 | g<br>%RPD<br>les<br>g<br>%RPD<br>7.17<br>6.20<br>5.44 | RPDLimit<br>20<br>20<br>20 |      |  |  |  |
| Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total<br>Surr: 4-Brom<br>Sample ID:<br>Client ID:<br>Prep Date:<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes, Total | S-12<br>ofluorobenzene<br>2209e89-002amsd | Batc<br>Analysis I<br>0.65<br>0.66<br>0.66<br>2.0<br>0.63<br>Samp<br>Batc<br>Analysis I<br>Result<br>0.60<br>0.62           | h ID: <b>B9</b><br>Date: <b>9</b> /2<br>0.018<br>0.035<br>0.035<br>0.071<br>Type: <b>MS</b><br>h ID: <b>B9</b><br>Date: <b>9</b> /2<br>PQL<br>0.018<br>0.035 | 1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067<br>2.120<br>0.7067<br>30<br>1349<br>28/2022<br>SPK value<br>0.7067<br>0.7067           | SPK Ref Val<br>0<br>0<br>0<br>0<br>0<br>Tes<br>SPK Ref Val<br>0<br>0                     | RunNo: 9<br>SeqNo: 32<br>%REC<br>91.6<br>93.0<br>93.8<br>92.3<br>89.0<br>tCode: EF<br>RunNo: 9<br>SeqNo: 32<br>%REC<br>85.3<br>87.4 | 1349<br>271521<br>LowLimit<br>68.8<br>73.6<br>72.7<br>75.7<br>70<br>24 Method<br>1349<br>271522<br>LowLimit<br>68.8<br>73.6 | Units: mg/K<br>HighLimit<br>120<br>124<br>129<br>126<br>130<br>8021B: Volati<br>Units: mg/K<br>HighLimit<br>120<br>124        | g<br>%RPD<br>les<br>g<br>%RPD<br>7.17<br>6.20         | RPDLimit<br>20<br>20       |      |  |  |  |

TestCode: EPA Method 8021B: Volatiles

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 6 of 6

WO#: 2209E89

30-Sep-22

| ived by OGD <u>x16/12/2023 1:46:55 PM</u><br>ENVIRONMENTAL<br>ANALYSIS<br>LABORATORY      |                                               | 4901 Hawki<br>erque, NM<br>IX: 505-345 | ins NE<br>87109 Sa<br>5-4107 | mple Log-In Che            | Page 8<br>ock List |
|-------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------|----------------------------|--------------------|
| Client Name: ENSOLUM                                                                      | Work Order Number: 2                          | 209E89                                 |                              | RcptNo: 1                  |                    |
| Received By: Juan Rojas 9/2                                                               | 28/2022 7:05:00 AM                            |                                        | Guansa g                     | 2                          |                    |
| Completed By: Tracy Casarrubias 9/2<br>Reviewed By: 9-28-22                               | 28/2022 7:40:58 AM                            |                                        |                              |                            |                    |
| Chain of Custody                                                                          |                                               |                                        |                              |                            |                    |
| 1. Is Chain of Custody complete?                                                          | Y                                             | es 🗸                                   | No 🗌                         | Not Present                |                    |
| 2. How was the sample delivered?                                                          | <u>C</u>                                      | ourier                                 |                              |                            |                    |
| Log In<br>3. Was an attempt made to cool the samples?                                     |                                               |                                        |                              | _                          |                    |
| • Was an attempt made to cool the samples?                                                | Ye                                            | es 🔽                                   | No 🗌                         | NA 🗌                       |                    |
| 4. Were all samples received at a temperature of >0                                       | 0° C to 6.0°C Ye                              | s 🗸                                    | No 🗌                         | NA 🗌                       |                    |
| 5. Sample(s) in proper container(s)?                                                      | Ye                                            | s 🗸                                    | No 🗌                         |                            |                    |
| 6. Sufficient sample volume for indicated test(s)?                                        | Ye                                            | s 🔽                                    | No 🗌                         | 8                          |                    |
| 7. Are samples (except VOA and ONG) properly pres                                         | served? Yes                                   | s 🗸                                    | No 🗌                         |                            |                    |
| 8. Was preservative added to bottles?                                                     |                                               | s 🗌                                    | No 🔽                         | NA 🗌                       |                    |
| 9. Received at least 1 vial with headspace <1/4" for A                                    | AQ VOA? Yes                                   |                                        | No 🗌                         | NA 🔽                       |                    |
| 10. Were any sample containers received broken?                                           | Ye                                            | s 🗆                                    | No 🔽                         | # of preserved             |                    |
| 11. Does paperwork match bottle labels?<br>(Note discrepancies on chain of custody)       | Yes                                           |                                        | No 🗌                         | bottles checked<br>for pH: |                    |
| 12. Are matrices correctly identified on Chain of Custo                                   | dv2 Vec                                       |                                        | No 🗌                         | (<2 or >12 u<br>Adjusted?  | nless noted)       |
| 13. Is it clear what analyses were requested?                                             | Yes                                           | _                                      | No 🗌<br>No 🗌                 | , tujuotou :               |                    |
| 14. Were all holding times able to be met?<br>(If no, notify customer for authorization.) |                                               |                                        |                              | Checked by: JN             | 9/28/22            |
| Special Handling (if applicable)                                                          |                                               |                                        | -                            |                            |                    |
| 15. Was client notified of all discrepancies with this on                                 | der? Ye                                       | s 🗌                                    | No 🗌                         | NA 🔽                       |                    |
| Person Notified:                                                                          | ministraturi - temperaturi -                  |                                        |                              |                            |                    |
| By Whom:                                                                                  | Date:<br>──────────────────────────────────── | 1ail 🗌 Pi                              |                              |                            |                    |
| Regarding:                                                                                |                                               |                                        | hone 🗌 Fax                   | In Person                  |                    |
| Client Instructions:                                                                      |                                               |                                        |                              |                            |                    |
| 16. Additional remarks:                                                                   |                                               |                                        |                              |                            |                    |
| 17. <u>Cooler Information</u>                                                             |                                               |                                        |                              |                            |                    |
| Cooler No Temp °C Condition Seal Inta                                                     | act Seal No Seal D                            | Date                                   | Signed By                    |                            |                    |
| 1 0.9 Good Yes                                                                            |                                               |                                        | g                            |                            |                    |

.

Page 1 of 1

| In increased by submitted to Hall Environmental may be subcontracted to other/accredited laboratories. This serves as notice of | 100 1802 / Maste Warden  | Time: Relinguished by: |   | 2023 | 1:40 | :55 | PM |   |   |   |   |   | 1/2/12/12:05 5 - 12 | Marpha Riax S S - 11 | Date Time Matrix Sample Name                                                                                                                   | EDD (Type)      |        | Accreditation:   Az Compliance | □ Standard □ Level 4 (Full Validation) | QA/QC Package: | email or Fax#:   | e /                | 074/0      | Mailing Address: 600 5 Pro Contracto Sector | Pa | Gent: Enselver, LLC      | of 91<br>Chain-of-Custody Record |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|---|------|------|-----|----|---|---|---|---|---|---------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------------------------------|----------------------------------------|----------------|------------------|--------------------|------------|---------------------------------------------|----|--------------------------|----------------------------------|--|
| ontracted to other accredited laboratories. This serves as notice of this                                                       | Variation of 198/22 7:05 | Via: Date Time         |   |      |      |     |    |   |   |   |   | 0 | ¢                   | 1402 jas (CD) 001    | Cooler Temp(including cF):     (- & + (- ) - (- ) (°C)       Container     Preservative     HEAL No.       Type and #     Type <b>2.209EB9</b> | # of Coolers: 1 | ,I-Yes | Sampler: 1 Danie Lí            | Summers                                |                | Project Manager: |                    | Project #: |                                             |    | Standard & Rush 1001 Day | Turn-Around Time:                |  |
| this possibility. Any sub-contracted data will be clearly notated on the analytical report.                                     | 1                        | Remarks:               |   |      |      |     |    |   |   |   |   |   | X                   | ×                    | BTEX / MT                                                                                                                                      | BE              | 1      | MB                             | 's (8                                  | 021            | )                |                    |            |                                             |    |                          |                                  |  |
| lity. An                                                                                                                        | Pe                       | arks:                  |   |      | _    | _   |    | _ | _ |   |   | - | $\succ$             | X                    | TPH:8015D                                                                                                                                      |                 |        |                                |                                        |                | ))               |                    |            | 490                                         |    |                          |                                  |  |
| y sub-c                                                                                                                         | Key                      |                        |   | +    |      | _   |    | _ |   |   |   | _ | _                   |                      | 8081 Pestic                                                                                                                                    |                 |        |                                | PCE                                    | 3's            |                  | 1 el. 303-343-3975 |            | 4901 Hawkins NF                             |    |                          |                                  |  |
| ontract                                                                                                                         | Y.K                      | Ð                      |   |      |      | -   |    | - |   | - |   |   | _                   |                      | EDB (Metho<br>PAHs by 83                                                                                                                       |                 |        |                                |                                        | 19             | _                | -040-              | 246        | wkins                                       |    |                          |                                  |  |
| ed data                                                                                                                         | 1:PBZ                    | 3                      |   |      |      |     |    |   |   |   |   |   | _                   |                      | RCRA 8 Me                                                                                                                                      |                 |        | 270                            |                                        | 10             |                  | .160-              |            | www.italietivitotititetitai.com             |    | ANAI VSTS                |                                  |  |
| a will be                                                                                                                       | 2                        | ۲<br>۱                 |   |      |      |     |    |   |   |   |   |   | X                   | X                    | CI) F, Br, N                                                                                                                                   |                 |        | O <sub>2</sub> ,               | PO4                                    | , S(           | <b>∂</b> ₄-      | Anal               |            |                                             |    |                          |                                  |  |
| e clearl                                                                                                                        | 1200                     | Sm                     |   |      |      |     |    |   |   |   |   |   |                     | - 1                  | 8260 (VOA)                                                                                                                                     |                 |        |                                |                                        |                |                  | ysis               |            |                                             |    |                          |                                  |  |
| y notat                                                                                                                         | Ò                        | 6                      |   |      |      |     |    |   |   |   |   |   |                     |                      | 8270 (Semi-                                                                                                                                    | -VC             | DA)    |                                |                                        |                |                  | Reg                |            |                                             |    |                          |                                  |  |
| ed on t                                                                                                                         |                          | 2                      |   |      |      |     |    |   |   |   |   |   |                     |                      | Total Colifor                                                                                                                                  | m (             | Pre    | sen                            | it/Ab                                  | sen            | t)               | Analysis Request   |            | ie Ni                                       |    |                          |                                  |  |
| he ana                                                                                                                          | \$                       | (r                     | - |      | _    |     |    |   | _ | _ | - |   | -                   |                      |                                                                                                                                                |                 |        |                                |                                        |                |                  | vsis Request       |            | Albuquerque NM 87100                        |    | ENVIRONMENTAL            |                                  |  |
| lyticaL                                                                                                                         |                          |                        | _ |      | _    |     | _  | _ | _ |   | _ | - | -                   |                      | ×                                                                                                                                              |                 |        |                                |                                        |                |                  |                    |            | 100                                         | 3  |                          |                                  |  |
| report.                                                                                                                         | 20                       | '/                     | _ |      | _    |     | +  |   | _ |   |   |   | -                   |                      |                                                                                                                                                |                 |        |                                |                                        |                |                  |                    |            |                                             |    |                          |                                  |  |
| 1                                                                                                                               | 211                      | ]                      |   |      | +    | +   | +  | + | + |   |   | _ | -                   |                      |                                                                                                                                                |                 |        |                                |                                        |                |                  | the second         |            |                                             | 2  |                          |                                  |  |
| 1                                                                                                                               |                          |                        |   |      |      |     |    |   |   |   |   |   |                     |                      |                                                                                                                                                |                 |        |                                |                                        |                |                  |                    |            |                                             | -  | ٢.                       |                                  |  |

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator: |                              | OGRID:                                    |
|-----------|------------------------------|-------------------------------------------|
| Ent       | terprise Field Services, LLC | 241602                                    |
| PO        | ) Box 4324                   | Action Number:                            |
| Ηοι       | buston, TX 77210             | 226502                                    |
|           |                              | Action Type:                              |
|           |                              | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created<br>By |      | Condition<br>Date |
|---------------|------|-------------------|
| nvelez        | None | 6/13/2023         |

Page 91 of 91

Action 226502