District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Responsible Party PERMIAN WATER SOLUTIONS, LLC

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	nCH1834760902
District RP	1RP-5273
Facility ID	
Application ID	

Release Notification

Responsible Party

OGRID 373626

Contact Name JENNI USHER			Contact '	Contact Telephone 512-820-8772			
Contact email JENNI@PERMIANWS.COM			Incident	Incident # (assigned by OCD) nCH1834760902, nOY1823336566,			
Contact mailing address PO BOX 2106, MIDLAND, TX 79702				9702	nOY1821950108, nCH182123963 nOY1803834027, nOY173005892		
Latitude	32 48086		Location	of Release S		nKL1632848695, nJXK1616127644, nKJ1512041707, nTO1502927174, nPAC0531137785	
Latitude	32.40000		(NAD 83 in dec	imal degrees to 5 dec			
Site Name K	AISER ST.	ATE SWD #009		Site Type	SALT WATE	ER DISPOSAL	
Date Release	Discovered			API# (if a	pplicable) 30-02	5-02538	
Unit Letter	Section	Township	Range	Cor	unty		
F	13	21S	34E	LEA			
X Crude Oil		Volume Released	d (bbls) UNKNO	OWN	Volume Re	the volumes provided below) covered (bbls)	
X Produced		Volume Released	ONKIN			covered (bbls)	
		produced water >		nloride in the	Yes		
Condensa	te	Volume Released	d (bbls)		Volume Re	covered (bbls)	
Natural G	as	Volume Released	d (Mcf)		Volume Re	covered (Mcf)	
Other (des	scribe)	Volume/Weight	Released (provide	units)	Volume/We	eight Recovered (provide units)	
Cause of Rele C-141 FILE		L RESS MULTIPLE	HISTORICAL II	NCIDENTS AT	THIS WELL.		

Received by OCD: 8/28/2023 1:38:11 PM Form C-141 State of New Mexico Page 2 Oil Conservation Division Page 2 of 1449

Incident ID nCH1834760902
District RP 1RP-5273
Facility ID
Application ID

Was this a major	If YES, for what reason(s) does the respor	sible party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?	AT LEAST ONE OF THE HISTORICA	L INCIDENTS REPORTED WAS GREATER THAN 25 BBLS,
19.13.29.7(A) NWAC:	WHICH SIGNIFIES A MAJOR RELEAS	SE.
X Yes No		
· ·	· ·	om? When and by what means (phone, email, etc)?
PLEASE SEE PREVIO	US C-141'S.	
	Initial Re	esponse
The responsible p	party must undertake the following actions immediately	unless they could create a safety hazard that would result in injury
\overline{X} The source of the rele	ease has been stopped.	
X The impacted area ha	s been secured to protect human health and	the environment.
X Released materials ha	ave been contained via the use of berms or d	ikes, absorbent pads, or other containment devices.
X All free liquids and re	ecoverable materials have been removed and	l managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain v	vhy:
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
I hereby certify that the info	rmation given above is true and complete to the	pest of my knowledge and understand that pursuant to OCD rules and
regulations all operators are	required to report and/or file certain release noti:	fications and perform corrective actions for releases which may endanger
failed to adequately investig	ate and remediate contamination that pose a thre	CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In
addition, OCD acceptance of and/or regulations.	f a C-141 report does not relieve the operator of	responsibility for compliance with any other federal, state, or local laws
	Helleb	
Printed Name: JENNI	USHER	Title: REGULATORY ANALYST
Signature: Jenní U.	sher	Date: 9/14/2021
email: JENNI@PERMI	ANWS.COM	Telephone: 512-820-8772
OCD Only		
Received by:		Date:

nCH1834760902

Incident ID District RP 1RP-5273 Facility ID Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/28/2023 1:38:11 PM Form C-141 State of New Mexico Oil Conservation Division Page 4

	Page 4 of 1449
ID	nCH1834760902
ת מ	

Incident ID	nCH1834760902
District RP	1RP-5273
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Page 5 of 1449

Incident ID	nCH1834760902
District RP	1RP-5273
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	included in the plan.
☐ Detailed description of proposed remediation technique ☐ Scaled sitemap with GPS coordinates showing delineation points ☐ Estimated volume of material to be remediated ☐ Closure criteria is to Table 1 specifications subject to 19.15.29.1 ☐ Proposed schedule for remediation (note if remediation plan times)	2(C)(4) NMAC
<u>Deferral Requests Only</u> : Each of the following items must be con	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around prodeconstruction.	oduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.
	ertain release notifications and perform corrective actions for releases
which may endanger public health or the environment. The acceptar liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local later.	and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name: JENNI USHER	Title: REGULATORY ANALYST
Signature: Jenní Usher	Date:9/21/2021
email: <u>JENNI@PERMIANWS.COM</u>	Telephone: 512-820-8772
OCD Only	
Received by:	Date:
Approved Approved with Attached Conditions of A	Approval
Signature:	Date:

REMEDIATION PLAN IS TO FOLLOW SLO PHASE 1 AND PHASE 2 WORK PLANS USING TETRA TECH DELINEATION REVISED WORK PLAN DATED JANUARY 27, 2020 TO RESOLVE ALL OUTSTANDING INCIDENTS. WORK PLAN IS ATTACHED.

Received by OCD: 8/28/2023 1:38:11 PM State of New Mexico Oil Conservation Division Page 6

Page 6 of 1449 Incident ID nCH1834760902 1RP-5273 District RP Facility ID Application ID

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attach	ment Checklist: Each of the follo	owing items must be included in the closure report.
A scaled site and sar	mpling diagram as described in 19.	15.29.11 NMAC
Photographs of the must be notified 2 days		photos of the liner integrity if applicable (Note: appropriate OCD District office
✓ Laboratory analyses	of final sampling (Note: appropria	te ODC District office must be notified 2 days prior to final sampling)
Description of reme	diation activities	
200		
and regulations all operations are endanger public heal should their operations has human health or the envir compliance with any other estore, reclaim, and re-veaccordance with 19.15.29 Printed Name: Dusty M.	ors are required to report and/or file th or the environment. The acceptative failed to adequately investigate comment. In addition, OCD acceptator federal, state, or local laws and/or egetate the impacted surface area to 1.13 NMAC including notification to 1.15 McInturff	complete to the best of my knowledge and understand that pursuant to OCD rules be certain release notifications and perform corrective actions for releases which ance of a C-141 report by the OCD does not relieve the operator of liability and remediate contamination that pose a threat to groundwater, surface water, nice of a C-141 report does not relieve the operator of responsibility for regulations. The responsible party acknowledges they must substantially the conditions that existed prior to the release or their final land use in the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date: 1432 634-7865
OCD Only		
Received by: Shelly We	ells	Date: <u>8/28/2023</u>
remediate contamination	OCD does not relieve the responsible that poses a threat to groundwater, so any other federal, state, or local law	e party of liability should their operations have failed to adequately investigate an surface water, human health, or the environment nor does not relieve the responsible was and/or regulations.
Closure Approved by:	Nelson Velez	Date: 09/01/2023
Printed Name:	Nelson Velez	Title: Environmental Specialist – Adv

Printed Name:

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN RE PERMIAN WATER SOLUTIONS, LLC

NMOCD-ACO-201813

AGREED COMPLIANCE ORDER

Pursuant to the New Mexico Oil and Gas Act ("Act"), NMSA 1978, Section 70-2-1, et seq., and 19.15.29.15 NMAC, the Director of the Oil Conservation Division ("OCD") and Permian Water Solutions, LLC ("PWS") enter into this Agreed Compliance Order ("Order").

I. FINDINGS OF FACT AND CONCLUSIONS OF LAW

- 1. OCD is charged with the administration and enforcement of the Act and the rules adopted thereunder, and has jurisdiction over Operator and its wells and sites in New Mexico.
- 2. PWS owns the wells identified in Exhibit A ("Wells").
- 3. On October 15, 2018, Cambrian Management, LTD and PWS submitted a Form C-145 application and requested OCD's approval to transfer the Wells.
- 4. PWS in the Form C-145 application certified that, as a condition of OCD's approval to transfer the Wells, it would be responsible to take corrective action for releases at the Wells, "including releases that occurred before I became operator of record."
- 5. On October 16, 2018, OCD approved the Form C-145 application to transfer the Wells.
- 6. Pursuant to 19.15.29.7(C) NMAC, PWS is the "responsible party" for the releases at the Wells.
- 7. Pursuant to 19.15.29 NMAC, PWS must characterize and remediate the releases at the Wells identified in Exhibit A ("Incidents").
- 8. PWS has initiated the characterization and remediation of the Incidents at the Kaiser Well
- 9. OCD is authorized to impose sanctions for violations of the Oil and Gas Act and orders issued and rules promulgated pursuant to the Oil and Gas Act, including denial or revocation of registrations, applications, permits, authorizations and transfers, and the assessment of civil penalties. See 19.15.5.10 NMAC.
- 10. PWS requests this Order in order to avoid sanctions under the Oil and Gas Act and 19.15.29 NMAC for the Incidents and to provide PWS an opportunity to demonstrate its commitment to compliance with the Act and rules.

PWS admits the findings of fact and waives its right to appeal from this Order, provided however that PWS reserves the right to appeal OCD's interpretation or application of this Order.

II. ORDER

12. <u>Kaiser Incidents.</u> PWS shall complete the remediation of the Kaiser Incidents in accordance with the OCD-approved remediation plan.

13. Other Incidents.

- A. PWS shall submit characterization and remediation work plans for the Incidents through the OCD fee portal no later than May 27, 2022.
- B. If OCD does not approve a characterization or remediation work plan, OCD shall provide a written explanation of the deficiency, and no later than thirty (30) days after OCD provides such explanation, PWS shall submit a revised work plan addressing the deficiency. If OCD does not approve the revised work plan, OCD shall provide a written explanation of the deficiency, and no later than thirty (30) days after OCD provides such explanation, PWS shall submit a second revised work plan addressing the deficiency. If OCD does not approve the second revised work plan, PWS shall be in breach of the Order, and PWS shall pay a stipulated penalty and be subject to additional sanctions as provided below.
- C. No later than the last deadline, which includes any extensions granted, as established by OCD for the final completion of the remediation work of each of the other Incidents, PWS shall complete the characterization and remediation of each of the other Incidents, provided however that PWS may request an extension of time for good cause shown.
- D. In evaluating a request for an extension of time under subparagraph C, OCD shall consider PWS's status as a small operator with limted resources, its ongoing commitment of resources to other remediation projects in New Mexico, including the Kaiser remediation project, and its need to reallocate resources before commencing a a remediation project required by this Order.

- Documents and Other Communications.
 - A. Paragraphs 13 and 14. PWS shall submit all documents related to Paragraphs 13 and 14 through the OCD Permitting fee portal.
 - B. Other Communications. All other communications related to the Order shall be submitted electronically to:

OCD: Jesse Tremaine, Esq.

JesseK.Tremaine@state.nm.us

PWS: Luke Kittinger, Esq. Luke@abadieschill.com

- 15. If PWS fails to comply with a requirement of this Order, no later than thirty (30) days after receipt of a written demand from OCD, in addition to any other sanction imposed by OCD pursuant to the Oil and Gas Act and the rules adopted thereunder, PWS shall pay a stipulated penalty of \$500.00 for each day until it complies with each separate requirement ("Stipulated Penalty"). Each failure to comply with a requirement of this Order shall be subject to a separate Stipulated Penalty.
- 16. If PWS fails to pay the Stipulated Penalty or portion thereof within thirty (30) days after receipt of a written demand from OCD, it shall pay interest on the Stipulated Penalty or unpaid portion thereof until paid in full at the interest rate of 8.75 percent.
- 17. Notwithstanding an assessment of a Stipulated Penalty, PWS shall comply with its remaining obligations of this Order.
- 18. Upon receipt of written request, OCD and PWS shall confer in good faith to resolve any dispute regarding the Order.
- 19. If PWS cannot reasonably perform or achieve an obligation under this Order due to Force Majeure, OCD shall stay the obligation and any other reasonably related obligation until OCD in its sole discretion decides PWS can reasonably comply with such obligation and the period for compliance with such obligation and any other reasonably related obligation shall be extended for an additional number of days equivalent to the period of the stay. For the purpose of this Order, Force Majeure means an event beyond the reasonable control of PWS which prevents PWS from complying with an obligation under this Order, including fire, explosion, earthquake, drought, flood, war, terrorism, or an agency's undue delay to issue a permit, easement, license or other required consent required to comply with this Order.
- 20. Upon successful completion of this Order, OCD shall notify PWS in writing that it is released from liability for the Incidents.

21. OCD reserves the right to sanction PWS for any alleged violation not addressed in this Order, provided however that PWS reserves all rights accorded by statute and regulation.

NEW MEXICO OIL CONSERVATION DIVISION

Woul	Date:	2/17/2022	
Adrienne Sandoval			
Director			

PERMIAN WATER SOLUTIONS, LLC

Josh Brooks President Date: 1-28-202

EXHIBIT A

WELL	API	INCIDENT ID	DISCOVERY DATE	LOCATION	DISTRICT	MATERIAL	SOURCE
KAISER STATE SWD #009	30-025-02538	nCH1834760902	11/2/2018	F-13-21S-34E	Hobbs		
KAISER STATE SWD #009	30-025-02538	nOY1823336566	8/17/2018	F-13-21S-34E	Hobbs	Produced Water	Valve
KAISER STATE SWD #009	30-025-02538	nOY1821950108	8/6/2018	F-13-21S-34E	Hobbs	Produced Water	Pump
KAISER STATE SWD #009	30-025-02538	nCH1821239639	6/20/2018	F-13-21S-34E	Hobbs	Produced Water	Other
KAISER STATE SWD #009	30-025-02538	nOY1803834027	2/7/2018	F-13-21S-34E	Hobbs	Produced Water	Pump
KAISER STATE SWD #009	30-025-02538	nOY1730058924	10/18/2017	F-13-21S-34E	Hobbs	Produced Water, Crude Oil	Unknown
KAISER STATE SWD #009	30-025-02538	nKL1632848695	not stated	F-13-21S-34E	Hobbs	Produced Water	Frac Tank
KAISER STATE SWD #009	30-025-02538	nJXK1616127644	5/17/2016	F-13-21S-34E	Hobbs	Produced Water	Tank
KAISER STATE SWD #009	30-025-02538	nKJ1512041707	4/24/2015	F-13-21S-34E	Hobbs	Produced Water	Pipeline
KAISER STATE SWD #009	30-025-02538	nTO1502927174	1/14/2015	F-13-21S-34E	Hobbs	Produced Water	Production Tank
KAISER STATE SWD #009	30-025-02538	nPAC0531137785	9/11/2005	F-13-21S-34E	Hobbs	Produced Water	Pipeline
DORSTATE SWD #001	30-015-23728	nAB1724135283	8/23/2017	H-27-25S-28E	Artesia	Produced Water	Other
DORSTATE SWD #001	30-015-23728	nAB1613157015	5/2/2016	H-27-25S-28E	Artesia	Produced Water	Valve
A N ETZ #001	30-025-07713	nOY1804732368	7/15/2017	P-26-19S-38E	Hobbs	Produced Water	Flow
RICE SWD F #029	30-025-12802	nLWJ1008538662	11/11/2006	F-29-18S-38E	Hobbs	Produced Water	Other
RICE SWD F #029	30-025-12802	nPAC0633335042	11/11/2006	F-29-18S-38E	Hobbs	Produced Water	Pipeline
ANN SWD #001	30-015-23580	nMAP1825433366	9/5/2018	G-18-19S-26E	Artesia	Produced Water	Tank
DELAWARE RIVER #002	30-015-24784	nAB1721451368	7/25/2017	E-11-26S-28E	Artesia	Produced Water	Fitting
EXXON STATE #003	30-015-01096	nGEG0433742034	12/2/2004	O-15-21S-27E	Artesia	Crude Oil	Production Tank
ROHMER #001	30-015-25722	nAB1817142364	6/13/2018	F-23-22S-27E	Artesia	Produced Water	Valve

CLOSURE REPORT FOR KAISER STATE SWD LEA COUNTY, NEW MEXICO

Prepared for:

PERMIAN WATER SOLUTIONS, LLC.

P.O. Box 2106 MIDLAND, TEXAS 79702

Prepared by:

Tetra Tech

901 West Wall Street, Suite 100 Midland, Texas 79701 (432) 682-4559 Fax (432) 682-3946

May 2, 2023

complex world CLEAR SOLUTIONS-

May 2, 2023

New Mexico State Land Office 310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, New Mexico 87504 Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico, 88240

Re: Closure Report for the Permian Water Solutions, LLC., Kaiser State SWD, Unit F, Section 13, Township 21 South, Range 34 East, Lea County, New Mexico.

Oil Conservation Division:

Tetra Tech, Inc. (Tetra Tech) was contacted by Permian Water Solutions, LLC. (Permian Water Solutions) to assess the impacted areas at the Kaiser State SWD, Unit F, Section 13, Township 21 South, Range 34 East, Lea County, New Mexico. The site coordinates are 32.48086°, -103.42566°. The site location is shown on **Figures 1** and **2**.

Background

Ten releases occurred at the site impacting the pad area and inside the facility berms. The initial C-141 Forms are include in **Appendix A**.

- NPAC0531137785: According to the State of New Mexico Permitting Site, the release
 was discovered on September 11, 2005 and released approximately 10 bbls of produced
 water due to a broken line. Approximately 9 bbls of fluids were recovered.
- 1RP-3512: According to the State of New Mexico C-141 Initial Report submitted by Pyote Water Systems, LLC, the release was discovered on January 14, 2015 and released approximately 20 bbls of produced water due to a vac truck overfilling the sumps. Approximately 20 bbls of fluids were recovered.
- 1RP-3621: According to the State of New Mexico C-141 Initial Report submitted by Pyote Water Systems, LLC, the release was discovered on April 24, 2015 and released approximately 100 barrels of produced water due to a truck hitting a load line. Approximately 100 bls of fluids were recovered.
- **1RP-4305**: According to the State fo New Mexico C-141 Initial Report submitted by Pyote Water Systems, LLC, the release was discovered on May 17, 2016 and released approximately 1,050 bbls of produced water due to a lightning strike. Approximately 1,050 bbls of fluids were recovered.
- 1RP-4525: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD, the release was due to a leak in the frac tanks used

during facility reconstruction after the lightning strike. An unknown volume of fluids was released, and none were recovered.

- 1RP-4855: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD, the release was discovered on October 18, 2017 and released approximately 50 bbls of produced water and crude oil within the berm due to an unknown cause. None of the fluids were recovered.
- 1RP-4960: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD, the release was discovered on January 31, 2018 and released approximately 20 bbls of produced water due to a failed pump seal. Approximately 10 bbls of free-standing fluids were recovered.
- 1RP-5139: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD, the release was discovered on June 20, 2018 and released approximately 150 bbls fo produced water due to a failure on the wellhead. Approximately 150 bbls of fluids were recovered.
- 1RP-5149: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD, the release was discovered on August 6, 2018 and released approximately 200 bbls of produced water due to a valve malfunction. Approximately 200 bbls of fluids were recovered.
- 1RP-5163: According t State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD, the release was discovered on August 17, 2018 and released approximately 500 bbls of produced water due to a valve malfunction, causing tanks to overflow onto the lined berm. Approximately 500 bbls of fluids were recovered.
- **1RP-5273:** According to the State of New Mexico C-141 Initial Report submitted by Permian Water Solutions, LLC, the release was discovered November 2nd, 2018 and released approximately 20 bbls of crude oil due to an oil skim tank overflowing onto the berm. Approximately 16 bbls of fluids were recovered.

Site Assessments

Tetra Tech conducted site assessment activities from May 7th, 2019, to January 13, 2020, and the details of these activities are thoroughly described in the approved Work Plan (*Revised Work Plan for Permian Water Solutions, LLC., Kaiser State SWD* dated January 27, 2020) included in **Appendix B**. From the dates of May 7th through the 14th, 2019, Tetra Tech installed a total of thirty-two (32) sample points using a combination of a truck-mounted air rotary rig, and a stainless-steel hand auger. At this time, vertical delineation for total BTEX and total TPH was not achieved for the sample points installed within the bermed areas, due to the presence of storage tanks and utilities on the site. Additionally, at the request of NMSLO, the tanks observed on the western berm were removed and Tetra Tech returned to the site on January 13, 2020, and installed 2 more bore holes in the areas of the previous location of the tanks.

The proposed work following the sampling activities included the excavation of 13 different areas corresponding to the sample points (SP-1 through SP-10, SP-17 through SP-21, SP-23 through SP-30, SP-34, SP-36, SP-37, and SP-38) and proposed depths ranging from 0.5-1 ft bgs, to 15 ft bgs. The proposed excavation areas and depths are depicted in **Figure 4** of the **Revised Work Plan** included in **Appendix B**.

Site Characterization

Significant Water Features

According to the NFHL (National Flood Hazard Layer) Flood Data Application and the USGS (United States Geological Survey) National Water Information System Mapper, there were no watercourses, lakebeds, sinkholes, playa lakes, springs, wetlands, subsurfaces mines, private domestic water wells, or floodplains located within the specified distances. Additionally, the site is located in a low karst potential area. The NFHL Map and USGS Mapper are shown in **Appendix B** of the **Revised Work Plan**.

Significant Boundaries

According to Google Earth US Government City Boundaries and US School Districts, the lateral extents of the release were not within a incorporated municipal boundaries, defined municipal fresh water well field, or a school district. Additionally, there were no occupied permanent residences, schools, hospitals, institution, or churches located within the specified distances of the lateral extents of the release.

Groundwater Review

Groundwater research was completed for the site through the USGS (United States Geological Survey) National Water Information System and New Mexico Office of the State Engineer (NMOSE) Water Rights Reporting System. Groundwater research conducted through these two resources, show the closest water well approximately ½ mile south of the site, and has a reported depth to groundwater fo 101 feet below surface. The groundwater information is shown in **Appendix B** of the **Revised Work Plan**.

Monitoring Well

A monitoring well was installed near the western end fo the pad on August 19, 2021, as part of the monitoring and abatement program requirements mandated by the New Mexico State Land Office (NMSLO). The total depth (TD) of the well was 87.5 ft bgs, and the depth to watertable (DTW) was reported at 71.5 ft bgs. Per the request of the NMSLO, and the New Mexico Oil Conservation Division (NMOCD), a water sample was collected from the well on August 27, 2021, and it was submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA method 8021B, and chloride by EPA method 300.0. Copies of laboratory Copies of laboratory analysis and chain-of-custody documentation are included in **Appendix D**. The water sample collected (MW-1) did not indicated any concentrations of BTEX and TPH, however a chloride concentration of 3,3570 mg/L, and total dissolved solids of 9,590 mg/L were indicated.

Regulatory

A risk-based evaluation was performed for the site following the NMOCD's Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene and for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene) was determined to be nondetect according to the NMSLO's requirements. Based upon the site characterization, the proposed RRAL beyond the top 4.0' of soil, for TPH is 1,000 mg/kg (GRO + DRO + ORO). Additionally, based on the site characterization as well as the NMSLO requirements, the proposed RRAL beyond the top 4.0' of soil, for chlorides is 7,000 mg/kg.

Remediation Activities

Excavation began on site in August 2020, as Permian Water Solutions and Tetra Tech proceeded with the proposed excavation shown in **Figure 4** of the **Revised Work Plan** included in **Appendix B**. The original Contract Substantial Completion Date of November 17, 2020 was not met due to increasing complexity of mobility and excavation, and increasing volume of material to be removed, and a Revised Contract Substantial Completion Date was set for July 12, 2021; a completion date that was also missed due to increasing complexity of project and volume of material that needed to be removed.

Contract SW-330 was then submitted as a two-phase approach to the remediation activities to divide the affected areas in two sections (eastern and western) to facilitate mobility, accessibility, and overall safety of project. The areas included in phase I and phase II are depicted in **Figure 4**. Additionally, bi-weekly meetings were established with representatives from the OCD, NMSLO, Permian Water Solutions, and Tetra Tech, to discuss the state of the project and its progress. The copies of the progress meetings notes are included in **Appendix C**.

<u>Phase I</u>

Tetra Tech conducted confirmation sampling activities starting October 25, 2021, as part of the Kaiser State SWD #9 Phase I completion. From October 25 through December 12, 2021, a total of 124 five-point composite samples were collected for the completion of Phase I including 91 bottom hole samples (BH-1 through BH-91), 33 sidewall samples (SW-1 through SW-33). Additionally, three discrete samples (DS-1, DS-2, and DS-3) were collected for areas showing visual evidence of staining. The selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in **Appendix D**. The results of the sampling are summarized in **Table 1**, sample locations are shown on **Figure 5**.

Referring to **Table 1**, the areas for all the samples collected (BH-1 through BH-91, and SW-1 through SW-33) indicated total BTEX, TPH, and chloride concentrations below RRALs with the exception of the area for sample (SW-8) which indicated a chloride concentration of 9,820 mg/kg, exceeding the maximum of 7,000 mg/kg requested by the NMSLO for chlorides.

However, based on the NMOCD's remediation standard maximum of 10,000 mg/kg for chlorides, the NMSLO approved leaving the area in place. The areas for the three discrete samples collected (DS-1, DS-2, and DS-3) indicated chloride concentrations above RRALs at 1,310 mg/kg at 2 ft bgs, 7,010 mg/kg at 3 ft bgs, and 7,820 mg/kg at 2 ft bgs, respectively. Additionally, the areas of samples (DS-2, and DS-3) indicated total TPH concentrations above RRALs with levels at 1,290 mg/kg, and 1,980 mg/kg, respectively.

The areas for samples (SW-8, DS-1, DS-2, DS-3) were planned to be addressed via a remediation plan extension approved and denoted as Kaiser State SWD #9 Phase 1.5. Following remediation activities, Tetra Tech conducted confirmation sampling by collecting five-point composite bottom hole samples, and five-point composite sidewall samples every 500 square feet within the remediation. A total of 22 bottom hole samples (BH-92 through BH-113), and 4 five-point composite sidewall samples (SW-34 through SW-37) were collected beginning May 6, 2022. Sample locations for the excavation areas corresponding to Phase 1.5 are shown in **Figure 5**. Referring to **Table 1**, all of the areas for the samples collected indicated total BTEX, TPH, and chloride concentrations below RRALs, except for the area for sample (BH-103), that exceeded the limit requested by SLO with an indicated concentration of 7,750 mg/kg at 5 ft bgs.

Phase II

Tetra Tech conducted confirmation sampling activities from July 6, 2022 through December 14, 2022, as part of the Kaiser State SWD #9 Phase II completion. A total of 145 five-point composite samples were collected in this time: 99 bottom hole samples (BH-114 through BH-212), and 46 sidewall samples (SW-38 through SW-83). Additionally, the selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in **Appendix D**. The results of the sampling are summarized in **Table 1**, sample locations are shown on **Figure 6A** and **6B**.

Referring to **Table 1**, the areas for all the bottom hole samples (BH-114 through BH-212) indicated concentrations of total BTEX, total TPH, and chloride below the RRALs. All the areas for sidewall samples (SW-38 through SW-83) indicated concentrations of total BTEX, total TPH, and chloride below the RRALs with the exception of samples (SW-45, SW-46, SW-53, SW-54, SW-56, SW-58, SW-60, SW-69, SW-70, SW-71, SW-72, SW-75, SW-76, SW-77, SW-78, SW-79, and SW-83).

The following areas indicated constituents above the criteria, however they were removed from site as part of the expansion of the excavation and do not represent areas of the final surfaces of the excavation. The area corresponding to sample (SW-45) indicated an elevated total TPH concentration of 1,110 mg/kg at a depth of 4.5-8 ft bgs. The area for sample (SW-54) indicated an elevated chloride concentration of 717 mg/kg at 0-4.5 ft bgs. The area corresponding to sample (SW-58) indicated an elevated total TPH concentration of 8,970 mg/kg at 6-8 ft bgs. The area corresponding to sample (SW-78) indicated an elevated chloride concentration of 15,800 mg/kg at 4-10 ft bgs.

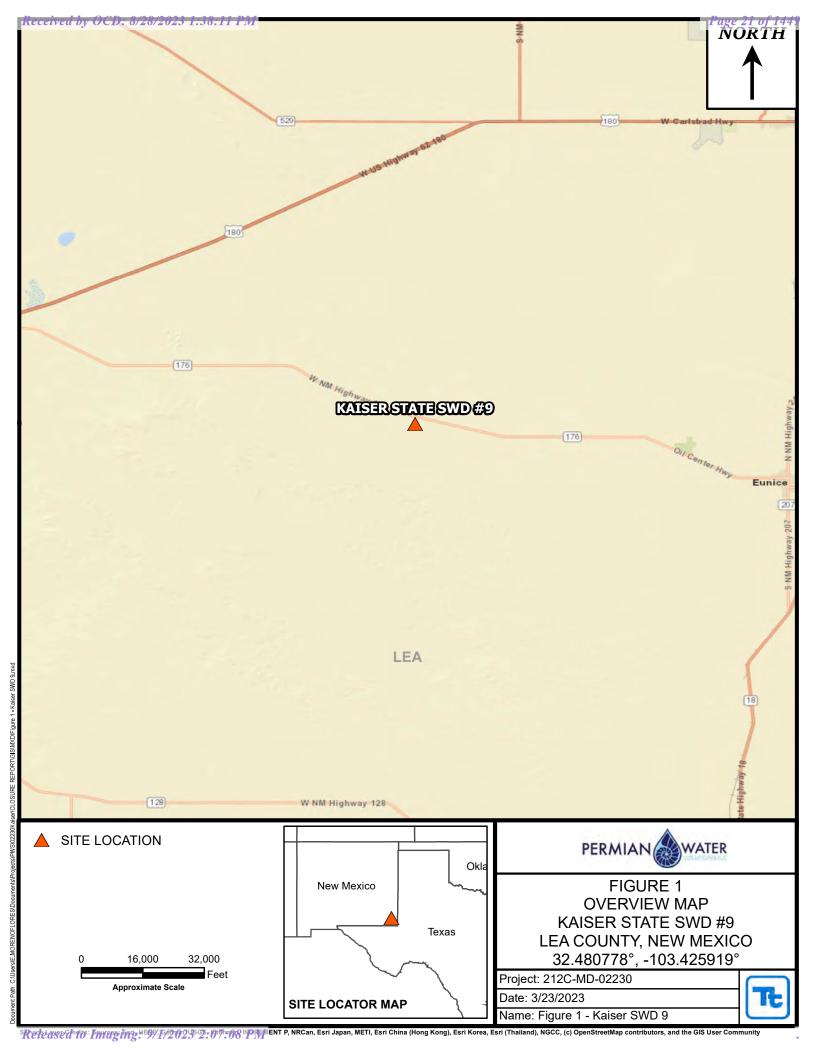
The following are the areas where one or more of the constituents was above the criteria and variance from RRALs were requested mostly for safety and conservation reasons:

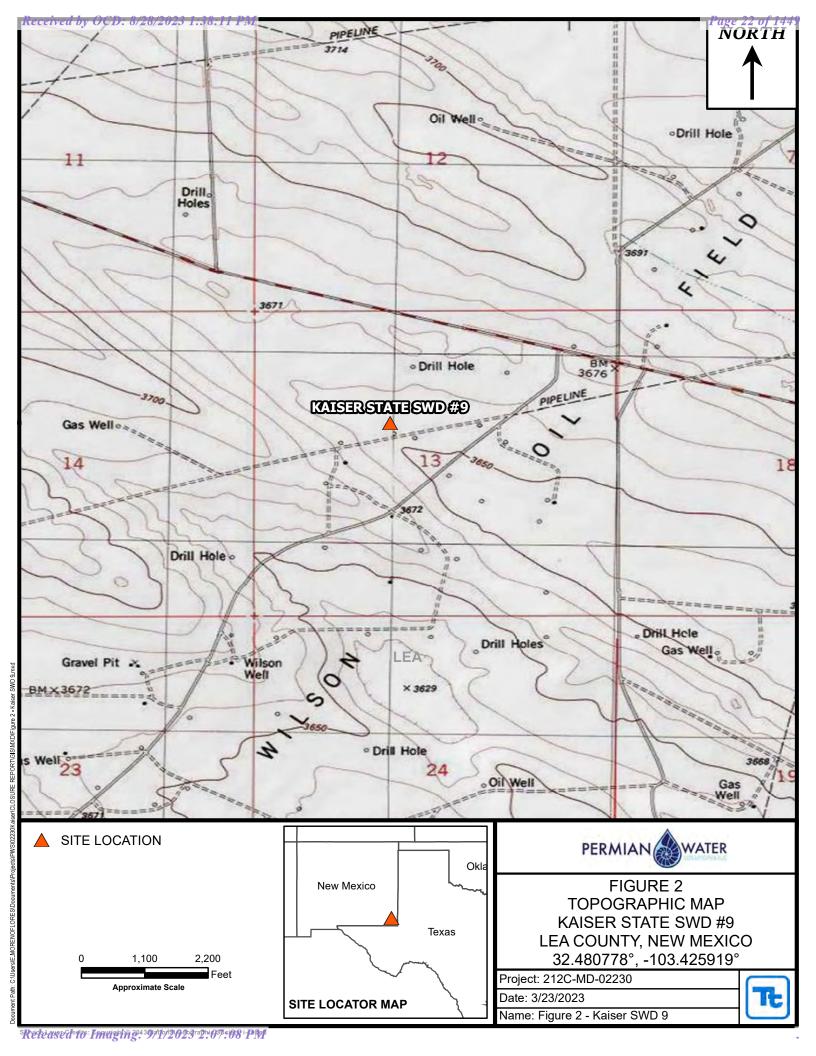
- Sample (SW-46): This area indicated a chloride concentration of 995 mg/kg at 0-5 ft bgs, the variance request was approved on October 12, 2022. The variance was requested due to the proximity of the excavation to pasture off-lease to the north, and on the basis of the additional horizontal delineation sample (H-1) indicating a chloride concentration of 72.0 mg/kg at depth from surface to 2 ft bgs.
- Samples (SW-53, SW-56, SW-68, and SW-77): These areas indicated chloride concentrations of 2,180 mg/kg, 1,120 mg/kg, 2,210 mg/kg, and 3,710 mg/kg, respectively; the variance request was approved on October 12, 2022. The variance was requested due to the proximity of the excavation to property off-lease to the west, and on the basis of the additional horizontal delineation samples (H-2 through H-6) indicated chloride concentrations ranging from 17.0 mg/kg to 57.3 mg/kg at depths from surface to 2 ft bgs.
- Samples (SW-60, SW-69, SW-70, and SW-71): The areas for samples (SW-60, SW-69, and SW-71) indicated chloride concentrations of 2,390 mg/kg, 6,380 mg/kg, and 1,460 mg/kg, respectively. The areas of samples (SW-69, and SW-70) indicated total TPH concentrations of 1,890 mg/kg, and 1,770 mg/kg, respectively. The variance request was approved on October 12, 2022. The variance was requested to prevent the damaging of the monitor well that could have occurred as part of the extension of the excavation into the omnidirectional 15' exclusion zone previously established for the monitor well.
- Sample (SW-72): This area indicated a total TPH concentration of 436 mg/kg. The variance request was approved on November 28, 2022. The variance was requested based on the criteria-complying sample previously collected at SW-72 at 0-8 ft bgs, and the additional horizontal delineation samples (H-8 and H-9) indicating chloride concentrations of 89.9 mg/kg and 672 mg/kg, for the areas corresponding to the extension of SW-72.
- Samples (SW-75, SW-76, SW-79, and SW-83): These areas indicated chloride concentrations of 931 mg/kg, 613 mg/kg, and 1,070 mg/kg, respectively. The variance request was approved on January 18, 2023. The variance was requested based on the limited impacts of the soil at depth, indicated by the previously collected data for areas involved in the extension of sidewalls SW-76 and SW-79 (SP-15), and SW-75 and SW-83 (SP_7). The data for sample points (SP-7, SP-15) can be found in Table 1 for the Revised Work Plan included in Appendix B of this report.

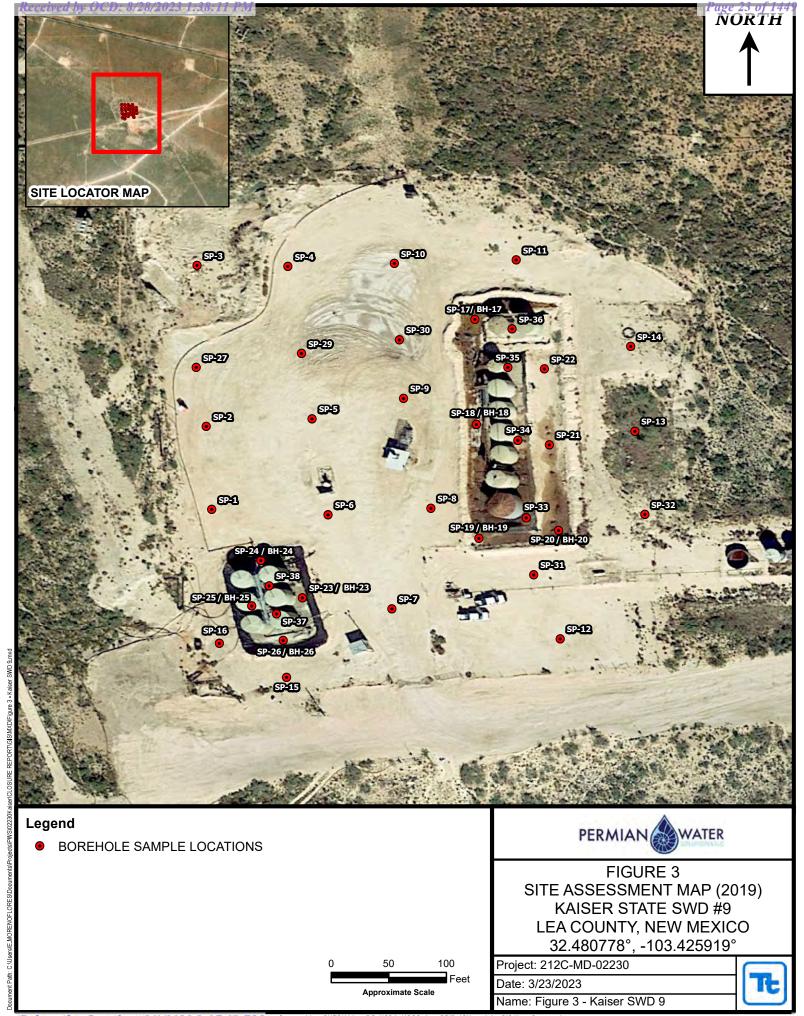
The variances were approved by the Oil Conservation Division and the New Mexico State Land Office, and the emails with the requests and approvals are included in **Appendix A.**

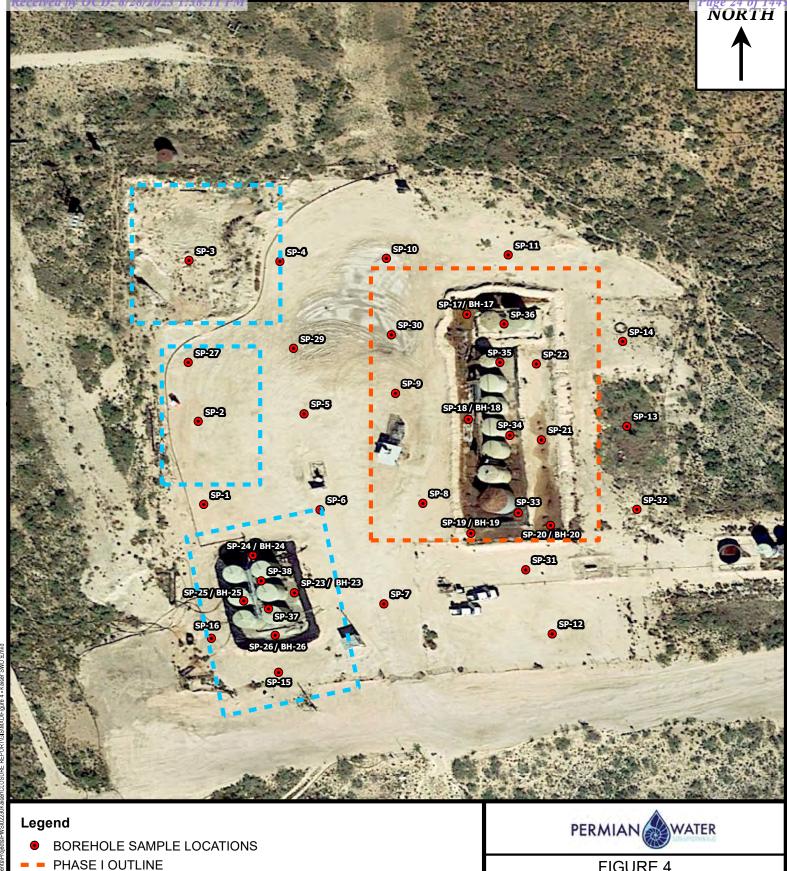
Conclusions

Following remediation of the areas of impact, Tetra Tech conducted confirmation soil sampling of the area by collecting 5-point composite confirmation bottom hole and sidewall samples to ensure the impacted soil was fully removed. Approximately 48,000 cubic yards of impacted soil was removed and properly disposed of, and the area was backfilled with clean to surface grade material. The analytical results indicated all confirmation samples reported below the RRALs for all constituents. The final reclamation and reseeding of the remediated areas will be deferred until site abandonment. Based on this information, it is recommended that the site and the associated release numbers (NPAC0531137785, 1RP-3512, 1RP-3621, 1RP-4305, 1RP-4525, 1RP-4855, 1RP-4960, 1RP-5139, 1RP-5149, 1RP-5163, and 1RP-5273) receive closure. The final C-141 forms are included in **Appendix A**.


If you require any additional information or have any questions or comments, please contact us at (432) 682-4559.

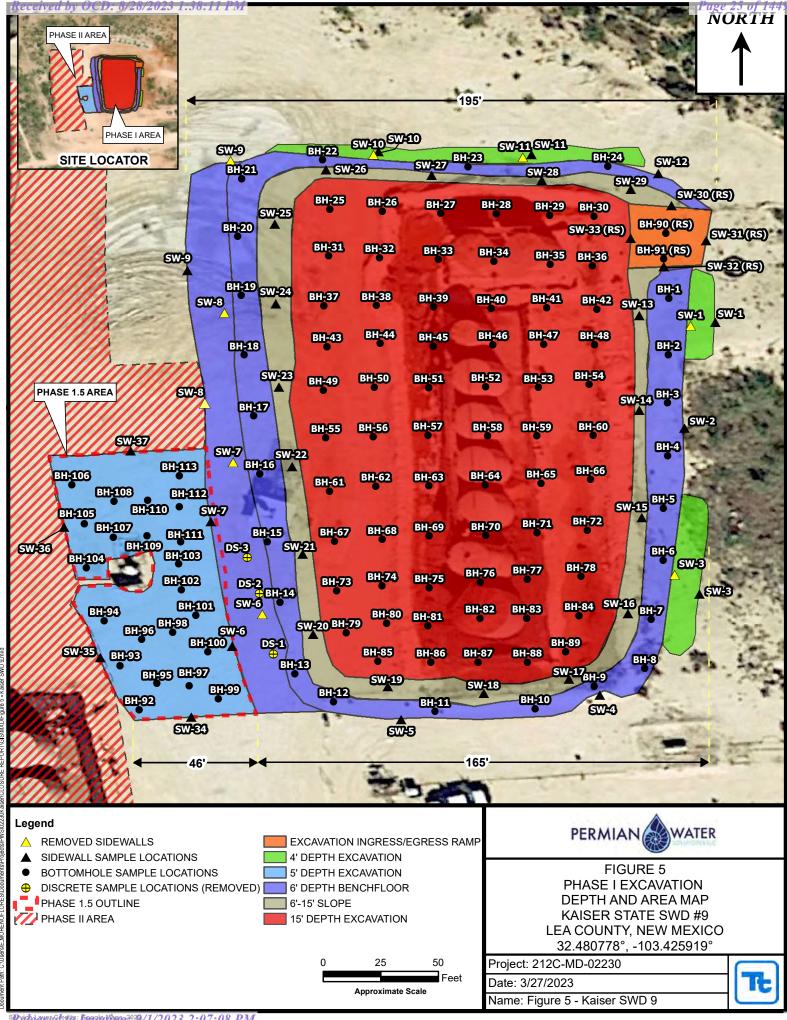

Respectfully submitted, TETRA TECH

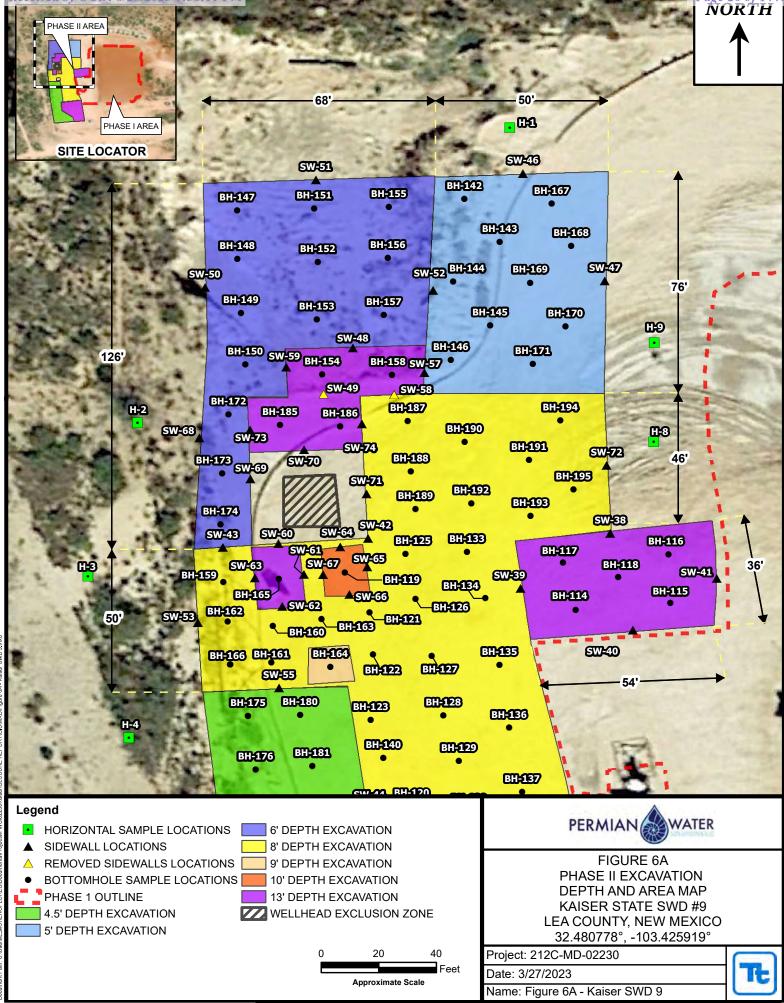

Ezequiel MorenoFlores, Geologist Brittany Long, Project Manager Clair Gonzales, P.G, Senior Project Manager

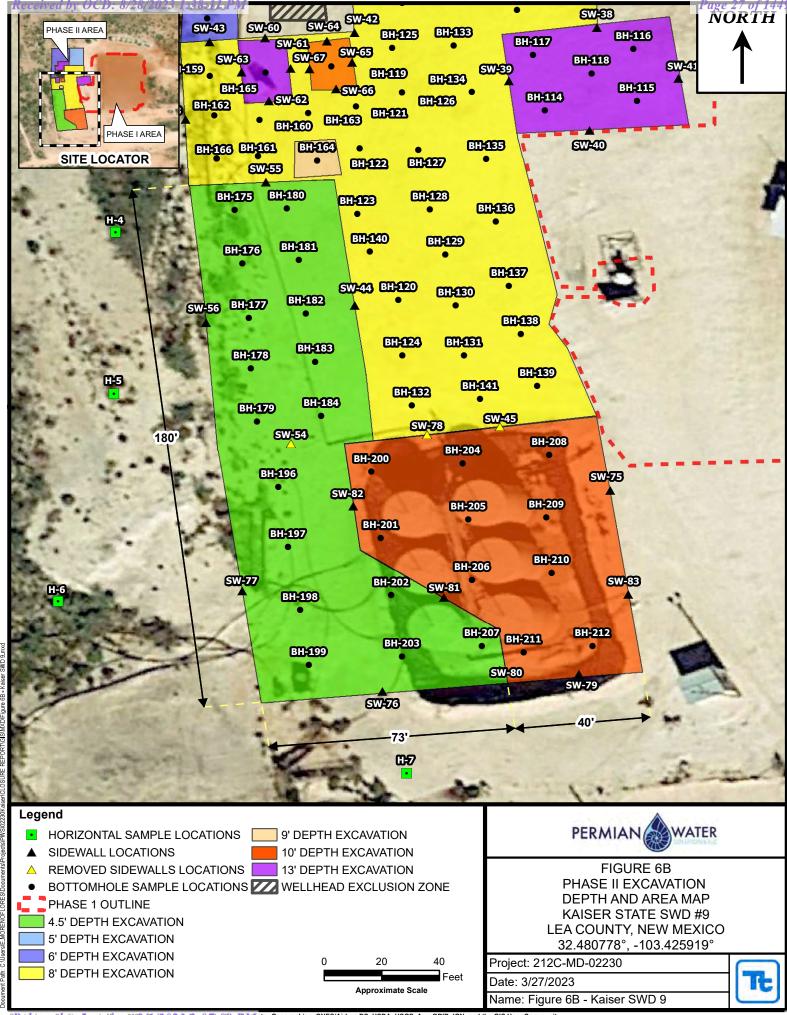


Figures


- PHASE II OUTLINE


FIGURE 4
PROPOSED PHASE I AND PHASE II
KAISER STATE SWD #9
LEA COUNTY, NEW MEXICO
32.480778°, -103.425919°


Project: 212C-MD-02230


Date: 3/23/2023

Name: Figure 4 - Kaiser SWD 9

Tables

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

		BEB Sample	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-1	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,680
BH-2	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	235
BH-3	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	60.7
BH-4	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	48.9
BH-5	10/27/2021	6	Х	-	<49.8	51.5	<49.8	51.5	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	123
BH-6	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	534
BH-7	10/27/2021	6	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	546
BH-8	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,990
BH-9	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	1,980
BH-10	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,500
BH-11	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,330
BH-12	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	1,170
BH-13	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,370
BH-14	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	4,450
BH-15	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	4,220
BH-16	10/27/2021	6	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	3,560
BH-17	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	3,350
BH-18	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	2,390
BH-19	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	2,060
BH-20	10/27/2021	6	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	449
BH-21	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	169
BH-22	10/27/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,220
BH-23	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	141
BH-24	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	107
BH-25	10/27/2021	6	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	447
BH-26	10/27/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,450
BH-27	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	372
BH-28	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	290
BH-29	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	139
BH-30	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	156
BH-31	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	689
BH-32	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	833

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

		BEB Sample	Soil	Status		TPH ((mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-33	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	504
BH-34	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	140
BH-35	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	333
BH-36	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	286
BH-37	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	4,260
BH-38	10/27/2021	15	Х	-	<49.9	87.2	<49.9	87.2	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	2,030
BH-39	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	3,300
BH-40	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	1,190
BH-41	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	0.00222	<0.00399	<0.00399	702
BH-42	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	461
BH-43	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	2,440
BH-44	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	465
BH-45	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	284
BH-46	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	2,560
BH-47	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	122
BH-48	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	3,050
BH-49	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	472
BH-50	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	0.0214	0.0176	0.00625	0.0581	0.103	1,330
BH-51	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	1,750
BH-52	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,410
BH-53	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	960
BH-54	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	508
BH-55	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,680
BH-56	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	2,450
BH-57	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,190
BH-58	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	4,190
BH-59	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,760
BH-60	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,150
BH-61	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,660
BH-62	10/27/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,480
BH-63	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,000
BH-64	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	2,760

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

Samula ID	Samula Data	BEB Sample	Soil	Status		TPH ((mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-65	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	823
BH-66	10/27/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	522
BH-67	10/27/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	854
BH-68	10/28/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,930
BH-69	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	632
BH-70	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	921
BH-71	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	0.00378	<0.00401	<0.00401	452
BH-72	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	692
BH-73	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	2,790
BH-74	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	2,620
BH-75	10/28/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	982
BH-76	10/28/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	1,190
BH-77	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,430
BH-78	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	426
BH-79	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	561
BH-80	10/28/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	609
BH-81	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	871
BH-82	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	309
BH-83	10/28/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	0.00427	<0.00400	0.00427	775
BH-84	10/28/2021	15	Х	-	<50.0	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	710
BH-85	10/28/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	656
BH-86	10/28/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,090
BH-87	10/28/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,500
BH-88	10/28/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	2,390
BH-89	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	2,630
BH-90	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	107
BH-91	10/28/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,100
BH-92	5/6/2022	5	Х	-	<50.0	346	176	522	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	4,070
BH-93	5/6/2022	5	Х	-	<49.9	62.5	82.6	145	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	976
BH-94	5/6/2022	5	Х	-	<50.0	247	165	412	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,770
BH-95	5/6/2022	5	Х	-	<50.0	113	131	244	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	3,780
BH-96	5/6/2022	5	Х	-	<49.9	55.3	111	166	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	1,350

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

		BEB Sample	Soil	Status		TPH ((mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-97	5/6/2022	5	Х	-	<49.9	97.6	140	238	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	5,290
BH-98	5/6/2022	5	Х	-	<50.0	<50.0	102	102	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	2,090
BH-99	5/6/2022	5	Х	-	<50.0	<50.0	73.6	73.6	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	2,860
BH-100	5/6/2022	5	X	-	<49.9	<49.9	56.8	56.8	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	5,050
BH-101	5/6/2022	5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	2,460
BH-102	5/6/2022	5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	2,550
BH-103	5/6/2022	5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	7,750
BH-104	5/6/2022	5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	3,010
BH-105	5/6/2022	5	Х	-	<49.9	54.4	122	176	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	954
BH-106*	7/6/2022	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	21.0
BH-107	5/6/2022	5	Х	-	<50.0	169	169	338	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	1,530
BH-108*	7/6/2022	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	71.9
BH-109	5/6/2022	5	Х	-	<49.9	<49.9	86.4	86.4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	946
BH-110*	8/18/2022	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	388
BH-111	5/6/2022	5	Х	-	<49.9	<49.9	64.3	64.3	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	3,640
BH-112	5/6/2022	5	Х	-	362	<50.0	<50.0	362	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	374
BH-113	5/6/2022	5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	942
BH-114	7/6/2022	10	Х	-	<50.0	99.5	<50.0	99.5	<0.0202	<0.0202	<0.0202	<0.0404	<0.0404	266
BH-115	7/6/2022	10	Х	-	<49.9	86.1	<49.9	86.1	0.0439	<0.0201	<0.0201	<0.0402	0.0439	47.4
BH-116	7/6/2022	10	Х	-	<49.9	196	<49.9	196	0.0597	<0.0202	<0.0202	<0.0403	0.0597	76.8
BH-117	7/6/2022	10	Х	-	<50.0	644	98.9	743	0.0553	<0.0199	<0.0199	<0.0398	0.0553	114
BH-118*	7/26/2022	13	Х	-	<49.9	247	<49.9	247	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	263
BH-119*	7/26/2022	10	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	382
BH-120*	8/18/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	578
BH-121	7/6/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	5,280
BH-122	7/6/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	1,280
BH-123	7/6/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	201
BH-124*	8/18/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	298
BH-125	7/6/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	3,800
BH-126	7/7/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	4,170
BH-127	7/7/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	472
BH-128	7/7/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	582

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

		BEB Sample	Soil	Status		TPH ((mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-129	7/7/2022	8	X	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	926
BH-130	7/7/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	675
BH-131	7/7/2022	8	Х	-	<49.9	63.5	<49.9	63.5	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	85.5
BH-132*	8/18/2022	8	X	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	325
BH-133	7/6/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	634
BH-134	7/7/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,300
BH-135	7/7/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	722
BH-136	7/7/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	490
BH-137	7/7/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	167
BH-138	7/7/2022	8	Х	-	<50.0	55.9	<50.0	55.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	512
BH-139	7/7/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	1,390
BH-140	7/6/2022	8	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	970
BH-141	7/7/2022	8	Х	-	<49.9	61.0	<49.9	61.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	2,410
BH-142	7/12/2022	5	X	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	167
BH-143	7/12/2022	5	X	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	984
BH-144	7/12/2022	5	Х	-	<50.0	226	<50.0	226	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	501
BH-145	7/12/2022	5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	903
BH-146	7/12/2022	5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	751
BH-147	7/12/2022	6	Х	-	<50.0	478	59.0	537	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	22.7
BH-148	7/12/2022	6	Х	-	<49.9	138	52.3	190	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	6.69
BH-149	7/7/2022	6	Х	-	<49.9	64.6	<49.9	64.6	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	7.07
BH-150	7/6/2022	6	Х	-	<50.0	83.6	<50.0	83.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	10.9
BH-151	7/7/2022	6	Х	-	<50.0	126	<50.0	126	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	21.9
BH-152	7/12/2022	6	Х	-	<50.0	74.9	<50.0	74.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	16.0
BH-153	7/12/2022	6	X	-	<49.9	117	<49.9	117	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	22.7
BH-154*	8/18/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	88.9
BH-155	7/12/2022	6	Х	-	<50.0	111	<50.0	111	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	20.8
BH-156	7/12/2022	6	Х	-	<50.0	94.0	<50.0	94.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	16.3
BH-157	7/12/2022	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	34.4
BH-158*	7/26/2022	8	Х	_	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	99.8
BH-159*	8/18/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,010
BH-160	7/26/2022	8	Х	-	<50.0	133	83.6	217	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	563

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

Sample ID	Sample Date	BEB Sample	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
<u>-</u>		Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-161	7/26/2022	8	X	-	<49.9	147	71.4	218	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	515
BH-162*	8/18/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	892
BH-163	7/26/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	107
BH-164*	8/18/2022	9	Х	-	<49.9	92.4	<49.9	92.4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,680
BH-165	8/18/2022	8	Х	-	<49.9	64.6	<49.9	64.6	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	613
BH-166	8/18/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	233
BH-167	8/18/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	404
BH-168	8/18/2022	5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	354
BH-169	8/18/2022	5	Х	-	<50.0	80.5	<50.0	80.5	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	382
BH-170	8/18/2022	5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	826
BH-171	8/18/2022	5	Х	-	<50.0	75.0	<50.0	75.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	180
BH-172	8/18/2022	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	253
BH-173	8/18/2022	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	329
BH-174	8/18/2022	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00196	<0.00196	<0.00196	<0.00393	<0.00393	131
BH-175	8/18/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	374
BH-176	8/18/2022	4.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	554
BH-177	8/18/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,360
BH-178	8/18/2022	4.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	632
BH-179	8/18/2022	4.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,090
BH-180	8/18/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,540
BH-181	8/18/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	1,560

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

0	0	BEB Sample	Soil	Status		TPH ((mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-182	8/18/2022	4.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	806
BH-183	8/18/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	1,050
BH-184	8/18/2022	4.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	898
BH-185*	9/19/2022	13	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	591
BH-186*	9/19/2022	13	Х	-	<50.0	84.3	<50.0	84.3	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	320
BH-187	8/18/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	816
BH-188	8/18/2022	4.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,360
BH-189	8/18/2022	4.5	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	181
BH-190	8/19/2022	4.5	Х	-	<49.9	234	<49.9	234	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	686
BH-191*	9/19/2022	8	Х	-	<50.0	94.3	<50.0	94.3	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	267
BH-192*	9/19/2022	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	249
BH-193*	9/19/2022	8	Х	-	<50.0	64.0	<50.0	64.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	66.4
BH-194	9/19/2022	8	Х	-	<49.9	817	169	986	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	55.8
BH-195	9/19/2022	8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	34.5
BH-196	9/19/2022	4.5	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	1,110
BH-197	9/19/2022	4.5	Х	-	<50.0	96.5	<50.0	96.5	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	1,710
BH-198	9/19/2022	4.5	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	4,900
BH-199	9/19/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	528
BH-200*	11/7/2022	10	Х	-	<50.0	74.9	<50.0	74.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	2,280
BH-201*	11/7/2022	10	Х	-	<50.0	74.3	<50.0	74.3	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1300
BH-202	9/19/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	3,130
BH-203	9/19/2022	4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	330
BH-204*	11/7/2022	10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	2,010
BH-205*	11/7/2022	10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,480
BH-206*	11/7/2022	10	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	2,290
BH-207	9/19/2022	4.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	4,000
BH-208	11/7/2022	10	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	6,190
BH-209	11/7/2022	10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,470
BH-210*	12/14/2022	11	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	699
BH-211	11/7/2022	10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	2,230
BH-212	11/7/2022	10	Х	-	Α	228	<50.0	228	<0.00199	<0.00199	<0.00199	0.0395	0.0395	2,970
SW-1*	12/23/2021	0-4	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	287

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

Sample ID	Sample Date	BEB Sample	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
•		Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-2	10/25/2021	0-6	Х	-	<49.9	74.3	<49.9	74.3	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	43.4
SW-3*	12/23/2021	0-4	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	341
SW-4	10/25/2021	0-6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,060
SW-5	10/25/2021	0-6	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	2,250
SW-6*	12/23/2021	0-4	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,800
SW-7*	12/23/2021	0-4	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	2,400
SW-8*	12/23/2021	0-4	-	Х	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	9,820
SW-9*	12/23/2021	0-4	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	380
SW-10*	12/23/2021	0-4	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	354
SW-11*	12/23/2021	0-4	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	348
SW-12	10/26/2021	10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,080
SW-13	10/26/2021	15	Х	-	<50.0	96.1	<50.0	96.1	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,840
SW-14	10/26/2021	15	Х	-	<49.8	56.3	<49.8	56.3	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	185
SW-15	10/26/2021	15	Х	_	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	209
SW-16	10/26/2021	15	Х	_	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,170
SW-17	10/26/2021	15	Х	-	<50.0	55.1	<50.0	55.1	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	2,270
SW-18	10/26/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	826
SW-19	10/26/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	1,000
SW-20	10/26/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,150
SW-21	10/26/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	5,770
SW-22	10/26/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	9,240
SW-23	10/26/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,070
SW-24	10/26/2021	15	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	2,240
SW-25	10/26/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	5,920
SW-26	10/26/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	447
SW-27	10/26/2021	15	Х	-	<49.9	<49.9	<49.9	<49.9	0.00206	0.00205	<0.00201	<0.00402	0.00411	9,970

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

Sample ID	Sample Date	BEB Sample	Soil	Status	\ 3 3/		(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
•	· ·	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-28	10/26/2021	15	X	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	3,280
SW-29	10/26/2021	15	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	416
SW-30 (Ramp)	10/28/2021	6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	169
SW-31 (Ramp)	10/28/2021	4	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	109
SW-32 (Ramp)	10/28/2021	6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	582
SW-33 (Ramp)	10/28/2021	8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	831
SW-34*	7/6/2022	0-6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	20.4
SW-35*	7/6/2022	0-6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	244
SW-36*	7/6/2022	0-6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	56.8
SW-37*	7/6/2022	0-6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	21.7
SW-38	8/18/2022	4.5-13	Х	-	<49.9	151	<49.9	151	<0.0404	<0.0404	<0.0404	<0.0808	<0.0808	448
SW-39	7/29/2022	0-13	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	111
SW-40	7/29/2022	0-13	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	52.3
SW-41	8/18/2022	6-13	Х	-	<49.9	<49.9	<49.9	<49.9	<0.0403	<0.0403	<0.0403	<0.0806	<0.0806	707
SW-42	8/18/2022	4.5-8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	107
SW-43*	8/18/2022	6-8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	951
SW-44	8/18/2022	4.5-8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	955
SW-45	8/18/2022	4.5-8	-	Х	79.7	1,030	<50.0	1,110	<0.00201	<0.00201	0.0108	0.0460	0.0568	679
SW-46 ★	8/18/2022	0-5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	995
SW-47	8/18/2022	0-5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	558
SW-48	8/18/2022	6-8	Х	-	<50.0	117	<50.0	117	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	70.5
SW-49	8/18/2022	4.5-6	-	Х	<50.0	264	<50.0	264	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	975

Table 1
Permian Water Solutions
Kaiser SWD
Phase I and II Confirmation Sampling
Lea County, New Mexico

			BEB Sample	Soil	Status	TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride	
Sample ID		Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-50*		7/26/2022	0-6	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	52.0
SW-51*		7/26/2022	0-6	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	201
SW-52		7/12/2022	0-6	Х	-	<49.8	81.4	<49.8	81.4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	386
SW-53	*	8/18/2022	0-8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	2,180
SW-54		8/18/2022	0-4.5	-	Х	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	717
SW-55		8/18/2022	4.5-8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00197	<0.00197	<0.00197	<0.00394	<0.00394	1,730
SW-56	*	8/18/2022	0-4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,120
SW-57		8/18/2022	6-8	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	65.5
SW-58		8/18/2022	6-8	-	Х	<49.8	7,350	1,620	8,970	<0.0100	<0.0100	<0.0100	<0.0200	<0.0200	202
SW-59		8/18/2022	6-8	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	40.5
SW-60	*	8/18/2022	0-13	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	2,390
SW-61		8/18/2022	8-13	Х	-	<50.0	76.1	<50.0	76.1	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	3,730
SW-62*		9/19/2022	8-13	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	330
SW-63		8/18/2022	8-13	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	561
SW-64		8/18/2022	8-10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	481
SW-65		8/18/2022	8-10	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	765
SW-66		8/18/2022	8-10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	275
SW-67		8/18/2022	8-10	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	215
SW-68	*	8/18/2022	0-6	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	2,210
SW-69	*	8/18/2022	0-6	Х	-	<50.0	1,890	<50.0	1,890	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	6,380
SW-70	*	8/18/2022	0-4.5	Х	-	<49.8	1,770	<49.8	1,770	<0.0400	<0.0400	<0.0400	<0.0800	<0.0800	352
SW-71	*	8/18/2022	0-4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,460
SW-72*	*	9/19/2022	0-8	Х	-	<49.9	348	87.6	436	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	70.1
SW-73		9/19/2022	6-13	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	394
SW-74		9/19/2022	8-13	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,800
SW-75*	*	12/14/2022	4-10	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,390
SW-76*	*	12/14/2022	0-4.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	931
SW-77	*	9/20/2022	0-4.5	Х	-	<49.9	81.7	<49.9	81.7	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	3,710
SW-78*		11/7/2022	4-10	-	Х	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	15,800
SW-79*	*	12/14/2022	0-4	X		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	613
SW-80		11/7/2022	4.5-10	Х	-	<50.0	263	<50.0	263	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	8,690
SW-81		11/7/2022	4.5-10	Х	-	<49.9	192	<49.9	192	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	8,120

Table 1 Permian Water Solutions Kaiser SWD Phase I and II Confirmation Sampling Lea County, New Mexico

Sample ID		Sample Date	BEB Sample	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID		Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-82		11/7/2022	4.5-10	Х	-	<49.8	216	<49.8	216	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	9,100
SW-83*	*	12/14/2022	0-4	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,070
DS-1		10/25/2021	2	-	Х	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	1,310
DS-2	\perp	10/25/2021	3	-	Х	1290	1,290	1290	1,290	<0.00200	<0.00200	<0.00200	<0.00401	<0.00399	7,010
DS-3	\perp	10/25/2021	2	-	Х	<49.9	1,980	<250	1,980	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	7,820
H-1		9/19/2022	0-2	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	72.0
H-2		9/19/2022	0-2	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	20.1
H-3	I	9/19/2022	0-2	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	57.3
H-4	I	9/19/2022	0-2	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	27.5
H-5	\perp	9/19/2022	0-2	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	17.0
H-6		9/19/2022	0-2	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	23.1
H-7	I	9/19/2022	0-2	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	26.7
H-8	I	11/7/2022	5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	90
H-9		11/7/2022	5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	672

Exceeds NMOCD RRALs for top 4.0'

^{*} Additional entries for samples were removed from the analysis table per the NMOCD request. However, all laboratory data is included in Appendix C.

^{*} Samples for the areas where a variance to leave the remaining concentrations in place was approved by the NMOCD and NMSLO.

Photographic Documentation

Photo: 1

Description:

Overview of the surface of the 15'-deep floor of the central portion of the excavation for Phase I.

Orientation:

Looking southeast.

Photo: 2

Description:

View of the surface of the 15'-deep floor of the central portion of the excavation for Phase I.

Orientation:

Looking west.

1

Photo: 3

Description:

View of the white flags used to assist with sample distribution on the central portion of the excavation for Phase I.

Orientation:

Looking south.

Photo: 4

Description:

Overview of surface of the extended excavations corresponding to sample SW-1, as part of the Phase I excavations.

Orientation:

Looking south.

2

Photo: 5

Description:

View of the surface of the extended excavations corresponding to sample SW-3, as part of the Phase I excavations.

Orientation:

Looking southeast.

Photo: 6

Description:

View of the southern floor of the excavation as part of Phase 1.5.

Orientation:

Looking north.

3

Photo: 7

Description:

View of the central portion of the excavation for Phase 1.5.

Orientation:

Looking west.

Photo: 8

Description:

View of the northern portion of the excavation for Phase 1.5, as well as the backfill (red, left) material used for Phase I.

Orientation:

Looking south.

/

Photo: 9

Description:

View of the excavation area of Phase II observed just West of the Phase 1.5 area.

Orientation:

Looking north.

Photo: 10

Description:

View of the central portion of Phase II annexed to Phase 1.5.

Orientation:

Looking northeast.

5

Photo: 11

Description:

View of the excavated area corresponding to sample BH-165, located in the central portion of the Phase II area.

Orientation:

Looking west.

Photo: 12

Description:

View of the southern portion of the Phase II area.

Orientation:

Looking south.

6

Photo: 13

Description:

View of the southern portion of the Phase II area, and backfilled areas in the background.

Orientation:

Looking northwest.

Photo: 14

Description:

View of the southern portion of the Phase II area, the final area to be backfilled.

Orientation:

Looking north.

7

Appendix A

C-141 Forms and Variance Approval Emails

INCIDENT/SPILL DETAILS

INCIDENT ID: nPAC0531137785

No. ON EXCEL "INCIDENTS & SPILLS SEARCH - NMOCD — SEC 13-T21S-R34E LEA COUNTY":

<u>12</u>

0	CD	Permitting

- Home
- Searches
- Incidents
- Incident Details

NPAC0531137785 2005 MINOR A SWS @ 30-025-02538

General	Incident	Information	

Site Name:

Well: [30-025-02538] KAISER STATE SWD #009

Facility:

Operator: [220351] P & W RESOURCES LLC

Status: Closure Not Approved
Type: Produced Water Release

District: Hobbs Severity: Minor Surface Owner: County: Lea (25)

Incident Location: F-13-21S-34E 1980 FNL 1980 FWL

Lat/Long: 32.4808578,-103.4256592 NAD83

Directions:

Notes

Source of Referral: Industry Rep
Resulted In Fire:
Endangered Public Health:
Fresh Water Contamination:
Action / Escalation: General Information
Will or Has Reached Watercourse:
Property Or Environmental Damage:

0 -	-4-	-4	D .	4 - 3	
Co	nτa	CI	De	etai	IIS

Contact Name:

Contact Title:

Event Dates

Date of Discovery: 09/11/2005 Extension Date: 11/15/2018 Initial C-141 Received:

Characterization Report Received:

Remediation Plan Received:

Closure Report Received:

OCD Notified of Release:

Cancelled Date:

Characterization Report Approved:

Remediation Plan Approved:

Remediation Due:

Closure Report Approved:

Compositional Analysis of Vented and/or Flared Natural Gas

No Compositional Analysis Found

Incidents Materials

Cause	Source	Material		Units				
Cause	Source	Materiai	Unk.	Released	Recovered	Lost	Units	
Equipment Failure	Pipeline (Any)	Produced Water		10	9	1	BBL	

Incident Events

Date	Detail	
11/07/2005	C-141: "Line broke. Vacuumed up 9 bbls water. 150' of pasture land. Vacuumed up 9 bbls	

Orders No Orders Found

Quick Links

- General Incident Information
- Materials
- Events
- Orders

Associated Images

- Incident Files (0)
- Well Files (38)

New Searches

- New Facility Search
- New Incident Search ♥
- New Operator Search ♥
- New Pit Search ♥
- New Spill Search
- New Tank Search ♥
- New Well Search ♥

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220 Received by OCD: 8/28/2023 1:38:11 PM state of New Mexico
Page 6 Oil Conservation Division

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

	Page 33 of 1449
Incident ID	NPAC0531137785
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

✓ Photographs of the remediated site prior to back must be notified 2 days prior to liner inspection)	kfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
■ Laboratory analyses of final sampling (Note: ap	propriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report an may endanger public health or the environment. The should their operations have failed to adequately inventuman health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface	ue and complete to the best of my knowledge and understand that pursuant to OCD rules d/or file certain release notifications and perform corrective actions for releases which acceptance of a C-141 report by the OCD does not relieve the operator of liability estigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for s and/or regulations. The responsible party acknowledges they must substantially area to the conditions that existed prior to the release or their final land use in cation to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date:
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the res remediate contamination that poses a threat to ground party of compliance with any other federal, state, or	sponsible party of liability should their operations have failed to adequately investigate and lwater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

Released to Imaging: 9/1/2023 2:07:08 PM

Form C-141

Revised August 8, 2011

pTO1502927423

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

			Rele	ease Notific	ation	and Co	rrective A	ction				
						OPERA	ΓOR	🔀 In	itial Report			
	ompany P	yote Water	System	ıs, LLC				erations Ma	nager for NM			
Address		Illinois STI	2 950 N	Iidland TX		Telephone N	10	<u>32~448~491</u>	.7			
Facility Nar	ne				l	Facility Typ	e Production	n Water				
Surface Ow	ner Pyote	e Water Sy	stems,L	LC Mineral O	wner		Pyote	API 1	No. 30~025~02538			
				LOCA	TION	OF REI	LEASE					
Unit Letter	Section	Township	Range	Feet from the	North/S	South Line	Feet from the	East/West Lin	e County			
Е	13		34	10 ft	N/S	3			LEA COUNTY			
-F	13	25	-	titude 32.4808	355153	34 25 5gitud	le -103.425	630765566				
						_ 0		<u>vv</u> , 00000				
Type of Rele	NATURE OF RELEASE Type of Release 20 bbls production water											
Source of Re	leaseVac f	ruck		-		Date and Hour of Occurrence $\frac{1}{14}$ Pate and Hour of Discovery $\frac{1}{14}$						
Was Immedia	ate Notice (la Dara		If YES, To	Whom?	Ionny Printon	NIM OM			
	laws / Dr. w		Yes	No Not Re	quired			Jerry Burton				
By Whom? Was a Water	•					Date and H	lour Dlume Impacting t	ha Watarcoursa				
was a water	course Rea		Yes 🖸	No No		none	nume impacting t	ne watercourse.				
If a Watercou	ırse was Im	pacted, Descr	ibe Fully.	*								
none												
Describe Cau	ise of Probl	lem and Reme	dial Action	n Taken.*	uzhan fl	hav ara inet	musted to do on	each load. It i	s posted as well, at the sign in			
ticket area		the sumps~	/ He lane	ca to suck it out	when i	ney are msi	rucied to do on	each foad. It i	s posied as well, at the sign in			
iickei aiea a	a180											
Dagariha Ara	a Affactad	and Classian	Action Tal	* The clean i	ın area	or						
									itation is done. Load lines 3&4			
been shut d	lown for a	about 4 mont	hs, the a	ccess water is fro	om all t	the rain bac	k n September a	and October,tl	nan the snow we have had since			
than. Has n	ot been d	ry enough to	work on	those lines. DU	JE TO N	MOTHER NA	ATURE we have	had a compa	ny go out several times to do thi			
for loads ling. I hereby certi	ne 3 & 4 fy that the	information gi	ven above	e is true and compl	ete to th	ne best of my	knowledge and u	nderstand that p	ursuant to NMOCD rules and			
									releases which may endanger			
									relieve the operator of liability			
									nter, surface water, human health r compliance with any other			
		ws and/or regu		, tance of a C 1411	сроп ис	jes not renev	e the operator of r	esponsionity to	t compliance with any other			
							OIL CONS	SERVATIO	<u>N DIVISION</u>			
Signature:	1 mitou	nta _										
Digitature.	Lenny E	Burton				Approved by	Environmental Sp	pecialist.				
Printed Name	e: JCITY I	our ton			1	approved by	Environmental S ₁	occianst.				
Title: Open	rations N	Manager fo	r NM		A	Approval Dat	e : 1/29/15	Expiration	on Date: 3/29/15			
F-mail Addre	ss. audra	a@pyotew	atersyst	ems.com		Conditions of	Annroval:					
						conditions of	rippro var.		Attached			
Date: 1~23~	10			: 432~448~49)17	Site sam	ples required.	Deliniate	1RP-3512			
Attach Addi	tional She	ets If Necess	ary				ediate as per					
						guides.	1		294873			
						_	inal C-141 by	7 3	nTO1502927174			
								~				

Closure

Closure Report Attachment Checklist: Each of	the following items must be included in the closure report.
A scaled site and sampling diagram as describe	ed in 19.15.29.11 NMAC
Photographs of the remediated site prior to be	ckfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
must be notified 2 days prior to liner inspection)	exim of photos of the finer integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: a	ppropriate ODC District office must be notified 2 days prior to final sampling)
	ppropriate one bistrict office must be notified 2 days prior to final sampling,
Description of remediation activities	
and regulations all operators are required to report a may endanger public health or the environment. The should their operations have failed to adequately invhuman health or the environment. In addition, OCE compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface accordance with 19.15.29.13 NMAC including notice. Printed Name: Dusty McInturff	true and complete to the best of my knowledge and understand that pursuant to OCD rules and/or file certain release notifications and perform corrective actions for releases which the acceptance of a C-141 report by the OCD does not relieve the operator of liability prestigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for acceptance of a C-141 report does not relieve the operator of responsibility for a sand/or regulations. The responsible party acknowledges they must substantially be area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date: Date
email: dmcinturff@dufrane.com	Telephone:(432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the re remediate contamination that poses a threat to groun party of compliance with any other federal, state, or	esponsible party of liability should their operations have failed to adequately investigate and dwater, surface water, human health, or the environment nor does not relieve the responsible r local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

pKJ1512042374 nKJ1512041707

			Rel			n and C	orrective A	ction				
			110		PERA				itial Rep	wet		Final Repor
Name of	Compan	y PYOTE	WATE	ER SYSTEMS		Contact	Jerry Burto					
	400 W.	Illinois Ste	900			Telephon	e No. 432.44	8.491	7 or 432.	448.5	323(A	udra)
		aiser SWL					Type SWD-p					
Surface Own	er Pvote	Water Sys	tems. L	LC Mineral O	wner Py	vote Water Sy	stems, LLC	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	API No.	30-025-	02538	
24.7440			, 2	-								
Unit Letter	Section	Township	Range	Feet from the		ON OF REL	Feet from the	East/V	Vest Line	County	Lea	COUNTY
F	13	21	34	125 ft	1,01			E/W				
		1		Latitude		Longitud	le	_				
				N	ATURI	E OF RELE	ASF					
Type of Rele		ction water			111010	Volume o	f Release 100BBL		Volume I	Recovere	d 100 B	BLS
Source of Re		e to no camei	ea'r) hit le	ad lina 1		Date and 4/24/2015	Hour of Occurrence	e	Date and 4/24/15			ry
				Not Requir	ed		o Whom? <i>Jerry B</i>	urton	4/24/13	2.55 440		
By Whom?	Unknown a	triver (575)-39	90-3836			Date and HOUR; 4/24/2015 2:35 am						
Was a Water	course Rea					If YES, Volume Impacting the Watercourse.						
			Yes **	** No***		RECEIVED						
If a Watercon	urse was Im	pacted, Descr	ibe Fully.	*	evans in							
						В	y OCD Distr	rict 1	at 11:10) am, <i>i</i>	Apr 3	0, 2015
							hit load line 3 cas					
		36 in the mor this happen o			oticed a	large amou.	nt of water on the	pad at t	he location	i, than n	oticed li	ne 3 was had
		and Cleanu			230	28	2 2	•				
				Jerry and his put vices and one fro			l damages themse	ives, ren	nedial wor	k done b	y L&J s	ervices
,		,										
I hereby certi	ify that the	information gi	iven above	e is true and comp	lete to t	he best of my	knowledge and u	nderstar	nd that purs	suant to N	MOCE	rules and
							and perform correct marked as "Final R					
should their o	operations b	ave failed to a	adequately	investigate and i	emediat	e contaminat	ion that pose a thr	eat to gr	ound water	r, surface	water, l	human health
		ıddition, NMC ws and/or regu		otance of a C-141	report d	loes not relie	ve the operator of	responsi	bility for c	omplianc	e with a	my other
				1			OIL CO	NSERV	ATION D	IVISION	Ī	
Signature: Printed Marin	Servi Hi	rion					- 200		V. 0 1	2		×-
						Approved by	Environmental S	pecialist	: fll	Lus	\$	7~2
Title: NM O	perations M	anager Jor P	yote Wate.	r systems, LLC		Approval Da	nte: 04/30/2015		Expiration :	Date: 07	/30/2015	5
		is.com or audi	ra@pyote	watersystems.com	<u> </u>							- 65 - Mai 55 (C.)
E-mail Addre 4-26-2015	ess:			***		Conditions of the samples r	o f Approval: equired. Delineato	e and re	mediate		ned 🔲	294873
Date: 4/26/15		Phone:432.4	48.4917		a	s per MNOC	D guides. Geotag			1RP	3621	
Attach Addition	onal Sheets	If Necessary			r	emediation r	equired.					

Received by 10CD: 8/28/2023 1:38:11 PM ate of New Mexico
Page 6 Oil Conservation Division

	Page 57 of 1449
Incident ID	nKJ1512041707
District RP	1RP-3621
Facility ID	
Application ID	

Closure

Closure Report Attachment Checklist: Each of	the following items must be included in the closure report.
A scaled site and sampling diagram as describe	ed in 19.15.29.11 NMAC
Photographs of the remediated site prior to bac must be notified 2 days prior to liner inspection)	ckfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: a	ppropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report at may endanger public health or the environment. The should their operations have failed to adequately inv human health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surfact accordance with 19.15.29.13 NMAC including notification.	rue and complete to the best of my knowledge and understand that pursuant to OCD rules ind/or file certain release notifications and perform corrective actions for releases which a acceptance of a C-141 report by the OCD does not relieve the operator of liability restigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for we and/or regulations. The responsible party acknowledges they must substantially be area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager
Signature:	Date: 5/5/23
email: dmcinturff@dufrane.com	Telephone:(432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the re remediate contamination that poses a threat to ground party of compliance with any other federal, state, or	esponsible party of liability should their operations have failed to adequately investigate and dwater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
Printed Name	Title:

Received by OCD: 8/28/2023 1:38:11 PM

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mex

RECEIVED Energy Minerals and Natura By JKeyes at 7:43 am, Jun 09, 2016

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Page 58 of 1449

Release Notification and Corrective Action

						OPERA	ΓOR	X Initi	al Report		Final Report	
Name of Co	mpany F	yote Wate	r Systen	ns,LLC	(Contact Jerry Burton						
Address 4	100 W Illino	ois Ste 900 M	IIDLAND	TX 79701	-	Telephone N	lo. 432-448	-4917				
Facility Nan	ne Kai	ser Swd]	Facility Typ	e production	on Water				
Surface Own	ner STA	ГЕ		Mineral C	wner	STATE		API No	30-02	5-025	38	
						OF REI	LEASE					
Unit Letter	Section	Township	Range	Feet from the	North/	h/South Line Feet from the East/West Line County						
F	13	21s	24s 34E						LEA CO)UNT	Υ	
			Lat	itude_32.4808	3578-	_ Longitud	e_103.42565	92 nad 83				
						OF RELI						
Type of Relea			tanks while	e driver was unloa	ading		Release 1050 BE		Recovered	1050		
Source of Rel		luction water					our of Occurrenc	e 5-17-16 Date and	Hour of Dis	covery	4 PM	
Was Immedia	ate Notice C	nven?	Yes □	No 🗌 Not Re	eauired	If YES, To		DURTON via talan	hono by drive	or.		
By Whom?	UNKNOWN	DRIVER			1	Date and H	JERRY Jour 5/17/16 4PI	BURTON via telep	none by unve	31		
Was a Water							lume Impacting t				-	
		×	Yes 🗌	No		1050 BLS						
If a Watercou	If a Watercourse was Impacted, Describe Fully.*											
fire melte	d parts of	f the liner,w	ater got	t under the lin	er							
Describe Cau	se of Proble	em and Remed	lial Action	n Taken.*								
containme	nt after t	he fire dept	t put out	the fire .	less th	an 2 bbls	breeched con	tainment. calle	ed vac trud	k out	to empty	
Describe Are	a Affected a	and Cleanup A	ction Take	en.*								
load side o	containm	ent have cl	ean up o	crew cleaning	up an	d disposin	g of old tanks	and cat walk	to sundow	'n		
regulations al public health should their of or the environ	Il operators or the envir operations h nment. In a	are required to ronment. The ave failed to a	o report and acceptance dequately CD accept	d/or file certain r e of a C-141 repo investigate and r	elease no ort by the emediate	otifications and NMOCD made contaminati	nd perform correct arked as "Final R on that pose a thr	inderstand that pur- tive actions for rel eport" does not rel eat to ground wate responsibility for c	eases which ieve the oper r, surface wa	may er rator of iter, hu	ndanger f liability ıman health	
							OIL CON	SERVATION	DIVISIO	N		
Signature:	Jerry	Burton						4				
Printed Name: Jerry Burton				1	Approved by Environmental Specialist:							
Title: NM (Operation	ıs Mgr			1	Approval Dat	e: 06/09/2016	Expiration	Date: 08/09	9/2016		
E-mail Addre	ess: jerry	@pyotewat	ersyster	ms.com	(Conditions of Approval: Discrete complex only Delinate and remediate Attached						
						iscrete samp	les only. Delineat	te and remediate	1RP 4305			

* Attach Additional Sheets If Necessary

nJXK1616127644 pJXK1616127747 Received by OCD: 8/28/2023 1:38:11 PM State of New Mexico
Page 6 Oil Conservation Division

	Page 59 of 1449
Incident ID	nJXK16116127644
District RP	1RP-4305
Facility ID	
Application ID	

Closure

Closure Report Attachment Checklist: Each of	the following items must be included in the closure report.
A scaled site and sampling diagram as describe	d in 19.15,29.11 NMAC
Photographs of the remediated site prior to bac must be notified 2 days prior to liner inspection)	ekfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: ap	ppropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report ar may endanger public health or the environment. The should their operations have failed to adequately invo- human health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface	rue and complete to the best of my knowledge and understand that pursuant to OCD rules and/or file certain release notifications and perform corrective actions for releases which a acceptance of a C-141 report by the OCD does not relieve the operator of liability estigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for we and/or regulations. The responsible party acknowledges they must substantially are area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date: 5/5/23
email: dmcinturff@dufrane.com	Telephone: (432) 634-7865
Cilidii. dinemani(a)danamentum	
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the re remediate contamination that poses a threat to ground party of compliance with any other federal, state, or	esponsible party of liability should their operations have failed to adequately investigate an dwater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

		-5	CRel	ease Notific		n and Co		ction					
		RE	Itti	Last House	atio	OPERA'				al Report	П	Final Repor	
Name of Co	mnany C	ambrian Ma	nacomen	+ I TD		Contact: Mike Anthony							
		1 St. Suite 90		i, LID.	-	Telephone No. 432-631-4398							
Facility Na			70			Facility Type: SWD							
		DWDIII					0.0112						
Surface Owner: State Mineral Owner)wner:	State			API No	. 30-025-0	2538			
LOCATIO						N OF RE	LEASE						
Unit Letter	Section	Township	Range	Feet from the	North	North/South Line Feet from the East/West Line County							
F	13	218	34E	1980		North	1980	West		Lea			
			L	atitude_32,4808		Longitud	le103.425659 EASE	2_					
Type of Rele	ase: Produc	ed Water					Release: Unknow	vn	Volume I	Recovered: ()		
Source of Re						Date and I	Iour of Occurrence	ce:	Date and	Hour of Dis	covery	:	
Was Immedi	ate Notice (Yes [No Not R	equired	If YES, To	Whom?		43)				
By Whom?					744	Date and I	lour:						
Was a Water	course Rea		Yes 🗵	No		If YES, Volume Impacting the Watercourse.							
If a Watercon	irse was Im	pacted, Descr	ihe Fully	•									
Due to a ligh	tning strike		attery fluid	n Taken.* d was transferred antity of fluid. Th						econstruction	n. The	frac tanks	
The frac tank	s were set		ide of the	ken.* affected battery. T taken in preparati				ound the	battery be	rm and cont	inued s	south-	
regulations a public health should their or the enviro	Il operators or the envi operations l nment. In a	are required to ronment. The have failed to	to report and acceptand adequately OCD accep	e is true and comp nd/or file certain a ce of a C-141 report investigate and rotance of a C-141	release of ort by the remedia	notifications a ne NMOCD m te contaminat	nd perform correct arked as "Final R ion that pose a that we the operator of	ctive acti teport" d reat to gr responsi	ons for rel oes not rel ound wate bility for c	eases which ieve the ope r, surface wa compliance v	may e rator o ater, ha with an	ndanger f liability ıman health	
							OIL CON	SERV	ATION	DIVISIO	ON		
Signature:	m;k	anthor	ng						4	an Lynch			
Printed Nam	-		0			Approved by	Environmental S	pecialist	l Vuon	m wy rer			
Title: Field (Operations S	Superintenden	t			Approval Da	te: 11/23/20	16 1	Expiration	Date: 01	/23/2	2017	
E-mail Addr	ess: mantho	ny@cambrian	nmgmt.com	n		Conditions o	f Approval:			Attached			
Date: 11/15/	16	Phone	e: 432-631	-4398		Please see	e attached Di	irectiv	e	1RP	452	5	
		ets If Necess								-		48695	
												48917	

Received by 10CD: 8/28/2023 1:38:11 PM State of New Mexico
Page 6 Oil Conservation Division

	Page 61 of 1449
Incident ID	nKL1632848695
District RP	1RP-4525
Facility ID	
Application ID	

Closure

Closure Report Attachment Checklist: Each of	the following items must be included in the closure report.
A scaled site and sampling diagram as describe	
Photographs of the remediated site prior to bac must be notified 2 days prior to liner inspection)	ckfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: a	ppropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
may endanger public health or the environment. The should their operations have failed to adequately involved their operations have failed to adequately involved the should their operations. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface accordance with 19.15.29.13 NMAC including notification. Printed Name: Dusty McInturff	and/or file certain release notifications and perform corrective actions for releases which he acceptance of a C-141 report by the OCD does not relieve the operator of liability vestigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for we and/or regulations. The responsible party acknowledges they must substantially be area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date: Date:
Signature: De Sur Suff	
email:dmcinturff@dufrane.com	Telephone:(432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the re remediate contamination that poses a threat to groun party of compliance with any other federal, state, or	esponsible party of liability should their operations have failed to adequately investigate and dwater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

pOY1730059151

lnOY1730058924

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action OPERATOR ✓ Initial Report Final Report Name of Company Cambrian Management, Ltd. Contact Mike Anthony Address P.O. Box 272, Midland, TX 79702 Telephone No. (432)631-4398 Facility Name Kaiser State SWD Facility Type Salt Water Disposal Mineral Owner State Surface Owner State API No. 30-025-02538 LOCATION OF RELEASE Unit Letter Section Township Range Feet from the North/South Line Feet from the East/West Line County F 13 215 34E Lea Longitude -103.4256592 Latitude 32.48008578 NAD83 NATURE OF RELEASE Type of Release Produced Water & Crude Oil Volume of Release Volume Recovered 50 bbls 0 bbls Source of Release Unknown Date and Hour of Occurrence Date and Hour of Discovery Unknown 10/18/2017, 12:35 PM If YES, To Whom? Was Immediate Notice Given? ☐ Yes ☑ No ☐ Not Required N/A Date and Hour N/A By Whom? Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. Yes No RECEIVED If a Watercourse was Impacted, Describe Fully.* By Olivia Yu at 4:17 pm, Oct 27, 2017 Describe Cause of Problem and Remedial Action Taken.* The cause of the release is undetermined and is currently under investigation. No remedial action has been taken at this point. Describe Area Affected and Cleanup Action Taken.* The release was confined to the primary and secondary earthen containment berms surrounding the SWD battery. The affected area inside the berms measured approximately 7,200 sq. ft. Remediation of the impacted area will be conducted in accordance with NMOCD and NMSLO guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. **OIL CONSERVATION DIVISION** Signature: Regulaton Analyst Approved by Environmental Specialist: Printed Name: Todd Roberson (as agent of Cambrian Mgmt. 10/27/2017 Approval Date: **Expiration Date:** Title: Owner E-mail Address: todd@trinityoilfieldservices.com Conditions of Approval: Attached see attached directive Date: 10/23/2017 Phone: (575) 631-3129 * Attach Additional Sheets If Necessary

1RP-4855

Received by OCD: 8/28/2023 1:38:11 PM tate of New Mexico
Page 6 Oil Conservation Division

	Page 63 of 1449
Incident ID	nOY1730058924
District RP	1RP-4855
Facility ID	
Application ID	

Closure

Closure Report Attachment Checklist: Each of t	the following items must be included in the closure report.
A scaled site and sampling diagram as described	d in 19.15.29.11 NMAC
Dhata manha of the compdicted site prior to bee	kfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
must be notified 2 days prior to liner inspection)	kini of photos of the finer integrity if applicable (Note, appropriate OCD District office
	it ODC District off a section of 2 days prior to final compling)
Laboratory analyses of final sampling (Note: ap	opropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report an may endanger public health or the environment. The should their operations have failed to adequately involument human health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface	rue and complete to the best of my knowledge and understand that pursuant to OCD rules ad/or file certain release notifications and perform corrective actions for releases which acceptance of a C-141 report by the OCD does not relieve the operator of liability estigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for and/or regulations. The responsible party acknowledges they must substantially are area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date: 5/5/23 Telephone: (432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the re- remediate contamination that poses a threat to ground party of compliance with any other federal, state, or	sponsible party of liability should their operations have failed to adequately investigate and water, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District III
1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr. Santa Fe. NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 5. 5t. 11411	cis Di., Saint	a i c, ivivi 07505		Sa	nta Fe	, NM 87	505							
			Rele	ease Notific	ation	and C	orre	ective A	ction	1				
		OPERATOR ☑ Initial Report ☐ Final I						Final Report						
Name of Co		Contact M												
		2, Midland, T	X 79702					(432)631-43			_			
Facility Nar	ne Kaiser	State SWD				racility 13	pe Sa	alt Water D	isposai					
Surface Ow	ner State			Mineral C	wner S	State				API	No.	30-025-0	2538	
				LOCA	TION	OF RE	LEA	ASE						
Unit Letter	Section	Township	Range	Feet from the	North/					t/West Line County				
F	13	21S	34E									Lea		
			Latitud	le32.4800857	'8_ Lo	ngitude_	-103.	4256592	NAD	83				
				NAT	URE	OF REI	EAS	SE						
Type of Rele	ase Produc	ed Water				Volume of		ease		Volu 10 b		ecovered		
Source of Re	lease Seal c	on pump				Date and Unknowr		of Occurrent	ce			Hour of Dis 8, 10:00 AM		
Was Immedia		Given?	Yes 🗸	No Not Re	equired	If YES, 7 N/A	o Who	om?						
By Whom?				,	1	Date and	Hour							
Was a Water	N/A course Read	ched?				N/A If YES, Volume Impacting the Watercourse.								
			Yes 🔽] No		N/A RECEIVED								
If a Watercou	ırse was Im	pacted, Descr	ibe Fully.	k								_		- 0040
Describe Cau	ise of Probl	em and Reme	dial Actio	n Taken.*			Ву	Olivia	Yu a	it 9:	34	am, F	eb 0	7, 2018
			acuum t	ruck was utilize	ed to re	cover fre	e-sta	nding liqui	d. The	seal	was	repaired	during	g initial
response	activities.													
Describe Are	a Affected	and Cleanup	Action Tal	æn.*										
				ry and second										
				ed approximat										
		se on 10/18 _O guidelin		ee 1RP-4855)	. Reme	ediation o	the	mpacted a	area wi	III be d	cond	ucted in	accor	dance with
INIVIOCE	and Minor	LO guidelli ii	55.											
I hereby certi	ify that the	information gi	ven above	e is true and comp	lete to th	ne best of m	y knov	wledge and u	understa	nd that	purs	uant to NM	OCD r	ules and
				nd/or file certain r										
public health or the environment. The acceptance of a C-141 report by the should their operations have failed to adequately investigate and remediate														
or the enviro	nment. In a	addition, NMC	OCD accep	otance of a C-141										
federal, state.	or local la	ws and/or regu	ılations.					OIL CON	CEDV	/ A T I /	ONI	DIVISIO)NI	
						OIL CONSERVATION DIVISION								
Signature: Janua Jones												7		
Printed Name: Denise Jones						Approved by Environmental Specialist:								
Title: Regul	atory Ana	al <u>y</u> st				Approval D	ate:	2/7/2018	3	Expira	tion I	Date:		1
E-mail Addre	ess: djones	s@cambria	nmgmt.c	om		Conditions	of App	oroval:				Attached	ı 🚽	
Date: 2/	4/18	. 1631		: (432) 620-91	81	see att	ache	ed direct	ive					
* Attach Addi	tional She	ets If Necess	ary		F	1RP-49	60]				_		
						40	55	I InOY	1803	8340	27			

pOY1803834550

Received by OCD: 8/28/2023 1:38:11 PM State of New Mexico
Page 6 Oil Conservation Division

	Page 65 of 1449
Incident ID	nOY1803834027
District RP	1RP-4960
Facility ID	
Application ID	

Closure

Closure Report Attachment Checklist: Each of	the following items must be included in the closure report.
A scaled site and sampling diagram as describ	ed in 19.15.29.11 NMAC
Photographs of the remediated site prior to ba must be notified 2 days prior to liner inspection)	ckfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
✓ Laboratory analyses of final sampling (Note: a	appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
should their operations have failed to adequately inchuman health or the environment. In addition, OCI compliance with any other federal, state, or local largestore, reclaim, and re-vegetate the impacted surfacecordance with 19.15.29.13 NMAC including noting Printed Name: Dusty McInturff	ne acceptance of a C-141 report by the OCD does not relieve the operator of liability exestigate and remediate contamination that pose a threat to groundwater, surface water, D acceptance of a C-141 report does not relieve the operator of responsibility for was and/or regulations. The responsible party acknowledges they must substantially ce area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Title: Project Manager
Signature: Study	Date: 3 1 2 1 2 5
email:dmcinturff@dufrane.com	Telephone:(432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the r remediate contamination that poses a threat to groun party of compliance with any other federal, state, o	responsible party of liability should their operations have failed to adequately investigate and andwater, surface water, human health, or the environment nor does not relieve the responsibility of laws and/or regulations.
Closure Approved by:	Date:
Drinted Names	Title:

Form C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ease Notifi	catio	on and Co	orrective A	Action				
						OPERA	ГOR		☐ Initi	al Report		Final Repor
Name of Co	ompany Ca	ambrian Mar	nagement	, Ltd.		Contact Mike Anthony						
Address PO Box 272, Midland TX 79702 Facility Name Kaiser State SWD							No . 432-631-4	398				
							be SWD					
Surface Ow	ner State			Mineral (Owner	State			API No	o. 30-025-	02538	
				LOC	ATIC	ON OF RE	LEASE					
Unit Letter	Section	Township	Range	Feet from the		th/South Line	Feet from the	East/V	Vest Line	County		
F	13	21S	34E							Lea		
			Latituo	1e 32.48085	78	Longitude - 1	03.4256592	NAD8	33			
						E OF REL		_				
Type of Rele	ease Produc	ed Water		IVA	UK		Release 150 bb	ls	Volume	Recovered	150 bbl	s
Source of Re							Hour of Occurren			Hour of Di		
						06/20/2018			06/20/20	18 10:00A	M_	
Was Immedi	ate Notice (Yes X	No Not Re	equired	If YES, To	Whom?					
By Whom?			-		•	Date and H	Hour					
Was a Water	course Rea	ched?				If YES, Vo	olume Impacting	the Wate	rcourse.			
			Yes X	No								
If a Waterco	urse was Im	pacted, Descr	ibe Fully.	*		· ·						
Describe Car	ise of Probl	em and Reme	dial Actio	n Taken.*								
N:1	. 111 1 1 1	ec:1-	1.	1								
Nippie on wo	eimead broi	ke off – nipple	was repia	icea								
Describe Are	a Affected	and Cleanup	Action Tal	ken.*	_							
All water wa be remediate		to the caliche	pad. All	water was picked	l up. T	This was on top	of a previous spi	ll that wa	s already	reported and	l is in the	e process to
be remediate	a.											
T 1 1	.C. 414 41	: C 4:	·	. :	-1-4- 4-	. 41 14 - 6	.1	14	. 1 414	NIN	IOCD	1
				e is true and comp nd/or file certain								
				ce of a C-141 rep								
				investigate and								
				otance of a C-141	report	t does not reliev	e the operator of	responsi	bility for o	compliance	with any	other /
rederal, state	, or local la	ws and/or reg	uiations.				OIL CON	ICEDW	ATION	DIVISIO	ON	
							OIL CON	(SEIX V	ATION	DIVISI	<u>JIV</u>	
Signature:						1			$\mathcal{L}\lambda$	+		
Printed Nam	e. Denica I	ones				Approved by	Environmental S	Specialist	: U U	V.		
1 IIIICU INAIII	c. Dellise J	ones					7/04/004					
Title: Regu	latory Anal	yst				Approval Da	7/31/201	<mark>8</mark>]]	Expiration	Date:		
E-mail Addr	ess: diones	@cambrianm	gmt.com			Conditions of	f Approval:				/	
riddi	<u>ajoitos</u>						tached direct	ctive	٦	Attached	1 [U	
Date: 06/21/	2018	Phone:	:							<u> </u>		
						1RP-5139	9	pCH1	82123	9860		
eleased to In	naging: 9	/1/2023 2:0	7:08 PM			nCH1821	239639					

Received by 10CD: 8/28/2023 1:38:11 PM atte of New Mexico
Page 6 Oil Conservation Division

Closure

Closure Report Attachment Checklist: Each of t	the following items must be included in the closure report.
A scaled site and sampling diagram as described	d in 19.15.29.11 NMAC
Photographs of the remediated site prior to bac must be notified 2 days prior to liner inspection)	kfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: ap	opropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
	rue and complete to the best of my knowledge and understand that pursuant to OCD rules
may endanger public health or the environment. The should their operations have failed to adequately invehuman health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface	ad/or file certain release notifications and perform corrective actions for releases which acceptance of a C-141 report by the OCD does not relieve the operator of liability estigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for and/or regulations. The responsible party acknowledges they must substantially are area to the conditions that existed prior to the release or their final land use in ication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager
Signature: 25 Mety	Date: 5/5/23
email: dmcinturff@dufrane.com	Telephone: (432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the res remediate contamination that poses a threat to ground party of compliance with any other federal, state, or	sponsible party of liability should their operations have failed to adequately investigate and lwater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

Form C-141 Revised April 3, 2017

Received by OCD: 8/28/2023 1:38:11 PM

<u>District 1</u>
1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

			Rele	ease Notific	ation	and Co	rrective A	ction	n			
						OPERA	TOR		X Initi	al Report		
Name of Company Cambrian Management, Ltd						Contact Andy Rickard						
Address PO Box 272, Midland, TX 79702							No. 432-620-91	81				
Facility Na	me Kaiser	State SWD			Facility Typ	e SWD						
Surface Ov	vner State	-		Mineral C	wner S	tate			API No	. 30-025-02538		
2 10,000 2 2 .	7.2.2			1.0000		W. A. J. A. S.	ERACE		1	3. 1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
Unit Letter	Section	Township	Danas	Feet from the		OF RE	Feet from the	L Foot/	West Line	County		
F	13	21S	Range 34E	1980	North	South Line	1980	West		County Lea		
			Latitu	de 32.480938 N	Lo	ngitude -10	3.425227	NAD	83			
				NAT	URE	OF REL	EASE					
Type of Rele	ease Produc	ced Water					Release 200 Bb	ls	Volume I	Recovered 200 Bbls		
Source of R	elease Valv	e				100000000000000000000000000000000000000	Hour of Occurrence	ce		Hour of Discovery		
Was Immed	iota Matina	Givan?				08/06/2013 If YES, To			08/06/20	18 10:00AM		
was illilied	iate Notice		Yes	No Not Red	quired	Christina I						
By Whom?	Denise Jone	es .		20 30 10		Date and I	Hour 08/06/2018	3:25 F	PM			
Was a Wate		ched?	Yes X	No		If YES, Vo	olume Impacting	the Wat	tercourse.			
If a Waterco	urse was Im	pacted, Desci	ibe Fully	*								
Valve Malfu	inction/Pow	And a property of			ection p					are having an electrician		
Describe Ar	ea Affected	and Cleanup	Action Ta	rmers to lower p ken.* th plastic was affect			acuumed up.					
regulations a public health should their or the enviro	all operators n or the envi operations l onment. In a	are required ironment. The have failed to	to report a e acceptan adequatel OCD acce	nd/or file certain r ce of a C-141 repo y investigate and r	elease nort by the emediate	otifications a e NMOCD m e contaminat	nd perform corre- parked as "Final Fion that pose a the	ctive ac Report" reat to g	tions for rel does not rel ground wate	suant to NMOCD rules and leases which may endanger leve the operator of liability r, surface water, human health compliance with any other		
_		0					OIL CON	SERV	VATION	DIVISION		
Signature:	Danie	e Jame	1						,			
Printed Name: Denise Jones						Approved by Environmental Specialist:						
Title: Regu						Approval Da	te: 8/7/2018	3	Expiration	Date:		
E-mail Add	rece: diana	@cambrianm	amt com			Conditions o	f Approval:					
D-man Addi	cas. ujones	weambitailii	gint.com				spect liner in o	nuecti.	on Provid	Attached		
	06/2018			hone: 432-620-91	0.1	-	th a concise re	•				
Attach Add	itional She	ets If Neces	sary					•				
nOY1821	950108	'Oa	/18219	050272	а	inspection with affirmation the liner has and will continue to contain liquids. 1RP-5149						
nOY1821950108 pOY1821950272 leased to Imaging: 9/1/2023 2:07:08 PM						At least one photo must demonstrate the entire facility is lined.						

Received by OCD: 8/28/2023 1:38:11 PM atte of New Mexico
Page 6 Oil Conservation Division

Closure

Closure Report Attachment Checklist: Each of t	the following items must be included in the closure report.
A scaled site and sampling diagram as describe	d in 19.15.29.11 NMAC
Photographs of the remediated site prior to bac must be notified 2 days prior to liner inspection)	kfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: ap	ppropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report an may endanger public health or the environment. The should their operations have failed to adequately involument human health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface	rue and complete to the best of my knowledge and understand that pursuant to OCD rules and/or file certain release notifications and perform corrective actions for releases which a acceptance of a C-141 report by the OCD does not relieve the operator of liability estigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for and/or regulations. The responsible party acknowledges they must substantially are area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date: D
email: dmcinturff@dufrane.com	Telephone: (432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the re- remediate contamination that poses a threat to ground party of compliance with any other federal, state, or	sponsible party of liability should their operations have failed to adequately investigate and dwater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised April 3, 2017 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

						OPERA	TOR		X Initia	al Report
		ambrian Ma			Contact Mr. Mike Anthony					
Address Po				Telephone No. 432-631-4398						
Facility Na	me Kaiser			Facility Type SWD						
Surface Ow	mar State	Mineral C)wnor 9	State			ADI No	o. 30-025-02538		
Sui lace Ov	mer State				A				AFINO	30-023-02338
Unit Letter	Section	Township	Range	Feet from the		OF RE	Feet from the	L Cont/	West Line	County
F	13	21S	34E	1980	North	South Line	1980	West		County Lea
			Latit	ude 32.480938		ngitude10		NAD8:	3	
Type of Rele	ease Produc	ed Water		NAI	UKE		Release 500 Bb	ls	Volume I	Recovered 500 Bbls
Source of Re						-	lour of Occurrence			Hour of Discovery
							3 10:00AM		08/17/20	18 11:00 AM
Was Immediate Notice Given? X Yes □ No □ Not Required						If YES, To Olivia Yu	Whom? and other OCD m	nember	on location	
By Whom?							lour 12:00 PM (
Was a Water	rcourse Rea		Yes X	No		If YES, Vo	olume Impacting	the Wa	tercourse.	
		em and Reme mpletely and			mpletely	Ву		at 10		, Aug 21, 2018 eing repaired or replaced as
		and Cleanup A			er was re	covered. The	e pit liner and tan	ks will	be washed a	after all water has been picked
regulations a public health should their or the enviro	all operators or the envi operations lonment. In a	are required to ronment. The nave failed to	o report a acceptan adequately OCD accep	nd/or file certain ce of a C-141 rep y investigate and i	release no ort by the remediate	otifications a NMOCD m contaminat	nd perform correct arked as "Final R on that pose a thr	ctive ac Report" reat to g	tions for rel does not rel ground wate	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health compliance with any other
_		_					OIL CON	SERV	VATION	DIVISION
Signature:	Denie	e Jon	D						190	1
Printed Nam	e: Denise J	ones				Approved by	Environmental S	specialis	st:	
Title: Regula						Approval Da	8/21/2018	8	Expiration	Date:
		a)cambrianmg	mt.com			Conditions o	20.1			DOMESTIC STATES
	3/17/2018			Phone:432-620-91	01		iner in questic			Attached
Attach Add	nOY1823336566 pOY1823336912 ased to Imaging: 9/1/2023 2:07:08 PM					NMOCD with a concise report of the inspection with affirmation the liner has and will continue to contain liquids. 2) Dated photo documentation of liner.				

Received by OCD: 8/28/2023 1:38:11 PM atte of New Mexico
Page 6 Oil Conservation Division

	Page /1 of 1449
Incident ID	nOY1823336566
District RP	1RP-5163
Facility ID	
Application ID	

Closure

Closure Report Attachment Checklist: Fach of	the following items must be included in the closure report.
A scaled site and sampling diagram as describe	ed in 19.15.29.11 NMAC
Photographs of the remediated site prior to bar must be notified 2 days prior to liner inspection)	ckfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: a	appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
may endanger public health or the environment. The should their operations have failed to adequately invhuman health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface.	and/or file certain release notifications and perform corrective actions for releases which the acceptance of a C-141 report by the OCD does not relieve the operator of liability exestigate and remediate contamination that pose a threat to groundwater, surface water, of acceptance of a C-141 report does not relieve the operator of responsibility for the water and/or regulations. The responsible party acknowledges they must substantially the area to the conditions that existed prior to the release or their final land use in fication to the OCD when reclamation and re-vegetation are complete. Title: Project Manager Date: Date:
email: dmcinturff@dufrane.com	Telephone: (432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the re remediate contamination that poses a threat to groun party of compliance with any other federal, state, or	esponsible party of liability should their operations have failed to adequately investigate and dwater, surface water, human health, or the environment nor does not relieve the responsible r local laws and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NCH1834760902
District RP	1RP-5273
Facility ID	1
Application ID	pCH1834761047

Release Notification

Responsible Party

Responsible	Party Peri	mian Water Solu	tions, LLC	OGRID	OGRID 373626 Contact Telephone 432-894-3636				
Contact Na	me Dale G	losson		Contact 7					
Contact em	ail dale@p	permianws.com		Incident #	NCH1834760902 KAISER STATE SWD				
Contact man	ling address	PO Box 2106,	Midland, TX 79	702	@ 30-025-02538				
atitude 32.	480938			Longitude decimal degrees to 5 deci	-103.425227				
Site Name I	aiser State	SWD	(11112-03-111		Salt Water Disposal				
Date Release	M. St. Branch	3 (123)		District Control	Entra Carlo Ca				
Date Release	Discovered	11/2/18		API# (if ap)	plicable) 30-025-02538				
Unit Letter	Section	Township	Range	Cour	nty				
F	13	218	34E	Lea					
7	Materia	l(s) Released (Select a	all that apply and atta	ch calculations or specific	justification for the volumes provided below)				
Crude Oil		Volume Release	ed (bbls) 20		Volume Recovered (bbls) 16				
Produced	Water	Volume Release	ed (bbls)		Volume Recovered (bbls)				
		Is the concentra produced water	tion of dissolved >10,000 mg/l?	chloride in the	☐ Yes ☐ No				
Condensa	te	Volume Release			Volume Recovered (bbls)				
Natural G	as	Volume Release	ed (Mcf)		Volume Recovered (Mcf)				
Other (describe) Volume/Weight Released (provide units)			Released (provi	de units)	Volume/Weight Recovered (provide units)				
Cause of Rele	ase Oil ski	m tank overflow	; all fluids conta	ined within contain	ment berm				

Received by OCD: 8/28/2023 1:38:11 PM State of New Mexico Page 2 Oil Conservation Division Incident ID NCH1834760902

District RP 1RP-5273

Facility ID

Application ID pCH1834761047

Printed Name: Pale Gusson Signature: At the Date: 161518 Printed Name: Pale Gusson Date: 161518 Telephone: 432.88443636 OCD Only RECEIVED		
Glosson called District I office @ 11:25 am on 11/2/18, was transferred to Christina Hernandez, Left voicemail and call back number. C. Hernandez called back later in the afternoon and the report was made. Initial Response	release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury The source of the release has been stopped. The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: The hydrocarbon impacted soil is in process of being removed and stored on plastic liner, as well as covered with plastic liner to prevent rainwater from dispersing hydrocarbon contamination, pending soil sampling and site assessment. Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. If hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, surface	Glosson called District	I office @ 11:25 am on 11/2/18, was transferred to Christina Hernandez, Left voicemail and call back
☑ The source of the release has been stopped. ☑ The impacted area has been secured to protect human health and the environment. ☑ Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. ☐ All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: The hydrocarbon impacted soil is in process of being removed and stored on plastic liner, as well as covered with plastic liner to prevent rainwater from dispersing hydrocarbon contamination, pending soil sampling and site assessment. Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. If hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. In acceptance of a C-141 report does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Pack Guesson Pack Guesson Title: Queston All Pack Guesson Title: Queston All Pack Guesson Printed Name: Printed Name: Pri		Initial Response
The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: The hydrocarbon impacted soil is in process of being removed and stored on plastic liner, as well as covered with plastic liner to prevent rainwater from dispersing hydrocarbon contamination, pending soil sampling and site assessment. Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. If hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: All Gresson	The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: The hydrocarbon impacted soil is in process of being removed and stored on plastic liner, as well as covered with plastic liner to prevent rainwater from dispersing hydrocarbon contamination, pending soil sampling and site assessment. Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach an arrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. Hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Part Gresson Title: Partarious Markette Date: 1(15)(8) Telephone: 432-884-3636		ease has been stopped.
All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: The hydrocarbon impacted soil is in process of being removed and stored on plastic liner, as well as covered with plastic liner to prevent rainwater from dispersing hydrocarbon contamination, pending soil sampling and site assessment. Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. It hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Part Guesson Title: December 4.32.894.3636 Telephone: 4.32.894.3636	The impacted area ha	as been secured to protect human health and the environment.
If all the actions described above have not been undertaken, explain why: The hydrocarbon impacted soil is in process of being removed and stored on plastic liner, as well as covered with plastic liner to prevent rainwater from dispersing hydrocarbon contamination, pending soil sampling and site assessment. Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. If hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve does not relieve does not relieve with any other federal, state, or local laws and/or regulations. Printed Name: Pale Grasson Title: Creations Title: Creations Title: All Compliance with any other federal, state, or local laws and/or regulations. Title: All Compliance with any other federal, state, or local laws and/or regulations. Title: All Compliance with any other federal, state, or local laws and/or regulations. Title: All Compliance with any other federal, state, or local laws and/or regulations.	Released materials ha	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Part Gusson Title: Caranas Markage Date: 14[15](8) Telephone: 432.894.3636	All free liquids and re	ecoverable materials have been removed and managed appropriately.
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Pare Gusson Title: Paramons Maraces Date: 101518 Telephone: 432.894.3636		
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Pare Gusson Title: Perators Marager Date: 1(151/8) Telephone: 432.8844.3636	has begun, please attach	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred
RECEIVED	regulations all operators are public health or the environr failed to adequately investig addition, OCD acceptance o and/or regulations.	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws Title: Date: Date: Date:

Received by OCD: 8/28/2023 1:38:11 PM State of New Mexico
Page 6 Oil Conservation Division

	Page /4 of 1449
Incident ID	nCH1834760902
District RP	1RP-5273
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of t	the following items must be included in the closure report.
A scaled site and sampling diagram as described	d in 19.15.29.11 NMAC
Photographs of the remediated site prior to back must be notified 2 days prior to liner inspection)	kfill or photos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: ap	opropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
	rue and complete to the best of my knowledge and understand that pursuant to OCD rules
may endanger public health or the environment. The should their operations have failed to adequately invehuman health or the environment. In addition, OCD compliance with any other federal, state, or local law restore, reclaim, and re-vegetate the impacted surface accordance with 19.15.29.13 NMAC including notific Printed Name:	ad/or file certain release notifications and perform corrective actions for releases which acceptance of a C-141 report by the OCD does not relieve the operator of liability estigate and remediate contamination that pose a threat to groundwater, surface water, acceptance of a C-141 report does not relieve the operator of responsibility for and/or regulations. The responsible party acknowledges they must substantially are area to the conditions that existed prior to the release or their final land use in ideation to the OCD when reclamation and re-vegetation are complete. Title: Project Manager
Signature: Do Su. Sul	Date: 5/5/23
email:dmcinturff@dufrane.com	Telephone:(432) 634-7865
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the res remediate contamination that poses a threat to ground party of compliance with any other federal, state, or l	sponsible party of liability should their operations have failed to adequately investigate and twater, surface water, human health, or the environment nor does not relieve the responsible local laws and/or regulations.
Closure Approved by:	Date:
D. C. (NI	Title

From: Smith, Cory, EMNRD

To: Gonzales, Clair

Cc: Crosby, Faith; Mann, Ryan; Dusty McInturff; "Jenni Usher"; Josh Brooks

Subject: RE: [EXTERNAL] PWS - Kaiser SWD - Variance Request _ SW-77, SW-56, SW-53 and SW-68

Date: Wednesday, October 12, 2022 10:13:40 AM

You don't often get email from cory.smith@emnrd.nm.gov. Learn why this is important

CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Clair,

OCD approves the variance to leave SW77,56,53,68 in place because the H2,3,4,5,6 show that its minimal

Please include this approval in your final C-141.

Cory Smith • Environmental Projects Supervisor Environmental Bureau Projects Group

EMNRD - Oil Conservation Division

5200 Oakland Avenue N.E Suite 100 | Albuquerque, NM 87113

505.419.2687 | Cory.Smith@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Gonzales, Clair < Clair. Gonzales@tetratech.com>

Sent: Tuesday, October 11, 2022 4:03 PM

To: Smith, Cory, EMNRD <cory.smith@emnrd.nm.gov>

Cc: Crosby, Faith <fcrosby@slo.state.nm.us>; Mann, Ryan <rmann@slo.state.nm.us>; Dusty McInturff <dmcinturff@dufrane.com>; 'Jenni Usher' <jenni@permianws.com>; Josh Brooks <josh@permianws.com>

Subject: [EXTERNAL] PWS - Kaiser SWD - Variance Request _ SW-77, SW-56, SW-53 and SW-68

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon Cory,

Attached is the analysis table, laboratory report, and updated kmz – which includes the data for sidewall areas SW-77, SW-56, SW-53 and SW-68. These areas exceeded the reclamation thresholds for the top 4.0' for chlorides. However, BTEX and TPH concentrations were below the RRALs and reclamation standards.

The chloride RRALs for the site are 7,000 mg/kg, however the reclamation thresholds for the top 4.0 of material is 600 mg/kg for chlorides.

The chloride concentrations detected at SW-77, SW-56, SW-53 and SW-68 ranged from 1,120 mg/kg to 3,710 mg/kg. Based on discussions with the SLO and OCD during the bi-weekly meetings,

horizontal delineation samples (H-2 through H-6) were collected to the west of the facility from surface to 2' below surface in order to horizontally delineate the chloride impact. Horizontal delineation samples H-2 through H-6 showed chloride concentrations ranging from 17.0 mg/kg to 57.3 mg/kg.

Based on the horizontal delineation of the west sidewall areas of SW-77, SW-56, SW-53 and SW-68, which are along the facility fence line and unable to be expanded off-lease, Permian Water Solutions is requesting a variance to leave the remaining impact above the reclamation standards in place.

Please let me know if you have any questions.

Thank you,

Clair Gonzales,

Clair Gonzales, P.G. | Project Manager & Office Lead

Phone: 432.687.8123| Mobile 432.260.8634 | Fax:432.682.3946

clair.gonzales@tetratech.com

Tetra Tech | Complex World, CLEAR SOLUTIONS™

901 West Wall Street, Ste 100 | Midland, TX 79701 | www.tetratech.com

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

From: Smith, Cory, EMNRD

To: Gonzales, Clair

Cc: Crosby, Faith; Mann, Ryan; Dusty McInturff; "Jenni Usher"; Josh Brooks

Subject: RE: [EXTERNAL] PWS - Kaiser SWD - Variance Request _ SW-46

Date: Wednesday, October 12, 2022 10:24:31 AM

You don't often get email from cory.smith@emnrd.nm.gov. Learn why this is important

CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Clair,

OCD approves the variance to leave SW46 in place due to vertical/horizontal delineation from H1 and offsite/vegetative regrowth.

Please include this approval in your final C-141.

Cory Smith • Environmental Projects Supervisor

Environmental Bureau Projects Group
EMNRD - Oil Conservation Division
5200 Oakland Avenue N.E Suite 100 | Albuquerque, NM 87113
505.419.2687 | Cory.Smith@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Gonzales, Clair < Clair.Gonzales@tetratech.com>

Sent: Tuesday, October 11, 2022 4:06 PM

To: Smith, Cory, EMNRD <cory.smith@emnrd.nm.gov>

Cc: Crosby, Faith <fcrosby@slo.state.nm.us>; Mann, Ryan <rmann@slo.state.nm.us>; Dusty McInturff <dmcinturff@dufrane.com>; 'Jenni Usher' <jenni@permianws.com>; Josh Brooks <josh@permianws.com>

Subject: [EXTERNAL] PWS - Kaiser SWD - Variance Request SW-46

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon Cory,

Attached is the analysis table, laboratory report, and updated kmz – which includes the data for sidewall areas SW-46. This area exceeded the reclamation thresholds for the top 4.0' for chlorides. However, BTEX and TPH concentrations were below the RRALs and reclamation standards.

The chloride RRALs for the site are 7,000 mg/kg, however the reclamation thresholds for the top 4.0 of material is 600 mg/kg for chlorides.

The chloride concentration detected at SW-46 was 995 mg/kg. Based on discussions with the SLO

and OCD during the bi-weekly meetings, horizontal delineation sample H-1 was collected to the north of SW-46 from surface to 2' below surface in order to horizontally delineate the chloride impact. Horizontal delineation sample H-1 showed a chloride concentration of 72.0 mg/kg.

Based on the horizontal delineation of the sidewall area of SW-46, which is near the facility fence line and unable to be expanded off-lease, Permian Water Solutions is requesting a variance to leave the remaining impact above the reclamation standards in place.

Please let me know if you have any questions.

Thank you,

Clair Gonzales,

Clair Gonzales, P.G. | Project Manager & Office Lead

Phone: 432.687.8123| Mobile 432.260.8634 | Fax:432.682.3946

clair.gonzales@tetratech.com

Tetra Tech | Complex World, CLEAR SOLUTIONS™

901 West Wall Street, Ste 100 | Midland, TX 79701 | www.tetratech.com

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

From: Smith, Cory, EMNRD

To: Gonzales, Clair

Cc: Crosby, Faith; Mann, Ryan; "Jenni Usher"; Dusty McInturff; Josh Brooks

Subject: RE: [EXTERNAL] Permian Water Solutions - Kaiser SWD Variance Request

Date: Wednesday, October 12, 2022 10:29:51 AM

You don't often get email from cory.smith@emnrd.nm.gov. Learn why this is important

CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Clair,

OCD approves the Variance to leave SW60, 69,70,71 in place due to monitor well integrity concerns.

Please include this approval in your Final C-141.

Thanks.

Cory Smith • Environmental Projects Supervisor

Environmental Bureau Projects Group EMNRD - Oil Conservation Division 5200 Oakland Avenue N.E Suite 100 | Albuquerque, NM 87113

505.419.2687 | <u>Cory.Smith@state.nm.us</u>

http://www.emnrd.state.nm.us/OCD/

From: Gonzales, Clair < Clair. Gonzales@tetratech.com>

Sent: Friday, September 30, 2022 1:21 PM

To: Smith, Cory, EMNRD <cory.smith@emnrd.nm.gov>

Cc: Crosby, Faith <fcrosby@slo.state.nm.us>; Mann, Ryan <rmann@slo.state.nm.us>; 'Jenni Usher' <jenni@permianws.com>; Dusty McInturff <dmcinturff@dufrane.com>; Josh Brooks <josh@permianws.com>

Subject: [EXTERNAL] Permian Water Solutions - Kaiser SWD Variance Request

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon,

Attached is the analysis table detailing the confirmation samples collected at the Permian Water Solutions Kaiser SWD. Four (4) sidewall samples (SW-60, SW-69, SW-70, and SW-71) were collected from the excavation area around the onsite monitor well. The excavation has been performed up to within 15' of the monitor well. Further excavation towards the monitor well cannot be safely performed without risking the well integrity. The sidewall samples collected around the monitor well show concentrations as shown below and on the attached analysis table:

• SW-60: Chloride concentration of 2,390 mg/kg. TPH and BTEX concentrations are below the reclamation standards.

SW-69: Chloride concentration of 6,380 mg/kg and a total TPH concentration of 1,890 mg/kg. BTEX concentrations are non-detect.

- SW-70: Total TPH concentration of 1,770 mg/kg. BTEX and chloride concentrations are below the reclamation standards.
- SW-71: Chloride concentration of 1,460 mg/kg. TPH and BTEX concentrations are non-detect.

Based on the location of the samples collected and risk to the existing monitor well onsite; Permian Water Solutions requests a variance to leave the material around the monitor well, 15' in each cardinal direction, in place.

Please let me know if you have any questions or concerns.

Thank you,

Clair Gonzales,

Clair Gonzales, P.G. | Project Manager & Office Lead

Phone: 432.687.8123| Mobile 432.260.8634 | Fax:432.682.3946

clair.gonzales@tetratech.com

Tetra Tech | Complex World, CLEAR SOLUTIONS™

901 West Wall Street, Ste 100 | Midland, TX 79701 | www.tetratech.com

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

From: Smith, Cory, EMNRD

To: Gonzales, Clair

Cc: Crosby, Faith; Mann, Ryan; Dusty McInturff; "Jenni Usher"; Josh Brooks

Subject: RE: [EXTERNAL] PWS - Kaiser SWD - Variance Request_ Area of SW-72

Date: Monday, November 28, 2022 11:11:59 AM

CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Clair,

OCD approves to Permian's request to leave SW-72 in place due to the delineation samples of H8 and H-9.

Please include this approval in your final C-141 report.

Cory Smith • Environmental Projects Supervisor
Environmental Bureau
EMNRD - Oil Conservation Division
5200 Oakland Avenue N.E Suite 100 | Albuquerque, NM 87113
505.419.2687 | Cory.Smith@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/

From: Gonzales, Clair < Clair. Gonzales@tetratech.com>

Sent: Tuesday, November 22, 2022 2:12 PM

To: Smith, Cory, EMNRD <cory.smith@emnrd.nm.gov>

Cc: Crosby, Faith <fcrosby@slo.state.nm.us>; Mann, Ryan <rmann@slo.state.nm.us>; Dusty McInturff <dmcinturff@dufrane.com>; 'Jenni Usher' <jenni@permianws.com>; Josh Brooks <josh@permianws.com>

Subject: RE: [EXTERNAL] PWS - Kaiser SWD - Variance Request_ Area of SW-72

Good Afternoon,

As requested, horizontal and vertical delineation of the section between SW-72 and Phase I was completed. Attached is the updated kmz and analysis table. For reference, the sample previously collected at SW-72 showed a TPH concentration of 436 mg/kg at 0-8' bgs, non-detect BTEX concentrations and a chloride concentration of 70.1 mg/kg. Two (2) horizontal delineation samples (H-8 and H-9) were collected at 5' bgs. Both samples showed TPH and BTEX concentrations below the laboratory reporting limits. Additionally, chloride concentrations were below the RRALs for the site with concentrations of 89.9 mg/kg (H-8) and 672 mg/kg (H-9).

Based on the horizontal and vertical delineation of the impact in this area, Permian Water Solutions requests a variance to leave the remaining impact in the area of SW-72 in place.

Please let me know if you have any questions or concerns.

Thank you,

Clair Gonzales,

Clair Gonzales, P.G. | Project Manager & Office Lead

Phone: 432.687.8123| Mobile 432.260.8634 | Fax:432.682.3946

clair.gonzales@tetratech.com

Tetra Tech | Complex World, CLEAR SOLUTIONS™

901 West Wall Street, Ste 100 | Midland, TX 79701 | www.tetratech.com

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

From: Smith, Cory, EMNRD < cory.smith@emnrd.nm.gov >

Sent: Wednesday, October 12, 2022 9:26 AM

To: Gonzales, Clair < <u>Clair.Gonzales@tetratech.com</u>>

Cc: Crosby, Faith <<u>fcrosby@slo.state.nm.us</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>>; Dusty McInturff <<u>dmcinturff@dufrane.com</u>>; 'Jenni Usher' <<u>jenni@permianws.com</u>>; Josh Brooks <<u>josh@permianws.com</u>>

Subject: RE: [EXTERNAL] PWS - Kaiser SWD - Variance Request_ Area of SW-72

You don't often get email from cory.smith@emnrd.nm.gov. Learn why this is important

Clair,

I need to know the total volume of impacted soils estimated to be left in place.. To do that the area between SW-72 SW—9 needs to be vertically delineated.

Cory Smith • Environmental Projects Supervisor

Environmental Bureau Projects Group EMNRD - Oil Conservation Division

5200 Oakland Avenue N.E Suite 100 | Albuquerque, NM 87113

505.419.2687 | Cory.Smith@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Gonzales, Clair < <u>Clair.Gonzales@tetratech.com</u>>

Sent: Tuesday, October 11, 2022 3:51 PM

To: Smith, Cory, EMNRD < cory.smith@emnrd.nm.gov>

Cc: Crosby, Faith < recomby@slo.state.nm.us; Mann, Ryan < remann@slo.state.nm.us; Dusty McInturff < dmcinturff@dufrane.com; 'Jenni Usher' < jenni@permianws.com); Josh Brooks

<josh@permianws.com>

Subject: [EXTERNAL] PWS - Kaiser SWD - Variance Request_ Area of SW-72

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon Cory,

Attached is the analysis table, laboratory report, and updated kmz – which includes the data for SW-72.

The RRALs for TPH in this area are 1,000 mg/kg for GRO+DRO or 2,500 mg/kg for total TPH. However, the reclamation thresholds for the top 4.0' are 100 mg/kg for TPH.

Referring to the analysis table, SW-72 showed a TPH concentration of 436 mg/kg. This sample was collected along the 8' sidewall – which proved to be logistically difficult. Therefore, the majority of the material collected for the soil sample was collected from the bottom portion of the sidewall that was easily accessible. Additionally, this sidewall area is approximately 25' from the edge of Phase I SW-9. The sample collected during Phase I at SW-9 showed TPH concentrations below laboratory reporting limits, indicating that the section between SW-72 and SW-9 is horizontally delineated.

Permian Water Solutions would like to request a variance to leave this remaining impact in place, based on the location of the area in proximity to Phase I and SW-9, and the logistics and safety concerns of collecting a composite sample of the top portion of the sidewall.

Let me know if you have any questions or concerns.

Thank you,

Clair Gonzales.

Clair Gonzales, P.G. | Project Manager & Office Lead

Phone: 432.687.8123| Mobile 432.260.8634 | Fax:432.682.3946

clair.gonzales@tetratech.com

Tetra Tech | Complex World, CLEAR SOLUTIONS™

901 West Wall Street, Ste 100 | Midland, TX 79701 | www.tetratech.com

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

From: Smith, Cory, EMNRD

To: Crosby, Faith; Jenni Usher; Mann, Ryan; Gallegos, David; dmcinturff@dufrane.com; Gonzales, Clair; Josh Brooks

Subject: RE: [EXTERNAL] RE: PWS - Kaiser SWD Confirmation Sampling _ Phase II_UPDATE-12-29-2022

Date: Wednesday, January 18, 2023 10:22:46 AM

Attachments: image001.jpg image002.png

CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Jenni,

SW-76 Your variance is approved to leave 931 Chlorides

SW-79 You variance is approved for 613 Chlorides is approved.

Per our conversation during our meeting on January 18, 2023 there is additional delineation data from a prior borehole that shows limited impacts at depth.

Your variance for approval for is approved

SW-75

SW-83

Please include these approvals in your final C-141 report.

Cory Smith • Environmental Projects Supervisor

Environmental Bureau Projects Group EMNRD - Oil Conservation Division 5200 Oakland Avenue N.E Suite 100 | Albuquerque, NM 87113 505.419.2687 | Cory.Smith@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Crosby, Faith <fcrosby@slo.state.nm.us>

Sent: Tuesday, January 10, 2023 2:35 PM

To: Jenni Usher <jenni@permianws.com>; Mann, Ryan <rmann@slo.state.nm.us>; Gallegos, David <dgallegos@slo.state.nm.us>; Smith, Cory, EMNRD <cory.smith@emnrd.nm.gov>; dmcinturff@dufrane.com; Gonzales, Clair <Clair.Gonzales@tetratech.com>; Josh Brooks <josh@permianws.com>

Subject: [EXTERNAL] RE: PWS - Kaiser SWD Confirmation Sampling _ Phase II_UPDATE-12-29-2022

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Thanks Jenni, Ryan and I will have something in writing to you asap

Best regards,

Faith Crosby

Water Bureau Manager

Oil, Gas, and Minerals Division

Office 505.827.5849

Fax 505-827-4739

New Mexico State Land Office 310 Old Santa Fe Trail Santa Fe, NM 87501 -Or-P.O. Box 1148 Santa Fe, NM 87504-1148

fcrosby@slo.state.nm.us

.....

CONFIDENTIALITY NOTICE - This e-mail transmission, including all documents, files, or previous e-mail messages attached hereto, may contain confidential and/or legally privileged information. If you are not the intended recipient, or a person responsible for delivering it to the intended recipient, you are hereby notified that you must not read this transmission and that any disclosure, copying, printing, distribution, or use of any of the information contained in and/or attached to this transmission is STRICTLY PROHIBITED. If you have received this transmission in error, please immediately notify the sender and delete the original transmission and its attachments without reading or saving in any manner. Thank you.

From: Jenni Usher < jenni@permianws.com>
Sent: Tuesday, January 10, 2023 1:58 PM

To: Crosby, Faith < fcrosby@slo.state.nm.us; Mann, Ryan < fcrosby@slo.state.nm.us; Gallegos, David < dgallegos@slo.state.nm.us; Gory, EMNRD Smith < fcrosby@slo.state.nm.us; dmcinturff@dufrane.com; Gonzales, Clair < Clair.Gonzales@tetratech.com; Josh Brooks < fcrosby@slo.state.nm.us; dmcinturff@dufrane.com; Gonzales, Clair < Clair.Gonzales@tetratech.com; Josh Brooks < fcrosby@slo.state.nm.us; dmcinturff@dufrane.com; Gonzales, Clair < Clair.Gonzales@tetratech.com; Josh Brooks < fcrosby@slo.state.nm.us; dmcinturff@dufrane.com; Gonzales, Clair < fcrosby@slo.state.nm.us; fcrosby@slo.state.n

Subject: [EXTERNAL] Re: PWS - Kaiser SWD Confirmation Sampling _ Phase II_UPDATE-12-29-2022

Hi, just keeping this email alive and not buried in everyone's inbox.

-Jenni

From: Jenni Usher

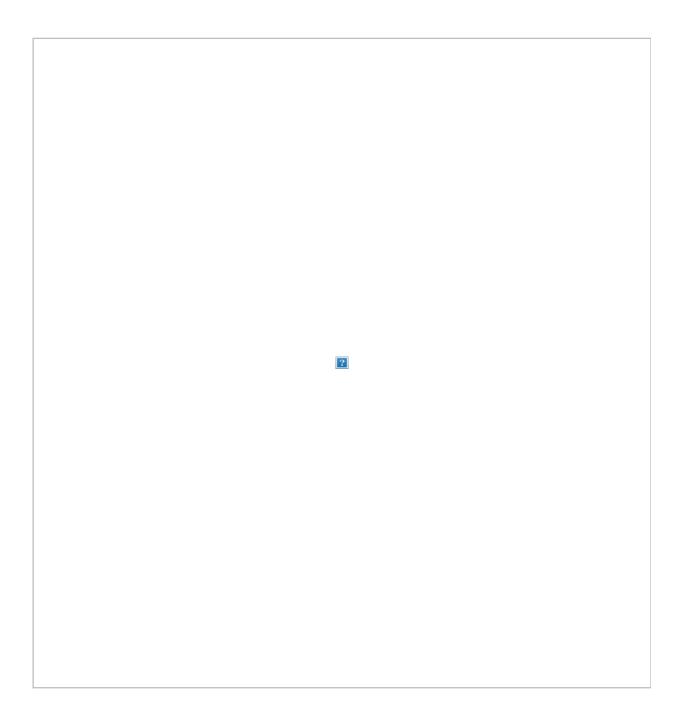
Sent: Wednesday, January 4, 2023 10:49 AM

To: 'Crosby, Faith' < fcrosby@slo.state.nm.us; 'Mann, Ryan' < mann@slo.state.nm.us; Gallegos, David < dgallegos@slo.state.nm.us; Cory, EMNRD Smith < cory.smith@state.nm.us; dmcinturff@dufrane.com; Gonzales, Clair < clair.Gonzales@tetratech.com; Josh Brooks < josh@permianws.com>

Subject: PWS - Kaiser SWD Confirmation Sampling _ Phase II_UPDATE-12-29-2022

Hi everyone!

I'm forwarding updated lab results from Clair on the recent samples obtained from the SW corner tank battery area, the last portion of the area within the Kaiser lease. I've included some of her notes as well.


Faith, Dusty and I were on the call today and discussed these samples. I still need to summarize the meeting minutes, but we wanted to get these results circulated for everyone's review to try to avoid any hold-ups in the field for Dusty.

Unfortunately, it looks like the top 4' still exceeded for chlorides.. although not by a lot. Basically, all of the sidewall samples in the top 4' exceeded for chlorides – everything else was good. Now, SW-79 just *barely* exceeded with a concentration of 613 mg/kg. That may be able to be left as is.

I'm not sure how Cory will feel about 1,000 mg/kg in the top 4' in the areas of SW-75, SW-76 and SW-83. Below is a screenshot of where those areas are for reference.

I think we can ask for a variance for the south without issue; we did get that H-7 sample (which was like 26 mg/kg chlorides) so it is horizontally delineated.

Then that would leave us with SW-75 and SW-83 going to the east.

We're essentially up against the Southern Lease Line. There is about 10' further until we hit the Centennial Lease Line to the East. Dusty will need to think about how he could excavate further with the current existing hole and room left to navigate equipment around the lease. He'll get with Clair on sampling options.

On today's call we wondered if digging deeper or vertically delineating out East would be a consideration. Cory could advise on if deferral or variances would be accepted.

I hope this email serves to get us all on the same page with the current situation. Experts, please review and weigh in on how we can take care of this!

PS. I'm unable to attend an 8 am meeting on 1/18. I could probably do 7:30 am if people are up early, or we may propose 1/25 or a recorded 1/18 meeting. Just head's up!

Thank you,
Jenni Usher
Regulatory Analyst
512-820-8772 mobile
jenni@permianws.com

Appendix B

Work Plan (2020)

2020-04-07 Plan Recommendations: The proposed timeline for the plan is 90 days.

The max TPH discovered was 34, 860 mg/kg, max Cl⁻ 30,000 mg/kg and BTEX at 348 mg/kg. Contamination depths have reached at least 25'. Contamination was found in all areas in and around the pad and berm as well as the offsite areas tested.

Tasks:

- Remove all tank batteries, surface and buried pipelines, off-loading station and extraneous debris, including tanks in the pasture area.
- Any items that will be re-used may not be stored on site.
- Excavate the remediation area (inside dashed red line) to 15'. This shall be the new location of the replacement tank battery.
- Requirements for final samples:
 - o Floor samples to be taken in same location as previous samples.
 - o No less than 3 each cardinal sidewall samples around the perimeter.
 - Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻ and BTEX
 ND.
 - PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill pit and excavations with clean, non-blended soils and place a clay membrane/bentonite mat at 4'-5'.

Timeline:

- All equipment to be removed within 45 days.
- Excavation and final sampling to be completed within 45 days.
- Backfill and clay membrane liner placement to be completed within 60 days.

Once Phase 1 is complete, PWS may construct a new tank battery with falcon-type liner, receive a written acceptance of installation, and re-commence commence injection for a period of 6 months. SLO will review activities for compliance with all environmental and easement requirements.

Phase 1 Work Plan Tasks Site Map

Kaiser State SWD #1

Phase 1 Work Plan Tasks:

Site outline

_ . _ Phase 1 remediation area

- 1. Remove all equipment & debris on site.
- 2. Excavate Phase 1 remediation area to 15'.
 - a) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 4 7,000 mg/kg CT
 - . STEX NO.
- Backfill non-blended soils and place a clay membrane/bentonite mat at 4'-5'.

All three stages to take no more than 45 days.

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.
- **Plan may be subject to change depending on data from soil and water samples.**
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

___ `

Site outline

Phase 1 Remediation Area

*

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 7,000 mg/kg CI*
 - STEXND
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days. **
- assiplien may change subject to sample date from soil and seater testing.***

	SITE INFORMATION											
		Report T	ype: Revis	ed Worl	k Plan							
General Site Info	ormation:	•	<i>y</i>									
Site:		Kaiser State	SWD									
Company:		Permian Wat	er Solutions									
Section, Townsh	nip and Range	Unit F										
Lease Number:		API No. 30-02	API No. 30-025-02538									
County:		Lea										
GPS:			32.48086			-103.42566						
Surface Owner:		State										
Directions:		HWY 176 for a	pproximately 0.25	miles, turn s	outh onto lease	d) in rural Lea County, travel west on e road and continue for 0.25 miles to ne location on the north side of the						
Release Data:		1RP-3512		1RP-3621		1RP-4305						
Date Released:		1/14/2015		4/24/2015		5/17/2016						
Type Release:		Produced Wa	iter	Produced	Water	Produced Water						
Source of Contan	nination:	Vac Truck		Truck hit lo	oad line	Lightning Strike						
Fluid Released:		20 bbls		100 bbls		1050 bbls						
Fluids Recovered	<u>:</u>	20 bbls		100 bbls		1050 bbls						
Release Data:		1RP-4525		1RP-4855		1RP-4960						
Date Released:		Unknown		10/18/201		1/31/2018						
- /	Type Release:		iter		Water & Oil	Produced Water						
	Source of Contamination:			Unkown		Seal on Pump						
Fluid Released:		Unknown		50 bbls		20 bbls						
Fluids Recovered	<i>l:</i>	0 bbls		0 bbls wat	er	10 bbls						
Release Data:		1RP-5139		1RP-5149		1RP-5163						
Date Released:		6/20/2018		8/6/2018	NA / /	8/17/2018						
Type Release:	-!!	Produced Wa	iter	Produced	vvater	Produced Water						
Source of Contan	nination:	Wellhead		Valve		Unload Tanks						
Fluid Released: Fluids Recovered	J.	150 bbls 150 bbls		200 bbls 200 bbls		500 bbls						
Release Data:	•	1RP-5273		200 0015		300 bbis						
Date Released:		11/2/2018 Oil										
Type Release: Source of Contan	nination:	Tank Overflov	A/									
Fluid Released:	iiriatiOri.	20 bbls	/V									
Fluids Recovered:		16 bbls										
Official Commun				<u> </u>								
Name:	James Corbitt				Clair Gonzale	es						
Company:	Permian Water Solutions				Tetra Tech							
Address:	415 W. Wall St.				901 West Wa	all Street						
	Suite 320				Suite 100	5550						
City:												
City:	Midland, TX 79701				Midland, Tex							
Phone number:	(432) 305-4124				(432) 687-81	10						
Fax:												
Email:	james@permian	ws.com			Clair.Gonza	les@tetratech.com						

Site Characterization	
Depth to Groundwater:	Greater than 100'
Karst Potential:	Low

Recommended Remedial Action Levels (RRALs)										
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides						
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	20,000 mg/kg						

January 27, 2020

New Mexico State Land Office 310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, New Mexico 87504 Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico, 88240

Re: Revised Work Plan for the Permian Water Solutions, LLC., Kaiser State SWD, Unit F, Section 13, Township 21 South, Range 34 East, Lea County, New Mexico.

Tetra Tech, Inc. (Tetra Tech) was contacted by Permian Water Solutions, LLC. (Permian Water Solutions) to assess the impacted areas at the Kaiser State SWD, Unit F, Section 13, Township 21 South, Range 34 East, Lea County, New Mexico. The site coordinates are 32.48086°, -103.42566°. The site location is shown on Figures 1 and 2.

Background

Ten releases occurred at the site impacting the pad area and inside the facility berms. The initial C-141 Forms are included in Appendix A.

- 1RP-3512: According to the State of New Mexico C-141 Initial Report submitted by Pyote Water Systems, LLC the release was discovered on January 14, 2015 and released approximately 20 bbls of produced water due to a vac truck over filling the sumps. Approximately 20 bbls of fluids were recovered.
- 1RP-3621: According to the State of New Mexico C-141 Initial Report submitted by Pyote Water Systems, LLC the release was discovered on April 24, 2015 and released approximately 100 barrels of produced water due to a truck hitting a load line. Approximately 100 bbls of fluids were recovered.
- 1RP-4305: According to the State of New Mexico C-141 Initial Report submitted by Pyote Water Systems, LLC the release was discovered on May 17, 2016 and released approximately 1050 barrels of produced water due to a lightning strike. Approximately 1050 bbls of fluids were recovered.
- 1RP-4525: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD the release was due to a leak in the frac tanks used during facility reconstruction after the lightning strike. An unknown volume of fluids was released, and none were recovered.

etra Tech

- 1RP-4855: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD the release was discovered on October 18, 2017 and released approximately 50 bbls of produced water and crude oil within the berm due to an unknown cause. None of the fluids were recovered.
- 1RP-4960: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD the release was discovered on January 31, 2018 and released approximately 20 bbls of produced water due to a failed seal on a pump. Vacuum trucks were dispatched to remove all free-standing fluids, recovering approximately 10 bbls of fluids.
- 1RP-5139: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD the release was discovered on June 20, 2018 and released approximately 150 bbls of produced water due to a nipple on the wellhead. Approximately 150 bbls of fluids were recovered.
- 1RP-5149: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD the release was discovered on August 6, 2018 and released approximately 200 bbls of produced water due to a valve misfunction. Approximately 200 bbls of fluids were recovered.
- 1RP-5163: According to the State of New Mexico C-141 Initial Report submitted by Cambrian Management, LTD the release was discovered on August 17, 2018 and released approximately 500 bbls of produced water due to a valve misfunction, causing tanks to over flow into the lined berm. Approximately 500 bbls of fluids were recovered.
- 1RP-5273: According to the State of New Mexico C-141 Initial Report submitted by Permian Water Solutions, LLC the release was discovered November 2, 2018 and released approximately 20 bbls of crude oil due to an oil skim tank overflowing into the berm. Approximately 16 bbls of fluids were recovered.

Site Characterization

A site characterization was performed for the site and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. Additionally, the site is located in a low karst potential area. The nearest well is listed on the USGS Water Information System database in Section 13, approximately ½ mile south of the site, and has a reported depth to groundwater of 101' below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in this area is between 100' and 125' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases,

updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. A site characterization was performed for the site and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The proposed RRAL for benzene was determined to be 10 milligrams per kilogram (mg/kg) and 50 mg/kg for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 2,500 mg/kg (GRO + DRO + MRO) or 1,000 mg/kg (GRO + DRO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 20,000 mg/kg.

Soil Assessment and Analytical Results

Initial Assessment

Between May 7th and May 14th, 2019, Tetra Tech personnel were onsite to sample the facility areas. A total of thirty-one (31) sample points were installed to total depths ranging from 0-1' and 39'-40' below surface. Sample points SP-1, SP-2, SP-4, SP-5, SP-6, SP-7, SP-8, SP-9, SP-10, SP-11, SP-12, SP-14, SP-15, SP-16, SP-27, SP-29, SP-30, SP-31, and SP-32 were installed using a truck mounted air rotary rig. Due to access and safety issues, sample points SP-3, SP-13, SP-17, SP-18, SP-19, SP-20, SP-21, SP-22, SP-23, SP-24, SP-25, and SP-26 were installed using a stainless-steel hand auger. Selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The results of the sampling are summarized in Table 1. The drilling logs are shown in Appendix C. The sample locations are shown on Figure 3.

Pad and Facility Areas

Referring to Table 1, sample points SP-1 through SP-16 and SP-27 through SP-32 did not show any benzene or total BTEX concentrations above the RRALs. However, sample points SP-2, SP-5, and SP-27 showed TPH concentrations above the RRALs with TPH highs of 20,034 mg/kg, 18,710 mg/kg, and 6,850 mg/kg at 6'-7' below surface, respectively. The TPH concentrations then declined with depth to below the RRALs at depths ranging from 9'-10' and 19'-20' below surface. None of the other sample points on the pad and facility areas showed TPH concentrations above the thresholds.

Additionally, the area of sample point (SP-8) showed a chloride concentration above the 20,000 mg/kg threshold at 0-1' below surface, which declined with depth and showed a bottom hole concentration of 96.0 mg/kg at 29'-30' below surface. None of the remaining sample points on the pad and facility areas showed chloride concentrations above the RRAL.

Bermed Areas

The areas of sample points (SP-17 through SP-26), which were collected inside the bermed facilities, were installed to total depths ranging from 0-1' and 5-5.5' below surface. Deeper samples could not be collected due to a dense formation in the area and the truck mounted air rotary rig could not safely access these areas for deeper samples.

Referring to Table 1, the area of sample point (SP-22) did not show any benzene, total BTEX, TPH, or chloride concentrations above the RRALs. However, the areas of sample points (SP-17, SP-18, SP-19, SP-20, SP-21, SP-23, SP-24, SP-25, and SP-26) showed elevated TPH concentrations to the soils. The areas of sample points (SP-17, SP-21, and SP-25) showed TPH concentrations that declined with depth to below the thresholds at 2-3' below surface. The remaining areas were not vertically defined for TPH.

Additionally, the area of sample point (SP-20) showed benzene and total BTEX concentrations above the RRALs which were not vertically defined at 5-5.5' below surface. None of the remaining sample points inside the bermed facilities showed benzene concentrations above the 10 mg/kg threshold. In addition, the areas of sample points (SP-17, SP-21, SP-24 and SP-26) did not show any total BTEX concentrations above the RRALs. However, the areas of (SP-18, SP-19, SP-21, SP-23, and SP-25) showed total BTEX concentrations above the RRALs and the areas of sample points (SP-19, SP-20, and SP-23) were not vertically defined.

None of the samples collected at sample points (SP-17 through SP-26) showed chloride concentrations above the 20,000 mg/kg threshold.

Additional Assessment

As requested by NMSLO, Permian Water Solutions removed the tanks and equipment from the two onsite facilities to allow access for vertical delineation. Tetra Tech personnel returned to the site on October 21-22, 2019, in order to vertically delineate the areas of SP-17 (BH-17), SP-18 (BH-18), SP-19 (BH-19), SP-20 (BH-20), SP-23 (BH-23), SP-24 (BH-24), SP-25 (BH-25), and SP-26 (BH-26) as well as to install four additional soil borings (BH-33, BH-34, BH-35, and BH-36) beneath the tanks of the eastern facility. The soil borings were installed using a truck mounted air rotary rig to total depths ranging from 19'-20' and 54'-55' below surface. Selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3

Referring to Table 1, none of the samples collected at any of the boreholes showed any benzene or chloride concentrations above the RRALs. Additionally, none of the samples collected at BH-17, BH-33, or BH-35 showed total BTEX or TPH concentrations above the RRALs.

The area of BH-36 showed a TPH high concentration of 9,630 mg/kg at 0-1', which declined with depth to 710 mg/kg at 2-3' below surface. The areas of BH-18, BH-24, and BH-34 showed TPH high concentrations of 12,700 mg/kg at 0-1', 6,400 mg/kg at 2-3', and 10,200 mg/kg at 0-1', respectively, which then declined with depth to below the RRALs at 4'-5' below surface. The areas of BH-19, BH-23, BH-25, and BH-26 showed elevated TPH concentrations to depths of 4-5', before declining with depth to below the RRALs at 6-7' below surface.

The areas of BH- 18, BH-19, BH-23, BH-24, BH-26, BH-34, and BH-36 did not show any total BTEX concentrations above the RRALs. However, the area of BH-20 showed a BTEX high concentration of 119 mg/kg at 6-7', which declined with depth to 16.1 mg/kg at 9'-10' below surface and the area of BH-25 showed a BTEX high of 194 mg/kg at 4-5' which declined with depth to below the laboratory reporting limit at 6-7' below surface.

At the request of NMSLO, the tanks located in the western berm were removed and Tetra Tech returned to the site on January 13, 2020 to install 2 additional bore holes (SP-37 and SP-38) beneath the previous location of the tanks. The soil borings were installed using a truck mounted air rotary rig to total depths ranging from 24'-25' and 34'-35' below surface. All soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3

Referring to Table 1, none of the samples collected showed benzene concentrations above the RRAL. Additionally, none of the samples collected in the areas of SP-37 and SP-38 showed chloride concentrations above the RRAL, with chloride high concentrations of 4,810 mg/kg (4'-5') and 6,130 mg/kg (2'-3'), respectively. The chloride concentrations then decreased with depth to below 600 mg/kg at 14'-15' (SP-37) and 19'-20' (SP-38). However, both areas showed TPH highs of 6,260 mg/kg (SP-37) and 7,340 mg/kg (SP-38) at 4'-5, which then decreased with depth to below the RRALs at 6'-7' below surface. Additionally, BTEX highs of 178 mg/kg (SP-37) and 51.0 mg/kg (SP-38) were detected at 4'-5', which decreased to below the RRAL at 6'-7' below surface.

Work Plan

Based on the laboratory data, Permian Water Solutions proposes to excavate the areas as shown on Figure 4 and highlighted (green) on Table 1. The areas of sample points SP-1, SP-3, SP-6, SP-7, SP-9, SP-10, SP-21, and SP-30 will be excavated to 6" to 1.0' below surface to address the surficial impact. The areas of sample points SP-2, SP-8, and SP-27 will be excavated to approximately 6'-7' below surface and the area of sample point SP-5 will be excavated to approximately 14-15' below surface. Additionally, as requested by NMSLO, the area of SP-4 will be excavated to 4-5' below surface.

To address the areas inside the bermed facilities, Permian Water Solutions proposes to excavate the areas of sample points SP-17, SP-18, SP-24, and SP-34 to approximately 3'

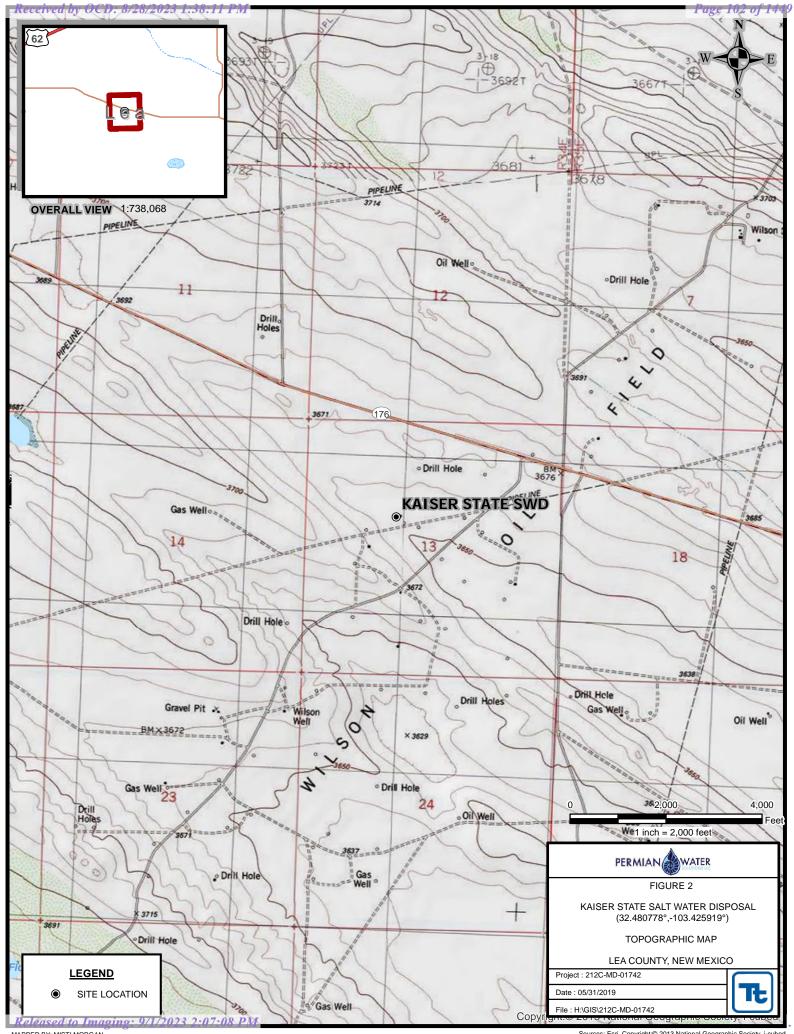
below surface, the areas of SP-19, SP-23, SP-25, SP-26, SP-36, SP-37, and SP-38 to approximately 5', and the area of SP-20 to approximately 10' below surface.

Once excavated, composite bottom hole and sidewall confirmation samples will be collected every 200 square feet, to be representative of the area and to confirm proper removal of the impacted soils. The areas will then be backfilled with clean material to surface grade, including the area of SP-3. Permian Water Solutions estimates approximately 15,200 cubic yards will be excavated, and the remediation to be implemented 90 days after the work plan is approved by both the NMSLO and NMOCD.

The proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns for onsite personnel. As such, Permian Water Solutions will excavate the impacted soils to the maximum extent practicable.

Conclusion

Once the remediation activities are completed, a closure report will be prepared for NMOCD and NMSLO approval. If you have any questions or comments concerning the assessment or remediation activities for this site, please call at (432) 682-4559.


Respectfully submitted, TETRA TECH

Clair Gonzales, P.G., Project Manager

6

Figures

Approximate Scale in Feet

Tables

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

	Sample	Sample Depth (ft)	Soil	Status		TPH (mg/kg)				Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date		In-Situ	Removed	GRO	DRO	MRO	Total	Benzene (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SP-1	5/7/2019	0-1	Х	Removed	<10.0	174	77.3	251	<0.050	<0.050	<0.050	<0.0150	<0.300	5,560
	"	2-3	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	1,650
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	1,330
	"	6-7	Χ		-	-	-	-	-	-	-	-	-	864
	"	9-10	Χ		-	-	-	-	-	-	-	-	-	656
	"	14-15	Χ		-	-	-	-	-	-	-	-	-	496
	"	19-20	Χ		-	-	-	-	-	-	-	-	-	576
	"	24-25	Χ		-	-	-	-	-	-	-	-	-	320
	"	29-30	Χ		-	-	-	-	-	-	-	-	-	144
	"	34-35	Х		-	-	-	-	-	-	-	-	-	144
SP-2	5/7/2019	0-1	Χ		239	2,970	553	3,523	<0.050	0.372	0.760	6.36	7.49	6,530
	"	2-3	Χ		58.6	638	128	825	<0.050	0.068	0.193	1.63	1.89	4,960
	"	4-5	Χ		<50.0	346	248	594	< 0.050	< 0.050	<0.050	<0.0150	<0.300	2,200
	"	6-7	Χ		394	14,900	4,740	20,034	<0.050	0.068	0.717	1.67	2.46	2,160
	"	9-10	Χ		10.4	592	221	823	<0.050	<0.050	<0.050	<0.0150	<0.300	2,480
	"	14-15	Χ		-	-	-	-	-	-	-	-	-	4,640
	"	19-20	Χ		-	-	-	-	-	-	-	-	-	1,100
	"	24-25	Χ		-	-	-	-	-	-	-	-	-	448
	"	29-30	Χ		-	-	-	-	-	-	-	-	-	240
	"	34-35	Х		-	-	-	-	-	-	-	-	-	240
SP-3	5/8/2019	0-1	Χ		<10.0	113	35.2	148	<0.050	< 0.050	<0.050	<0.0150	<0.300	3,040
	5/13/2019	1-1.5	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	240
	"	2-2.5	Χ		-	-	-	-	-	-	-	-	-	240
	"	3-3.5	Χ		-	-	-	-	-	-	-	-	-	160
	"	4-4.5	Х		-	-	-	-	-	-	-	-	-	160
	"	5-5.5	Х		-	-	-	-	-	-	-	-	-	240
SP-4	5/7/2019	0-1	Χ		<10.0	11.6	<10.0	11.6	<0.050	< 0.050	<0.050	<0.0150	<0.300	1,680
	"	2-3	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	1,170
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	928
	"	6-7	Χ		-	-	-	-	-	-	-	-	-	624
	"	9-10	Χ		-	-	-	-	-	-	-	-	-	464
	"	14-15	Χ		-	-	-	-	-	-	-	-	-	400
SP-5	5/7/2019	0-1	Χ		<10.0	91.4	56.8	148	< 0.050	<0.050	<0.050	<0.0150	<0.300	5,040
	"	2-3	Χ		<50.0	522	330	852	<0.050	< 0.050	<0.050	<0.0150	<0.300	784
	"	4-5	Χ		<10.0	401	270	671	<0.050	<0.050	<0.050	<0.0150	<0.300	368
	"	6-7	Χ	_	400	13,800	4,510	18,710	<0.050	0.468	1.35	2.49	4.31	224
	"	9-10	Χ		174	7,720	2,550	10,444	<0.050	0.175	0.429	1.25	1.85	224
	"	14-15	Χ		11.2	1,150	287	1,448	<0.050	<0.050	<0.050	<0.0150	<0.300	240
	"	19-20	Χ		<10.0	945	239	1,184	<0.050	<0.050	<0.050	<0.0150	<0.300	368
	"	24-25	Х		<10.0	609	145	754	<0.050	<0.050	<0.050	<0.0150	<0.300	288
	"	29-30	Х		-	-	-	-	-	-	-	-	-	64.0
	"	34-35	Χ		-	-	-	-	-	-	-	-	-	96.0

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

	Sample	Sample	Soil Status		TPH (mg/kg)				Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SP-6	5/7/2019	0-1	X	Kemoveu	<10.0	106	46.2	152	<0.050	<0.050	<0.050	<0.0150	<0.300	5,520
	"	2-3	Х		<10.0	120	51.6	172	<0.050	<0.050	<0.050	<0.0150	<0.300	2,040
	"	4-5	Х		-	-	-	-	-	-	-	-	-	640
	"	6-7	Х		-	-	-	-	-	-	-	-	-	640
	"	9-10	Χ		-	-	-	-	-	-	-	-	-	752
	"	14-15	Х		-	-	-	-	-	-	-	-	-	576
	"	19-20	Х		-	-	-	-	-	-	-	-	-	432
SP-7	5/7/2019	0-1	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	3,920
	"	2-3	Χ		<10.0	<10.0	<10.0	<10.0	< 0.050	< 0.050	<0.050	<0.0150	<0.300	1,140
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	1,410
	"	6-7	Х		-	-	-	-	-	-	-	-	-	672
	"	9-10	Х		-	-	-	-	-	-	-	-	-	768
	"	14-15	Х		-	-	-	-	-	-	-	-	-	880
	"	19-20	Х		-	-	-	-	-	-	-	-	-	352
		24-25	Х		-	-	-	-	-	-	-	-	-	128
SP-8	5/7/2019	0-1	Х		<10.0	284	61.1	345	<0.050	0.121	0.136	0.382	0.639	30,000
	"	2-3	Χ		<10.0	86.3	<10.0	86.3	<0.050	<0.050	<0.050	<0.0150	<0.300	10,200
	"	4-5	Х		-	-	-	-	-	-	-	-	-	12,000
	"	6-7	Х		-	-	-	-	-	-	-	-	-	10,400
	"	9-10	Х		-	-	-	-	-	-	-	-	-	7,200
	- "	14-15	X		-	-	-	-	-	-	-	-	-	4,400
	- "	19-20	X		-	-	-	-	-	-	-	-	-	2,360
		24-25	X		-	-	-	-	-	-	-	-	-	304
	<u> </u>	29-30	Х		-	-	-	-	-	-	-	-	-	96.0
SP-9	5/7/2019	0-1	Х		<10.0	192	118	310	<0.050	<0.050	<0.050	<0.0150	<0.300	8,660
	"	2-3	Х		<10.0	10.9	<10.0	10.9	<0.050	<0.050	<0.050	<0.0150	<0.300	2,320
	- "	4-5	X		-	-	-	-	-	-	-	-	-	2,760
	- "	6-7	X		-	-	-	-	-	-	-	-	-	4,400
		9-10 14-15	X		-	-	-	-	-	-	-	-	-	3,760 4,800
		19-20	X		-	-	-	-	-	-	-	-	-	4,560
	"	24-25	X		-		_		_	_	-	-		1,230
	"	29-30	X		-	_	_	_	_	-	_	_	_	528
	"	34-35	X		-	-	-	-	-	-	-	-	-	832
SP-10	5/8/2019	0-1	Х	l	-10.0	-10.0	<10.0	<10.0	-0.050	-0.0E0	-0.050	-0.150	-0.200	1 200
3r-10	5/6/2019	0-1 2-3	X		<10.0	<10.0 <10.0	<10.0	<10.0	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.150 <0.150	<0.300 <0.300	1,280 272
	"	4-5	X		-				-	-			-	176
00.44				l I										l
SP-11	5/8/2019	0-1	X		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	224
	"	2-3	X		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
		4-5	X		-	-	-	-	-	-	-	-	-	192
	"	6-7 9-10	X		-	-	-	-	-	-	-	-	-	96 112
		9-10			-	-		-	-	-	<u> </u>			112

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

Sample ID Sam Da	te I	Sample Depth (ft)	In-Situ	Status		IFH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	
SP-12 5/8/2			In-Situ						(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Chloride (mg/kg)
3.3.5	019		X	Removed	GRO <10.0	DRO <10.0	MRO <10.0	Total <10.0	<0.050	<0.050	<0.050	<0.150	<0.300	2,040
		0-1 2-3	X		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
-		4-5	X		- 10.0		- 10.0	-	-	-	-	-	-	800
		6-7	X		_	-	-		-	-	-	-	_	304
,		9-10	X		-	-	-		-	-	-	-	-	128
,		14-15	Х		-	-	-	-	-	-	-	-	-	208
SP13 5/8/2	019	0-1	Х		<10.0	159	52.8	212	<0.050	<0.050	<0.050	<0.150	<0.300	288
SP-14 5/8/2	019	0-1	Х		<10.0	504	332	836	<0.050	<0.050	<0.050	<0.150	<0.300	640
,		2-3	Х		<10.0	100	55.6	156	<0.050	<0.050	<0.050	<0.150	<0.300	544
,		4-5	Χ		-	-	-	-	-	-	-	-	-	464
,		6-7	Χ		-	-	-	-	-	-	-	-	-	384
,		9-10	Χ		-	-	-	-	-	-	-	-	-	288
,		14-15	Χ		-	-	-	-	-	-	-	-	-	544
,		19-20	Χ		-	-	-	-	-	-	-	-	-	1,960
,		24-25	Χ		-	-	-	-	-	-	-	-	-	688
		29-30	Χ		-	-	-	-	-	-	•	-	-	208
,		34-35	Χ		-	-	-	-	-	-	-	-	-	80.0
SP-15 5/8/2	019	0-1	Х		<10.0	66.4	40.6	107	<0.050	<0.050	<0.050	<0.150	<0.300	480
•		2-3	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	672
,		4-5	Χ		-	-		-	-	-	ı		-	320
		6-7	Χ		-	-	-	-	-	-	-	-	-	176
SP-16 5/8/2	019	0-1	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	384
•		2-3	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,410
,		4-5	Χ		-	-	-	-	-	-		-	-	1,570
		6-7	Χ		-	-	-	-	-	-	ı	-	-	1,330
		9-10	Χ		-	-	-	-	-	-	-	-	-	1,170
		14-15	Χ		-	-	-	-	-	-	-	-	-	288
'		19-20	Χ		-	-	-	-	-	-	-	-	-	816
SP-17 5/8/2	019	0-1	Χ		2,130	11,200	2,010	15,340	<0.500	1.85	4.81	42.6	49.3	7,040
Inside Berm '		2-3	Χ		16.7	463	78.3	<10.0	<0.050	< 0.050	< 0.050	0.214	<0.300	11,200
		3-4	Χ		-	-	-	-	-	-	-	-	-	9,600
5/13/	2019	4-4.5	Χ		<10.0	622	75.3	697	< 0.050	0.076	<0.050	0.184	<0.300	3,760
'		5-5.5	Χ		<10.0	145	<10.0	145	<0.050	< 0.050	<0.050	<0.150	<0.300	9,680
BH-17 10/21	2019	0-1	Χ		<50.3	<10.0	<10.0	<10.0	<0.00101	<0.00101	<0.00101	0.00522	0.00522	881
,		2-3	Х		<49.9	<10.0	<10.0	<10.0	<0.00101	<0.00101	<0.00101	0.0122	0.0122	1,180
,		4-5	Χ		<50.1	<50.1	<50.1	<50.1	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	1,110
,		6-7	Χ		<49.8	<49.8	<49.8	<49.8	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	2,270
		9-10	Χ		<50.1	<50.1	<50.1	<50.1	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	1,050
		14-15	Χ		<50.1	<50.1	<50.1	<50.1	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	1,520
		19-20	Χ		<50.2	<50.2	<50.2	<50.2	<0.000996	<0.000996	<0.000996	<0.000996	<0.000996	1,710
		24-25	Χ		<49.8	<49.8	<49.8	<49.8	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	937
'		29-30	Χ		<50.2	<50.2	<50.2	<50.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	404

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

	Sample	Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SP-18	5/7/2019	0-1	X		1,950	8,290	1,320	11,560	0.883	20.6	9.44	60.9	91.8	9,730
Inside Berm	"	2-3	Х		177	1,990	506	2,673	< 0.050	0.124	0.430	1.06	1.61	5,520
BH-18	10/21/2019	0-1	Х		<251	11,100	1,640	12,700	<0.101	<0.101	0.196	0.965	1.16	7,190
	"	2-3	Х		444	6,210	747	7,400	<0.100	0.279	0.594	1.73	2.61	6,180
	"	4-5	Х		<49.9	183	<49.9	183	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	8,280
	"	6-7	Χ		<50.2	<50.2	<50.2	<50.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	5,540
	"	9-10	Х		<50.3	<50.3	<50.3	<50.3	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	3,010
	"	14-15	Χ		<49.8	<49.8	<49.8	<49.8	<0.000984	<0.000984	<0.000984	<0.000984	<0.000984	1,610
	"	19-20	Х		<50.0	<50.0	<50.0	<50.0	<0.000986	<0.000986	<0.000986	<0.000986	<0.000986	4,720
	"	24-25	Х		<49.8	<49.8	<49.8	<49.8	<0.000986	<0.000986	<0.000986	0.00348	0.00348	2,630
	"	29-30	Χ		<49.7	<49.7	<49.7	<49.7	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	1,250
	"	34-35	Χ		<50.0	<50.0	<50.0	<50.0	<0.000996	<0.000996	<0.000996	<0.000996	<0.000996	1,120
	"	39-40	Χ		<50.1	<50.1	<50.1	<50.1	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	772
	"	44-45	Х		<50.0	<50.0	<50.0	<50.0	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	633
	"	49-50	Х		<49.9	<49.9	<49.9	<49.9	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	388
SP-19	5/8/2019	0-1	Х		2,980	14,800	2,930	20,710	3.95	46.4	9.53	71.3	131	6,560
Inside Berm	"	2-3	Χ		64.8	786	176	1,027	<0.050	0.143	0.191	0.451	0.784	12,800
	5/13/2019	4-4.5	Χ		2,270	7,380	805	10,455	2.21	48.5	36.9	131	219	4,120
BH-19	10/22/2019	0-1	Χ		474	8,050	729	9,250	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	4,160
	"	2-3	Χ		97.5	2,900	253	3,250	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	9,700
	"	4-5	Х		87.1	2,090	186	2,360	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	10,200
	"	6-7	Χ		<50.2	<50.2	<50.2	<50.2	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	7,660
	"	9-10	Χ		<49.9	<49.9	<49.9	<49.9	<0.000990	<0.000990	<0.000990	<0.000990	<0.000990	10,300
	II .	14-15	Χ		<49.8	<49.8	<49.8	<49.8	<0.000990	<0.000990	<0.000990	<0.000990	<0.000990	9,650
	"	19-20	Χ		<49.8	<49.8	<49.8	<49.8	<0.000996	<0.000996	<0.000996	<0.000996	<0.000996	11,500
	"	24-25	Χ		<50.0	<50.0	<50.0	<50.0	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	811
	"	29-30	Х		<50.0	<50.0	<50.0	<50.0	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	502
	"	34-35	Χ		<49.8	<49.8	<49.8	<49.8	<0.000982	0.00182	<0.000982	<0.000982	0.00182	171
	"	39-40	Х		<49.9	<49.9	<49.9	<49.9	<0.000986	<0.000986	<0.000986	<0.000986	<0.000986	495
SP-20	5/8/2019	0-1	Χ		3,520	25,300	6,040	34,860	21.7	80.8	17.3	61.2	181	2,520
Inside Berm	"	2-3	Х		2,930	13,400	2,870	19,200	15.3	73.7	15.0	101	205	1,630
	5/13/2019	4-4.5	Х		3,900	11,300	1,620	16,820	15.3	102	49.2	162	329	1,550
	"	5-5.5	Χ		4,390	11,300	1,390	17,080	18.0	120	56.6	153	348	1,600
BH-20	10/22/2019	0-1	X		302	3,560	339	4,200	0.00241	0.0227	0.0126	0.0558	0.0935	2,680
	"	2-3	Χ		821	4,840	396	6,060	0.5700	7.56	4.92	24.4	37.4	5,240
	"	4-5	Χ		1,270	4,990	395	6,660	2.00	22.2	13.0	51.7	88.9	2,300
	"	6-7	Х		2,110	6,650	588	9,350	3.32	34.0	18.5	63.2	119	218
	"	9-10	Х		388	2,710	189	3,290	<0.0998	2.33	3.07	10.7	16.1	988
	"	14-15	Х		<50.2	365	<50.2	365	<0.00101	<0.00101	0.0126	0.0659	0.0785	3,800
	"	19-20	Х		<50.3	326	57.1	385	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	1,350
	- "	24-25	Х		<50.1	62.8	<50.1	62.8	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	199
		29-30	Х		<50.0	72.7	<50.0	72.7	<0.00101	<0.00101	<0.00101	0.0404	0.0404	208

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

	Sample	Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SP-21	5/8/2019	0-1	Χ		993	10,500	2,100	13,593	0.0740	2.12	2.05	14.3	18.5	2,240
Inside Berm	"	2-3	Χ		10.6	445	109	565	<0.050	<0.050	<0.050	0.241	<0.300	1,100
	5/13/2019	4-4.5	Х		<10.0	725	57.2	782	<0.050	0.076	<0.050	<0.150	<0.300	3,120
		5-5.5	Χ		<10.0	215	<10.0	215	<0.050	<0.050	<0.050	<0.150	<0.300	2,200
SP-22	5/8/2019	0-1	Х		<10.0	64.0	52.9	117	<0.050	<0.050	<0.050	<0.150	<0.300	880
Inside Berm	"	2-3	Χ		<10.0	32.0	16.4	48.4	<0.050	<0.050	<0.050	<0.150	<0.300	752
	5/13/2019	3-3.5	Χ		-	-	-	-	-	-	ı	-	-	720
		4-4.5	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	848
SP-23	5/8/2019	0-1	X		593	12,800	2,390	15,190	<0.050	1.03	1.03	2.56	4.62	880
Inside Berm	5/14/2019	1-1.5	Χ		2,180	7,770	1,050	11,000	6.76	71.1	40.4	129	247	464
	"	2-2.5	X		97.7	662	48.8	809	1.06	5.98	5.38	17.6	30.0	3,680
	=	3-3.5	Х		902	3,150	521	4,573	7.38	57.8	31.7	100	197	1,060
	"	4-4.5	Χ		2,760	9,000	1,170	12,930	14.2	112	50.7	150	327	2,760
BH-23	10/22/2019	0-1	Х		407	3,250	258	3,920	0.0125	0.0446	0.0375	1.04	1.14	372
	"	2-3	Χ		664	3,060	209	3,930	0.0152	0.0333	0.0821	0.355	0.486	178
	"	4-5	Χ		1,050	4,150	338	5,540	0.394	0.374	0.232	1.02	2.02	55.9
	"	6-7	Χ		74.5	742	76.9	893	0.0108	0.307	0.400	1.02	1.73	39.2
	"	9-10	Х		<49.9	<49.9	<49.9	<49.9	0.00949	0.0698	0.138	0.392	0.609	359
	=	14-15	Х		63.9	672	78.3	814	0.00230	0.0821	0.128	0.491	0.703	3,960
	=	19-20	Χ		<50.2	<50.2	<50.2	<50.2	<0.000994	0.00456	0.00189	0.00794	0.0144	6,740
	=	24-25	Χ		<50.3	<50.3	<50.3	<50.3	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	3,200
		29-30	Χ		<50.0	<50.0	<50.0	<50.0	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	2,370
	"	34-35	Χ		<49.9	<49.9	<49.9	<49.9	<0.000994	<0.000994	<0.000994	<0.000994	<0.000994	1,330
	"	39-40	Χ		<50.1	<50.1	<50.1	<50.1	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	1,350
	-	44-45	Χ		<50.0	<50.0	<50.0	<50.0	<0.000986	<0.000986	<0.000986	<0.000986	<0.000986	941
	"	49-50	Χ		<50.1	<50.1	<50.1	<50.1	<0.000996	<0.000996	<0.000996	<0.000996	<0.000996	362
	"	54-55	Х		<50.0	<50.0	<50.0	<50.0	0.00260	0.00806	0.00849	0.0294	0.0486	286
SP-24 (Inside Berm)	5/8/2019	0-1	Χ		595	11,000	2,060	13,060	1.49	12.1	2.69	16.2	32.5	1,060
BH-24	10/22/2019	0-1	Х		561	4,810	411	5,780	0.00859	0.8070	1.32	5.05	7.19	598
	=	2-3	Χ		1,160	4,830	405	6,400	0.380	7.47	5.41	14.2	27.5	722
	=	4-5	Х		92.8	827	119	1,040	0.0189	0.335	0.266	0.986	1.61	297
		6-7	Х		<49.8	220	67	287	<0.000994	0.00366	0.00411	0.0128	0.0206	4,460
		9-10	Χ		<49.8	166	<49.8	166	<0.000998	0.00218	0.00766	0.0276	0.0374	3,530
	=	14-15	Χ		<49.8	289	<49.8	289	<0.000994	<0.000994	0.00849	0.0366	0.0451	598
	=	19-20	Х		<50.2	227	<50.2	227	<0.00100	<0.00100	0.0109	0.0388	0.0497	581
	-	24-25	Х		<50.3	<50.3	<50.3	<50.3	<0.00100	<0.00100	<0.00100	0.00563	0.00563	494
	=	29-30	Х		<50.1	<50.1	<50.1	<50.1	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	247

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

Sample ID	Sample	Sample	Soil	Status		TPH (mg/kg)	1	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Oampie ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SP-25	5/8/2019	0-1	Χ		2,440	12,100	1,690	13,790	9.63	68.7	35.1	79.0	192	4,880
Inside Berm	5/14/2019	1-1.5	X		1,610	5,200	944	7,754	2.14	32.7	25.7	64.9	125	4,320
	"	2-2.5	Χ		85.1	450	65.6	601	0.397	5.74	5.26	15.2	26.6	1,150
	"	3-3.5	Χ		18.9	150	19.0	188	0.052	0.729	0.825	2.42	4.03	2,440
	"	4-4.5	Χ		39.2	398	154	591	<0.050	0.313	0.430	1.23	1.97	2,960
	"	5-5.5	Χ		<10.0	552	242	794	<0.050	<0.050	0.098	0.234	0.332	1,360
BH-25	10/22/2019	0-1	Χ		<49.9	223	<49.9	223	0.0160	0.281	0.283	0.752	1.33	5,200
	"	2-3	Χ		1,220	3,730	289	5,240	0.6600	8.86	5.73	13.3	28.6	5,200
	"	4-5	Χ		1,140	3,820	303	5,260	6.40	58.6	38.6	90.0	194	4,510
	"	6-7	Χ		<50.1	<50.1	<50.1	<50.1	<0.000996	<0.000996	<0.000996	<0.000996	<0.000996	1,460
	"	9-10	Χ		<50.1	<50.1	55.7	55.7	<0.00102	<0.00102	<0.00102	0.0119	0.0119	1,470
	"	14-15	Χ		<50.1	<50.1	<50.1	<50.1	<0.00100	0.0374	0.0628	0.188	0.288	805
	"	19-20	Χ		<50.0	<50.0	<50.0	<50.0	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	563
	"	24-25	Χ		<50.2	58.9	<50.2	58.9	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	349
SP-26 (Inside Berm)	5/8/2019	0-1	Χ		1,090	12,200	2,020	14,220	<0.050	1.34	1.33	4.02	6.69	640
BH-26	10/22/2019	0-1	Χ		795	4,560	405	5,760	<000994	<000994	<000994	<000994	<000994	8,630
	"	2-3	Χ		1,050	4,040	288	5,380	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	11,500
	"	4-5	Χ		1,280	4,860	386	6,530	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	7,370
	"	6-7	Χ		<50.1	428	62.9	491	0.00825	0.0797	0.0637	0.203	0.355	5,300
	"	9-10	Χ		<50.2	383	77.7	461	0.0149	0.151	0.109	0.380	0.655	3,060
	"	14-15	Χ		<50.3	<50.3	<50.3	<50.3	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	3,080
	"	19-20	Χ		<50.1	<50.1	<50.1	<50.1	<0.00101	<0.00101	<0.00101	0.00130	0.00130	769
	"	24-25	Χ		<50.3	<50.3	<50.3	<50.3	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	529
	"	29-30	Χ		<50.3	<50.3	<50.3	<50.3	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	347
	"	34-35	Х		<50.2	<50.2	<50.2	<50.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	325
SP-27	5/8/2019	0-1	Х		<10.0	14.5	<10.0	15.0	<0.050	<0.050	<0.050	<0.150	<0.300	2,440
	"	2-3	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,340
	"	4-5	Χ		<10.0	938	244	1,182	< 0.050	<0.050	<0.050	<0.150	<0.300	448
	"	6-7	Χ		<100	5,680	1,170	6,850	<0.050	0.0550	0.342	0.779	1.18	208
1	"	9-10	Х		<10.0	80.6	<10.0	81.0	< 0.050	<0.050	<0.050	<0.150	<0.300	208
	"	14-15	Χ		<10.0	206	29.2	235	<0.050	<0.050	<0.050	<0.150	<0.300	272
	"	19-20	Χ		<10.0	93.2	12.9	106	<0.050	< 0.050	< 0.050	<0.150	< 0.300	704
	"	24-25	Χ		<10.0	19.0	<10.0	19.0	<0.050	< 0.050	< 0.050	<0.150	< 0.300	176
	"	29-30	Χ		<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	<0.300	128
	"	34-35	Χ		-	-	-	-	-	-	-	-	-	112
	"	39-40	Χ		-	-	-	-	-	-	-	-	-	80.0

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

Sample ID	Sample	Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
oumpie ib	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SP-29	5/8/2019	0-1	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	<0.300	1,070
	"	2-3	Χ		<10.0	<10.0	<10.0	<10.0	< 0.050	< 0.050	<0.050	<0.150	< 0.300	560
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	160
	"	6-7	Χ		-	-	-	-	-	-	-	-	-	48.0
SP-30	5/8/2019	0-1	Х		<10.0	<10.0	<10.0	<10.0	< 0.050	< 0.050	<0.050	<0.150	<0.300	5,120
	"	2-3	Χ		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,330
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	1,490
	"	6-7	Χ		-	-	-	-	-	-	-	-	-	682
	"	9-10	Χ		-	-	-	-	-	-	-	-	-	704
	"	14-15	Χ		-	-	-	-	-	-	-	-	-	256
SP-31	5/8/2019	0-1	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
	"	2-3	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	80.0
SP-32	5/8/2019	0-1	Х		<10.0	35.3	22.7	58.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
	"	2-3	X		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	512
	"	4-5	Х		-	-	-	-	-	-	-	-	-	832
BH-33	10/22/2019	0-1	Х		<49.8	<49.8	<49.8	<49.8	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	1,360
	"	2-3	X		<49.7	<49.7	<49.7	<49.7	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	781
	"	4-5	X		<50.1	<50.1	<50.1	<50.1	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	1,080
	"	6-7	X		<50.2	<50.2	<50.2	<50.2	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	772
	"	9-10	X		<50.2	<50.2	<50.2	<50.2	<0.000982	<0.000982	<0.000982	<0.000982	<0.000982	446
	"	14-15	Х		<50.1	<50.1	<50.1	<50.1	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	287
	"	19-20	Χ		<49.9	<49.9	<49.9	<49.9	<0.000984	<0.000984	<0.000984	<0.000984	<0.000984	399
BH-34	10/21/2019	0-1	Х		1,470	8,110	638	10,200	0.00130	0.0246	0.0423	0.133	0.201	290
	"	2-3	X		1,140	5,310	449	6,900	0.00256	0.0498	0.0643	0.202	0.319	522
	"	4-5	X		81.3	869	132	1,080	<0.00100	0.00337	0.00622	0.0198	0.0294	1,080
	"	6-7	Х		<50.2	165	55.9	221	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	112
	"	9-10	Х		<50.2	<50.2	<50.2	<50.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	209
	"	14-15	Х		<50.2	<50.2	<50.2	<50.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	480
	"	19-20	Χ		<50.1	<50.1	<50.1	<50.1	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	2,440
	"	24-25	Χ		<50.3	<50.3	<50.3	<50.3	<0.00100	<0.00100	<0.00100	0.0102	0.0102	2,260
	"	29-30	Х		<50.2	<50.2	<50.2	<50.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	741
	"	34-35	Х		<50.0	<50.0	<50.0	<50.0	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	805
	"	39-40	Х		<50.2	<50.2	<50.2	<50.2	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	957
	•							1				•		

Table 1
Permian Water Solutions
Kaiser SWD
Lea County, New Mexico

Sample ID		Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-35	10/21/2019	0-1	Χ		<50.1	<50.1	<50.1	<50.1	<0.000992	<0.000992	<0.000992	<0.000992	<0.000992	1,660
	"	2-3	Χ		<49.9	917	100	1,020	<0.000990	<0.000990	<0.000990	<0.000990	<0.000990	2,860
	"	4-5	Χ		<50.0	502	78.3	580	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	1,120
	"	6-7	Χ		<49.7	<49.7	<49.7	<49.7	<0.000994	<0.000994	<0.000994	< 0.000994	<0.000994	3,340
	"	9-10	Χ		<49.8	<49.8	<49.8	<49.8	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	3,180
	"	14-15	Χ		<49.8	<49.8	<49.8	<49.8	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	3,990
	"	19-20	Χ		<50.2	<50.2	<50.2	<50.2	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	6,730
	"	24-25	Χ		<50.0	53.0	<50.0	53.0	<0.000998	<0.000998	<0.000998	0.00166	0.00166	1,790
	"	29-30	Χ		<49.8	<49.8	<49.8	<49.8	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	190
	"	34-35	Χ		<49.8	<49.8	<49.8	<49.8	<0.000986	<0.000986	<0.000986	<0.000986	<0.000986	523
	"	39-40	Χ		<49.8	<49.8	<49.8	<49.8	<0.000986	<0.000986	<0.000986	<0.000986	<0.000986	502
BH-36	10/21/2019	0-1	Χ		1,210	7,730	691	9,630	<0.0101	0.135	2.57	10.8	13.5	5,900
	"	2-3	Χ		<50.1	588	122	710	<0.0996	1.30	1.14	13.4	15.8	7,660
	"	4-5	Χ		<50.3	<50.3	<50.3	<50.3	<0.00100	<0.00100	<0.00100	0.00311	0.00311	13,000
	"	6-7	Х		<50.0	109	50.1	159	<0.00100	<0.00100	<0.00100	0.0184	0.0184	7,410
	"	9-10	Χ		<50.3	<50.3	<50.3	<50.3	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	2,060
	"	14-15	Χ		<50.2	<50.2	<50.2	<50.2	<0.00101	<0.00101	<0.00101	0.00186	0.00186	112
	"	19-20	Χ		<50.0	<50.0	<50.0	<50.0	<0.00100	0.00106	<0.00100	0.0143	0.0154	1,040
SP-37	1/13/2020	0-1	Χ		886	4,130	382	5,400	0.283	0.436	0.258	6.62	7.60	3,040
(Inside Berm)	"	2-3	Χ		1,170	3,230	301	4,700	0.642	21.20	7.33	21.5	50.7	3,200
	"	4-5	Χ		1,730	4,130	397	6,260	0.209	9.64	36.8	131	178	4,810
	"	6-7	Х		<50.0	224	<50.0	224	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	4,930
	"	9-10	Χ		<49.9	77.3	<49.9	77.3	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	1,170
	"	14-15	Χ		<49.8	93.1	<49.8	93.1	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	542
	"	19-20	Χ		<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	144
	"	24-25	Χ		<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	49.0
SP-38	1/13/2020	0-1	Х		406	4,410	472	5,290	0.101	0.142	0.130	3.20	3.57	2,160
(Inside Berm)	"	2-3	Х		1,060	3,250	304	4,610	0.815	11.8	5.80	21.3	39.7	6,130
	"	4-5	Х		1,550	5,330	486	7,340	1.19	15.5	9.86	24.5	51.0	6,120
	"	6-7	Х		<49.9	233	<49.9	233	<0.00198	<0.00198	0.00484	0.0240	0.0289	812
	"	9-10	Х		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	877
	"	14-15	Χ		<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	943
	"	19-20	Χ		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	343
	"	24-25	Χ		<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	300
	"	29-30	Х		<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	200
	"	34-35	Χ		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	162
		ı						ı						

Photos

View Southwest - Area of SP-1

View South - Area of SP-2

View North – Area of SP-3

View West - Area of SP-4

View South – Area of SP-5

View East - Area of SP-6

View East - Area of SP-7

View Northwest - Area of SP-8

View Northwest - Area of SP-9

View West – Area of SP-10

View South - Area of SP-11

View North – Area of SP-12

ط

View Northwest – Area of SP-13

View Southwest - Area of SP-14

View West – Area of SP-15

View East - Area of SP-16

View Northwest – Area of SP-17

View South - Area of SP-18

View South - Area of SP-19

View South - Area of SP-20

TETRA TECH

View North – Area of SP-21

View South - Area of SP-22

View East – Area of SP-24

View North - Area of SP-25

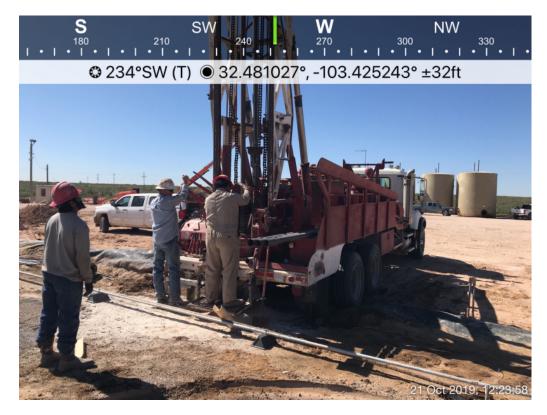
ਰ

View West – Area of SP-26

View West - Area if SP-27

View North - Area of SP-29

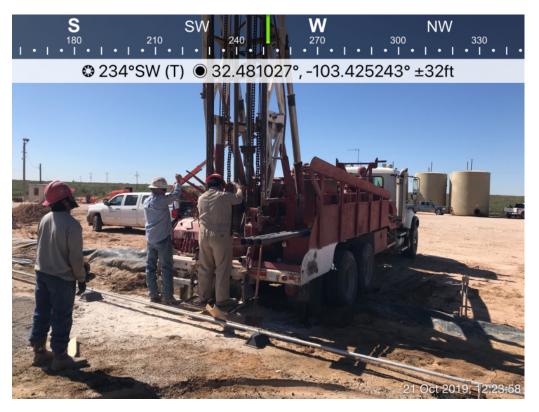
View South - Area of SP-30


View North - Area of SP-31

View North – Area of SP-32

View Southwest – Area of BH-17

View Northeast – Areas of BH-18 and BH-19


View Southeast – Area of BH-20

View Southwest - Areas of BH-23, BH-24, BH-25, and BH-26

View Southwest – Area of BH-17

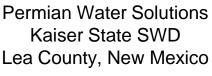
View Northeast – Areas of BH-18 and BH-19

View Southeast – Area of BH-20

View Southwest - Areas of BH-23, BH-24, BH-25, and BH-26

View South - Areas of BH-33 and BH-34

View South – Area of BH-35



View Southeast – Area of BH-36

Kaiser State SWD

View South - Areas SP-37 and SP-38

View North – Areas of SP-37 and SP-38

Appendix A

Form C-141

Revised August 8, 2011

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

	Release Notification and Corrective Action																
Name of Company Pyote Water Systems, LLC ContactJerry Burton Operations Manager for NM Address 400 W Illinois STE 950 Midland TX Telephone No. 432-448-4917																	
	mpany P	ote Water	System	is, LLC				eratic	ns Mana	ger for NM							
Address		Illinois STI	2 950 M	lidland TX		Telephone N			18~4917								
Facility Nat	ne				H	acility Typ	e Production	n Wa	<u>ıter</u>								
Surface Ow	ner Pyote	Water Sy	stems,Ll	C Mineral O	wner		Pyote	;	API No	. 30~025~0	2538						
						OF REI	LEASE										
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/	West Line	County							
E.	13		34	10 ft	N/S	3				LEA CO	UNTY						
-F	10	25		titude 32.4808	855153	425agitud	le -103.425	6307	65566								
						- ° OF RELI		-									
Type of Rele	ase 20 bk	ols product	ion wa			Volume of		ols	Volume R		bbls						
Source of Re	leaseVac t	ruck					Iour of Occurrenc	e _{1/14}	1Date and	Hour of Discover	y 1/14/15						
Was Immedi	ate Notice (Yes _	No Not Re	equired	If YES, To	Whom?	Jerr	y Burton N	M OM							
By Whom?	Jerry Burt	on				Date and H	Iour										
Was a Water			Yes 🖸	No		If YES, Vo	olume Impacting t	he Wat	ercourse.								
If a Watercon	ırse was Im	pacted, Descr	ibe Fully.*	*													
none		r															
110110																	
Describe Cau Vac truck	se of Probl	em and Reme	dial Action	n Taken.*	when tl	nev are inst	ructed to do on	each	load. It is p	osted as well, a	t the sign in						
		•				· ·			•	,	U						
					Vac truck over filled the sumps~/ he failed to suck it out when they are instructed to do on each load. It is posted as well, at the sign in ticket area also												
Describe Are	a Affected	and Cleanup A	Action Tak	en.* The clean	up area	or											
				ren.* The clean red up the area													
been shut d	lown for a	bout 4 mont	hs, the ac	ccess water is fr	om all t	he rain bac	ek n September a	and O	ctober,than	n the snow we l	nave had since						
been shut d	lown for a	bout 4 mont	hs, the ac		om all t	he rain bac	ek n September a	and O	ctober,than	n the snow we l	nave had since						
been shut of than. Has r	lown for a not been di	bout 4 montry enough to	hs, the ac work on	ccess water is fr	om all t JE TO N	he rain bac MOTHER NA	ek n September a ATURE we have	and O e had a	ctober,thar a company	n the snow we l go out several	nave had since times to do this						
than. Has r for loads li I hereby certi regulations a	lown for a not been do not bee	bout 4 mont by enough to nformation gi are required to	work on ven above or report ar	those lines. DU	TOM all to TO Note: TO Note: TO the lease note: To the lease note: The lease n	he rain bac AOTHER NA e best of my otifications as	ATURE we have knowledge and und perform correct	and O e had a ndersta	ctober, than a company and that purs tions for rele	go out several suant to NMOCD eases which may	nave had since times to do this rules and endanger						
been shut of than. Has refore loads line I hereby certifications a public health	down for a not been do not been do not been do not be a long to the interval of the envi	bout 4 mont ry enough to nformation gi are required to ronment. The	work on ven above o report ar acceptance	those lines. DU is true and compand/or file certain rece of a C-141 repo	JE TO A lete to the elease no	he rain bac MOTHER NA e best of my otifications an NMOCD m	ATURE we have knowledge and und perform correcarked as "Final Ro	and O had a ndersta tive ac eport"	ctober, than a company and that purs tions for reledoes not reli	go out several suant to NMOCD eases which may leve the operator	rules and endanger of liability						
than. Has r for loads li I hereby certi regulations a public health should their of	down for a not been do not been do not been do not be not been do not be not been do not be not be not been do not be not	bout 4 mont ry enough to nformation gi are required to ronment. The ave failed to a	work on ven above o report ar acceptance	those lines. DU is true and compador file certain rece of a C-141 repo	JE TO A lete to the elease no ort by the emediate	he rain bac MOTHER NA e best of my otifications and NMOCD materials	knowledge and und perform correct arked as "Final Roon that pose a throught."	and O e had a ndersta etive ac eport" eat to g	ctober, than a company and that purs tions for releduces not religround water	go out several suant to NMOCD eases which may leve the operator c, surface water, h	rules and endanger of liability uman health						
than. Has r for loads li I hereby certi regulations a public health should their of or the environ	down for a not been drawn 3 & 4 Ify that the ill operators or the environment. In a	bout 4 mont ry enough to nformation gi are required to ronment. The ave failed to a	work on ven above o report ar acceptance dequately OCD accep	those lines. DU is true and compand/or file certain rece of a C-141 repo	JE TO A lete to the elease no ort by the emediate	he rain bac MOTHER NA e best of my otifications and NMOCD materials	knowledge and und perform correct arked as "Final Roon that pose a throught."	and O e had a ndersta etive ac eport" eat to g	ctober, than a company and that purs tions for releduces not religround water	go out several suant to NMOCD eases which may leve the operator c, surface water, h	rules and endanger of liability uman health						
than. Has r for loads li I hereby certi regulations a public health should their of or the environ	down for a not been drawn 3 & 4 Ify that the ill operators or the environment. In a	pout 4 mont ry enough to nformation gi are required to ronment. The lave failed to a ddition, NMC	work on ven above o report ar acceptance dequately OCD accep	those lines. DU is true and compador file certain rece of a C-141 repo	JE TO A lete to the elease no ort by the emediate	he rain bac MOTHER NA e best of my otifications and NMOCD materials	kn September a ATURE we have knowledge and und perform correct arked as "Final Roon that pose a three the operator of a	and O had a ndersta tive ac eport" eat to g respons	ctober, than a company and that purs tions for rele does not reli ground water sibility for co	go out several suant to NMOCD eases which may leve the operator c, surface water, h	rules and endanger of liability uman health						
than. Has r for loads li I hereby certi regulations a public health should their of or the environ federal, state.	down for a not been drawn 3 & 4 Ify that the ill operators or the environment. In a	pout 4 mont ry enough to nformation gi are required to ronment. The lave failed to a ddition, NMC	work on ven above o report ar acceptance dequately OCD accep	those lines. DU is true and compador file certain rece of a C-141 repo	JE TO A lete to the elease no ort by the emediate	he rain bac MOTHER NA e best of my otifications and NMOCD materials	kn September a ATURE we have knowledge and und perform correct arked as "Final Roon that pose a three the operator of a	and O had a ndersta tive ac eport" eat to g respons	ctober, than a company and that purs tions for rele does not reli ground water sibility for co	go out several suant to NMOCD eases which may leve the operator; surface water, hompliance with a	rules and endanger of liability uman health						
than. Has r for loads li I hereby certi regulations a public health should their of or the environ	down for a not been do not be a not been do not be a not been do not be not be not been do no	bout 4 montry enough to nformation gi are required to ronment. The lave failed to a ddition, NMC ws and/or regu	work on ven above o report ar acceptance dequately OCD accep	those lines. DU is true and compador file certain rece of a C-141 repo	om all t	he rain bac MOTHER NA e best of my otifications as NMOCD m contaminations not reliev	knowledge and und perform correct arked as "Final Roon that pose a three the operator of the OIL CONS	and O ndersta tive ac eport" eat to g respons	a company and that purs tions for rele does not reli ground water sibility for co	go out several suant to NMOCD eases which may leve the operator; surface water, hompliance with a	rules and endanger of liability uman health						
than. Has r for loads li I hereby certi regulations a public health should their of or the environ federal, state.	down for a not been drage 3 & 4 lify that the ill operators or the envi operations hument. In a not or local law	bout 4 montry enough to nformation gi are required to ronment. The lave failed to a ddition, NMC ws and/or regu	work on ven above o report ar acceptance dequately OCD accep	those lines. DU is true and compador file certain rece of a C-141 repo	om all t	he rain bac MOTHER NA e best of my otifications as NMOCD m contaminations not reliev	kn September a ATURE we have knowledge and und perform correct arked as "Final Roon that pose a three the operator of a	and O ndersta tive ac eport" eat to g respons	a company and that purs tions for rele does not reli ground water sibility for co	go out several suant to NMOCD eases which may leve the operator; surface water, hompliance with a	rules and endanger of liability uman health						
than. Has r for loads li I hereby certi regulations a public health should their o or the environ federal, state. Signature: Printed Name	down for a not been do not be not been do not	bout 4 montry enough to nformation gi are required to ronment. The lave failed to a ddition, NMC ws and/or regu	work on ven above o report ar acceptance adequately OCD acceptalations.	those lines. DU is true and compador file certain rece of a C-141 repo	lete to the lelease no ort by the emediate report do	he rain bac MOTHER NA e best of my otifications as NMOCD m contaminations not relieve	knowledge and und perform correct arked as "Final Roon that pose a three the operator of the OIL CONS	and O e had a ndersta tive ac eport" eat to g respons	a company and that purs tions for rele does not reli ground water sibility for co	go out several suant to NMOCD eases which may leve the operator; surface water, hompliance with a	rules and endanger of liability uman health						
than. Has refor loads his I hereby certifications a public health should their correlations or the environment of the environme	down for a not been do not be not been do not been do not been do not be not been do not been	bout 4 montry enough to nformation gi are required to ronment. The lave failed to a ddition, NMC ws and/or regu furton Anager fo	work on ven above to report ar acceptance adequately OCD acceptalations.	those lines. DU is is true and compand/or file certain report investigate and retrance of a C-141 report investigate and retrance of a C-141 report investigate.	lete to the lelease no ort by the emediate report do	he rain bac MOTHER NA e best of my otifications as NMOCD m contaminations not relieve	knowledge and und perform correct arked as "Final Roon that pose a three the operator of a OIL CONSENTING TO THE CONSENTING TO THE TO T	and O e had a ndersta tive ac eport" eat to g respons	a company and that purs tions for rele does not reli ground water sibility for co	go out several go out	rules and endanger of liability uman health						
than. Has r for loads lit I hereby certi regulations a public health should their o or the environ federal, state. Signature: Printed Name Title: Open	down for a not been do not be not be not been do not be not been do not be not been do not	bout 4 montry enough to nformation gi are required to ronment. The lave failed to a ddition, NMC ws and/or regu	work on ven above to report are acceptance adequately OCD acceptations.	those lines. DU is true and compand/or file certain rece of a C-141 reportance of a C-14	lete to the lelease no ort by the emediate report do	the rain bac MOTHER NA e best of my otifications and NMOCD me contamination as not relieved Approved by Conditions of	knowledge and und perform correct arked as "Final Roon that pose a three the operator of a OIL CONSEnvironmental Space 1/29/15 Approval:	and O e had a ndersta etive ac eport" eat to g respons	ectober, than a company and that purs tions for reledoes not religiously for contract the contract of the cont	n the snow we land go out several go	rules and endanger of liability uman health						
than. Has refor loads lift. Thereby certifications a public health should their corthe environgederal, state. Signature: Printed Name Title: Open E-mail Address Date: 1~23-	down for a not been drag a & 4 lify that the ill operators or the environment. In a gor local law Jerry E rations A less: audra	bout 4 montry enough to nformation gi are required to ronment. The ave failed to a ddition, NMC ws and/or regulation. Surton Manager for appyotew.	work on ven above o report ar acceptance acc	those lines. DU is is true and compand/or file certain report investigate and retrance of a C-141 report investigate and retrance of a C-141 report investigate.	lete to the lelease no ort by the emediate report do	he rain bac MOTHER NA e best of my stifications an NMOCD m contamination per not reliev Approved by Conditions of	knowledge and und perform correct arked as "Final Roon that pose a three the operator of a CONSTENSION OF THE PROPERTY OF THE	and O e had a ndersta tive ac eport" eat to g respons	etober, than a company and that purstions for reledoes not religiously for control water sibility for control water sible water sibility for control water sibility for control water s	go out several go out	rules and endanger of liability uman health						
than. Has r for loads lit I hereby certi regulations a public health should their o or the environ federal, state. Signature: Printed Name Title: Open	down for a not been drag a & 4 lify that the ill operators or the environment. In a gor local law Jerry E rations A less: audra	bout 4 montry enough to nformation gi are required to ronment. The ave failed to a ddition, NMC ws and/or regulation. Surton Manager for appyotew.	work on ven above o report ar acceptance acc	those lines. DU is true and compand/or file certain rece of a C-141 reportance of a C-14	lete to the lelease no ort by the emediate report do	he rain bac MOTHER NA e best of my stifications an NMOCD m contamination per not reliev Approved by Conditions of	knowledge and und perform correct arked as "Final Roon that pose a three the operator of a OIL CONSEnvironmental Space 1/29/15 Approval:	and O e had a ndersta tive ac eport" eat to g respons	etober, than a company and that purstions for reledoes not religiously for control water sibility for control water sible water sibility for control water sibility for control water s	n the snow we land go out several suant to NMOCD eases which may leve the operator r, surface water, hompliance with a DIVISION Date: 3/29/15 Attached 1RP-3512	rules and endanger of liability uman health ay other						
than. Has refor loads lift. Thereby certifications a public health should their corthe environgederal, state. Signature: Printed Name Title: Open E-mail Address Date: 1~23-	down for a not been drag a & 4 lify that the ill operators or the environment. In a gor local law Jerry E rations A less: audra	bout 4 montry enough to nformation gi are required to ronment. The ave failed to a ddition, NMC ws and/or regulation. Surton Manager for appyotew.	work on ven above o report ar acceptance acc	those lines. DU is true and compand/or file certain rece of a C-141 reportance of a C-14	lete to the lelease no ort by the emediate report do	he rain bac MOTHER NA e best of my stifications an NMOCD m contamination per not reliev Approved by Conditions of	knowledge and und perform correct arked as "Final Roon that pose a three the operator of a CONSTENSION OF THE PROPERTY OF THE	and O e had a ndersta tive ac eport" eat to g respons	etober, than a company and that purstions for reledoes not religiously for control water sibility for control water sible water sibility for control water sibility for control water s	n the snow we land go out several go	rules and endanger of liability uman health ay other						

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141
Revised August 8, 2011

nKJ1512041707

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification	on and Corrective Action									
OPERA.	ATOR xxx Initial Report Final Report									
Name of Company PYOTE WATER SYSTEMS, LLC	Contact Jerry Burton NM Operations Manager									
Address 400 W. Illinois Ste 900	Telephone No. 432.448.4917 or 432.448.5323(Audra)									
Facility Name Kaiser SWD	Facility Type SWD- production water DIDPOSAL									
Surface Owner Pyote Water Systems, LLC Mineral Owner I	Pyote Water Systems, LLC API No. 30-025-02538									
LOCATI	ON OF RELEASE									
	th/South Line Feet from the East/West Line County Lea COUNTY E/W									
Latitude	Longitude									
NATU	RE OF RELEASE									
Type of Release; production water	Volume of Release 100BBLS Volume Recovered 100 BBLS									
Source of Release Vac truck (unknown due to no camera's) hit load line 3	Date and Hour of Occurrence Date and Hour of Discovery 4/24/2015 4/24/15 2:35 am									
Was Immediate Notice Given X Yes No Not Required	If YES, To Whom? Jerry Burton									
D. Wh 9 Li. L	D									
By Whom? Unknown driver (575)-390-3836 Was a Watercourse Reached?	Date and HOUR; 4/24/2015 2:35 am If YES, Volume Impacting the Watercourse.									
Yes *** No***										
If a Watercourse was Impacted, Describe Fully.*	RECEIVED									
il a waterouse was impacted, postitoe i dily.	By OCD District 1 at 11:10 am, Apr 30, 2015									
	n truck driver hit load line 3 caused a spill. We had an anonymous driver call us a large amount of water on the pad at the location, than noticed line 3 was had									
Describe Area Affected and Cleanup Action Taken.* Area affected was the pad only at the location. Jerry and his pumper h (backhoe) 2 vac trucks one from Big Buck Services and one from BT.	(enny repaired damages themselves, remedial work done by L&J services Services									
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local-laws and/or regulations.										
	OIL CONSERVATION DIVISION									
Signature: Printed Marine: Jerry Burton	Approved by Environmental Specialist:									
Aitle: NM Operations Manager for Pyote Water systems, LLC	Approval Date: 04/30/2015 Expiration Date: 07/30/2015									
ierry@pyotewatersystems.com or andra@pyotewatersystems.com E-mail Address: 4-26-2015 Date: 4/26/15 Phone:432.448.4917	Conditions of Approval: Site samples required. Delineate and remediate as per MNOCD guides. Geotag photographs of Attached ☐ 294873 1RP 3621									
Attach Additional Sheets If Necessary	remediation required. pKJ1512042374									

Received by OCD: 8/28/2023 1:38:11 PM

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mex

RECEIVED Energy Minerals and Natura By JKeyes at 7:43 am, Jun 09, 2016

Initial Report

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Page 140 of 1449

Final Report

Release Notification and Corrective Action

OPERATOR

									-	<u> </u>
		yote Wate				Contact Je		•		
Address	400 W Illino	ois Ste 900 M	MIDLAND	TX 79701	,	Telephone N	No. 432-448	3-4917		
Facility Na	me Kai	ser Swd]	Facility Typ	e producti	on Wat	ter	
Surface Ow	ner STA	r=		Mineral O	117909	STATE			API No	. 30-025-02538
Surface Ow	mer STA	I <u>C</u>		Milleral O	wher	SIAIL			APINO	. 30-023-02336
				LOCA	TION	OF REI	LEASE			
Unit Letter	Section	Township	Range			South Line	Feet from the	East/V	West Line	County
F	13	21s	215 34E							LEA COUNTY
			34E					1		
			Lat	titude 32.4808	578-	Longitud	le 103.42565	92 nad	83 b	
						_				
Γ=						OF REL				
Type of Rele			l tanks whi	le driver was unload	ding		Release 1050 B			Recovered 1050 bbls Hour of Discovery 4 PM
Source of Re Was Immedi						If YES, To	Iour of Occurrence	ce 5-17-16	Date and	Hour of Discovery 4 PM
was illillieur	ate Notice C	Inven?	Yes 🗆] No ☐ Not Rec	quired	11 1123, 10		' BURTC	N via telepl	none by driver
By Whom?	UNKNOWN	DRIVER				Date and H	Iour 5/17/16 4P			
Was a Water							olume Impacting		ercourse.	
		×	Yes] No		1050 BL	s -			
If a Watercon	urse was Imi	nacted Descr	ibe Fully *	k		1000 DE	<u> </u>			
11 4 11 41 41		p	1001 4117.							
fire melte	d parts of	f the liner,v	vater go	t under the line	er					
	•									
Describe Cau	ise of Proble	em and Reme	dial Action	n Taken *						
Describe Cat	186 01 1 10010	and Keme	uiai Actioi	II Takeli.						
lightining h	nit load tai	nks and bu	rned 6 5	500 bbl tanks l	ess th	an 2 bbls	breeched cor	ntainme	ent. calle	d vac truck out to empty
containme	nt after tl	he fire dep	t put out	t the fire .						
Decesiles Ass	- A CC4 - 1 -	1 (1	A -4: T-1.	*						
Describe Are	ea Affected a	and Cleanup A	Action Tak	ten.*						
load side	containm	ent have c	lean up	crew cleaning	up an	d disposin	g of old tanks	s and c	at walk t	o sundown
				J	·	•	•			
										suant to NMOCD rules and
										eases which may endanger leve the operator of liability
										surface water, human health
										ompliance with any other
		vs and/or regu			•					•
							OIL CON	SERV	ATION	<u>DIVISION</u>
Siom atuma.	Jerry	Burton								
Signature:	Jorry	DIN CON					T		Jami	£lhye~
Printed Nam	e: Jerry B	Burton			4	Approved by	Environmental S	specialis	t: /	,
	•				06/09/2016 Funition Det 08/09/2016			08/00/2016		
Title: NM	Operation	ıs Mgr				Approval Dat	te: 00/09/2016]	Expiration	Date: 00/09/2010
E '1 4 1 1	iorn#	@nyotowa	torevete	me com		G 1'4'	C A 1			
E-mail Addr	ess: jeny	@pyotewa	lersysie	1110.60111		Conditions of	t Approval: les only. Delinea	ite and re	emediate	Attached
Date: 5-18-	-2016		Phone:	: 4324484917		er NMOCD s		and I	cinculate	1RP 4305

* Attach Additional Sheets If Necessary

nJXK1616127644 pJXK1616127747 District I 1625 N: French Dr., Hobbs, NM 88240 District II 811 S. First St., Arlesia, NM 88210 BD District III 1000 Rio Brazos Road, Aztec, NM 87410

State of New Mexico
Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 8, 2011

pKL1632848917

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 Release Notification and Corrective Action **OPERATOR** ☐ Initial Report Final Report Name of Company: Cambrian Management, LTD. Contact: Mike Anthony Telephone No. 432-631-4398 Address: 415 W. Wall St. Suite 900 Facility Name: Kaiser SWD #9 Facility Type: SWD Mineral Owner: State API No. 30-025-02538 Surface Owner: State LOCATION OF RELEASE Unit Letter Section Feet from the North/South Line Feet from the East/West Line County Township Range **21S** 34E 1980 North 1980 West Lea Latitude 32.4808578 Longitude -103.4256592 NATURE OF RELEASE Volume of Release: Unknown Volume Recovered: 0 Type of Release: Produced Water Date and Hour of Occurrence: Source of Release: Frac tanks Date and Hour of Discovery: Was Immediate Notice Given? If YES, To Whom? ☐ Yes ☐ No ☒ Not Required By Whom? Date and Hour: Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ☒ No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Due to a lightning strike on the tank battery fluid was transferred into temporary frac tanks to continue operations during reconstruction. The frac tanks leaked resulting in the release of an unknown quantity of fluid. The frac tanks have been removed from the location. Describe Area Affected and Cleanup Action Taken.* The frac tanks were set on the north side of the affected battery. The fluid from the leak flowed south around the battery berm and continued southsouthwest into the pasture. Soil samples will be taken in preparation for a remediation work plan. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Mile anthon Signature: trusten Lynch Approved by Environmental Specialist: Printed Name: Mike Anthony Approval Date: 11/23/2016 Expiration Date: 01/23/2017 Title: Field Operations Superintendent Conditions of Approval: E-mail Address: manthony@cambrianmgmt.com Attached Please see attached Directive 1RP 4525 Date: 11/15/16 Phone: 432-631-4398 * Attach Additional Sheets If Necessary nKL1632848695

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

pOY1730059151

nOY1730058924

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

						OPERA	TOR			Initi	al Report	
Name of Co	ompany Ca	ambrian Mar	agement	, Ltd.	(Contact M	ike Ant	hony				
		2, Midland, 7	X 79702	2		Telephone						
Facility Na	me Kaiser	State SWD]	Facility Ty	pe Sa	t Water D	isposal			
Surface Ov	ner State			Mineral (Owner S	State				API No	0. 30-025-02538	
				LOCA	ATION	OF RE	ELEA	SE				
Unit Letter	Section	Township	Range	Feet from the		South Line		from the	East/	West Line	County	
F	13	21S	34E				1				Lea	
			Latitud	le 32.480085	78 Lo	ngitude_	-103.4	256592	NAD	83		
				NAT	TURE	OF REI	LEAS	E				
Type of Rele	ease Produc	ed Water & Ci	nide Oil			Volume of	of Relea			Volume I	Recovered	
Course of De	Janea	cu water a cr	uuc Oii			50 bbls		f Oggurran	00	Hour of Dingovery		
Source of Re	Unkno	own				Date and Hour of Occurrence Unknown Date and Hour of Discovery 10/18/2017, 12:35 PM						
Was Immed	ate Notice (Yes 🗸	No □ Not R	equired							
By Whom?	By Whom? N/A						Hour N	/A				
Was a Water	course Rea			If YES, Y	Volume	Impacting	the Wat	ercourse.				
			Yes 🗸				RF	CEIVE	FD			
If a Waterco	urse was Im	pacted, Descr	ibe Fully.	*							•	
Describe Ca	use of Probl	em and Reme	dial Actio	n Taken *			By	Divia	Yu a	t 4:17	pm, Oct 27, 2017	
		and Cleanup										
affected a accordan	rea inside ce with Ni	e the berms MOCD and	measur NMSLC	red approxima guidelines.	tely 7,2	00 sq. ft.	Reme	diation of	f the im	npacted a	e SWD battery. The rea will be conducted in	
regulations a public health should their or the enviro	all operators or the envi operations l onment. In a	are required to ronment. The nave failed to	o report a acceptan adequately OCD acce	nd/or file certain ce of a C-141 rep y investigate and	release no ort by the remediate	otifications e NMOCD e contamina	and per marked ation that eve the	form correct as "Final Fact pose a the operator of	ctive ac Report" of reat to g	tions for rel does not rel ground wate sibility for c	suant to NMOCD rules and leases which may endanger lieve the operator of liability or, surface water, human health compliance with any other	
Signature: Denise Junes Regulatory Analyst										9	DIVISION	
Printed Nam	Printed Name: Todd Roberson (as agent of Cambrian Mgmt.							onmental S		SI:		
Title: Owner						Approval Date: 10/27/2017 Expiration Date:				Date:		
E-mail Addr	ess: todd@	trinityoilfiel	dservice	es.com	Conditions of Approval: Attached					Attached 3		
Date: 10/2	3/2017		Phone	: (575) 631-31	loop attached directive					Avada h 🚾 🗸		
		ets If Necess										

1RP-4855

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District III
1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Santa Fe, NIVI 8/303														
			Rele	ease Notific	atior	and C	or	rective A	ction					
						OPER	TC	OR		√ In	itial	Report		Final Report
		ambrian Man				Contact M								
Address P. Facility Nan		2, Midland, 7	X 79702					. (432)631-43 Salt Water Di						
		State SVVD					pe .	Salt Water Di	ispusai	_				
Surface Ow	ner State			Mineral C	wner S	State				API	No.	30-025-0	2538	
				LOCA	OIT	N OF RI	ELE	EASE						
Unit Letter	Section	Township	Range	Feet from the	North/	South Line	F	eet from the	East/V	Vest Lin	e	County		
F	13	21S	34E									Lea		
,			Latitud	le 32.4800857	'8 L	ongitude_	-10	3.4256592	NAD	83				
				NAT	URE	OF REI	LEA	ASE						
Type of Relea	ase Produc	ed Water				Volume 20 bbls		elease		Volum		ecovered		
Source of Re	lease Seal o	on pump					Hou	ır of Occurrenc	e	Date a	nd F	Hour of Dis		
Was Immedia		Given?				If YES, To Whom?								
By Whom?			Yes 🗸	equired	N/A Date and	Ноп	ır							
l l	N/A					N/A								
Was a Water	course Read		Yes 🔽		N/A		me Impacting t		ercourse					
If a Watercou	ırse was Im	pacted, Descr	ibe Fully.	k		1	R	ECEIVI	ED					
Describe Cau	ise of Probl	lem and Reme	dial Actio	n Taken.*		By Olivia Yu at 9:34 am, Feb 07, 20							7, 2018	
The seal of	n a pump	failed. A v	acuum t	ruck was utilize	ed to re	ecover fre	e-st	tanding liqui	d. The	seal w	as	repaired	during	g initial
response a	activities.													
Describe Are	a Affected	and Cleanup	Action Tal	æn.*										
				ry and second										
				ed approximat ee 1RP-4855)										
		LO guidelin		ee IRP-4600)	. Reme	ediation o	ııııe	e impacted a	ii ea wi	ii be co	חומו	uctea in a	JUCUIT	uarice with
				is true and comp										
				nd/or file certain r ce of a C-141 repo										
should their o	perations h	nave failed to	adequately	investigate and r	emediat	e contamin	ation	that pose a thr	eat to gr	round w	ater,	surface wa	ater, hu	ıman health
		addition, NM(ws and/or reg		otance of a C-141	report d	port does not relieve the operator of responsibility for compliance with any other							y other	
C States	, or local la	wo and or reg		OIL CONSERVATION DIVISION										
Signature:		<u> </u>												
		Approved by Environmental Specialist:												
Printed Name	\rightarrow	2/7/2018												
Title: Regul	Approval Date: Expiration Date:						/							
E-mail Addre	ess: djones	s@cambria	nmgmt.c	om		Conditions	of A	approval:				Attached		
Date: 2/								logo otto ob od divostivo						
* Attach Addi	tional She	ets If Necess	sary		[1RP-49	60	lnOY:	1803	8340′	77			

pOY1803834550

Form C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ease Notifi	catio	on and Co	orrective A	Action	l				
						OPERA	ГOR		☐ Initi	al Report		Final Repor	
Name of Co	ompany Ca	ambrian Mar	nagement	, Ltd.		Contact Mi	ke Anthony						
Address PC	Box 272,	Midland TX	X 79702			Telephone l	No . 432-631-4	1398					
Facility Na	me Kaiser	State SWD				Facility Typ	be SWD						
Surface Ow	ner State			Mineral (Owner	r State			API No	o. 30-025-	02538		
				LOC	ATIC	ON OF RE	LEASE						
Unit Letter	Section	Township	Range	Feet from the		th/South Line	Feet from the	East/V	Vest Line	County			
F	13	21S	34E							Lea			
			Latituo	1e 32.48085	78	Longitude -1	03.4256592	NAD	83				
						E OF REL			•				
Type of Rele	ease Produc	ed Water		IVA	IUK		Release 150 bb	ıls	Volume	Recovered	150 bbl	s	
Source of Re						Date and I	scovery						
						06/20/2018 06/20/2018 10:00AM							
Was Immedi	ate Notice (Yes X	No Not Re	equired	If YES, To Whom?							
By Whom?					•	Date and H	Hour						
Was a Water	course Rea	ched?				If YES, Vo	olume Impacting	the Wate	ercourse.				
			Yes X	No									
If a Waterco	urse was Im	pacted, Descr	ribe Fully.	*									
Describe Car	ise of Probl	em and Reme	edial Actio	n Taken.*									
N:1	. 111 1 1 1	ec:1-	1-	1									
Nippie on wo	eimead broi	ke off – nipple	e was repia	icea									
Describe Are	a Affected	and Cleanup	Action Tal	ken.*	_								
All water wa be remediate		to the caliche	pad. All	water was picked	l up. T	This was on top	of a previous spi	ll that wa	s already	reported and	l is in the	e process to	
be remediate	a.												
T 1 1	.C. 414 41	: C 4:	·1	. :	.1.4. 4.	4114£	.1	14	. 1 414	NIN	IOCD	1	
				e is true and comp nd/or file certain									
				ce of a C-141 rep									
				investigate and									
				otance of a C-141	report	t does not reliev	e the operator of	fresponsi	bility for o	compliance	with any	other /	
rederal, state	, or local la	ws and/or reg	uiations.				OIL CON	ICEDV	ATION	DIVISIO	ON		
							OIL CON	NSER V	ATION	DIVISI	<u>JIN</u>		
Signature:						_			\mathcal{L}_{λ}	+			
Printed Nam	a: Danica I	ones				Approved by	Environmental S	Specialis		(
Fillited Ivalii	e. Denise i	ones					7/04/004	0 1					
Title: Regu	latory Anal	yst			Approval Date: 7/31/2018 Expiration Date:								
E-mail Addr	ess: diones	@cambrianm	gmt.com			Conditions of	f Approval:				/		
/ Iddi	-35. <u>ajoitos</u>	,,					tached dire	ctive	7	Attached	ı LV		
Date: 06/21/	2018	Phone:	:							<u> </u>			
						1RP-5139	9	pCH'	182123	9860			
eleased to In	naging: 9	/1/2023 2:0	7:08 PM			nCH1821	239639						

Received by OCD: 8/28/2023 1:38:11 PM

<u>District 1</u>
1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised April 3, 2017 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

Name of Co					-	OPERA			X Initia	al Report
Name of Company Cambrian Management, Ltd						Contact An		0.1		
Address PO Box 272, Midland, TX 79702 Facility Name Kaiser State SWD					Telephone No. 432-620-9181 Facility Type SWD					
Surface Owner State Mineral Owner			wner S	r State API No. 30-025-02538				. 30-025-02538		
				LOCA	TION	OF REI	EASE			
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/W	est Line	County
F	13	21S	34E	1980	North		1980	West		Lea
			Latitu	de 32.480938 N	Lo	ngitude -10	3.425227	NAD83		
				NAT	URE	OF REL	EASE			
Гуре of Rele	ase Produce	d Water					Release 200 Bb	ls	Volume I	Recovered 200 Bbls
Source of Re	elease Valve						lour of Occurrent	ce		Hour of Discovery
Was Issued	ata Matina C	10				08/06/2018			08/06/20	8 10:00AM
was immedi	ate Notice G		Yes 🗌	No Not Rec	quired	If YES, To Christina F				
	Denise Jones					Date and F	lour 08/06/2018	3:25 PM	1	
Was a Water	course Reach		Yes X	No		If YES, Vo	lume Impacting	the Water	rcourse.	
ii a watereo	urse was mip	acted, Descri	oc runy.			RFC	EIVED			
						By O	livia Yu at	t 1:48	pm, A	lug 07, 2018
	ea Affected a	nd Cleanup /								
Only the area	a inside the b			ken.* h plastic was affec	cted. Al	I water was v	acuumed up.			
		erm which is	lined wit	h plastic was affec				ınderstan	d that pur	suant to NMOCD rules and
I hereby cert regulations a public health should their or the enviro	ify that the ir all operators a or the enviro operations ha nment. In ac	nformation gi are required to onment. The ave failed to a ddition, NMO	ven above o report a acceptanadequately OCD accep	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	lete to the elease nort by the emediate	ne best of my otifications a e NMOCD m e contaminati	knowledge and und perform corre arked as "Final Foon that pose a the	ctive action Report" do reat to gro	ons for rel oes not rel ound wate	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
hereby cert regulations a public health should their or the enviro	ify that the ir all operators a or the enviro operations ha nment. In ac	nerm which is information giver required to comment. The	ven above o report a acceptanadequately OCD accep	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	lete to the elease nort by the emediate	ne best of my otifications a e NMOCD m e contaminati	knowledge and und perform correlarked as "Final Fon that pose a the operator of	ctive action Report" do reat to gro responsil	ons for rel oes not rel ound wate oility for c	eases which may endanger ieve the operator of liability r, surface water, human health
hereby cert regulations a sublic health should their or the enviro rederal, state	ify that the ir all operators a or the enviro operations ha nment. In ac	nformation gi are required to onment. The ave failed to a ddition, NMO	ven above o report a acceptanadequately OCD accep	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	lete to the elease nort by the emediate	ne best of my otifications a e NMOCD m e contaminati	knowledge and und perform correlarked as "Final Fon that pose a the operator of	ctive action Report" do reat to gro responsil	ons for rel oes not rel ound wate oility for c	eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
hereby cert egulations a public health should their or the enviro ederal, state	ify that the ir all operators a or the enviro operations ha nment. In ac	nformation gi are required to onment. The ave failed to a ddition, NMO	ven above o report a acceptanadequately OCD accep	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	lete to the elease nort by the emediate report de	ne best of my otifications a e NMOCD m e contaminati oes not reliev	knowledge and und perform correlarked as "Final Font that pose a three the operator of OIL CON	ctive active active Report" do reat to groresponsil	ons for rel oes not rel ound wate oility for c	eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
hereby cert regulations a sublic health should their or the enviro rederal, state	ify that the ir all operators a or the enviro operations ha nment. In ac	nformation giare required to comment. The ave failed to a didition, NMO and/or regu	ven above o report a acceptanadequately OCD accep	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	lete to the elease nort by the emediate report de	ne best of my otifications a e NMOCD m e contaminati oes not reliev	knowledge and und perform correlarked as "Final Fon that pose a the operator of	ctive active active Report" do reat to groresponsil	ons for rel oes not rel ound wate oility for c	eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
hereby cert egulations a bublic health hould their or the enviro ederal, state Signature:	ify that the ir ill operators a n or the envira operations ha nment. In act, or local law	nformation giver required to comment. The cave failed to a didition, NMO as and/or regurences	ven above o report a acceptanadequately OCD accep	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	elete to the elease nort by the emediate report d	ne best of my otifications a e NMOCD m e contaminati oes not reliev	knowledge and und perform correct arked as "Final Foon that pose a three the operator of OIL CON Environmental S	ctive active act	ons for rel oes not rel ound wate oility for c	eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION
hereby cert egulations a bublic health should their or the enviro ederal, state Signature:	ify that the ir all operators a n or the enviro operations had noment. In act, or local law e: Denise Jo atory Analys	nformation giver required to comment. The cave failed to a didition, NMO as and/or regurences	ven above o report a acceptan adequately OCD acceptalations.	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	elete to the elease nort by the emediate report d	ne best of my otifications a e NMOCD m e contamination oes not reliev Approved by	knowledge and und perform correlarked as "Final Fon that pose a three the operator of OIL CON Environmental State: 8/7/2018	ctive active act	ons for rel oes not rel ound wate bility for c	eases which may endanger leve the operator of liability r, surface water, human health ompliance with any other DIVISION Date:
hereby cert regulations a bublic health should their or the enviro rederal, state Signature:	ify that the ir all operators a n or the enviro operations had noment. In act, or local law e: Denise Jo atory Analys	nformation giver required to comment. The cave failed to a didition, NMO as and/or regurences	ven above o report a acceptan adequately OCD acceptalations.	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	lete to the elease nort by the emediate report d	he best of my otifications a e NMOCD m e contamination oes not reliev Approved by Approval Da Conditions o	knowledge and to deperform correlarked as "Final Foon that pose a three the operator of OIL CON Environmental Stee: 8/7/2018	ctive active active deport" do reat to groresponsil	ons for release not release no	cases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION Date:
hereby cert regulations a bublic health should their or the enviro rederal, state Signature: — Printed Nam Fitle: Regul E-mail Addr	ify that the ir all operators at or the environment. In act, or local law e: Denise Joatory Analys	nformation giare required to comment. The cave failed to a didition, NMO as and/or regurences	ven above o report a acceptana dequately OCD acceptaniations.	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and re	lete to the elease nort by the emediate report d	he best of my otifications a e NMOCD me contaminations not relieved Approved by Approval Date Conditions o.) Please in	knowledge and und perform correlarked as "Final Fon that pose a three the operator of OIL CON Environmental Stee: 8/7/2018 Approval: Spect liner in Control of the contro	ctive active active deport" do reat to groresponsil SERV. Specialist:	ons for release not release no	cases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION Date:
I hereby cert regulations a public health should their or the environted regulations. Signature: Printed Nam Little: Regulation Re	ify that the ir all operators at or the environment. In act, or local law e: Denise Joatory Analys	nformation giver required to comment. The cave failed to a didition, NMO as and/or regurences	ven above o report a acceptana dequately OCD acceptaniations.	h plastic was affect e is true and comp nd/or file certain rece of a C-141 report y investigate and reptance of a C-141	lete to the elease nort by the emediate report de lease 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	he best of my otifications a e NMOCD me contaminations not relieved Approved by Approved Date Conditions of the NMOCD with the best of the proventions of the provent	knowledge and und perform correlarked as "Final Fon that pose a three the operator of OIL CON Environmental State: 8/7/2018 f Approval: spect liner in the concise results of the conc	SERV Specialist	ons for release not release no	eases which may endanger leve the operator of liability r, surface water, human health ompliance with any other DIVISION Date: Attached
I hereby cert regulations a public health should their or the environged federal, state Signature: Printed Nam Fitle: Regulation Addrate: 08/0 Attach Add	ify that the ir all operators a for the environment. In act, or local law e: Denise Joatory Analysess: djones@	nformation giare required to comment. The ave failed to a ddition, NMO and/or regulates and/or regulates at the combination of the combined of	ven above o report a acceptanadequately DCD acceptalations.	h plastic was affected by investigate and rotance of a C-141 hotance of a C-141 hotance of a C-141 hotance of a C-141 hone: 432-620-913	lete to the elease nort by the emediate report defined as the	Approval Da Conditions of the provincial of the	knowledge and to deperform correlarked as "Final Foon that pose a three the operator of OIL CON Environmental Stee: 8/7/2018 Approval: Spect liner in the concise revith affirmation corrections and the concise revith affirmations are selected as a concise respect to the conc	SERV. Specialist: question port of	ATION Expiration Provide the ner has	cases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION Date:
I hereby cert regulations a public health should their or the environted regulations. Signature: Printed Nam Little: Regulation Re	ify that the ir all operators a for the environment. In act, or local law e: Denise Joatory Analysess: djones@	nformation giare required to comment. The ave failed to a ddition, NMO and/or regulates and/or regulates at the combination of the combined of	ven above o report a acceptana dequately OCD acceptaniations.	h plastic was affected by investigate and rotance of a C-141 hotance of a C-141 hotance of a C-141 hotance of a C-141 hone: 432-620-913	lete to the elease nort by the emediate report de service de servi	Approved by Approval Da Conditions o) Please in IMOCD with	knowledge and und perform correlarked as "Final Fon that pose a three the operator of OIL CON Environmental State: 8/7/2018 f Approval: spect liner in the concise results of the conc	SERV. Specialist: question port of pon the li ain liqui	ATION Expiration A. Provide the ner has ds.	eases which may endanger ieve the operator of liability r, surface water, human healt ompliance with any other DIVISION Date: Attached

Form C-141 Revised April 3, 2017

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

						OPERA	TOR		X Initia	al Report
Name of Company Cambrian Management, Ltd						Contact Mr. Mike Anthony				
						Telephone No. 432-631-4398				
Facility Name Kaiser State SWD						Facility Type SWD				
Surface Owner State Mineral Owner					Owner S	State			API No	. 30-025-02538
				LOC	ATION	OF RE	FASE			
Unit Letter	Section	Township	Range	Feet from the	_	South Line	Feet from the	East/	West Line	County
F	13	21S	34E	1980	North		1980	West		Lea
			Latit	ude 32.480938	N Lo	ngitude -10	3.425227 1	NAD83	3	
						OF REL		a Tini		
Type of Rele	ease Produc	ed Water		11/24.7	UNG		Release 500 Bb	ls	Volume I	Recovered 500 Bbls
Source of Re						The second of the second of the	lour of Occurrence	ce	Date and	Hour of Discovery
Was Immed	iate Notice (Fiven?				08/17/2018 If YES, To	3 10:00AM	_	08/17/20	18 11:00 AM
77 do mined	and I tolled		Yes 🗌	No 🗌 Not Re	quired		and other OCD m	nember	on location	
By Whom?							Iour 12:00 PM (
Was a Water	rcourse Read		Yes X	No		If YES, Vo	olume Impacting	the Wat	ercourse.	
If a Waterco	urse was Im	pacted, Descr	ibe Fully.	*						
		partes, 2000.				RE	CEIVED			
						Bv	Olivia Yu a	at 10	:04 am	, Aug 21, 2018
		em and Reme								
		and Cleanup			er was re	covered. Th	a nit liner and tan	ko will	ha washad a	after all water has been picked
up.	was complet	cry contained	within a	inica pit. An wat	ci was ic	covered. The	o pit mici and tan	KS WIII	be washed a	itter an water has been picked
I haraby cart	ify that the	information a	iven abov	a is true and com	nlete to th	a best of my	knowledge and	undarata	and that num	suant to NMOCD rules and
regulations a public health should their or the enviro	all operators n or the envi operations h onment. In a	are required to ronment. The nave failed to	o report a acceptan adequately OCD accep	nd/or file certain ce of a C-141 rep y investigate and	release no ort by the remediate	otifications a e NMOCD m e contaminat	nd perform correct arked as "Final Ricon that pose a thr	ctive ac deport" reat to g	tions for rel does not rel round wate	eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
_		_				OIL CONSERVATION DIVISION				
Signature:	Dame	e In	S			Approved by Environmental Specialist:			1	
Printed Nam	e: Denise J	ones								
Title: Regula						Approval Da	8/21/2018	8	Expiration	Date:
		a)cambrianmg	mt.com			Approval Date: Expiration Date: Conditions of Approval:			DOM CALL	
							iner in questic	n. Pro	vide	Attached
	3/17/2018 itional She	ets If Necess		Phone:432-620-91	01		th a concise re			
1 (1 mm)	2333656		11.70	3336912	i	inspection	with affirmation	on the	liner has	1RP-5163
leased to Imaging: 9/1/2023 2:07:08 PM				and will continue to contain liquids. 2) Dated photo documentation of liner.						

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NCH1834760902
District RP	1RP-5273
Facility ID	
Application ID	pCH1834761047

Release Notification

Responsible Party

Responsible Party Permian Water Solutions, LLC				OGRID	373626		
Contact Nat	ne Dale G	losson		Contact	Telephone 432-894-3636		
Contact ema	ail dale@p	permianws.com		Incident	# NCH1834760902 KAISER STATE SWD		
Contact mai	ling address	PO Box 2106,	Midland, TX 79	702	@ 30-025-02538		
Latitude 32.	180938			Longitude	103.425227		
Site Name k	aisar Stata	SWD	(NAD 63 III		Salt Water Disposal		
Date Release	337 33 33 434 6						
Date Release	Discovered	11/2/18		API# (if a	pplicable) 30-025-02538		
Unit Letter	Section	Township	Range	Cou	inty		
F	13	21S	34E	Lea			
	Materia	l(s) Released (Select	all that apply and atta	nd Volume of	c justification for the volumes provided below)		
Crude Oi		Volume Releas	ed (bbls) 20		Volume Recovered (bbls) 16		
Produced	Water	Volume Releas	ed (bbls)		Volume Recovered (bbls)		
		Is the concentra produced water	ation of dissolved >10,000 mg/l?	chloride in the	☐ Yes ☐ No		
☐ Condensa	te	Volume Releas	ed (bbls)		Volume Recovered (bbls)		
☐ Natural G	as	Volume Releas	ed (Mcf)		Volume Recovered (Mcf)		
Other (describe) Volume/Weight Released (provide units			t Released (provi	de units)	Volume/Weight Recovered (provide units)		
Cause of Rele	ease Oil ski	m tank overflow	; all fluids conta	ined within contai	ament berm		

Received by OCD: 8/28/2023 1:38:11 PM State of New Mexico
Page 2 Oil Conservation Division

Incident ID NCH1834760902

District RP 1RP-5273

Facility ID

Application ID pCH1834761047

Was this a major release as defined by 19.15.29.7(A) NMAC? ☐ Yes ☑ No	If YES, for what reason(s) does the responsible party consider this a major release?
Glosson called District	notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? Yes, Dale I office @ 11:25 am on 11/2/18, was transferred to Christina Hernandez, Left voicemail and call back called back later in the afternoon and the report was made.
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
	ease has been stopped.
The impacted area ha	is been secured to protect human health and the environment.
	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
Per 19.15.29.8 B. (4) NM	AC the responsible party may commence remediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
regulations all operators are public health or the environmental failed to adequately investigated	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have attend and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In fa C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws Title: Creaming Marger
	EIVED ernandez at 4:56 pm, Dec 13, 2018

Received by OCD: 8/28/2023	1:38:11 PM
Form C-141	State of New Mexico
Page 3	Oil Conservation Division

	Page 149 of 144	9
Incident ID		
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)			
Did this release impact groundwater or surface water?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No			
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No			
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No			
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No			
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No			
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.				
Characterization Report Checklist: Each of the following items must be included in the report.				
Characterization Report Checklist: Each of the following items must be included in the report. Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody				

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/28/2023 1:38:11 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 150 of 14	49
Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	tifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have reat to groundwater, surface water, human health or the environment. In
Printed Name:	
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 8/28/2023 1:38:11 PM Form C-141 State of New Mexico Page 5 Oil Conservation Division

	Page 151 of 1449
Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

D. I. d. Di. Ci. Lii. d. E. I. C. I. C. I. C. I. C. I.				
Remediation Plan Checklist: Each of the following items must be	pe included in the plan.			
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation points □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC □ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 				
<u>Deferral Requests Only</u> : Each of the following items must be co	nfirmed as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around p deconstruction.	production equipment where remediation could cause a major facility			
Extents of contamination must be fully delineated.				
Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
Printed Name:	Title:			
Signature:	Date:			
email:	Telephone:			
OCD Only				
Received by:	Date:			
Approved	f Approval			
Signature:	<u>Date:</u>			

Appendix B

Water Well Data Average Depth to Groundwater (ft) Permian Water Solutions - Kaiser SWD

	20 Sc	outh	3	34 East			20 Sc	outh	3	35 East			20 \$	South	;	36 East	
6	5	4 125	3	2	1	6 56	5 64	4	3	2	1	6	5	4	3	2	1
						64						32	28			92	40
7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
											49		33	38		32	29
18	17 1 28	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
	140			150								34				45	
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
					270												
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26 1 <mark>06</mark>	25
																170	
31	32	33	34	32 35	36	31 6	5 32	33	34	35	36	31	32	33	34	35	36
								89					170			122	
6	5	4	3	2 79	1	6	5	4 95	3	2	1	6	5	4	3	2	1
3	5	4	3	_	1	6	5	4 95	3	2	1	6	5	4	3	2	1
7	8	9	10	107 11 150	10	7	8 120	9	10	11	12	7	8	9	10	11	12
,	0	9	10	11 150	12	,	8 120	9	10	''	12	ľ	°	9	10	''	'-
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
								105			100						
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
								128									
30	29	28	27	26	25	30	29	28 135	27	26	25	30	29	28	27	26	25
		179															
31	32	33 180	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
	22 Sc	uth		33 East			22 Sc	outh		34 East	<u> </u>	<u> </u>	22.6	South		35 East	
2	5	14	3	_	1	6	I5				1	6	5		3		11
6	ာ	4	3	2	'	6	ာ	4	3	2	l'	О	Э	4	3	2	1'

30

50

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6)

- Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- Abandoned Waterwell (recently measured)

(In feet)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

		POD Sub-		0	Q	0					Donth	Donth	Water
POD Number	Code		County				c Tws	Rng	х	Υ	-	_	Column
CP 00089	0	СР	LE				21S	_	647840	3594615 🎒	235		
CP 00092 POD1		СР	LE	1	3	1 25	21S	34E	647479	3591694* 🎒	196		
<u>CP 00489</u>		СР	LE			04	21S	34E	643274	3597749* 🎒	125	95	30
CP 00498		СР	LE		2 4	4 08	21S	34E	642287	3595932* 🌍	145	120	25
CP 00571 POD1		СР	LE	3	1 4	4 28	21S	34E	643499	3591063 🎒	170	135	35
CP 00583		СР	LE		;	3 21	21S	34E	642944	3592518* 🎒	171	128	43
CP 00588 POD1		СР	LE		3 2	2 33	21S	34E	643583	3589918* 🎒	89		
CP 00589 POD1		СР	LE		3 2	2 33	21S	34E	643583	3589918* 🎒	84		
CP 00590 POD1		СР	LE			01	21S	34E	648099	3597829* 🎒	79		
CP 00611		СР	LE		2	1 06	21S	34E	639838	3598306*	118	112	6
CP 00791		СР	LE	4	2 4	4 06	21S	34E	640754	3597413* 🎒	85	55	30
CP 01066 POD1		СР	LE	4	3 2	2 28	21S	34E	643735	3591345 🎒	210	140	70
CP 01067 POD1		СР	LE	1	3 4	4 28	21S	34E	643447	3591434 🎒	210	140	70
CP 01068 POD1		СР	LE	4	1 4	4 28	21S	34E	643609	3591005 🎒	180	140	40
CP 01069 POD1		СР	LE	2	1 4	4 28	21S	34E	643737	3591191 🎒	210	140	70
CP 01091 POD1		СР	LE	3	3 2	2 28	21S	34E	643446	3591434 🎒	200	140	60
CP 01364 POD1		СР	LE	4	2 3	3 16	21S	34E	643147	3594331 🎒	165	105	60
CP 01366 POD1		СР	LE	4	4	1 16	21S	34E	643196	3594698 🌕	180	110	70
CP 01671 POD1		СР	LE	2	4	1 16	21S	34E	643108	3594887 🎒	157		

120 feet Average Depth to Water:

> 55 feet Minimum Depth: Maximum Depth: 140 feet

Record Count: 19

PLSS Search:

Township: 21S Range: 34E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:	Geographic Area:		
Groundwater ~	New Mexico	$\overline{\ }$	GO

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News

Groundwater levels for New Mexico

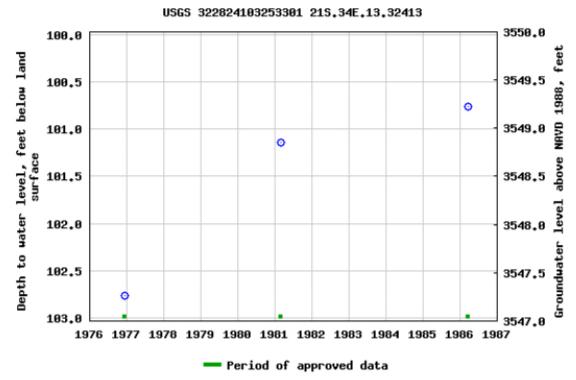
Click to hide state-specific text

Search Results -- 1 sites found

site_no list =

• 322824103253301

Minimum number of levels = 1


Save file of selected sites to local disk for future upload

USGS 322824103253301 21S.34E.13.32413

Available data for this site	Groundwater: I	Field measurements		GO	
Lea County, New Mexico					
Hydrologic Unit Code 13070)007				
Latitude 32°28'24", Longit	ude 103°25'	33" NAD27			
Land-surface elevation 3,65	50 feet above	e NAVD88			
The depth of the well is 335	feet below	land surface.			
This well is completed in the	e Chinle Fori	mation (231CHN	L) lo	cal a	quifer.

Output formats

Table of data
Tab-separated data
Graph of data
Reselect period

Breaks in the plot represent a gap of at least one year between field measurements.

Download a presentation-quality graph

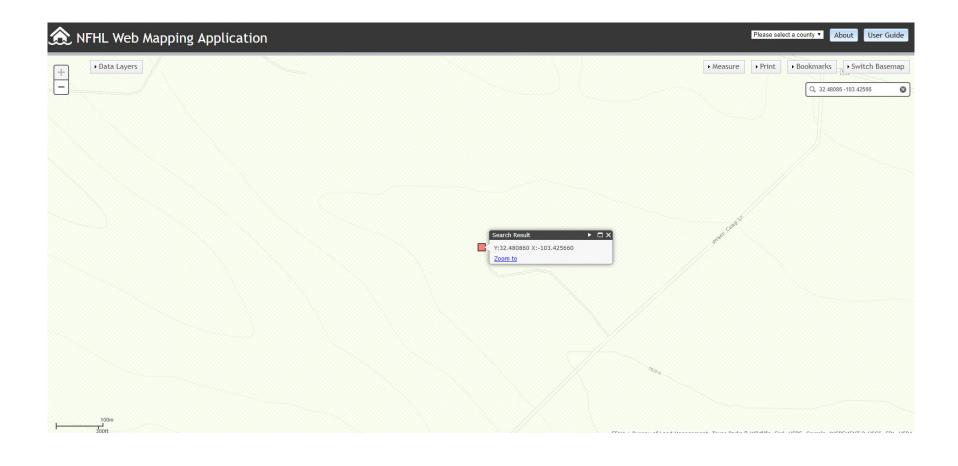
Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for New Mexico: Water Levels


URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?


Page Contact Information: New Mexico Water Data Maintainer

Page Last Modified: 2019-05-13 12:56:28 EDT

1 0.95 nadww01

Appendix C

Client:	Permian Water Solutions						
Site Name	Kaiser SWD						
Sample ID:	SP-1						
GPS	32.480778° -103.425919°						
Project #:	212C-MD-01742						
Total Depth	35'						
Date Installed:	5/7/2019						
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)			
0-1	Caliche and sand	No odor or Odor	3140	-			
2-3	Caliche and sand	No Stain or odor	1,700	-			
4-5	Caliche and sand	No Stain or odor	1,090	-			
6-7	Caliche and sand	No Stain or odor	879	-			
9-10	Caliche and sand	No Stain or odor	780	-			
14-15	Caliche and sand	No Stain or odor	685	-			
19-20	Caliche and sand	No Stain or odor	765	-			
24-25	Caliche and sand	No Stain or odor	476	240			
29-30	Caliche and sand	No Stain or odor	274	200			
34-35	Caliche and sand	No Stain or odor	265	-			

Client:	Permian Water Solutions						
Site Name	Kaiser SWD						
Sample ID:	SP-2						
GPS	32.480951° -103.425927°						
Project #:	212C-MD-01742						
Total Depth	35'						
Date Installed:	5/7/2019						
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)			
0-1	Sand, concrete cuttings	Moderate odor	4980	-			
2-3	Sand, concrete cuttings	Moderate odor	4,000	-			
4-5	Silty sand	Moderate odor	1,990	-			
6-7	Silty sand	Heavy odor	1,800	-			
9-10	Silty sand	Faint odor	2,500	-			
14-15	Limestone and chert	Very faint odor	2,950	-			
19-20	Limestone and chert	No Stain or odor	924	-			
24-25	Limestone and chert	No Stain or odor	<i>787</i>	-			
29-30	Limestone and chert	No Stain or odor	510	280			
34-35	Limestone and chert	No Stain or odor	461	320			

Client:	Permian Water Solutions							
Site Name	Kaiser SWD							
Sample ID:	SP-3	SP-3						
GPS	32.481342° -103.425949°							
Project #:	212C-MD-01742							
Total Depth	5.5'							
Date Installed:	5/13/2019							
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)				
0-1	Caliche	Faint odor	2,420	-				
1-1.5	Brown sand and caliche	No odor	415	-				
2-2.5	Light brown sand and caliche	No odor	400	-				
3-3.5	Light brown sand and caliche	No odor	297	-				
4-4.5	Light brown sand and caliche	No odor	312	-				
5-5.5	Light brown sand and caliche	No odor	365	-				

Site Name	Client:	Permian Water Solutions						
GPS 32.481349° -103.425743° Project #: 212C-MD-01742 Total Depth 15' Date Installed: 5/7/2019 DEPTH (Ft) Lithology/Sample Description NOTES Salinity (ppm) Chloride (ppm) 0-1 Sand and caliche No stain or odor 1620 - 2-3 Sand and caliche No stain or odor 1,690 - 4-5 Sand and caliche No stain or odor 1,140 - 6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	Site Name	Kaiser SWD						
Project #: 212C-MD-01742 Total Depth 15' Date Installed: 5/7/2019 DEPTH (Ft) Lithology/Sample Description NOTES Salinity (ppm) Chloride (ppm) 0-1 Sand and caliche No stain or odor 1620 - 2-3 Sand and caliche No stain or odor 1,690 - 4-5 Sand and caliche No stain or odor 1,140 - 6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	Sample ID:	SP-4						
Total Depth 15' Date Installed: 5/7/2019 DEPTH (Ft) Lithology/Sample Description NOTES Salinity (ppm) Chloride (ppm) 0-1 Sand and caliche No stain or odor 1620 - 2-3 Sand and caliche No stain or odor 1,690 - 4-5 Sand and caliche No stain or odor 1,140 - 6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	GPS	32.481349° -103.425743°						
Date Installed: 5/7/2019 DEPTH (Ft) Lithology/Sample Description NOTES Salinity (ppm) Chloride (ppm) 0-1 Sand and caliche No stain or odor 1620 - 2-3 Sand and caliche No stain or odor 1,690 - 4-5 Sand and caliche No stain or odor 1,140 - 6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	Project #:	212C-MD-01742						
DEPTH (Ft) Lithology/Sample Description NOTES Salinity (ppm) Chloride (ppm) 0-1 Sand and caliche No stain or odor 1620 - 2-3 Sand and caliche No stain or odor 1,690 - 4-5 Sand and caliche No stain or odor 1,140 - 6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	Total Depth	15'						
0-1Sand and calicheNo stain or odor1620-2-3Sand and calicheNo stain or odor1,690-4-5Sand and calicheNo stain or odor1,140-6-7Sand and calicheNo stain or odor714-9-10Sand and calicheNo stain or odor656480	Date Installed:							
0-1Sand and calicheNo stain or odor1620-2-3Sand and calicheNo stain or odor1,690-4-5Sand and calicheNo stain or odor1,140-6-7Sand and calicheNo stain or odor714-9-10Sand and calicheNo stain or odor656480								
2-3 Sand and caliche No stain or odor 1,690 - 4-5 Sand and caliche No stain or odor 1,140 - 6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)			
4-5 Sand and caliche No stain or odor 1,140 - 6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	0-1	Sand and caliche	No stain or odor	1620	-			
6-7 Sand and caliche No stain or odor 714 - 9-10 Sand and caliche No stain or odor 656 480	2-3	Sand and caliche	No stain or odor	1,690	-			
9-10 Sand and caliche No stain or odor 656 480	4-5	Sand and caliche	No stain or odor	1,140	-			
	6-7	Sand and caliche	No stain or odor	714	-			
14-15	9-10	Sand and caliche	No stain or odor	656	480			
	14-15	Sand and caliche	No stain or odor	655	480			

Client:	Permian Water Solutions						
Site Name	Kaiser SWD						
Sample ID:	SP-5	SP-5					
GPS	32.480979° -103.425687°						
Project #:	212C-MD-01742						
Total Depth	35'						
Date Installed:	5/7/2019						
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)			
0-1	Dark brown sand	No Stain or odor	3180	-			
2-3	Dark brown sand	No Stain or odor	1,020	-			
4-5	Dark brown sand	No Stain or odor	754	400			
6-7	Dark brown sand	Heavy odor	510	-			
9-10	Dark brown sand	Heavy odor	610	-			
14-15	Dark brown sand	Heavy odor	673	-			
19-20	Dark brown sand	Heavy odor	689	-			
24-25	Dark brown sand	Moderate odor	575	-			
29-30	Light tan sand	No Stain or odor	679	240			
34-35	Light tan sand	No Stain or odor	596	200			
L	•			1			

Client:	Permian Water Solutions						
Site Name	Kaiser SWD						
Sample ID:	SP-6						
GPS	32.480748° -103.425638°						
Project #:	212C-MD-01742						
Total Depth	20'						
Date Installed:	5/7/2019						
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)			
0-1	Dark brown sand	No Stain or odor	3950	-			
2-3	Dark brown sand	No Stain or odor	2,020	-			
4-5	Dark brown sand	No Stain or odor	1,030	-			
6-7	Light tan sand and caliche	No Stain or odor	905	-			
9-10	Light tan sand and caliche	No Stain or odor	825	640			
14-15	Light tan sand and caliche	No Stain or odor	642	480			
19-20	Light tan sand and caliche	No Stain or odor	531	450			

Client:	Permian Water Solutions							
Site Name	Kaiser SWD	Kaiser SWD						
Sample ID:	SP-7	SP-7						
GPS	32.480544° -103.425502°							
Project #:	212C-MD-01742							
Total Depth	25'							
Date Installed:	5/7/2019							
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)				
0-1	Dark brown sand	Very faint odor	2360	-				
2-3	Dark brown sand	Very faint odor	1,120	-				
4-5	Light tan and red sand	No Stain or odor	783	-				
6-7	Light tan and red sand	No Stain or odor	615	600				
9-10	Light tan and red sand	No Stain or odor	632	720				
14-15	Light tan and red sand	No Stain or odor	752	720				
19-20	Light tan and red sand	No Stain or odor	655	440				
24-25	Light tan and red sand	No Stain or odor	300	280				
	<u>I</u>							

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-8			
GPS	32.480767° -103.425401°			
Project #:	212C-MD-01742			
Total Depth	30'			
Date Installed:	5/7/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand	Faint odor	9,080	-
2-3	Dark brown sand	Faint odor	5,650	-
4-5	Dark brown sand	Faint odor	4,490	-
6-7	Light tan and red sand	No Stain or odor	4,370	-
9-10	Light tan and red sand	No Stain or odor	3,970	-
14-15	Light tan and red sand	No Stain or odor	3,100	-
19-20	Sand with caliche and cert	No Stain or odor	1,700	-
24-25	Red sand	No Stain or odor	452	400
29-30	Red sand	No Stain or odor	147	180
<u> </u>	l			

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-9			
GPS	32.481030° -103.425445°			
Project #:	212C-MD-01742			
Total Depth	35'			
Date Installed:	5/7/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand	Faint odor	5,280	-
2-3	Dark brown sand	Faint odor	2,250	-
4-5	Light tan sand and caliche	No Stain or odor	1,820	-
6-7	Light tan sand and caliche	No Stain or odor	2,610	-
9-10	Light tan sand and caliche	No Stain or odor	2,280	-
14-15	Red sand	No Stain or odor	2,270	-
19-20	Red sand	No Stain or odor	2,680	-
24-25	Red sand	No Stain or odor	1,530	-
29-30	Red sand	No Stain or odor	405	440
34-35	Red sand	No Stain or odor	421	320
4	•	-		

Client:	Permian Water Solutions					
Site Name	Kaiser SWD					
Sample ID:	SP-10					
GPS	32.481350° -103.425486°	32.481350° -103.425486°				
Project #:	212C-MD-01742					
Total Depth	5'					
Date Installed:	5/8/2019					
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)		
0-1	Dark brown sand	No Stain or odor	1,200	-		
2-3	Dark brown sand	No Stain or odor	680	560		
4-5	Light tan sand and caliche	No Stain or odor	507	360		

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-11			
GPS	32.481352° -103.425213°			
Project #:	212C-MD-01742			
Total Depth	10'			
Date Installed:	5/8/2019			
	0.0.20.0			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand	No Stain or odor	940	-
2-3	Light tan sand and caliche	No Stain or odor	1,010	-
4-5	Light tan sand and caliche	No Stain or odor	915	640
6-7	Light tan sand and caliche	No Stain or odor	475	400
9-10	Light tan sand and caliche	No Stain or odor	276	240

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-12			
GPS	32.480449° -103.425113°			
Project #:	212C-MD-01742			
Total Depth	15'			
Date Installed:	5/8/2019			
	•			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand	No Stain or odor	1,140	-
2-3	Dark brown sand	No Stain or odor	1,330	-
4-5	Light tan sand and caliche	No Stain or odor	895	600
6-7	Light tan sand and caliche	No Stain or odor	397	400
9-10	Light tan sand and caliche	No Stain or odor	325	320
14-15	Light tan sand and caliche	No Stain or odor	355	200

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-13			
GPS	32.480942° -103.424907°			
Project #:	212C-MD-01742			
Total Depth	1'			
Date Installed:	5/8/2019			
	J. 100			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand	No Stain or odor	308	-

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-14			
GPS	32.481152° -103.424928°			
Project #:	212C-MD-01742			
Total Depth	35'			
Date Installed:	5/8/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand	No Stain or odor	895	-
2-3	Dark brown sand	No Stain or odor	667	-
4-5	Red sand	No Stain or odor	1,060	-
6-7	Red sand	No Stain or odor	898	440
9-10	Red sand	No Stain or odor	516	480
14-15	Red sand	No Stain or odor	1,120	560
19-20	Light tan sand with limestone and chert	No Stain or odor	1,510	1,400
24-25	Light tan sand with limestone and chert	No Stain or odor	1,020	-
29-30	Red sand	No Stain or odor	424	400
34-35	Red sand	No Stain or odor	315	120

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-15			
GPS	32.480365° -103.425729°			
Project #:	212C-MD-01742			
Total Depth	7'			
Date Installed:	5/8/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand	No Stain or odor	1,050	-
2-3	Dark brown sand	No Stain or odor	945	680
4-5	Dark brown sand	No Stain or odor	970	400
6-7	Light tan sand and caliche	No Stain or odor	1,030	440

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-16			
GPS	32.480448° -103.425897°			
Project #:	212C-MD-01742			
Total Depth	20'			
Date Installed:	5/8/2019			
	•			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark brown sand with gravel	No Stain or odor	553	-
2-3	Dark brown sand with gravel	No Stain or odor	1,350	-
4-5	Dark brown sand with gravel	No Stain or odor	1,390	-
6-7	Dark brown sand with gravel	No Stain or odor	1,430	-
9-10	Dark brown sand with gravel	No Stain or odor	1,250	-
14-15	Light tan sand and caliche	No Stain or odor	975	440
19-20	Light tan sand and caliche	No Stain or odor	725	360

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-17			
GPS	32.481215° -103.425292°			
Project #:	212C-MD-01742			
Total Depth	5.5'			
Date Installed:	5/13/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Caliche	Heavy odor	-	-
2-3	Caliche	Heavy odor	-	-
3-4	Caliche	Heavy odor	-	-
4-4.5	Dark brown sand with clay & caliche	Moderate odor	OL	-
5-5.5	Dark brown sand with clay & caliche	Faint odor	OL	-

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-18			
GPS	32.480967° -103.425281°			
Project #:	212C-MD-01742			
Total Depth	3'			
Date Installed:	5/7/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark sand and caliche	Heavy odor	4490	-
2-3	Dark sand and caliche	Heavy odor	3,340	-
t				

Client:	Permian Water Solutions			
Site Name	Kaiser SWD			
Sample ID:	SP-19			
GPS	32.480697° -103.425278°			
Project #:	212C-MD-01742			
Total Depth	4.5'			
Date Installed:	5/13/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)
0-1	Dark sand and caliche	Heavy odor	4040	-
2-3	Dark sand and caliche	Heavy odor	6,270	-
4-4.5	Dark sand and caliche	Heavy odor	3,130	OL
			1	

Client:	Permian Water Solutions						
Site Name	Kaiser SWD						
Sample ID:	SP-20						
GPS	32.480723° -103.425099°						
Project #:	212C-MD-01742						
Total Depth	5.5'						
Date Installed:	5/13/2019						
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)			
0-1	Dark sand and caliche	Heavy odor	1660	-			
2-3	Dark sand and caliche	Heavy odor	1,270	-			
4-4.5	Dark sand and caliche	Moderate odor	1,300	1200			
5-5.5	Light sand and caliche	Moderate odor	1,400	1280			

Client:	Permian Water Solutions						
Site Name	Kaiser SWD						
Sample ID:	SP-21						
GPS	32.480913° -103.425125°						
Project #:	212C-MD-01742						
Total Depth	5.5'						
Date Installed:	5/13/2019						
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)			
0-1	Dark sand and caliche	Heavy odor	1640	-			
2-3	Dark sand and caliche	Heavy odor	1,230	-			
4-4.5	Dark sand and caliche	Moderate odor	2,340	1760			
5-5.5	Dark sand and caliche	Moderate odor	2,100	1520			

Client:	Permian Water Solutions								
Site Name	Kaiser SWD								
Sample ID:	SP-22								
GPS	32.481100° -103.425121°								
Project #:	212C-MD-01742								
Total Depth	4.5'								
Date Installed:	5/13/2019								
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)					
0-1	Dark sand and caliche	Faint odor	809	-					
2-3	Dark sand and caliche	Faint odor	843	-					
3-3.5	Light brown sand and caliche	Faint odor	1,110	640					
4-4.5	Light brown sand and caliche	No stain or odor	840	880					

Client:	Permian Water Solutions										
Site Name	Kaiser SWD										
Sample ID:	SP-23										
GPS	32.480575° -103.425705°										
Project #:	212C-MD-01742										
Total Depth	4.5'										
Date Installed:	5/14/2019										
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)							
0-1	Sand with gravel and caliche	Heavy stain and odor	-	-							
1-1.5	Caliche	Heavy odor	374	-							
2-2.5	Red clay	Heavy odor	1,400	-							
3-3.5	Caliche	Heavy stain and odor	1,590	-							
4-4.5	Caliche	Heavy stain and odor	2,020	-							

Client:	Permian Water Solutions									
Site Name	Kaiser SWD									
Sample ID:	SP-24									
GPS	32.480632° -103.425799°									
Project #:	212C-MD-01742									
Total Depth	1'									
Date Installed:	5/8/2019									
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)						
0-1	Sand with gravel and caliche	Heavy stain and odor	-	-						
	Deeper samples could not be obtained									
	due to rain water puddling in the area									
	upon return.									

Client:	Permian Water Solutions										
Site Name	Kaiser SWD										
Sample ID:	SP-25										
GPS	32.480534° -103.425837°										
Project #:	212C-MD-01742										
Total Depth	5.5'										
Date Installed:	5/14/2019										
DEPTH (Ft)	Lithology/Sample Description	Lithology/Sample Description NOTES Salinity (ppm)									
0-1	Sand with gravel and caliche	Heavy stain and odor	-	Chloride (ppm)							
1-1.5	Caliche	Heavy stain and odor	2,640	-							
2-2.5	Red clay	Heavy stain and odor	1,380	-							
3-3.5	Caliche	Heavy stain and odor	3,090	-							
4-4.5	Caliche	Heavy stain and odor	2,410	-							
5-5.5	Caliche	Heavy stain and odor	2,320	-							

Client:	Permian Water Solutions								
Site Name	Kaiser SWD								
Sample ID:	SP-26								
GPS	32.480451° -103.425751°								
Project #:	212C-MD-01742								
Total Depth	1'								
Date Installed:	5/8/2019								
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)					
0-1	Sand with gravel and caliche	Heavy stain and odor	-	-					
	-								
	Deeper samples could not be obtained								
	due to rain water puddling in the area								
	upon return.								
	i	1							

Client:	Permian Water Solutions								
Site Name	Kaiser SWD								
Sample ID:	SP-27								
GPS	32.481092° -103.425951°	32.481092° -103.425951°							
Project #:	212C-MD-01742								
Total Depth	40'								
Date Installed:	5/8/2019								
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)					
0-1	Dark brown sand and gravel	No Stain or odor	3420	-					
2-3	Dark brown sand and gravel	No Stain or odor	4,800	-					
4-5	Sand	Heavy odor	2,830	-					
6-7	Sand and gravel	Moderate odor	8,000	-					
9-10	Sand and gravel	Moderate odor	7,400	-					
14-15	Sand and gravel	Moderate odor	7,300	-					
19-20	Sand and gravel	Moderate odor	4,650	-					
24-25	Sand and gravel	Moderate odor	287	-					
29-30	Silty sand	No Stain or odor	415	400					
34-35	Silty sand	No Stain or odor	385	200					
<u> </u>	- I								

Client:	Permian Water Solutions								
Site Name	Kaiser SWD								
Sample ID:	SP-29								
GPS	32.481134° -103.425716°								
Project #:	212C-MD-01742								
Total Depth	7'								
Date Installed:	5/8/2019								
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)					
0-1	Dark brown sand and gravel	No Stain or odor	2,280	-					
2-3	Dark brown sand and gravel	No Stain or odor	957	720					
4-5	Sand and caliche	No Stain or odor	200	200					
6-7	Sand and caliche	No Stain or odor	160	160					

Client:	Permian Water Solutions									
Site Name	Kaiser SWD									
Sample ID:	SP-30									
GPS	32.481158° -103.425458°									
Project #:	212C-MD-01742									
Total Depth	15'									
Date Installed:	5/8/2019									
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)						
0-1	Dark brown sand and gravel	No Stain or odor	5010	-						
2-3	Dark brown sand and gravel	No Stain or odor	2,410	-						
4-5	Sand and caliche	No Stain or odor	1,010	-						
6-7	Sand and caliche	No Stain or odor	946	-						
9-10	Sand and caliche	No Stain or odor	858	480						
14-15	Sand and caliche	No Stain or odor	262	200						

Client:	Permian Water Solutions								
Site Name	Kaiser SWD								
Sample ID:	SP-31								
GPS	32.480607° -103.425155°								
Project #:	212C-MD-01742								
Total Depth	5'								
Date Installed:	5/8/2019								
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)					
0-1	Dark brown sand	No Stain or odor	355	-					
2-3	Dark brown sand	No Stain or odor	200	200					
4-5	Dark brown sand	No Stain or odor	212	160					

Client:	Permian Water Solutions								
Site Name	Kaiser SWD								
Sample ID:	SP-32								
GPS	32.480746° -103.424896°								
Project #:	212C-MD-01742								
Total Depth	5'								
Date Installed:	5/8/2019								
DEPTH (Ft)	Lithology/Sample Description	NOTES	Salinity (ppm)	Chloride (ppm)					
0-1	Dark brown sand	No Stain or odor	243	-					
2-3	Dark brown sand	No Stain or odor	762	400					
4-5	Dark brown sand	No Stain or odor	755	560					

Soil Drilling Log with Field Testing Results

Project Name: Kaiser St SWD Date

Project No. : 212C-MD-01742

Location : Lea Co, NM **Coordinates :** 32.481227 -103.425306

Elevation :

Date: Monday, October 21, 2019

Sampler : Conner Moehring

Driller: Scarborough Drilling

Depth (ft.) WL	Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
10	Black/brown sand Black/brown sand Red sand and silt Red sand and silt Fine dry brown sand Dense layer of caliche Caliche with pebbels Tan Sand with caliche Dense layer of caliche White fine caliche Brown sand Fine red sand Red Sand	(ppm) 840 700 500		50		Comments: T.D 30'	(ppm)	ф

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

Soil Drilling Log with Field Testing Results

Project Name: Kaiser St SWD

Project No. : <u>212C-MD-01742</u>

Location: Lea Co, NM

Coordinates: 32.480967 -103.425290

Elevation :

Date: Monday, October 21, 2019

Sampler : Conner Moehring

Driller: Scarborough Drilling

Depth (ft.)	/L Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.) W	VL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
	Black and brown sand / gravel Black gravel			50 🛨				
5	tan and black gravel and sand			55				
10	Dense layer of caliche			60				
10	tan caliche Caliche layer	1,200		65				
20	Red brown sand			70				
#1	Dense layer of calchie			#1				
+ 1	Red brown sand	1,800		75				
30	Red brown sand	1,800		#	C	Comments: T.D 50'		
35	Red brown sand	1,000		#				
40 -	Red brown sand	800		#				
45	Red brown sand	480		#				
50 🛨	Red brown sand	400		土乚				

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

Soil Drilling Log with Field Testing Results

Project Name : Kaiser St SWD

Project No. : <u>212C-MD-01742</u>

Location: Lea Co, NM

Coordinates : 32.480704 -103.425281

Elevation :

Date: Tuesday, October 22, 2019

Sampler : Conner Moehring

Driller: Scarborough Drilling

Depth (ft.) W	- Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
。工厂	Black brown sand with gravel			⁵⁰ T				
5	Black brown sand with gravel			55				
10	tan sand with calcihe			60 —				
#	Dense layer of caliche			#1				
15	Caliche with tan sand			65				
15	Tan caliche with sand	>2000		70				
25	Red dry sand			75				
	Red dry sand Dense layer of caliche	242		#		Comments: T.D 40'		
35	Red fine sand	142		=				
45	Red fine sand	313						
50 🛨				土				

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

Soil Drilling Log with Field Testing Results

Project Name : Kaiser St SWD

Project No. : 212C-MD-01742

Location: Lea Co, NM

Coordinates: 32.480704 -103.425094

Elevation :

Date: Tuesday, October 22, 2019

Sampler: Conner Moehring

Driller: Scarborough Drilling

Depth (ft.) WL	Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
10	Black gravel and sand Black gravel with sand grey gravel and tan sand Tan sand and gravel Fine dry tan sand Dense layer of clay Tan sand and gravel Tan sand and gravel Red fine sand Dense layer of caliche Red sand fine	Field Test	PID	50		Soil Description Comments: T.D 30'	Field Test	Titration Test
40 45 50	iked sand fine	200		+ - - - - - - - - -		Comments: I.D 30°		

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

TETRA TECH

Borehole ID: BH-23 Soil Drilling Log with Field Testing Results

 Project Name :
 Kaiser St SWD

 Date :
 Tuesday, October 22, 2019

 Project No.:
 212C-MD-01742
 Sampler:
 Conner Moehring

 Location:
 Lea Co, NM

 Coordinates : 32.4800551 -103.425712
 Driller : Scarborough Drilling

Elevation : Method : Air Rotary

Depth (ft.) V	VL Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
10	Black gravel damp black gravel damp tan sand / gravel Tan sand and gravel Caliche with tan sand Dense layer of caliche Caliche sand tan Red sand dry Dry red sand Dry red sand	>2000		50		Damp red sand Comments: T.D 55'	400	
40 45 50	Dry red sand	1,200		+++++++++++++++++++++++++++++++++++++++				
50	Damp red sand Damp red sand	1,100 440		#				

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

Location: Lea Co, NM

TETRA TECH

BH-24

Soil Drilling Log with Field Testing Results

Project Name : Kaiser St SWD Date : Tuesday, October 22, 2019

 Project No.:
 212C-MD-01742

 Sampler:
 Conner Moehring

 Coordinates : 32.480613 -103.425790
 Driller : Scarborough Drilling

Elevation: Method: Air Rotary

Depth (ft.) W	L Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
• 🛨 🗆	Black brown gravel Tan black gravel and sand			50 🛨				
5	Tan sand dry brown tan sand			55				
10	Brown tan sand			60				
10	Tan caliche with gravel			65				
20	Tan caliche with gravel	242		70				
25	Red sand with gravel	480		75				
30	Red sand	376		‡		Comments: T.D 30'		
35 -				‡				
40				<u> </u>				
45				#				
50				刲				

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

Soil Drilling Log with Field Testing Results

Project Name: Kaiser St SWD

Project No. : <u>212C-MD-01742</u>

Location: Lea Co, NM

 $\textbf{Coordinates:} \ \ \, \underline{32.480517\ \text{-}103.425836}$

Elevation :

Date: Tuesday, October 22, 2019

Sampler: Conner Moehring

Driller: Scarborough Drilling

Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
° T		Black gravel with sand			50 🛨				
Ŧ		Black gravel			Ŧ				
Ŧ									
5		Brown sand with black gravel			55 —				
#		Brown sand			#				
10					60				
#		Tan sand w/ caliche			#				
15					±				
15		Caliche with tan sand			65				
Ŧ		Dense layer of caliche			Ŧ				
\mp					—				
20 🛨		Dry red sand	520		70				
#		Dense layer of caliche			#				
25		Red dry sand	480		75				
30		nea dry sund	400		#				
#					#				
30					#		Comments: T.D 25'		
#					±				
35					土				
$^{\circ}$ \pm					\pm				
Ŧ					Ŧ				
40									
#					#				
#					=				
45					#				
#					±				
45					土				

^{*} L.O. = Low Odor

^{*} L.S. = Low Staining

Soil Drilling Log with Field Testing Results

Project Name: Kaiser St SWD

Project No. : 212C-MD-01742

Location: Lea Co, NM **Coordinates**: 32.480445 -103.425753

Elevation :

Date: Tuesday, October 22, 2019

Sampler : Conner Moehring

Driller: Scarborough Drilling

Depth (ft.) W	'L Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
。工厂	Black and brown sand			⁵⁰ T				
土	Black and brown sand							
<u> </u>				55				
<u>+</u>	Black sand and gravel							
土	Tan sand			<u> </u>				
10	Tan sand			60				
10	Tan sand with calcihe			65				
20	Tan sand with caliche	800		70				
#	Soft caliche			+				
25	Red sand	699		75				
30	Red sand	500		+		Comments: T.D 35'		
35	Red sand	480		‡				
40 🛨				王				
45				\pm				
\pm				\pm				
45				<u>+</u>				
\pm				王				
=				\pm				

^{*} H.O. = Heavy Odor

leavy Odor * L.O. = Low Odor

^{*} H.S. = Heavy Staining

TETRA TECH

Borehole ID: BH-33

Soil Drilling Log with Field Testing Results

Project Name : Kaiser St SWD

Project No. : 212C-MD-01742

Location: Lea Co, NM

 $\textbf{Coordinates}: \ \ \underline{32.480752} \ \textbf{-103.425214}$

Elevation :

Date: Tuesday, October 22, 2019

Sampler : Conner Moehring

Driller: Scarborough Drilling

Depth (ft.) WL	Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
10	Black gravel with sand Black gravel and sand Brown sand with clay Dry brown sand Red sand with gravel	400 280		50		Comments: T.D 20'	(ppm)	(ppm)

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

Soil Drilling Log with Field Testing Results

Project Name : Kaiser St SWD

Project No. : 212C-MD-01742

Location: Lea Co, NM

Coordinates: 32.480939 -103.425204

Elevation :

Date: Tuesday, October 22, 2019

Sampler : Conner Moehring

Driller: Scarborough Drilling

Depth (ft.)	WL Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.) V	VL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
°┰┌	Black and brown sand			⁵⁰ T				
土	Black and brown gravel and sand			士				
<u> </u>				+				
* 🕇	Dry brown sand and clay			55 —				
#1	Dry brown sand			#1				
10	Dry red sand			60				
10	Dry red sand			65				
	Dense layer of caliche	1,600		70				
25	Caliche cobbles			75				
30	Dry red sand			#	(Comments: T.D 40'		
35 —	Dry red sand	540		#				
45	Dry red sand	400		#				
45				#1				
#1				#1				
<u>+</u>				<u>+</u>				
50				_				

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

TETRA TECH

Borehole ID: BH-35

Soil Drilling Log with Field Testing Results

Project Name : Kaiser St SWD

Project No. : 212C-MD-01742

Location: Lea Co, NM

Coordinates: 32.481099 -103.425226

Elevation :

Date: Monday, October 21, 2019

Sampler : Conner Moehring

Driller: Scarborough Drilling

Depth (ft.) WL	Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	WL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
Depth (ft.) WL 0	Black and brown gravel and sand Black and brown gravel and sand Brown and tand sand brown sand and caliche Brown sand Dense layer of calciche Red sand	Field Test	PID	50 T	WL	Soil Description	Field Test	Titration Test
30 40 40 45 50	Red sand Red sand with caliche pebbles Very dense kayer of calcihe Very dense kayer of calciche					Comments: T.D 50'		
50 📘	Red Sand			エリ				

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

TETRA TECH

Borehole ID: BH-36 Soil Drilling Log with Field Testing Results

Project Name: Kaiser St SWD

Project No. : 212C-MD-01742

Location: Lea Co, NM

Coordinates: 32.481235 -103.425211

Elevation :

Date: Monday, October 21, 2019

Sampler: Conner Moehring

Driller: Scarborough Drilling

Depth (ft.) Wi	- Soil Description	Chloride Field Test (ppm)	PID	Depth (ft.)	NL	Soil Description	Chloride Field Test (ppm)	Field Titration Test (ppm)
	Black and brown gravel and sand Brown tan gravel			50				
5	Tan caliche Dense layer of caliche	7,260		55				
10	Brown tan sand	1,620		60				
15	Brown/tan sand	460		65				
10	Fine tan sand	600		70				
25				75				
30				#		Comments: T.D 20'		
35				1				
40				#				
45				#				
50				Ξl				

^{*} H.O. = Heavy Odor

^{*} L.O. = Low Odor

^{*} H.S. = Heavy Staining

^{*} L.S. = Low Staining

Appendix C

Progress Meetings notes

Progress Meeting Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 07/28/2021

Meeting Time: 8:00 am, Wednesday July 28, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, Wednesday August 4, 2021

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Maria Pruett		mpruett@slo.state.nm.us	NM State Land Office
Dusty McInturff		dmcinturff@dufrane.com	Dufrane Construction
Jenni Usher	512/820-8772	Jenni@permianws.com	Permian Water
			Solutions
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetratech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting: None. We're launching new today.

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

At SLO / Merchant Livestock request;

Pot hole left from gas pipeline locate has been backfilled Cattleguard has been cleaned out and reset.

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Weather Delays:

Two Week Look Ahead:

Hope to start construction of new road next week, pending responses from one call. Numerous pipelines on site to cross over/add fill. At the staging area install a Liner down with berm to prepare for Phase 2. Field meeting with Tetratech, to kick off the plan; excavate material under old battery tank, soil testing at excavated depths, refill with clean material.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Establishing contact with pipeline owners for ROW. Pipelines marked and flagged clearly. New cattle guard will need to be installed 30-50' back from road to avoid Enterprise pipeline. Then add fence on Eastern perimeter to fence livestock out.

Critical Path Considerations: Complete Phase 1 so Phase 2 can begin. Make contact with pipeline owners for ROW so field work can begin. Faith offered assistance with contacting ROW owners.

Comn	าาต	SIO	ทาท	α .
Comm	110	DIO.	ш	€.

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Damaged tanks have been removed. Test Well #1 drilled.
- 2. Test well #2
 - a. Installed by end of Phase 1. SLO likely wants to keep as monitoring well. Dusty and Clair to determine if Test Well #2 needs to be moved due to being in the way of new tank battery location. Get with Maria and Ryan when known. Chris Cortez submitted paperwork to OSE to plug #1 and drill #2; awaiting approval from OSE, but plan is to perform work mid-end of August.
- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021
 - a. Item #3 Confirm green outline just needs to be excavated to 1' and refilled. Will be close to new tank battery location.
 - b. Item #4 Will SLO consider geosynthetic clay liner instead of bentonite clay membrane mat? Dufrane has had success with this and will send product info to SLO to review.
 - c. Dusty stated concerns with excavation depths greater than 19' may require separate engineering plan; how would they proceed if this occurs? SLO will evaluate samples at 8-12' as they go to determine if shallower depths are acceptable. If samples indicate deeper excavation is still necessary, a new plan will be devised to accommodate an engineering plan to address the new safety concerns.
 - d. Item #5 Are the purple outlined areas recent or legacy off-pad spills? 10 RP's on file for Kaiser site. Determine owner of PW line to South of lease road may be historical spill by another operator? Both sides to look into this further. PWS does not believe these are from Kaiser site.

Assign Follow Up Tasks For New Business:

Verify Date and Time of Next Meeting: 8:00 am, Wednesday August 4, 2021

Adjourn: at 9:00 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Sit

Site outline

Phase 1 Remediation Area

Test Well #2

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excevate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 08/4/2021

Meeting Time: 8:00 am, Wednesday August 4, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, Wednesday August 11, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Maria Pruett		mpruett@slo.state.nm.us	NM State Land Office
Dusty McInturff		dmcinturff@dufrane.com	Dufrane Construction
Josh Brooks	617/584-2889	jbrooks@dufrane.com	Permian Water Solutions
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetratech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes: Faith made an update to the minutes Permian sent, but Permian did not receive. Requested for updated document to be resent.

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

SLO needs product specs of geosynthetic clay liner (GCL) for Maria and Ryan to review. RFI can be submitted for plastic liner consideration.

Phase 2 Purple Outlined areas: Permian expressed concern that these are off lease. SLO said Permian is responsible for investigating what happened, when, was a C-141 filed, etc and presenting the research to the SLO. They have done no investigation, just reviewed Google Imagery.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

One Calls still pending. Only one pipeline has been cleared, rest are still in conflict or unable to reach. Dusty will file 'no response' with NM 811 by end of day so they must respond within 24 hours. Dusty is working with Enterprise. No excavation has been started yet due to lack of one call responses. Equipment/cattle guard is being mobilized to site in anticipation of being cleared to start road construction soon.

Weather Delays:

Two Week Look Ahead:

Hope to receive pipeline operators' requirements for building over their pipelines. If it's just running material over, hopefully fieldwork can begin next week. Need to work with Enterprise more in depth to determine the exact road placement and cattleguard placement with regard to their pipeline ROW. Likely still at least 1 week out from starting fieldwork due to communication with pipeline operators.

Josh asked if the lease acreage could be reduced now that Test well #1 has been drilled. Faith will look into it and respond.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Permian is concerned with the oil/gas lease directly adjacent to the South and how to safely excavate this area. SLO requests a new site plan showing the new tank battery location and the approach to completing the work. Permian wants to have (1) road constructed for safe traffic flow, (2)

remediate Phase 1, old tank battery area, (3) establish lay down area, install liner, berm it up, stockpile material, (4) receive approval of Phase 1 remediation, and then new tank battery will be put in.

Critical Path Considerations:

Josh wants the testing and feedback from the SLO/NMOCD to be done as quickly as possible, so equipment isn't sitting idle. He can provide a drone shot of progress and send to Faith and Ryan to expedite.

Dusty is concerned with excavating so close to the oil well to the South and establishing a safe slope. Josh confirmed what Permian needs to do to address the Phase 2 purple outlined areas off lease – do our research, summarize, and share with SLO and we'll go from there.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Josh asked if we just dig everything down to 15' and have Tetratech do testing instead of digging until we see clean dirt and stopping to test if shallower than 15'. Maria said that stopping and testing shallower may work for normal spill, but this site had decades of spills. Faith confirmed that 15' would be necessary and we could talk once we have test results to review.
- 2. Test well #2
 - a. SLO wants the location of this well along the West side of lease, not the NE corner. Preference is between the two most Southern Phase 2 blue dotted outlines. Clair is concerned with the fieldwork flow of this since excavations are required around this location. Josh said they'll get out there and work up revised site plan and possibly complete shallow remediation first, replace soil, then drill Test #2 well?
- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021
 - a. Clair questioned the closure criteria of 15' and how SLO arrived at this. Clair mentioned the NMOCD has areas that need to be dug out in between the 15' blue outlined areas. SLO has results from prior operators and determined that a blanket 15' for an area made more sense than varying different depths within an area. SLO and NMOCD have different requirements, and this is a general overlayed area, not GPS field accurate.

Assign Follow Up Tasks For New Business:

SLO requests a new site plan showing the Test #2 well location, research results of off pad spills (purple outline), and the technical specs of the geosynthetic clay liner and plastic liner.

Permian/Tetratech requests the data the SLO is looking at for the previous samples/spills and the updated minutes from July 28, 2021 meeting that Faith circulated.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday August 11, 2021

Adjourn: at 9:07 am

- *Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TFH
 - 7,000 mg/kg CI*
 BTEX ND
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days. **
- ***Plan may change subject to sample data from soil and water testing.***

Progress Meeting Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 08/11/2021

Meeting Time: 8:04 am, Wednesday August 11, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, Wednesday August 18, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> – upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
David Gallegos			
Dusty McInturff		dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetratech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent RFI for plastic liner and product specs for Geosynthetic Clay Liner (GCL). Ryan and Maria have been unable to review, but Ryan said he would review today and didn't have major concerns. Faith approved the GCL, but they will not approve the plastic liner.

Phase 2 Purple Outlined Areas: Jenni has started research through the NMOCD online system but wants to look more in depth at a few items, discuss internally with Dusty and Clair, and summarize findings to present to the SLO. Permian will try to have this prepared for next week's meeting.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs. Recent submission for plastic liner was not approved.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty has met with Enterprise, Centennial, and DCP. Enterprise wanted a hydrovac truck to find line and they want 2' cover over pipeline. Centennial has two lines aboveground; they want 2' cover. DCP has two lines and they also want 2' cover. They've started to cut the road in and cover the pipelines. They've started subgrading prep on road for caliche to come in and cattleguard placement. The site is being cleaned while covering potholes and making ground more accessible for traffic flow. They've started removing underground infrastructure, conduit, piping around battery area. The staging area across the road has not been worked on yet.

Revised site layout was sent showing new battery, new road, staging area and pipeline locations.

Weather Delays:

Two Week Look Ahead:

Dusty hopes the staging area will be complete and to complete the road. It requires hauling in 1000 yards of material and hopefully the trucks hauling in will be reliable. It should take 3-4 days once they get moving though.

Clair and Dusty will work on spotting Test #2 location to add to revised site layout. SLO wanted it along Western side of old battery area because it was a hot area. SLO and Dusty/Clair will email throughout week to try to firm up location.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Nothing major at this time. Dusty said there is evidence of cattle around the location. Merchant has livestock out there. Fences will need to be put up to keep livestock segregated from the roads and staging area.

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. We're working on everything, nothing to add from either party.
- 2. Test well #2
 - a. Both sides will correspond over the week regarding the well location. SLO may want it to be a monitoring well.
- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021

a.

Assign Follow Up Tasks For New Business:

Determine location of Test #2 well.

Meeting #2 minutes send for Final email circulation.

Summarize research of Purple Outlined Areas.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday August 18, 2021

Adjourn: 8:35 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - All areas not noted in key, excavate to 6'.
 - Final samples to the following closure criteria:
 - 1,000 mg/kg TPH.
 - 7,000 mg/kg CI* - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days. **
- and len may change subject to sample data from spill and water testing that

Progress Meeting #4

Project: Kaiser State #9 Contract: SW-330 Today's Date: 08/18/2021

Meeting Time: 8:00 am, Wednesday August 18, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, Wednesday August 25, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetratech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Lots of rain at the end of last week and over weekend causing delay because they don't want to tear things up in the field with heavy equipment.

Test well #2: Dusty and Clair sent proposed location to Faith and Ryan to review. It will be drilled as a permanent monitoring well, but remediation still needs to be able to be done around the location. Dusty and Clair think this location is still close to the SLO's hot spot area (near borehole #27), but it won't affect remediation efforts. Ryan is OK with the location. Dusty will let Atkins Engineering know they can move forward with the location and that it will be placed as a permanent monitoring well. One calls were placed for the location and August 19, 2021 is the date Atkins is scheduled to come out.

Safety:

Site Observations: Lots of rain. Surface needs to dry out more to do earthwork.

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs. Recent submission for Test well #2 location was approved.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty was in the process of subgrade & finish grade on the new road, but the rain halted work. He was able to find 350 yards of caliche and is working on credit app approval from Mack Energy for future material. Some caliche is on the road and the cattle guard is on site, but the ground needs to dry out more before the road can be completed.

All pipelines have been covered with 2' except the Enterprise PL and a DCP PL. The Enterprise PL was found at 38" and 2' will go on top, but they want to use the soil from the cattle guard to cover it. DCP can't confirm if their PL on site is live or abandoned yet. Dusty asked them to come spot the line in the field since it may run within the excavation area, but they have not confirmed when they will do this yet. This will affect Phase 2, not Phase 1.

Weather Delays: Heavy rain delaying earthwork. Forecast appears sunny for upcoming week.

Two Week Look Ahead: Assuming the site dries out enough to pick up earthwork again, Dusty has liner to establish the laydown area. Ideally, they will haul material off instead of stocking it up in the laydown, but they'll need to see what happens once they are able to start digging. Phase 1 battery area is just too wet to excavate now.

Clair will be on site to mark boundaries for excavation this week. Hopefully mid-week next week excavation can begin if surface dries out enough.

Atkins Engineering to drill Test well #2 tomorrow. They will let it sit for a couple of days and then get samples for lab testing. Faith requested results be sent to the SLO and NMOCD concurrently. Dusty and Clair agreed.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate

sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Heavy rain has delayed field work.

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Still working on it, but rain has delayed earthwork. Need to wait for surface to dry out more.
- 2. Test well #2
 - a. Location approved. Atkins Engineering will be on site August 19, 2021, to drill as permanent well.
- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021
 - a. So far research on Purple outlined areas across the road has not yielded obvious incidents/spills reported in these locations.

Assign Follow Up Tasks For New Business:

Test well #2 should be completed and samples obtained for laboratory testing. Summarize concise details of Purple outlined areas research data for SLO to analyze. Get with Emily Hernandez to see if more information is available.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday August 25, 2021

Adjourn: 8:32 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

SI

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #5 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 08/25/2021

Meeting Time: 8:04 am, Wednesday August 25, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, September 1, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetratech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

There are no outstanding RFI's.

Test well #2 has been drilled and set as a monitoring well. It has metal casing and bollards around it. Tetratech's scheduling was a bit crazy, but they will low flow and test the well on Thursday August 26, 2021. Test results are expected to be back by the middle of next week.

Safety:

Site Observations: There was some sunshine and wind to help dry out surface but there was a little bit of rain last Saturday.

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

The new road has been completed. Dusty has started mining material for the berm (to be stored in the staging area across the road) from the Merchant pit down the road. Tetratech was out to mark the Phase 1 excavation area and excavation has started. Dusty is running all their trucks and stockpiling material but they are working to secure more reliable truck and labor from third parties; it has been difficult to keep people committed. They've started excavation in the SE corner and will work their way N. 10-day weather forecast does not show rain.

Remaining pipeline issues – the DCP line is marked. They want us to pot hole but they have not confirmed is the line is active or inactive (live or dead). It may be located in the Phase 2 area. It is 5' deep and if it is live then 15' may be difficult to excavate around. If it is dead, DCP may require certain protocol for working around the line so they don't lose their ROW.

Dusty has been working with DCP contact Mario Camunez, 575-988-8764. He's a field guy that responds to one calls, so we may need help finding a DCP decision maker in the area to move forward. Faith and Ryan will review their ROW data and try to find a contact with DCP that Dusty can speak with. Dusty thinks the line is about 400' running N-S through Phase 2 area. He'll update the location on his KMZ file and circulate so Faith can review within the SLO GIS data to assist.

Weather Delays: 10-day forecast looks promising for sunshine!

Two Week Look Ahead:

Dusty is hauling Phase 1 material out. It is a large amount of dirt to be pulled and put back. Logistically he's trying to utilize the trucks to dump contaminated dirt and then rehaul clean dirt back. He needs to determine a suitable space for stockpiling the good dirt and basically continue excavation activities so that Clair/Tetratech is able to get on site and do their work.

The fence needs to be put up around the new road access.

The temporary liner needs to go in for the laydown area across the road.

Anticipating an area of 100 x 80' for a laydown area for the material that will be used to construct the berms. Plastic liner will be laid out under material. Faith said to update SLO as this task progresses further along.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to establish DCP communication regarding the status of their pipeline which may run through Phase 2 area.

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Working on Phase 1 excavation. SLO will assist Dusty with obtaining a DCP contact to determine the course of action for their pipeline.
- 2. Test well #2
 - a. Well has been drilled and completed as permanent monitoring well. Plan is to obtain samples August 26, 2021 and receive results next week.
- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021
 - a. Purple outlined area research is underway. We contacted Emily Hernandez and Mike Bratcher with the OCD to see if they had more details on a few incidents we identified. Dusty is also taking photos of the areas.

Assign Follow Up Tasks For New Business:

Test well #2 laboratory results should be in next week.

SLO will try to find DCP contacts for Dusty to reach out to.

Permian will continue to seek approval of remediation work plan from OCD so both agencies concur with field objectives.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday September 1, 2021

Adjourn: 8:27 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface

water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Sit

Site outline

- - -

Phase 1 Remediation Area

*

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #6 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 08/25/2021

Meeting Time: 8:06 am, Wednesday September 1, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, September 8, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetratech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

There are no outstanding RFI's.

Test well #2 has been drilled and set as a monitoring well. Tetratech obtained samples Friday, August 27, 2021. Hopefully samples will be back at the end of this week or early next. Groundwater was at 71'.

The crew is disassembling offload station. Once offload station is disassembled, they will move to temporary fencing around containment liner across road for unload area. The crew will then move to access road fencing. Equipment is blocking the area off from cattle currently. Hopefully this will be completed by end of week and fence around new road can be built. Cattleguard is in.

Dusty is still working through DCP personnel for details pertaining to their pipeline and Phase 2 excavation.

Safety: Concerns with DCP line being active and affecting Phase 2 excavation.

Site Observations: Weather has been dry.

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty working on DCP pipeline still. He spoke with Jordan Britton, the SLO-provided contact. She pushed it to Isiah, the original line locator Dusty spoke with last year. He originally told DCP to cut and reroute line, but it was not done. Line is Active, 3" poly, either gathering or gas line. Claudia with DCP called and will get with her supervisors and Dusty will update her after today's call with more information. DCP will allow excavation up to 2' to line, which Dusty is not comfortable with. They'd have to hydrovac to find line depths, but Dusty is concerned with getting close to active lines. This impacts Phase 2, but if Phase 1 side wall samples are impacted, the East and West walls of the pipeline will be affected. Faith wants Permian to obtain a waiver from DCP that DCP will accept full responsibility for anything that happens. Dusty thinks it would be easier if they reroute the line but needs SLO help with how this affects DCP's ROW or if SLO could make them reroute. Faith will check with the ROW division. Dusty will communicate today's meeting with DCP and submit RFI to SLO to keep record. Expect DCP to take a week or so to communicate internally.

Weather Delays: 10-day forecast looks promising, no rain.

Two Week Look Ahead:

Hoping excavation will be completed and bottom will be reached so Clair/Tetratach can obtain samples. If he can find more trucks it could be completed in two weeks.

Old tanks are being stored on West side of site/Phase 2 area. Once Phase 1 is complete, Josh will get involved with rebuilding the new tank battery. Need to have third party assess integrity of tanks to determine if they can be used.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to establish gameplan for DCP line.

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Working on Phase 1 excavation. SLO and Dusty will work on communication with DCP regarding their active pipeline.
- 2. Test well #2
 - a. Well has been drilled and completed as permanent monitoring well. Samples obtained August 27, 2021 and awaiting lab results.
- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021
 - a. Purple outlined area research is underway. Emily Hernandez and Mike Bratcher with the OCD did not have anything new to add. Cory Smith is an Environmental Engineer assigned to review the remediation plan. We just started sending him requested information. He also did not suggest any new places to search for incidents. He noted it was unlikely that older data would be linked up anywhere and their filing systems and personnel changes over the years resulted in an incomplete system for tracking incidents and pits.

Assign Follow Up Tasks For New Business:

Test well #2 laboratory results should be in next week.

SLO will discuss DCP pipeline issue internally with ROW and Legal. Dusty wants to know if DCP should be responsible for the remediation if they won't sign a waiver or reroute the line.

Permian will continue to seek approval of remediation work plan from OCD so both agencies concur with field objectives.

Permian will try to summarize all research pertaining to Phase 2 purple outlined areas to 'make our case' that these are not a result of the Kaiser #009 incidents.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday September 8, 2021

Adjourn: 8:38 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #7 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 09/08/2021

Meeting Time: 8:03 am, Wednesday September 8, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, September 15, 2021

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetratech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions
Cory Smith	505/419-2687	Cory.Smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

There are no outstanding RFI's.

The temporary fencing is complete around new access road and laydown area across the road. The berms and liner are in place at the staging area across the road.

Test well #2 has been drilled and set as a monitoring well, MW-1. Tetratech obtained samples Friday, August 27, 2021. Groundwater was at 71'. Samples were received last night; they showed no benzene or BTEX, but chloride concentrations of about 3500. They forgot to test for TDS and have

asked the lab to do this. Results will be sent to the SLO and OCD. Cory asked if we had sample of produced water from tanks to know its chloride concentration, but we do not.

Cory/OCD wants to see the drilling logs and well construction. Tetratech will send their logs to Dusty and he'll obtain the drilling logs and well construction from Atkins Engineering to forward everything to Cory and SLO.

Safety: Concerns with DCP line being active and affecting Phase 2 excavation.

Site Observations: Had some rain but not enough to shut down fieldwork.

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Fencing and containment built and lined. Still hauling dirt and stockpiling. Dusty could use more trucks to get it done faster but that has been difficult to find. They are still working to get to total depth so Clair/Tetratech to perform sampling. Dusty conservatively estimates they are about 55% there.

Cory/OCD has reviewed the Tetratech remediation work plan dated January 2020 and the SLO plans. He asked Dusty to submit both directly to him as a single file with a C-141 with all incident numbers listed. He'll expedite on OCD's end with their conditions for approval and he will send it to SLO so there is no competing data between agencies. Cory wants sampling protocol to be 400 square feet, 20' x 20', grab samples. It was 200 square feet before. Ryan approves this.

Cory/OCD mentioned their top 4' has different closure criteria but the SLO plan should cover that. They are OK with the 15' sampling depth; it may not be needed everywhere but needed at some depths so that is fine. OCD is not concerned with GCL until sample results are received. If it isn't necessary due to results being under sample limits, then we won't deal with it. Ryan is OK with this. If GCL is needed, OCD would prefer it to be 8' deep to get below the pipelines out there.

Cory/OCD requested sampling notifications be sent directly to his email and Ryan's and to physically mark sampling zones. Tetratech will flag them in the field and anticipates at least one week to obtain samples with two people sampling. Cory is good with backfilling after approved samples without seeking approval. Clarification of plan for digging out requested. Dusty and Clair are excavating all of the Phase 1 area, starting with the Eastern portion, treating the soil as contaminated, and then will begin sampling.

Weather Delays: 10-day forecast looks promising, no rain.

Two Week Look Ahead:

Hoping excavation will be completed and bottom will be reached so Clair/Tetratach can obtain samples. If he can find more trucks it could be completed quicker. Will use a machine in hole to shape up floor and walls to increase safety for testing portion.

Old fiberglass tanks are being stored on West side of site/Phase 2 area. Once Phase 1 is complete and backfilled, Josh will get involved with rebuilding the new tank battery. Need to have third party assess integrity of tanks to determine if they can be used. Old steel tanks were hauled off. When this stage is reached, Dusty will get with SLO with more details.

No new RFI's needed at this time. SLO will review OCD's conditions for approval. Cory hopes to complete this by end of this week, early next.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to establish gameplan for DCP line.

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Working on Phase 1 excavation. SLO and Dusty will continue to communicate with DCP regarding their active pipeline. DCP Midstream field rep Johnny Grenados met Dusty on site last Thursday August 26th to walk the line with GPS software. DCP rep will go up the DCP chain to relay the situation, so we are still in holding pattern with this. Dusty revised kmz showing updated data and circulated to all. He used Google Earth to overlay SLO remediation areas, asked if SLO had a GPS spot for anything and they did not, just Google Earth. While building the revised kmz he noticed the Southern line of the blue box is really close to Enterprise's ROW but it may be too soon to tell and we may not have to dig under it either. Dusty will make sure Cory has revised kmz. Relayed it's a 3" polyline and DCP is uncertain what it is carrying. They may have purchased the line and older pipeline records are dicey/hard to find. Faith has contacted the ROW division for 'as built' plats or something to help but hasn't heard back yet. Jenni asked if there was anywhere else that we could try to find pipeline plats or records and no one could think of anywhere else.
- 2. Test well #2
 - a. Well has been drilled and completed as permanent monitoring well. Samples obtained August 27, 2021 and need to test for TDS.

- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021
 - a. Purple outlined area research is still in progress. Jenni briefly spoke with Cory about these areas and he briefly looked and didn't see anything jump out. He mentioned the quality of the data may be bad for older incidents. These areas will not be considered for the OCD's conditions for approval. Jenni can request the OCD to help confirm why some incidents may not be closed out yet. They may have inspection notes not available to public. Dusty has field photos of plastic liner sticking out of ground we will include with summary.

Assign Follow Up Tasks For New Business:

Test well #2 laboratory results, logs, and construction data will be sent to SLO and OCD. SLO will discuss DCP pipeline issue internally with ROW and Legal. May need help putting pressure on DCP to respond.

Permian will continue to work with Cory/OCD to gain their conditions for approval. OCD will send their conditions for approval to SLO to review, so both agencies concur with field objectives.

Permian is working to summarize all research pertaining to Phase 2 purple outlined areas to 'make our case' that these are not a result of the Kaiser #009 incidents. Older incidents, inconsistent records, and multiple pipelines running through area have added more queries and research to sort through. Jenni is continuing to work on this and wants to be extremely thorough. Josh has been unable to review and weigh in also.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday September 15, 2021

Adjourn: 8:59 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #8 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 09/15/2021

Meeting Time: 8:05 am, Wednesday September 15, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, September 22, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

7 1		7 1 5 7/	
Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetra Tech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

There are no outstanding RFI's.

Test well #2 has been drilled and set as a monitoring well, MW-1. Tetratech obtained samples Friday, August 27, 2021. Groundwater was at 71'. Results for TDS showed 9,590 TDS. Results were sent to the SLO and OCD. Data needs to be discussed by SLO because it shows groundwater contamination.

MW-1 drilling logs and well construction from Atkins Engineering and handwritten drilling logs from Tetra Tech have been sent to Cory/SLO.

Safety: Concerns with DCP line being active and affecting Phase 2 excavation.

Site Observations: Had some rain but not enough to shut down fieldwork.

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Excavation is still underway. Dusty estimates they are at 65% with this stage. Dusty could use more trucks to get it done faster but that has been difficult to find. They are leaving an area intact to maintain current traffic flow pattern. They are still working to get to total depth so Tetra Tech can perform sampling.

Faith asked if there were any issues with people or critters coming on site. Dusty and his guys haven't seen cattle on site but they're seeing signs that something may be getting in although fences and cattle guard are intact. Game cams may be utilized to monitor overnight activity.

Cory/OCD sent a draft condition for approval to SLO, who will review and communicate with Cory. Dusty and Jenni will send Cory the merged work plans and C-141 he requested; it's just been busy.

Weather Delays: 10-day forecast looks promising, no rain. Although Dusty said this last week and it ended up raining a bit a few days.

Two Week Look Ahead:

Dusty still looking for more drivers/trucks to move more dirt. Still hoping excavation will be completed and bottom will be reached so Clair/Tetratach can obtain samples. Once he reaches depth it will slow down a bit as they shape up floor and walls to increase safety for testing portion.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to establish gameplan for DCP line.

Critical Path Considerations: Nothing new, just getting enough trucks and making sure site is secure overnight.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Working on Phase 1 excavation. Still working on making contact with the right DCP personnel that can assist us. Faith spoke with Cory about this and he said generally speaking during a remediation like this the operator of the gas line can pressure it down during excavation but that agreement is between the two operators. Dusty has an idea that they could cut the line at the North and South side and loop it around to connect while during remediation. After they can lay it back in if necessary for ROW. Faith said if this becomes the plan they can help with temporary ROW approval. Dusty will call DCP again. Faith spoke with their ROW division and they're unfamiliar with this situation they think it's typically dealt with between operators.
- 2. Test well #2/MW-1
 - a. Well has been drilled and completed as permanent monitoring well. Samples obtained August 27, 2021.
- 3. Phase 2 workplan, issued with this meeting request and by separate email on 07/23/2021
 - a. Purple outlined area research is still in progress. We'd like to be able to include the new incident that was discovered yesterday. Jenni would like an idea of how many lines are running through this area.
 - b. Late yesterday, September 14th, Dusty received a call from his field guys about a busted line near the Kaiser laydown area across the road. They walked the line and found blue San Mateo flags from one call report. Jenni found San Mateo contact info linked to Matador on the OCD site. Dusty called Matador and found they are affiliated with San Mateo. They sent an inspector out to track line. He's 90% sure it's theirs and will track it back to the nearest meter. Dusty went on site today and can see where the line burst. He estimates it may be 25-30 bbls of water that looks pretty clean and the flags were blue for fresh water. He'll send a pin drop and pictures to SLO. Matador is supposed to send their safety team out for further inspection today; they thought it may be fresh water. Line is located 30-45' from road, near Kaiser laydown area and purple scarred area at a mesquite bush. Dusty said there are lots of lines out there above ground and dipping below ground. He doesn't believe a driver could have trucked over the line to cause it to burst.

Assign Follow Up Tasks For New Business:

Merged SLO and Tetra Tech work plans and C-141 to Cory/OCD.

Permian is still working to summarize all research pertaining to Phase 2 purple outlined areas to 'make our case' that these are not a result of the Kaiser #009 incidents. Faith acknowledged the lack of data that industry maintains on their lines and that SLO has been able to collect is unfortunate. We'd like to evaluate the recent incident with the Matador/San Mateo line.

Dusty will send new incident location and pictures to Ryan and Faith. He'll tell Matador they need to get with SLO about this.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday September 22, 2021

Adjourn: 8:54 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

^{***}Plan may change subject to sample data from soil and water testing.***

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - All areas not noted in key, excavate to 6'.
 - Final samples to the following closure criteria:
 - 1,000 mg/kg TPH.
 - 7,000 mg/kg CI*
 - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days. **
- and len may change subject to sample data from spill and water testing that

Progress Meeting #9 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 09/22/2021

Meeting Time: 8:02 am, Wednesday September 22, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, September 29, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	Cory.Smith@state.nm.us	NM Oil Conservation Division
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetra Tech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business: There are no outstanding RFI's.

Safety: Dusty unavailable.

Site Observations: Dusty unavailable.

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Excavation is still underway. Dusty emailed Faith on 9/21/2021 that he was unable to make the meeting but that they were still hauling dirt off to reach specified depth.

Dusty and Jenni sent Cory/OCD the merged work plans and C-141 he requested. Cory/OCD sent their conditions for approval to all parties including SLO via email on 9/21/2021. Cory has linked up the information to the OCD Online to each relevant incident number. Their timeline is 90 days for completion; however, an extension may be given with good cause as long as PWS can prove they are continuing to work towards the end goal.

Weather Delays: Cooler weather.

Two Week Look Ahead:

Dusty unavailable. Continuing excavation.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to establish gameplan for DCP line.

Critical Path Considerations: Nothing new.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

1. Ryan Man has heard from Kayla Tilman w DCP to get a decision made about the gas line situation for phase 2 workplan. They will work with Dusty.

Assign Follow Up Tasks For New Business:

- 1. We will catch up on Dusty's question (email 2021-09-21) regarding joint conditions of approval in our meeting next week.
- 2. Cory Smith will be on leave and will not attend next week's meeting.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday September 29, 2021

Adjourn: 8:08 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excevate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #10 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 09/29/2021

Meeting Time: 8:11 am, Wednesday September 29, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, October 6, 2021

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/260-8634	Clair.gonzales@tetratech.com	Tetra Tech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

There are no outstanding RFI's. DCP line and busted water line.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Excavation is still underway and they're at the point of stacking dirt on location that needs to be hauled off. There is a new delay with hauling the dirt off due to road construction on 176 at the entrance road to the lease. It's about ½ mile to East and 3 miles to West. The trucks are getting stopped and having to wait up to 15-20 min to pull out. It looks like they are expanding/widening the road. Everything is excavated except 30% is still intact for Phase 1. OCD's conditions for approval list a deadline right before Christmas. Hopefully Phase 1 will be complete, unsure of Phase 2 due to new traffic situation.

Dusty has spoken with Kayla in the DCP ROW Dept and one of their field ops guys. Yesterday they said they'd allow Dufrane to excavate around their line. They'll blow it down and isolate the line. They won't hold Dufrane or Permian responsible if there is damage to the line and they'll repair it if anything happens. Dusty suggested cutting and rerouting the line around the excavation area and they were not sure on this. It's about 120-150'of line. Dusty read their email to everyone. Faith requested getting something more official in writing from them on their letterhead and told Dusty to relay that SLO will need this. Dusty wants the location specifics tied to the agreement also.

Weather Delays:

Two Week Look Ahead:

Continuing excavation of last section, stockpiling dirt, and hauling bad dirt off. Reach 15' and clean hole up for Tetra/Clair to obtain samples.

SLO has authority to also obtain samples. When 15' is reached, they requested to give Ryan a couple of days' notice in case he wants to obtain samples or witness sampling. Tetra/Clair would like a week notice; scheduling is getting crazy for them.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Road construction at 176 has created new logistical challenges with hauling the bad dirt off. Unsure how long they'll be working at this location.

Critical Path Considerations: Nothing new.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

1. Ryan Man has heard from Kayla Tilman w DCP to get a decision made about the gas line situation for phase 2 workplan. They will work with Dusty.

Dusty will work on getting DCP agreement on their letterhead about excavating around their line. OCD and SLO won't issue joint conditions for approval; they will remain separate but SLO is open to discussion on specifics if situation arises. They have different closure standards but there should not be too much difference. Sampling results are key to next steps. SLO hopes that so much material has been removed that the results will be acceptable. Do not backfill until samples are reviewed by all. SLO will try to review results quickly so there is not a big hole sitting in the field for an extended period of time.

2. Jenni is working on summary and exhibits for [Matador spill on 9/14/21]. They called Ryan and said they thought it was less than 5 bbls but have not followed back up when Ryan asked them for details. Ryan will reach back out to them. Dusty said the line has been fixed but it does not appear they have been out to remediate anything. Jenni did not find anything on the OCD site under their entity names or ULSTR yet. She can email Emily Hernandez to see if they received notification.

Assign Follow Up Tasks For New Business:

Dusty will obtain something from DCP relieving liability while working around their line.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday October 6, 2021

Adjourn: 8:28 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Sit

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #11 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 10/06/2021

Meeting Time: 8:05 am, Wednesday October 6, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, October 13, 2021

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

	,	,	1 8 37	
Faith Crosby	505/827-5849	fcrosb	y@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.si	mith@state.nm.us	NM Oil Conservation Division
Dusty McInturff	617/584-2889	dmcin	turff@dufrane.com	Dufrane Construction
Jenni Usher	512/820-8772	jenni@	permianws.com	Permian Water Solutions
_				

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business: There are no outstanding RFI's.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty said they are in 'dirt hauling mode' now. There was heavy rain last Thursday-Friday with a shower over the weekend that shut the site down. They started hauling again yesterday since the site has dried out. Hauling is the current focus, but they'll get back to excavating soon hopefully. The road construction at 176 is still hit or miss with delaying truck traffic. It just depends on if you catch the through traffic when pulling out on to the road. Otherwise, you will wait a bit. The same section of road is still under construction as was last week.

The DCP agreement has not been formalized yet. Dusty sent Kayla with DCP an email request last week for something on their letterhead with more site details listed but he hasn't received anything back or heard anything back yet. He will reach back out to them by the end of this week. Faith asked how long the process of pressuring the line down may take. Dusty estimates 2-3 weeks depending on the depth of line and amount to excavate around it. Plus, they'll need to get Tetra Tech down in the hole and complete testing. Cory suggested to expedite the lab results and hopefully get results back in 1-2 days.

Weather Delays: Heavy rain on Thursday September 30 – Friday October 1. Another small shower over the weekend kept site from drying out until yesterday, Tuesday October 5.

Two Week Look Ahead:

Continue hauling dirt off and then they will finish the last bit of excavation work and clean the hole up for safe sampling by Tetra Tech.

Cory asked for more details on excavation – how many cubic yards, how many trucks, what type of trucks, time to landfill and back? Dusty said they have about 10-11,000 cubic yards left, and they consistently have six (6) belly dump trucks with 18 cubic yards capacity. It takes about 1 hour and 20 minutes to reach the landfill. Each truck takes about six (6) loads a day. It is estimated that it will take about 15 days to haul off the remaining 10,000 cubic yards, assuming there are no delays due to things out of our control (weather, labor).

Cory mentioned ways to expedite the process – more trucks, expedited lab results, hauling clean dirt in when trucks come back. Dusty acknowledged all of this and mentioned the trucks and labor sourcing has been an issue since the beginning of this project and is an issue in general in the oilfield as business has picked back up for everyone. It's been tough to secure since it must be contracted out.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate

sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Road construction at 176 is still ongoing at this location causing slight trucking delays.

Critical Path Considerations: Nothing new.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Cory and Faith would like current site photos of the status of excavation with date and time-stamps. Dusty will obtain and email these to everyone.
- 2. Phase 2 workplan, issued by separate email on 07/23/2021
 - a. Cory will respond to Jenni's email that was sent to Emily Hernandez asking about the process and timeline for reporting spills to the OCD and incident numbers being assigned that are searchable to the public. The Matador/San Mateo flowline burst discovered on September 14 still has not shown up online. Faith is going to ask Ryan if he's received more information from them. We're uncertain of the amount and material that was released. Dusty will resend photos to Cory and Faith he took in the field. Cory said incident numbers are generated instantly online when an operator submits the notification of release. These are required to be called in within 24 hours if the amount exceeds 50 bbls liquid/500 mcf, reaches a waterway, causes a fire or injury. They must be submitted in writing within 14 days if the amount is 5 bbls liquid/50 mcf. It is possible paper filings mailed to field offices may take longer to be entered into the system, especially with teleworking from Covid. Cory said ultimately it is a selfreporting agency and they can't police everything in the field so if there's talk of a release that is older that is not online it is likely that it was not reported to them. Jenni mentioned not wanting to tattle-tale on other operators; the recent release just happened right near an area we are being asked to look into for the Phase 2 remediation plan. Cory said that if it's on our lease, the OCD and SLO could hold us responsible though. He'd like to see pictures.

Assign Follow Up Tasks For New Business:

Dusty will follow up with DCP to obtain something from them relieving liability while working around their line. He will also send pictures of the Matador/San Mateo burst line.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday October 13, 2021

Adjourn: 8:32 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- · - P

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 7,000 mg/kg CI*
 - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #12 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 10/13/2021

Meeting Time: 8:02 am, Wednesday October 13, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, October 20, 2021

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Clair Gonzalez	432/260-8634	Clair.gonzales@tetratech.com	Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

There are no outstanding RFI's. No old business.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty said they're continuing to haul dirt off and Monday they started excavating the remaining portion of Phase 1.

Dusty has not heard from DCP at all regarding the formal letter from them relieving liability of damage to their line during excavation around it. He's called and they have not returned his calls. He'll keep trying to get something from them. Ryan has not heard from them either. Faith said as long as we're in accord and we have record that Dusty has been trying to reach out, then our records will show that DCP has not done what has been requested by Dufrane, to <u>put in writing</u> DCP's agreement to; 1. allow excavation around their line, and 2. accept the responsibility for any damages.

Weather Delays: No rain delays. It's getting chillier outside.

Two Week Look Ahead:

Continue hauling dirt off and then they will finish the last bit of excavation work and clean the hole up for safe sampling by Tetra Tech. They've scheduled Tetra Tech to begin testing on Monday, October 25. Clair said they're aiming for five (5) days of testing with two people on location. The samples will not be expedited at the lab. They'll turn in samples at the end of each day to avoid overwhelming the lab. It should be a standard 5-day turnaround.

Cory asked for more details on excavation – how many samples, how are they marking, and reminded them to email 2-day notification to OCD and SLO. Clair said 200 samples and for every 400 square feet they'll collect a 5 point composite sample. She noted they will pin flag the corners of the sample location versus the center, per Cory's suggestion.

Cory asked for the status of field photos. Dusty will take them today while he's on location and email to OCD and SLO.

Dusty confirmed that the truck situation is still the same; they're doing what they can with what they can find. The road construction has opened up both lanes. Equipment is staged on location so work is not completed, but it is not active at the moment in front of our lease road egress.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations: Nothing with Phase 1. Jenni is still working on the Phase 2 issues.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Cory, Faith and Ryan would still like current site photos of the status of excavation with date and timestamps. Dusty will obtain and email these to everyone.
 - b. Continue excavation so sampling can take place.

Assign Follow Up Tasks For New Business:

Dusty will continue to follow up with DCP to obtain something from them relieving liability while working around their line. He will also send current photos of the status of Phase 1 excavation to OCD and SLO.

Jenni needs to circulate last week's meeting #11 minutes for 48 hr review to all.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday October 20, 2021

Adjourn: 8:16 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

- 51

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excevate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #13 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 10/20/2021

Meeting Time: 8:09 am, Wednesday October 20, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, October 27, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

There are no outstanding RFI's. The 'Purple Area Phase 2 Summary' is still outstanding from Permian. Jenni should have it wrapped up on her end to send to Josh for review within the next week.

A letter from DCP relieving Permian and Dufrane from damage liability has not been completed yet. They sent a letter that was lacking detail. Dusty emailed Kayla/DCP yesterday asking for more detail and if they'd consider letting Dufrane reroute the 120' of pipe during excavation. He mentioned they have certified poly-welders that can put it back together. He spoke with Johnny, their field rep, about this and they both agreed it would be a good idea. This would avoid a line hanging at 5-8' since excavation depth is 15'. Cory/OCD suggested excavating, testing, and backfilling sections so the entire

line isn't suspended and using sandbags or props to hold the line up. Dusty acknowledged; it would just add more time versus cutting the line and performing mass excavation and testing.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane is still excavating and hauling dirt off. They have contacted Centennial regarding their adjacent lease and the Southern wall of the 'pit'. They're working on benching and cleaning up the pit for testing.

Weather Delays: None.

Two Week Look Ahead:

Dufrane hopes to finish up the detail work in the pit this week so the Tetra Tech technicians can start sampling. They are scheduled to start Monday, October 25, 2021 and it should take 5 days. Dusty emailed SLO and OCD this and will email them if anything changes. Dufrane will continue to haul old dirt off (not excavate) and stockpile clean dirt during testing. Hopefully soil samples will be clean, and they can backfill. Dirt must continue to be hauled off to accommodate space before more excavation can be done. We'll need Josh on a call soon to discuss the options for setting up the new tanks after Phase 1 completion, and see if that is still his plan. OCD doesn't have issue with this, just that Permian must have all phases completed before injection authority can be reinstated.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations: Nothing with Phase 1. Jenni is still working on the Phase 2 issues, but Dusty has concerns with the areas across the road. There are lots of lines running through the purple areas. He isn't sure where they go; he's followed some 2 miles in the field. The Goodnight line is underground. He expects delays with communication trying to figure this out within the current time frame. Faith/SLO said those areas may not be taken into consideration with Phase 2, but rather Phase 3. They will discuss internally. Cory/OCD said the purple areas aren't in the ROW for the well pad, which is their main concern.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Dusty has conveyed to Faith and Ryan concern with the Southern wall of the Phase 1 pit. It is very close to the adjacent Centennial lease and he is concerned with having enough room to safely benchmark and excavate. SLO provided Centennial contacts and Dusty spoke with 5-6 people. They came out and flagged their assets this morning, October 20, 2021. There's 20' to their lease and 44-45' to their wellhead. Centennial wanted to view our test results. Dusty updated his one call and had to manually include Centennial as they do not show up.
 - b. Cory and Dusty discussed soil composition and excavation techniques. It was suggested that an excavator can take samples if getting in the pit is not safe. Details of the Centennial well, 30-025-20461, Wilson Deep Unit #1 were discussed relating to their old reserve pit and where it may be located, if it is near where we are sampling or if it could have been located on the Kaiser lease. The location of 40' is getting close to where their reserve pit may have been located and their lease is very small so there aren't many places for the reserve pit to have been located. Dusty hasn't seen any plastic liner peeking up on location, although the well was drilled in 1963 and there may not have been a plastic liner. Cory said it was kind of dangerous to dig so close into their site since it may dig into their contamination. Our tank battery could have been on top of their reserve pit. When Tetra Tech last sampled, the old tank battery area had the worst results. Cory suggested sampling in two halves – top half 0-8' and then lower half because if they've leaked into our site this may be evidenced in the deeper portion. Sampling all at once may not reveal this. He also said that most spills are from reserve pits or tanks, not the wellbore. Jenni mentioned her research had revealed a few spills on the Centennial lease that were old and had no information linked up; they are also not linked up to the well details on the OCD site. Dusty asked if we'd be on the hook for remediating if it was from Centennial's lease and that there's been so many operators in this area it's hard to know who was where first. Example of the Kaiser site being on top of the existing DCP line. Faith said we'd have to see what the samples show and to plan to excavate onto the Centennial lease down to 15' and bench as required.

Assign Follow Up Tasks For New Business:

Dusty will continue to follow up with DCP to obtain something more detailed from DCP relieving liability for damages to their line during excavation. He'll keep SLO in the loop.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday October 27, 2021

Adjourn: 8:55 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg C1*
 - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #14 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 10/27/2021

Meeting Time: 8:03 am, Wednesday October 27, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, November 3, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions
Jenni Usher Clair Gonzales	512/820-8772 432/687-8123	jenni@permianws.com Clair.gonzales@tetratech.com	Permian Water Solutions Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

A letter from DCP relieving Permian and Dufrane from damage/financial liability has not been completed yet. Dusty has not heard back from DCP after requesting this. He will keep Faith/SLO in the loop if SLO needs to step in and contact DCP. There is still some time before this is critical.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane finished up the pit and sampling started on Monday. They're still hauling dirt off. They were able to dig and bench at the South wall adjacent to the Centennial lease. They did dig 15' onto the Centennial lease. They cannot dig much further in due to the location of the wellhead. The South wall looks problematic, but they hit rock at the bottom of excavation. Hopefully sampling will be completed this week and we'll all await results.

Weather Delays: None.

Two Week Look Ahead:

Finish sampling and receive lab results by end of next week. Continue to haul the dirt off. Pending lab results, the next step would be to backfill the pit and subgrade to prepare for new containment and battery. The plan is still the same, just had to remove more dirt than anticipated initially. Backfilling would begin at the North side of the pit. There are operators interested in sending their water when facility is complete. The OCD conditions for approval have a deadline just before Christmas. This is obtainable if everything goes perfectly. Cory Smith/OCD was on site Monday and Dusty walked him around. He was not on the call today, but Dusty said he seemed content with the progress and that Permian is working towards completion. As long as we're still making progress, the OCD will work with Permian on the deadline.

The plan for sampling was prepared by the Tetra Tech field tech. He spent the first day on location gridding and mapping the site. It appears he is starting at the North side and working South, sampling the side wall first, then the floor.

The South side of the pit hit rock. Dufrane would have to blast the rock or hammer hoe the rock to break it up if further excavation is necessary. Faith/SLO said they wouldn't require Dufrane to blast or hammer the rock. Dusty spoke with Cory while he was on site about the rock permeability and possibility of having to excavate the rock. It appears that the rock would be an acceptable stopping point preferably. Cory/OCD noted that the remediation in the rocks/etc would be dependent on the delineation data that would be required. Lab results will be a key component.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations: Nothing at this time.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Wait for lab results to determine next steps.

Assign Follow Up Tasks For New Business:

Dusty will continue to follow up with DCP to obtain something more detailed from DCP relieving liability for damages to their line during excavation. He'll keep SLO in the loop.

Jenni has sent the purple area summary for review internally. Hopefully it will be ready to submit to SLO next week.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday November 3, 2021

Adjourn: 8:26 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ Si

Site outline

- - -

Phase 1 Remediation Area

 \Rightarrow

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #15 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 11/03/2021

Meeting Time: 8:03 am, Wednesday November 3, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, November 10, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Josh Brooks	617/584-2889	josh@permianws.com	Permian Water Solutions
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

A letter from DCP relieving Permian and Dufrane from damage/financial liability has been received. They did not address cutting the line and rerouting during excavation. A field rep, Chase Guy, and field supervisor, Claudia Dabney, were listed on the letter. Dusty will reach out to them about cutting the line. A DCP field rep will be on location during excavation; it may be determined in the field that cutting the line is acceptable once they see what is going on.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Tetra Tech completed field sampling Thursday afternoon and completed notes and mapping on Friday. So far there have not been any lab results received. Tetra Tech does not anticipate needing to go back on site this week. They took 167 samples. They didn't field screen all the samples, but they did spot-check them. A couple of spots looked questionable along the South side. The lab called Clair/Tetra Tech to let them know they were backlogged and would not meet the standard turnaround time. She asked for preliminary samples to be sent as they have them.

Dufrane continued to haul off bad dirt and monitor the sampling process. He will continue to haul off bad dirt and bring clean dirt in while awaiting lab results.

Cory/OCD joined call and explained his statement from the #14 minutes that remediation in the rocks/etc would be dependent on the delineation data that would be required. He said that liquid in soil versus rock moves differently. OCD requires operators to delineate and see what's in the rock. Sometimes they let them leave it and sometimes they do not. So lab results are key. Cory thought most samples looked like they were pretty clean except the SW corner.

Faith/SLO asked how the OCD handles situations with remediation when it's right against another lease. Cory/OCD said he'd need to check but based on his field observations it was not likely Centennial's. Aerials show the Centennial site has been set up the same way for a long time. The wellhead is close but it's not likely the contamination source. More delineation data would be needed, sampling in high-low pattern to show contamination pattern to try to prove contamination source.

Weather Delays: None.

Two Week Look Ahead:

Hopefully soil samples are clean, and they can start backfilling with clean dirt and hauling off bad dirt. The plan is that if samples are clean, they'll backfill from the North end to the South end. Truck traffic will continue in a large circle hauling out bad dirt, hauling in clean dirt.

Clair will circulate results when received. She'll include a kmz file with a field map with slopes and everything needed to understand the sample locations.

Cory/OCD said they reached out to Matador about the pipeline burst that we let them know about last month. They said it was 5 bbls, so not required to report. OCD will keep on it; they had a large release in Carlsbad they've been working on. Dusty is glad Cory came out to the field to lay eyes on everything out there.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations: Just need to figure out the South side and working around the DCP line soon.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Wait for lab results to determine next steps. Hopefully we'll have some by the end of this week, early next week.

Assign Follow Up Tasks For New Business:

Dusty will continue to follow up with DCP to see if they'll allow Dufrane to cut the line during excavation.

Jenni has sent the purple area summary for review internally. She asked Clair/Tetra Tech for assistance. Hopefully it will be ready to submit to SLO by the end of this week.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday November 10, 2021

Adjourn: 8:34 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Sit

Site outline

_ - - -

Phase 1 Remediation Area

*

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #16 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 11/10/2021

Meeting Time: 8:04 am, Wednesday November 10, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, November 17, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
T 'TT 1			
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions
Jenni Usher Clair Gonzales	512/820-87/2 432/687-8123	<u>Clair.gonzales@tetratech.com</u>	Permian Water Solutions Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

A letter from DCP relieving Permian and Dufrane from damage/financial liability has been received. They did not address cutting the line and rerouting during excavation. Dusty spoke with a new DCP contact Monday that told him that if Dufrane/PWS wants to cut and reroute the line then they would be financially responsible for cutting, storing, and reinstalling the line for service. He is going to send Dusty a cost estimate for this. We're about a month out from this phase of the fieldwork, depending on the test results and backfilling progress. The current understanding is that the financial

responsibility is negated if Dufrane damages line during excavation, but not to remove it up front. Dusty is dealing with a whole new set of people within DCP now.

Update on Matador/San Mateo line burst from September: Dusty said it looked like someone had been out to scrape the surface in a 50' x 50' area around the incident location. Unsure where the bad dirt went (possibly our bad dirt pile - haha). Cory/OCD asked if they cleaned up the lines out there and Dusty said it looked like there were still pieces of cut up pipe out there. Cory/OCD had asked them to file a C-141 and he'll check in with his coworker Chad for progress.

Clair/Tetra Tech received preliminary data from the lab this morning. They still need to undergo QAQC procedures, but hopefully results will come in this afternoon. She did a quick run through of the 200 pg summary and thinks the results look like we'll be OK. Some TPH levels were a bit high – she needs to look further into these locations. Chlorides appeared below 7,000, a couple may have been at 9,000, she needs to verify this. A couple of spots had nominal BTEX but were still under the OCD threshold. Clair emailed her kmz sampling map to everyone. She'll update this map and circulate a final when all results are in.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty said more dirt was hauled off and clean dirt was brought in. Basic site cleanup. He had to pull a couple of guys off the Kaiser to work other jobs.

Weather Delays: No cause for delay. Foggy and cooler temps in the AM.

Two Week Look Ahead:

Waiting on samples and analysis. If all is good, backfill starting at North end working South. Continue to haul dirt. Personnel can be pulled back in when needed to backfill.

Clair/Tetra Tech's goal is to receive all the data from the lab and create analysis table with detailed sampling map to circulate for everyone's review.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: The road construction has started up again; it is causing slight delays with hauling dirt due to one lane being open.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Wait for lab results to determine next steps. Hopefully we'll have them this week.

Assign Follow Up Tasks For New Business:

Jenni is finalizing the purple area summary and will send to Faith and Ryan within 24 hours.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday November 17, 2021

Adjourn: 8:21 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

- 51

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****Flan may change subject to sample data from spill and water testing ****

Progress Meeting #17 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 11/17/2021

Meeting Time: 8:02 am, Wednesday November 17, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, December 1, 2021

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

A letter from DCP relieving Permian and Dufrane from damage/financial liability has been received and forwarded to the SLO. Dusty has not heard back from Steven Wynn since they spoke last week about the cost estimate for cutting and rerouting the line during excavation. Faith/SLO said they may have to issue a letter to DCP that they would be responsible for contamination under the line because it is in the area that SLO wants PWS to dig.

Cory/OCD checked with his coworker Chad on the status of the Matador line burst. He said Matador is awaiting sample results for closure. They were asked to submit a release notification to get something in the OCD system. Faith/SLO asked for the OCD to share the sample results upon receipt.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Similar to last week, Dusty said more dirt was hauled off and clean dirt was brought in. They've been on autopilot with this while the soil sample results come in.

Soil sample results discussion – Ryan/SLO said most results were below the 7,000 mg/kg chloride and 1,000 mg/kg TPH threshold. There was some contamination in the SW corner they'd like to see removed. SLO is unsure if it's a safety issue to dig out 10' safely around DS-2, DS-3 and SW-6, NE side and SW side. SLO also wants removal on the way out at SW-01 on the NE side by the ramp. They asked how clearly the DCP line was marked in the field. Dusty said he's asked them to come out to mark it with wooden stakes instead of flags so it's easier to see but they have not done this yet. Ryan will try to get a hold of Kayla or Claudia with DCP to see if SLO can expedite getting the line marked because they'd like to see 10' excavation and backfilling started this week. They want 10' removed entirely, not sampled.

Cory/OCD comments on soil samples – none of the sidewall (SW) samples meet OCD threshold because they're over 6,000 mg/kg in the top 4'. He'd like a background area sample for comparison to see how salty the soils are in that part of New Mexico. Clair can try to grab a sample upgradient. He's OK with backfilling boreholes to 6'. For the SW corner, he'd recommend digging 4' out and it should be safer for OSHA and benching is not required. The top 4' are an issue for him since they exceed 6,000 mg/kg chlorides. He's wondering if 10' off the sidewalls with delineation holes will give us a a better idea. SW-5 failed, but since it's so close to the other operator's lease he doesn't want to chase that down. SW-4 and 5 were over. SW-17, 18, and 19 results were a little lower. He suspects we're at the tail end of contamination due to the depths.

Clair/Tetra said the last samples of this area were from 2019. SW-4 and SW-5 samples were clean at that time. She'll review the old data in detail and come up with a gameplan for everyone's review to address the top 4'.

Cory/OCD thought it made more sense to dig down to 4' and sample versus digging out 10'. He said it may end up going to 10', but the blue area benched and BH-13 and 14, SW-20 showing good numbers so the impact may be from something else. He suggested hydro excavating the DCP line so it is easier to see in the field since PWS needs more excavation towards the direction of the line.

Clair/Tetra confirmed next steps – issues are with SW-1, 3, 6, 7, 8, 9, 10, and 11. Moving out 10' laterally to 4' deep to obtain more samples, possibly using a backhoe to dig a trench and collect test holes may be best option. Tetra uses two different field screening methods to test in field. If field screen results are unfavorable, lab results will be necessary for official results. Dusty will try to push DCP to mark their line. Cory and Faith are good with backfilling the orange area to 6'. The use of GCL liner will not be required.

Weather Delays: No cause for delay.

Two Week Look Ahead:

Begin hauling good dirt into excavation area in preparation for backfilling while avoiding western edge of pit. Continue hauling bad dirt off location.

Dusty will give the field guys Wednesday-Friday off for Thanksgiving Holiday next week. We will all take off from next week's call for the holiday as well. Correspondence regarding the DCP line and further sampling will still take place between all parties.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Further sampling needed laterally out from SW-1, 3, 6, 7, 8, 9, 10, and 11 at 4' deep. Background Chloride sample needed for OCD. Clair/Tetra to coordinate.

Assign Follow Up Tasks For New Business:

Try to get DCP out on location to mark their line where it runs through PWS's facility.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday December 1, 2021

Adjourn: 8:39 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #18 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 12/1/2021

Meeting Time: 8:02 am, Wednesday December 1, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, December 8, 2021

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

DCP agreed to flare the sour gas off their line, isolate it, and remove their line. They will not hold Dufrane or PWS financially responsible for any damages. Dusty will keep everyone updated on further communication with DCP and status of the line removal.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Similar to last week, Dusty said more dirt was hauled off and clean dirt was brought in as they back fill.

Tetra Tech was in the field doing field screenings in the areas of concern. They kept hitting refusal at about 1'-2' in all locations they needed to sample so they had to stop and reassess. New plan is to excavate out 10'W to 15'W x 4' deep and various lengths per sections of the pit wall.

Dusty said they are removing spoils from the north side pit side stockpile to access the areas to further excavate and can commence on the east side. The DCP line needs to be removed to complete excavation on the west side.

Weather Delays: No cause for delay.

Two Week Look Ahead:

Continue hauling bad dirt off location and bringing in clean dirt to back fill. Work on digging the horizontal lines out for resampling.

Plan for DCP to come out and remove their line so the west side can be accessed.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Further sampling needed laterally out from SW-1, 3, 6, 7, 8, 9, 10, and 11 at 4' deep. Background sample needed for OCD. Clair/Tetra to coordinate.

Assign Follow Up Tasks For New Business:

Try to get DCP out on location to mark their line where it runs through PWS's facility.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday December 8, 2021

Adjourn: 8:18 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Si

Site outline

Phase 1 Remediation Area

***Plan may change subject to sample data from soil and water testing. ***

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
 - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #19 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 12/15/2021

Meeting Time: 8:02 am, Wednesday December 15, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, December 29, 2021

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
575/392-8736	rmann@slo.state.nm.us	NM State Land Office
432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
	575/392-8736 432/687-8123	

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty and Cory were unable to join the call today. Cory sent an email to Dusty late last night requesting a formal extension request and date for completion of certain field requirements since it does not appear the December 22, 2021 deadline for the OCD Conditions for Approval will be met. We will discuss further when both are available.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Since Dusty was unable to join the call today there is nothing to speak of for prior week performance.

Clair was able to update that they are working to get the horizontal lines dug out and once complete they will resample.

Weather Delays: No cause for delay.

Two Week Look Ahead:

Dusty emailed that they'll continue to haul off bad dirt and back fill with clean dirt as well as excavation. His email stated that they are looking to complete additional excavation on the north and east side tomorrow, 12/15/2021.

DCP said they would be out to remove their line this week, but they had not made it on site as of 12/14/2021. The west side excavation will commence once DCP has removed their line.

Next week's meeting will be canceled for the Christmas holiday, but if anyone needs anything they can email/call Faith and Ryan.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Merchant Livestock has questioned the source of the caliche that Dufrane is bringing in. Ryan and Faith said that they do not have standing in this project and we do not need to give them any information if they reach out to us. They are the lessee, not landowner.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Further sampling needed laterally out from SW-1, 3, 6, 7, 8, 9, 10, and 11 at 4' deep. Background sample needed for OCD. Clair/Tetra to coordinate. Soil to be removed.

Assign Follow Up Tasks For New Business:

Dusty and Permian need to formally request an extension to the OCD's Conditions for Approval by December 20, 2021 and show good cause for why an extension should be granted.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday December 29, 2021

Adjourn: 8:12 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site

Site outline

Ph

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #20 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 12/29/2021

Meeting Time: 8:01 am, Wednesday December 29, 2021

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, January 5, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Josh Brooks	617/584-2889	josh@permianws.com	Permian Water Solutions LLC

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty and Cory were able to join the call today. Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory has been out of office and will respond after he reviews the request.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

DCP removed their pipeline and excavation is complete along the North, East, and West sides of the pit. Approximately 75% of the initial phase 1 area has been backfilled to the first bench height of 7-8'. The North, East, and West walls aren't completely backfilled though since some sampling is still taking place and they don't want any potentially spoiled dirt to slough into the clean backfill. They're still hauling bad dirt out and bringing clean dirt in to backfill. The North side is completely clear, but the West side still has approximately 70% of the bad dirt to remove from location.

Tetra Tech was on location last Thursday the 23rd to obtain soil samples. Lab results are expected at the end of this week or early next week. The field tech, Zeke, indicated that the North and East sides looked OK, but the West side may require further excavation. Results will determine the next steps.

Weather Delays: No cause for delay, just windy.

Two Week Look Ahead:

Dusty emailed that they'll continue to haul off bad dirt and back fill with clean dirt. Josh said they're trying to stay methodical with the process in the field as the scope of work continues to increase.

DCP indicated they'd like to put their line back in the same location and there has been no determination of when this may need to take place. We'll wait for lab results before reaching out to DCP on this.

Cory said that additional conditions of approval are to be expected. The timing of removing spoiled soils from location isn't efficient and 70% left is too much. He said they need to utilize more equipment and more resources to move this forward quicker. Faith also agreed that they'd like to see this done quicker and asked if it was possible to dedicate more resources.

Josh and Dusty think the equipment on site is sufficient, but the trucking has been the biggest hold up. Right now three trucks are down awaiting parts to be shipped so repairs can be made. Supply chain issues are delaying the parts from arriving. Original scope of work was 14,000 cu yds and is now

at 24,000 cu yds, and further excavation may still be needed along the West side of phase 1 moving towards the phase 2 area.

Cory responded that initial planning with delineation efforts could have helped anticipate if/where further sampling may have been necessary. He said based on the lease history it could have been anticipated that the scope of work would likely increase.

Faith agreed we all want this done quicker. There is still another location, the Dorstate, that will be the next large remediation project. Faith will be working from Michigan for the unforeseeable future and Ryan may need to take over some meetings.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

More trucks are needed to continue to haul the bad dirt off location quicker. This has been a constant struggle.

OCD conditions for approval deadline of December 22, 2021 was not met.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Soil sample results needed to determine if further excavation is necessary, or if backfilling can commence to close out phase 1.

Assign Follow Up Tasks For New Business:

Cory/OCD to review Permian's request for an extension to the OCD's Conditions for Approval and provide response.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday January 5, 2022

Adjourn: 8:17 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - o SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.
- **Plan may be subject to change depending on data from soil and water samples.**
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Si

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #21 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 1/5/2022

Meeting Time: 8:08 am, Wednesday January 5, 2022

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, January 12, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory has not responded yet.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty said they continued to backfill the pit except along the Western edge of the pit. They left a section to the North open for truck traffic flow. He estimates 90-95% has been backfilled to 7-8'. 30-35% more of the spoiled dirt along the Western edge of the pit has been removed.

Soil sample results were received from the lab last night. The North and East sidewalls were below 600 mg/kg chlorides and the OCD regs. The West sidewalls were not. The top 4' is still pretty hot. They took 5-point composites per section so they can't tell the contaminated depths between 0-4', probably all 4'. It's more horizontal delineation moving out West, so expanding further out to the West. It may merge into phase 2.

The wellhead is about 15-17' away on the West side. Dusty asked how close they should get to it? None of us are sure. Clair said she thought 5-10' because it's a safety issue. We need Ryan and Cory to weigh in on this.

Weather Delays: It's getting colder, but the forecast shows sunny skies until this weekend. Then partly cloudy.

Two Week Look Ahead:

Dusty said that they'll continue to haul off bad dirt and backfill with clean dirt. Since the North and East results were acceptable, Faith said Dusty can continue to backfill those and maybe up to the first bench on the West side. Dusty said there are now 3 benches along the West side.

Clair will summarize findings for Ryan and Cory to review to determine next steps.

Hopefully we can come up with a practical plan between all of us on how to continue with phase 1 and into phase 2. We expected the West side to be troublesome due to the location of the flow lines and load lines.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate

sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

OCD conditions for approval deadline of December 22, 2021 was not met.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Soil sample results from Western wall need to be analyzed by Ryan and Cory.

Assign Follow Up Tasks For New Business:

Cory/OCD to review Permian's request for an extension to the OCD's Conditions for Approval and provide response.

Clair to summarize soil sample lab results for Ryan and Cory to review and assist with determining next steps along Western side of phase 1 pit.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday January 12, 2022

Adjourn: 8:21 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - All areas not noted in key, excavate to 6'.
 - Final samples to the following closure criteria:
 - 1,000 mg/kg TPH.
 - 7,000 mg/kg CI* - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days. **
- and len may change subject to sample data from spill and water testing that

Progress Meeting #22 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 1/12/2022

Meeting Time: 8:00 am, Wednesday January 12, 2022

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, January 19, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. PWS has not received a response from Cory/OCD yet.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty said they continued to backfill the pit except just along the Western edge of the pit. He estimates 90-95% has been backfilled to top bench at 8'. There is approximately 10% left of the bad dirt remaining along the Western side of the pit to haul out. Hopefully it will be removed completely by early/mid next week.

There has been no further excavation at this time until Ryan and Cory can coordinate on the soil sample results taken 12/23/2021 and the remaining hot areas. Proximity to the wellhead and safety excavating around it is the concern.

Weather Delays: There was a little bit of moisture yesterday, not much. It's windy and partly cloudy. 10-day forecast looks clear.

Two Week Look Ahead:

The rest of the spoiled dirt will be hauled off. They will continue to backfill the pit all the way around except for the Southwestern edge with hot sidewalls. That will remain at current backfill level until further excavation plans are stated.

Dusty said they have a couple of their trucks back on the road and were able to outsource a couple more. He reiterated that there is just a lack of CDL drivers in general. He can spend a couple of days just calling around looking for trucks, but it's mainly the drivers that are lacking. Conversation on the influx of Cuban truckers who obtained their CDL from Florida and headed West looking for work. Their experience is not up to par. There is also no young generation coming up to drive trucks and the older generation is retiring, so there are less drivers available in general. Less places for truckers to stop and rest when they hit their hours; Covid closed some rest stops down; now hiring CDL signs up around the Permian.

The three sidewall locations that exceeded the thresholds need to be reviewed by Ryan and Cory so they can determine how PWS can move forward in the field. It was mentioned that this area of Phase 1 may blend into Phase 2. This area is where the old unload station was located and various flow lines that ran to the wellhead. It's likely that historically waste haulers spilled in this area as they unloaded.

Dusty measured the wellhead is 30' away now. He thinks a 20' radius around the wellbore would be good since it's an old wellbore and he doesn't want to damage it. Ryan mentioned seeing if the OCD could defer the full cleanup around the wellhead until the well has been plugged, as part of that surface cleanup process. Then they can work around it for now.

Faith asked about the DCP line. If the line was still in the ground, it would be exposed. Dusty said the line was about 2.5' deep and they've excavated about 4' under it. It's in the current excavation area.

Dusty mentioned him and PWS want this cleaned up and the intent is to bring it back to active injection. They are cleaning up years of pollution from other operators unfortunately and it's taking longer than the OCD conditions for approval timeline or a normal remediation.

Discussion on whether starting Phase 2 is OK. Ryan is OK with it if it keeps them moving forward in the field. If Phase 1 Western wall blends into right into Phase 2, Josh will need to get involved to discuss rebuilding the tank battery. The last KMZ #7 layout didn't look like the new tank battery location would affect Phase 2 excavation, but it will reroute traffic flow. We're unsure if the OCD will allow PWS to rebuild the battery prior to Phase 2 completion. We'll also need to discuss how the remaining hot areas of Phase 1 are to be dealt with. Perhaps the wellhead ends up being an area that is left intact while excavation takes place all around it.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

OCD conditions for approval deadline of December 22, 2021 was not met.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Soil sample results from Western wall need to be analyzed by Ryan and Cory.

Assign Follow Up Tasks For New Business:

Cory/OCD to review Permian's request for an extension to the OCD's Conditions for Approval and provide response.

Soil sample results from Western wall need to be reviewed by Ryan and Cory to determine the next steps in the field. Safety radius around wellhead needs to be determined.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday January 19, 2022

Adjourn: 8:30 am

- *Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Sit

Site outline

- - -

Phase 1 Remediation Area

*

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #23 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 1/19/2022

Meeting Time: 8:04 am, Wednesday January 19, 2022

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, February 2, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

(- ······)			
Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory asked PWS for additional information that is due 1/21/2022. Cory wants dates for removal of Phase 1 dirt, when Phase 2 will begin and when it will finish.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty said there is about 4,000 yds of bad dirt piled up along the Western side left and a pile of 2,000-3,000 yards near the containment 50' North of the wellhead. They need to remove the scrap pipe that was dug up. They're closing the NE corner where the old ramp was up to 7'. Hopefully that will be closed up by the end of the week. A new ramp exists in the South-Southwest side of the pit. It's been built with clean dirt. New dirt is still being hauled in for backfill.

Weather Delays: Cold, but mostly sunny during the day. Pretty normal weather for this time of year.

Two Week Look Ahead:

Discussion on continuing excavation out along Southwest where hot spots were identified. 10' safety radius around wellhead determined. Cory/OCD would still want vertical delineation to take place to confirm extent of contamination. Previous soil samples did not get this close to the wellhead. To obtain these samples, this may require use of hand auger. Current samples along Western side were not able to get past 1-2' with hand auger, so backhoe may need to dig up top pad at surface. If Clair/Tetra Tech can't 'direct push' she can not hand auger.

Dusty said we're right at the edge of the current Phase 1. They need to get site cleaned up so there's more room on location – move tanks, remove all impacted soil and finish backfilling before starting Phase 2. There's also a small caliche pit that needs to be dug down and a polyline running from the old battery to be removed. Dusty is going on PTO for a week. He'll be expecting Dufrane to continue this while he is gone. Dusty and Clair will figure out sampling plan and get with Ryan.

Cory/OCD asked where the impacted soil was being taken. It is going to a private landowner's property in Texas. This is where the good red dirt is also coming from that is being used to backfill. They're currently running 5 trucks.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

OCD conditions for approval deadline of December 22, 2021 was not met.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Soil sample results from Western wall need to be analyzed by both Ryan and Cory and gameplan agreed upon.

Assign Follow Up Tasks For New Business:

Permian to respond to Cory's request for additional info with regard to the extension request to OCD conditions for approval by 1/21/2022.

Soil sample results from Western wall need to be reviewed by Ryan and Cory and communicated to Permian. Cory responded to Ryan that he was OK with Ryan's plan this morning. 10' radius around wellhead determined for safe excavation.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday February 2, 2022

Adjourn: 8:25 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- I. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - All areas not noted in key, excevate to 6'.
 - b) Final samples to the following closure or terrar
 - 1,000 mg/kg TPH
 - 7,000 mg/kg ti
 - STEXNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days **
- ***Plan may change subject to sample data from soil and water besting ****

Progress Meeting #24 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 2/2/2022

Meeting Time: 8:01 am, Wednesday February 2, 2022

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, February 9, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory asked PWS for additional information that is due 1/21/2022. Cory wants dates for removal of Phase 1 dirt, when Phase 2 will begin and when it will finish. Dusty has responded to this and Cory is reviewing.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dusty was on PTO last week. He was on site Monday and this morning to inspect. He said they started to backfill to the second lift within the pit starting from the Southern edge heading North. The large stockpile of spoils along the West side has been removed. A smaller pile of 1,000-2,000 yds still needs to be removed near the South end. All tanks have been moved from the West side of lease to the North side. The facility has been picked up and looks pretty clean. There are a few large rocks that will be removed.

Clair/Tetratech was unable to obtain soil samples last week due to staff being out with Covid. She will email confirmation to Faith, Ryan, and Cory of the new sampling date; it is expected to be next Monday the 7th or Tuesday the 8th due to snow and ice that is starting today.

Weather Delays: There is snow and below freezing temperatures expected through Friday. No one will be on the roads if there is ice on them. If it starts thawing out Friday, they'll be back to work on location. The high is expected to be 38 degrees Friday.

Two Week Look Ahead:

Clair will send email notification of the new testing date to everyone when she has it confirmed. The field plan is to dig a 15' test trench to vertically delineate. They will also use the back hoe to grab horizontal delineation samples along the West wall. The results should be back in one week.

Dusty updated the kmz file of the location to show the new extension area moving West from the original Phase 1 area. They will continue to remove the spoils, haul in clean dirt, and backfill Phase 1 pit.

Cory will try to finish his review of Dusty's extension request. He noted he'll be confirming that the waste is being properly disposed of per the applicable Texas rule.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None at the moment.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Soil sample results from Western wall need to be analyzed by both Ryan and Cory and gameplan agreed upon.

Assign Follow Up Tasks For New Business:

Cory/OCD to respond to extension request.

Soil sample results from Western wall need to be reviewed by Ryan and Cory and communicated to Permian. Cory responded to Ryan that he was OK with Ryan's plan this morning. 10' radius around wellhead determined for safe excavation.

Jenni will have to miss next week's meeting; Faith will try to record and share it with her to transcribe.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday February 9, 2022

Adjourn: 8:15 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

SI

Site outline

_ ; _

Phase 1 Remediation Area

 \Rightarrow

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg C1*
 - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #25 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 2/9/2022

Meeting Time: 8:04 am, Wednesday February 9, 2022

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, February 16, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Soil samples obtained on Tuesday. Tetra Tech was on location with Dusty. They dug a trench to north of wellhead 10' out and all the way down to 15'. The chloride content aren't going to be a huge issue from the field screening. The other cleaned up to around 4', but we'll have lab results by next week's meeting. Clair thinks we'll be OK past the top 4'. They did horizontal sampling to get an idea of where the 4' on the west side of the wall needs to go out. SW-8 may be another 5' out to get cleaned up. SW-7, they stepped out in 5' increments to 15' and it was still above 600, so she thinks that area may merge into Phase 2. 15' out puts them close to the safe perimeter around the wellhead. The top 4'

have to be below 600 chlorides. Below that it's 10,000 chlorides, so we're OK. The field screenings were around 1800-2000 chlorides for field screenings below top 4'. Lab results will confirm.

Clair said they're pretty much done sampling. They'll need to take SW-8 out to 5' and they'll need confirmation samples there once complete, but that's about it. Dusty and Clair will work on that excavation and Dusty will update the kmz file to show the accurate field status.

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory asked PWS for additional information that was due 1/21/2022. Cory wanted dates for removal of Phase 1 dirt, when Phase 2 will begin and when it will finish. Dusty responded to this and Cory is reviewing. Cory hasn't been able to review because he's been working on the OCD waste rule. He sent it over to the legal dept to review because of other agreed compliance orders involving the Kaiser State #9. He hasn't heard back.

Discussion on other OCD NOV's to make sure SLO is aware of everything.

Brine wells were brought up – Dunaway #1 #2 and Hobbs State #10. Faith said there were terminated mineral leases and water supply wells associated with the brine wells. Dusty confirmed Jenni was spear-heading the regulatory filings and would know more about all of this. Permian was approval to plug the Dunaway #1 and #2 and are working with wireline companies and plugging companies to plug these wells. Dusty said everything is running an additional step through our lawyers, who are communicating with OCD legal. Faith said that Mike Bratcher/OCD told her about a year ago the OCD would be focused on making Permian plug the brine wells first.

Cory/OCD said the ACO is for the Kaiser, Dorstate, AN Etz, Rice F 29, An Swd, Delaware River #2, Exxon State #3, and Rhomer. It is designed to require delineation, so while Permian is working on the Kaiser they should be going out to these other sites in order, starting with the Dorstate and doing delineation and putting together a work plan for down the line. Dusty said we're still back and forth with legal and haven't started any delineation yet. Discussion on status of ACO – is it in draft stage or out yet? Faith wants to know how the OCD compliance orders are laid out to know how the Dorstate fits into the timeline and to make sure SLO and OCD are coordinated in their efforts to resolve everything correctly and it's documented correctly. That site should not be accessible to anyone at this time. Ryan confirmed that prior Dorstate delineation plans have been prepared, but not approved. Dusty confirmed they have not accessed the site yet. Clair confirmed Tetra Tech has some delineation data on the Dorstate already.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Aside from weather delays, Dufrane continued to haul and backfill. Two front end loaders went down so they've been loading trucks with an excavator. It's slower since they're hauling to pull dirt from sides of stockpile and they weren't set up for this. This has led to there being less good dirt stockpiled to backfill. Hopefully they'll get the loaders back up this week.

Yesterday Tetra Tech was on site to perform testing. Excavator did not run during testing. Clair estimates a 5 business day turnaround on the results, so hopefully next Monday-Tuesday.

Weather Delays: It snowed, which then melted and froze. Icy conditions shut down site for about 2 work days – Wednesday afternoon through Friday noon.

Two Week Look Ahead:

Finish digging out and sampling Phase 1 extension. Continue hauling bad dirt out, clean dirt in, and backfilling. Dusty wants to clean up everything from Phase 1 before starting Phase 2 excavation.

Cory will try to finish his review of Dusty's extension request. He'll be confirming that the waste is being properly disposed of per the applicable Texas rule.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None at the moment.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Dig SW-8 out 5' more, sample. Continue backfilling.

Assign Follow Up Tasks For New Business:

Cory/OCD to respond to extension request. Soil sample results from SW-8 dig out.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday February 16, 2022

Adjourn: 8:30 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

***Plan may change subject to sample data from soil and water testing. ***

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
 - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #26 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 2/16/2022

Meeting Time: 8:04 am, Wednesday February 16, 2022

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, February 23, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory asked PWS for additional information that is due 1/21/2022. Cory wants dates for removal of Phase 1 dirt, when Phase 2 will begin and when it will finish. Dusty has responded to this and Cory is reviewing.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Clair/Tetratech was on site last Tuesday, the 8th, to obtain soil samples. She received the lab results late last night and was tabulating them this morning. She will circulate the data to everyone upon completion. The trench that was installed 10' North of the wellhead shows that the area around the wellhead will need to be excavated to 4' below surface. Below 4' the chlorides ranged from roughly1,500-3,000 range. The highest TPH below the top 4' was 190 mg/kg at 5-6' below surface. Below 7' non-detectable. No BTEX detected.

Horizontal trenches in sidewalls used field screening method to detect how far out they would need to dig. The northern areas, SW-8, would need to go out about 4-5'. One area, SW-7, looked like 15-20' out was not clean, and will likely merge to Phase 2.

Discussion on the Phase 1/Phase 2 label – can we agree that these samples will finish out Phase 1? Cory and Ryan are OK with this. Cory/OCD said it doesn't matter what phase we call it; the remediation will continue until samples are clean. He still sees the bigger bottleneck being the soil movement in and out of the facility. He questioned if every load hauled out was bringing a clean load in, how the Phase 1 pit is not backfilled completely yet, how there is still any spoil dirt on location, and the efficiency and logic of hauling the spoil dirt all the way to Texas instead of a nearby landfill.

Dusty responded that they are digging out dirt faster than it can be hauled off and clean dirt is being brought back in, but it's not an equal 1-1 haul. They have a small spoil pile left at the South end of the site and about 10,000 yds at the containment across the road. There will likely need to be a liner put down over the backfilled Phase 1 pit to place Phase 2 excavated dirt because the containment across the road is not large enough for the material that needs to be excavated.

In response to where the spoil dirt is being hauled and the efficiency, that is Josh's call. Dusty does not make the financial/operational decisions; he implements them in the field. Cory said it's the same issues every week. Jenni and Dusty acknowledge this and understand, but Josh is the owner of Permian and he makes the decisions. They are just doing as they are told and there's only so much they can do. Cory asked for Josh's email address. Faith asked to be cc'd if Cory/OCD reaches out to Josh.

Weather Delays: No mention this meeting.

Two Week Look Ahead:

All agree that Phase 1 can be complete upon this last set of sampling/excavation around the wellhead or it will be never-ending. The reality is this is going to be a huge hole at the facility due to years of leaking. Faith/SLO asked how they can help PWS keep moving forward in the field. Ryan asked if it would be helpful to take a pause on excavating to focus on hauling off the spoil dirt and backfilling the Phase 1 pit. Dusty agreed to this.

Cory will try to finish his review of Dusty's extension request. He may reach out to Josh separately. By the time these minutes were typed up Cory had emailed Josh cc'ing all.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Finish excavation of sidewall and wellhead radius that exceeded required thresholds. Backfill Phase 1 pit completely. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.

Assign Follow Up Tasks For New Business:

Cory/OCD to respond to extension request.

Faith will send Jenni meeting #25 transcription since she was out last week.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday February 23, 2022

Adjourn: 8:28 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface

water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - All areas not noted in key, excavate to 6'.
 - Final samples to the following closure criteria:
 - 1,000 mg/kg TPH.
 - 7,000 mg/kg CI* - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days. **
- and len may change subject to sample data from spill and water testing that

Progress Meeting #27 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 2/23/2022

Meeting Time: 8:04 am, Wednesday February 23, 2022

Place: Go To Meeting call in invite, 1 (872) 240-3412, access code 945-975-053

Next Meeting Date and Time: 8:00 am, March 2, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

	,	<u>, 1 </u>	
Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory asked PWS for additional information that is due 1/21/2022. Cory wants dates for removal of Phase 1 dirt, when Phase 2 will begin and when it will finish. Dusty has responded to this and Cory is reviewing.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane is continuing to haul spoil dirt off and bring clean dirt in. There is still a little dirt left within the facility and the containment across the road. Dusty is working on getting two more off road trucks that can help move the dirt.

Weather Delays: Rain burst on Thursday shut things down for a bit, but don't expect precipitation over the next week, just some wind and colder temperatures.

Two Week Look Ahead:

Dufrane hopes to obtain more off road vehicles to move the remaining dirt off location so they can start digging out on the West side/Phase 2. Faith asked if there was anything SLO could do to help or if increasing the containment area across the road would help. Dusty doesn't think there's much room to increase the area due to existing ROW's and pipelines. Plus it makes more sense to just haul it all off so spoils don't hinder traffic flow. So he'd like to get it hauled out before starting excavation on the West side.

Cory will try to finish his review of Dusty's extension request. NMOCD just released their Waste Rule, so he has been slammed. He sent a follow up email to Josh asking for information on how the impacted soil is being handled and if he has considered transporting the impacted soil to a closer location in NM to save time/money associated with the additional drive time from driving to Texas. Josh has not responded yet.

If Ryan has anything to add it will be circulated via email to all.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Finish excavation of sidewall and wellhead radius that exceeded required thresholds. Backfill Phase 1 pit completely. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.

Assign Follow Up Tasks For New Business:

Cory/OCD to respond to extension request.

Faith sent Jenni meeting #25 recording that Jenni needs to transcribe and circulate for review.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday March 2, 2022

Adjourn: 8:15 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

- 511

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #28 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 3/9/2022

Meeting Time: 8:03 am, Wednesday March 9, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, March 16, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Dusty sent an email to Cory on December 20, 2021 requesting a formal extension to the OCD current conditions for approval since the December 22, 2021 deadline for the OCD Conditions for Approval was not met. Cory asked PWS for additional information that is due 1/21/2022. Cory wants dates for removal of Phase 1 dirt, when Phase 2 will begin and when it will finish. Dusty has responded

to this and Cory said he's been pulled in lots of directions, but he needs to approve. Progress is progress.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane is continuing to mine clean dirt and bring in to backfill. Phase 1 pit is 75% backfilled. They're leaving the west side wall open to avoid sloughing contaminated dirt back into the good dirt. They're continuing to haul the bad dirt off site and talking to closer NM facilities to shorten the drive time. Monument wants soil samples of the stockpile, so Tetra Tech and Dusty will obtain them Thursday or Friday of this week. Josh and Cory have talked and Josh has Dusty looking into Sundance and Lea Land facilities as well for possible disposal options. Dusty said they're continuing both jobs – backfilling with clean dirt and hauling off bad dirt.

Weather Delays: None, strong winds are picking up but shouldn't cause delay.

Two Week Look Ahead:

More of the same. Haul in clean dirt and work on getting the contaminated stockpile across the road down before starting more excavation.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Finish excavation of sidewall and wellhead radius that exceeded required thresholds. Backfill Phase 1 pit completely. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.

Assign Follow Up Tasks For New Business:

Cory/OCD to respond to extension request.

Jenni needs to circulate meeting #25 for review to all and send Faith the OCD orders PWS has.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday March 16, 2022

Adjourn: 8:12 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - All areas not noted in key, excavate to 6'.
 - Final samples to the following closure criteria:
 - 1,000 mg/kg TPH.
 - 7,000 mg/kg CI* - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days. **
- and len may change subject to sample data from spill and water testing that

Progress Meeting #29 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 3/16/2022

Meeting Time: 8:04 am, Wednesday March 16, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, March 23, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

	,	7 8	
Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Cory/OCD approved extension request by Dusty/Dufrane to meet OCD conditions for approval on 3/14/2022. The extension states to complete Phase 1 no later than 3/25/2022.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane is continuing to mine clean dirt and bring in to backfill. Phase 1 pit is backfilled with the exception of the west side wall to avoid sloughing contaminated dirt back into the clean pit. They're continuing to haul the bad dirt off site and have three NM facilities they're looking at to shorten the drive time. Tetra Tech was on site to obtain samples of the stockpile last Friday, 3/11 to supply to the Monument disposal facility. Hopefully results will be back from the lab this Thursday or Friday. Dusty also has the Sundance and Lea Land facilities as possible disposal options; Monument is just the closest facility to the Kaiser location.

Dusty thinks they will be able to meet the OCD's 3/25 deadline to complete Phase 1. Faith requested the updated KMZ file showing the 'new Phase 1 extension trench'.

Weather Delays: None.

Two Week Look Ahead:

More of the same. Haul in clean dirt and work on getting the contaminated stockpile across the road down before starting excavation of Phase 2. Wait for Tetra Tech's soil sample results and determine if/where the contaminated stockpile soil can go within NM.

Jenni asked what to do if results exceed the Monument disposal facility's thresholds. Cory said they can blend dirty dirt with lesser contaminated dirt to lower results, but it can not be blended with clean dirt ever. Dusty agrees this would just create more work and waste. He may blend up the stockpile.

Dusty asked for bi-weekly meetings as he is starting another large project and Faith said she'd like to keep them weekly at this time.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Finish excavation of sidewall and wellhead radius that exceeded required thresholds. Backfill Phase 1 pit completely. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.

Assign Follow Up Tasks For New Business:

Dusty to circulate updated KMZ file showing the current field status.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday March 23, 2022

Adjourn: 8:11 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Sit

Site outline

PI

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #30 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 3/23/2022

Meeting Time: 8:04 am, Wednesday March 23, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, March 30, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

(- ·······)			
Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Clair Gonzales
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Cory/OCD approved extension request by Dusty/Dufrane to meet OCD conditions for approval on 3/14/2022. The extension states to complete Phase 1 no later than 3/25/2022.

Safety:

Site Observations:

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane continued to backfill the Phase 1 pit. They're pushing for it to be done by the OCD's 3/25 deadline. Dusty is hoping they'll be ready to cap it with caliche Monday. They continued to haul off the stockpile dirt.

Sort of off topic, but Dusty had a Zoom meeting with a company that treats soil for TPH. They're getting some samples to test out and they wanted to see if the SLO and OCD had any experience or opinion on this. Clair had told Dusty that they needed to see how it encapsulates the chlorides and they should talk to Cory about it. Faith said she'd get someone with SLO named Steve Ikeda to get in touch with Dusty to discuss in more detail. Dusty is not familiar using these products, but he listened to the sales pitch and asked questions; Clair is a fan of bioremediation with TPH, but she isn't as experienced with the chloride side. She mentioned soil washing and that it could take longer, so the time/cost would need to be analyzed further. Dusty asked the company how long it would take to remediate 10,000 yards and they said 30-45 days to let the product sit and bugs activate. Dufrane wants to get with OCD, try the samples and see if it could cut down on the hauling time. Faith is not opposed, but she wants more research done first.

Clair asked if they sampled the stockpile at 50-100 cubic yard increments and thresholds were under for chlorides and TPH, would they be able to use it to backfill, and then bring in clean dirt for the top 4'? Faith thinks it would be OK.

There have been delays at the labs due to instrumentation issues. Clair received a preliminary TPH report last night on the stockpile samples, but the lab is still working on the chloride report. She hopes to have the results back in a couple of days. The TPH data was lower but wasn't at the 50 cu yd interval. 600ish TPH was the highest.

Weather Delays: None.

Two Week Look Ahead:

Complete Phase 1 backfill and keep hauling the contaminated stockpile across the road down so they can start excavation of Phase 2. Receive Tetra Tech's soil sample results and determine if/where

the contaminated stockpile soil can go within NM – hopefully the Monument facility. Test the new product and see if it may help with this remediation.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Backfill Phase 1 pit completely and cap it w/ caliche. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.

Assign Follow Up Tasks For New Business: None

Verify Date and Time of Next Meeting: 8:00 am, Wednesday March 30, 2022

Adjourn: 8:15 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #31 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 4/6/2022

Meeting Time: 8:05 am, Wednesday April 6, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, April 13, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM OCD
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Phase 1 backfill is complete except the 20' west side section where they're continuing to mine material out. 8" of backfill is needed and will be capped with caliche to finalize. 50% of stockpile across the road to finish removing. Lab results came back last Friday on the stockpile, and it looks like some can be sent to the Monument facility. They'll have to take the areas with thresholds too high somewhere else. They're hauling in surplus backfill for the Phase 2 portion. They have 9 trucks running now and are making good effort.

Weather Delays: None.

Two Week Look Ahead:

Continue with the west side trench. Haul off stockpile dirt to Monument to create more room for Phase 2 excavation. Hopefully the first part of next week Phase 2 (Phase 1.5) excavation can begin & continue hauling off bad dirt. Faith clarified the plan is to continue the Phase 1.5 trench and sample for results. Dusty confirmed that is the plan. He referenced the recent kmz file showing the southwestern section of Phase 1 as the trench beginning location, and that it moves ³/₄ way up along the Phase 1 area, maintaining a 10' buffer around the wellhead. They delineated back to the well. It's a big, blended project at this point, as we thought it would end up.

Cory commented that things are still moving into place in the field. The OCD Phase 2 deadline is September, so reminded Dusty to keep this in mind. To which Dusty replied that this project is always on his mind. Agreeance among all that we're moving into Phase 2 timeline. Cory said the OCD focuses on closing out entire sites all at once. And that samples meet requirements for closure. He asked Clair if all the Phase 1 samples met thresholds for closure. Clair was having technical difficulties today but responded in the chat that everything was good except the west side wall that is still being worked on.

Faith said let's meet next week to discuss the trench and the bigger picture. If there need to be changes to the plan to accomplish this quicker or easier on site, OCD needs to know. Closure numbers must be met, but the plan on how to do this can deviate.

Cory asked about the status of the equipment that was on site last he was out there. Dusty said the tanks are on site but everything else has been removed except the guardrail around the wellhead, a power pole that ran to the old doghouse with automation equipment housed in it, and a polyline that he thinks used to be Endeavors. He needs to call them to find out. The 2-3 tanks that used to be on top of the Phase 2 area are removed. There's just some rubble that will be picked up and the polyline now. He'll send updated pictures to everyone.

Jenni reminded us to run bioremediation conversation from previous meeting by Cory for OCD's opinion on it. Dusty elaborated that he'd had a Zoom call with a bio bug company and would get samples to treat a 20 yd load for tph but was uncertain of the chloride capsulation and how the OCD viewed it. Cory asked for the name of the company, but Dusty wasn't sure off the top of his head. Cory said generally speaking, it takes longer (in situ remediation) so the September deadline may not be met. They'd want the company to prove the encapsulation timeframe. Dusty and Clair were also concerned about the uncertainty of the encapsulation timeframe for chlorides but thought tph was treated well.

Cory mentioned they've allowed soil shredding using hydrogen peroxide to clear the soil and it's worked. He also said the southeast has had success with soil washing, but he'd need to check in with his colleagues that work the area for more details. It's just running water to strip the chlorides out, not encapsulating it. RX Soils company possibly? Dusty said the company he spoke with explained they'd mix it all in a truck and let it sit there depending on how high the contaminates were. He said 3-5 days for a 20 yd batch, which does not seem efficient. Cory said he wouldn't tell them no on using the product, but this site does not need any additional kinks with it. Maybe try it on other sites.

Faith spoke with her District resource commissioner, and he had only done two in situ remediations. One was a produced water spill and the other a crude spill, but they got right on it. This site has decades of old spills Permian has inherited, so the scenario would not be the same. However, they were successful in the other projects; it just took some time.

Plan is to continue weekly meetings for the next month.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Backfill Phase 1 pit completely and cap it w/ caliche. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.

Assign Follow Up Tasks For New Business:

Dusty send updated site pics.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday April 13, 2022

Adjourn: 8:29 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- - - ,

Phase 1 Remediation Area

*

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #32 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 4/13/2022

Meeting Time: 8:04 am, Wednesday April 13, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, April 20, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane is continuing to haul off material. Dusty has been trying to get with the guy at the Monument facility, but he has been out of town. He'll continue to try to get in touch. They plan to dig the trench area, phase 1.5 and get Tetra Tech out to sample the top 4'. Lots of dirt to move around. Faith asked how the truck numbers were looking and Dusty said it's going well and some of them are actually calling him for work now. Everyone laughed at that.

Weather Delays: Windy. There have been fires popping up around NM and west TX, but so far nothing has gotten close enough to the site to shut things down. Dusty said since the guys are enclosed in a cab while working the equipment, the wind is not too bothersome. If there's a fire and smoke too close, they will evacuate for safety concerns. If Dusty is not on location he has a supervisor out there that can contact all the trucks. Even though they're independent truckers they maintain contact with them regularly while on the job.

Two Week Look Ahead:

Strip the phase 1.5 trench back for soil sampling. Then continue stripping back into phase 2. Continue stockpiling material on site – hauling in a load and taking out a load. There's room across the road in the containment area also to stockpile if needed.

They hope to take soil samples next week and the following week. Clair said the issues the lab was having have been fixed. She said she'd check how the lab was doing before sending in the next set up samples in case she needs to send to another lab. She said there is Cardinal in Hobbs where she can send samples to also.

Ryan asked about the stockpile sample results. Clair said the TPH was 100-600. The chlorides had three areas less than 2,000, all were below 10,000. Dusty said a couple were in the 3,000's. Ryan asked about sending it to the landfill and Dusty said Monument should take the lower samples, but not the higher ones; he needs to speak with the Monument guy to confirm.

Faith asked if anything had been started on the Dorstate. Dusty and Jenni responded that they're working on the C-141's, Tetra Tech has supplied site characterizations, and a bid to do the remediation plans for the ACO. Jenni has pulled all the incident files and needs to fill in data to the C-141's. She's run things by their attorney and they're on the right track for submitting the required items to the OCD

to comply with the ACO deadline of May 27. Jenni will give Cory a head's up email when all items are submitted. The ACO does not distinguish any order for working the sites. The Kaiser is separate since its remediation plan started before the ACO was issued, but the other sites are lumped together. The specifics of the past incidents and remediation plans will dictate the OCD's timeframes and responses to the C-141's and remediation plans. Faith said that SLO didn't intend to have Permian working the Kaiser and the Dorstate remediation projects at the same time and if she can help get us access to the facility for soil borings or anything else to let her know.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.

Assign Follow Up Tasks For New Business:

Verify Date and Time of Next Meeting: 8:00 am, Wednesday April 20, 2022

Adjourn: 8:23 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

- 51

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****Flan may change subject to sample data from spill and water testing ****

Progress Meeting #33 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 4/20/2022

Meeting Time: 8:07 am, Wednesday April 20, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, May 4, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Cory Smith	505/419-2687	cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Week Performance:

Dufrane is continuing to haul dirt off. Last week they experienced numerous issues on location. The excavator broke and is awaiting repair. Dusty will have a bulldozer moved in from another job location to take over the work of the excavator while it is being repaired.

Dusty spoke with the South Monument facility guy and he's not comfortable with the chloride content levels. Dusty doesn't want to spend the time mixing soils to try to lower the levels so he wants to haul dirt to the Lea Land facility instead.

The truck drivers are getting burnt out from the long hours and Dusty said they are not working as efficiently. They are still hauling dirt off as generated instead of stockpiling across the road.

Weather Delays: No delays. There are still red flag warnings and fire risks for the area.

Two Week Look Ahead:

Dusty hopes to be able to sample the top 4' of the trench at the end of next week, or Monday of the following week. The mechanical failures delayed the trench from being completely dug out, but the dozer should be there tomorrow to take over. And the trucking guys are just tired and need a reset so they can come back fresh and be more efficient.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Remove remaining spoil dirt to prepare for Phase 2 excavation dirt.
 - b. Clair/Tetra Tech said she thinks they can get someone out to sample the Phase 1.5 trench area at the end of next week. Faith asked for email notification.
 - c. Cory/OCD has nothing to add. Phase 1 is complete and now the September deadline to complete Phase 2 is next for the OCD. There will be no more extensions and summer will go by fast, so just meet the deadline.

Assign Follow Up Tasks For New Business:

Not directly tied to this remediation, but Dusty told Clair to proceed with their remediation plan quotes for the OCD ACO to clean up historical open incidents.

Jenni needs #31 meeting minutes confirmed so she can circulate the final version.

Faith said these meetings will go to every other week starting with the next meeting. She will circulate a new meeting invite.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday May 4, 2022

Adjourn: 8:17 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

- 51

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #34 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 5/4/2022

Meeting Time: 8:02 am, Wednesday May 4, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, May 18, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dufrane has hauled off much of the spoil material from the large stockpile across the road; there are about 1,000 yds remaining, so they've made a lot of progress on that. Phase 1.5 trench has been completely dug out. Dusty said they went a little more than 4' deep in some areas, maybe to 5' so he could see what it was looking like. That dirt has been moved out and stockpiled across the road.

The road construction is back. There is construction at the lease road entrance off of 176. It has resulted in a 2.5 hour roundtrip of 60 miles to haul the dirt off and return. Dusty has tapered that off to 2-3 trips per day and is putting material across the road in the meantime. The construction occurs for about 12 miles West, which is the direction they're traveling to the disposal facility. This has not caused delay with excavation on location though.

The loader that had a mechanical issue resulting in a small fire was out of service for 3 days. There were no injuries and they've been able to fix it. The mechanic is double-checking it today to determine that it may be put back in operation.

Dusty said they pulled two poly lines that were in the Phase 2 excavation area further West outside of the fence line so they are not in the way. They'd like to start Phase 2 excavation next week. He plans to leave a small boundary in place against the Western line of the property to leave room for sidewall testing. He hopes to begin excavation in the NW corner of the Phase 2 outline. He tracked the lines and said the markings on one say Red Dog/Dawg or Rebel. The other is a main trunkline that connects to a 4-1/2 that he thinks is XTO's. It's not time-sensitive at this moment to track down and contact these owners, but they will need to track them down at some point. Faith and Ryan will research on their end to see if they can help identify the lines' owners. The lines could have gone to the Kaiser at some point too. We'll all need to do some digging into it and communicate our findings.

Clair/Tetra Tech will be on location this Friday, May 6th to sample the Phase 1.5 trench area.

Weather Delays: No delays. There are still red flag warnings and fire risks for the area.

Two Week Look Ahead:

Dusty would like to begin Phase 2 excavation at the North end. On the most recent KMZ file, this is the small pit in green at the Northwest corner, then the deeper excavation area to the East that's

adjacent. He doesn't want to excavate so much dirt that they can't haul it off with the road construction time frames and he doesn't want it sitting on top of Phase 1 which has already been completed. He'll work on more truck power, or he may decide to excavate Phase 2 in increments by testing the Northern end and seeing what results look like. He could then backfill some if results are OK and then continue to excavate. He does not want to mess with a liner on Phase 1 or disturb anything on Phase 1 until they're closer to construction.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today that anyone can assist with. Hopefully the road construction does not last for very long.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Clair/Tetra Tech will sample the Phase 1.5 trench area May 6th. Email notification has been sent. Cory was not on today's call but responded to the email notification to collect BTEX samples since this is a new area. Lab results should be back by late next week and Clair will circulate to all. Ryan may be in area to swing by to witness sampling.

Assign Follow Up Tasks For New Business:

Jenni needs #31 meeting minutes confirmed so she can circulate the final version. She circulated #33 meeting minutes late and needs to double-check all minutes are up to date.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday May 18, 2022

Adjourn: 8:19 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - o SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.
- **Plan may be subject to change depending on data from soil and water samples.**
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Sit

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum S'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #35 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 5/18/2022

Meeting Time: 8:05 am, Wednesday May 18, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, June 1, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
575/392-8736	rmann@slo.state.nm.us	NM State Land Office
512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division
	432/687-8123 575/392-8736 512/820-8772 617/584-2889	432/687-8123 Clair.gonzales@tetratech.com 575/392-8736 rmann@slo.state.nm.us 512/820-8772 jenni@permianws.com 617/584-2889 dmcinturff@dufrane.com

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Clair/Tetra Tech sampled the Phase 1.5 trench area and results have been received, but not tabulated for circulation yet. She said that the sidewall samples are exceeding the chloride and TPH thresholds. She thinks the trench will blend West into Phase 2. She'll try to have the results circulated to everyone by the end of the day or early tomorrow morning.

Faith mentioned that if the new tank battery location created any soil disturbance archaeological clearance would be necessary. Dusty said the tank batteries should be placed at the Northern portion of site, along fence line, edge of Phase 1. He doesn't foresee any new disturbance and he thinks they'll use less tanks than the previous layout, so less of a footprint.

Dusty/Dufrane excavated a larger area around the Phase 1.5 trench than first planned because they saw the sidewalls did not look good as they were excavating, so they kept extending out West. They removed the spoiled dirt and hauled it out. The stockpile area across the road was hauled all the way down to a thin layer to keep a buffer layer on top of the liner to protect the liner. They're still hauling the spoil dirt to the Lea Land facility.

The road construction is still present. It has moved West from the lease entrance location, but the Lea Land facility is still located West. It's still about a 2.5 hour roundtrip of 60 miles to haul the dirt off and return. Dusty is dealing with it with some hauling to Lea Land and some stockpiling across the road to keep things flowing.

They started excavating Phase 2 in the Northwestern corner smaller area to the east of the existing pit. It will likely blend into part of the 1.5 trench, becoming one big hole. Dusty thinks Phase 2 will just go as deep as needed versus varying depth levels to make it easier for excavation. They're a couple of feet in now and hauling off bad dirt, using the stockpile area as needed. Faith asked if the two-week lookahead was the same and Dusty confirmed.

Weather Delays: No delays. There are still red flag warnings and fire risks for the area.

Two Week Look Ahead:

Dusty hopes to keep excavating until the testing depth is reached for Clair/Tetra Tech. It is a lot of dirt and he'd like to work that section first to completion, capping it off when done. Then they'll

move to the center area of Phase 2, which will end up blending some with the Phase 1.5 trench center area. Then eventually further South where the old tank battery was and the Southern edge of the 1.5 trench. He's hoping the Northwestern edge is the cleanest.

Faith asked the sampling plan for the Northwest corner. Dusty said to dig to 15'and remove all the dirt. He'll draw a line at some point and if necessary, they'll extend further South. Cory mentioned that the OCD doesn't need them to dig to 15', especially if it's removing clean dirt. The OCD still agrees with 400 sq ft sampling.

Dusty asked if they can stop and test shallower than 15' then if the soil looks clean. Faith, Cory and Ryan think that is OK. They don't think the Northwestern portion needed to go to 15', possibly 5-6'. The previous SLO engineer is not there anymore and if it looks like you can stop and test at 5' then go for it. Dusty said it would be more cost effective to try this than to dig it all out to 15' and get it hauled off with road construction.

Cory suggested everyone review the last delineation report and boreholes. Everyone will review for the deepest boreholes and their location and communicate via email for what depths they think sampling is safe to take place at. 5' may be OK for Northwestern portion and then deeper sampling for the Southwestern portion. We'll try to communicate and decide by next meeting.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Clair/Tetra Tech will circulate soil sample results from the Phase 1.5 trench area. Phase 1.5 will blend into Phase 2.

Assign Follow Up Tasks For New Business:

Everyone review the previous delineation for borehole depths to determine the appropriate excavation depths necessary for Phase 2 areas.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday June 1, 2022

Adjourn: 8:24 am

- *Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- - -

Phase 1 Remediation Area

 \Rightarrow

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #36 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 6/1/2022

Meeting Time: 8:02 am, Wednesday June 1, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, June 15, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Clair/Tetra Tech circulated the Phase 1.5 trench soil sample results and proposed sampling plan via email to everyone on 5/25/22. The area was excavated to 5' bgs and sidewall samples exceeded the thresholds for chlorides and TPH. Bottom hole samples exceeded for TPH. So it is proposed to go down to 10'.

Dusty continued to remove dirt from the trench. They had stripped it back to get to Phase 2 NW pit. *Clarified with Dusty – they did start to dig into the Northern side of the NW pit a couple of feet, as noted in last meeting minutes, but stopped excavating to remove the spoil dirt that was stockpiled at the Southern portion of the NW pit from the Phase 1.5 trench deepening.

They lost a day and a half due to a bad storm with quarter size hail. They got back to work last Friday and then took Monday off for Memorial Day, and they're back now. They're still removing dirt from the 1.5 trench and moving it out for disposal.

The road construction has moved West from the lease entrance location, but the Lea Land facility is still located West. The situation is better than it has been though.

Weather Delays: No delays. There are still red flag warnings and fire risks for the area.

Two Week Look Ahead:

Dusty had to remove some old garbage from the NW pit area in Phase 2 – old RR ties, timber, ranching debris. It's been an open pit area for a long time that collected debris. He's hoping to have material ready for Clair/Tetra Tech to sample by the end of next week. This would be material from the NW pit and the smaller area to the east of the existing pit. Based on the delineation reports, they thought 4-5' was sufficient for these areas. He'll need to maneuver the excavated dirt around deepening Phase 1.5 and opening up Phase 2 more so they're not bottlenecking themselves or working the dirt twice. He's hopeful that the samples will be good and they'll be able to close it up with good dirt.

The Phase 1.5 trench will need to go to 10'. Faith said she was looking at photos of an old produced water spill and it was in the area where the high readings were taken. The northern portion was like a lake. Dusty will get down to 10' and Clair will sample to see if 10' is enough. Otherwise, Dusty will reassess safety considerations with going deeper than 10'.

Ryan and Cory are OK with Clair's sampling proposal that was circulated via email. Ryan said it a good start and soil sample results will dictate if and how further testing may be needed. Cory had no issues. He mentioned the delineation report was older, so we may need to go deeper due to vertical migration, even though the SW part of the state doesn't get a lot of rainfall. He said it's OK to sample early and often versus excavating and hauling more dirt from a cost and time perspective.

Faith reminded Clair to give notification for the next round of sampling.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Clair/Tetra Tech will provide notification for Phase 1.5 10' sampling & Phase 2 NW pit and the smaller area to the east of existing pit

Assign Follow Up Tasks For New Business:

Verify Date and Time of Next Meeting: 8:00 am, Wednesday June 1, 2022

Adjourn: 8:24 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

PI

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excevate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #37 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 6/29/2022

Meeting Time: 8:02 am, Wednesday June 29, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, June 13, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office	
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech	
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC	
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction	
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division	

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

The testing plan is for 400 square feet composite samples based off of Clair's delineation report: 4-5' deep on Phase 2 NW area next to the small pit. 1-2' on the small pit. Crossing over into the Phase 1.5 area, they took 2 more feet off the bottom to 10' and 1-2' out around the sidewall. The East wall of Phase 2 is actually the Phase 1.5 trench. It's merging into one big hole. *Clair's delineation report of Phase 2 area calls for the NW area next to the pit to be sampled at 4-5', the center section 5-6' deep and the southern section 4-5' deep.

Dusty said they had personnel issues the week of our last meeting. They lost 3 operators and had to move people around to do all the work. So they lost a week of work on our site, but they were able to get some guys hired and move original personnel is back on location working. They excavated last week and got things ready for Clair to come out and sample the Phase 1.5 and 2 excavated areas.

Dusty was on location and said it looked like there had been a lot of rain and there were deep ruts from the equipment. He was going to drive back through location to see how bad it was in the area where soil sampling is scheduled.

Weather Delays: It has rained for a week and there are tadpole ponds on location.

Two Week Look Ahead:

Dusty is hoping to get Clair/Tetra Tech in to sample the Phase 2 NW section, get good results and be able to backfill the area. Then he'll concentrate on the Phase 1.5 section.

Faith asked how large the spoil piles were. Dusty said it had pretty much been hauled out and now they're stocking new spoils over across the road. He has the trucks dropping off and loading up at the road so they aren't driving around within the site. Faith asked how much additional traffic used the road and Dusty said it's mostly lone pumpers coming out to check gauges and valves on the pipelines out there. They haven't had too much traffic on their road. The main lease road off of the highway has more traffic; he thinks there's more drilling and fracking going on.

Highway construction is just down to widening out the lease entrances/turnoffs now. Delays are minimal compared to what they were, maybe 5 minutes of waiting. Dusty asked one of the construction workers how much longer they would be out there and he said a couple more weeks.

Faith asked how many trucks were running and Dusty said 7-10, depending on the random issues that pop up, like blowouts, breakdowns. They joked that someone should follow the trucks throughout their routes all day long to keep them honest.

Clair confirmed to Cory that she understood his email response about upcoming sampling.

Dusty arrived at the area to be sampled and said they may need to push back to early next week (July 4th Monday) to let the water dry up. There were tadpole ponds. He asked if they had gotten much rain around Santa Fe to help with the fires. Faith said they had – they have total control of the Jemez fire by the lab and are still working the Hermits Peak/Calf Canyon one, which is not out but is under control. They've dropped crews from 2000 to 800-900. It's rained for a week every day.

Dusty said the pit is full of water. Clair confirmed they can't sample if it's too wet. She'll check her schedule and see when they can come out next week. She'll circulate notification email. Dusty will take pictures to circulate.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: None today.

Critical Path Considerations: None today.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Clair/Tetra Tech will provide notification for Phase 1.5 10' sampling & Phase 2 NW pit and the smaller area to the east of existing pit

Assign Follow Up Tasks For New Business:

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, July 13, 2022

Adjourn: 8:21 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface

water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

SI

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #38 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 7/13/2022

Meeting Time: 8:04 am, Wednesday July 13, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, June 27, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office	
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech	
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC	
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction	
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division	
Daniel Gallegos		dgallegos@slo.state.nm.us	NM SLO Water Bureau	

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business: Sampling should have taken place yesterday.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Clair/Tetra Tech started by saying they were on location last week and yesterday sampling a large area. The samples sent to the lab look like they'll be OK, but it looks like they'll need to extend Phase 2 out further West and South then they'd thought. Bottom hole samples look good though. They're currently at 6-8' deep now. Faith clarified they were extending laterally out West and Clair confirmed West of the wellhead out towards the fence line.

Dusty hopped in to elaborate on previous two weeks. They had to cancel the first round of testing due to rain, then the holiday delayed fieldwork, but they got back on everything after the holiday. The entire NW area has been excavated to 4-5'. The small pit to 1-2'. Phase 1.5 has blended into Phase 2 West. They've excavated out to the center of Phase 2, about 45' to the West. They didn't go all the way to the fence line yet to manage hauling the material off the top. They've started chasing a line out to the West from the Phase 1.5 Western wall out about 25'. The Western part of Phase 2 looks OK so far. Phase 1.5 floor also looks OK. Currently just chasing that West Wall out as Clair stated.

They need to go back to the North area and try to excavate chunks to see how far they're going to have to go. The Northwestern side may all blend together. This corresponds with old aerials Faith sent previously that showed old spills. They will probably have to go out deeper. The floor is looking OK, but there may be a pocket that needs to be dug out. They want to review the recent lab results for confirmation, but the Northeast corner of Phase 1.5 has a weird pocket about 20' x 20' or 30' x 30' that truncates down with the benching. It's about 35' from Phase 1 and it's really odd; Dusty hasn't seen it before. They've hit rock though, so they can't go any deeper. Once we see the results, then we'll see what we can do.

Cory screen shared one of the photos sent yesterday of the area with a gray section of dirt to confirm it was the area Dusty was talking about. Cory said he thinks it is degraded hydrocarbons. Dusty said it smells terrible, like death and oil. Cory said it should be soft and the lab samples will probably reveal hydrocarbons – signs of a really old spill. Dusty said the field guys had to take a break from excavating it for a few days to let the odor dissipate. He agrees with Cory that it's soft and coming out in clumps; they're just stuck at rock bottom now at 15'. Then benched 2-3' up. Cory said it may pan out. Dusty wanted lab results to confirm what we were chasing, especially if it's going to require a deeper hole. The top of the floor of Phase 1.5 was yellowish and then they encountered this.

Cory asked if Dusty could measure how far it is from the wellhead. Dusty is on location and said it looks like it's about 40-50' from the wellhead. Cory said it could be an old reserve pit with

degraded hydrocarbons or bentonite clay. Based on the color it could be an old reserve pit or flowback pit. He asked Clair if they did a photoionization detector in the field. She didn't have the equipment at the time, but thought it might look like old drilling mud. Cory asked if there was any trash found within the area. Dusty did not find any. Typically BOP to reserve pit is about 40'. Dusty confirmed when they build pads they do about 40-50' from the wellhead. So we're unsure where this will lead.

Clair said if the results aren't screaming hot, they can get as much of the material out as they can, then rock hammer or pick the rock to see if deeper. Cory said if the rule was followed to a "T", they'd get as much as possible, delineate it, profile it, and ask for a variance to keep it in place. The main concern is being water levels not being affected and benzenes & chlorides. If it's an old reserve pit, it could be 60-125'. Dusty agreed for a vertical well it could be 60-150'. Although it has not backed into our Phase 1. They left a buffer in place there that seems OK.

Cory asked when the soil turned this color during the digging. Dusty said it started with darker soil but about 4-5' they started seeing this, and then it got nasty at the bottom.

Cory opened Google Earth to place the location. It's slightly North and West of the wellhead. He didn't see any old tanks, but Google Earth only goes back to 1985 and this well is from the 50's. (Jenni update – drilled in 1942 as an oil well). Dusty also said there's a piece of concrete they found in the 'wellhead peninsula'. It's a few feet below the surface. They can't pick it out because it seems to be connected to the wellhead. It doesn't look like the typical T base nowadays. They'll just leave it undisturbed.

Cory asked Clair what the old delineation depth was. Clair confirmed 10' was expected; there was high TPH to 10-15' below surface; and dropped below RRALs at 20'.

Weather Delays: None at this time.

Two Week Look Ahead:

Dusty summarized by saying we're chasing these problem areas down to the West and focused on hauling dirt off site. He said it looks like a good dirt bike track for kids with all the different levels out there. We'll see what samples say.

Ryan said something to think about – is there a way to cap the reserve pit & if it can be fully delineated.

Cory asked if the September ACO deadline could be met. Dusty thinks it can if the excavation stays shallow on some of this stuff. They may still be hauling containment dirt off site, but if they stay shallower the cubic yardage will be the same/slightly less than Phase 1. Hopefully we'll be alright.

Clair asked if "fully delineated" meant using the 2019 delineation data, or re-delineating. Some may require more than a backhoe. Ryan and Cory aren't sure yet. We'll look into it further when more data comes back.

Daniel is good. We're all good. Faith will be out next week, but Ryan and Daniel can be reached if necessary. Dusty's drone photos were very much appreciated; he'll try to get them regularly.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to chase down problem areas to determine extent of damage.

Critical Path Considerations: None today.

\sim	•	•	•	
Comn	110	CIO	nın	α
Comm	шэ	old	ш	ıĸ.
				0

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Waiting on lab results from Phase 1.5 and NW Phase 2.

Assign Follow Up Tasks For New Business:

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, July 27, 2022

Adjourn: 8:36 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #39 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 7/27/2022

Meeting Time: 8:04 am, Wednesday July 27, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, August 3, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Sampling is ongoing. Results were circulated yesterday from samples taken 7/6/22-7/12/22

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance/Abbreviated meeting due to lack of participants (summertime): Dusty said they've excavated a lot of the Phase 2 material out. Tetra Tech's field screenings from yesterday were looking like they were hitting higher chloride levels in some places; they'll probably have to take out another couple of feet to 8-9' deep (West of phase 1.5 about 60 feet from well head.) From the East wall headed West towards the fence line they're seeing high chlorides. They started digging the floor out more after Tetra Tech left. They are 4-5' deep from the mid-section of Phase 2 to the fence line now.

Faith asked if the results will meet OCD levels. The results we had received were circulated yesterday. There are a couple of areas that aren't looking good. The West sidewall corner of the NW 'pit' of Phase 2, they scraped back another 1-2'. The floor looks good here though. They scraped the walls and the chlorides look clean. There was a larger hole within the small pit with high TPH that they dug out. They dug out the area near the decomposed hydrocarbon zone; chlorides looked OK here.

Sadly, they found another decomposed hydrocarbon zone. It looks as bad as the first area. They haven't dug it out completely yet and they're down 15' hitting rock again. Dusty is unsure of the width. They're 60' to the South and it's still hot. It may be 60' x 30'? They'll end up having to dig out more of the 4-5' mid-section area too.

Weather Delays: None at this time.

Two Week Look Ahead:

They'll continue excavating and removing dirt. Discussion on capping the bad areas and requesting a variance. We're unsure of the details for this process, but we should all discuss soon since the ACO deadline is 9/30/22. We'll try to start an email conversation on it later this week – how to cap it.

Dusty is working on another project where they had to wait over a month for a GCL. He learned there are only 3 plants that manufacture these in the US, so it will take time. It may be better to try to dig it out for time's sake? We just found the second bad spot last week and Dusty dug it out until they hit rock and then started trenching. Faith says all parties need to review the current status and then we can all decide on best path forward. We think this may fall into 'unforeseen condition' category.

Dusty is concerned we may end up excavating back East towards Phase 1. He can see plastic liner coming up in the dirt they're excavating in the small pit in the NW corner. The chlorides in the field screenings seem like they're OK in some areas at least. The NW pit chlorides looked OK.

However, the West wall of Phase 2 was 1200 in the field, so they need to take it out further, but we're about 1-2' off the fence line already. Then they're off lease.

We'll have a meeting next week with everyone to try to figure out a game plan for moving this forward with little delay.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to chase down problem areas to determine extent of damage and we're encroaching on fence line to the West.

Critical Path Considerations: Second area of decomposed hydrocarbon discovered. Size is still being determined. We need to know more about capping and requesting a variance, or other options.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Lab results from Phase 1.5 and NW Phase 2 7/6/22-7/12/22 circulated. Need to all discuss/review.

Assign Follow Up Tasks For New Business:

Get Ryan and Cory's input on capping and variance options for the two decomposed hydrocarbon areas.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, August 3, 2022

Adjourn: 8:20 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #40 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 8/3/2022

Meeting Time: 8:01 am, Wednesday August 3, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, August 17, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Daniel Gallegos		dgallegos@slo.state.nm.us	NM SLO Water Bureau

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Sampling is ongoing and results are being circulated as data is received from the lab. Communicate with OCD on variance request to cap two decomposed hydrocarbon area.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance (one week since last meeting):

Clair's tech from Tetra Tech has been on site sampling the problem areas identified from the recent lab results. The new field screenings are showing less impacted chloride areas. The lab results will be needed to determine the other constituents. They've moved a lot of dirt around the location. Dusty said they haven't really dealt with the new area of decomposed hydrocarbons. They're focusing on the smaller stuff first, clearing up those areas and avoiding the gray areas.

The West wall of the first hydrocarbon area looks good for chlorides. They dug out about 10' to the West. There's a large rock that slightly raises the elevation in this area, but they can't get through it. The Southwest wall is also testing good for chlorides. They skimmed back 4' level to the area West. Then to 8' in a couple of spots, minus the two hydrocarbon zones. They're going deeper than 4' to get to the deeper threshold acceptance levels; it should help them out with testing thresholds.

The hydrocarbon zones are still an uncertainty. Dusty may need different equipment on site. The GCL's have long lead times. Dusty has a vacation lined up and our ACO is due at the end of September so we don't want to wait to make decisions on how to deal with the hydrocarbon zones.

Faith clarified that the 4' deep area was along the West side of Phase 2. Clair confirmed that those areas were field screened, and chlorides were a bit above the 600 mg/kg chloride content, so they'll grade lower and collect samples again.

Faith said that SLO does not need a variance request for a liner to be installed, but OCD does so we need to get with Cory on this aspect. She asked Ryan for his thoughts on leaving in situ, if he has a liner preference. Ryan said he'd be OK with a standard plastic polyethylene, but Cory would need to agree. This would cap both degraded hydrocarbon areas.

Dusty asked how much they excavate out before the cap goes on? There may only be a small sliver between the two areas, so he may want to take it all out. It's a 30' x 60' area that is 13-15' deep, depending on the rock depth. They saw a portion of the rock around 13-15' in the Southwest corner of Phase 1; it appears to run under the entire site in areas. The 30' by 60' area is an estimation by Dusty from looking at it. He hasn't touched the North wall yet. They also have to avoid the Monitor Well between the two areas of Phase 2 (NW pit and area to West of Phase 1.5). Site elevation seems to have led to fluid migration heading NW over time.

Clair screen shared her KMZ 'in progress' she is updating. BH-118 was the first gray area North of the wellhead. The second one isn't on a KMZ that has been shared yet, but it's around BH-165, which is the NW corner of the Phase 2 middle portion. They just took samples and are waiting on

results from the West sidewall. That data will reveal if the excavation will need to go further West outside of the lease line.

Weather Delays: None at this time.

Two Week Look Ahead:

Faith confirmed our lease is our current footprint, but she can make sure we can go outside lease if necessary. There are a lot of pipelines, including a buried produced water line running alongside the West side of the lease, so that should be a fun issue.

Faith reminded us to wait and see what the results say. The Spill Rule is OCD's so they'll need to weigh in. Off lease spills are still required to be cleaned up. The SLO take on it is different. It's clear there are legacy problems at this site and Dufrane has already done a lot of legacy clean up. There are a lot of lines in the area and not a lot of spill reporting has been done. Historical imagery proves that and Faith doesn't intend to make Permian clean everything up. Some legacy problems may remain. We do need the OCD to weigh in since the ACO deadline is the end of September.

Faith asked Dusty, Clair and Jenni to get with Cory and submit the necessary items to gain a variance to cap the degraded hydrocarbon areas with an HDPE liner since the GCL may take a long time to obtain. Faith and Ryan will also communicate with Cory regarding the plastic liner and variance. If everyone approves a plastic liner to cap, Dusty can excavate out as much as possible around the areas. They'll continue to clean up the other areas with less impact/concern.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to chase down problem areas to determine extent of damage and we're encroaching on fence line to the West.

Critical Path Considerations: Second area of decomposed hydrocarbon discovered. Size is still being determined. We need to know more about capping and requesting a variance, or other options.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Ongoing sampling in field chasing down hot spots. Results coming in and circulated upon receipt.

Assign Follow Up Tasks For New Business:

Get Cory's input on capping and variance options for the two decomposed hydrocarbon areas. Submit variance request with OCD.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, August 17, 2022

Adjourn: 8:27 am

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

SI

Site outline

_ ; _

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #41 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 8/17/2022

Meeting Time: 8:02 am, Wednesday August 17, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, August 31, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting: Discuss variance request and updated lab results.

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dusty was on vacation for a week, but Dufrane continued excavation of the problem areas we'd identified. Those spots were dug out further for more testing. Clair will have a tech out tomorrow and Friday. They continued to haul dirt out.

Faith asked Cory to talk about the variance requests that were submitted to him. Cory had a death in the family and has been out of office, so he has not looked at it until today. Clair summarized that BH-118 was the original problem spot. Then BH-119 and BH-165, but recent lab results show those are OK. At BH-118 they first found gray material, 4480 TPH at 10' and at 13' it was good/non-detect. BH-199 & BH-165: 119 had odor but tested at 10' and it was below; 165 had gray staining and odor and was trenched to 13' and tested good. It was backfilled after they grabbed samples for safety concerns. The variance request was submitted for BH-119 and BH-165, but now possibly BH-164. Cory found the most recent email from Jenni on Monday with these updated results & map. Cory, now reading the results aloud – BH-118, failed at 10', now OK at 13'. BH-119 had odor, dug down to 10', it passed. BH-165, just to left of BH-119, OK now, it passed, but BH-164 is now the new problem child. Clair confirmed that is correct. They're going to resample that area. There's nothing in the field notes, but it exceeded for DRO. BH-164 is just south of BH-165 a few pins on the KMZ. Near SW-55. It's at 8' now; they're going to trench it to find the bottom. Cory says this sounds logical. Clair said they'll also sample the remaining areas and hopefully keep moving forward. She asked Dusty if the site was dry and he confirmed they hadn't received any rain.

Cory and Clair discussed how much area was left and if the variance request could be ignored now. They still need to dig the light blue area on the KMZ along the west side and southern yellow area. She'd like the variance to still be in play in case they run into something else. They still have a day to a day and a half of sampling to get everything to the lab, and need to dig out BH-164 more.

Weather Delays: None at this time.

Two Week Look Ahead:

Faith brought up that we're right up against the west side of our lease footprint and there are surface lines right on the other side with history unknown. Maverick is taking over the oil & gas lease. SLO is reviewing the lease history for environmental incidents and the company history for Maverick. It shouldn't affect our remediation project though. She's uncertain if the operator change has been submitted to OCD.

It's mid-August and we have an end of September deadline, where does Dusty see the next two weeks going? Hopefully the field screenings and lab results look good in the areas we've dug deeper. He is concerned with the fence line and going out past that. Faith asked Cory to explain the OCD spill rule regarding spills off lease and it's requirements. Cory's call dropped.

Dusty said they'll continue to excavate the hot spots, backfill, then move to the smaller spot to the south. He's been holding off on digging that out. Ryan got home from dropping his kid off at school and pulled up the KMZ map. Faith asked if Dusty could backfill the areas with recent clean tests. Ryan said it would be OK and they want to move this along.

Jenni to circulate meeting #40 minutes for Final by end of the week if no revisions received.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: Need to chase down BH-164 problem area to determine extent of damage and we're encroaching on fence line to the West.

Critical Path Considerations: Want to keep variance request on the table until BH-164 can be excavated and tested further.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Ongoing sampling in field chasing down hot spots. Results coming in and circulated upon receipt.

Assign Follow Up Tasks For New Business:

Sampling on site 8/18 and 8/19. Clair will circulate results when received.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, August 31, 2022

Adjourn: 8:25 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - o SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.
- **Plan may be subject to change depending on data from soil and water samples.**
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

SI

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #42 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 8/31/2022

Meeting Time: 8:03 am, Wednesday August 31, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, September 14, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting: Still waiting on updated lab results.

Assign Follow Up Tasks For Incomplete Old Business: Clair will circulate lab results when received.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dusty said they continued to haul dirt out and backfill the areas that were able to be filled – south of the wellhead, 4' area to the west, also the small pit in northwest corner of location, the hot spot they had been digging out to the east, and the south wall of the small pit.

They'd left an area in place between the larger phase 2 portion and the small northwest pit. Around the north side of the monitoring well and this small section they'd left in place they found another degraded hydrocarbon zone. At 4' it was nasty and Dusty told them to keep digging it out until they hit rock. (Jenni added this in: This area is north of BH-119 and BH-165 for reference). The three degraded hydrocarbon zones may have bled together somehow underground.

There has been a lot of rain and it's been muddy. Dusty has shifted focus to moving the stockpile out. It may be too muddy and sloppy soon to continue with excavation. He doesn't want the heavy machinery to mess up the clean backfilled areas.

Faith asked Clair for an update on the soil samples. Clair said she's still waiting on the results and the lab is just really backed up. She's hoping they'll come in the next day or two but they're just busy. She confirmed that they sampled BH-164 and the west side trench so it will be a full picture of everything when the data comes in.

Faith asked Dusty how deep the third degraded hydrocarbon zone was. Dusty said they dug to 4' initially, then 6', still nasty, so he told them to just keep digging until they hit rock like the other two zones. It looked the same as BH-118, BH-119, and BH-165. They're about to 14-15' now and look like they're hitting rock again. Faith asked how Cory had felt about the status of the other two degraded hydrocarbon zones. Dusty confirmed that the samples were clean at bottom once they were dug out. So hopefully once this has been dug out, they can resample and see clean samples in this zone too. Ryan said hopefully we won't run into any more of these zones. Dusty commented it's strange to chase them in the field; looks like they could have bled together but then there are clean streaks of separation between them too. No one has heard anything from Cory to update.

Weather Delays: There has been quite a bit of rain and may be more in the forecast. Dusty may have to shut down the site for a couple of days if this is the case.

Two Week Look Ahead:

We're nearing the OCD's deadline with this cleanup. Faith asked that everyone pay attention to correspondence regarding this to help Dusty try to finish in time. We're still making progress but

completing everything by the end of September with a few snags will make it hard. Dusty said they're about \$1.5 million in so far on the remediation and added fines and penalties will cripple us. Insurance budget has been surpassed and Permian is paying out of pocket. Josh and Dusty are going to finish the project no matter what; it's just already a lot of money without additional fines and we are still making progress. Faith said she would be willing to ask the OCD for an extension if necessary and Ryan acknowledged that we were still making progress and there have been smaller spills opened up for longer; the OCD is overwhelmed with spills right now.

Hopefully the last round of samples will come in soon and be clean and Dusty can focus on backfilling. If the third degraded hydrocarbon area is dug out and it samples clean at bottom, then that can be backfilled too.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems: New degraded hydrocarbon area being dug out to 14-15' (rock)

Critical Path Considerations: Want to keep variance request on the table.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Ongoing sampling in field chasing down hot spots. Results coming in and circulated upon receipt.

Assign Follow Up Tasks For New Business:

Sampling on site 8/18 and 8/19. Clair will circulate results when received.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, September 14, 2022

Adjourn: 8:19 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - o SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #43 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 9/14/2022

Meeting Time: 8:03 am, Wednesday September 14, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, September 28, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting: Lab results received and circulated by Clair.

Assign Follow Up Tasks For Incomplete Old Business: None.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

The first week of September it had been rainy so it was pretty sloppy. Dusty emailed pictures. It was also Labor Day weekend. They were back to work at the end of last week. They excavated more material and continued to haul dirt out. Faith screen shared the most recent KMZ map for Dusty to walk us through.

Dusty referred to the green SW corner – was backfilled to 8-10" finished grade. SW-56 and SW-54 are open due to issues. The yellow area next to the SW corner – started backfilling, but left area around SW-45 open. They have not touched the tank area yet because he didn't want to open up too much. They dug out further on the little purple area, SW-63. Backfilled BH-164 and BH-119. Monitor well = open pocket of 15' buffer around it. Backfilled to E towards BH-191, SW-72. Dug all out to 14' until they hit rock. big pocket of hydrocarbon stuff. They were going to dig to 4', then 2' more, but once they dug it out it was mucky and smelled. So Dusty had them take it all out. SW-58, N of monitor well – dug out and it's ready for retest. They began to backfill the yellow area to the S and blue area in the NW corner and through to the light blue area to the E. He left a buffer at SW-46. SW-50 cleaned up, so they're filling up against that wall. SW-68, next to island around the monitoring well. Continuing to backfill N side of the injection well. The first hydrocarbon zone is clean, so backfilling that.

After looking at it all, it's not as bad as thought. Things are moving in the right direction. Dusty asked what is the plan with SW-46 N side of the pit and the W side of phase 2 area?

Faith said the exceedances are close. Mentioned a typo in the email for SW-58, was 88,970 and should be 8,970. The table has correct amount. Clair is hoping to have her reps out there Friday, but likely Monday for resampling. May need a variance for sidewall and monitoring well. They're not sure how much further out W they can go. SW-46 to the North too. They're about 6-8" from the fence line. They'd have to remove the fence and then there's polylines in that area. Same for the N side and that has the DCP line that we had to have them cut early on.

Cory asking questions looking at KMZ map. Has Clair sampled outside of SW-56 to the West? Clair said she doesn't have those now. Cory asked if they took other samples? To grant the variance to the W, it must be fully delineated. We're below closure standards, but not reclamation closure standards. Cory asked if the area was undisturbed and there's lines out there? Dusty said there's mesquite shrubs, heavily vegetated and some lines. Clair confirmed to horizontally delineate to the W? Cory confirmed, told her to grab samples out that way and take pictures for the variance request. Show the vegetation and that it's growing. The tests are pretty low. SW-69 is high. It's by the monitor well. That should be OK around monitor well for a variance. There are tests all around it. Dusty will take

pictures today. Clair will get horizontal samples to the W and can send pics and request all together. Cory said it's better to submit a variance request for each area, keep them separate. Then it's easier for closure report. Dusty asked if we'd include a variance request for the N area, SW-46. Cory looked at the result, it's 995 and asked if it was also at the fence line. Dusty confirmed and said the DCP line is also cut there from when we first started. Cory said to request a variance to not go further than SW-46 and you're close to the variance standard, show pics of vegetation that is growing.

Faith said she was pretty delighted with the numbers.

Cory asked if 45 will be dug out, to the S? Yes, may wait to dig out SW-54 and 45 when we go further S. Hoping battery containment is good. Clair said down to 4-5' deep. Dusty said they'll wait to submit the variance request to see all of the W wall. Cory said to grab samples to get an idea.

Ryan said he was able to relent on some of the spots. Asked if Dusty was expanding on SW-72? Dusty said it's up for retest. E of SW-72 has actually been excavated out. They're out as far as the purple shaded area below it. Ryan asked BH-191, 193, 192? Dusty said yes, it's excavated to 14-15' to rock and it's ready for retest. That purple area is 14-15'. Cory commented that it went from 5' to 15', must have been pretty nasty. Dusty said it was. They took 4' down and just kept going. The odor was bad. Ryan thanked Dusty for explaining everything going on.

Weather Delays: Site was shut down at the beginning of last week due to rain.

Two Week Look Ahead:

Faith went around asking everyone for their questions. Cory asked if Dusty would be done by September 30th. Dusty said it was going to be real close. It'd be backfilled and to be topped with caliche. Polishing will still need to be done. And dirt hauled off still. He is optimistic but can't tell him for sure. Cory said so the remediation will be done, just not capped? Dusty said yes, it would be close but not picture perfect. Cory asked how much impacted soil was left? Dusty estimated 10,000 yards.

Ryan asked if Dusty had seen anyone out there working on an old tank battery to the SW lately. Dusty said yes, there have been some tank vac trucks and some tanks being removed. There's a small building around the wellhead. Ryan said they didn't know who was doing that.

Clair is good. She will send notification email for sampling soon when it's confirmed. Send Jenni #42 edits if you have any.

Dusty said he worried about issues with getting lab results timely, probably just going to say to pay more to expedite, but stuff that's out of our control generally, what happens if we don't meet the deadline? Cory said we'd be out of compliance with the rule and could be fined up to \$25K per day or \$2500 per day, unsure on that. He doesn't do it often. He doesn't know if they'd take that route per say, but 2 years is a long time to have this open. Dusty asked if it was the longest remediation and Cory wasn't sure. Faith said it was not for the SLO. She asked Cory for lenience because they're seeing good progress. The weekly meetings have been good for the Water Bureau and Commissioners to think we're making progress and in good faith. Cory doesn't disagree. He's saying the extension request was in March and we've all known what to work towards. Concerns have been communicated about getting rid of soil faster. Weather is it's monsoon season, rain should be expected.

Faith told Dusty to dig and haul like the wind.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations: Want to keep variance request on the table.

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Ongoing sampling in field chasing down hot spots. Results coming in and circulated upon receipt.

Assign Follow Up Tasks For New Business: Another round of resampling

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, September 28, 2022

Adjourn: 8:40 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Si

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
 - STEXND
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****Flan may change subject to sample data from spill and water testing ****

Progress Meeting #44 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 9/28/2022

Meeting Time: 8:06 am, Wednesday September 28, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, October 12, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting: Preliminary lab results received and circulated by Clair. She's waiting on BTEX results.

Assign Follow Up Tasks For Incomplete Old Business: Clair will circulate final results when received.

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dusty started by saying that all areas previously excavated that tested clean have been backfilled. He referred to the updated KMZ map Clair sent, and it has new colors now. BH-191, 192, and 196 were dug down to 15' and tests came back good, so that's been backfilled. BH-122 and 127 area was backfilled. All up to the North and East, where the small pit was has been backfilled. Everything except the area around the monitoring well and the areas where additional data is needed has been backfilled.

They started digging out the old tank area in the Southwest corner for testing. They continued to haul dirt out. Faith asked the current size of the stockpile across the road. He said it is about 5000 yds. It won't all be hauled out by September 30th. Last Wednesday they'd backfilled all the areas they could and have focused on hauling of dirt since then while waiting on test results.

Faith asked about the test results. Clair said she received preliminary data for TPH and Chlorides, but not BTEX. Importantly, most samples came back good with the horizontal samples they collected for the North and West variance requests. The South portion, new area had 4 bottom holes and 1 sidewall that exceeded for TPH. Faith clarified that this was the old tank battery area. Clair said they may need to request a variance there. The TPH threshold is 1000 mg/kg for GRO/DRO or 2500 for total TPH. We had 1200 mg/kg GRO/DRO and 1 had 3000 total TPH. BH-201 was higher though. Dusty thinks it looks like a vein running towards BH-207, which is good. Clair said they're at 4-1/2' deep, but they didn't have good data on that.

Faith asked Dusty based on his experience with this site if was able to continue excavation. Dusty asked Clair was our next depth was. Clair said we're at it. Dusty said if we're right at the mark for BH-200, 201, 205 and 206 we can try to go 2' deeper. Clair said BH-201 and 205 will be tough because they're right next to each other. She screen-shared the KMZ. SW-77 also had a slight exceedance, but the samples look OK in the preliminary results, just still need BTEX. Faith said we were set to request a variance there and asked if it was feasible to excavate out another 2'? Dusty said they could. He asked if he needed to go out further East on SW-75, like 1'? Clair said 10'. Dusty confirmed to excavate down to 5-5-1/2' and out 10' to the East. Start at trench at BH-201 and go East. Clair said that should be all that's left.

SW-72 was a bit high for TPH, but it's 8' deep and it's hard to grab at that depth. Faith said it's not safe and we've already done so much it's not rational. Focus on going to 5-6' in the old tank battery area. Dusty said SW-72 is about 15' away to getting too close to SW-8 and 9 in Phase 1. Faith said she wasn't as concerned with this exceedance now that the site with backfill is looking pretty good overall and it will be difficult to get in there. Ask for a variance from Cory. Dusty said he could excavate, but

putting someone down there was the issue. Faith asked for the exceedance and Clair thought it was around 400 TPH, which Faith said wasn't too bad.

Weather Delays: Site was shut down at the beginning of last week due to rain.

Two Week Look Ahead:

Faith asked if Dusty had his method for the South excavation. Dusty confirmed he has the room for it. He has trucks and people. He'll be able to backfill and continue to haul dirt out. The final grade and polishing will still need to be done and breaking down the berm and liner for the stockpile.

Faith asked Clair how long the closure request process takes. Clair said once she gets the final lab results for recent samples, she can submit a variance request, then we can submit a final report. This is a beast of a remediation and it will probably take her 3 weeks to pull everything together to submit the closure report. Faith asked that since Ryan and Cory aren't on the call, can we let them know what we've discussed, what we're submitting and when. So they can keep it on their radar that we're continuing to move forward. Lay out a schedule for them so they know what we're working towards.

Dusty asked if we should leave SW-72 and the monitoring well area open? Clair will try to get that variance request submitted to Cory today. Cory won't approve other variance requests until the final lab results are received. Dusty asked if he'll need to wait a bit and Clair said he should approve it. Discuss strategy for backfilling only certain areas and how long it may take to get the results in so Clair can request a variance for the North and West boundaries. Clair hopes she can submit requests for these areas by end of week. Faith asked if Dusty just focus on excavation this week until we know on variance for backfilling? She asked Clair how long variance requests usually take to be granted. She said usually as fast as they review them; she usually includes them in work plans, but they're mainly double-checking data so it's usually pretty quick. We're trying to avoid holdups in the field.

Dusty can backfill BH-155 and 156 in a day – day and a half, then excavate the area that needs to be dug out more.

Faith asked if we should meet next week and if anyone has any questions? Clair has no questions. Thoughts on meeting next week is based on Cory's responses to her requests. Dusty said unless they're able to get more samples he's not sure if there's enough to discuss by next Wednesday. The end of next week would be better. Jenni said that keeping everyone in the loop through email with the sampling and results and variance requests seems to work for the most part. We can decide to have a meeting if needed.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Critical Path Considerations: Keeping variance request on the table.
Commissioning:
Special Inspections:

Unforeseen Conditions or Problems:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Ongoing sampling in field chasing down hot spots. Results coming in and circulated upon receipt. Hopefully down to last round of resampling Phase 2.

Assign Follow Up Tasks For New Business:

Dusty to dig out Southwest old tank battery area more and another round of resampling for BH-200, 201, 205 and 206 and SW-75.

Variance Requests submitted to Cory.

Dusty, Clair, and Jenni to visit and lay out when last items will be completed with approximate timelines for Ryan and Cory so they are in the loop without needing to see these minutes.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, October 12, 2022

Adjourn: 8:39 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Si

Site outline

Phase 1 Remediation Area

Test Well #2

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #45 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 10/12/2022

Meeting Time: 8:02 am, Wednesday October 12, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, October 26, 2022

SUMMARY

- 1. Notice To Proceed Issued: <u>August 19, 2020</u> upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A
- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting: Final lab results w/ BTEX received and circulated by Clair.

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dusty started by saying they lost about a week due to rain. Prior to that they've just been backfilling clean area and hauling bad dirt off. Yesterday he had the loader backfilling and adding dirt to some of the puddled areas.

Faith asked Cory if he'd had a chance to review the emails Clair had sent yesterday. He's been off and away from him computer since last Friday. Dusty said she'd sent variance requests for the North wall, West wall boundaries, the monitor well area, and another side wall between two areas. She sent one variance request per email.

Cory asked the results of H-2, -3, -4 & -5. Dusty said those were all clean. These results are on the last page of the most recent lab results. Jenni mentioned the email had not included the pictures Dusty had previously sent showing vegetation regrowth outside the fence line. Cory asked if the variance request was for the top 4' and Dusty thought it was. Cory said those numbers look fine.

Moving on to the variance request for SW-72, up by the hot spot. Clair's email has the data in it. It's on the East side of Phase 2, 25' from Phase 1. Dusty found Clair's email to read. Cory asked what was so hard to sample? Dusty said it was not benched and a sheer 8' drop. Cory asked if they could use a backhoe? Dusty said they'd have to bench the sidewall back. The results are 436 so we'd talked about it and thought it would be OK. Cory said he has to defend his response and it wouldn't be vertically delineated. Dusty said the sample was collected at the bottom half of the wall. Cory is wondering about the area between SW-72 and SW-9 (in Phase 1). He's wondering if that is clean, or how much would you be leaving in place. Dusty said we'd need to get with Clair to respond. Cory said that at 8' 436 is fine. He has issues approving a variance in the middle of a site. He said to backfill and get a clean sample later. Other people have to review this too and we have to show that it doesn't go any further. Needs to be vertically delineated. He has to see the numbers so talk to Clair.

Moving to H-1. That is clean. Cory confirmed Dusty had been sent pictures of vegetation along this North side of the fence line also and said that should be OK. Dusty said he'd get with Clair about SW-72. He asked if the monitoring well variance was OK. Cory said he was fine with leaving that in place. It was for SW-71, -60, -70, & -69, sent on September 30th. Dusty read some of the figures from the email. Cory asked him to hold on; he was responding to the variance requests, so we had what we needed to move forward.

Weather Delays: Site was shut down for about a week with uncharacteristic rain for this time of year.

Two Week Look Ahead:

Moving to discuss SW-45 and -75, Dusty said he's going to take those out 4' down and 10'. There's a white rectangle on the KMZ about that far out East. He's going to expand SW-76 out and field screen to see how the results look for how far they need to go. HZ-7 was good. It's been too wet to expand. It's the area right under the old tank battery. The field screenings looked bad so they'll take it out further. Dusty asked their thoughts. Cory said it could be a lighter impacted area, these do weird things, it could have been right where a valve was by the tank, who knows, let the data drive you. If you can get it under the thresholds, you're past the deadline but you're close. Maybe you do a trench between SW-72 and SW-9 and dig a trench to check depth.

Faith asked when Clair could come sample again. Dusty said they needed it to be dry enough to get the machinery in place first for her to get in there and she's been busy. Possibly this week, but it's already Wednesday and they still need to dig. He'll check with her.

Faith asked if everyone had any comments. Jenni is good, meeting minutes are up to date. Dusty is good. Cory is good and he's approved all the emails we sent. Faith let us know of SLO change up and Ryan will be stepping down from remediation. His replacement got pneumonia though. Faith doesn't think she'll be involved with this one since we're getting close to finishing.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Ongoing sampling in field chasing down hot spots. Results coming in and circulated upon receipt. Hopefully down to last round of resampling Phase 2.

Assign Follow Up Tasks For New Business:

Dusty to dig out Southwest old tank battery area more and another round of resampling for BH-200, 201, 205 and 206 and SW-75 and SW-76. Dusty and Clair to get game plan for sampling SW-72 further.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, October 26, 2022

Adjourn: 8:43 am

- *Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations***

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Si

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg C1*
 - STEKNO
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum S'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Progress Meeting #46 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 10/26/2022

Meeting Time: 8:03 am, Wednesday October 26, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, November 9, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dusty started by saying the prior two weeks saw a ton of rain that impacted the site and the ability to work. This Monday was the first real day they're all back on site. Last week they were able to work a bit hauling the stockpile out. Monday they were able to start backfilling along the Western edge and Northern edge, and around the monitoring well where variances were approved. They're finishing the backfill that was needed in the deeper areas. They would have been much further along at this for today's call except for the rain. They're hauling and working now though.

They started digging out more at the old tank battery location in the SW corner. They dug out 4-6' on the South side wall and East side wall to add to the stockpile. They're right by the entrance and doghouse and telephone pole, so they're working carefully around that area. Faith asked if they would need to move the doghouse. Dusty said they may have to if they continue further East; it's a bit congested in that area.

Faith asked how far along they were with backfilling? Dusty said 75%, maybe 80%. They'd be a lot further if it hadn't been for the rain. They're filling the deeper areas now that were 15'; it takes some time.

Faith asked about the site conditions currently. Dusty said it was still drying out. It's wet, but not saturated anymore. Monday there was a small shower, but it didn't rain a lot. It's actually tightened the ground up a bit. The machines are running on it OK and compacted it in.

Faith asked about the condition of the lease road and if there were other companies using it? Dusty said it was OK – there's one large puddle they avoid. There's quite a bit of traffic out there, but they're usually not in the right places so they turn around. There's a lot of truck traffic and activity, fracking out there. Faith asked who it was. Dusty said it's over a hill so he's unsure, but once at the highway you can look back and see it in the distance. He hasn't driven that far back out to check out lease signs. Faith said if the road deteriorates too much from wear, we can ask some of the majors to clean it up if they're out there. Dusty said Merchant Livestock is out there with a private property sign and they want you to sign for surface use to cross. Faith said they're collecting tolls out there, but they're not putting it back into the road there. Dusty said he can check out lease signs; he thought Matador bought a bunch a land out there? Faith said yes although there may be issue with the sale, but she has nothing useful to state. Keep her informed if the lease road use becomes an issue to continue. Dusty said it's mostly guys coming out to do meter readings by our site.

Weather Delays: Site was shut down for about a week and a half from rain.

Two Week Look Ahead:

Faith asked Clair what sampling was still needed. Clair wasn't in front of her computer, but they need to resample the bottom holes that exceeded (old tank battery), SW-72 and 9 area, and SW-75 and SW-76. They're hoping to sample early next week. Dusty needs to dig out a bit more on the East side for Clair to sample. He should have it ready for her early next week.

Faith said it sounds like we have a plan that's reasonable for the next two weeks. Ryan said that someone from Merchant Livestock called him and said that Dufrane was putting contaminated soil back into the ground. Dusty said he had no idea, but he'd look into it. He didn't think that was the case. They haven't approached him. Ryan said Centennial and Mewbourne were in the area.

Faith asked if anyone had anything to add. Everyone is good. Meeting #45 minutes have been circulated for 48 hr review. Josh hasn't been on in a while. Dusty said he's up to date on everything and the plan is to just finish this out. Faith said she'd talked to him last about bonding and releases and that it was still her plan to release the bond when closure was approved.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Continued sampling in field chasing down hot spots. Results coming in and circulated upon receipt. Hopefully down to last round of resampling Phase 2.

Assign Follow Up Tasks For New Business:

Dusty to dig out Southwest old tank battery area more and another round of resampling for BH-200, 201, 205 and 206 and SW-75 and SW-76, and SW-72 area. Hopefully they will resample early next week.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, November 9, 2022

Adjourn: 8:23 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- - -

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****Flan may change subject to sample data from spill and water testing ****

Progress Meeting #47 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 11/23/2022

Meeting Time: 8:03 am, Wednesday November 23, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, December 7, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance: (Four-Week Performance)

Dusty reminded us that they'd struggled the last few weeks with rain delays, but they are finally back on track. They've excavated out more of the smaller old tank battery area - the southern wall SW-76 and SW-79, and the east side wall and floor (SW-75 and SW-83). They're at the southern edge border of the lease. There was about 1 week between excavation and samples coming back with data. Clair circulated soil results to everyone yesterday

They continued to backfill phase 2. SW-72 was delineated for Cory; Clair sent that data to Cory yesterday. All were under thresholds. That's being left open for now.

They backfilled the western side of the small tank batter where it's clean. They've been hauling dirt out, running 13-14 trucks at a time, then something breaks and they may go down to 8-9 trucks at a time. Dusty is using 4 different truck companies to haul off the stockpile of dirt. The liner and last bit of dirt on top will need to be hauled out. It's estimated to be around 3,000 yds left. Backfilling is approximately 93-95% complete, so they've been making good progress there. Trucks can run over areas now and they're using machines to smooth it out. It's filled with red soil and there will be caliche on top to finish it off. Caliche will need to be brought in.

Faith said that sounded good. She wanted to know about SW-81 and SW-82, the small inner wall area tank battery area with exceedances and the plan for that. Clair said those are above SLO and below OCD thresholds for chlorides. They can leave in place or expand. It's between 4-10', so it'd be expanding 10' down. Faith confirmed the exceedances were at 4'? Clair said they were at 4.5' because the top 4' is already gone. Faith is working from Michigan and using a smaller laptop to look at the kmz and table. She asked about results between here and SW-77 to the west/western edge of excavated 4'? Clair said 4.5'. Faith: there were exceedances at SW-77? Clair; Yes, most exceeded for chlorides and that's why they horizontally delineated and requested the variance there. Faith said where we're at with SW-81 and SW-82 is OK.

Clair said based on the recent results, they still need to do more digging and get the SW-72 variance. SW-75 was above chloride thresholds from surface to 10' and will be expanded out further east to 10' deep. SW-76, SW-79 and SW-83 exceeded at 4'. The doghouse is close to this area, but HZ-7 was clean. So top 4' needs to be expanded in these areas.

Faith asked if we had samples for the entire old tank battery area now. Clair said yes. And BH-210 exceeded for TPH. Dusty said the plan is to dig out a 400 square foot area at BH-210 and see what they get. Faith said it looks like there could have been a leak, or a hole in the liner there. It's right under the old battery and it's an old facility that could have had leaks through the years.

Weather Delays: Site was shut down for rain delays but has been back at it.

Two Week Look Ahead:

Dusty will move the doghouse about 15-20' over to excavate the SE corner out further 10' to the east. He needs to keep trucks moving through the area. He's been using the western side of the old battery area that's been backfilled as a path. It should take 2 days to dig out the remaining area with the excavator. He'll make sure there is good traffic flow to haul and dig. Then get with Clair to resample. They'll take Thanksgiving day and Friday off. Hopefully they can sample in a week to a week and a half. And keep moving dirt out.

We all agree it sounds like we're getting close! Hopefully Cory can review and approve the variance request for SW-72 soon.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Continued sampling in field chasing down hot spots. Results coming in and circulated upon receipt. Hopefully down to last round of resampling Phase 2.

Assign Follow Up Tasks For New Business:

Dusty to dig out Southwest old tank battery area more and another round of resampling for BH-210 and SW-75 and SW-76, SW-78, SW-79, and SW-83 area. Confirm SW-72 variance request granted to backfill.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, December 7, 2022

Adjourn: 8:22 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - o SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.
- **Plan may be subject to change depending on data from soil and water samples.**
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

_ . _ .

Site outline

Phase 1 Remediation Area

Test Well #2

***Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths
 - a) All areas not noted in key, excavate to 6'.
 - Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
 STEX ND
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****Flan may change subject to sample data from spill and water testing ****

Progress Meeting #48 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 12/7/2022

Meeting Time: 8:01 am, Wednesday December 7, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, December 21, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

SW-72 variance was granted via email. Dusty said they took off for Thanksgiving and that night it started raining out there. The rain turned into snow Friday and Saturday. They got 2-4" of snow. The pictures he'd emailed to everyone were from Sunday evening. He actually almost got stuck out there. It melted on Monday but it was sloppy. By Friday morning it was still too nasty for trucks. It rained again Sunday night, but not much. They were able to get out there Monday to haul dirt out.

They haven't been able to start excavation on the small pit yet because it's still pretty nasty. They're mainly hauling dirt. Dusty was on his way to the site and it started raining on him. They can't get a break from the rain. He hadn't checked the forecast yet, but he was hoping they could continue hauling dirt. The snow really set them back. It's hard to report this.

Weather Delays: Site was shut down a week for rain delays but they've been back at it.

Two Week Look Ahead:

Faith agreed the weather slowed things down. She asked how much was left to haul. Dusty said 1500 yards across the road. It will be gone by next week and they'll build it back up when they dig the small pit out. It's 10' deep and 4' deep to the East and South.

Faith asked when they may be resampling. Dusty said hopefully by late next week. Clair said she needs a bit of lead time, but she should be able to schedule next week. Dusty asked to set it up for next Wednesday.

Cory asked what is still left to dig? Dusty responded the small tank battery area had to dig out the 4-6' area down to 10' at that BH-210. Then the further out East to 10' and further South 4' down. Cory said maybe 1000 cubic yards? Dusty said that sounds about right.

Faith chimed in that the weather was not looking good for Dusty. She asked if people were available on December 21 for the next meeting. Everyone is and Cory isn't sure.

Cory asked Clair to only show clean samples when she submits her final report. He said it will be cleaner and easier to review since there are over 200 samples.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

T	T C	O 1'.'	T 1 1	
	ntorgogan	('onditions	or Probl	ame.
ι		Conditions	01 1 1001	icilis.

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Continued sampling in field chasing down hot spots. Results coming in and circulated upon receipt. Hopefully down to last round of resampling Phase 2.

Assign Follow Up Tasks For New Business:

Dusty to dig out Southwest old tank battery area more and another round of resampling for BH-210 and SW-75 and SW-76, SW-78, SW-79, and SW-83 area.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, December 21, 2022

Adjourn: 8:14 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

SI

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg C1*
- STEKND
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5".
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #49 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 12/21/2022

Meeting Time: 8:03 am, Wednesday December 21, 2022

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, January 4, 2022

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dusty said they've dug out the tank battery areas and tested last Wednesday, the 14th. Everything but the tank battery area has been backfilled. They're graded to the point where it sheds water, but they won't cap it until everything is complete. Subgrade is complete. They continued to haul the spoils across the road. 1/3 of back containment is down, 2/3 left to go. They're stockpiling clean dirt across the road for backfill.

Faith asked if they took samples at all 7 places that needed it? Clair said yes. They haven't gotten the samples back but based on what they saw in the field, it looked pretty good. Faith said that once samples back, if they're good, you can backfill the old Southwest area? Dusty confirmed yes, that will be the end of the excavation; it will be capping and removing spoils at that point. He'd say they are 95% done. Hopefully there are no issues with testing. Clair said they did field screening with exsticks for salinity, and they looked OK. Hopefully by this time next week she'll be writing her report. Faith said that was great news!

She asked about the grade for the caliche cap. Dusty said subgrade is ready for the caliche cap. They'll backfill the current areas and then caliche. Faith said caliche in January then? Dusty said yes, it will be a lot. It will probably take a week and a half to haul it in.

Faith asked about the new tank battery location? Dusty said it will be the same as the KMZ he'd put together showing all the pipelines is what he'd propose. Not the KMZ with all the testing samples. It was in the Northeast corner, portion of undisturbed area North of Phase 1. Faith said she was going to need to check if they've done an ARC survey for the entire lease. Dusty thought they had done one for the entire lease. Faith said she'd get with Dusty about it to make sure they have that on file with the Cultural Committee. Dusty said 'undisturbed' meant they didn't excavate it, not virgin land. Faith said there is a new Cultural property rule that went into effect December 1. She thinks they should be fine, but they should discuss.

Weather Delays:

Two Week Look Ahead:

Faith went around the call to see if anything had anything to add. Ryan said it sounds like it's coming to a conclusion, which is good. He was out on vacation for our last meeting. Cory said he had no questions, we're getting there. He'd like the closure report for Christmas Last meeting he'd asked Clair not to include dirty samples in the tables and place an 'x' on lab reports for dirty samples. It takes him longer to review, so just clean samples. Clair said there will be a handful of

samples, SW-78 she thinks, where it was completely removed. They usually highlight those of their tables but she'll note that on the table so it doesn't look like she's removed something entirely. Cory said that was fine, and color coding is fine too. Clair said she'd highlight and list if it's been removed or in situ. Jenni was good. Dusty was good.

Faith thanked everyone for their work. It's been a lot of work. She asked Dusty about the holiday work crew and hours and if January 4th worked for the next meeting for everyone. Dusty said they'll work a half day Friday and Monday off. They'll be back to work the 27th, 28th, 29th, half day on the 30th, back to work Tuesday the 3rd. They'll continue to haul in clean dirt and out bad dirt and wait for the lab results. We'll plan on the next meeting for January 4th. Hopefully we'll get good lab results and no more excavation.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Continued sampling in field chasing down hot spots. Results coming in and circulated upon receipt. Hopefully down to last round of resampling Phase 2.

Assign Follow Up Tasks For New Business:

Waiting on lab results for Southwest old tank battery area, BH-210 and SW-75 and SW-76, SW-78, SW-79, and SW-83 area.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, January 4, 2022

Adjourn: 8:23 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - o SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.
- **Plan may be subject to change depending on data from soil and water samples.**
- ***SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - b) Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

- - -

Phase 1 Remediation Area

 \Rightarrow

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excevate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ***

Progress Meeting #50 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 1/4/2023

Meeting Time: 8:06 am, Wednesday January 4, 2023

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: 8:00 am, January 18, 2023 or January 25, 2023

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Jenni Usher	512/820-8772	jenni@permianws.com	Permian Water Solutions LLC
Dusty McInturff	617/584-2889	dmcinturff@dufrane.com	Dufrane Construction

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

Dusty said the holidays slow played the work a bit. They continued to haul dirt in and out. They've graded to the slope of location to shed water; they just need to cap it with caliche. They haven't done any more excavation – the same area is still open. The size and location make it hard to maneuver around the site.

Clair sent samples and we're still not out of the woods. The South side of the tank battery is close to the tolerance, but we're 2' from the lease line, similar situation to the North and West side areas. We think we'll be able to request a variance for that. We had a good reading at a nearby delineation point (HZ-7). There's no vegetation regrowth though because it's just a caliche area out there. Faith asked if it's in the area where there are three pipeline ROW? Dusty said it was, it's along the road, which is over a pipeline ROW. It's not a real road, it's along part of the ROW and it's pretty rocky. Possibly an old ranch road, pretty rough. The results were only a little above tolerance though. Faith said to request the variance there.

Dusty continued that the East side also had higher results than we'd like. He's been in the field a lot and hasn't been able to be on his laptop much so he's not exactly sure of the results but it was in the top 4'. They're currently at 10' from the Centennial lease line. They may be able to dig out 4-5', maybe vertically delineate closer to the lease line, but it's already close. Faith wondered if Cory would allow a deferral or variance. Jenni jumped in to read email from Clair to reference the sidewalls with exceedances: SW-76 to South, but we have good HZ-7 down there so possibly ask for variance there; SW-75, -79 and -83 along the Eastern wall. Faith asked how much further Dusty thought he could dig and he said he's right up against the lease line to try to get an excavator in there. Faith asked if he could do deeper because she's thinking further ahead for root vegetation and veg regrowth. 8' is better, if we're able to get what you can down to 8' that's reasonable, then ask for a deferral or variance. She uncertain of which one because they have specific meanings to the OCD with regard to when it's dealt with – now or once the well is plugged. She's uncertain how Cory feels about it.

Weather Delays:

Two Week Look Ahead:

Faith asked Dusty to get with Clair and see what they think they'd be able to manage going deeper. Faith asked Jenni to circulate Clair's email with the lab results to everyone. She doesn't want to hold up the project in the field by not getting Dusty responses on how to move forward and we're very close to being complete in the field. She'd like to see Permian get this SWD back up and running. She thinks that the work we've already done will be good for regrowth/re veg efforts in the future.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

- 1. Phase 1 closeout tasks (Phase 1.5)
 - a. Phase 1 pit will be capped with an 8" caliche cap once both phases are complete. Continually remove spoil dirt to assist with Phase 2 excavation dirt accumulation.
 - b. Continued sampling in field chasing down hot spots. Results coming in and circulated upon receipt. Hopefully down to last round of resampling Phase 2.

Assign Follow Up Tasks For New Business:

Jenni circulate Clair's lab results for Southwest old tank battery area, BH-210 and SW-75 and SW-76, SW-78, SW-79, and SW-83 area. Need to address slightly higher results for SW-75, -76, -79, and -83 with OCD and field feasibility to remove.

Verify Date and Time of Next Meeting: 8:00 am, Wednesday, January 18, 2023 or January 25.

Adjourn: 8:23 am

*Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

Site outline

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
 STEX ND
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- - Pit location min 1' excavation
- Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****Flan may change subject to sample data from spill and water testing ****

FINAL Progress Meeting #51 Template

Project: Kaiser State #9 Contract: SW-330 Today Date: 1/18/2023

Meeting Time: 8:09 am, Wednesday January 18, 2023

Place: Zoom https://us02web.zoom.us/j/81803325780?pwd=eS9GbDNaWHcyUmc5WXh2cEZLYW1ZZz09

Meeting ID: 818 0332 5780 Passcode: 998322

Next Meeting Date and Time: NONE

SUMMARY

1. Notice To Proceed Issued: <u>August 19, 2020</u> - upon Commissioner's signature date of SW-330 Easement re-issue contract Exhibit A

- 2. Original Contract Time for Phase 1 work plan: 90 days total (by November 16, 2020)
 - a. 45 days for excavation and final sampling
 - b. 60 days for back fill and clay membrane liner placement
- 3. Number of Contract Modifications to Date:
 - a. 4/14/2021; 1- SW-330 Amendment#1 adding acreage to include the new haul road location
- 4. Revised Contract Time for Phase 1 work plan:
- 5. Original Contract Substantial Completion Date:
 - a. November 17, 2020, missed
- 6. Revised Contract Substantial Completion Date:
 - a. July 12, 2021 (signed road acreage amendment 4/14/21 plus 90 days), missed
- 7. Delays: by Authorities Having Jurisdiction, Number-Log entries:
 - a. SLO- Rights of Ways for new haul road, 2/18/2021 amendment#1 sent to PWS. Executed 4-14-2021

Sign In Sheet / Attendance:

(Name, phone number, email, and representing what entity)

	,	7 8 37	
Faith Crosby	505/827-5849	fcrosby@slo.state.nm.us	NM State Land Office
Ryan Mann	575/392-8736	rmann@slo.state.nm.us	NM State Land Office
Clair Gonzales	432/687-8123	Clair.gonzales@tetratech.com	Tetra Tech
Cory Smith	505/419-2687	Cory.smith@state.nm.us	NM Oil Conservation Division

Review Previous Meeting Minutes:

Old Business / Action Items From Last Meeting:

Assign Follow Up Tasks For Incomplete Old Business:

None

Safety:

Site Observations:

Submittal Log: Dusty's side. Faith will help as much as she can.

RFI Log: Dusty's side. Submit requests to Faith, the RFIs will be Dusty's record and Faith will solve/help as much as she can. Dusty will generate project numbers for the RFIs.

Corrective Action Log: Faith will keep this.

Change Orders: If access under SLO Easement SW-330 needs to be changed, this will be done by amendment after an RFI.

If Dufrane has change orders to their contract with PWS those will be handled on the Dufrane side.

Collaborative section

Schedule: [contractor supply Gantt Chart]

Prior Two-Week Performance:

No prior Two-week performance available as Dusty is not on the call today.

Cory asked Claire about lab results chloride levels for SW-75, SW-76, SW-79, and SW-83. There is now an excavation proximity issue with east side lease boundaries, and Cory said we can use borehole data for SW-75 (CL = 1,020 mg/kg. at 0-4') and SW-83 (CL=1,070 mg/kg at 0-4'). SLO is in agreement.

Weather Delays:

None noted

Two Week Look Ahead:

Claire will put together a closure report with updated site maps, variance approval emails, bore hole data. Cory and Claire talked about submitting clean sample data and 'x-ing out' the few dirty results so data could still be seen. Cory said the closure request must be sent in separately for each open RP/incident. A deferral should be requested for reclamation and reseeding work until final site closure effort. Cory would like to see the report by the end of February 2023. Claire says it may be ready a bit sooner.

Contractor Staffing & Subcontractors: Permian Water Solutions make sure original contract with prime contractor includes specific language that explicitly states that all subcontractors and all subordinate sub-sub contractors -second and third tier subs – are contractually bound by the same terms and conditions as pertain between Owner and Contractor.

Unforeseen Conditions or Problems:

Critical Path Considerations:

Commissioning:

Special Inspections:

Payment Schedule:

New Business / Comments / Questions / Grantee / Lessee / Contractor / Landowner / Agency / Participant Concerns:

Faith would like to receive regular weekly short email updates from Jenni and Dusty regarding ongoing site work.

Assign Follow Up Tasks For New Business:

Claire will submit a closure request/ report for all open incidents by the end of February to the OCD and SLO.

Verify Date and Time of Next Meeting:

None. This meeting will be considered the final bi-weekly progress meeting for this group. Thank you all for the last 2 years and all the effort. Thank you for committing to come to all the meetings, each of you.

Adjourn: 8:31 am

SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations

^{*}Permian Water Solutions LLC to publish minutes, giving 48 Hours To Correct

MEMORANDUM

Subject: Kaiser State #9 Phase 2 Remediation Work Plan

Remediation Plan Requirements:

Phase 1 closeout must be completed including:

- Installation of Test Well #2
 - o Determination of source of groundwater contamination;
 - Development of abatement program with monitoring and recovery wells and reporting program.
- Phase 1 Final Report
 - o Include photos, final samples etc.;
 - SLO to confirm and approve.

A. Tasks:

- Submit new pad site plan for SLO review and approval.
- Remove any remaining equipment and debris in area.
- Excavate Phase 2 remediation areas to Map and Key listed depths.
 - i. All areas not noted in key, excavate to 6'.
- Requirements for final samples:
 - i. Floor samples to be taken in same location as previous samples.
 - ii. No less than 3 each cardinal sidewall samples around the perimeter.
 - iii. Samples shall meet the following criteria: 1,000 mg/kg TPH, 7,000 mg/kg Cl⁻, and BTEX ND.
 - iv. PWS shall give SLO 1 week notice prior to final samples being taken so that SLO staff may attend and take duplicate samples at PWS cost.
- Backfill non-blended soils and place a clay/bentonite mat at a minimum of 5'.
- Investigate off-pad spills and coordinate remediation and reclamation with SLO.
- Reclaim unused roads/pad areas in coordination with SLO.

B. Timeline:

- All equipment/debris to be removed within 30 days.
- Excavation and final sampling to be completed with 60 days.
- Backfill and clay membrane liner placement to be completed within 60 days.
- The proposed timeline for the first four stages is no more than 150 days.

^{**}Plan may be subject to change depending on data from soil and water samples.**

^{***}SLO approval does not relieve Permian Water Solutions of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, SLO approval does not relieve PWS of responsibility for compliance with any other federal, state, local laws and/or regulations.***

Kaiser State SWD #9

Phase 1 Work Plan Close-Out Tasks:

- 1. Installation of Test Well #2.
 - a) Determine source of groundwater contamination.
 - Develop monitoring and recovery well abatement program to remediate ground water and capture extent of plume.
- 2. Phase 1 Final Report.
 - a) Confirm all Phase 1 tasks were completed.
 - b) Include photos, final samples etc.
- 3. Conduct Phase 1 field inspection with SLO staff.

Map Key:

____ s

Site outline

Pha

Phase 1 Remediation Area

Test Well #2

Plan may change subject to sample data from soil and water testing.

Kaiser State SWD #9

Phase 2 Work Plan Tasks:

- 1. Submit new pad site plan.
- 2. Remove any remaining equipment & debris on site.
- 3. Excavate Phase 2 remediation areas to Map Key listed depths.
 - a) All areas not noted in key, excavate to 6'.
 - b) Final samples to the following closure criteria:
 - 1,000 mg/kg TPH
 - 7,000 mg/kg CI*
- Backfill non-blended soils and place a clay membrane/bentonite mat at minimum 5'.
- 5. Investigate off-pad spills and coordinate remediation with SLO.
- 6. Reclaim off pad areas.

Map Key:

- - Completed/Out of scope areas
- - Areas of 15' excavation
- Pit location min 1' excavation
- - Pasture spills at new temporary staging area location
- **First four stages to take no more than 150 days.**
- ****plan may change subject to sample data from spill and water testing ****

Appendix D

Laboratory analysis

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-5572-1

Laboratory Sample Delivery Group: New Mexico

Client Project/Site: PWS-Kaiser

Revision: 1

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

KRAMER

Authorized for release by: 9/13/2021 9:28:06 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 9/1/2023 2:07:08 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

10

12

Client: Tetra Tech, Inc.

Laboratory Job ID: 880-5572-1

Project/Site: PWS-Kaiser

SDG: New Mexico

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Job ID: 880-5572-1

SDG: New Mexico

Qualifiers

Client: Tetra Tech, Inc.

Project/Site: PWS-Kaiser

GC VOA

Qualifier **Qualifier Description**

Surrogate recovery exceeds control limits, high biased. S1+ Indicates the analyte was analyzed for but not detected. U

GC Semi VOA

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Sample was prepped or analyzed beyond the specified holding time

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TFO Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Midland

Case Narrative

Client: Tetra Tech, Inc.

Project/Site: PWS-Kaiser

Job ID: 880-5572-1

SDG: New Mexico

Job ID: 880-5572-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-5572-1

Receipt

The sample was received on 8/30/2021 2:38 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.6°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-5572-2

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-5572-2

Comments

No additional comments.

Receipt

The sample was received on 8/30/2021 2:38 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.6° C.

General Chemistry

Method SM 2540C: The following sample was run outside of holding time at client's request: MW-1 (880-5572-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

3

3

4

_

7

ŏ

10

13

| | 4

Eurofins Xenco, Midland 9/13/2021 (Rev. 1) Client: Tetra Tech, Inc. Job ID: 880-5572-1 Project/Site: PWS-Kaiser SDG: New Mexico

Client Sample ID: MW-1

Lab Sample ID: 880-5572-1 Date Collected: 08/27/21 13:35

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/L			09/01/21 22:06	1
Toluene	< 0.00200	U	0.00200		mg/L			09/01/21 22:06	1
Ethylbenzene	< 0.00200	U	0.00200		mg/L			09/01/21 22:06	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/L			09/01/21 22:06	1
o-Xylene	< 0.00200	U	0.00200		mg/L			09/01/21 22:06	1
Xylenes, Total	< 0.00400	U	0.00400		mg/L			09/01/21 22:06	1
Total BTEX	<0.00400	U	0.00400		mg/L			09/01/21 22:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	131	S1+	70 - 130					09/01/21 22:06	1
1,4-Difluorobenzene (Surr)	106		70 - 130					09/01/21 22:06	1
Method: 8015B NM - Diesel R						_			
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<4.66	U	4.66		mg/L		09/03/21 16:21	09/04/21 23:09	1
Diesel Range Organics (Over C10-C28)	<4.66	U	4.66		mg/L		09/03/21 16:21	09/04/21 23:09	1
Oll Range Organics (Over C28-C36)	<4.66	U	4.66		mg/L		09/03/21 16:21	09/04/21 23:09	1
Total TPH	<4.66	U	4.66		mg/L		09/03/21 16:21	09/04/21 23:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				09/03/21 16:21	09/04/21 23:09	1
o-Terphenyl	115		70 - 130				09/03/21 16:21	09/04/21 23:09	1
Method: 300.0 - Anions, Ion C	hromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3570		25.0		mg/L			08/31/21 16:14	50
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			500					09/10/21 15:13	

Surrogate Summary

Client: Tetra Tech, Inc.

Project/Site: PWS-Kaiser

Job ID: 880-5572-1

SDG: New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

			Percent S	urrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-5572-1	MW-1	131 S1+	106	
880-5572-1 MS	MW-1	113	121	
880-5572-1 MSD	MW-1	119	121	
LCS 880-7266/61	Lab Control Sample	108	115	
LCSD 880-7266/62	Lab Control Sample Dup	123	129	
MB 880-7266/66	Method Blank	75	104	
MB 880-7274/5-A	Method Blank	75	102	

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percen	t Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-5572-1	MW-1	109	115	
890-1210-J-1-A MS	Matrix Spike	99	102	
890-1210-J-1-B MSD	Matrix Spike Duplicate	110	111	
LCS 880-7525/2-A	Lab Control Sample	127	126	
LCSD 880-7525/3-A	Lab Control Sample Dup	112	109	
MB 880-7525/1-A	Method Blank	115	123	

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Eurofins Xenco, Midland

2

3

5

7

9

11

1 1

Client: Tetra Tech, Inc. Job ID: 880-5572-1 Project/Site: PWS-Kaiser SDG: New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7266/66

Matrix: Water

Surrogate

Analysis Batch: 7266

Client	Sample	ID:	Metho	d Blank
	Pr	ep '	Type:	Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/L 09/01/21 21:40 Toluene <0.00200 U 0.00200 mg/L 09/01/21 21:40 Ethylbenzene <0.00200 U 0.00200 mg/L 09/01/21 21:40 m-Xylene & p-Xylene <0.00400 U 0.00400 09/01/21 21:40 mg/L o-Xylene <0.00200 U 0.00200 mg/L 09/01/21 21:40 Xylenes, Total <0.00400 U 0.00400 mg/L 09/01/21 21:40 Total BTEX <0.00400 U 0.00400 mg/L 09/01/21 21:40

> MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac 75 70 - 130 09/01/21 21:40 104 70 - 130 09/01/21 21:40

Lab Sample ID: LCS 880-7266/61 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 7266

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09753		mg/L		98	70 - 130	
Toluene	0.100	0.09995		mg/L		100	70 - 130	
Ethylbenzene	0.100	0.1071		mg/L		107	70 - 130	
m-Xylene & p-Xylene	0.200	0.2108		mg/L		105	70 - 130	
o-Xylene	0.100	0.1044		mg/L		104	70 - 130	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 108 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 115

Lab Sample ID: LCSD 880-7266/62 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 7266

_	Spike	Spike LCSD LCSD					%Rec.		RPD	
Analyte	Added Res	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.1139		mg/L		114	70 - 130	15	20	
Toluene	0.100	0.1090		mg/L		109	70 - 130	9	20	
Ethylbenzene	0.100	0.1173		mg/L		117	70 - 130	9	20	
m-Xylene & p-Xylene	0.200	0.2317		mg/L		116	70 - 130	9	20	
o-Xylene	0.100	0.1146		mg/L		115	70 - 130	9	20	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	123		70 - 130
1,4-Difluorobenzene (Surr)	129		70 - 130

Lab Sample ID: 880-5572-1 MS

Matrix: Water

Analysis Batch: 7266

Analysis Daton. 7200	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00200	U	0.100	0.1110		mg/L		111	70 - 130

Eurofins Xenco, Midland

Client Sample ID: MW-1

Prep Type: Total/NA

9/13/2021 (Rev. 1)

Client: Tetra Tech, Inc. Project/Site: PWS-Kaiser

Job ID: 880-5572-1 SDG: New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-5572-1 MS

Matrix: Water

Analysis Batch: 7266

Client Sa	mple	ID: I	WW-1
Prep	Type:	Tota	al/NA

Sample	Sample	Spike	MS	MS				%Rec.	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
<0.00200	U	0.100	0.1117		mg/L		111	70 - 130	
<0.00200	U	0.100	0.1142		mg/L		114	70 - 130	
<0.00400	U	0.200	0.2283		mg/L		114	70 - 130	
<0.00200	U	0.100	0.1115		mg/L		112	70 - 130	
	Result <0.00200 <0.00200 <0.00400	Sample Result Qualifier	Result Qualifier Added	Result Qualifier Added Result <0.00200	Result Qualifier Added Result Qualifier <0.00200	Result Qualifier Added Result Qualifier Unit <0.00200	Result Qualifier Added Result Qualifier Unit D <0.00200	Result Qualifier Added Result Qualifier Unit D %Rec <0.00200	Result Qualifier Added Result Qualifier Unit D %Rec Limits <0.00200

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	121		70 - 130

Lab Sample ID: 880-5572-1 MSD

Matrix: Water

Analysis Batch: 7266

Client Sample ID: MW-1 Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier RPD Limit Analyte Added Result Qualifier D %Rec Limits Unit Benzene <0.00200 U 0.100 0.1118 112 70 - 130 25 mg/L Toluene <0.00200 U 0.100 0.1097 mg/L 109 70 - 130 2 25 Ethylbenzene <0.00200 U 0.100 0.1121 mg/L 112 70 - 130 25 m-Xylene & p-Xylene 0.200 70 - 130 25 <0.00400 U 0.2246 mg/L 112 2 o-Xylene <0.00200 U 0.100 0.1104 mg/L 110 70 - 130 25

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	119	70 - 130
1,4-Difluorobenzene (Surr)	121	70 - 130

Lab Sample ID: MB 880-7274/5-A

Matrix: Water

Analysis Batch: 7266

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 7274

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/L 08/31/21 08:38 09/01/21 00:42 Toluene <0.00200 U 0.00200 mg/L 08/31/21 08:38 09/01/21 00:42 Ethylbenzene <0.00200 U 0.00200 mg/L 08/31/21 08:38 09/01/21 00:42 08/31/21 08:38 09/01/21 00:42 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/L o-Xylene <0.00200 U 0.00200 08/31/21 08:38 09/01/21 00:42 mg/L 08/31/21 08:38 09/01/21 00:42 Xylenes, Total 0.00400 <0.00400 U mg/L Total BTEX <0.00400 U 0.00400 mg/L 08/31/21 08:38 09/01/21 00:42

MR	MR	

Surrogate	%Recovery	Qualifier	Limits	Prepared Ana	lyzed	Dil Fac
4-Bromofluorobenzene (Surr)	75		70 - 130	08/31/21 08:38 09/01/2	21 00:42	1
1,4-Difluorobenzene (Surr)	102		70 - 130	08/31/21 08:38 09/01/2	21 00:42	1

Eurofins Xenco, Midland

Client: Tetra Tech, Inc. Job ID: 880-5572-1 Project/Site: PWS-Kaiser SDG: New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-7525/1-A

Matrix: Water

Analysis Batch: 7537

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 7525

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<4.69	U	4.69		mg/L		09/03/21 16:21	09/04/21 21:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<4.69	U	4.69		mg/L		09/03/21 16:21	09/04/21 21:03	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<4.69	U	4.69		mg/L		09/03/21 16:21	09/04/21 21:03	1
Total TPH	<4.69	U	4.69		mg/L		09/03/21 16:21	09/04/21 21:03	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130	09/03/21 16:21	09/04/21 21:03	1
o-Terphenyl	123		70 - 130	09/03/21 16:21	09/04/21 21:03	1

Lab Sample ID: LCS 880-7525/2-A

Matrix: Water Prep Type: Total/NA Prep Batch: 7525 **Analysis Batch: 7537** Spike LCS LCS %Rec.

Analyte Added Result Qualifier D %Rec Limits Unit Gasoline Range Organics 93.8 93.19 mg/L 99 75 - 125 (GRO)-C6-C10 Diesel Range Organics (Over 93.8 103.9 mg/L 111 75 - 125

Limits

C10-C28)

Surrogate

LCS LCS %Recovery Qualifier

1-Chlorooctane 127 70 - 130 o-Terphenyl 126 70 - 130

Lab Sample ID: LCSD 880-7525/3-A

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 7537** Prep Batch: 7525 LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics 93.8 92.23 98 75 - 125 20 mg/L (GRO)-C6-C10 Diesel Range Organics (Over 93.8 104.2 mg/L 111 75 - 125 20

C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 112 70 - 130 70 - 130 o-Terphenyl 109

Lab Sample ID: 890-1210-J-1-A MS

Matrix: Water

Analysis Batch: 7537

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 7525

, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<4.53	U	91.5	76.12		mg/L		83	75 - 125	
Diesel Range Organics (Over C10-C28)	<4.53	U	91.5	89.74		mg/L		98	75 - 125	

Eurofins Xenco, Midland

Client: Tetra Tech, Inc. Project/Site: PWS-Kaiser

Job ID: 880-5572-1 SDG: New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1210-J-1-A MS

Matrix: Water Analysis Batch: 7537 Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Prep Batch: 7525

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	99		70 - 130
o-Terphenyl	102		70 - 130

Lab Sample ID: 890-1210-J-1-B MSD

Matrix: Water

Analysis Batch: 7537

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 7525

7 many one Date min 1 con											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<4.53	U	91.5	85.40		mg/L		93	75 - 125	11	20
Diesel Range Organics (Over C10-C28)	<4.53	U	91.5	99.28		mg/L		109	75 - 125	10	20

MSD MSD

MB MB

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 110 70 - 130 70 - 130 o-Terphenyl 111

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-7318/3

Matrix: Water

Analysis Batch: 7318

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Chloride 0.500 <0.500 U mg/L 08/31/21 15:24

Lab Sample ID: LCS 880-7318/4

Matrix: Water

Analysis Batch: 7318

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	25.0	26.14		mg/L	_	105	90 - 110

Analysis Batch: 7318

Lab Sample ID: LCSD 880-7318/5	Client Sample ID: Lab Control Sample Dup
Matrix: Water	Prep Type: Total/NA

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier %Rec Limits RPD Analyte Unit D Chloride 25.0 25.60 mg/L 102 90 - 110

Lab Sample ID: 880-5594-A-1 MS

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix:

Analys

ample ID: 880-5594-A-1 MS				Client Sample ID: Matrix Spike Prep Type: Total/NA
sis Batch: 7318				
Sam	ple Sample	Spike	MS MS	%Rec.

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 9.96 25.0 34.47 98 90 - 110 mg/L

Eurofins Xenco, Midland

Prep Type: Total/NA

Client: Tetra Tech, Inc.

Job ID: 880-5572-1 SDG: New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-5594-A-1 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 7318

Project/Site: PWS-Kaiser

RPD Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 9.96 25.0 34.95 mg/L 100 90 - 110 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 880-7774/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 7774

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 25.0 Total Dissolved Solids <25.0 U 09/10/21 15:13 mg/L

Lab Sample ID: LCS 880-7774/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 7774

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec **Total Dissolved Solids** 1000 990.0 mg/L 99 80 - 120

Lab Sample ID: LCSD 880-7774/3 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 7774

LCSD LCSD Spike %Rec. **RPD** Added Analyte Result Qualifier Unit %Rec Limits RPD Limit Total Dissolved Solids 1000 980.0 98 80 - 120 mg/L

Lab Sample ID: 880-5572-1 DU Client Sample ID: MW-1 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 7774

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Total Dissolved Solids 9590 H 9590 mg/L 10

QC Association Summary

Client: Tetra Tech, Inc.

Project/Site: PWS-Kaiser

Job ID: 880-5572-1

SDG: New Mexico

GC VOA

Analysis Batch: 7266

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5572-1	MW-1	Total/NA	Water	8021B	
MB 880-7266/66	Method Blank	Total/NA	Water	8021B	
MB 880-7274/5-A	Method Blank	Total/NA	Water	8021B	7274
LCS 880-7266/61	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-7266/62	Lab Control Sample Dup	Total/NA	Water	8021B	
880-5572-1 MS	MW-1	Total/NA	Water	8021B	
880-5572-1 MSD	MW-1	Total/NA	Water	8021B	

Prep Batch: 7274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-7274/5-A	Method Blank	Total/NA	Water	5035	

GC Semi VOA

Prep Batch: 7525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Bat
880-5572-1	MW-1	Total/NA	Water	8015NM Aq Prep
MB 880-7525/1-A	Method Blank	Total/NA	Water	8015NM Aq Prep
LCS 880-7525/2-A	Lab Control Sample	Total/NA	Water	8015NM Aq Prep
LCSD 880-7525/3-A	Lab Control Sample Dup	Total/NA	Water	8015NM Aq Prep
890-1210-J-1-A MS	Matrix Spike	Total/NA	Water	8015NM Aq Prep
890-1210-J-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	8015NM Aq Prep

Analysis Batch: 7537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5572-1	MW-1	Total/NA	Water	8015B NM	7525
MB 880-7525/1-A	Method Blank	Total/NA	Water	8015B NM	7525
LCS 880-7525/2-A	Lab Control Sample	Total/NA	Water	8015B NM	7525
LCSD 880-7525/3-A	Lab Control Sample Dup	Total/NA	Water	8015B NM	7525
890-1210-J-1-A MS	Matrix Spike	Total/NA	Water	8015B NM	7525
890-1210-J-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	8015B NM	7525

HPLC/IC

Analysis Batch: 7318

Lab Sample ID 880-5572-1	Client Sample ID MW-1	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
MB 880-7318/3	Method Blank	Total/NA	Water	300.0	
LCS 880-7318/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-7318/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-5594-A-1 MS	Matrix Spike	Total/NA	Water	300.0	
880-5594-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 7774

Lab Sample ID 880-5572-1	Client Sample ID MW-1	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
MB 880-7774/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-7774/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-7774/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-5572-1 DU	MW-1	Total/NA	Water	SM 2540C	

Eurofins Xenco, Midland

9/13/2021 (Rev. 1)

_____ 3

4

6

0

9

13

Lab Chronicle

Client: Tetra Tech, Inc.

Project/Site: PWS-Kaiser

Job ID: 880-5572-1

SDG: New Mexico

Client Sample ID: MW-1

Lab Sample ID: 880-5572-1

Matrix: Water

Date Collected: 08/27/21 13:35 Date Received: 08/30/21 14:38

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	7266	09/01/21 22:06	MR	XEN MID
Total/NA	Prep	8015NM Aq Prep			32.2 mL	3 mL	7525	09/03/21 16:21	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 23:09	AJ	XEN MID
Total/NA	Analysis	300.0		50			7318	08/31/21 16:14	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	10 mL	200 mL	7774	09/10/21 15:13	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

46

11

13

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 880-5572-1

Project/Site: PWS-Kaiser

SDG: New Mexico

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Prog	ıram 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 🤄 🤄 🤄 🤄 💮 🤄 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮	Identification Number	Expiration Date
Texas	NEL	AP	T104704400-20-21	06-30-22
The following analyte	s are included in this report,	but the laboratory is r	not certified by the governing authority.	This list may include analytes for wh
the agency does not	•	,,	g aansy.	This list may include analytes for the
the agency does not of Analysis Method	•	Matrix	Analyte	The letting include analytes for wi
0 ,	offer certification.	· ·	, , ,	

8

10

12

Method Summary

Client: Tetra Tech, Inc. Job ID: 880-5572-1 Project/Site: PWS-Kaiser SDG: New Mexico

otocol	Laboratory
V846	XEN MID
V846	XEN MID
CAWW	XEN MID

Method **Method Description** Pro 8021B SW Volatile Organic Compounds (GC) 8015B NM Diesel Range Organics (DRO) (GC) SW Anions, Ion Chromatography 300.0 MC XEN MID SM 2540C Solids, Total Dissolved (TDS) SM 5030B Purge and Trap SW846 XEN MID 8015NM Aq Prep Microextraction SW846 XEN MID

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Midland

Sample Summary

Client: Tetra Tech, Inc. Project/Site: PWS-Kaiser Job ID: 880-5572-1

SDG: New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-5572-1	MW-1	Water	08/27/21	08/30/21
			13:35	14:38

City State ZIP-

432-270-BS

79701

City State ZIP

Clair-Sonzales@ Thatech-cow

Deliverables

EDO [

ADaPT 🗌

Other:

Level IV

Reporting Level II 🗌 Level III 📗 PST/UST 📗 TRRP 🔲

State of Project:

UST/PST PRP Brownfields

RRC 🗌

Superfund [

Work Order Comments

www.xenco.com

으

Project Manager Company Name

Tetra

CONBAIRS

Bill to (if different)

Company Name

13 14

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (210 EL Paso TX (915) 585-3443, Lubbock, TX (806) 7 Hobbs NM (575) 392-7550 Carlsbad, NM (575) Houston, TX (281) 240-4200, Dallas, TX (214) 94

Xenco

Environment Testing

880-5572 Chain of Custody

9	j.
	(D
	(J)
	71
	5

H ₂ SO ₄ H ₂ NAOH NA H ₃ PO ₄ HP NAHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO ₃ Zn Acetate+NaOH Zn NaOH+Ascorbic Acid SAPC Sample Comments For Questiaus Clair Gonzales 432~266~863 4 T Sn U V Zn T7470 /7471 Date/Time	NI K Se Ag SiO ₂ Na Sr Hg 1631/2451/s Received by (Signature)	a Cr Co Cu Fe Pb Mg Co Cu Pb Mn Mo Ni Se boottractors. It assigns standard terms ch losses are due to circumstances bey ed. These terms will be enforced unless Relinquished by (Signatu	Be B Cd Ch lovides Ch lovides Ch lovides	Parameters *of TPH (#0/5-M) *Sb As Ba Be B RA Sb As Ba Be B RA	Ice: (Ves) No et al. (Ves) No	Ves (No) Wet Ice: Ves No Inferred Ice	SAMPLE RECEIPT Samples Received Intact: Cooler Custody Seals. Yes No NA Therm Corre Sample Custody Seals. Sample Hentification Sample Identification Matrix Sample Matrix Corre 1 Total 200.7 / 6010 Total 200.8 / 6020: Total 200.7 / 6010 Total 200.7 / 6010	SAMPLE RECEIPT Samples Received Intact: Cooler Custody Seals. Sample Custody Seals. Yes Total Containers. Sample Identification Sample Identification Total 200.7 / 6010 Total 200.
Cool Cool MeOH Me HCL. HC HNO 3 HN	HCL Coo				lay received by	TAT starts the day received by the lab, if received by 4:30pm	Such J. Smith	Sampler's Name
	Nor			Ĉ		Due Date	Now Maxica	Project Location
			7	デ デ デ デ	Rush	230 Boutine	2/20-MD-02230 Reputine	Project Number
Preservative Codes		ANALYSIS REQUEST			Turn Around	Turn /	KNO Kalser	Project Name:

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 880-5572-1

SDG Number: New Mexico

Login Number: 5572 List Source: Eurofins Xenco, Midland

List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

0) 1117

3

4

6

8

11

40

14

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1501-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

MEAMER

Authorized for release by: 11/8/2021 11:57:43 AM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Iotal Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 9/1/2023 2:07:08 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

6

7

8

10

12

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-1501-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

2

3

4

6

8

10

12

13

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 890-1501-1 Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC	VOA
Qual	lifier

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

MDC

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)

Method Detection Limit MDL MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Concentration (Radiochemistry)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-1501-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-1501-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-1501-1

Receipt

The samples were received on 10/29/2021 12:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: DS-1 (2) (890-1501-1) and DS-2 (3) (890-1501-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11233 and analytical batch 880-11381 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

2

3

6

7

9

10

12

13

Matrix: Solid

Lab Sample ID: 890-1501-1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1501-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: DS-1 (2)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 10:32	11/01/21 22:08	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 10:32	11/01/21 22:08	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 10:32	11/01/21 22:08	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 10:32	11/01/21 22:08	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 10:32	11/01/21 22:08	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 10:32	11/01/21 22:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	75		70 - 130				11/01/21 10:32	11/01/21 22:08	1
1,4-Difluorobenzene (Surr)	200	S1+	70 - 130				11/01/21 10:32	11/01/21 22:08	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/03/21 12:38	1
Method: 8015 NM - Diesel Range Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
T. L. LTDU									
Total TPH	<49.9	U	49.9		mg/Kg		<u>.</u>	11/03/21 08:46	
Total TPH Method: 8015B NM - Diesel Ran			49.9		mg/Kg				
- -	ge Organics (D		49.9 RL	MDL			Prepared		Dil Fac
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC) Qualifier		MDL		<u>D</u>		11/03/21 08:46	1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	11/03/21 08:46 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <49.9	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 11/01/21 14:48	11/03/21 08:46 Analyzed 11/02/21 22:52	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.9	RO) (GC) Qualifier U	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/01/21 14:48 11/01/21 14:48	11/03/21 08:46 Analyzed 11/02/21 22:52 11/02/21 22:52	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9 <49.9	RO) (GC) Qualifier U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/01/21 14:48 11/01/21 14:48 11/01/21 14:48	Analyzed 11/02/21 22:52 11/02/21 22:52	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U	RL 49.9 49.9 49.9 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/01/21 14:48 11/01/21 14:48 11/01/21 14:48 Prepared	Analyzed 11/02/21 22:52 11/02/21 22:52 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.9 <49.9 <49.9 <89.9 80.9 80.9 80.9 104 109	RO) (GC) Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/01/21 14:48 11/01/21 14:48 11/01/21 14:48 Prepared 11/01/21 14:48	11/03/21 08:46 Analyzed 11/02/21 22:52 11/02/21 22:52 Analyzed 11/02/21 22:52	1 Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 104 109 omatography -	RO) (GC) Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 11/01/21 14:48 11/01/21 14:48 11/01/21 14:48 Prepared 11/01/21 14:48	11/03/21 08:46 Analyzed 11/02/21 22:52 11/02/21 22:52 Analyzed 11/02/21 22:52	Dil Fac

Client Sample ID: DS-2 (3)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 22:36	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 22:36	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 22:36	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 10:32	11/01/21 22:36	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 22:36	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 10:32	11/01/21 22:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				11/01/21 10:32	11/01/21 22:36	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1501-2

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1501-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: DS-2 (3)

Lab Sample ID: 890-1501-2 Date Collected: 10/25/21 00:00 Matrix: Solid Date Received: 10/29/21 12:45

Sample Depth: 3

Method: 8021B - Volatile Organic Compounds (GC) (Continued)
--	-----------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	172 S1+	70 - 130	11/01/21 10:32	11/01/21 22:36	1

Method: Total	BTEX - Total	BTEX Calculati	on

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg				11/03/21 12:38	1

Method: 8015 NM - Die	cal Banga Orga	mice (DDO) (CC)
Welliou. ou la NW - Die	sei Kaliye Orya	HIICS (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Total TPH	1290		250	m	g/Kg			11/03/21 08:46	1

Method: 8015B	NM - Diesel	Range Ord	anics	(DRO)	(GC)
motilioa. oo lob	THE DIGGGE	Trainge Oit	garnos	(5.10)	100)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<250	U	250		mg/Kg		11/01/21 14:48	11/02/21 23:14	5
Diesel Range Organics (Over C10-C28)	1290		250		mg/Kg		11/01/21 14:48	11/02/21 23:14	5
Oll Range Organics (Over C28-C36)	<250	U	250		mg/Kg		11/01/21 14:48	11/02/21 23:14	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepa	red Analyzed	Dil Fac
1-Chlorooctane	89	70 - 130	11/01/21	14:48 11/02/21 23:1	4 5
o-Terphenyl	94	70 - 130	11/01/21	14:48 11/02/21 23:1	4 5

Method: 300.0 - Anions, Ion C	Chromatography - Soluble

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	7010		100		mg/Kg			11/07/21 02:39	20

Lab Sample ID: 890-1501-3 Client Sample ID: DS-3 (2) Date Collected: 10/25/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Sample Depth: 2

11 (I I 0004D			. (00)
Method: 8021B -	Volatile Or	ganic Comr	ounds (GC)

mounda. our ib volutile orga	ino compoundo ((33)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 10:32	11/01/21 23:03	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 10:32	11/01/21 23:03	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 10:32	11/01/21 23:03	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 10:32	11/01/21 23:03	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 10:32	11/01/21 23:03	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 10:32	11/01/21 23:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				11/01/21 10:32	11/01/21 23:03	1
1,4-Difluorobenzene (Surr)	75		70 - 130				11/01/21 10:32	11/01/21 23:03	1

Method:	Total R	TFY - T	otal RT	FX Calcu	ılation

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398		ma/Ka			11/03/21 12:38	1

Method: 8015 NM - Diesel Range Organics (DRO) (G	C)
moundar out of the Broods stange or games (Bite	, , –	_,

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1980	250	mg/Kg			11/03/21 08:46	1

Eurofins Xenco, Carlsbad

Matrix: Solid

Lab Sample ID: 890-1501-3

11/07/21 02:47

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1501-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: DS-3 (2)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 2

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<250	U	250		mg/Kg		11/01/21 14:48	11/02/21 23:37	5
Diesel Range Organics (Over C10-C28)	1980		250		mg/Kg		11/01/21 14:48	11/02/21 23:37	5
Oll Range Organics (Over C28-C36)	<250	U	250		mg/Kg		11/01/21 14:48	11/02/21 23:37	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				11/01/21 14:48	11/02/21 23:37	5
o-Terphenyl	109		70 - 130				11/01/21 14:48	11/02/21 23:37	5
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Desult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

49.5

7820

mg/Kg

Eurofins Xenco, Carlsbad

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-1501-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Rec
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-7749-A-1-C MS	Matrix Spike	86	71	
880-7749-A-1-E MSD	Matrix Spike Duplicate	87	115	
890-1501-1	DS-1 (2)	75	200 S1+	
890-1501-2	DS-2 (3)	86	172 S1+	
890-1501-3	DS-3 (2)	103	75	
LCS 880-11059/1-A	Lab Control Sample	91	100	
LCSD 880-11059/2-A	Lab Control Sample Dup	85	105	
MB 880-11059/5-A	Method Blank	63 S1-	133 S1+	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-1495-A-1-H MS	Matrix Spike	99	99
890-1495-A-1-I MSD	Matrix Spike Duplicate	102	115
890-1501-1	DS-1 (2)	104	109
890-1501-2	DS-2 (3)	89	94
890-1501-3	DS-3 (2)	101	109
LCS 880-11158/2-A	Lab Control Sample	101	104
LCSD 880-11158/3-A	Lab Control Sample Dup	90	95
MB 880-11158/1-A	Method Blank	103	114

Surrogate Legend

1CO = 1-Chlorooctane

Released to Imaging: 9/1/2023 2:07:08 PM

OTPH = o-Terphenyl

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1501-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-11059/5-A

Lab Sample ID: LCS 880-11059/1-A

Matrix: Solid

Analysis Batch: 11027

Matrix: Solid

Analysis Batch: 11027

Client	Sample	ID:	Method	Blank

Prep Type: Total/NA

Prep Batch: 11059

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 13:19	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 13:19	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 13:19	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 10:32	11/01/21 13:19	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 10:32	11/01/21 13:19	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 10:32	11/01/21 13:19	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	63	S1-	70 - 130	11/01/21 10:32	11/01/21 13:19	1
1,4-Difluorobenzene (Surr)	133	S1+	70 - 130	11/01/21 10:32	11/01/21 13:19	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11059

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09493 mg/Kg 95 70 - 130 Toluene 0.100 0.09238 mg/Kg 92 70 - 130 0.100 0.08996 90 Ethylbenzene mg/Kg 70 - 130 m-Xylene & p-Xylene 0.200 92 70 - 130 0.1834 mg/Kg 0.100 0.09109 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery Qu	ıalifier	Limits
4-Bromofluorobenzene (Surr)	91		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 11027

Lab Sample ID: LCSD 880-11059/2-A

Prep Type: Total/NA Prep Batch: 11059

	Spike	LC2D	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.08648		mg/Kg		86	70 - 130	9	35	
Toluene	0.100	0.08374		mg/Kg		84	70 - 130	10	35	
Ethylbenzene	0.100	0.07988		mg/Kg		80	70 - 130	12	35	
m-Xylene & p-Xylene	0.200	0.1623		mg/Kg		81	70 - 130	12	35	
o-Xylene	0.100	0.08108		mg/Kg		81	70 - 130	12	35	

LCSD LCSD

Surrogate	%Recovery 0	Qualifier	Limits
4-Bromofluorobenzene (Surr)	85		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 880-7749-A-1-C MS

Matrix: Solid

Analysis Batch: 11027

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 11059

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U F2 F1	0.101	0.03475	F1	mg/Kg		34	70 - 130	
Toluene	<0.00202	U F2 F1	0.101	0.006187	F1	mg/Kg		6	70 - 130	

Eurofins Xenco, Carlsbad

Page 9 of 22

Prep Batch: 11059

Client Sample ID: Matrix Spike Duplicate

70 - 130

51

Prep Batch: 11158

41

QC Sample Results

Job ID: 890-1501-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-7749-A-1-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 11027

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00202	U F2 F1	0.101	0.06604	F1	mg/Kg		66	70 - 130	
m-Xylene & p-Xylene	<0.00403	U F2 F1	0.202	0.1311	F1	mg/Kg		65	70 - 130	
o-Xylene	<0.00202	U F2 F1	0.101	0.06867	F1	mg/Kg		68	70 - 130	

MS MS %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 86 1,4-Difluorobenzene (Surr) 71 70 - 130

Lab Sample ID: 880-7749-A-1-E MSD

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 11027** Prep Batch: 11059 Sample Sample Spike MSD MSD %Rec. RPD %Rec RPD Limit Analyte Result Qualifier babbA Result Qualifier Limits Unit Benzene <0.00202 U F2 F1 0.0996 0.05940 F2 F1 mg/Kg 59 70 - 130 52 35 Toluene <0.00202 U F2 F1 0.0996 0.04594 F2 F1 mg/Kg 46 70 - 130 153 35 Ethylbenzene <0.00202 U F2 F1 0.0996 0.03657 F2 F1 37 70 - 130 57 35 mg/Kg m-Xylene & p-Xylene <0.00403 U F2 F1 0.199 0.07219 F2 F1 mq/Kq 36 70 - 130 58 35

0.04080 F2 F1

mg/Kg

0.0996

MSD MSD Qualifier Limits Surrogate %Recovery 70 - 130 4-Bromofluorobenzene (Surr) 87 1,4-Difluorobenzene (Surr) 115 70 - 130

<0.00202 U F2 F1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-11158/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

o-Xylene

Analysis Batch: 11193

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/01/21 14:48	11/02/21 20:41	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/01/21 14:48	11/02/21 20:41	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/01/21 14:48	11/02/21 20:41	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130	11/01/21 14:48	11/02/21 20:41	1
o-Terphenyl	114		70 - 130	11/01/21 14:48	11/02/21 20:41	1

Lab Sample ID: LCS 880-11158/2-A **Client Sample ID: Lab Control Sample**

Analysis Batch: 11193

Matrix: Solid

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits 1000 100 70 - 130 999 0 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 991.9 mg/Kg 99 70 - 130

C10-C28)

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Prep Batch: 11158

Page 10 of 22

Job ID: 890-1501-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

%Recovery Qualifier

101

104

Lab Sample ID: LCS 880-11158/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Analysis Batch: 11193

Prep Type: Total/NA

Prep Batch: 11158

Lab Sample ID: LCSD 880-11158/3-A Client Sample ID: Lab Control Sample Dup

Limits

70 - 130

70 - 130

Matrix: Solid Prep Type: Total/NA Analysis Batch: 11193 Prep Batch: 11158

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 897.3 90 70 - 13011 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1021 102 mg/Kg 70 - 1303 20 C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 90 70 - 130 1-Chlorooctane 95 70 - 130 o-Terphenyl

Lab Sample ID: 890-1495-A-1-H MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 11193

Prep Type: Total/NA

Prep Batch: 11158

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	997	1026		mg/Kg		103	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	997	964.5		mg/Kg		95	70 - 130	

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 99 o-Terphenyl 99 70 - 130

Lab Sample ID: 890-1495-A-1-I MSD Client Sample ID: Matrix Spike Duplicate

Analysis Batch: 11193

Matrix: Solid

Prep Batch: 11158 Sample Sample MSD MSD RPD Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Range Organics <49.9 U 1000 1156 mg/Kg 116 70 - 130 12 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 1000 975.7 mg/Kg 95 70 - 130 20

C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	115		70 - 130

Client Sample ID: Method Blank

%Rec.

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

QC Sample Results

Job ID: 890-1501-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-11233/1-A

Matrix: Solid

Analysis Batch: 11381

Prep Type: Soluble

Dil Fac MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 11/07/21 01:48

Lab Sample ID: LCS 880-11233/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11381

Spike LCS LCS Added Analyte Result Qualifier Unit D %Rec

мв мв

Limits Chloride 250 229.5 mg/Kg 92 90 - 110

Lab Sample ID: LCSD 880-11233/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11381

LCSD LCSD %Rec. RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 233.0 mg/Kg 90 - 110

Lab Sample ID: 880-7551-A-2-E MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 11381

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Unit Limits 12500 Chloride 17400 35790 F1 148 90 - 110 mg/Kg

Lab Sample ID: 880-7551-A-2-F MSD

Matrix: Solid

Analysis Batch: 11381

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 17400 F1 12500 35360 F1 mg/Kg 144 90 - 110 20

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-1501-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Analysis Batch: 11027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Total/NA	Solid	8021B	11059
890-1501-2	DS-2 (3)	Total/NA	Solid	8021B	11059
890-1501-3	DS-3 (2)	Total/NA	Solid	8021B	11059
MB 880-11059/5-A	Method Blank	Total/NA	Solid	8021B	11059
LCS 880-11059/1-A	Lab Control Sample	Total/NA	Solid	8021B	11059
LCSD 880-11059/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11059
880-7749-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	11059
880-7749-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	11059

Prep Batch: 11059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Total/NA	Solid	5035	<u> </u>
890-1501-2	DS-2 (3)	Total/NA	Solid	5035	
890-1501-3	DS-3 (2)	Total/NA	Solid	5035	
MB 880-11059/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11059/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11059/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-7749-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-7749-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 11149

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Total/NA	Solid	Total BTEX	
890-1501-2	DS-2 (3)	Total/NA	Solid	Total BTEX	
890-1501-3	DS-3 (2)	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 11158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Total/NA	Solid	8015NM Prep	
890-1501-2	DS-2 (3)	Total/NA	Solid	8015NM Prep	
890-1501-3	DS-3 (2)	Total/NA	Solid	8015NM Prep	
MB 880-11158/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11158/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1495-A-1-H MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-1495-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 11193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Total/NA	Solid	8015B NM	11158
890-1501-2	DS-2 (3)	Total/NA	Solid	8015B NM	11158
890-1501-3	DS-3 (2)	Total/NA	Solid	8015B NM	11158
MB 880-11158/1-A	Method Blank	Total/NA	Solid	8015B NM	11158
LCS 880-11158/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11158
LCSD 880-11158/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11158
890-1495-A-1-H MS	Matrix Spike	Total/NA	Solid	8015B NM	11158
890-1495-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	11158

Eurofins Xenco, Carlsbad

4

6

8

9

11

QC Association Summary

Client: Tetra Tech, Inc. Job ID: 890-1501-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA

Analysis Batch: 11344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Total/NA	Solid	8015 NM	
890-1501-2	DS-2 (3)	Total/NA	Solid	8015 NM	
890-1501-3	DS-3 (2)	Total/NA	Solid	8015 NM	
_					

HPLC/IC

Leach Batch: 11233

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Soluble	Solid	DI Leach	
890-1501-2	DS-2 (3)	Soluble	Solid	DI Leach	
890-1501-3	DS-3 (2)	Soluble	Solid	DI Leach	
MB 880-11233/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11233/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11233/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-7551-A-2-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-7551-A-2-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 11381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1501-1	DS-1 (2)	Soluble	Solid	300.0	11233
890-1501-2	DS-2 (3)	Soluble	Solid	300.0	11233
890-1501-3	DS-3 (2)	Soluble	Solid	300.0	11233
MB 880-11233/1-A	Method Blank	Soluble	Solid	300.0	11233
LCS 880-11233/2-A	Lab Control Sample	Soluble	Solid	300.0	11233
LCSD 880-11233/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11233
880-7551-A-2-E MS	Matrix Spike	Soluble	Solid	300.0	11233
880-7551-A-2-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	11233

Client: Tetra Tech, Inc. Job ID: 890-1501-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: DS-1 (2)

Date Received: 10/29/21 12:45

Lab Sample ID: 890-1501-1 Date Collected: 10/25/21 00:00 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11059	11/01/21 10:32	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11027	11/01/21 22:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11149	11/03/21 12:38	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11344	11/03/21 08:46	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11158	11/01/21 14:48	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11193	11/02/21 22:52	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11233	11/02/21 12:00	СН	XEN MID
Soluble	Analysis	300.0		1			11381	11/07/21 02:32	CH	XEN MID

Client Sample ID: DS-2 (3) Lab Sample ID: 890-1501-2 Matrix: Solid

Date Collected: 10/25/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11059	11/01/21 10:32	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11027	11/01/21 22:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11149	11/03/21 12:38	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11344	11/03/21 08:46	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11158	11/01/21 14:48	DM	XEN MID
Total/NA	Analysis	8015B NM		5			11193	11/02/21 23:14	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		20			11381	11/07/21 02:39	CH	XEN MID

Client Sample ID: DS-3 (2) Lab Sample ID: 890-1501-3 Date Collected: 10/25/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11059	11/01/21 10:32	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11027	11/01/21 23:03	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11149	11/03/21 12:38	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11344	11/03/21 08:46	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11158	11/01/21 14:48	DM	XEN MID
Total/NA	Analysis	8015B NM		5			11193	11/02/21 23:37	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		10			11381	11/07/21 02:47	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-1501-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, but	it the laboratory is not certifi	ed by the governing authority. This list ma	av include analytes for w
the agency does not of	fer certification.	,	, g,	ly molade analytes for th
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	y moduce analytee for the
9 ,		•	, , ,	

4

6

8

10

111

13

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-1501-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

9

Λ

5

7

10

13

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1501-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Dept
890-1501-1	DS-1 (2)	Solid	10/25/21 00:00	10/29/21 12:45	2
890-1501-2	DS-2 (3)	Solid	10/25/21 00:00	10/29/21 12:45	3
890-1501-3	DS-3 (2)	Solid	10/25/21 00:00	10/29/21 12:45	2

Relinquished by:	Relinquished by:								(LAB USE)	LAB #		Comments:	Receiving Laborator	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
Date: Time:	Date: Time: 10/29/2 12:45					DS-3 (2')	DS-2 (3')	DS-1 (2')		SAMPLE IDENTIFICATION				Dusty McInturff -	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.
Received by:	Received by: Received by:					10/25/2021	10/25/2021	10/25/2021	DATE	YEAR: 2020	SAMPLING		Sampler Signature:	ns	Project #:		Site Manager:	•
Date: Time:	Date: Time: Date: Time:					×	×	×		2	MATRIX PRESERVATIVE METHOD		Ezequiel Moreno		212C-MD-02230		Clair Gonzales	9/1W Wall S(rec): Ste 100 Midland, Texas 79705 Tel (432) 882-4559 Fax (432) 882-3946
	AB USE REMA ONLY Temperature							×	FILTERI BTEX 80 TPH TX TPH 80 PAH 82 Total Me TCLP MO TCLP VC TCLP Se RCI	ED (Your Details A color of the	/N) BTE (Ext to GRO g As B Ag As i	C35) - DRO - (Ba Cd Cr Ba Cd Ci	ORO - I	Hg		9	15	890-1501 Chain of Custody
ial Report Limits or TRRP Report	STANDARD H: Same Day 24 hr 48 hr 72 hr					×	×	×	GC/MS : PCB's 8 NORM PLM (As Chloride Chloride General	Semi. 3082 / sbesto e Su Wate	Vol. 8 608 s) ulfate	TDS mistry (s		ached l	ist)		pecify Method N	
	Date: Time: Received by: Date: Time:	Date: Time: Received by: Date: Time: LAB USE NoNLY STANDARD Date: Time: Received by: Date: Time: Sample Temperature 2.4 Rush Charges Authorized Date: Time: Received by: Date: Time: 2.2 Special Report Limits or TRRP Report	Date: Time: Color Time: Received by: Date: Time: LAB USE X STANDARD	Date: Time: Continue Continu	Date: Time: Color Time: Received by: Date: Time: LAB USE REMARKS: NLY Date: Time: Sample Temperature Rush: S	Date: Time: Date:	Date: Time: Color Time: Color Color	DS-2 (3) 10/25/2021	DS-2 (3) 10/25/2021 X X X X X X X X X X X X X X X X X X X	DS-1 (2) DS-1 (2) DS-1 (2) DS-2 (3) DS-2 (3) DS-2 (3) DS-2 (3) DS-3 (2) DS-4 (2) DS-5 (3) DS-5 (3) DS-5 (3) DS-6 (3) DS-7 (Date: Time: Date: Time:	SAMPLE IDENTIFICATION SAMPLING MATRIX PRESERVATIVE METHODO	SAMPLE IDENTIFICATION	Sample Dear Time: Sample Signature: Exequiel Moreno	Dusty Michael Dusty Michae	Dusty McIniurit - Permian Water Solutions Sampler Bignature Ezequiel Moreno	Compared Symptom Compared Sy	Color Colo

Page 19 of 22

Eurofins Xenco, Carlsbad

Reurofins Environment Testing America

1089 N Canal St Carlsbad NM 88220 Phone. 575-988-3199 Fax 575-988-3199 **Chain of Custody Record**

Client Information (Sub Contract Lab) Client Contact:	Sampler Phone:			Lab PM Kramer E-Mail	-	Jessica						φ <u> </u>	Carrier Tracking No(s)	Orioir Pracki	ng No	(8)			<u></u> 8 8	COC No ⁻ 890-488 1	
Company Eurofins Xenco					Accreditations Required (See note) NELAP - Louisiana, NELAP	tations P - L	Requ	ired (S	E Pool	0.0	Texas	L		ľ				-	8 E	Job # 890-1501-1	
Address. 1211 W Flonda Ave	Due Date Requested 11/4/2021	٩							Ana	7 I	7 20	Requested	000	ž	1			١	ᄀ	Preservation Codes	is.
City Midland	TAT Requested (days):	ys);			4455024	testille (El		_	?			<u> </u>		- 2	\dashv		-			HCL NaOH	M Hexane N None
State Zip TX 79701	<u>-</u> L					TPH				**************************************						·			mσo		
Phone: 432-704-5440(TeI)	PO#				L _{in}	o) Full		le											rωπ		R Na2S2O3 S H2SO4
Email	WO#				NU. CONCORDO DO	p (MOI		Chloric											<u> </u>	lce DI Water	
Project Name Kaiser SWD	Project #: 88000039				1100 - 117-119	S_Pre	EX	ACH										alon	一 ス	EDTA EDA	W pH 4-5 Z other (specify)
Site:	SSOW#					15NM_	alc BT	D/DI_LI										e en	Action of the	Other	
			Sample	Matrix	Ubore (specific) in	_NM/80	35FP_C	FM_28	EX_GC	_Calc								mher.	T		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab)	S=solid, O=waste/oil, BT=Tissue, A=Air)	Field F Perforr	8016MO	8021B/5	300_OR	Total_B	B015MO								Total N		Special Ins	Special Instructions/Note
		\mathbb{X}	00	ion Code:	V0000		See Spanish			angerelle .		_	- 3			-	anga.	\forall	7		
DS-1 (2) (890-1501-1)	10/25/21	Mountain		Solid		×	×	×	×	×				_					Approx 2		
DS-2 (3) (890-1501-2)	10/25/21	Mountain		Solid		×	×	×	×	×											
DS-3 (2) (890-1501-3)	10/25/21	Mountain		Solid		×	×	×	×	×				\longrightarrow				- A	handstood		
														- -			-	4			
											-		-		-	\vdash	\vdash		1-4		

													-					7	-300 A		
Note: Since laboratory accreditations are subject to change, Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC.	places the ownership opening analyzed the saing analyzed the sained Chain of Cus	of method ana mples must be stody attesting	lyte & accredita shipped back to said complic	ation compliand to the Eurofins ance to Eurofir	Xenco Xenco	out sul LLC lai	bcontri	act lab y or of	oratori her in:	es. Ti structio	nis sar ons wi	nple s II be p	hipme rovide	ntisfo d An	orward y char	led ur	der d	nain-o editati	f-cust on sta	tody If the laborato	ny does not currently ght to Eurofins Xenco LLC
Possible Hazard Identification Unconfirmed					Sa	Sample Disposal (A fee may be assessed if samples Return To Client Disposal By I ah	le Disposal (A f	osal	A A	ee m	nay b	⊔e as	assessed if san Disposal By Lah	B	sam	ples	□are	retai	ned ned	are retained longer than 1 month) Archive For	month)
Deliverable Requested 1 II III IV Other (specify)	Primary Deliverable Rank	ble Rank 2			Sp	Special Instructions/QC	Instr	ıctior	ις/Q		Requirements	nent	°	Į	ı	ı	- 1	1			
Empty Kit Relinquished by		Date			Time		>	7	١	1	ı		_	ethod	Method of Shipment:	pmer	7	١	ı		
Relinquished by	Date/Time			Company		Receiv			6	D	$ \mathcal{E} $	\geq	2	0	\	Date/∏i		C.	VI	7	Company
Relinquished by	Date/Time ⁻			Company		rece	ed by	7	1		Ŀ	(j(0	Date/Time	me •	1	ľ	1	Company
Relinquished by	Date/Time			Company		R	Received by	۲	1			İ			-	Date/Time	me	-	- 1		Company
Custody Seals Intact. Custody Seal No						C 00	Cooler Temperature(s) °C	perati	(s)ar		and Other Remarks.	r Rem	arks.	8	-	2	2	1			

Ver 06/08/2021

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-1501-1

SDG Number: Lea County NM

Login Number: 1501 List Source: Eurofins Xenco, Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	

Released to Imaging: 9/1/2023 2:07:08 PM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-1501-1

SDG Number: Lea County NM

List Source: Eurofins Xenco, Midland

List Creation: 11/01/21 08:46 AM

Creator: Kramer, Jessica

Login Number: 1501 List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.6/2.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Released to Imaging: 9/1/2023 2:07:08 PM

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1770-1

Laboratory Sample Delivery Group: Lea County New Mexico Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

SCRAMER

Authorized for release by: 1/4/2022 2:38:20 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

-----LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 9/1/2023 2:07:08 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

8

10

4.0

Client: Tetra Tech, Inc.

Laboratory Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	20
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

2

3

4

6

8

10

13

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 890-1770-1 Project/Site: Kaiser SWD SDG: Lea County New Mexico

Qualifiers

GC	VOA
Qua	ifier

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

d.
ed.

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossarv

C.CCCu. y	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

MDA MDC

LOD

LOQ

MCL

Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit Minimum Level (Dioxin)

MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Activity (Radiochemistry)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive

QC **Quality Control RER** Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Job ID: 890-1770-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-1770-1

Receipt

The samples were received on 12/28/2021 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-15736 and analytical batch 880-15788 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: SW-3 (890-1770-2), SW-10 (890-1770-7) and (880-9746-A-1-D). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-15746 and analytical batch 880-15825 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-15803 and analytical batch 880-15920 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

7

9

10

12

13

Client: Tetra Tech, Inc. Job ID: 890-1770-1 Project/Site: Kaiser SWD SDG: Lea County New Mexico

Client Sample ID: SW-1 Lab Sample ID: 890-1770-1

Date Collected: 12/23/21 00:00 Matrix: Solid Date Received: 12/28/21 10:30

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:30	
Toluene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:30	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:30	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/29/21 14:29	12/30/21 20:30	
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:30	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/29/21 14:29	12/30/21 20:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	122		70 - 130				12/29/21 14:29	12/30/21 20:30	
1,4-Difluorobenzene (Surr)	79		70 - 130				12/29/21 14:29	12/30/21 20:30	
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			01/04/22 15:22	
Analyte Total TPH	<49.9	U	49.9		mg/Kg		·	Analyzed 01/03/22 14:33	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	
				WIDL				Allalyzeu	Dil Fa
5 5	<49.9	U F1	49.9	MDL	mg/Kg		12/29/21 15:34	12/31/21 21:44	
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9 <49.9			- MIDE	mg/Kg		<u> </u>		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U F1	49.9	WIDE			12/29/21 15:34	12/31/21 21:44	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	<49.9	U F1	49.9	MDE	mg/Kg		12/29/21 15:34 12/29/21 15:34	12/31/21 21:44	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 <49.9	U F1	49.9 49.9 49.9	mbe.	mg/Kg		12/29/21 15:34 12/29/21 15:34 12/29/21 15:34	12/31/21 21:44 12/31/21 21:44 12/31/21 21:44	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 <49.9 %Recovery	U F1	49.9 49.9 49.9 <i>Limits</i>	mbt.	mg/Kg		12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared	12/31/21 21:44 12/31/21 21:44 12/31/21 21:44 Analyzed	
, , , , , , , , , , , , , , , , , , ,	<49.9 <49.9 %Recovery 98 113	U F1 U Qualifier	49.9 49.9 49.9 Limits 70 - 130	<u> </u>	mg/Kg		12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared 12/29/21 15:34	12/31/21 21:44 12/31/21 21:44 12/31/21 21:44 Analyzed 12/31/21 21:44	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 <49.9 **Recovery 98 113 omatography -	U F1 U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg	D	12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared 12/29/21 15:34	12/31/21 21:44 12/31/21 21:44 12/31/21 21:44 Analyzed 12/31/21 21:44	Dil Fa

Client Sample ID: SW-3 Lab Sample ID: 890-1770-2

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:50	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:50	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:50	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/29/21 14:29	12/30/21 20:50	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 20:50	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/29/21 14:29	12/30/21 20:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130				12/29/21 14:29	12/30/21 20:50	

Eurofins Xenco, Carlsbad

Matrix: Solid

Job ID: 890-1770-1 SDG: Lea County New Mexico

I ah Sample ID: 890-1770-2

Lab Sample ID: 890-1770-2

Matrix: Solid

12/29/21 15:34

12/29/21 15:34

12/31/21 22:46

12/31/21 22:46

Date Received: 12/28/21 10:30 Sample Depth: 0 - 4

Client Sample ID: SW-3

Date Collected: 12/23/21 00:00

Method: 8021B -	Volatile Ord	anic Com	nounds (GC) ((Continued)	
Method. 002 1D	Volatile Oit	Janiic Com	poullus ($\circ\circ$	(Continueu)	

Surrogate	%Recovery G	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	104		70 - 130	12/29/21 14:29	12/30/21 20:50	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	ma/Ka			01/04/22 15:22	1

Method: 8015 NM - Diese	Pango Organice	(DRO) (CCI
Metrica, ou la Min - Diesei	I Range Organics	(DIXO) (,

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<50.0 U	50.0	ma/Ka			01/04/22 15:21	1	

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/29/21 15:34	12/31/21 22:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/29/21 15:34	12/31/21 22:46	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/29/21 15:34	12/31/21 22:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1-Chlorooctane	101	70 - 130	
o-Terphenyl	116	70 - 130	

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	341		4.95		mg/Kg			01/03/22 18:07	1

Client Sample ID: SW-6

Date Collected: 12/23/21 00:00

Matrix: Solid

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

Sample Depth: 0 - 4

Method: 8021B - Volatile Organic Compounds (GC)

momous colin		()							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/29/21 14:29	12/30/21 21:10	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/29/21 14:29	12/30/21 21:10	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/29/21 14:29	12/30/21 21:10	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/29/21 14:29	12/30/21 21:10	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/29/21 14:29	12/30/21 21:10	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/29/21 14:29	12/30/21 21:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				12/29/21 14:29	12/30/21 21:10	1
1,4-Difluorobenzene (Surr)	104		70 - 130				12/29/21 14:29	12/30/21 21:10	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/04/22 15:22	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/04/22 15:21	1

Job ID: 890-1770-1 SDG: Lea County New Mexico

Lab Sample ID: 890-1770-3

Matrix: Solid

Date Received: 12/28/21 10:30 Sample Depth: 0 - 4

Client Sample ID: SW-6

Date Collected: 12/23/21 00:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		12/29/21 15:34	12/31/21 23:06	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/29/21 15:34	12/31/21 23:06	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/21 15:34	12/31/21 23:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				12/29/21 15:34	12/31/21 23:06	1
o-Terphenyl	101		70 - 130				12/29/21 15:34	12/31/21 23:06	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SW-7 Lab Sample ID: 890-1770-4 Date Collected: 12/23/21 00:00 Matrix: Solid

Date Received: 12/28/21 10:30

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 21:31	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 21:31	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 21:31	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/29/21 14:29	12/30/21 21:31	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 21:31	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/29/21 14:29	12/30/21 21:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				12/29/21 14:29	12/30/21 21:31	1
1,4-Difluorobenzene (Surr)	90		70 - 130				12/29/21 14:29	12/30/21 21:31	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			01/04/22 15:22	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			01/04/22 15:21	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		12/29/21 15:34	12/31/21 23:27	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/29/21 15:34	12/31/21 23:27	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/21 15:34	12/31/21 23:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				12/29/21 15:34	12/31/21 23:27	1
o-Terphenyl	108		70 ₋ 130				12/29/21 15:34	12/31/21 23:27	1

Job ID: 890-1770-1

SDG: Lea County New Mexico

Client Sample ID: SW-7

Lab Sample ID: 890-1770-4

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

Matrix: Solid

Sample Depth: 0 - 4

N	Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Α	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C	hloride	2400		50.0		mg/Kg			01/03/22 17:39	10

Lab Sample ID: 890-1770-5 **Client Sample ID: SW-8**

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

Matrix: Solid

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 21:51	
Toluene	< 0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 21:51	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 21:51	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/29/21 14:29	12/30/21 21:51	
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 21:51	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/29/21 14:29	12/30/21 21:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	129		70 - 130				12/29/21 14:29	12/30/21 21:51	
1,4-Difluorobenzene (Surr)	89		70 - 130				12/29/21 14:29	12/30/21 21:51	
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			01/04/22 15:22	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Method: 8015 NM - Diesel Range Analyte Total TPH	•	Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 01/04/22 15:21	Dil Fac
Analyte Total TPH		Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <50.0	Qualifier U				<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <50.0	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg			01/04/22 15:21	,
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 Ge Organics (D Result	Qualifier U RO) (GC) Qualifier U	50.0		mg/Kg		Prepared	01/04/22 15:21 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 Ge Organics (D) Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 12/29/21 15:34	01/04/22 15:21 Analyzed 12/31/21 23:48	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/29/21 15:34 12/29/21 15:34	01/04/22 15:21 Analyzed 12/31/21 23:48 12/31/21 23:48	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/29/21 15:34 12/29/21 15:34 12/29/21 15:34	01/04/22 15:21 Analyzed 12/31/21 23:48 12/31/21 23:48 12/31/21 23:48	Dil Fa
Analyte	Result	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared	Analyzed 12/31/21 23:48 12/31/21 23:48 12/31/21 23:48 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared 12/29/21 15:34	01/04/22 15:21 Analyzed 12/31/21 23:48 12/31/21 23:48 Analyzed 12/31/21 23:48	Dil Fa

12/31/21 10:48

50.0

mg/Kg

9820

10

Chloride

Matrix: Solid

Lab Sample ID: 890-1770-6

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Client Sample ID: SW-9

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/29/21 14:29	12/30/21 22:12	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/29/21 14:29	12/30/21 22:12	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/29/21 14:29	12/30/21 22:12	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/29/21 14:29	12/30/21 22:12	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/29/21 14:29	12/30/21 22:12	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/29/21 14:29	12/30/21 22:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				12/29/21 14:29	12/30/21 22:12	1
1,4-Difluorobenzene (Surr)	75		70 - 130				12/29/21 14:29	12/30/21 22:12	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			01/04/22 15:22	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	•	Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed 01/04/22 15:21	Dil Fac
Analyte Total TPH		Qualifier U		MDL		<u>D</u>	Prepared		Dil Fac
Analyte Total TPH	Result <50.0	Qualifier U		MDL MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <50.0	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg	-		01/04/22 15:21	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier U	50.0		mg/Kg	-	Prepared	01/04/22 15:21 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang		Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg	-	Prepared 12/29/21 15:34	01/04/22 15:21 Analyzed 01/01/22 00:09	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	-	Prepared 12/29/21 15:34 12/29/21 15:34	01/04/22 15:21 Analyzed 01/01/22 00:09 01/01/22 00:09	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	-	Prepared 12/29/21 15:34 12/29/21 15:34 12/29/21 15:34	Analyzed 01/01/22 00:09 01/01/22 00:09 01/01/22 00:09	Dil Face 1 1 1 Dil Face
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg	-	Prepared 12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared	Analyzed 01/01/22 00:09 01/01/22 00:09 01/01/22 00:09 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg	-	Prepared 12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared 12/29/21 15:34	01/04/22 15:21 Analyzed 01/01/22 00:09 01/01/22 00:09 Analyzed 01/01/22 00:09	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 12/29/21 15:34 12/29/21 15:34 12/29/21 15:34 Prepared 12/29/21 15:34	01/04/22 15:21 Analyzed 01/01/22 00:09 01/01/22 00:09 Analyzed 01/01/22 00:09	Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: SW-10

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 22:32	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 22:32	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 22:32	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/29/21 14:29	12/30/21 22:32	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/29/21 14:29	12/30/21 22:32	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/29/21 14:29	12/30/21 22:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130				12/29/21 14:29	12/30/21 22:32	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1770-7

Matrix: Solid

Job ID: 890-1770-1 SDG: Lea County New Mexico

Lab Sample ID: 890-1770-7

Matrix: Solid

Sample Depth: 0 - 4

Client Sample ID: SW-10

Date Collected: 12/23/21 00:00

Date Received: 12/28/21 10:30

Method: 8021B - Volatile Or	ganic Compounds	(GC)	(Continued)	
mother colline of	garno compounac	1/	(Continuou)	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	123		70 - 130	12/29/21 14:29	12/30/21 22:32	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402 U	0.00402	ma/Ka			01/04/22 15:22	1

Mothod: 8015 NM	Diosal Range	Organice	(DRO) (GC)

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<50.0 U	50.0	ma/Ka			01/04/22 15:21	1	

		_			
Method: 8015B	NM - Diesel	Range Org	ranics ('DROL	GC
motriou. ou rob	THE DIGGOL	itunge or	garnoo (D. (O)	(–

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/29/21 15:34	01/01/22 00:30	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/29/21 15:34	01/01/22 00:30	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/29/21 15:34	01/01/22 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	97	70 - 130	12/29/21 15:34	01/01/22 00:30	1
o-Terphenyl	113	70 - 130	12/29/21 15:34	01/01/22 00:30	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Chloride	354		4.98		mg/Kg				12/31/21 11:05	1

Client Sample ID: SW-11 Lab Sample ID: 890-1770-8

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

Sample Depth: 0 - 4

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/30/21 14:12	01/02/22 04:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/30/21 14:12	01/02/22 04:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/30/21 14:12	01/02/22 04:00	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/30/21 14:12	01/02/22 04:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/30/21 14:12	01/02/22 04:00	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/30/21 14:12	01/02/22 04:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	156	S1+	70 - 130				12/30/21 14:12	01/02/22 04:00	1
1,4-Difluorobenzene (Surr)	89		70 - 130				12/30/21 14:12	01/02/22 04:00	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00401	U	0.00401		ma/Ka			01/04/22 15:22	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result C	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 L	J	49.9	n	ng/Kg			01/04/22 15:21	1

Eurofins Xenco, Carlsbad

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Client Sample ID: SW-11 Lab Sample ID: 890-1770-8

. Matrix: Solid

Date Collected: 12/23/21 00:00
Date Received: 12/28/21 10:30
Sample Depth: 0 - 4

Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		12/29/21 15:34	01/01/22 00:50	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		12/29/21 15:34	01/01/22 00:50	•
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/29/21 15:34	01/01/22 00:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				12/29/21 15:34	01/01/22 00:50	
o-Terphenyl	109		70 - 130				12/29/21 15:34	01/01/22 00:50	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	348		5.03		mg/Kg			12/31/21 11:14	1	

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-1770-1 Project/Site: Kaiser SWD SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		DED4	DED 74	Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-9746-A-1-B MS	Matrix Spike	124	79	
880-9746-A-1-C MSD	Matrix Spike Duplicate	116	92	
880-9746-A-6-G MS	Matrix Spike	127	111	
880-9746-A-6-H MSD	Matrix Spike Duplicate	127	106	
890-1770-1	SW-1	122	79	
890-1770-2	SW-3	131 S1+	104	
890-1770-3	SW-6	124	104	
890-1770-4	SW-7	128	90	
890-1770-5	SW-8	129	89	
890-1770-6	SW-9	126	75	
890-1770-7	SW-10	167 S1+	123	
890-1770-8	SW-11	156 S1+	89	
LCS 880-15736/1-A	Lab Control Sample	144 S1+	110	
LCS 880-15812/1-A	Lab Control Sample	121	0 S1-	
LCSD 880-15736/2-A	Lab Control Sample Dup	109	99	
LCSD 880-15812/2-A	Lab Control Sample Dup	143 S1+	117	
MB 880-15736/5-A	Method Blank	103	105	
MB 880-15812/5-A	Method Blank	90	87	
0				
Surrogate Legend BFB = 4-Bromofluorobe				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-1770-1	SW-1	98	113	
890-1770-1 MS	SW-1	86	87	
890-1770-1 MSD	SW-1	87	88	
890-1770-2	SW-3	101	116	
890-1770-3	SW-6	90	101	
890-1770-4	SW-7	93	108	
890-1770-5	SW-8	100	116	
890-1770-6	SW-9	92	108	
890-1770-7	SW-10	97	113	
890-1770-8	SW-11	95	109	
LCS 880-15746/2-A	Lab Control Sample	112	108	
LCSD 880-15746/3-A	Lab Control Sample Dup	100	96	
MB 880-15746/1-A	Method Blank	108	132 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1770-1 Project/Site: Kaiser SWD SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-15736/5-A

Matrix: Solid Analysis Batch: 15788 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 15736

	11110	141.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 14:42	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 14:42	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 14:42	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/29/21 14:29	12/30/21 14:42	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/29/21 14:29	12/30/21 14:42	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/29/21 14:29	12/30/21 14:42	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	d Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130	12/29/21 14	1:29 12/30/21 14:42	1
1,4-Difluorobenzene (Surr)	105		70 - 130	12/29/21 14	1:29 12/30/21 14:42	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 15736

Matrix: Solid Analysis Batch: 15788

Lab Sample ID: LCS 880-15736/1-A

Lab Sample ID: LCSD 880-15736/2-A

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.08657 mg/Kg 87 70 - 130 Toluene 0.100 0.09264 mg/Kg 93 70 - 130 0.100 0.09669 Ethylbenzene mg/Kg 97 70 - 130 0.200 0.2048 102 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.1026 103 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 15736

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07239		mg/Kg		72	70 - 130	18	35
Toluene	0.100	0.07560		mg/Kg		76	70 - 130	20	35
Ethylbenzene	0.100	0.07364		mg/Kg		74	70 - 130	27	35
m-Xylene & p-Xylene	0.200	0.1618		mg/Kg		81	70 - 130	23	35
o-Xylene	0.100	0.08266		mg/Kg		83	70 - 130	22	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 880-9746-A-1-B MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 15788

Analysis Batch: 15788

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 15736

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1	0.101	0.05309	F1	mg/Kg	_	53	70 - 130	
Toluene	<0.00200	U F1	0.101	0.06625	F1	mg/Kg		66	70 - 130	

Prep Batch: 15736

QC Sample Results

Job ID: 890-1770-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-9746-A-1-B MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Matrix: Solid

o-Xylene

Analysis Batch: 15788

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.101	0.07124		mg/Kg		71	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F1	0.202	0.1407		mg/Kg		70	70 - 130	
o-Xylene	<0.00200	U	0.101	0.07366		mg/Kg		73	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene (Surr)	124		70 - 130	
1,4-Difluorobenzene (Surr)	79		70 - 130	

Client Sample ID: Matrix Spike Duplicate

mg/Kg

Prep Type: Total/NA

70 - 130

70

Prep Batch: 15736

Analysis Batch: 15788 Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 0.100 0.05242 F1 Benzene <0.00200 UF1 mg/Kg 52 70 - 130 1 35 Toluene 0.06213 F1 62 <0.00200 UF1 0.100 mg/Kg 70 - 130 6 35 Ethylbenzene <0.00200 U 0.100 0.07132 mg/Kg 71 70 - 130 0 35 0.200 0.1372 F1 70 - 130 35 m-Xylene & p-Xylene <0.00399 UF1 mg/Kg 69 3

0.07030

0.100

MSD MSD

<0.00200 U

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	116		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: MB 880-15812/5-A

Lab Sample ID: 880-9746-A-1-C MSD

Matrix: Solid

Analysis Batch: 15844

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 15812

MB MB Result Qualifier MDL Unit Prepared Analyzed Dil Fac Analyte RL Benzene <0.00200 U 0.00200 mg/Kg 12/30/21 14:12 01/01/22 21:46 Toluene <0.00200 U 0.00200 mg/Kg 12/30/21 14:12 01/01/22 21:46 Ethylbenzene <0.00200 U 0.00200 mg/Kg 12/30/21 14:12 01/01/22 21:46 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 12/30/21 14:12 01/01/22 21:46 <0.00200 U 0.00200 12/30/21 14:12 01/01/22 21:46 o-Xylene mg/Kg <0.00400 U 0.00400 01/01/22 21:46 Xylenes, Total mg/Kg 12/30/21 14:12

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130	12/30/21 14:12	01/01/22 21:46	1
1,4-Difluorobenzene (Surr)	87		70 - 130	12/30/21 14:12	01/01/22 21:46	1

Lab Sample ID: LCS 880-15812/1-A

Matrix: Solid

Analysis Batch: 15844

Client Sample ID: Lab Control	Sample
Prep Type:	Total/NA

Prep Batch: 15812

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09353		mg/Kg		94	70 - 130	
Toluene	0.100	0.08852		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.07882		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	0.200	0.1608		mg/Kg		80	70 - 130	

Prep Batch: 15812

Prep Type: Total/NA

Prep Batch: 15812

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 15812

Prep Batch: 15812

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-15812/1-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 15844

 Analyte
 LCS | LCS |
 KRec.

 o-Xylene
 0.100
 0.07679
 Unit | Unit

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 121
 70 - 130

 1,4-Difluorobenzene (Surr)
 0
 \$1 70 - 130

Lab Sample ID: LCSD 880-15812/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 15844

Sniko	I CSD	LCSD				% Poc		RPD
Spike	LCSD	LUSD				/orec.		KFD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.100	0.07182		mg/Kg		72	70 - 130	26	35
0.100	0.08616		mg/Kg		86	70 - 130	3	35
0.100	0.08216		mg/Kg		82	70 - 130	4	35
0.200	0.1660		mg/Kg		83	70 - 130	3	35
0.100	0.08149		mg/Kg		81	70 - 130	6	35
	0.100 0.100 0.100 0.200	Added Result 0.100 0.07182 0.100 0.08616 0.100 0.08216 0.200 0.1660	Added Result Qualifier 0.100 0.07182 0.100 0.08616 0.100 0.08216 0.200 0.1660	Added Result Qualifier Unit 0.100 0.07182 mg/Kg 0.100 0.08616 mg/Kg 0.100 0.08216 mg/Kg 0.200 0.1660 mg/Kg	Added Result Qualifier Unit D 0.100 0.07182 mg/Kg 0.100 0.08616 mg/Kg 0.100 0.08216 mg/Kg 0.200 0.1660 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.07182 mg/Kg 72 0.100 0.08616 mg/Kg 86 0.100 0.08216 mg/Kg 82 0.200 0.1660 mg/Kg 83	Added Result Qualifier Unit D %Rec Limits 0.100 0.07182 mg/Kg 72 70 - 130 0.100 0.08616 mg/Kg 86 70 - 130 0.100 0.08216 mg/Kg 82 70 - 130 0.200 0.1660 mg/Kg 83 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 0.100 0.07182 mg/Kg 72 70 - 130 26 0.100 0.08616 mg/Kg 86 70 - 130 3 0.100 0.08216 mg/Kg 82 70 - 130 4 0.200 0.1660 mg/Kg 83 70 - 130 3

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 143
 S1+
 70 - 130

 1,4-Difluorobenzene (Surr)
 117
 70 - 130

Lab Sample ID: 880-9746-A-6-G MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 15844

Sampl	Sample	Spike	MS	MS				%Rec.
Analyte Resul	t Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene <0.0020	U F1	0.0994	0.06266	F1	mg/Kg		63	70 - 130
Toluene <0.0020	2 U F2 F1	0.0994	0.06389	F1	mg/Kg		64	70 - 130
Ethylbenzene <0.0020	2 U F1	0.0994	0.06876	F1	mg/Kg		69	70 - 130
m-Xylene & p-Xylene <0.0040	3 U	0.199	0.1390		mg/Kg		70	70 - 130
o-Xylene <0.0020	2 U F1	0.0994	0.06885	F1	mg/Kg		69	70 - 130

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 127
 70 - 130

 1,4-Diffuorobenzene (Surr)
 111
 70 - 130

Lab Sample ID: 880-9746-A-6-H MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 15844

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00202	U F1	0.0998	0.06980		mg/Kg		70	70 - 130	11	35
Toluene	<0.00202	U F2 F1	0.0998	0.007273	F2 F1	mg/Kg		7	70 - 130	159	35
Ethylbenzene	<0.00202	U F1	0.0998	0.06958		mg/Kg		70	70 - 130	1	35
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1399		mg/Kg		70	70 - 130	1	35
o-Xylene	<0.00202	U F1	0.0998	0.06893	F1	mg/Kg		69	70 - 130	0	35

Eurofins Xenco, Carlsbad

2

3

Δ

5

7

9

11

13

_ [4

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-9746-A-6-H MSD

Matrix: Solid

Analysis Batch: 15844

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 15812

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	127		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-15746/1-A

Matrix: Solid

Analysis Batch: 15825

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 15746

MB MB

	IVID	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/29/21 15:34	12/31/21 20:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/29/21 15:34	12/31/21 20:42	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/29/21 15:34	12/31/21 20:42	1
	MR	MD							

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130	12/29/21 15:34	12/31/21 20:42	1
o-Terphenyl	132	S1+	70 - 130	12/29/21 15:34	12/31/21 20:42	1

Lab Sample ID: LCS 880-15746/2-A

Matrix: Solid

Analysis Batch: 15825

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 15746

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 941.7 mg/Kg 94 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1152 mg/Kg 115 70 - 130

C10-C28)

	LCS LCS	
Surrogate	%Recovery Qualify	ier Limits
1-Chlorooctane	112	70 - 130
o-Terphenyl	108	70 - 130

Lab Sample ID: LCSD 880-15746/3-A

Matrix: Solid

Analysis Batch: 15825

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 15746

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	888.9		mg/Kg		89	70 - 130	6	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1107		mg/Kg		111	70 - 130	4	20
C10 C28)									

C10-C28)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	100		70 - 130
o-Terphenyl	96		70 - 130

Eurofins Xenco, Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

3

4

6

8

10

12

1 1

Client: Tetra Tech, Inc. Job ID: 890-1770-1 SDG: Lea County New Mexico Project/Site: Kaiser SWD

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1770-1 MS

Matrix: Solid

Analysis Batch: 15825

Client Sa	mple	ID:	SW-
Prep	Type:	Tot	al/NA

Prep Batch: 15746

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U F1	996	484.2	F1	mg/Kg		46	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U F1	996	456.9	F1	mg/Kg		46	70 - 130	
C10-C28\										

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	86		70 - 130
o-Terphenyl	87		70 - 130

Lab Sample ID: 890-1770-1 MSD

Matrix: Solid

Analysis Batch: 15825

Client Sa	ample ID: SW-1	
Prep	Type: Total/NA	

Prep Batch: 15746

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U F1	999	495.1	F1	mg/Kg		47	70 - 130	2	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U F1	999	467.3	F1	mg/Kg		47	70 - 130	2	20
C10-C28)											

C10-C28)

MSD	MSL

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	87		70 - 130
o-Terphenyl	88		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-15755/1-A

Matrix: Solid

Analysis Batch: 15821

Client Sample ID: Method Blank

Prep Type: Soluble

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			12/31/21 07:03	1

Lab Sample ID: LCS 880-15755/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 15821

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 250	249.8		ma/Ka		100	90 - 110	

Lab Sample ID: LCSD 880-15755/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 15821

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	253.3		mg/Kg	_	101	90 - 110	1	20

Job ID: 890-1770-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

274

Lab Sample ID: 880-9745-A-1-B MS Client Sample ID: Matrix Spike **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 15821

Sample Sample MS MS %Rec. Spike Qualifier Analyte Result Added Result Qualifier %Rec Limits Unit D Chloride 274 2500 2976 mg/Kg 108 90 - 110

Lab Sample ID: 880-9745-A-1-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 15821

Sample Sample Spike MSD MSD %Rec. RPD Qualifier Analyte Result Added Result Qualifier Unit D %Rec Limits RPD Limit

2500

Lab Sample ID: 880-9747-A-3-D MS Client Sample ID: Matrix Spike

2966

mg/Kg

108

90 - 110

n

Matrix: Solid Prep Type: Soluble

Analysis Batch: 15821

MS MS Spike %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride <5.04 U 252 262.9 mg/Kg 103 90 - 110

Lab Sample ID: 880-9747-A-3-E MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid

Chloride

Analysis Batch: 15821

MSD MSD RPD Sample Sample Spike %Rec. Qualifier Added Limit Analyte Result Result Qualifier Unit %Rec Limits RPD Chloride <5.04 252 259.9 101 90 - 110 20 mg/Kg

Lab Sample ID: MB 880-15803/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 15920

MR MR

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 5.00 Chloride <5.00 U mg/Kg 01/03/22 16:56

Lab Sample ID: LCS 880-15803/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 15920

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Chloride 250 245.5 mg/Kg 90 - 110

Lab Sample ID: LCSD 880-15803/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 15920

LCSD LCSD RPD Spike %Rec. Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 250 239.6 mg/Kg 96 90 - 110 20

Lab Sample ID: 890-1770-1 MS Client Sample ID: SW-1 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 15920

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 287 F1 250 527.7 mg/Kg 97 90 - 110

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-1770-1 MSD

Matrix: Solid

Client Sample ID: SW-1

Prep Type: Soluble

Analysis Batch: 15920

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	287	F1	250	505.3	F1	mg/Kg		88	90 - 110	4	20

1

4

5

6

7

10

12

13

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

GC VOA

Prep Batch: 15736

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Total/NA	Solid	5035	
890-1770-2	SW-3	Total/NA	Solid	5035	
890-1770-3	SW-6	Total/NA	Solid	5035	
890-1770-4	SW-7	Total/NA	Solid	5035	
890-1770-5	SW-8	Total/NA	Solid	5035	
890-1770-6	SW-9	Total/NA	Solid	5035	
890-1770-7	SW-10	Total/NA	Solid	5035	
MB 880-15736/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-15736/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-15736/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-9746-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-9746-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 15788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Total/NA	Solid	8021B	15736
890-1770-2	SW-3	Total/NA	Solid	8021B	15736
890-1770-3	SW-6	Total/NA	Solid	8021B	15736
890-1770-4	SW-7	Total/NA	Solid	8021B	15736
890-1770-5	SW-8	Total/NA	Solid	8021B	15736
890-1770-6	SW-9	Total/NA	Solid	8021B	15736
890-1770-7	SW-10	Total/NA	Solid	8021B	15736
MB 880-15736/5-A	Method Blank	Total/NA	Solid	8021B	15736
LCS 880-15736/1-A	Lab Control Sample	Total/NA	Solid	8021B	15736
LCSD 880-15736/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	15736
880-9746-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	15736
880-9746-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	15736

Prep Batch: 15812

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-8	SW-11	Total/NA	Solid	5035	
MB 880-15812/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-15812/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-15812/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-9746-A-6-G MS	Matrix Spike	Total/NA	Solid	5035	
880-9746-A-6-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 15844

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-8	SW-11	Total/NA	Solid	8021B	15812
MB 880-15812/5-A	Method Blank	Total/NA	Solid	8021B	15812
LCS 880-15812/1-A	Lab Control Sample	Total/NA	Solid	8021B	15812
LCSD 880-15812/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	15812
880-9746-A-6-G MS	Matrix Spike	Total/NA	Solid	8021B	15812
880-9746-A-6-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	15812

Analysis Batch: 16004

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Total/NA	Solid	Total BTEX	
890-1770-2	SW-3	Total/NA	Solid	Total BTEX	
890-1770-3	SW-6	Total/NA	Solid	Total BTEX	

Eurofins Xenco, Carlsbad

2

Λ

6

8

44

12

4 4

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

GC VOA (Continued)

Analysis Batch: 16004 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-4	SW-7	Total/NA	Solid	Total BTEX	
890-1770-5	SW-8	Total/NA	Solid	Total BTEX	
890-1770-6	SW-9	Total/NA	Solid	Total BTEX	
890-1770-7	SW-10	Total/NA	Solid	Total BTEX	
890-1770-8	SW-11	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 15746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Total/NA	Solid	8015NM Prep	
890-1770-2	SW-3	Total/NA	Solid	8015NM Prep	
890-1770-3	SW-6	Total/NA	Solid	8015NM Prep	
890-1770-4	SW-7	Total/NA	Solid	8015NM Prep	
890-1770-5	SW-8	Total/NA	Solid	8015NM Prep	
890-1770-6	SW-9	Total/NA	Solid	8015NM Prep	
890-1770-7	SW-10	Total/NA	Solid	8015NM Prep	
890-1770-8	SW-11	Total/NA	Solid	8015NM Prep	
MB 880-15746/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-15746/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-15746/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1770-1 MS	SW-1	Total/NA	Solid	8015NM Prep	
890-1770-1 MSD	SW-1	Total/NA	Solid	8015NM Prep	

Analysis Batch: 15825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Total/NA	Solid	8015B NM	15746
890-1770-2	SW-3	Total/NA	Solid	8015B NM	15746
890-1770-3	SW-6	Total/NA	Solid	8015B NM	15746
890-1770-4	SW-7	Total/NA	Solid	8015B NM	15746
890-1770-5	SW-8	Total/NA	Solid	8015B NM	15746
890-1770-6	SW-9	Total/NA	Solid	8015B NM	15746
890-1770-7	SW-10	Total/NA	Solid	8015B NM	15746
890-1770-8	SW-11	Total/NA	Solid	8015B NM	15746
MB 880-15746/1-A	Method Blank	Total/NA	Solid	8015B NM	15746
LCS 880-15746/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	15746
LCSD 880-15746/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	15746
890-1770-1 MS	SW-1	Total/NA	Solid	8015B NM	15746
890-1770-1 MSD	SW-1	Total/NA	Solid	8015B NM	15746

Analysis Batch: 15912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Total/NA	Solid	8015 NM	
890-1770-2	SW-3	Total/NA	Solid	8015 NM	
890-1770-3	SW-6	Total/NA	Solid	8015 NM	
890-1770-4	SW-7	Total/NA	Solid	8015 NM	
890-1770-5	SW-8	Total/NA	Solid	8015 NM	
890-1770-6	SW-9	Total/NA	Solid	8015 NM	
890-1770-7	SW-10	Total/NA	Solid	8015 NM	
890-1770-8	SW-11	Total/NA	Solid	8015 NM	

Eurofins Xenco, Carlsbad

.

3

4

6

Q

10

12

13

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

HPLC/IC

Leach Batch: 15755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-3	SW-6	Soluble	Solid	DI Leach	
890-1770-4	SW-7	Soluble	Solid	DI Leach	
890-1770-5	SW-8	Soluble	Solid	DI Leach	
890-1770-6	SW-9	Soluble	Solid	DI Leach	
890-1770-7	SW-10	Soluble	Solid	DI Leach	
890-1770-8	SW-11	Soluble	Solid	DI Leach	
MB 880-15755/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-15755/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-15755/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-9745-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-9745-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
880-9747-A-3-D MS	Matrix Spike	Soluble	Solid	DI Leach	
880-9747-A-3-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 15803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Soluble	Solid	DI Leach	
890-1770-2	SW-3	Soluble	Solid	DI Leach	
MB 880-15803/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-15803/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-15803/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1770-1 MS	SW-1	Soluble	Solid	DI Leach	
890-1770-1 MSD	SW-1	Soluble	Solid	DI Leach	

Analysis Batch: 15821

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-3	SW-6	Soluble	Solid	300.0	15755
890-1770-4	SW-7	Soluble	Solid	300.0	15755
890-1770-5	SW-8	Soluble	Solid	300.0	15755
890-1770-6	SW-9	Soluble	Solid	300.0	15755
890-1770-7	SW-10	Soluble	Solid	300.0	15755
890-1770-8	SW-11	Soluble	Solid	300.0	15755
MB 880-15755/1-A	Method Blank	Soluble	Solid	300.0	15755
LCS 880-15755/2-A	Lab Control Sample	Soluble	Solid	300.0	15755
LCSD 880-15755/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	15755
880-9745-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	15755
880-9745-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	15755
880-9747-A-3-D MS	Matrix Spike	Soluble	Solid	300.0	15755
880-9747-A-3-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	15755

Analysis Batch: 15920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1770-1	SW-1	Soluble	Solid	300.0	15803
890-1770-2	SW-3	Soluble	Solid	300.0	15803
MB 880-15803/1-A	Method Blank	Soluble	Solid	300.0	15803
LCS 880-15803/2-A	Lab Control Sample	Soluble	Solid	300.0	15803
LCSD 880-15803/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	15803
890-1770-1 MS	SW-1	Soluble	Solid	300.0	15803
890-1770-1 MSD	SW-1	Soluble	Solid	300.0	15803

Eurofins Xenco, Carlsbad

2

5

7

9

10

12

Date Received: 12/28/21 10:30

Analysis

Analysis

Leach

8015B NM

DI Leach

300.0

Total/NA

Soluble

Soluble

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1770-1

SDG: Lea County New Mexico

Client Sample ID: SW-1 Lab Sample ID: 890-1770-1 Date Collected: 12/23/21 00:00

Matrix: Solid

XEN MID

XEN MID

XEN MID

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.00 g 5 mL 15736 12/29/21 14:29 MR XEN MID Total/NA Analysis 8021B 1 5 mL 5 mL 15788 12/30/21 20:30 MR XEN MID Total/NA Analysis Total BTEX 16004 01/04/22 15:22 ΑJ XEN MID 8015 NM Total/NA Analysis 1 15912 01/03/22 14:33 AJ XEN MID 15746 XEN MID Total/NA 8015NM Prep 10.02 g 10 ml 12/29/21 15:34 DM Prep

Client Sample ID: SW-3 Lab Sample ID: 890-1770-2

1

Date Collected: 12/23/21 00:00 Matrix: Solid Date Received: 12/28/21 10:30

5.01 g

15825

15803

15920

50 mL

12/31/21 21:44

12/30/21 12:27

01/03/22 17:31

AJ

CA

СН

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Lab **Analyst** Total/NA Prep 5035 5.01 g 5 mL 15736 12/29/21 14:29 MR XEN MID 12/30/21 20:50 8021B Total/NA Analysis 1 5 mL 5 mL 15788 MR XEN MID Total/NA Total BTEX 01/04/22 15:22 Analysis 16004 XEN MID 1 A.I Total/NA Analysis 8015 NM 15912 01/04/22 15:21 XEN MID Total/NA 8015NM Prep 10.00 g 15746 12/29/21 15:34 DM XEN MID Prep 10 mL Total/NA Analysis 8015B NM 15825 12/31/21 22:46 AJ XEN MID Soluble DI Leach 5.05 g 50 mL 15803 12/30/21 12:27 CA **XEN MID** Leach Soluble Analysis 300.0 1 15920 01/03/22 18:07 СН XEN MID

Client Sample ID: SW-6 Lab Sample ID: 890-1770-3

Date Collected: 12/23/21 00:00 **Matrix: Solid** Date Received: 12/28/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	15736	12/29/21 14:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15788	12/30/21 21:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			16004	01/04/22 15:22	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15912	01/04/22 15:21	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	15746	12/29/21 15:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15825	12/31/21 23:06	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	15755	12/29/21 16:19	CA	XEN MID
Soluble	Analysis	300.0		10			15821	01/03/22 17:31	CH	XEN MID

Lab Sample ID: 890-1770-4 Client Sample ID: SW-7 Date Collected: 12/23/21 00:00 **Matrix: Solid**

Date Received: 12/28/21 10:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	15736	12/29/21 14:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15788	12/30/21 21:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			16004	01/04/22 15:22	AJ	XEN MID

Eurofins Xenco, Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1770-1

SDG: Lea County New Mexico

Lab Sample ID: 890-1770-4

Matrix: Solid

Client Sample ID: SW-7 Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			15912	01/04/22 15:21	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	15746	12/29/21 15:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15825	12/31/21 23:27	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	15755	12/29/21 16:19	CA	XEN MID
Soluble	Analysis	300.0		10			15821	01/03/22 17:39	CH	XEN MID

Client Sample ID: SW-8 Lab Sample ID: 890-1770-5

Date Collected: 12/23/21 00:00 **Matrix: Solid** Date Received: 12/28/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	15736	12/29/21 14:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15788	12/30/21 21:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			16004	01/04/22 15:22	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15912	01/04/22 15:21	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	15746	12/29/21 15:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15825	12/31/21 23:48	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	15755	12/29/21 16:19	CA	XEN MID
Soluble	Analysis	300.0		10			15821	12/31/21 10:48	CH	XEN MID

Client Sample ID: SW-9 Lab Sample ID: 890-1770-6

Date Collected: 12/23/21 00:00 **Matrix: Solid** Date Received: 12/28/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	15736	12/29/21 14:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15788	12/30/21 22:12	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			16004	01/04/22 15:22	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15912	01/04/22 15:21	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	15746	12/29/21 15:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15825	01/01/22 00:09	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	15755	12/29/21 16:19	CA	XEN MID
Soluble	Analysis	300.0		1			15821	12/31/21 10:57	CH	XEN MID

Client Sample ID: SW-10 Lab Sample ID: 890-1770-7

Date Collected: 12/23/21 00:00 **Matrix: Solid** Date Received: 12/28/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	15736	12/29/21 14:29	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15788	12/30/21 22:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			16004	01/04/22 15:22	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15912	01/04/22 15:21	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.00 g	10 mL	15746 15825	12/29/21 15:34 01/01/22 00:30	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

1/4/2022

Lab Chronicle

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Client Sample ID: SW-10

Date Collected: 12/23/21 00:00 Date Received: 12/28/21 10:30 Lab Sample ID: 890-1770-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	15755	12/29/21 16:19	CA	XEN MID
Soluble	Analysis	300.0		1			15821	12/31/21 11:05	CH	XEN MID

Client Sample ID: SW-11 Lab Sample ID: 890-1770-8

Date Collected: 12/23/21 00:00 Matrix: Solid

Date Received: 12/28/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	15812	12/30/21 14:12	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	15844	01/02/22 04:00	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			16004	01/04/22 15:22	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			15912	01/04/22 15:21	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	15746	12/29/21 15:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			15825	01/01/22 00:50	AJ	XEN MID
Soluble	Leach	DI Leach			4.97 g	50 mL	15755	12/29/21 16:19	CA	XEN MID
Soluble	Analysis	300.0		1			15821	12/31/21 11:14	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

2

3

4

6

7

9

11

13

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, but	it the laboratory is not certifi	ed by the governing authority. This list ma	y include analytes for w
the agency does not of	fer certification.	,	, g,	ly molade analytes for the
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	y moduce analytee for the
9 ,		•	, , ,	

3

6

8

10

12

13

XEN MID

ASTM

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-1770-1

Project/Site: Kaiser SWD

SDG: Lea County New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID

Protocol References:

DI Leach

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Deionized Water Leaching Procedure

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

1

9

4

5

7

10

. .

13

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1770-1 SDG: Lea County New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-1770-1	SW-1	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4
890-1770-2	SW-3	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4
890-1770-3	SW-6	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4
890-1770-4	SW-7	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4
890-1770-5	SW-8	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4
890-1770-6	SW-9	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4
890-1770-7	SW-10	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4
890-1770-8	SW-11	Solid	12/23/21 00:00	12/28/21 10:30	0 - 4

4

6

10

11

16

ORIGINAL COPY

Analysis Reques	Tetra Tech, Inc.	1	890-1770 Chain of Custody		- 2
Client Name:	Permian Water Solutions	Site Manager:	Clair Gonzales	ANALYSIS RE	ST STATE
Project Name:	Kaiser SWD				
Project Location: (county, state)	Lea County, New Mexico	Project #:	212C-MD-02230		
Invoice to:					
	Dusty McInturff - Permian Water Solutions			Hg	
Receiving Laboratory:	Eurofins Xenco	Sampler Signature:	Ezequiel Moreno	DRO - I	5
Comments:				X 82608 C35) DRO - 0 a Cd Cr 3a Cd Cr	624 270C/62
		SAMPLING	MATRIX PRESERVATIVE	BTE (Ext to GRO	260B / Vol. 8 608
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020	R	RED (Y 8021B X1005 015M (270C letals A	Semi V Vol. 8 Semi. 8082 /
(LABUSE)		DATE	WATE SOIL HCL HNO ₃ ICE None	PAH 8 Total M	PCB's NORM
	SW-1 (0-4')	12/23/2021	×	×	
	SW-3 (0-4')	12/23/2021	×		
	SW-6 (0-4')	12/23/2021	×	×	
	SW-7 (0-4')	12/23/2021	×	×	
	SW-8 (0-4')	12/23/2021	×	×	
	SW-9 (0-4')	12/23/2021	×	×	
	SW-10 (0-4')	12/23/2021	×	×	
	SW-11 (0-4')	12/23/2021	×	×	
Relingerished by:	Date: Time:	Received by:	Date: Time:	LAB USE	REMARKS: X STANDARD
Relinquished by:	Date: Time:	Received by:		Sampl	RUSH: Same Day
Relinquished by:	Date: Time:	Received by:	Date: Time:	8:0	Special Report Limits or TRRP Report
				מולי בייני בייני בייני בייני בייני בייני בייניים ביינים בי	DED EEDEY HDS Tracking #

Page 29 of 31

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-1770-1

SDG Number: Lea County New Mexico

List Source: Eurofins Xenco, Carlsbad

Login Number: 1770 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Eurofins Xenco, Carlsbad

Page 30 of 31

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-1770-1

SDG Number: Lea County New Mexico

List Source: Eurofins Xenco, Midland

List Creation: 12/29/21 11:05 AM

Login Number: 1770 List Number: 2

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1502-1

Laboratory Sample Delivery Group: 212C-MD-02230

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

MRAMER

Authorized for release by: 11/10/2021 1:19:33 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 9/1/2023 2:07:08 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

6

6

0

10

12

13

Н

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-1502-1 SDG: 212C-MD-02230

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Client Sample Results	8
Surrogate Summary	108
QC Sample Results	116
QC Association Summary	149
Lab Chronicle	177
Certification Summary	215
Method Summary	216
Sample Summary	217
Chain of Custody	220
Receipt Checklists	247

__

3

4

6

0

10

12

13

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Qualifiers

GC VOA Qualifier

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

Qualifier Description

GC Semi VOA

Qualifier

*1	LCS/LCSD RPD exceeds control limits.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

·
MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
applicable.
MS and/or MSD recovery exceeds control limits.
Indicates the analyte was analyzed for but not detected.
_

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Eurofins Xenco, Carlsbad

Page 3 of 248

RL

RPD

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Glossary (Continued)

These commonly used abbreviations may or may not be present in this report.
Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)
Too Numerous To Count

9

4

6

8

10

12

13

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Job ID: 890-1502-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-1502-1

Receipt

The samples were received on 10/29/2021 12:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-3 (6) (890-1502-3), BH-4 (6) (890-1502-4), BH-5 (6) (890-1502-5), BH-6 (6) (890-1502-6), BH-8 (6) (890-1502-8), BH-9 (6) (890-1502-9), BH-10 (6) (890-1502-10), BH-12 (6) (890-1502-12) and BH-15 (6) (890-1502-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-11075 and analytical batch 880-11206 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-11109 and 880-11112 and analytical batch 880-11221 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH-65 (15) (890-1502-65). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-11111 and analytical batch 880-11259 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-41 (15) (890-1502-41), BH-42 (15) (890-1502-42), BH-43 (15) (890-1502-43), BH-44 (15) (890-1502-44), BH-45 (15) (890-1502-45), BH-46 (15) (890-1502-46), BH-47 (15) (890-1502-47), BH-48 (15) (890-1502-48), BH-49 (15) (890-1502-49), BH-50 (15) (890-1502-50), BH-51 (15) (890-1502-51), BH-52 (15) (890-1502-52), BH-54 (15) (890-1502-54), BH-55 (15) (890-1502-55), BH-56 (15) (890-1502-56), (CCV 880-11259/51) and (MB 880-11111/5-A). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-11113 and 880-11114 and analytical batch 880-11374 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: SW-12 (10) (890-1502-103), SW-14 (15) (890-1502-105), SW-15 (15) (890-1502-106) and SW-25 (15) (890-1502-116). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-11258/5-A). Evidence of matrix interferences is not obvious.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-11445 and analytical batch 880-11449 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-57 (15) (890-1502-57), BH-58 (15) (890-1502-58), BH-59 (15) (890-1502-59), BH-60 (15) (890-1502-60), SW-29 (15) (890-1502-120), (CCV 880-11449/30) and (890-1520-A-1-D). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

2

3

Λ

5

7

0

10

12

13

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Job ID: 890-1502-1 (Continued)

Laboratory: Eurofins Xenco, Carlsbad (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-11223 and analytical batch 880-11317 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH-2 (6) (890-1502-2) and BH-20 (6) (890-1502-20). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-11356 and analytical batch 880-11323 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH-61 (15) (890-1502-61), (890-1502-A-61-F MS) and (890-1502-A-61-G MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-11375 and analytical batch 880-11418 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11237 and analytical batch 880-11453 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11227 and analytical batch 880-11379 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11240 and analytical batch 880-11455 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11238 and 880-11238 and analytical batch 880-11454 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11242 and analytical batch 880-11456 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11236 and analytical batch 880-11452 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-11243 and analytical batch 880-11705 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

2

E

6

7

9

1 1

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Job ID: 890-1502-1 (Continued)

Laboratory: Eurofins Xenco, Carlsbad (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

-

3

5

0

8

46

11

12

Lab Sample ID: 890-1502-1

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-1 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U F1	0.00199		mg/Kg		11/01/21 11:05	11/03/21 00:47	1
Toluene	<0.00199	U F1	0.00199		mg/Kg		11/01/21 11:05	11/03/21 00:47	1
Ethylbenzene	<0.00199	U F1	0.00199		mg/Kg		11/01/21 11:05	11/03/21 00:47	1
m-Xylene & p-Xylene	<0.00398	U F1	0.00398		mg/Kg		11/01/21 11:05	11/03/21 00:47	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 00:47	1
Xylenes, Total	<0.00398	U F1	0.00398		mg/Kg		11/01/21 11:05	11/03/21 00:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				11/01/21 11:05	11/03/21 00:47	1
1,4-Difluorobenzene (Surr)	73		70 - 130				11/01/21 11:05	11/03/21 00:47	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH	•	Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	Dil Fac
Total TPH	<49.9	U	49.9		mg/kg			11/05/21 13.50	!
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F1 F2	49.9		mg/Kg		11/02/21 11:44	11/03/21 11:42	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 11:42	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 11:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				11/02/21 11:44	11/03/21 11:42	1
o-Terphenyl	118		70 - 130				11/02/21 11:44	11/03/21 11:42	1
Method: 300.0 - Anions, Ion Chro						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1680		25.0		mg/Kg			11/06/21 06:01	5

Client Sample ID: BH-2 (6) Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:08	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 01:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:08	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 01:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				11/01/21 11:05	11/03/21 01:08	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-2

Matrix: Solid

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Sample ID: 890-1502-2

Lab Sample ID: 890-1502-3

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-2 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Method: 8021B - Volatile Organic Compou	nds (GC) (Continued)
Welliou. 002 ID - Volatile Organic Compou	iluə (OO) (Oolillilu c u)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98	70 - 130	11/01/21 11:05	11/03/21 01:08	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/08/21 17:11	1

Method: 8015 NM	 Diesel Range O 	rganics ((DRO)	(GC)
MICHIOU. OUTS INN	- Diesei Kange O	garnes	וטוטו	101

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 12:43	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 12:43	1
C10-C28) OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 12:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	119	70 - 130	11/02/21 11:4	4 11/03/21 12:43	1
o-Terphenyl	131 S1+	70 - 130	11/02/21 11:4	4 11/03/21 12:43	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	235	5.04		mg/Kg			11/06/21 06:09	1

Client Sample ID: BH-3 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Mathadi 0004D	Valatile Overen	ic Compounds (GC)
Memoo: Auzib	- voianie Urdan	ic Compounds (GC)

wethout ouz 16 - volatile Orga	inic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:28	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:28	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:28	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 01:28	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:28	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 01:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				11/01/21 11:05	11/03/21 01:28	1
1,4-Difluorobenzene (Surr)	70		70 - 130				11/01/21 11:05	11/03/21 01:28	1
_									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/08/21 17:11	1

Method: 8015 NM - Dies	el Range Organics (DRO)	(GC)

Analyte	•	•	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Total TPH			<50.0	U	50.0	m	g/Kg		-	11/05/21 13:50	1

Eurofins Xenco, Carlsbad

2

3

4

6

8

10

4.6

Lab Sample ID: 890-1502-3

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-3 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 13:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 13:03	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 13:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				11/02/21 11:44	11/03/21 13:03	1
o-Terphenyl	117		70 - 130				11/02/21 11:44	11/03/21 13:03	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		-	4.97		mg/Kg			11/06/21 06:17	

Client Sample ID: BH-4 (6)

Date Collected: 10/27/21 00:00

Matrix: Solid

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:49	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:49	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:49	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 01:49	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 01:49	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 01:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				11/01/21 11:05	11/03/21 01:49	1
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130				11/01/21 11:05	11/03/21 01:49	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/08/21 17:11	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
		O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	Dil Fac
Analyte Total TPH	Result <50.0	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Range	Result <50.0	Qualifier U				<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Range	Result <50.0	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg			11/05/21 13:50	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	Result <50.0 Corganics (D) Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg		Prepared 11/02/21 11:44	11/05/21 13:50 Analyzed 11/03/21 13:23	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 e Organics (D Result	Qualifier U RO) (GC) Qualifier U	50.0		mg/Kg		Prepared	11/05/21 13:50 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 11:44 11/02/21 11:44	11/05/21 13:50 Analyzed 11/03/21 13:23 11/03/21 13:23	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 Corganics (D) Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 11/02/21 11:44	11/05/21 13:50 Analyzed 11/03/21 13:23	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 11:44 11/02/21 11:44	11/05/21 13:50 Analyzed 11/03/21 13:23 11/03/21 13:23	
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 11:44 11/02/21 11:44	Analyzed 11/03/21 13:23 11/03/21 13:23 11/03/21 13:23	1 Dil Fac 1 1

Eurofins Xenco, Carlsbad

2

3

4

7

q

10

12

Job ID: 890-1502-1 SDG: 212C-MD-02230

Project/Site: Kaiser SWD Client Sample ID: BH-4 (6)

Lab Sample ID: 890-1502-4

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Matrix: Solid

Sample Depth: 6

Client: Tetra Tech, Inc.

	Method: 300.0 - Anions, Ion Chron	natography - S	oluble							
	Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Į	Chloride	48.9		5.05		mg/Kg			11/08/21 09:05	1

Client Sample ID: BH-5 (6) Lab Sample ID: 890-1502-5

Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 02:09	
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 02:09	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 02:09	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/21 11:05	11/03/21 02:09	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 02:09	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/21 11:05	11/03/21 02:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	140	S1+	70 - 130				11/01/21 11:05	11/03/21 02:09	1
1,4-Difluorobenzene (Surr)	97		70 - 130				11/01/21 11:05	11/03/21 02:09	1
Method: Total BTEX - Total BTE	K Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range	organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	51.5		49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 13:43	1
Diesel Range Organics (Over C10-C28)	51.5		49.8		mg/Kg		11/02/21 11:44	11/03/21 13:43	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 13:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				11/02/21 11:44	11/03/21 13:43	1
o-Terphenyl	117		70 - 130				11/02/21 11:44	11/03/21 13:43	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Method: 300.0 - Anions, Ion Chro Analyte	•	Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-1502-6

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-6 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 02:29	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 02:29	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 02:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 02:29	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 02:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 02:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130				11/01/21 11:05	11/03/21 02:29	1
1,4-Difluorobenzene (Surr)	104		70 - 130				11/01/21 11:05	11/03/21 02:29	1
Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398		0.00398		mg/Kg			11/08/21 17:11	
Method: 8015 NM - Diesel Range	•								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 14:03	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 14:03	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 14:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				11/02/21 11:44	11/03/21 14:03	1
o-Terphenyl	123		70 - 130				11/02/21 11:44	11/03/21 14:03	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
method: 000.0 - Amons, fon Om	omatog. upmy								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-7 (6)
Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 02:50	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 02:50	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 02:50	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 11:05	11/03/21 02:50	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 02:50	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 11:05	11/03/21 02:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				11/01/21 11:05	11/03/21 02:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-7

2

7

9

12

13

Matrix: Solid

Lab Sample ID: 890-1502-7

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-7 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	97	70 - 130	11/01/21 11:05	11/03/21 02:50	1

Mathod:	Total RTFY	- Total BTEX	Calculation
mictilou.	TOTAL DIEN	- IUIUI DI LA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/08/21 17:11	1

ı		
ı	Method: 8015 NM - Diesel Range Organics (DRO)	(CC)
ı	Method. 0013 NM - Diesel Kange Organics (DKO)	(00)

Analyte	Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg				11/05/21 13:50	1

Method: 8015B	NM - Diesel	Range Ord	anics i	(DRO)	(GC)
Mictiliou. 00 10D	ITIN - DICSCI	italige Oig	Julii Co	(DIXO)	100)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 14:23	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 14:23	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 14:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surroyate	70Necovery	Quanner	Lillits		rrepareu	Allalyzeu	DII Fac
1-Chlorooctane	103		70 - 130	_	11/02/21 11:44	11/03/21 14:23	1
o-Terphenyl	115		70 - 130		11/02/21 11:44	11/03/21 14:23	1
_							

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	546	5.00	mg/K	9		11/07/21 05:59	1

Client Sample ID: BH-8 (6) Lab Sample ID: 890-1502-8

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Method: 8021B -	Volatile Organ	ic Compounds	(GC)
-----------------	----------------	--------------	------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:10	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:10	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 11:05	11/03/21 03:10	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:10	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 11:05	11/03/21 03:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	146	S1+	70 - 130				11/01/21 11:05	11/03/21 03:10	1
1,4-Difluorobenzene (Surr)	69	S1-	70 - 130				11/01/21 11:05	11/03/21 03:10	1

Mathad:	Total	RTFY -	Total R	TEY C	alculation

Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402		ma/Ka				11/08/21 17:11	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Matrix: Solid

Lab Sample ID: 890-1502-8

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-8 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 14:43	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 14:43	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 14:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				11/02/21 11:44	11/03/21 14:43	1
o-Terphenyl	117		70 - 130				11/02/21 11:44	11/03/21 14:43	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1990		24.9		mg/Kg			11/07/21 06:07	5

Client Sample ID: BH-9 (6)

Date Collected: 10/27/21 00:00

Lab Sample ID: 890-1502-9

Matrix: Solid

Date Received: 10/29/21 12:45

Date (Cecivea: 10/25/21 12:40

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 03:31	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 03:31	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 03:31	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 11:05	11/03/21 03:31	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 03:31	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 11:05	11/03/21 03:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				11/01/21 11:05	11/03/21 03:31	1
1,4-Difluorobenzene (Surr)	93		70 - 130				11/01/21 11:05	11/03/21 03:31	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/08/21 17:11	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 15:03	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 15:03	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 15:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				11/02/21 11:44	11/03/21 15:03	1
o-Terphenyl	122		70 ₋ 130				11/02/21 11:44	11/03/21 15:03	1

Eurofins Xenco, Carlsbad

2

3

7

Ō

10

12

Lab Sample ID: 890-1502-9

Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-9 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Client: Tetra Tech, Inc.

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed D									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1980		25.0		mg/Kg			11/07/21 06:14	5

Lab Sample ID: 890-1502-10 Client Sample ID: BH-10 (6) Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:51	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:51	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:51	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 11:05	11/03/21 03:51	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 03:51	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 11:05	11/03/21 03:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130				11/01/21 11:05	11/03/21 03:51	1
1,4-Difluorobenzene (Surr)	105		70 - 130				11/01/21 11:05	11/03/21 03:51	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/08/21 17:11	1
Method: 8015 NM - Diesel Range	•								
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 15:23	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 15:23	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				11/02/21 11:44	11/03/21 15:23	1
o-Terphenyl	118		70 - 130				11/02/21 11:44	11/03/21 15:23	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

Lab Sample ID: 890-1502-11

SDG: 212C-MD-02230

Client Sample ID: BH-11 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:13	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:13	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 05:13	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:13	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 05:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				11/01/21 11:05	11/03/21 05:13	1
1,4-Difluorobenzene (Surr)	76		70 - 130				11/01/21 11:05	11/03/21 05:13	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result <49.9	Qualifier U	RL 49.9	MDL	Unit mg/Kg	D	Prepared	Analyzed 11/05/21 13:50	Dil Fac
Method: 8015B NM - Diesel Rang			.0.0		919				
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9		49.9		mg/Kg		11/02/21 11:44	11/03/21 16:02	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:02	
C10-C28)									1
C10-C28) OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:02	
Oll Range Organics (Over C28-C36)	<49.9 %Recovery		49.9		mg/Kg		11/02/21 11:44 Prepared	11/03/21 16:02 Analyzed	1
•					mg/Kg				1 Dil Fac
Oll Range Organics (Over C28-C36) Surrogate	%Recovery		Limits		mg/Kg		Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	%Recovery 109 123 pmatography -	Qualifier Soluble	Limits 70 - 130		mg/Kg		Prepared 11/02/21 11:44	Analyzed 11/03/21 16:02	1 1 <i>Dil Fac</i> 1
Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 109 123 pmatography -	Qualifier	Limits 70 - 130	MDL	mg/Kg Unit mg/Kg	<u>D</u> _	Prepared 11/02/21 11:44	Analyzed 11/03/21 16:02	1 Dil Fac

Client Sample ID: BH-12 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 11/01/21 11:05 11/03/21 05:34 Toluene <0.00200 U 0.00200 mg/Kg 11/01/21 11:05 11/03/21 05:34 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/01/21 11:05 11/03/21 05:34 0.00401 11/03/21 05:34 m-Xylene & p-Xylene <0.00401 U mg/Kg 11/01/21 11:05 <0.00200 U 0.00200 11/01/21 11:05 11/03/21 05:34 o-Xylene mg/Kg Xylenes, Total <0.00401 U 0.00401 11/01/21 11:05 11/03/21 05:34 mg/Kg %Recovery Qualifier Limits Prepared Surrogate Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 137 S1+ 70 - 130 11/01/21 11:05 11/03/21 05:34

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-12

Matrix: Solid

Lab Sample ID: 890-1502-12

Lab Sample ID: 890-1502-13

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-12 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Method: 8021B - Volatile Organic Con	noounds (GC)	(Continued)
motifical collision of gains con	ipodiido (OO)	(Continuou,

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98	70 - 130	11/01/21 11:05	11/03/21 05:34	1

Method: Total	BTFX - Total	BTEX Calculation
mothiod: rotal		DIE/ Guidalation

Analyte	Result	Qualifier	RL	nit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	g/Kg			11/08/21 17:11	1

Math	nod: 8015 NM	Discol Do	nas Orasni	ica (DDO)	(CC)
weu	IUU. OU I Ə INIVI	- Diesei Ra	nue Organi	ICS (DRU)	1001

Analyte	Result Qu	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			11/05/21 13:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:22	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:22	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1-Chlorooctane 104 70 - 130	
	11/02/21
o-Terphenyl 112 70 - 130	11/02/21

1-Chlorooctane	104	70 - 130	11/02/21 11:44	11/03/21 16:22	1
o-Terphenyl	112	70 - 130	11/02/21 11:44	11/03/21 16:22	1
Г					

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL U	Unit C	Prepared	Analyzed	Dil Fac
Chloride	1170	4.95	n	mg/Kg	-	11/07/21 06:51	1

Client Sample ID: BH-13 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Mathadi 0004D	Valatile Overen	ic Compounds (GC)
Memoo: Auzib	- voianie Urdan	ic Compounds (GC)

ino compounds (,00,							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:54	1
<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:54	1
<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:54	1
<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 05:54	1
<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 05:54	1
<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 05:54	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
120		70 - 130				11/01/21 11:05	11/03/21 05:54	1
96		70 - 130				11/01/21 11:05	11/03/21 05:54	1
	Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <0.00398 <0.00398 <0.00499 <0.00398 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499 <0.00499		Result Qualifier RL <0.00199	Result Qualifier RL MDL	Result Qualifier RL MDL Unit <0.00199	Result Qualifier RL MDL Unit D <0.00199	Result Qualifier RL MDL Unit D Prepared <0.00199	Result Qualifier RL MDL Unit D Prepared Analyzed <0.00199

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398		ma/Ka			11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-13

Lab Sample ID: 890-1502-14

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-13 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:42	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				11/02/21 11:44	11/03/21 16:42	1
o-Terphenyl	116		70 - 130				11/02/21 11:44	11/03/21 16:42	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1370	-	25.2		mg/Kg			11/07/21 14:10	5

Client Sample ID: BH-14 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:15	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:15	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:15	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 11:05	11/03/21 06:15	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:15	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 11:05	11/03/21 06:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				11/01/21 11:05	11/03/21 06:15	1
1,4-Difluorobenzene (Surr)	95		70 - 130				11/01/21 11:05	11/03/21 06:15	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 17:02	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 17:02	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 17:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				11/02/21 11:44	11/03/21 17:02	1

Eurofins Xenco, Carlsbad

2

3

_

Ŏ

10

12

Lab Sample ID: 890-1502-14

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: BH-14 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Method: 300.0 - Anions, Ion Chromatography - Soluble											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	4450		24.9		mg/Kg			11/07/21 07:06	5		

Lab Sample ID: 890-1502-15 Client Sample ID: BH-15 (6) Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Released to Imaging: 9/1/2023 2:07:08 PM

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:35	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:35	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:35	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 06:35	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 06:35	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 11:05	11/03/21 06:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130				11/01/21 11:05	11/03/21 06:35	1
1,4-Difluorobenzene (Surr)	98		70 - 130				11/01/21 11:05	11/03/21 06:35	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DP)	o) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0		mg/Kg	— <u> </u>		11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 17:22	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 17:22	1
C10-C28)	55.5		00.0		9/119				
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 17:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				11/02/21 11:44	11/03/21 17:22	1
o-Terphenyl	123		70 - 130				11/02/21 11:44	11/03/21 17:22	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4220	E4	25.0		mg/Kg	_		11/07/21 07:13	- 5

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-16

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-16 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 06:55	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 06:55	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 06:55	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/21 11:05	11/03/21 06:55	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:05	11/03/21 06:55	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/21 11:05	11/03/21 06:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				11/01/21 11:05	11/03/21 06:55	1
1,4-Difluorobenzene (Surr)	82		70 - 130				11/01/21 11:05	11/03/21 06:55	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 17:42	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 17:42	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				11/02/21 11:44	11/03/21 17:42	1
o-Terphenyl	113		70 - 130				11/02/21 11:44	11/03/21 17:42	1
Method: 300.0 - Anions, Ion Chro									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,	3560		25.1		mg/Kg			11/07/21 07:35	5

Client Sample ID: BH-17 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 07:16	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 07:16	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 07:16	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 07:16	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 11:05	11/03/21 07:16	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 11:05	11/03/21 07:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				11/01/21 11:05	11/03/21 07:16	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-17

2

4

6

8

10

12

14

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: BH-17 (6) Lab Sample ID: 890-1502-17 Date Collected: 10/27/21 00:00

Matrix: Solid

Sample Depth: 6

Date Received: 10/29/21 12:45

Method: 8021B - Volatile Organic Con	noounds (GC)	(Continued)
motifical collision of gains con	ipodiido (OO)	(Continuou,

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	98	70 - 130	11/01/21 11:05	11/03/21 07:16	

Mathod:	Total RTFY	- Total BTEX	Calculation
mictilou.	TOTAL DIEN	- IUIUI DI LA	Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) ((GC)
mothod: ou for this Bloods stange organico (Bito)	,,

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:03	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:03	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac
1-Chlorooctane	102		70 - 130	11/02/21 11	:44 11/03/21 18:03	3 1
o-Terphenyl	113		70 - 130	11/02/21 11	:44 11/03/21 18:03	3 1

Method: 300.0 - Anions, Ion Chromatography - Soluble

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	3350		25.3		mg/Kg		· ·	11/07/21 07:43	5

Client Sample ID: BH-18 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

motification could be seen as a		()							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 07:36	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 07:36	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 07:36	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 11:05	11/03/21 07:36	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 11:05	11/03/21 07:36	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 11:05	11/03/21 07:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130				11/01/21 11:05	11/03/21 07:36	1
1,4-Difluorobenzene (Surr)	98		70 - 130				11/01/21 11:05	11/03/21 07:36	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg		_	11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-18

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-1502-18

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-18 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:22	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:22	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				11/02/21 11:44	11/03/21 18:22	1
o-Terphenyl	107		70 - 130				11/02/21 11:44	11/03/21 18:22	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		•	24.9		mg/Kg			11/07/21 08:05	5

Client Sample ID: BH-19 (6) Lab Sample ID: 890-1502-19

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 07:57	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 07:57	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 07:57	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 11:05	11/03/21 07:57	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 07:57	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 11:05	11/03/21 07:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				11/01/21 11:05	11/03/21 07:57	1
1,4-Difluorobenzene (Surr)	81		70 - 130				11/01/21 11:05	11/03/21 07:57	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:42	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:42	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 11:44	11/03/21 18:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				11/02/21 11:44	11/03/21 18:42	1
o-Terphenyl	115		70 ₋ 130				11/02/21 11:44	11/03/21 18:42	1

Eurofins Xenco, Carlsbad

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Client Sample ID: BH-19 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Lab Sample ID: 890-1502-19 Matrix: Solid

Sample Depth: 6

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2060		24.8		mg/Kg			11/07/21 08:13	5

Client Sample ID: BH-20 (6) Lab Sample ID: 890-1502-20

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Result Qualifier

Matrix: Solid

Sample Depth: 6

T-4-I DTEV

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 08:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 08:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 08:17	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 11:05	11/03/21 08:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:05	11/03/21 08:17	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 11:05	11/03/21 08:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 11:05	11/03/21 08:17	1
1,4-Difluorobenzene (Surr)	94		70 - 130				11/01/21 11:05	11/03/21 08:17	1

Iotal BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:40	1
Method: 8015 NM -	Diesel Range Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM	I - Diesel Range Organics (DI	RO) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer	KL	MIDL	Unit		Prepared	Analyzed	DII Fac
Gasoline Range Organio	cs <49.8	U	49.8		mg/Kg		11/02/21 11:44	11/03/21 19:03	1

MDL Unit

Prepared

Analyzed

o-Terphenyl	10	S1-	70 - 130		11/02/21 11:44	11/03/21 19:03	1
1-Chlorooctane	9	S1-	70 - 130		11/02/21 11:44	11/03/21 19:03	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg	11/02/21 11:44	11/03/21 19:03	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg	11/02/21 11:44	11/03/21 19:03	1
(GRO)-C6-C10							

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	449		4.95		mg/Kg			11/07/21 08:20	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-21

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-21 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U F1 F2	0.00202		mg/Kg		11/01/21 12:05	11/02/21 18:15	
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 18:15	
Ethylbenzene	<0.00202	U F1	0.00202		mg/Kg		11/01/21 12:05	11/02/21 18:15	
m-Xylene & p-Xylene	<0.00403	U F1	0.00403		mg/Kg		11/01/21 12:05	11/02/21 18:15	
o-Xylene	<0.00202	U F1	0.00202		mg/Kg		11/01/21 12:05	11/02/21 18:15	
Xylenes, Total	<0.00403	U F1	0.00403		mg/Kg		11/01/21 12:05	11/02/21 18:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		70 - 130				11/01/21 12:05	11/02/21 18:15	
1,4-Difluorobenzene (Surr)	72		70 - 130				11/01/21 12:05	11/02/21 18:15	
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/09/21 10:40	
Total TPH	<49.9	U	49.9		mg/Kg		<u> </u>	11/05/21 13:50	
· ·									
	ua Oumaniaa (D	DOV (CC)							
			ÐI	MDI	l Init	Б	Dranavad	Anglyzad	
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Analyte Gasoline Range Organics		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 11/02/21 14:45	Analyzed 11/03/21 11:27	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U		MDL	mg/Kg	<u>D</u>	11/02/21 14:45	11/03/21 11:27	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	49.9	MDL		<u>D</u>			Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U	49.9	MDL	mg/Kg	<u> </u>	11/02/21 14:45	11/03/21 11:27	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9	Qualifier U U U	49.9	MDL	mg/Kg	<u> </u>	11/02/21 14:45	11/03/21 11:27	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 <49.9	Qualifier U U U	49.9 49.9 49.9	MDL	mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45	11/03/21 11:27 11/03/21 11:27 11/03/21 11:27	Dil Fa
C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U U U	49.9 49.9 49.9 Limits	MDL	mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared	11/03/21 11:27 11/03/21 11:27 11/03/21 11:27 11/03/21 11:27 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9 <49.9 <49.9 <49.9 <49.9 <49.2 <49.3 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49.2 <49	Qualifier U U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared 11/02/21 14:45	11/03/21 11:27 11/03/21 11:27 11/03/21 11:27 Analyzed 11/03/21 11:27	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U Qualifier	49.9 49.9 49.9 Limits 70 - 130		mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared 11/02/21 14:45	11/03/21 11:27 11/03/21 11:27 11/03/21 11:27 Analyzed 11/03/21 11:27	Dil Fa

Client Sample ID: BH-22 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 18:35	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 18:35	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 18:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:05	11/02/21 18:35	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 18:35	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:05	11/02/21 18:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				11/01/21 12:05	11/02/21 18:35	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-22

2

3

5

7

10

12

1 1

Matrix: Solid

Lab Sample ID: 890-1502-22

Lab Sample ID: 890-1502-23

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-22 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98	70 - 130	11/01/21 12:05	11/02/21 18:35	

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg	_		11/09/21 10:40	1

ı		
ı	Method: 8015 NM - Diesel Range Organics (DRO)	(CC)
ı	Method. 0013 NM - Diesel Kange Organics (DKO)	(00)

Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 12:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 12:32	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 12:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				11/02/21 14:45	11/03/21 12:32	

1-Chlorooctane	103	70 - 130	11/02/21 14:
o-Terphenyl	117	70 - 130	11/02/21 14:
 -			

Method: 300 0 - Anions, Ion Chromatograp	hy - Soluble				
o-Terphenyl	117	70 - 130	11/02/21 14:45	11/03/21 12:32	1
1 Chief Godiane	700	70 - 700	11/02/21 14.40	11/00/21 12.02	'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1220		4.96		mg/Kg			11/07/21 08:35	1

Client Sample ID: BH-23 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

		/							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 18:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 18:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 18:56	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/02/21 18:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 18:56	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/02/21 18:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				11/01/21 12:05	11/02/21 18:56	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/01/21 12:05	11/02/21 18:56	1

Mothod:	Total RTF	Y - Total R	TFY Calculati	on

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:40	1

Analyte	•	•	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Total TPH			<50.0	U	50.0	m	a/Ka		-	11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-23

Lab Sample ID: 890-1502-24

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-23 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 12:53	•
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 12:53	•
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 12:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	92		70 - 130				11/02/21 14:45	11/03/21 12:53	
o-Terphenyl	106		70 - 130				11/02/21 14:45	11/03/21 12:53	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	141		5.05		mg/Kg			11/07/21 08:42	1

Client Sample ID: BH-24 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 19:16	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 19:16	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 19:16	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/02/21 19:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 19:16	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/02/21 19:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				11/01/21 12:05	11/02/21 19:16	1
1,4-Difluorobenzene (Surr)	96		70 - 130				11/01/21 12:05	11/02/21 19:16	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyto									
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:40	1
Total BTEX			0.00401		mg/Kg			11/09/21 10:40	1
Total BTEX Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Total BTEX Method: 8015 NM - Diesel Range Analyte	Organics (DR	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	1 Dil Fac
Total BTEX Method: 8015 NM - Diesel Range	Organics (DR	O) (GC) Qualifier		MDL		<u>D</u>	Prepared		
Total BTEX Method: 8015 NM - Diesel Range Analyte	Organics (DR) Result <50.0	O) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH	e Organics (DR) Result <50.0 ge Organics (DI)	O) (GC) Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range	e Organics (DR) Result <50.0 ge Organics (DI)	Qualifier U RO) (GC) Qualifier	RL		Unit mg/Kg			Analyzed 11/05/21 13:50	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	e Organics (DR Result <50.0 ge Organics (Di Result	Qualifier U RO) (GC) Qualifier U U	RL		Unit mg/Kg		Prepared	Analyzed 11/05/21 13:50 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	e Organics (DR Result <50.0 ge Organics (Di Result <50.0	Qualifier U RO) (GC) Qualifier U U	RL 50.0		Unit mg/Kg Unit mg/Kg		Prepared 11/02/21 14:45	Analyzed 11/05/21 13:50 Analyzed 11/03/21 13:14	Dil Fac Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	e Organics (DR Result <50.0 ge Organics (Di Result <50.0	Qualifier U RO) (GC) Qualifier U U U U	RL 50.0		Unit mg/Kg Unit mg/Kg		Prepared 11/02/21 14:45	Analyzed 11/05/21 13:50 Analyzed 11/03/21 13:14	Dil Fac Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	e Organics (DR Result <50.0 ge Organics (DI Result <50.0	Qualifier U RO) (GC) Qualifier U U U U	RL 50.0 FL 50.0 50.0		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 14:45 11/02/21 14:45	Analyzed 11/05/21 13:50 Analyzed 11/03/21 13:14 11/03/21 13:14	Dil Fac Dil Fac 1 1 1
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	e Organics (DR Result <50.0 ge Organics (DI Result <50.0 <50.0	Qualifier U RO) (GC) Qualifier U U U U	RL 50.0 50.0 50.0		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 14:45 11/02/21 14:45 11/02/21 14:45	Analyzed 11/05/21 13:50 Analyzed 11/03/21 13:14 11/03/21 13:14	Dil Fac Dil Fac 1

Eurofins Xenco, Carlsbad

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Lab Sample ID: 890-1502-24

Matrix: Solid

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Client Sample ID: BH-24 (6)

Sample Depth: 6

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Į	Chloride	107		4.97		mg/Kg			11/07/21 08:49	1

Lab Sample ID: 890-1502-25 Client Sample ID: BH-25 (15) Matrix: Solid

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 19:37	
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 19:37	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 19:37	•
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/02/21 19:37	
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 19:37	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/02/21 19:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	122		70 - 130				11/01/21 12:05	11/02/21 19:37	
1,4-Difluorobenzene (Surr)	97		70 - 130				11/01/21 12:05	11/02/21 19:37	
· Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			11/05/21 13:50	
Method: 8015B NM - Diesel Rang	ge Organics (Di	RO) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 13:36	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 13:36	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 13:36	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	107		70 - 130				11/02/21 14:45	11/03/21 13:36	
o-Terphenyl	122		70 - 130				11/02/21 14:45	11/03/21 13:36	
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	447	E4	4.99		mg/Kg	_		11/07/21 09:49	1

Lab Sample ID: 890-1502-26

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-26 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 19:57	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 19:57	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 19:57	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/01/21 12:05	11/02/21 19:57	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 19:57	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/01/21 12:05	11/02/21 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				11/01/21 12:05	11/02/21 19:57	1
1,4-Difluorobenzene (Surr)	107		70 - 130				11/01/21 12:05	11/02/21 19:57	1
- Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/05/21 13:50	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 13:57	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 13:57	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 13:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				11/02/21 14:45	11/03/21 13:57	1
o-Terphenyl	119		70 - 130				11/02/21 14:45	11/03/21 13:57	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
· · · · · · · · · · · · · · · · · · ·									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-27 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 20:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 20:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 20:17	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/02/21 20:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 20:17	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/02/21 20:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:05	11/02/21 20:17	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-27

2

3

_

7

9

12

13

14/40/2024

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-27 (15)

Lab Sample ID: 890-1502-27 Date Collected: 10/27/21 00:00 Matrix: Solid Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Compound	s (GC) (Continued)
---	--------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	85	70 - 130	11/01/21 12:05	11/02/21 20:17	1

Method: Total	BTEX - Total	BTEX Calculati	on

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401 U	0.00401	ma/Ka			11/09/21 10:40	1

Mothod: 8015 NM -	Diesal Pance	Organics (DRO) ((201

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		ma/Ka			11/05/21 13:50	1

Mothod: 004ED	NM - Diesel Ran	as Orasnico	
Melliou, ou lab	NIVI - Diesei Kan	ue Organics	IDKUI IGGI

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 14:18	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 14:18	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 14:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	105	70 - 130	11/02/21 14:45	11/03/21 14:18	1
o-Terphenyl	120	70 - 130	11/02/21 14:45	11/03/21 14:18	1

Method: 300	.0 - Anions, Ion	Chromatograph	y - Soluble

Analyte	Result (Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Chloride	372		4.98		mg/Kg			11/07/21 10:18	1

Client Sample ID: BH-28 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

_			ъ.			_			B.: E
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 20:38	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 20:38	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 20:38	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:05	11/02/21 20:38	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 20:38	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:05	11/02/21 20:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				11/01/21 12:05	11/02/21 20:38	1
1,4-Difluorobenzene (Surr)	104		70 - 130				11/01/21 12:05	11/02/21 20:38	1

Method:	Total R	TFY - T	ntal RT	FX Calcu	ılation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398		ma/Ka			11/09/21 10:40	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-28

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Lab Sample ID: 890-1502-28

Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Client Sample ID: BH-28 (15)

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 14:39	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 14:39	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 14:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				11/02/21 14:45	11/03/21 14:39	1
o-Terphenyl	120		70 - 130				11/02/21 14:45	11/03/21 14:39	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			4.95		mg/Kg			11/07/21 10:26	

Lab Sample ID: 890-1502-29 Client Sample ID: BH-29 (15) Matrix: Solid

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 20:58	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 20:58	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 20:58	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/21 12:05	11/02/21 20:58	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:05	11/02/21 20:58	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/21 12:05	11/02/21 20:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				11/01/21 12:05	11/02/21 20:58	1
1,4-Difluorobenzene (Surr)	91		70 - 130				11/01/21 12:05	11/02/21 20:58	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 15:00	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 15:00	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 15:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				11/02/21 14:45	11/03/21 15:00	1
o-Terphenyl	128		70 - 130				11/02/21 14:45	11/03/21 15:00	1

Lab Sample ID: 890-1502-29

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-29 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	139		4.97		mg/Kg			11/07/21 10:33	1

Lab Sample ID: 890-1502-30 Client Sample ID: BH-30 (15) Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 21:19	
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 21:19	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 21:19	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/02/21 21:19	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/02/21 21:19	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/02/21 21:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130				11/01/21 12:05	11/02/21 21:19	1
1,4-Difluorobenzene (Surr)	70		70 - 130				11/01/21 12:05	11/02/21 21:19	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	•								
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 15:21	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 15:21	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				11/02/21 14:45	11/03/21 15:21	1
o-Terphenyl	136	S1+	70 - 130				11/02/21 14:45	11/03/21 15:21	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-1502-31

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-31 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 23:07	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 23:07	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 23:07	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:05	11/02/21 23:07	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:05	11/02/21 23:07	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:05	11/02/21 23:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				11/01/21 12:05	11/02/21 23:07	1
1,4-Difluorobenzene (Surr)	111		70 - 130				11/01/21 12:05	11/02/21 23:07	1
Method: Total BTEX - Total BTE	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
Total TPH Method: 8015B NM - Diesel Rang	<49.9		49.9		mg/Kg			11/05/21 13:50	1
Analyte									
	Rocult	Oualifier	RI	MDI	Unit	n	Prenared	Analyzed	Dil Fac
		Qualifier U	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 11/02/21 14:45	Analyzed 11/03/21 16:03	
Gasoline Range Organics			49.9	MDL	mg/Kg	<u>D</u>		11/03/21 16:03	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U		MDL		<u>D</u>			
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U	49.9	MDL	mg/Kg	<u>D</u>	11/02/21 14:45	11/03/21 16:03	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9 <49.9	U U	49.9	MDL	mg/Kg	<u>D</u>	11/02/21 14:45	11/03/21 16:03 11/03/21 16:03	1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	<49.9 <49.9 <49.9	U U	49.9 49.9 49.9	MDL	mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45	11/03/21 16:03 11/03/21 16:03 11/03/21 16:03	1 1 1 1 Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 <49.9 <49.9 %Recovery	U U	49.9 49.9 49.9 <i>Limits</i>	MDL	mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared	11/03/21 16:03 11/03/21 16:03 11/03/21 16:03 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 <49.9 <49.9 <49.9 **Recovery 105 123	U U U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared 11/02/21 14:45	11/03/21 16:03 11/03/21 16:03 11/03/21 16:03 Analyzed 11/03/21 16:03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 <49.9 <49.9 **Recovery 105 123 omatography -	U U U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared 11/02/21 14:45	11/03/21 16:03 11/03/21 16:03 11/03/21 16:03 Analyzed 11/03/21 16:03	1

Client Sample ID: BH-32 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:28	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:28	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:28	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:05	11/02/21 23:28	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:28	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:05	11/02/21 23:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				11/01/21 12:05	11/02/21 23:28	

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-32

Released to Imaging: 9/1/2023 2:07:08 PM

Job ID: 890-1502-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Lab Sample ID: 890-1502-32

Client Sample ID: BH-32 (15) Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic (Compounds (GC)	(Continued)
------------------------------------	----------------	-------------

Surrogate	%Recovery Quali	lifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	93	70 - 130	11/01/21 12:05	11/02/21 23:28	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Р	repared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg				11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 16:24	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 16:24	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	123		70 - 130	11/02/21 14:	45 11/03/21 16:24	1
o-Terphenyl	150	S1+	70 - 130	11/02/21 14:	45 11/03/21 16:24	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	833	5.00	mg/Kg	9		11/07/21 11:10	1

Client Sample ID: BH-33 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:48	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:48	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:48	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:05	11/02/21 23:48	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 23:48	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:05	11/02/21 23:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130				11/01/21 12:05	11/02/21 23:48	1
1,4-Difluorobenzene (Surr)	108		70 - 130				11/01/21 12:05	11/02/21 23:48	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-33

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Lab Sample ID: 890-1502-33

Matrix: Solid

Client Sample ID: BH-33 (15) Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 16:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 16:46	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130				11/02/21 14:45	11/03/21 16:46	1
o-Terphenyl	133	S1+	70 - 130				11/02/21 14:45	11/03/21 16:46	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	IXL.	IVIDE	Oille		ricparca	raidiyeda	D uo

Lab Sample ID: 890-1502-34 Client Sample ID: BH-34 (15) Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:09	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:09	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:09	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/03/21 00:09	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:09	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/03/21 00:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				11/01/21 12:05	11/03/21 00:09	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/01/21 12:05	11/03/21 00:09	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	1
Mothod: 9015 NM Diocol Pango	Organics (DB)	O) (GC)							
	•		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH	•	Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	Dil Fac
Analyte Total TPH	Result <49.9	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <49.9 ge Organics (Di	Qualifier U				D_	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result <49.9 ge Organics (Di	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg			11/05/21 13:50	1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg		Prepared	11/05/21 13:50 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg		Prepared	11/05/21 13:50 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 ge Organics (Di Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg		Prepared 11/02/21 14:45 11/02/21 14:45	11/05/21 13:50 Analyzed 11/03/21 17:07 11/03/21 17:07	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9 ge Organics (Di Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 11/02/21 14:45	11/05/21 13:50 Analyzed 11/03/21 17:07	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared	11/05/21 13:50 Analyzed 11/03/21 17:07 11/03/21 17:07	1 Dil Fac 1 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 14:45 11/02/21 14:45 11/02/21 14:45	Analyzed 11/03/21 17:07 11/03/21 17:07 11/03/21 17:07	1 Dil Fac 1

Lab Sample ID: 890-1502-34

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-34 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	140		4.98		mg/Kg			11/07/21 11:25	1

Client Sample ID: BH-35 (15)

Date Collected: 10/27/21 00:00

Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 00:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 00:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 00:29	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/03/21 00:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 00:29	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 12:05	11/03/21 00:29	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130				11/01/21 12:05	11/03/21 00:29	1
1,4-Difluorobenzene (Surr)	110		70 - 130				11/01/21 12:05	11/03/21 00:29	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 17:28	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 17:28	1
011 0 1 (0 000 000)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 17:28	1
Oll Range Organics (Over C28-C36)	-00.0								
Oil Range Organics (Over C28-C36) Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,		Qualifier	Limits 70 - 130				Prepared 11/02/21 14:45	Analyzed 11/03/21 17:28	Dil Fac
Surrogate	%Recovery	Qualifier S1+							1
Surrogate 1-Chlorooctane	%Recovery 107 132	S1+	70 - 130				11/02/21 14:45	11/03/21 17:28	
Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 107 132 pmatography -	S1+	70 - 130	MDL	Unit	<u>D</u>	11/02/21 14:45	11/03/21 17:28	1

Lab Sample ID: 890-1502-36

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-36 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:49	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:49	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:49	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/03/21 00:49	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 00:49	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/03/21 00:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				11/01/21 12:05	11/03/21 00:49	1
1,4-Difluorobenzene (Surr)	109		70 - 130				11/01/21 12:05	11/03/21 00:49	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	1
Analyte Total TPH		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	П							
		J	49.8		mg/Kg			11/05/21 13:50	1
: Method: 8015B NM - Diesel Ran	ge Organics (D		49.8		mg/Kg			11/05/21 13:50	1
	• • •		49.8 RL	MDL		D	Prepared	11/05/21 13:50 Analyzed	Dil Fac
Analyte Gasoline Range Organics	• • •	RO) (GC) Qualifier		MDL		<u>D</u> _	Prepared 11/02/21 14:45		
Analyte Gasoline Range Organics	Result	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.8	RO) (GC) Qualifier U	RL 49.8	MDL	Unit mg/Kg	<u>D</u>	11/02/21 14:45	Analyzed 11/03/21 17:49	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8 <49.8	RO) (GC) Qualifier U	RL 49.8	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/02/21 14:45	Analyzed 11/03/21 17:49 11/03/21 17:49	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.8 <49.8 <49.8	RO) (GC) Qualifier U	RL 49.8 49.8 49.8	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	RO) (GC) Qualifier U	## ## ## ## ## ## ## ## ## ## ## ## ##	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	RO) (GC) Qualifier U U Qualifier	RL 49.8 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared 11/02/21 14:45	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49 Analyzed 11/03/21 17:49	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	RO) (GC) Qualifier U U Qualifier	RL 49.8 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/02/21 14:45 11/02/21 14:45 11/02/21 14:45 Prepared 11/02/21 14:45	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49 Analyzed 11/03/21 17:49	Dil Face 1 1 1 Dil Face

Client Sample ID: BH-37 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 01:10	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 01:10	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 01:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/03/21 01:10	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:05	11/03/21 01:10	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:05	11/03/21 01:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:05	11/03/21 01:10	

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-37

2

4

6

8

10

12

13

. .

Job ID: 890-1502-1

SDG: 212C-MD-02230

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: BH-37 (15)

Lab Sample ID: 890-1502-37 Date Collected: 10/27/21 00:00 Matrix: Solid Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B -	Volatile Ord	anic Com	nounds ((GC) ((Continued)	
Method. 002 1D -	Voiatile Oit		poullus (5 0, (Continueu	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	101	70 - 130	11/01/21 12:05	11/03/21 01:10	1

Method: Total	BTEX - Total BTI	EX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	1

Mothod: 9015 NM - Diocal Pango	Organice (DPO) (CC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	ma/Ka		.	11/05/21 13:50	1

Method: 8015B	NM - Diesel	Range Ore	anice l	(DRO)	(GC)
Methou. ou isb	IAIN - DIESEI	Range Org	janics i	(DRU)	(GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:11	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:11	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	l Analyzed	Dil Fac
1-Chlorooctane	95	70 - 130	11/02/21 14	:45 11/03/21 18:11	1
o-Terphenyl	112	70 - 130	11/02/21 14	:45 11/03/21 18:11	1

Method: 300.0 - Anions, Ion	Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4260		24.8		mg/Kg			11/07/21 12:02	5

Client Sample ID: BH-38 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:30	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:30	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:30	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:05	11/03/21 01:30	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:30	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:05	11/03/21 01:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				11/01/21 12:05	11/03/21 01:30	1
1,4-Difluorobenzene (Surr)	118		70 - 130				11/01/21 12:05	11/03/21 01:30	1

Method: Tot	al RTFY -	Total RTFY	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00400	U	0.00400		ma/Ka				11/09/21 10:40	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	87.2		49.9	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-38

Lab Sample ID: 890-1502-38

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-38 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:32	1
Diesel Range Organics (Over C10-C28)	87.2		49.9		mg/Kg		11/02/21 14:45	11/03/21 18:32	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				11/02/21 14:45	11/03/21 18:32	1
o-Terphenyl	117		70 - 130				11/02/21 14:45	11/03/21 18:32	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-39 (15) Lab Sample ID: 890-1502-39 Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:51	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:51	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:05	11/03/21 01:51	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 01:51	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:05	11/03/21 01:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				11/01/21 12:05	11/03/21 01:51	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/01/21 12:05	11/03/21 01:51	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:53	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:53	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 14:45	11/03/21 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				11/02/21 14:45	11/03/21 18:53	1
o-Terphenyl	117		70 - 130				11/02/21 14:45	11/03/21 18:53	1

Lab Sample ID: 890-1502-39

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-39 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chrom	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3300		25.0		mg/Kg			11/07/21 12:32	5

Client Sample ID: BH-40 (15) Lab Sample ID: 890-1502-40 **Matrix: Solid**

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 02:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 02:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 02:11	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:05	11/03/21 02:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/03/21 02:11	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:05	11/03/21 02:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				11/01/21 12:05	11/03/21 02:11	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/01/21 12:05	11/03/21 02:11	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 19:15	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 19:15	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 14:45	11/03/21 19:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				11/02/21 14:45	11/03/21 19:15	1
o-Terphenyl	110		70 - 130				11/02/21 14:45	11/03/21 19:15	1

Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed Chloride 1190 5.04 mg/Kg 11/07/21 12:39

Lab Sample ID: 890-1502-41

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-41 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:19	1
Toluene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:19	1
Ethylbenzene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:19	1
m-Xylene & p-Xylene	<0.00399	U F1	0.00399		mg/Kg		11/01/21 12:11	11/04/21 02:19	1
o-Xylene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:19	1
Xylenes, Total	<0.00399	U F2 F1	0.00399		mg/Kg		11/01/21 12:11	11/04/21 02:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130				11/01/21 12:11	11/04/21 02:19	1
1,4-Difluorobenzene (Surr)	110		70 - 130				11/01/21 12:11	11/04/21 02:19	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	D0 E
							. ropurou	Allalyzeu	DII Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	
- -			49.9		mg/Kg	=			
: Method: 8015B NM - Diesel Ran	ge Organics (D		49.9 RL	MDL			Prepared		1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL			· ·	11/05/21 13:50	1 Dil Fac
- -	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	11/05/21 13:50 Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <49.9	RO) (GC) Qualifier U	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 11:27	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.9	RO) (GC) Qualifier U	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 11:27 11/03/21 11:27	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9 <49.9	RO) (GC) Qualifier U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/02/21 16:07 11/02/21 16:07	Analyzed 11/03/21 11:27 11/03/21 11:27 11/03/21 11:27	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U	RL 49.9 49.9 49.9 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared	Analyzed 11/03/21 11:27 11/03/21 11:27 11/03/21 11:27 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 96 95	RO) (GC) Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared 11/02/21 16:07	Analyzed 11/03/21 11:27 11/03/21 11:27 11/03/21 11:27 Analyzed 11/03/21 11:27	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 96 95 omatography -	RO) (GC) Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared 11/02/21 16:07	Analyzed 11/03/21 11:27 11/03/21 11:27 11/03/21 11:27 Analyzed 11/03/21 11:27	Dil Fac

Client Sample ID: BH-42 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:46	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 02:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 02:46	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 02:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				11/01/21 12:11	11/04/21 02:46	

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-42

2

3

5

7

9

11

13

Lab Sample ID: 890-1502-42

Lab Sample ID: 890-1502-43

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-42 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Con	noounds (GC)	(Continued)
motifical collision of gains con	ipodiido (OO)	(Continuou,

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	198	S1+	70 - 130	11/01/21 12:11	11/04/21 02:46	1

Mathod:	Total RTFY	- Total BTEX	Calculation
mictilou.	TOTAL DIEN	- IUIUI DI LA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Р	repared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg				11/09/21 10:40	1

ı		
ı	Method: 8015 NM - Diesel Range Organics (DRO)	(CC)
ı	Method. 0013 NM - Diesel Kange Organics (DKO)	(00)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/05/21 13:50	1

Analyte	Result	Qualifier	RL	MDL (Jnit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	r	ng/Kg		11/02/21 16:07	11/03/21 12:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9	r	ng/Kg		11/02/21 16:07	11/03/21 12:32	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9	r	mg/Kg		11/02/21 16:07	11/03/21 12:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	101	70 - 130	11/02/21 16:07	11/03/21 12:32	1
o-Terphenyl	105	70 - 130	11/02/21 16:07	11/03/21 12:32	1

Method: 300).0 - Anions,	Ion Chroma	tography - 🤄	Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Chloride	461		5.00		mg/Kg				11/07/21 12:54	1

Client Sample ID: BH-43 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 03:14	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 03:14	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 03:14	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:11	11/04/21 03:14	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 03:14	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:11	11/04/21 03:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				11/01/21 12:11	11/04/21 03:14	1
1,4-Difluorobenzene (Surr)	215	S1+	70 - 130				11/01/21 12:11	11/04/21 03:14	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/09/21 10:40	1

Analyte	•	•	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Total TPH			<50.0	U	50.0	m	g/Kg		-	11/05/21 13:50	1

Matrix: Solid

Lab Sample ID: 890-1502-43

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-43 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15									
Method: 8015B NM - Diesel Ran	ge Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 12:53	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 12:53	1

C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 11/02/21 16:07 11/03/21 12:53 %Recovery Qualifier Limits Analyzed Dil Fac Surrogate Prepared 70 - 130 11/02/21 16:07 1-Chlorooctane 11/03/21 12:53 94

o-Terphenyl 93 70 - 130 11/02/21 16:07 11/03/21 12:53 Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Chloride 2440 24.9 mg/Kg 11/07/21 13:02 Client Sample ID: BH-44 (15) Lab Sample ID: 890-1502-44

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic	Compounds (G	SC)							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201 U	U	0.00201		mg/Kg		11/01/21 12:11	11/04/21 03:41	1
Toluene	<0.00201 U	U	0.00201		mg/Kg		11/01/21 12:11	11/04/21 03:41	1
Ethylbenzene	<0.00201 U	U	0.00201		mg/Kg		11/01/21 12:11	11/04/21 03:41	1
m-Xylene & p-Xylene	<0.00402 U	U	0.00402		mg/Kg		11/01/21 12:11	11/04/21 03:41	1
o-Xylene	<0.00201 U	U	0.00201		mg/Kg		11/01/21 12:11	11/04/21 03:41	1
Xylenes, Total	<0.00402 U	U	0.00402		mg/Kg		11/01/21 12:11	11/04/21 03:41	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 99 70 - 130 11/01/21 12:11 11/04/21 03:41 1,4-Difluorobenzene (Surr) 70 - 130 11/04/21 03:41 211 S1+ 11/01/21 12:11

Method: Total BTEX - Total BTEX Calculation

Dil Fac Analyte Result Qualifier MDL Unit Analyzed Prepared Total BTEX <0.00402 U 0.00402 11/09/21 10:40 mg/Kg

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <50.0 U 50.0 11/05/21 13:50 mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

	(- / \ - /							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 13:14	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 13:14	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 13:14	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	110	70 - 130	11/02/21 16:07	11/03/21 13:14	1
o-Terphenyl	116	70 - 130	11/02/21 16:07	11/03/21 13:14	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Client Sample ID: BH-44 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Lab Sample ID: 890-1502-44

Matrix: Solid

Method: 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	465		5.00		mg/Kg			11/07/21 13:09	1

Client Sample ID: BH-45 (15) Lab Sample ID: 890-1502-45 **Matrix: Solid**

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Method: Total BTEX - Total BTEX Calculation

Sample Depth: 15

Analyte

(GRO)-C6-C10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:08	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 04:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:08	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 04:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				11/01/21 12:11	11/04/21 04:08	1
1,4-Difluorobenzene (Surr)	203	S1+	70 - 130				11/01/21 12:11	11/04/21 04:08	1

Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		11/02/21 16:07	11/03/21 13:36	1

MDL Unit

Prepared

Analyzed

Result Qualifier

Diesel Range Organics (Over	<49.8 U	49.8	mg/Kg	11/02/21 16:07	11/03/21 13:36	1
C10-C28) OII Range Organics (Over C28-C36)	<49.8 U	49.8	mg/Kg	11/02/21 16:07	11/03/21 13:36	1
,						
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 1-Chlorooctane		Limits 70 - 130		Prepared 11/02/21 16:07	Analyzed 11/03/21 13:36	Dil Fac

Method: 300.0 - Anions, Ion Chron	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	284	F1	4.95		mg/Kg			11/08/21 04:30	1

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Sample ID: 890-1502-46

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-46 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:35	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:35	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:35	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 04:35	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 04:35	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 04:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				11/01/21 12:11	11/04/21 04:35	1
1,4-Difluorobenzene (Surr)	226	S1+	70 - 130				11/01/21 12:11	11/04/21 04:35	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Analyte	D 14								
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		RL 50.0	MDL	Unit mg/Kg	D	Prepared	Analyzed 11/05/21 13:50	
<u> </u>	<50.0	U		MDL		<u>D</u>	Prepared		
Total TPH	<50.0	U				<u>D</u>	Prepared Prepared		1
Total TPH Method: 8015B NM - Diesel Rang	<50.0	RO) (GC) Qualifier	50.0		mg/Kg	=		11/05/21 13:50	1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	<50.0 ge Organics (D	RO) (GC) Qualifier	50.0		mg/Kg	=	Prepared	11/05/21 13:50 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0 ge Organics (Di Result <50.0	U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg	=	Prepared 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 13:57	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 ge Organics (Di Result <50.0 <50.0	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/02/21 16:07 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 13:57 11/03/21 13:57	1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 ge Organics (Digital Result <50.0 <50.0 <50.0	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/02/21 16:07 11/02/21 16:07	Analyzed 11/03/21 13:57 11/03/21 13:57 11/03/21 13:57	Dil Fac 1 1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 ge Organics (Digital Result <50.0 <50.0 <50.0 %Recovery	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared	Analyzed 11/03/21 13:57 11/03/21 13:57 11/03/21 13:57 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 <60.0 *Recovery 106 107	U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared 11/02/21 16:07	Analyzed 11/03/21 13:57 11/03/21 13:57 11/03/21 13:57 Analyzed 11/03/21 13:57	1 Dil Fac 1 1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 <50.0 <60.0 %Recovery 106 107 comatography -	U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared 11/02/21 16:07	Analyzed 11/03/21 13:57 11/03/21 13:57 11/03/21 13:57 Analyzed 11/03/21 13:57	Dil Fac 1 1 1 Dil Fac 1

Client Sample ID: BH-47 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 05:03	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 05:03	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 05:03	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 05:03	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 05:03	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 05:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				11/01/21 12:11	11/04/21 05:03	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-47

2

5

7

9

11

13

Lab Sample ID: 890-1502-47

11/02/21 16:07 11/03/21 14:18

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-47 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	211	S1+	70 - 130	11/01/21 12:11	11/04/21 05:03	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/09/21 10:40	1

Math	nod: 8015 NM	Discol Do	nas Orasni	ica (DDO)	(CC)
weu	IUU. OU I Ə INIVI	- Diesei Ra	nue Organi	ICS (DRU)	1001

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH		<49.8	U	49.8		mg/Kg			11/05/21 13:50	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		11/02/21 16:07	11/03/21 14:18	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		11/02/21 16:07	11/03/21 14:18	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 16:07	11/03/21 14:18	1
_							_		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				11/02/21 16:07	11/03/21 14:18	1

1-Chlorooctane	98	70 - 130	
o-Terphenyl	102	70 - 130	

Method: 300.0 - Anions, Ion Chrom	atography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Chloride	122	4.98	mg/Kg	11/08/21 05:00 1
Client Sample ID: BH-48 (15)				Lab Sample ID: 890-1502-48

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Compounds (GC)

Michiga ouz ib - Volatile Orga	inc compounds	(30)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:30	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:30	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:30	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:11	11/04/21 05:30	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:30	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:11	11/04/21 05:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				11/01/21 12:11	11/04/21 05:30	1
1,4-Difluorobenzene (Surr)	220	S1+	70 - 130				11/01/21 12:11	11/04/21 05:30	1

Mathod:	Total	RTFY -	Total R	TEY C	alculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		ma/Ka			11/09/21 10:40	1

Method: 8015 NM - Dies	el Range Organics (DRO)	(GC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	75.2	50.0	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-48

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-48 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 14:39	1
Diesel Range Organics (Over C10-C28)	75.2		50.0		mg/Kg		11/02/21 16:07	11/03/21 14:39	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 14:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				11/02/21 16:07	11/03/21 14:39	1
o-Terphenyl	111		70 - 130				11/02/21 16:07	11/03/21 14:39	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			24.9		mg/Kg			11/08/21 05:08	5

Client Sample ID: BH-49 (15) Lab Sample ID: 890-1502-49 Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:57	1
Toluene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:57	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:57	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:11	11/04/21 05:57	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 05:57	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:11	11/04/21 05:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				11/01/21 12:11	11/04/21 05:57	1
1,4-Difluorobenzene (Surr)	17	S1-	70 - 130				11/01/21 12:11	11/04/21 05:57	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 15:00	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 15:00	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 15:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				11/02/21 16:07	11/03/21 15:00	1
o-Terphenyl	106		70 - 130				11/02/21 16:07	11/03/21 15:00	1

Lab Sample ID: 890-1502-49

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-49 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	472		4.95		mg/Kg			11/08/21 05:16	1

Client Sample ID: BH-50 (15) Lab Sample ID: 890-1502-50 Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Method: 8021B - Volatile Organic	Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0214		0.00198		mg/Kg		11/01/21 12:11	11/04/21 06:24	1
Toluene	0.0176		0.00198		mg/Kg		11/01/21 12:11	11/04/21 06:24	
Ethylbenzene	0.00625		0.00198		mg/Kg		11/01/21 12:11	11/04/21 06:24	1
m-Xylene & p-Xylene	0.0231		0.00396		mg/Kg		11/01/21 12:11	11/04/21 06:24	1
o-Xylene	0.0350		0.00198		mg/Kg		11/01/21 12:11	11/04/21 06:24	1
Xylenes, Total	0.0581		0.00396		mg/Kg		11/01/21 12:11	11/04/21 06:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	11591	S1+	70 - 130				11/01/21 12:11	11/04/21 06:24	1
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130				11/01/21 12:11	11/04/21 06:24	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.103		0.00396		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range ^{Analyte}		O) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 15:21	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 15:21	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	114		70 - 130				11/02/21 16:07	11/03/21 15:21	1
o-Terphenyl	119		70 - 130				11/02/21 16:07	11/03/21 15:21	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1330		4.99		mg/Kg			11/08/21 05:39	

Lab Sample ID: 890-1502-51

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-51 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:10	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:10	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:10	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 08:10	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:10	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 08:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				11/01/21 12:11	11/04/21 08:10	1
1,4-Difluorobenzene (Surr)	199	S1+	70 - 130				11/01/21 12:11	11/04/21 08:10	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:03	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:03	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				11/02/21 16:07	11/03/21 16:03	1
o-Terphenyl	106		70 - 130				11/02/21 16:07	11/03/21 16:03	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
method. 000.0 - Amons, for one	omatog. upmy								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-52 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:36	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:36	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:36	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 08:36	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 08:36	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:11	11/04/21 08:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				11/01/21 12:11	11/04/21 08:36	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-52

Job ID: 890-1502-1

Lab Sample ID: 890-1502-52

11/02/21 16:07 11/03/21 16:24

Lab Sample ID: 890-1502-53

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-52 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method:	8021B - Volati	le Organic Compou	nds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	233	S1+	70 - 130	11/01/21 12:11	11/04/21 08:36	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1

Method: 8015 NM - Diesel R	lange Organica (DDO) (C	· (C)
i ivietijou, ov i 3 Nivi - Diesei R	anue Organics (DRO) (G	101

Analyte	Result Qu	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			11/05/21 13:50	1

Mothod: 004ED	NM - Diesel Ran	as Orasnico	
Melliou, ou lab	NIVI - Diesei Kan	ue Organics	IDKUI IGGI

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:24	1
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:24	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				11/02/21 16:07	11/03/21 16:24	1

1-Chlorooctane	101	70 - 130	_
o-Terphenyl	103	70 - 130	

Method: 300.0 - Anions, Ion Chrom	atography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Chloride	1410	24.9	mg/Kg	11/08/21 05:54	5

Client Sample ID: BH-53 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Mathad.	0024D	V-1-4:1-	O	Compounds	
wethod:	OUZID -	voiatile	Organic (Jompounas.	166

mounda. our ib volutile orga	(33)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/03/21 08:30	11/04/21 11:48	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/03/21 08:30	11/04/21 11:48	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/03/21 08:30	11/04/21 11:48	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/03/21 08:30	11/04/21 11:48	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/03/21 08:30	11/04/21 11:48	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/03/21 08:30	11/04/21 11:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				11/03/21 08:30	11/04/21 11:48	1
1,4-Difluorobenzene (Surr)	99		70 - 130				11/03/21 08:30	11/04/21 11:48	1

Mothod:	Total RT	Y - Total I	RTEY Ca	lculation

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403		ma/Ka				11/09/21 10:40	1

Analyte	•	•	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH			<49.9	U	49.9	mg/			11/05/21 13:50	1

Matrix: Solid

Lab Sample ID: 890-1502-53

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-53 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:46	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:46	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130				11/02/21 16:07	11/03/21 16:46	1
o-Terphenyl	98		70 - 130				11/02/21 16:07	11/03/21 16:46	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-54 (15) Lab Sample ID: 890-1502-54

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 09:28	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 09:28	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 09:28	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 09:28	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 09:28	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 09:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				11/01/21 12:11	11/04/21 09:28	1
1,4-Difluorobenzene (Surr)	202	S1+	70 - 130				11/01/21 12:11	11/04/21 09:28	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 17:07	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 17:07	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 17:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				11/02/21 16:07	11/03/21 17:07	1
o-Terphenyl	100		70 - 130				11/02/21 16:07	11/03/21 17:07	1

Lab Sample ID: 890-1502-54

Client: Tetra Tech, Inc.

Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-54 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	508		5.01		mg/Kg			11/08/21 06:09	1

Client Sample ID: BH-55 (15) Lab Sample ID: 890-1502-55 Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 09:54	
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 09:54	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 09:54	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:11	11/04/21 09:54	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:11	11/04/21 09:54	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:11	11/04/21 09:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	88		70 - 130				11/01/21 12:11	11/04/21 09:54	
1,4-Difluorobenzene (Surr)	191	S1+	70 - 130				11/01/21 12:11	11/04/21 09:54	
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	
Method: 8015 NM - Diesel Range	Organics (DR)	O) (GC)							
Method: 8015 NM - Diesel Range Analyte		O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
_		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	
Analyte	Result <50.0	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH	Result <50.0	Qualifier U				<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <50.0	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg			11/05/21 13:50	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result <50.0 Ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg		Prepared	11/05/21 13:50 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 Ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier U	50.0		mg/Kg		Prepared	11/05/21 13:50 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 17:28 11/03/21 17:28	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 ge Organics (Dige Result <50.0)	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 17:28	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 17:28 11/03/21 17:28	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07	Analyzed 11/03/21 17:28 11/03/21 17:28 11/03/21 17:28	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared	Analyzed 11/03/21 17:28 11/03/21 17:28 11/03/21 17:28 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared 11/02/21 16:07	Analyzed 11/03/21 17:28 11/03/21 17:28 11/03/21 17:28 Analyzed 11/03/21 17:28	Dil Fa

Eurofins Xenco, Carlsbad

11/08/21 06:17

24.9

4680 F1

mg/Kg

Chloride

Lab Sample ID: 890-1502-56

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-56 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 10:20	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 10:20	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 10:20	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:11	11/04/21 10:20	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:11	11/04/21 10:20	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:11	11/04/21 10:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				11/01/21 12:11	11/04/21 10:20	1
1,4-Difluorobenzene (Surr)	115		70 - 130				11/01/21 12:11	11/04/21 10:20	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/09/21 10:40	1
	Daguilé	Ouglifien	DI.	MDI	11-14		Duamanad	Amalumad	Dil Fa
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	
Total TPH	<49.8	U	49.8	MDL	mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	
	<49.8	U		MDL		<u>D</u>	<u> </u>		
Total TPH	<49.8 ge Organics (D	RO) (GC) Qualifier	49.8	MDL	mg/Kg	D_	Prepared Prepared	11/05/21 13:50 Analyzed	1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	<49.8 ge Organics (D	RO) (GC) Qualifier	49.8		mg/Kg		<u> </u>	11/05/21 13:50	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.8 ge Organics (D	CODE (GC) Qualifier U	49.8		mg/Kg		Prepared	11/05/21 13:50 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	<49.8 ge Organics (Di Result <49.8	RO) (GC) Qualifier U	49.8 RL 49.8		mg/Kg Unit mg/Kg		Prepared 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 17:49	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.8 ge Organics (Di Result <49.8 <49.8	U RO) (GC) Qualifier U U	49.8 RL 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07	11/05/21 13:50 Analyzed 11/03/21 17:49 11/03/21 17:49	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.8 ge Organics (Di Result <49.8 <49.8 <49.8	U RO) (GC) Qualifier U U	49.8 RL 49.8 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49	Dil Face
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.8 ge Organics (D) Result <49.8 <49.8 <49.8 %Recovery	U RO) (GC) Qualifier U U	49.8 RL 49.8 49.8 49.8 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.8 ge Organics (D) Result <49.8 <49.8 <49.8 <80.8 %Recovery 106 113	CONTROL (GC) Qualifier U U Qualifier	49.8 49.8 49.8 49.8 49.8 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared 11/02/21 16:07	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49 Analyzed 11/03/21 17:49	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	49.8 ge Organics (D) Result <49.8 <49.8 <49.8 %Recovery 106 113 omatography -	CONTROL (GC) Qualifier U U Qualifier	49.8 49.8 49.8 49.8 49.8 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 11/02/21 16:07 11/02/21 16:07 11/02/21 16:07 Prepared 11/02/21 16:07	Analyzed 11/03/21 17:49 11/03/21 17:49 11/03/21 17:49 Analyzed 11/03/21 17:49	Dil Fac

Client Sample ID: BH-57 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/04/21 11:11	11/05/21 00:32	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/04/21 11:11	11/05/21 00:32	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/04/21 11:11	11/05/21 00:32	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/04/21 11:11	11/05/21 00:32	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/04/21 11:11	11/05/21 00:32	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/04/21 11:11	11/05/21 00:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				11/04/21 11:11	11/05/21 00:32	

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-57

Matrix: Solid

2

7

10

12

13

s Xenco, Carlsbac

Lab Sample ID: 890-1502-57

Lab Sample ID: 890-1502-58

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-57 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Compound	s (GC) (Continued)
---	--------------------

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	221	S1+	70 - 130	11/04/21 11:11	11/05/21 00:32	1

Method: Tot	al BTEX - Tota	al BTEX Ca	alculation
mounou. Tot	u. D. L		aiouiutioii

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/09/21 10:40	1

Method: 8015 NM -	 Diesel Range 	Organics	(DRO) (GC	;)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:11	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

- Jan - Gare	,	~	
1-Chlorooctane	99		70 - 130
o-Terphenyl	102		70 - 130

1-Chlorooctane	99	70 - 130	11/02/21 16:07	11/03/21 18:11	1
o-Terphenyl	102	70 - 130	11/02/21 16:07	11/03/21 18:11	1
Method: 300.0 - Anions, Ion Chr	omatography - Soluble				

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1190	4.99	mg/Kg			11/08/21 06:48	1

Client Sample ID: BH-58 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Co	mnolinas ((=(.)

Michiga ouz ib - Volatile Orga	inc compounds	(30)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/04/21 11:11	11/05/21 00:58	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/04/21 11:11	11/05/21 00:58	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/04/21 11:11	11/05/21 00:58	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/04/21 11:11	11/05/21 00:58	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/04/21 11:11	11/05/21 00:58	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/04/21 11:11	11/05/21 00:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				11/04/21 11:11	11/05/21 00:58	1
1,4-Difluorobenzene (Surr)	243	S1+	70 - 130				11/04/21 11:11	11/05/21 00:58	1

Method:	Total	RTFX	- Total	RTFX	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402		ma/Ka			11/09/21 10:40	1

Analyte	•	•	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH			<49.9	U	49.9	mg/			11/05/21 13:50	1

Lab Sample ID: 890-1502-58

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-58 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:32	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:32	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				11/02/21 16:07	11/03/21 18:32	1
o-Terphenyl	93		70 - 130				11/02/21 16:07	11/03/21 18:32	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-59 (15) Lab Sample ID: 890-1502-59 Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/04/21 11:11	11/05/21 01:24	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/04/21 11:11	11/05/21 01:24	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/04/21 11:11	11/05/21 01:24	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/04/21 11:11	11/05/21 01:24	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/04/21 11:11	11/05/21 01:24	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/04/21 11:11	11/05/21 01:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130				11/04/21 11:11	11/05/21 01:24	1
1,4-Difluorobenzene (Surr)	243	S1+	70 - 130				11/04/21 11:11	11/05/21 01:24	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:53	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:53	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/21 16:07	11/03/21 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				11/02/21 16:07	11/03/21 18:53	1
o-Terphenyl	110		70 - 130				11/02/21 16:07	11/03/21 18:53	1

Lab Sample ID: 890-1502-59

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-59 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chror	natography - Soluble							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1760	24.9		mg/Kg			11/08/21 07:18	5

Client Sample ID: BH-60 (15)

Date Collected: 10/27/21 00:00

Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 01:51	
Toluene	< 0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 01:51	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 01:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/04/21 11:11	11/05/21 01:51	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 01:51	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/04/21 11:11	11/05/21 01:51	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	13	S1-	70 - 130				11/04/21 11:11	11/05/21 01:51	1
1,4-Difluorobenzene (Surr)	230	S1+	70 - 130				11/04/21 11:11	11/05/21 01:51	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH			49.8		mg/Kg			11/05/21 13:50	1
100011111	10.0	Ü	10.0		mg/rtg			11/00/21 10:00	•
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/02/21 16:07	11/03/21 19:15	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/02/21 16:07	11/03/21 19:15	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/02/21 16:07	11/03/21 19:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	88		70 - 130				11/02/21 16:07	11/03/21 19:15	1
1-Chlorooctane			70 - 130				11/02/21 16:07	11/03/21 19:15	1
	87		70 - 130						
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro		Soluble	70 - 130						
o-Terphenyl	omatography -	Soluble Qualifier	70 - 130	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-1502-61

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-61 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U F1 F2	0.00199		mg/Kg		11/01/21 12:13	11/03/21 05:47	1
Toluene	< 0.00199	U F1 F2	0.00199		mg/Kg		11/01/21 12:13	11/03/21 05:47	•
Ethylbenzene	< 0.00199	U F1 F2	0.00199		mg/Kg		11/01/21 12:13	11/03/21 05:47	1
m-Xylene & p-Xylene	<0.00398	U F1 F2	0.00398		mg/Kg		11/01/21 12:13	11/03/21 05:47	1
o-Xylene	< 0.00199	U F1 F2	0.00199		mg/Kg		11/01/21 12:13	11/03/21 05:47	1
Xylenes, Total	<0.00398	U F1 F2	0.00398		mg/Kg		11/01/21 12:13	11/03/21 05:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	115		70 - 130				11/01/21 12:13	11/03/21 05:47	1
1,4-Difluorobenzene (Surr)	99		70 - 130				11/01/21 12:13	11/03/21 05:47	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
Analyte Total TPH		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg				
-					0 0			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)			0 0			11/05/21 13:50	1
		RO) (GC) Qualifier	RL	MDL		D	Prepared	11/05/21 13:50 Analyzed	Dil Fac
Analyte Gasoline Range Organics	Result		RL 49.9	MDL		<u>D</u>	Prepared 11/03/21 10:38		
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier		MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U F1 F2 U F1 F2	49.9	MDL	Unit mg/Kg	<u>D</u>	11/03/21 10:38	Analyzed 11/03/21 21:06	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9	Qualifier U F1 F2 U F1 F2	49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38	Analyzed 11/03/21 21:06	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9	Qualifier U F1 F2 U F1 F2 U	49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u> </u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38	Analyzed 11/03/21 21:06 11/03/21 21:06 11/03/21 21:06	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U F1 F2 U F1 F2 U Qualifier	49.9 49.9 49.9 Limits	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared	Analyzed 11/03/21 21:06 11/03/21 21:06 11/03/21 21:06 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U F1 F2 U F1 F2 U Qualifier S1- S1-	49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared 11/03/21 10:38	Analyzed 11/03/21 21:06 11/03/21 21:06 11/03/21 21:06 Analyzed 11/03/21 21:06	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U F1 F2 U F1 F2 U Qualifier S1- S1-	49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared 11/03/21 10:38	Analyzed 11/03/21 21:06 11/03/21 21:06 11/03/21 21:06 Analyzed 11/03/21 21:06	Dil Face

Client Sample ID: BH-62 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 06:08	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 06:08	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 06:08	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/21 12:13	11/03/21 06:08	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 06:08	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/21 12:13	11/03/21 06:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:13	11/03/21 06:08	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-62

Lab Sample ID: 890-1502-62

Lab Sample ID: 890-1502-63

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-62 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Con	noounds (GC)	(Continued)
motifical collision of gains con	ipodiido (OO)	(Continuou,

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	103	70 - 130	11/01/21 12:13	11/03/21 06:08	1

ı	Mothodi	Total DTEV	- Total BTEX	Coloulation
ı	wethou.	TOTAL DIEV	- IUIAI DIEA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg		_	11/09/21 10:40	1

ш				
ш	Method: 8015 NI	A - Diocol Pane	no Organice	(DPO) (CC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Mothod: 904ED N	IM Discol	Dange Ore	raniaa /	DBO) /	CCI
Method: 8015B N	AIM - DIESEL	Range Oil	janicə (i		GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/03/21 22:16	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/03/21 22:16	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/03/21 22:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Pro	epared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130	11/03	2/21 10:38	11/03/21 22:16	1
o-Terphenyl	90		70 - 130	11/03	1/21 10:38	11/03/21 22:16	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1480		25.2		mg/Kg			11/08/21 07:41	5

Client Sample ID: BH-63 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Co	mnolinas ((=(.)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 06:28	1
Toluene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 06:28	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 06:28	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:13	11/03/21 06:28	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 06:28	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:13	11/03/21 06:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				11/01/21 12:13	11/03/21 06:28	1
1,4-Difluorobenzene (Surr)	102		70 - 130				11/01/21 12:13	11/03/21 06:28	1

Method: Tot	al RTFY -	Total RTFY	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		ma/Ka			11/09/21 10:40	1

	Method: 8015 NM -	- Diesel Range	Organics	(DRO)	(GC)
--	-------------------	----------------	----------	-------	------

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

2

3

4

6

e S

10

15

13

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Client Sample ID: BH-63 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

₋ab Sample ID: 890-1502-6

Matrix: Solid

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/03/21 22:39	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/03/21 22:39	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/03/21 22:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				11/03/21 10:38	11/03/21 22:39	1
o-Terphenyl	95		70 - 130				11/03/21 10:38	11/03/21 22:39	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1000		4.97		mg/Kg			11/08/21 07:49	1

Client Sample ID: BH-64 (15) Lab Sample ID: 890-1502-64 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 06:48	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 06:48	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 06:48	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:13	11/03/21 06:48	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 06:48	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:13	11/03/21 06:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				11/01/21 12:13	11/03/21 06:48	1
1,4-Difluorobenzene (Surr)	99		70 - 130				11/01/21 12:13	11/03/21 06:48	1

Method: Total BTEX - To	otal BTEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Dies	sel Range Organics (DR	O) (GC)							

Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Range Or	ganics (D	RO) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/03/21 23:00	1
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/03/21 23:00	1
C10-C28) OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/03/21 23:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4.06.1	^7		70 400				44/00/04 40 00	44 (00 (04 00 00	

1-Chlorooctane 97 70 - 130 11/03/21 10:38 11/03/21 23:00 o-Terphenyl 103 70 - 130 11/03/21 10:38 11/03/21 23:00

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Lab Sample ID: 890-1502-64

Matrix: Solid

Client Sample ID: BH-64 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2760		24.9		mg/Kg			11/08/21 07:56	5

Client Sample ID: BH-65 (15)

Date Collected: 10/27/21 00:00

Matrix: Solid

Date Collected: 10/27/21 00:00
Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:09	-
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:09	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:09	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:13	11/03/21 07:09	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:09	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:13	11/03/21 07:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130				11/01/21 12:13	11/03/21 07:09	1
1,4-Difluorobenzene (Surr)	101		70 - 130				11/01/21 12:13	11/03/21 07:09	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)	0.00396		mg/Kg				
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/03/21 23:21	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/03/21 23:21	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/03/21 23:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				11/03/21 10:38	11/03/21 23:21	1
	107		70 - 130				11/03/21 10:38	11/03/21 23:21	1
o-Terphenyl									
o-Terphenyl : Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
	• • •	Soluble Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-1502-66

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-66 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 07:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 07:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 07:29	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:13	11/03/21 07:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 07:29	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:13	11/03/21 07:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				11/01/21 12:13	11/03/21 07:29	1
1,4-Difluorobenzene (Surr)	72		70 - 130				11/01/21 12:13	11/03/21 07:29	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
T / I TDII							•	,u. y = 0 u	Diriac
Total TPH	<50.0	U	50.0		mg/Kg		<u>·</u>	11/05/21 13:50	1
Total TPH [Method: 8015B NM - Diesel Rang			50.0		mg/Kg				
- -	ge Organics (D		50.0 RL	MDL		D	Prepared		1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC) Qualifier		MDL		D	Prepared 11/03/21 10:38	11/05/21 13:50	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>		11/05/21 13:50 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	11/03/21 10:38	11/05/21 13:50 Analyzed 11/03/21 23:41	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38	11/05/21 13:50 Analyzed 11/03/21 23:41 11/03/21 23:41	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	D	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38	Analyzed 11/03/21 23:41 11/03/21 23:41 11/03/21 23:41	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U		MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 <i>Prepared</i>	Analyzed 11/03/21 23:41 11/03/21 23:41 11/03/21 23:41 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <50.0 <50.0 <50.0 <80.0 %Recovery 102 112	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared 11/03/21 10:38	Analyzed 11/03/21 23:41 11/03/21 23:41 11/03/21 23:41 Analyzed 11/03/21 23:41	
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <50.0 <50.0 <50.0 **Recovery 102 112 omatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared 11/03/21 10:38	Analyzed 11/03/21 23:41 11/03/21 23:41 11/03/21 23:41 Analyzed 11/03/21 23:41	Dil Fac

Client Sample ID: BH-67 (15)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:50	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:50	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:50	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		11/01/21 12:13	11/03/21 07:50	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 07:50	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		11/01/21 12:13	11/03/21 07:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:13	11/03/21 07:50	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-67

Matrix: Solid

_

4

6

8

10

12

13

Lab Sample ID: 890-1502-67

Lab Sample ID: 890-1502-68

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-67 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B	Volatile Ore	ranic Com	nounds (C	C	(Continued)	
WELLIOU. OUZ ID	- voiatile Org	Janiic Com	poulius (C	3C) ((Continueu)	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130	11/01/21 12:13	11/03/21 07:50	1

Mothod	Total BTEX	Total B	TEV Ca	loulation
wetnoa:	TOTAL BIEN	Total 🗖		liculation

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg		_	11/09/21 10:40	1

Method: 8015 NM - Diesel	Danga Organica		
i welliou, ou la min - Diesei	Range Organics	ונטאטו	901

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			11/05/21 13:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/04/21 00:02	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/04/21 00:02	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/04/21 00:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	102	70 - 130	11/03/21 10:	38 11/04/21 00:02	1
o-Terphenyl	110	70 - 130	11/03/21 10:	38 11/04/21 00:02	1

Method: 300.0 - Anions, lor	n Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Chloride	854	4.98	mg	g/Kg		11/08/21 09:29	1

Client Sample ID: BH-68 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

momous collections or gu		(/							
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	m	ng/Kg		11/01/21 12:13	11/03/21 08:10	1
Toluene	<0.00199	U	0.00199	m	ng/Kg		11/01/21 12:13	11/03/21 08:10	1
Ethylbenzene	< 0.00199	U	0.00199	m	ng/Kg		11/01/21 12:13	11/03/21 08:10	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	m	ng/Kg		11/01/21 12:13	11/03/21 08:10	1
o-Xylene	<0.00199	U	0.00199	m	ng/Kg		11/01/21 12:13	11/03/21 08:10	1
Xylenes, Total	<0.00398	U	0.00398	m	ng/Kg		11/01/21 12:13	11/03/21 08:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				11/01/21 12:13	11/03/21 08:10	1
1,4-Difluorobenzene (Surr)	109		70 - 130				11/01/21 12:13	11/03/21 08:10	1

Mothod:	Total RTEY	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1

	Method: 8015 NM - Diesel	Range Organics (DI	RO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organica (Di	, (00)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

2

3

4

6

9

11

13

Matrix: Solid

Lab Sample ID: 890-1502-68

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-68 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/04/21 00:23	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/04/21 00:23	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/04/21 00:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				11/03/21 10:38	11/04/21 00:23	1
o-Terphenyl	98		70 - 130				11/03/21 10:38	11/04/21 00:23	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-69 (15) Lab Sample ID: 890-1502-69

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 08:30	1
Toluene	< 0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 08:30	1
Ethylbenzene	< 0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 08:30	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:13	11/03/21 08:30	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 08:30	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:13	11/03/21 08:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				11/01/21 12:13	11/03/21 08:30	1
1,4-Difluorobenzene (Surr)	103		70 - 130				11/01/21 12:13	11/03/21 08:30	1
- Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	1
- ^{***} -			0.00402		mg/Kg			11/09/21 10:40	1
Total BTEX Method: 8015 NM - Diesel Range Analyte	Organics (DR		0.00402	MDL		D	Prepared	11/09/21 10:40 Analyzed	1 Dil Fac
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC) Qualifier		MDL		<u>D</u>	Prepared		
Method: 8015 NM - Diesel Range Analyte Total TPH	Organics (DR) Result <49.9	O) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang	Organics (DR) Result <49.9 e Organics (DI)	O) (GC) Qualifier	RL		Unit	D	Prepared Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte	Organics (DR) Result <49.9 e Organics (DI)	Qualifier U RO) (GC) Qualifier	RL 49.9		Unit mg/Kg			Analyzed 11/05/21 13:50	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Organics (DR) Result 49.9 e Organics (DI) Result	Qualifier U RO) (GC) Qualifier	RL		Unit mg/Kg		Prepared	Analyzed 11/05/21 13:50 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Organics (DR) Result 49.9 e Organics (DI) Result	Qualifier U RO) (GC) Qualifier U Qualifier U	RL		Unit mg/Kg		Prepared	Analyzed 11/05/21 13:50 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Organics (DR) Result 49.9 e Organics (DI) Result 49.9 <49.9	Qualifier U RO) (GC) Qualifier U U U U U	RL 49.9 RL 49.9 49.9		Unit mg/Kg Unit mg/Kg		Prepared 11/03/21 10:38 11/03/21 10:38	Analyzed 11/05/21 13:50 Analyzed 11/04/21 00:44 11/04/21 00:44	Dil Fac Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	Organics (DR) Result 49.9 e Organics (DI) Result <49.9	Qualifier U RO) (GC) Qualifier U U U U U	RL 49.9		Unit mg/Kg Unit mg/Kg		Prepared 11/03/21 10:38	Analyzed 11/05/21 13:50 Analyzed 11/04/21 00:44	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Organics (DR) Result 49.9 e Organics (DI) Result 49.9 <49.9	Qualifier U RO) (GC) Qualifier U U U U	RL 49.9 RL 49.9 49.9		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 10:38 11/03/21 10:38	Analyzed 11/05/21 13:50 Analyzed 11/04/21 00:44 11/04/21 00:44	Dil Fac Dil Fac 1 1 1
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Organics (DR) Result <49.9 e Organics (DI) Result <49.9 <49.9 <49.9	Qualifier U RO) (GC) Qualifier U U U U	RL 49.9 RL 49.9 49.9 49.9		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 10:38 11/03/21 10:38	Analyzed 11/05/21 13:50 Analyzed 11/04/21 00:44 11/04/21 00:44	Dil Fac Dil Fac 1

Eurofins Xenco, Carlsbad

11/10/2021

Lab Sample ID: 890-1502-69

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: BH-69 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	632		4.99		mg/Kg			11/08/21 09:44	1

Client Sample ID: BH-70 (15)

Date Collected: 10/28/21 00:00

Lab Sample ID: 890-1502-70

Matrix: Solid

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 08:51	
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 08:51	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 08:51	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:13	11/03/21 08:51	
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 08:51	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:13	11/03/21 08:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	130		70 - 130				11/01/21 12:13	11/03/21 08:51	
1,4-Difluorobenzene (Surr)	102		70 - 130				11/01/21 12:13	11/03/21 08:51	
· Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	
Method: 8015B NM - Diesel Rang	ge Organics (Di	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 01:05	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 01:05	
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 01:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	97		70 - 130				11/03/21 10:38	11/04/21 01:05	
o-Terphenyl	103		70 - 130				11/03/21 10:38	11/04/21 01:05	
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	921		4.97		mg/Kg	_		11/08/21 10:07	1

Lab Sample ID: 890-1502-71

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-71 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 10:40	
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 10:40	
Ethylbenzene	0.00378		0.00200		mg/Kg		11/01/21 12:13	11/03/21 10:40	
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 12:13	11/03/21 10:40	
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 10:40	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 12:13	11/03/21 10:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	116		70 - 130				11/01/21 12:13	11/03/21 10:40	
1,4-Difluorobenzene (Surr)	97		70 - 130				11/01/21 12:13	11/03/21 10:40	
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:40	
Analyte Total TPH	Result <49.9	Qualifier U	RL 49.9	MDL	mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	Dil Fa
· -									
Method: 8015B NM - Diesel Rang						_			5
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 01:48	
•									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 01:48	
Diesel Range Organics (Over C10-C28)	<49.9 <49.9		49.9 49.9		mg/Kg		11/03/21 10:38 11/03/21 10:38	11/04/21 01:48 11/04/21 01:48	
Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)		U							
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9	U	49.9				11/03/21 10:38	11/04/21 01:48	Dil Fa
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 %Recovery	U	49.9				11/03/21 10:38 Prepared	11/04/21 01:48 Analyzed	Dil Fa
Diesel Range Organics (Over C10-C28)	<49.9 **Recovery 99 107	U Qualifier	49.9 <i>Limits</i> 70 - 130				11/03/21 10:38 Prepared 11/03/21 10:38	11/04/21 01:48 Analyzed 11/04/21 01:48	Dil Fa
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 **Recovery 99 107 pomatography -	U Qualifier	49.9 <i>Limits</i> 70 - 130	MDL	mg/Kg	<u>D</u>	11/03/21 10:38 Prepared 11/03/21 10:38	11/04/21 01:48 Analyzed 11/04/21 01:48	Dil Fa

Client Sample ID: BH-72 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 11:00	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 11:00	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 11:00	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:13	11/03/21 11:00	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:13	11/03/21 11:00	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:13	11/03/21 11:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				11/01/21 12:13	11/03/21 11:00	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-72

Matrix: Solid

2

3

-

q

1 4

12

Analyzed

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-72 (15) Lab Sample ID: 890-1502-72

Date Collected: 10/28/21 00:00 Matrix: Solid Date Received: 10/29/21 12:45

Sample Depth: 15

	wethod: 8021B - Volatile Organic Con	pounds	(GC) (Contin	iuea)					
	Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Į	1,4-Difluorobenzene (Surr)	103		70 - 130			11/01/21 12:13	11/03/21 11:00	1
	Method: Total BTEX - Total BTEX Calc	ulation							
I	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

TOTAL BYEX	<0.00402 0	0.00402	mg/kg			11/09/21 10.40	1
Method: 8015 NM - Diesel Range	Organics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

monitor of the Process training	organios (Bito) (GG)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			11/05/21 13:50	1
Г							

Wethod: 8015B NW - Diesei Rang	, ,	, , ,							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:09	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:09	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4.00.1			70 100				11/00/01 10 00	44/04/04 00 00	

	1-Chlorooctane	115	70 - 130	11/03/21 10:38	11/04/21 02:09	1
	o-Terphenyl	128	70 - 130	11/03/21 10:38	11/04/21 02:09	1
Ì	Method: 300 0 - Anions, Ion Chrom	atamanhu Calubia				

Method: 300.0 - Anions, Ion Chron	natography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	692	4.95	mg/Kg			11/08/21 10:22	1

Client Sample ID: BH-73 (15) Lab Sample ID: 890-1502-73 Date Collected: 10/28/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

Sample Depth: 15

Total TPH

<0.00202						Prepared	Analyzed	Dil Fac
	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 11:21	1
<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 11:21	1
<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 11:21	1
<0.00403	U	0.00403		mg/Kg		11/01/21 12:13	11/03/21 11:21	1
<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 11:21	1
<0.00403	U	0.00403		mg/Kg		11/01/21 12:13	11/03/21 11:21	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
130		70 - 130				11/01/21 12:13	11/03/21 11:21	1
102		70 - 130				11/01/21 12:13	11/03/21 11:21	1
Calculation								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00403	U	0.00403		mg/Kg			11/09/21 10:40	1
	<0.00202 <0.00403 <0.00202 <0.00403 %Recovery 130 102 Calculation Result	<0.00202 U <0.00403 U <0.00202 U <0.00403 U **Recovery Qualifier** 130 102	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202

Eurofins Xenco, Carlsbad

11/05/21 13:50

49.9

mg/Kg

58.5

Lab Sample ID: 890-1502-73

Lab Sample ID: 890-1502-74

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-73 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:31	1
Diesel Range Organics (Over	58.5		49.9		mg/Kg		11/03/21 10:38	11/04/21 02:31	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				11/03/21 10:38	11/04/21 02:31	1
o-Terphenyl	91		70 - 130				11/03/21 10:38	11/04/21 02:31	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	itesuit	Quannon							

Client Sample ID: BH-74 (15)

Released to Imaging: 9/1/2023 2:07:08 PM

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 11:41	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 11:41	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 11:41	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:13	11/03/21 11:41	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:13	11/03/21 11:41	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:13	11/03/21 11:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				11/01/21 12:13	11/03/21 11:41	1
1,4-Difluorobenzene (Surr)	98		70 - 130				11/01/21 12:13	11/03/21 11:41	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:52	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:52	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 02:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				11/03/21 10:38	11/04/21 02:52	1

Eurofins Xenco, Carlsbad

2

3

4

7

q

12

Lab Sample ID: 890-1502-74

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-74 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	2620	25.2	mg/Kg			11/08/21 10:37	5			

Client Sample ID: BH-75 (15) Lab Sample ID: 890-1502-75 Matrix: Solid

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:02	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:02	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:02	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 12:13	11/03/21 12:02	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:02	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 12:13	11/03/21 12:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				11/01/21 12:13	11/03/21 12:02	1
1,4-Difluorobenzene (Surr)	79		70 - 130				11/01/21 12:13	11/03/21 12:02	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:40	1
Analyte Total TPH	Result <50.0	Qualifier U		MDL	mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	Dil Fac
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/04/21 03:14	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/04/21 03:14	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 10:38	11/04/21 03:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				11/03/21 10:38	11/04/21 03:14	1
o-Terphenyl	109		70 - 130				11/03/21 10:38	11/04/21 03:14	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
,									
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Sample ID: 890-1502-76

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-76 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:22	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:22	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:22	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:13	11/03/21 12:22	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:22	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:13	11/03/21 12:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130				11/01/21 12:13	11/03/21 12:22	1
1,4-Difluorobenzene (Surr)	104		70 - 130				11/01/21 12:13	11/03/21 12:22	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organice (DD	o) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	П							
-		U	49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Ran			49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Ran Analyte	ge Organics (D		49.8 RL	MDL		D	Prepared	11/05/21 13:50 Analyzed	
Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		<u>D</u>	Prepared 11/03/21 10:38		Dil Fac
	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	<u> </u>	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <49.8	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	11/03/21 10:38	Analyzed 11/04/21 03:36	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.8	RO) (GC) Qualifier U	RL 49.8	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38	Analyzed 11/04/21 03:36 11/04/21 03:36	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.8 <49.8	RO) (GC) Qualifier U	RL 49.8 49.8 49.8	MDL	Unit mg/Kg mg/Kg	<u> </u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38	Analyzed 11/04/21 03:36 11/04/21 03:36 11/04/21 03:36	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.8 <49.8 <49.8	RO) (GC) Qualifier U	RL 49.8 49.8 49.8 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u> </u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared	Analyzed 11/04/21 03:36 11/04/21 03:36 11/04/21 03:36 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.8 <49.8 <49.8	RO) (GC) Qualifier U U Qualifier	RL 49.8 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared 11/03/21 10:38	Analyzed 11/04/21 03:36 11/04/21 03:36 11/04/21 03:36 Analyzed 11/04/21 03:36	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.8 <49.8 <49.8	RO) (GC) Qualifier U U Qualifier	RL 49.8 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/03/21 10:38 11/03/21 10:38 11/03/21 10:38 Prepared 11/03/21 10:38	Analyzed 11/04/21 03:36 11/04/21 03:36 11/04/21 03:36 Analyzed 11/04/21 03:36	Dil Fac 1 1 Dil Fac 1 Dil Fac

Client Sample ID: BH-77 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:42	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:42	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:42	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:13	11/03/21 12:42	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:13	11/03/21 12:42	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:13	11/03/21 12:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130				11/01/21 12:13	11/03/21 12:42	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-77

Matrix: Solid

2

4

6

8

10

12

Lab Sample ID: 890-1502-77

11/03/21 10:38 11/04/21 03:57

Lab Sample ID: 890-1502-78

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-77 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Vol	atile Organic Cor	npounds (GC	(Continued)
	atilo organio coi		, (-

Surrogate	%Recovery Qu	ualifier Lim	nits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	71	70 -	. 130	11/01/21 12:13	11/03/21 12:42	1

ı	Mothodi	Total DTEV	- Total BTEX	Coloulation
ı	wethou.	TOTAL DIEV	- IUIAI DIEA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg		_	11/09/21 10:40	1

ı		
ı	Method: 8015 NM - Diesel Range Organics (DRO)	(CC)
ı	Method: 0013 NM - Diesel Kange Organics (DRO)	(00)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	m	ng/Kg		11/03/21 10:38	11/04/21 03:57	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	m	ng/Kg		11/03/21 10:38	11/04/21 03:57	1
· · · · · · · · · · · · · · · · ·	-10.0		40.0				44/00/04 40:00	44/04/04 00:57	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	п	ng/Kg		11/03/21 10:38	11/04/21 03:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				11/03/21 10:38	11/04/21 03:57	1

o-Terphenyl	105	70 - 130

Method: 300.0 - Anions, ion Chron	natograpny - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1430	24.9	ma/Ka			11/08/21 12:34	5

Client Sample ID: BH-78 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:03	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:03	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:03	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:13	11/03/21 13:03	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:03	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:13	11/03/21 13:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				11/01/21 12:13	11/03/21 13:03	1
1,4-Difluorobenzene (Surr)	99		70 - 130				11/01/21 12:13	11/03/21 13:03	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396		ma/Ka			11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			11/05/21 13:50	1

Eurofins Xenco, Carlsbad

9

3

4

6

8

4.0

13

Lab Sample ID: 890-1502-78

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-78 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 04:18	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 04:18	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 10:38	11/04/21 04:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				11/03/21 10:38	11/04/21 04:18	1
o-Terphenyl	112		70 - 130				11/03/21 10:38	11/04/21 04:18	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-79 (15) Lab Sample ID: 890-1502-79 Date Collected: 10/28/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 13:23	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 13:23	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 13:23	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/21 12:13	11/03/21 13:23	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:13	11/03/21 13:23	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/21 12:13	11/03/21 13:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				11/01/21 12:13	11/03/21 13:23	1
1,4-Difluorobenzene (Surr)	104		70 - 130				11/01/21 12:13	11/03/21 13:23	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/09/21 10:40	1
•									
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
•	•	Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/05/21 13:50	Dil Fac
Analyte		Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <49.9	Qualifier U		MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg			11/05/21 13:50	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 ge Organics (Di Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 11/03/21 10:38	11/05/21 13:50 Analyzed 11/04/21 04:40	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg		Prepared	11/05/21 13:50 Analyzed	Dil Fac
Analyte Total TPH	Result <49.9 ge Organics (Di Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 11/03/21 10:38	11/05/21 13:50 Analyzed 11/04/21 04:40	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 10:38 11/03/21 10:38	11/05/21 13:50 Analyzed 11/04/21 04:40 11/04/21 04:40	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 10:38 11/03/21 10:38	Analyzed 11/04/21 04:40 11/04/21 04:40 11/04/21 04:40	1 Dil Fac

Lab Sample ID: 890-1502-79

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-79 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	561		4.95		mg/Kg			11/08/21 11:46	1

Client Sample ID: BH-80 (15)

Date Collected: 10/28/21 00:00

Lab Sample ID: 890-1502-80

Matrix: Solid

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:44	
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:44	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:44	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		11/01/21 12:13	11/03/21 13:44	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:13	11/03/21 13:44	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		11/01/21 12:13	11/03/21 13:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				11/01/21 12:13	11/03/21 13:44	1
1,4-Difluorobenzene (Surr)	106		70 - 130				11/01/21 12:13	11/03/21 13:44	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	je Organics (Di	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/04/21 05:01	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/04/21 05:01	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/03/21 10:38	11/04/21 05:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				11/03/21 10:38	11/04/21 05:01	1
o-Terphenyl	122		70 - 130				11/03/21 10:38	11/04/21 05:01	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			5.01		mg/Kg			11/08/21 11:54	1

Released to Imaging: 9/1/2023 2:07:08 PM

2

3

5

7

9

10

13

Lab Sample ID: 890-1502-81

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-81 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U F2 F1	0.00199		mg/Kg		11/01/21 12:16	11/03/21 17:55	1
Toluene	< 0.00199	U F2 F1	0.00199		mg/Kg		11/01/21 12:16	11/03/21 17:55	1
Ethylbenzene	< 0.00199	U F2 F1	0.00199		mg/Kg		11/01/21 12:16	11/03/21 17:55	1
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.00398		mg/Kg		11/01/21 12:16	11/03/21 17:55	1
o-Xylene	<0.00199	U F2 F1	0.00199		mg/Kg		11/01/21 12:16	11/03/21 17:55	1
Xylenes, Total	<0.00398	U F2 F1	0.00398		mg/Kg		11/01/21 12:16	11/03/21 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130				11/01/21 12:16	11/03/21 17:55	1
1,4-Difluorobenzene (Surr)	69	S1-	70 - 130				11/01/21 12:16	11/03/21 17:55	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
<u> </u>	Kesuit 			MIDL			Prepared		Dii Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 11:05	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 11:05	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 11:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				11/03/21 11:37	11/04/21 11:05	1
o-Terphenyl	101		70 - 130				11/03/21 11:37	11/04/21 11:05	1
o-rerprienyi -									
Method: 300.0 - Anions, Ion Chr	•								
Method: 300.0 - Anions, Ion Chro	•	Soluble Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/08/21 12:02	Dil Fac

Client Sample ID: BH-82 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 18:15	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 18:15	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 18:15	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:16	11/03/21 18:15	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 18:15	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:16	11/03/21 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				11/01/21 12:16	11/03/21 18:15	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-82

Matrix: Solid

2

4

6

8

10

12

Lab Sample ID: 890-1502-82

11/03/21 11:37

11/04/21 12:11

Lab Sample ID: 890-1502-83

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-82 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Vol	atile Organic Cor	npounds (GC	(Continued)
	atilo organio coi		, (-

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	83	70 - 130	11/01/21 12:16	11/03/21 18:15	1

ı	Mothodi	Total DTEV	- Total BTEX	Coloulation
ı	wethou.	TOTAL DIEV	- IUIAI DIEA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/09/21 10:40	1

Mothod: 8015 NM -	Diesal Pance	Organics (DRO) ((201

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/05/21 13:50	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 12:11	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 12:11	1
C10-C28) OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 12:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				11/03/21 11:37	11/04/21 12:11	1

1-Chlorooctane	89	70 - 130
o-Terphenyl	102	70 - 130

Method: 300.0 - Anions, Ion Chromatography - Soluble											
	Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
	Chloride	306		4.98		mg/Kg				11/08/21 12:09	1

Client Sample ID: BH-83 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:36	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:36	1
Ethylbenzene	0.00427		0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:36	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 18:36	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:36	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				11/01/21 12:16	11/03/21 18:36	1
1,4-Difluorobenzene (Surr)	90		70 - 130				11/01/21 12:16	11/03/21 18:36	1

Mothod:	Total RT	Y - Total I	RTEY Ca	lculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00427		0.00400		mg/Kg			11/09/21 10:40	1

	Method: 8015 NM -	- Diesel Range	Organics	(DRO)	(GC)
--	-------------------	----------------	----------	-------	------

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			11/05/21 13:50	1

Lab Sample ID: 890-1502-83

Matrix: Solid

Lab Sample ID: 890-1502-84

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-83 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 12:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 12:32	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 12:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				11/03/21 11:37	11/04/21 12:32	1
o-Terphenyl	105		70 - 130				11/03/21 11:37	11/04/21 12:32	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-84 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:56	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 18:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 18:56	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 18:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				11/01/21 12:16	11/03/21 18:56	1
1,4-Difluorobenzene (Surr)	101		70 - 130				11/01/21 12:16	11/03/21 18:56	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/05/21 13:50	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 12:55	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 12:55	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 12:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				11/03/21 11:37	11/04/21 12:55	1
o-Terphenyl	105		70 ₋ 130				11/03/21 11:37	11/04/21 12:55	

Lab Sample ID: 890-1502-84

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: BH-84 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	710		4.99		mg/Kg		_	11/08/21 12:25	1

Client Sample ID: BH-85 (15)

Date Collected: 10/28/21 00:00

Lab Sample ID: 890-1502-85

Matrix: Solid

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 19:17	
Toluene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 19:17	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 19:17	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:16	11/03/21 19:17	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 19:17	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:16	11/03/21 19:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	114		70 - 130				11/01/21 12:16	11/03/21 19:17	
1,4-Difluorobenzene (Surr)	110		70 - 130				11/01/21 12:16	11/03/21 19:17	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398		0.00398		mg/Kg			11/09/21 10:40	•
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8		49.8		mg/Kg		<u>.</u>	11/05/21 13:50	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
		11	49.8		mg/Kg		11/03/21 11:37	11/04/21 13:16	
5 5	<49.8	U	49.6		0 0				•
(GRO)-C6-C10 Diesel Range Organics (Over	<49.8 <49.8		49.8		mg/Kg		11/03/21 11:37	11/04/21 13:16	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U					11/03/21 11:37 11/03/21 11:37	11/04/21 13:16 11/04/21 13:16	,
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U U	49.8		mg/Kg				Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	<49.8 <49.8	U U	49.8 49.8		mg/Kg		11/03/21 11:37	11/04/21 13:16	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.8 <49.8 %Recovery	U U	49.8 49.8 <i>Limits</i>		mg/Kg		11/03/21 11:37 Prepared	11/04/21 13:16 Analyzed	Dil Fa
Surrogate	<49.8 <49.8 %Recovery 93 106	U U Qualifier	49.8 49.8 Limits 70 - 130		mg/Kg		11/03/21 11:37 Prepared 11/03/21 11:37	11/04/21 13:16 Analyzed 11/04/21 13:16	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.8 <49.8 **Recovery 93 106 Domatography -	U U Qualifier	49.8 49.8 Limits 70 - 130	MDL	mg/Kg	D	11/03/21 11:37 Prepared 11/03/21 11:37	11/04/21 13:16 Analyzed 11/04/21 13:16	Dil Fa

Lab Sample ID: 890-1502-86

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-86 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:16	11/03/21 19:37	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:16	11/03/21 19:37	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:16	11/03/21 19:37	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/21 12:16	11/03/21 19:37	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:16	11/03/21 19:37	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/21 12:16	11/03/21 19:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				11/01/21 12:16	11/03/21 19:37	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/01/21 12:16	11/03/21 19:37	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/09/21 10:40	1
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
T. L. LTDLL									
TOTAL TPH	<50.0	U	50.0		mg/Kg			11/08/21 15:54	
- -			50.0		mg/Kg			11/08/21 15:54	
- -	ge Organics (D		50.0 RL	MDL		D	Prepared	11/08/21 15:54 Analyzed	1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		D	Prepared 11/03/21 11:37		Dil Fac
Method: 8015B NM - Diesel Ran Analyte	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL 50.0	MDL	Unit mg/Kg	<u>D</u>	11/03/21 11:37	Analyzed 11/04/21 13:38	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37	Analyzed 11/04/21 13:38 11/04/21 13:38	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37	Analyzed 11/04/21 13:38 11/04/21 13:38 11/04/21 13:38	Dil Face 1 1 1 Dil Face
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37 Prepared	Analyzed 11/04/21 13:38 11/04/21 13:38 11/04/21 13:38 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <50.0 <50.0 <50.0 <80.0 %Recovery 93 110	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37 Prepared 11/03/21 11:37	Analyzed 11/04/21 13:38 11/04/21 13:38 11/04/21 13:38 Analyzed 11/04/21 13:38	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <50.0 <50.0 <50.0 **Recovery 93 110 romatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37 Prepared 11/03/21 11:37	Analyzed 11/04/21 13:38 11/04/21 13:38 11/04/21 13:38 Analyzed 11/04/21 13:38	Dil Fac

Client Sample ID: BH-87 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 19:57	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 19:57	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 19:57	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/03/21 19:57	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 19:57	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/03/21 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:16	11/03/21 19:57	

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-87

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Lab Sample ID: 890-1502-87

Lab Sample ID: 890-1502-88

Matrix: Solid

Client Sample ID: BH-87 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile	Organia	Compounds	ICC) ICon	linuad)

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98	70 - 130	11/01/21 12:16	11/03/21 19:57	1

ı	Mothodi	Total DTEV	- Total BTEX	Coloulation
ı	wethou.	TOTAL DIEV	- IUIAI DIEA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1

ı		
ı	Method: 8015 NM - Diesel Range Organics (DRO)	(CC)
ı	Method. 6015 NW - Dieser Range Organics (DRO)	(GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/K			11/08/21 15:54	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		11/03/21 11:37	11/04/21 13:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		11/03/21 11:37	11/04/21 13:59	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/03/21 11:37	11/04/21 13:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surroyate	70Necovery	Qualifier	Lilling		rrepareu	Allalyzeu	DII Fac
1-Chlorooctane	93		70 - 130	-	11/03/21 11:37	11/04/21 13:59	1
o-Terphenyl	110		70 - 130		11/03/21 11:37	11/04/21 13:59	1
_							

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1500		5.00		mg/Kg			11/09/21 13:22	1

Client Sample ID: BH-88 (15)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 20:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 20:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 20:18	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 20:18	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 20:18	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				11/01/21 12:16	11/03/21 20:18	1
1,4-Difluorobenzene (Surr)	101		70 - 130				11/01/21 12:16	11/03/21 20:18	1

Mathad:	Total	RTFY -	Total R	TEY C	alculation

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		ma/Ka			11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			11/08/21 15:54	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Client Sample ID: BH-88 (15) Lab Sample ID: 890-1502-88 Date Collected: 10/28/21 00:00

Matrix: Solid

Sample Depth: 15

Date Received: 10/29/21 12:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 14:20	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 14:20	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 14:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				11/03/21 11:37	11/04/21 14:20	1
o-Terphenyl	108		70 - 130				11/03/21 11:37	11/04/21 14:20	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			25.2					11/09/21 13:30	

Lab Sample ID: 890-1502-89 Client Sample ID: BH-89 (15)

Date Collected: 10/28/21 00:00

Matrix: Solid Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 20:38	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 20:38	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 20:38	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:16	11/03/21 20:38	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/03/21 20:38	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:16	11/03/21 20:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				11/01/21 12:16	11/03/21 20:38	1
1,4-Difluorobenzene (Surr)	112		70 - 130				11/01/21 12:16	11/03/21 20:38	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 14:41	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 14:41	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 14:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130				11/03/21 11:37	11/04/21 14:41	1

Matrix: Solid

Lab Sample ID: 890-1502-89

Lab Sample ID: 890-1502-90

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: BH-89 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Method: 300.0 - Anions, Ion Chrom	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2630		24.9		mg/Kg			11/09/21 13:38	5

Client Sample ID: BH90 (RS) (6)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Samp	le D	ept	th:	6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 20:59	
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 20:59	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 20:59	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:16	11/03/21 20:59	
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 20:59	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:16	11/03/21 20:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	128		70 - 130				11/01/21 12:16	11/03/21 20:59	
1,4-Difluorobenzene (Surr)	126		70 - 130				11/01/21 12:16	11/03/21 20:59	
· Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	
Method: 8015B NM - Diesel Rang	ge Organics (Di	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 15:03	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 15:03	,
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 15:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	94		70 - 130				11/03/21 11:37	11/04/21 15:03	
o-Terphenyl	112		70 - 130				11/03/21 11:37	11/04/21 15:03	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	107		4.95		mg/Kg			11/09/21 14:01	

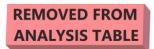
Lab Sample ID: 890-1502-91

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-91 (RS) (6)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45


Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 22:48	
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 22:48	•
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 22:48	•
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:16	11/03/21 22:48	
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/03/21 22:48	•
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:16	11/03/21 22:48	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	114		70 - 130				11/01/21 12:16	11/03/21 22:48	
1,4-Difluorobenzene (Surr)	111		70 - 130				11/01/21 12:16	11/03/21 22:48	1
- Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	-
Analyte Total TPH	Result <49.9	Qualifier U	49.9	MDL	mg/Kg	D	Prepared	Analyzed 11/08/21 15:54	Dil Fa
Total TPH				WIDE		=	- герагеи		Dil Fat
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 15:46	•
							44/00/04 44 07		
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 15:46	,
5 5 ·	<49.9 <49.9		49.9 49.9		mg/Kg		11/03/21 11:37	11/04/21 15:46 11/04/21 15:46	
C10-C28)		U							Dil Fac
C10-C28) OII Range Organics (Over C28-C36)	<49.9	U	49.9				11/03/21 11:37	11/04/21 15:46	Dil Fa
C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 %Recovery	U	49.9 <i>Limits</i>				11/03/21 11:37 Prepared	11/04/21 15:46 Analyzed	Dil Fa
C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 **Recovery 92 107	U Qualifier	49.9 <i>Limits</i> 70 - 130				11/03/21 11:37 Prepared 11/03/21 11:37	11/04/21 15:46 Analyzed 11/04/21 15:46	
C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 **Recovery 92 107 omatography -	U Qualifier	49.9 <i>Limits</i> 70 - 130	MDL	mg/Kg	<u>D</u>	11/03/21 11:37 Prepared 11/03/21 11:37	11/04/21 15:46 Analyzed 11/04/21 15:46	Dil Fac

Client Sample ID: SW-1 (0-6) Date Collected: 10/25/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 0 - 6

Lab Sample ID: 890-1502-92

Matrix: Solid

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:09	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:09	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:09	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 23:09	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:09	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:16	11/03/21 23:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				11/01/21 12:16	11/03/21 23:09	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Sample Depth: 0 - 6

Job ID: 890-1502-1

SDG: 212C-MD-02230

Client Sample ID: SW-1 (0-6) **REMOVED FROM** Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

ANALYSIS TABLE

Lab Sample ID: 890-1502-92

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	122		70 - 130				11/01/21 12:16	11/03/21 23:09	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	331		49.9		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	e Organics (Di	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 16:07	1
Diesel Range Organics (Over C10-C28)	331		49.9		mg/Kg		11/03/21 11:37	11/04/21 16:07	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				11/03/21 11:37	11/04/21 16:07	1
o-Terphenyl	106		70 - 130				11/03/21 11:37	11/04/21 16:07	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1430		25.1		mg/Kg			11/07/21 02:54	5

Client Sample ID: SW-2 (0-6) Lab Sample ID: 890-1502-93 **Matrix: Solid**

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:29	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/03/21 23:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/03/21 23:29	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/03/21 23:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				11/01/21 12:16	11/03/21 23:29	1
1,4-Difluorobenzene (Surr)	74		70 - 130				11/01/21 12:16	11/03/21 23:29	1
- Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
- Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Xenco, Carlsbad

11/08/21 15:54

49.9

mg/Kg

74.3

Total TPH

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-2 (0-6)

Date Collected: 10/25/21 00:00

Date Received: 10/29/21 12:45	
Sample Depth: 0 - 6	

Method: 8015B NM - Diesel Range	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 16:29	1
Diesel Range Organics (Over C10-C28)	74.3		49.9		mg/Kg		11/03/21 11:37	11/04/21 16:29	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				11/03/21 11:37	11/04/21 16:29	1
o-Terphenyl	106		70 - 130				11/03/21 11:37	11/04/21 16:29	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	43.4		4.98		mg/Kg			11/07/21 03:16	1

Client Sample ID: SW-3 (0-6)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 0 - 6

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-1502-94

Lab Sample ID: 890-1502-93

Matrix: Solid

Method: 8021R - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 23:49	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 23:49	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 23:49	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:16	11/03/21 23:49	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/03/21 23:49	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:16	11/03/21 23:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				11/01/21 12:16	11/03/21 23:49	1
1,4-Difluorobenzene (Surr)	97		70 - 130				11/01/21 12:16	11/03/21 23:49	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
- Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	IJ	49.9		mg/Kg			11/08/21 15:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 16:51	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 16:51	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 16:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				11/03/21 11:37	11/04/21 16:51	1
o-Terphenyl	106		70 - 130				11/03/21 11:37	11/04/21 16:51	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Prepared

11/03/21 11:37

Analyzed

11/04/21 17:14

Client Sample ID: SW-3 (0-6)

Date Collected: 10/25/21 00:00

REMOVED FROM

Lab Sample ID: 890-1502-94

Matrix: Solid

Date Received: 10/29/21 12:45 Sample Depth: 0 - 6

Method: 300.0 - Anions, Ion Chron	natography - S	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1250		4.95		mg/Kg			11/07/21 03:24	1

ANALYSIS TABLE

Client Sample ID: SW-4 (0-6) Lab Sample ID: 890-1502-95 **Matrix: Solid**

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

Method: Total BTEX - Total BTEX Calculation

Sample Depth: 0 - 6

(GRO)-C6-C10

Diesel Range Organics (Over

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/04/21 00:10	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/04/21 00:10	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/04/21 00:10	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:16	11/04/21 00:10	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:16	11/04/21 00:10	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:16	11/04/21 00:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130				11/01/21 12:16	11/04/21 00:10	1
1,4-Difluorobenzene (Surr)	105		70 - 130				11/01/21 12:16	11/04/21 00:10	1

Iotal BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Ran	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/03/21 11:37	11/04/21 17:14	1

C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	11/03/21 11:37	11/04/21 17:14	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130		11/03/21 11:37	11/04/21 17:14	1
o-Terphenyl	107		70 - 130		11/03/21 11:37	11/04/21 17:14	1

50.0

mg/Kg

<50.0 U

Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	1060		4.99		mg/Kg			11/07/21 03:46	1	

Eurofins Xenco, Carlsbad

11/10/2021

Lab Sample ID: 890-1502-96

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-5 (0-6)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/04/21 00:30	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/04/21 00:30	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/04/21 00:30	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		11/01/21 12:16	11/04/21 00:30	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:16	11/04/21 00:30	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		11/01/21 12:16	11/04/21 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				11/01/21 12:16	11/04/21 00:30	1
1,4-Difluorobenzene (Surr)	110		70 - 130				11/01/21 12:16	11/04/21 00:30	1
- Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			11/09/21 10:40	1
Analyte Total TPH	Result <49.8	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	-10.0							-	
•	\49.0	U	49.8		mg/Kg			11/08/21 15:54	1
- -			49.8		mg/Kg			11/08/21 15:54	
- -	ge Organics (D		49.8 RL	MDL			Prepared	11/08/21 15:54 Analyzed	
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		<u>D</u>	Prepared 11/03/21 11:37		1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <49.8	RO) (GC) Qualifier U	RL 49.8	MDL	Unit mg/Kg	<u>D</u>	11/03/21 11:37	Analyzed 11/04/21 17:35	Dil Fac
Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.8	RO) (GC) Qualifier U	RL 49.8	MDL	Unit mg/Kg mg/Kg	D	11/03/21 11:37	Analyzed 11/04/21 17:35 11/04/21 17:35	Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.8 <49.8	RO) (GC) Qualifier U	RL 49.8 49.8 49.8	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37	Analyzed 11/04/21 17:35 11/04/21 17:35 11/04/21 17:35	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.8 <49.8 <49.8	RO) (GC) Qualifier U	## ## ## ## ## ## ## ## ## ## ## ## ##	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37 Prepared	Analyzed 11/04/21 17:35 11/04/21 17:35 11/04/21 17:35 Analyzed	Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.8 <49.8 <49.8	RO) (GC) Qualifier U U Qualifier	RL 49.8 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37 Prepared 11/03/21 11:37	Analyzed 11/04/21 17:35 11/04/21 17:35 11/04/21 17:35 Analyzed 11/04/21 17:35	1 Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.8 <49.8 <49.8 **Recovery 102 122 **omatography -**	RO) (GC) Qualifier U U Qualifier	RL 49.8 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/03/21 11:37 11/03/21 11:37 11/03/21 11:37 Prepared 11/03/21 11:37	Analyzed 11/04/21 17:35 11/04/21 17:35 11/04/21 17:35 Analyzed 11/04/21 17:35	Dil Fac

Client Sample ID: SW-6 (0-6) Date Collected: 10/25/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 0 - 6

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-1502-97

Matrix: Solid

Method: 8021B - Volatile Orga	•	•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 00:51	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 00:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 00:51	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/04/21 00:51	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 00:51	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/04/21 00:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:16	11/04/21 00:51	1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-6 (0-6)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45 Sample Depth: 0 - 6 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-1502-97

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98	70 - 130	11/01/21 12:16	11/04/21 00:51	1

Method: Total BTEX - Total BTEX C	alculation		
Δnalvto	Result Qualifier	RI	MDI Unit

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg		_	11/09/21 10:40	1

Method: 8015 NM - Diesel Range C	Organics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	988	49.9	mg/Kg			11/08/21 15:54	1

	•••				33				-
Method: 8015B NM - Diesel Range C	Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 17:56	1
(GRO)-C6-C10									

	4/D 0 175					57.5
Oll Range Organics (Over C28-C36)	<49.9 U	49.9	mg/Kg	11/03/21 11:37	11/04/21 17:56	1
C10-C28)						
Diesel Range Organics (Over	988	49.9	mg/Kg	11/03/21 11:37	11/04/21 17:56	1
(GRO)-C6-C10						

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	89	70 - 130	11/03/21 11:37	11/04/21 17:56	1
o-Terphenyl	98	70 - 130	11/03/21 11:37	11/04/21 17:56	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	7870		49.8		mg/Kg			11/07/21 04:01	10

Client Sample ID: SW-7 (0-6)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 0 - 6

Analyte

Total TPH

REMOVED FROM ANALYSIS TABLE

Result Qualifier

86.9

Lab Sample ID: 890-1502-98

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/04/21 01:11	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/04/21 01:11	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/04/21 01:11	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:16	11/04/21 01:11	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:16	11/04/21 01:11	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:16	11/04/21 01:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				11/01/21 12:16	11/04/21 01:11	1
1,4-Difluorobenzene (Surr)	96		70 - 130				11/01/21 12:16	11/04/21 01:11	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	1

Eurofins Xenco, Carlsbad

Analyzed

11/08/21 15:54

Prepared

RL

49.9

MDL Unit

mg/Kg

Dil Fac

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

7

8

10

12

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-7 (0-6)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45 Sample Depth: 0 - 6 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-1502-98

Lab Sample ID: 890-1502-99

Matrix: Solid

Matrix: Solid

5

6

8

11

13

14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 18:17	1
Diesel Range Organics (Over C10-C28)	86.9		49.9		mg/Kg		11/03/21 11:37	11/04/21 18:17	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				11/03/21 11:37	11/04/21 18:17	1
o-Terphenyl	109		70 - 130				11/03/21 11:37	11/04/21 18:17	1
- Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6430		50.0		mg/Kg			11/07/21 04:08	10

Client Sample ID: SW-8 (0-6)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 0 - 6

REMOVED FROM ANALYSIS TABLE

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 11/01/21 12:16 11/04/21 01:31 mg/Kg Toluene <0.00200 U 0.00200 11/01/21 12:16 11/04/21 01:31 mg/Kg Ethylbenzene mg/Kg <0.00200 U 0.00200 11/01/21 12:16 11/04/21 01:31 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/01/21 12:16 11/04/21 01:31 <0.00200 U 0.00200 11/04/21 01:31 o-Xylene mg/Kg 11/01/21 12:16 Xylenes, Total <0.00400 U 0.00400 mg/Kg 11/01/21 12:16 11/04/21 01:31

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119	70 - 130	11/01/21 12:16	11/04/21 01:31	1
1,4-Difluorobenzene (Surr)	104	70 - 130	11/01/21 12:16	11/04/21 01:31	1
_					

Method: Total BTEX - Total BTEX CalculationAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal BTEX<0.00400</td>U0.00400mg/Kg11/09/21 10:401

Method: 8015 NM - Diesel Range	Organics (DRC)) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	651		49.9		mg/Kg			11/08/21 15:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 18:39	1
Diesel Range Organics (Over C10-C28)	651		49.9		mg/Kg		11/03/21 11:37	11/04/21 18:39	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 11:37	11/04/21 18:39	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130	11/03/21 11:37	11/04/21 18:39	1
o-Terphenyl	104		70 - 130	11/03/21 11:37	11/04/21 18:39	1

REMOVED FROM

ANALYSIS TABLE

REMOVED FROM

ANALYSIS TABLE

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: SW-8 (0-6) Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Lab Sample ID: 890-1502-99

Matrix: Solid

Sample Depth: 0 - 6

Method: 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	4070	25.0		mg/Kg			11/07/21 04:15	5	

Lab Sample ID: 890-1502-100

Client Sample ID: SW-9 (0-6) Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Matrix: Solid

Sample Depth: 0 - 6

Method: 8021B - Volatile Organic	Compounds (GC)
Analyte	Result	Quali
D	-0.0000	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 01:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 01:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 01:52	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/04/21 01:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:16	11/04/21 01:52	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:16	11/04/21 01:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				11/01/21 12:16	11/04/21 01:52	1
1,4-Difluorobenzene (Surr)	101		70 - 130				11/01/21 12:16	11/04/21 01:52	1

Method: Total BTEX - Total E	BTEX Calculation
------------------------------	------------------

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/09/21 10:40	1

	Method: 8015 NM - Diesel Rang	e Organics (DRO) (GC)
_	Analyto	Result Qualifier

Analyte	Result	Qualifier	RL	MDL U	Jnit)	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	n	na/Ka			11/08/21 15:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/03/21 11:37	11/04/21 19:01	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/03/21 11:37	11/04/21 19:01	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/03/21 11:37	11/04/21 19:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130	11/03/21 11:37	11/04/21 19:01	1
o-Terphenyl	112		70 - 130	11/03/21 11:37	11/04/21 19:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2870		24.8		mg/Kg			11/07/21 04:23	5

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-10 (0-6)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45 Sample Depth: 0 - 6

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-1502-101

Matrix: Solid

_	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:28	1
Toluene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:28	1
Ethylbenzene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:28	1
m-Xylene & p-Xylene	<0.00399	U F2 F1	0.00399		mg/Kg		11/01/21 12:18	11/04/21 05:28	1
o-Xylene	<0.00200	U F2 F1	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:28	1
Xylenes, Total	<0.00399	U F2 F1	0.00399		mg/Kg		11/01/21 12:18	11/04/21 05:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:18	11/04/21 05:28	1
1,4-Difluorobenzene (Surr)	92		70 - 130				11/01/21 12:18	11/04/21 05:28	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
		O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/08/21 15:54	
Analyte Total TPH		Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <49.9 ge Organics (Di	Qualifier U		MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Ranq Analyte	Result <49.9 ge Organics (Di	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg		<u> </u>	11/08/21 15:54	1 Dil Fac
Analyte	Result <49.9 ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg		Prepared	11/08/21 15:54 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier U *1	49.9		mg/Kg		Prepared	11/08/21 15:54 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U *1	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 11:05 11/04/21 11:05	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U RO) (GC) Qualifier U *1	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 11:05	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U *1 U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 11:05 11/04/21 11:05	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U *1 U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15 11/03/21 13:15	Analyzed 11/04/21 11:05 11/04/21 11:05 11/04/21 11:05	Dil Face 1 1 1 Dil Face
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U RO) (GC) Qualifier U *1 U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared	Analyzed 11/04/21 11:05 11/04/21 11:05 11/04/21 11:05 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U RO) (GC) Qualifier U *1 U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	Analyzed 11/04/21 11:05 11/04/21 11:05 11/04/21 11:05 Analyzed 11/04/21 11:05	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U RO) (GC) Qualifier U *1 U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	Analyzed 11/04/21 11:05 11/04/21 11:05 11/04/21 11:05 Analyzed 11/04/21 11:05	Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: SW-11 (0-6)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45 Sample Depth: 0 - 6

REMOVED FROM **ANALYSIS TABLE** Lab Sample ID: 890-1502-102

Matrix: Solid

[
Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:49	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:49	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:49	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:18	11/04/21 05:49	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 05:49	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:18	11/04/21 05:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				11/01/21 12:18	11/04/21 05:49	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-11 (0-6)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45 Sample Depth: 0 - 6

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-1502-102

Matrix: Solid

Method: 8021B - Volatile Organic	Compounds (GC) (Conti	nued)						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	88		70 - 130				11/01/21 12:18	11/04/21 05:49	
- Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:40	
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	
- Method: 8015B NM - Diesel Rang	ge Organics (Di	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 12:11	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 12:11	
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 12:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	106		70 - 130				11/03/21 13:15	11/04/21 12:11	
o-Terphenyl	104		70 - 130				11/03/21 13:15	11/04/21 12:11	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1060		4.99		mg/Kg			11/08/21 09:36	-

Client Sample ID: SW-12 (10) Lab Sample ID: 890-1502-103 **Matrix: Solid**

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:09	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:09	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:09	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 06:09	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:09	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 06:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	140	S1+	70 - 130				11/01/21 12:18	11/04/21 06:09	1
1,4-Difluorobenzene (Surr)	113		70 - 130				11/01/21 12:18	11/04/21 06:09	1
- Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
- Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0		mg/Kg			11/08/21 15:54	

Eurofins Xenco, Carlsbad

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-12 (10) Lab Sample ID: 890-1502-103

Matrix: Solid

Date Received: 10/29/21 12:45

Date Collected: 10/26/21 00:00

Sample Depth: 10

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0		mg/Kg		11/03/21 13:15	11/04/21 12:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 12:32	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 12:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				11/03/21 13:15	11/04/21 12:32	
o-Terphenyl	98		70 - 130				11/03/21 13:15	11/04/21 12:32	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1080		4.95		mg/Kg			11/08/21 09:46	1

Lab Sample ID: 890-1502-104 Client Sample ID: SW-13 (15) **Matrix: Solid**

Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 06:29	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 06:29	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 06:29	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:18	11/04/21 06:29	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 06:29	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:18	11/04/21 06:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				11/01/21 12:18	11/04/21 06:29	1
1,4-Difluorobenzene (Surr)	110		70 - 130				11/01/21 12:18	11/04/21 06:29	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	96.1		50.0		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1	50.0		mg/Kg		11/03/21 13:15	11/04/21 12:55	1
Diesel Range Organics (Over C10-C28)	96.1		50.0		mg/Kg		11/03/21 13:15	11/04/21 12:55	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 12:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				11/03/21 13:15	11/04/21 12:55	1
o-Terphenyl	83		70 ₋ 130				11/03/21 13:15	11/04/21 12:55	1

Lab Sample ID: 890-1502-104

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-13 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1840		24.9		mg/Kg			11/08/21 09:57	5

Client Sample ID: SW-14 (15)

Date Collected: 10/26/21 00:00

Lab Sample ID: 890-1502-105

Matrix: Solid

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:50	
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:50	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:50	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 06:50	
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 06:50	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 06:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	135	S1+	70 - 130				11/01/21 12:18	11/04/21 06:50	
1,4-Difluorobenzene (Surr)	108		70 - 130				11/01/21 12:18	11/04/21 06:50	
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	
•	•	, ,							
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
•	•	, ,	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/08/21 15:54	Dil Fa
Analyte Total TPH	Result 56.3	Qualifier RO) (GC)	49.8		mg/Kg		Prepared	11/08/21 15:54	
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result 56.3 ge Organics (DI Result	Qualifier RO) (GC) Qualifier	49.8 RL		mg/Kg	<u>D</u>	Prepared	11/08/21 15:54 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result 56.3	Qualifier RO) (GC) Qualifier	49.8		mg/Kg			11/08/21 15:54	
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 56.3 ge Organics (DI Result	Qualifier RO) (GC) Qualifier	49.8 RL		mg/Kg		Prepared	11/08/21 15:54 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 56.3 ge Organics (Di Result <49.8	Qualifier RO) (GC) Qualifier U*1	49.8 RL 49.8		mg/Kg Unit mg/Kg		Prepared 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 13:16	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier RO) (GC) Qualifier U*1	49.8 RL 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 13:16 11/04/21 13:16	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 56.3 ge Organics (Di Result <49.8 56.3 <49.8	Qualifier RO) (GC) Qualifier U*1	49.8 RL 49.8 49.8 49.8		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15 11/03/21 13:15	Analyzed 11/04/21 13:16 11/04/21 13:16 11/04/21 13:16	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier RO) (GC) Qualifier U*1	49.8 RL 49.8 49.8 49.8 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared	Analyzed 11/04/21 13:16 11/04/21 13:16 11/04/21 13:16 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier RO) (GC) Qualifier U*1 U Qualifier	49.8 49.8 49.8 49.8 49.8 49.8 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	Analyzed 11/04/21 13:16 11/04/21 13:16 11/04/21 13:16 Analyzed 11/04/21 13:16	Dil Fa

11/08/21 10:07

5.00

mg/Kg

185

9

3

4

6

9

11 10

3

-

Chloride

Lab Sample ID: 890-1502-106

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-15 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:10	
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:10	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:10	
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 12:18	11/04/21 07:10	
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:10	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 12:18	11/04/21 07:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	85		70 - 130				11/01/21 12:18	11/04/21 07:10	
1,4-Difluorobenzene (Surr)	57	S1-	70 - 130				11/01/21 12:18	11/04/21 07:10	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:40	
Total TPH	<50.0	U	50.0		mg/Kg			11/08/21 15:54	
· ·									
Method: 8015B NM - Diesel Rang		Qualifier	DI	MDI	l lmi4	_	Duamanad	Amalumad	D:: F-
Analyte				MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	0 "1	50.0		mg/Kg		11/03/21 13:15	11/04/21 13:38	
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 13:38	
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 13:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	102		70 - 130				11/03/21 13:15	11/04/21 13:38	
o-Terphenyl	100		70 - 130				11/03/21 13:15	11/04/21 13:38	
Method: 300.0 - Anions, Ion Chro	0								
Analyte	Result	Qualifier	RL	MDL	mg/Kg	D	Prepared	Analyzed 11/08/21 10:39	Dil Fa

Client Sample ID: SW-16 (15)

Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:31	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:31	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:31	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/01/21 12:18	11/04/21 07:31	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:31	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/01/21 12:18	11/04/21 07:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				11/01/21 12:18	11/04/21 07:31	

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-107

Matrix: Solid

Lab Sample ID: 890-1502-107

11/03/21 13:15 11/04/21 13:59

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-16 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Compound	s (GC) (Continued)
---	--------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	108	70 - 130	11/01/21 12:18	11/04/21 07:31	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) ((GC)
mothod: ou for this Bloods stange organico (Bito)	,,

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg				11/08/21 15:54	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U *1	49.8		mg/Kg		11/03/21 13:15	11/04/21 13:59	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		11/03/21 13:15	11/04/21 13:59	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/03/21 13:15	11/04/21 13:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				11/03/21 13:15	11/04/21 13:59	1

1-Chlorooctane	106	70 - 130
o-Terphenyl	105	70 - 130

Method: 300.0 - Anions, Ion Chron	matography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Chloride	1170	4.96	mg/Kg	11/08/21 10:49
Client Sample ID: SW-17 (15)				Lab Sample ID: 890-1502-108

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Compounds (GC)

motification of game	, , , , , , , , , , , , , , , , , , , ,	()							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:51	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:51	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:18	11/04/21 07:51	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 07:51	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:18	11/04/21 07:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				11/01/21 12:18	11/04/21 07:51	1
1,4-Difluorobenzene (Surr)	105		70 - 130				11/01/21 12:18	11/04/21 07:51	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		ma/Ka			11/09/21 10:40	1

	Method: 8015 NM -	- Diesel Range	Organics	(DRO)	(GC)
--	-------------------	----------------	----------	-------	------

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	55.1	50.0	mg/Kg			11/08/21 15:54	1

Eurofins Xenco, Carlsbad

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-17 (15)

Lab Sample ID: 890-1502-108 Matrix: Solid

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0		mg/Kg		11/03/21 13:15	11/04/21 14:20	1
(GRO)-C6-C10									
Diesel Range Organics (Over	55.1		50.0		mg/Kg		11/03/21 13:15	11/04/21 14:20	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 14:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				11/03/21 13:15	11/04/21 14:20	1
o-Terphenyl	97		70 - 130				11/03/21 13:15	11/04/21 14:20	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2270		25.2		mg/Kg			11/08/21 11:00	5

Client Sample ID: SW-18 (15) Lab Sample ID: 890-1502-109 **Matrix: Solid**

Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 08:11	1
Toluene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 08:11	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 08:11	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 08:11	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 08:11	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 08:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				11/01/21 12:18	11/04/21 08:11	1
1,4-Difluorobenzene (Surr)	101		70 - 130				11/01/21 12:18	11/04/21 08:11	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 14:41	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 14:41	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 14:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				11/03/21 13:15	11/04/21 14:41	1
o-Terphenyl	103		70 ₋ 130				11/03/21 13:15	11/04/21 14:41	1

Eurofins Xenco, Carlsbad

11/10/2021

Lab Sample ID: 890-1502-109

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-18 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	826		4.98		mg/Kg			11/08/21 11:10	1

Client Sample ID: SW-19 (15)

Date Collected: 10/26/21 00:00

Lab Sample ID: 890-1502-110

Matrix: Solid

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 08:32	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 08:32	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 08:32	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:18	11/04/21 08:32	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 08:32	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:18	11/04/21 08:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				11/01/21 12:18	11/04/21 08:32	1
1,4-Difluorobenzene (Surr)	83		70 - 130				11/01/21 12:18	11/04/21 08:32	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/09/21 10:40	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 15:03	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 15:03	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 15:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				11/03/21 13:15	11/04/21 15:03	1
o-Terphenyl	103		70 ₋ 130				11/03/21 13:15	11/04/21 15:03	1

Eurofins Xenco, Carlsbad

Analyzed 11/08/21 11:20

RL

4.95

MDL Unit

mg/Kg

D

Prepared

Dil Fac

Analyte

Chloride

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

Lab Sample ID: 890-1502-111

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-20 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 10:21	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 10:21	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 10:21	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/21 12:18	11/04/21 10:21	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 10:21	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/21 12:18	11/04/21 10:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				11/01/21 12:18	11/04/21 10:21	1
1,4-Difluorobenzene (Surr)	101		70 - 130				11/01/21 12:18	11/04/21 10:21	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/09/21 10:40	1
Mothed: 2045 NM Discal Danse	Overenies (DD	0) (00)							
Method: 8015 NM - Diesel Range Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	1
Total TPH	<49.9	U	49.9		mg/Kg	<u> </u>		11/08/21 15:54	1
Total TPH : Method: 8015B NM - Diesel Ran			49.9		mg/Kg			11/08/21 15:54	1
• •	ge Organics (D		49.9	MDL		D	Prepared	11/08/21 15:54 Analyzed	
: Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC) Qualifier		MDL		D	Prepared 11/03/21 13:15		Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier U *1	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <49.9	RO) (GC) Qualifier U*1	RL	MDL	Unit mg/Kg	<u>D</u>	11/03/21 13:15	Analyzed 11/04/21 15:46	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.9	RO) (GC) Qualifier U *1 U	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15	Analyzed 11/04/21 15:46 11/04/21 15:46	
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9 <49.9	RO) (GC) Qualifier U *1 U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15	Analyzed 11/04/21 15:46 11/04/21 15:46 11/04/21 15:46	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U *1 U	RL 49.9 49.9 49.9 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared	Analyzed 11/04/21 15:46 11/04/21 15:46 11/04/21 15:46 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 104 105	RO) (GC) Qualifier U*1 U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	Analyzed 11/04/21 15:46 11/04/21 15:46 11/04/21 15:46 Analyzed 11/04/21 15:46	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 104 105 omatography -	RO) (GC) Qualifier U*1 U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	D	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	Analyzed 11/04/21 15:46 11/04/21 15:46 11/04/21 15:46 Analyzed 11/04/21 15:46	Dil Fac

Client Sample ID: SW-21 (15)

Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 10:41	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 10:41	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 10:41	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 10:41	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 10:41	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 10:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				11/01/21 12:18	11/04/21 10:41	

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-112

3

_

0

10

12

13

14

1/10/202

Matrix: Solid

Lab Sample ID: 890-1502-112

11/03/21 13:15

11/04/21 16:07

Lab Sample ID: 890-1502-113

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-21 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Con	noounds (GC)	(Continued)
motifical collision of gains con	ipodiido (OO)	(Continuou,

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	111		70 - 130	11/01/21 12:18	11/04/21 10:41	1

Method: Tot	al BTEX - Tota	al BTEX Ca	alculation
mounou. Tot	u. D. L		aiouiutioii

Analyte	Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			_	11/09/21 10:40	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	l Analyzed	Dil Fac
Total TPH	154		49.9		mg/Kg			11/08/21 15:54	1

Method: 8015R	NM - Diesel Range	Organics (DRO) (GC)
Mictiloa. 0010D	Titili - Dieser Italige	organics (bito) (co)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:07	1
Diesel Range Organics (Over C10-C28)	154		49.9		mg/Kg		11/03/21 13:15	11/04/21 16:07	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1-Chlorooctane	107	70 - 130
o-Terphenyl	107	70 - 130

o-Terphenyl	107	70 - 130	11/03/21 13:15	11/04/21 16:07	1	1
Method: 300.0 - Anions, Ion Chromatograp	hy - Soluble					

	Analyte	Result Qualifier	KL	MDL Unit	U	Prepared	Analyzeu	DII Fac
L	Chloride	5770	50.1	mg/Kg			11/08/21 12:02	10

Client Sample ID: SW-22 (15)

Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Organic Co	mnolinas ((=(.)

motification colling		()							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:01	1
Toluene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:01	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:01	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 11:01	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:01	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 11:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				11/01/21 12:18	11/04/21 11:01	1
1,4-Difluorobenzene (Surr)	97		70 - 130				11/01/21 12:18	11/04/21 11:01	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		ma/Ka			11/09/21 10:58	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/08/21 15:54	1

Lab Sample ID: 890-1502-113

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-22 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:29	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:29	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				11/03/21 13:15	11/04/21 16:29	1
o-Terphenyl	108		70 - 130				11/03/21 13:15	11/04/21 16:29	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SW-23 (15) Lab Sample ID: 890-1502-114 Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 11:22	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 11:22	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 11:22	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:18	11/04/21 11:22	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 11:22	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:18	11/04/21 11:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				11/01/21 12:18	11/04/21 11:22	1
1,4-Difluorobenzene (Surr)	104		70 - 130				11/01/21 12:18	11/04/21 11:22	1
Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/09/21 10:58	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:51	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:51	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 16:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				11/03/21 13:15	11/04/21 16:51	1
o-Terphenyl	101		70 ₋ 130				11/03/21 13:15	11/04/21 16:51	1

Eurofins Xenco, Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Sample ID: 890-1502-114

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-23 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	1070		4.96		mg/Kg			11/08/21 12:43	1

Client Sample ID: SW-24 (15)

Date Collected: 10/26/21 00:00

Lab Sample ID: 890-1502-115

Matrix: Solid

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:42	1
Toluene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:42	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 11:42	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/01/21 12:18	11/04/21 11:42	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/01/21 12:18	11/04/21 11:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				11/01/21 12:18	11/04/21 11:42	1
1,4-Difluorobenzene (Surr)	114		70 - 130				11/01/21 12:18	11/04/21 11:42	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:58	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1	50.0		mg/Kg		11/03/21 13:15	11/04/21 17:14	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 17:14	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 13:15	11/04/21 17:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				11/03/21 13:15	11/04/21 17:14	1
o-Terphenyl	106		70 - 130				11/03/21 13:15	11/04/21 17:14	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-1502-116

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-25 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 12:03	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 12:03	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 12:03	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:18	11/04/21 12:03	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:18	11/04/21 12:03	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:18	11/04/21 12:03	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130				11/01/21 12:18	11/04/21 12:03	1
1,4-Difluorobenzene (Surr)	108		70 - 130				11/01/21 12:18	11/04/21 12:03	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			11/09/21 10:58	1
Analyte Total TPH		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
IOIAL LED	<49.8	U	49.8		ma/Ka				
- -	<49.8		49.8		mg/Kg		<u> </u>	11/08/21 15:54	
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						11/08/21 15:54	1
Method: 8015B NM - Diesel Rang Analyte	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared 41/02/04 42/45	11/08/21 15:54 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		D	Prepared 11/03/21 13:15	11/08/21 15:54	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <49.8	RO) (GC) Qualifier U *1	RL	MDL	Unit mg/Kg	<u>D</u>	11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 17:35	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier U *1	RL 49.8	MDL	Unit	<u>D</u>		11/08/21 15:54 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <49.8	RO) (GC) Qualifier U*1	RL 49.8	MDL	Unit mg/Kg	<u>D</u>	11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 17:35	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.8	RO) (GC) Qualifier U *1 U	RL 49.8	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 17:35 11/04/21 17:35	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.8 <49.8	RO) (GC) Qualifier U *1 U	RL 49.8 49.8 49.8	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15	Analyzed 11/04/21 17:35 11/04/21 17:35 11/04/21 17:35	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.8 <49.8 <49.8	RO) (GC) Qualifier U *1 U	## ## ## ## ## ## ## ## ## ## ## ## ##	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared	11/08/21 15:54 Analyzed 11/04/21 17:35 11/04/21 17:35 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.8 <49.8 <49.8 **Recovery 104 105 omatography -	RO) (GC) Qualifier U*1 U Qualifier	RL 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 17:35 11/04/21 17:35 Analyzed 11/04/21 17:35	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.8 <49.8 <49.8 **Recovery 104 105 omatography -	RO) (GC) Qualifier U*1 U Qualifier	RL 49.8 49.8 49.8 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/03/21 13:15 11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	11/08/21 15:54 Analyzed 11/04/21 17:35 11/04/21 17:35 Analyzed 11/04/21 17:35	Dil Fac

Client Sample ID: SW-26 (15)

Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 12:23	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 12:23	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 12:23	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/01/21 12:18	11/04/21 12:23	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/01/21 12:18	11/04/21 12:23	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/01/21 12:18	11/04/21 12:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/01/21 12:18	11/04/21 12:23	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-117

2

3

5

7

10

12

13

rico, Carisbao

Matrix: Solid

Lab Sample ID: 890-1502-117

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-26 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	96	70 - 130	11/01/21 12:18	11/04/21 12:23	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396	mg/Kg			11/09/21 10:58	1

Method: 8015 NM - Die:	sel Range Organics (DRO) (GC)				
Analyte	Popult Qualifier	DI	MDI Unit	n	Dronar

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			11/08/21 15:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 17:56	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 17:56	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 17:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130	11/03/21 13:15	11/04/21 17:56	1
o-Terphenyl	103		70 - 130	11/03/21 13:15	11/04/21 17:56	1

Method: 300.0 - Anions, Ion Chroma	tography - Soluble

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	447	4.95		mg/Kg			11/08/21 13:15	1

Client Sample ID: SW-27 (15)

Lab Sample ID: 890-1502-118

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

- 1	Method: 8021B -	Valatila	O	Campaga	/CC
- 1	- Method: Auzib	· voiatile	Organic	Compounds	1131.1

		()							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00206		0.00201		mg/Kg		11/01/21 12:18	11/04/21 12:44	1
Toluene	0.00205		0.00201		mg/Kg		11/01/21 12:18	11/04/21 12:44	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 12:44	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/21 12:18	11/04/21 12:44	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/21 12:18	11/04/21 12:44	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/21 12:18	11/04/21 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				11/01/21 12:18	11/04/21 12:44	1
1,4-Difluorobenzene (Surr)	103		70 - 130				11/01/21 12:18	11/04/21 12:44	1

L	1,4-Dilluoroberizerie (Surr)	103	70 - 730	11/01/21 12.10	11/04/21 12
r	_				
	Method: Total BTEX - Total BTEX Calc	ulation			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00411		0.00402		mg/Kg			11/09/21 10:58	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			11/08/21 15:54	1

Eurofins Xenco, Carlsbad

2

3

7

0

10

13

14

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-27 (15)

Lab Sample ID: 890-1502-118 Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 18:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 18:17	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				11/03/21 13:15	11/04/21 18:17	1
o-Terphenyl	97		70 - 130				11/03/21 13:15	11/04/21 18:17	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9970		50.0		mg/Kg			11/08/21 13:25	10

Client Sample ID: SW-28 (15) Lab Sample ID: 890-1502-119 Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 13:04	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 13:04	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 13:04	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/01/21 12:18	11/04/21 13:04	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 12:18	11/04/21 13:04	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/01/21 12:18	11/04/21 13:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				11/01/21 12:18	11/04/21 13:04	1
1,4-Difluorobenzene (Surr)	107		70 - 130				11/01/21 12:18	11/04/21 13:04	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			11/09/21 10:58	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		11/03/21 13:15	11/04/21 18:39	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 18:39	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:15	11/04/21 18:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				11/03/21 13:15	11/04/21 18:39	1
o-Terphenyl	83		70 - 130				11/03/21 13:15	11/04/21 18:39	1

Lab Sample ID: 890-1502-119

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: SW-28 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Method: 300.0 - Anions, Ion Chron	natography - S	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3280		25.0		mg/Kg			11/08/21 13:36	5

Client Sample ID: SW-29 (15)

Date Collected: 10/26/21 00:00

Lab Sample ID: 890-1502-120

Matrix: Solid

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 03:36	
Toluene	< 0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 03:36	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 03:36	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/04/21 11:11	11/05/21 03:36	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/04/21 11:11	11/05/21 03:36	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/04/21 11:11	11/05/21 03:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	125		70 - 130				11/04/21 11:11	11/05/21 03:36	
1,4-Difluorobenzene (Surr)	215	S1+	70 - 130				11/04/21 11:11	11/05/21 03:36	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:58	•
Method: 8015 NM - Diesel Range	•	, ,				_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			11/08/21 15:54	•
Method: 8015B NM - Diesel Rang									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
									DII Fac
5 5	<49.8	U *1	49.8		mg/Kg		11/03/21 13:15	11/04/21 19:01	DII FAC
(GRO)-C6-C10 Diesel Range Organics (Over	<49.8 <49.8		49.8		mg/Kg mg/Kg		11/03/21 13:15 11/03/21 13:15		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U						11/04/21 19:01	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U U	49.8		mg/Kg		11/03/21 13:15	11/04/21 19:01	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	<49.8 <49.8	U U	49.8 49.8		mg/Kg		11/03/21 13:15 11/03/21 13:15	11/04/21 19:01 11/04/21 19:01 11/04/21 19:01	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.8 <49.8 %Recovery	U U	49.8 49.8 <i>Limits</i>		mg/Kg		11/03/21 13:15 11/03/21 13:15 Prepared	11/04/21 19:01 11/04/21 19:01 11/04/21 19:01 Analyzed	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.8 <49.8 %Recovery 103 99	U U Qualifier	49.8 49.8 Limits 70 - 130		mg/Kg		11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	11/04/21 19:01 11/04/21 19:01 11/04/21 19:01 Analyzed 11/04/21 19:01	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.8 <49.8 **Recovery 103 99 pomatography -	U U Qualifier	49.8 49.8 Limits 70 - 130	MDL	mg/Kg	D	11/03/21 13:15 11/03/21 13:15 Prepared 11/03/21 13:15	11/04/21 19:01 11/04/21 19:01 11/04/21 19:01 Analyzed 11/04/21 19:01	Dil Fa

Lab Sample ID: 890-1502-121

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-30 (RS) (6)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U F1	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:40	1
Toluene	<0.00200	U F1	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:40	1
Ethylbenzene	<0.00200	U F1	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:40	1
m-Xylene & p-Xylene	<0.00399	U F1	0.00399		mg/Kg		11/01/21 11:07	11/01/21 23:40	1
o-Xylene	<0.00200	U F1	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:40	1
Xylenes, Total	<0.00399	U F1	0.00399		mg/Kg		11/01/21 11:07	11/01/21 23:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130				11/01/21 11:07	11/01/21 23:40	1
1,4-Difluorobenzene (Surr)	96		70 - 130				11/01/21 11:07	11/01/21 23:40	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total TPH			RL 49.9	MDL	Unit mg/Kg	D	Prepared	Analyzed 11/08/21 15:54	Dil Fac
: Method: 8015B NM - Diesel Rang	ne Organics (D	RO) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/03/21 13:58	11/04/21 10:53	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/03/21 13:58	11/04/21 10:53	1
Oll Range Organics (Over C28-C36)			49.9		mg/Kg		11/03/21 13:58	44/04/04 40:50	
Oil Range Organics (Over C26-C30)	<49.9	U	49.9		mg/ixg		11/03/21 13.30	11/04/21 10:53	1
,	<49.9%Recovery		Limits		mg/rtg		Prepared	Analyzed	1 Dil Fac
Surrogate 1-Chlorooctane					mg/Kg				Dil Fac
Surrogate	%Recovery		Limits		mgritg		Prepared	Analyzed	Dil Fac
Surrogate 1-Chlorooctane	%Recovery 90 108	Qualifier	Limits 70 - 130		mg/kg		Prepared 11/03/21 13:58	Analyzed 11/04/21 10:53	1 Dil Fac 1
Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 90 108 pmatography -	Qualifier	Limits 70 - 130	MDL		<u>D</u>	Prepared 11/03/21 13:58	Analyzed 11/04/21 10:53	Dil Fac

Client Sample ID: SW-31 (RS) (4)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:07	11/02/21 00:00	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:07	11/02/21 00:00	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:07	11/02/21 00:00	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/01/21 11:07	11/02/21 00:00	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/21 11:07	11/02/21 00:00	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/01/21 11:07	11/02/21 00:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				11/01/21 11:07	11/02/21 00:00	1

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-122

Matrix: Solid

Lab Sample ID: 890-1502-122

Lab Sample ID: 890-1502-123

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-31 (RS) (4)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 4

Method: 8021B - Volatile Organic Compou	nds (GC) (Continued)
Welliou. 002 ID - Volatile Organic Compou	iius (OO) (Ooiitiiiu c u)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	95	70 - 130	11/01/21 11:07	11/02/21 00:00	1

Mothod	Total BTEX	Total B	TEV Ca	loulation
wetnoa:	TOTAL BIEN	Total 🗖		liculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			11/09/21 10:58	1

ı		
ı	Method: 8015 NM - Diesel Range Organics (DRO)	(CC)
ı	Method. 0013 NM - Diesel Kange Organics (DKO)	(00)

Analyte	Result	Qualifier	RL	MDL	Unit	D	ı	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg				11/08/21 15:54	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		11/03/21 13:58	11/04/21 11:55	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		11/03/21 13:58	11/04/21 11:55	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/03/21 13:58	11/04/21 11:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

- carregate	,	~~~~~			, y = 0 u	
1-Chlorooctane	86		70 - 130	11/03/21 13:58	11/04/21 11:55	1
o-Terphenyl	93		70 - 130	11/03/21 13:58	11/04/21 11:55	1

Method: 300.0 - Anions, Ion Chromatography - Soluble	Method: 300.0) - Anions, ion	Chromatography - Soluble
--	---------------	-----------------	--------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Р	repared	Analyzed	Dil Fac	
Chloride	109		4.99		mg/Kg				11/09/21 14:53	1	

Client Sample ID: SW-32 (RS) (6)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 6

Mathadi 0004D	Valatile Overen	ic Compounds (GC)
Memoo: Auzib	- voianie Urdan	ic Compounds (GC)

		()							
Analyte	Result	Qualifier	RL	MDL Unit	t	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/l	Kg	_	11/01/21 11:07	11/02/21 00:21	1
Toluene	< 0.00199	U	0.00199	mg/l	Kg		11/01/21 11:07	11/02/21 00:21	1
Ethylbenzene	< 0.00199	U	0.00199	mg/l	Kg		11/01/21 11:07	11/02/21 00:21	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/l	Kg		11/01/21 11:07	11/02/21 00:21	1
o-Xylene	< 0.00199	U	0.00199	mg/l	Kg		11/01/21 11:07	11/02/21 00:21	1
Xylenes, Total	<0.00398	U	0.00398	mg/l	Kg		11/01/21 11:07	11/02/21 00:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	151	S1+	70 - 130				11/01/21 11:07	11/02/21 00:21	1
1,4-Difluorobenzene (Surr)	78		70 - 130				11/01/21 11:07	11/02/21 00:21	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/09/21 10:58	1

Analyte	•	•	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH			<50.0	U	50.0		mg/Kg			11/08/21 15:54	1

Matrix: Solid

Lab Sample ID: 890-1502-123

Lab Sample ID: 890-1502-124

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-32 (RS) (6)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 12:15	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 12:15	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 12:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				11/03/21 13:58	11/04/21 12:15	1
o-Terphenyl	83		70 - 130				11/03/21 13:58	11/04/21 12:15	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyto									

Client Sample ID: SW-33 (RS) (8)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/02/21 00:41	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/02/21 00:41	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/02/21 00:41	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/01/21 11:07	11/02/21 00:41	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/02/21 00:41	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/01/21 11:07	11/02/21 00:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	142	S1+	70 - 130				11/01/21 11:07	11/02/21 00:41	1
1,4-Difluorobenzene (Surr)	98		70 - 130				11/01/21 11:07	11/02/21 00:41	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/09/21 10:58	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/08/21 15:54	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 12:36	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 12:36	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 12:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130				11/03/21 13:58	11/04/21 12:36	1
o-Terphenyl	80		70 ₋ 130				11/03/21 13:58	11/04/21 12:36	1

Eurofins Xenco, Carlsbad

2

2

4

_

ŏ

10

12

13

Released to Imaging: 9/1/2023 2:07:08 PM

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-33 (RS) (8) Lab Sample ID: 890-1502-124 Matrix: Solid

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Sample Depth: 8

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	831	F1	5.04		mg/Kg			11/09/21 15:08	1

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC)

latrix: Solid				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-1502-1	BH-1 (6)	118	73	
890-1502-1 MS	BH-1 (6)	111	105	
890-1502-1 MSD	BH-1 (6)	109	103	
390-1502-2	BH-2 (6)	120	98	
890-1502-3	BH-3 (6)	122	70	
390-1502-4	BH-4 (6)	124	67 S1-	
390-1502-5	BH-5 (6)	140 S1+	97	
390-1502-6	BH-6 (6)	136 S1+	104	
390-1502-7	BH-7 (6)	123	97	
390-1502-8	BH-8 (6)	146 S1+	69 S1-	
390-1502-9	BH-9 (6)	130	93	
890-1502-10	BH-10 (6)	136 S1+	105	
390-1502-11	BH-11 (6)	112	76	
390-1502-12	BH-12 (6)	137 S1+	98	
390-1502-13	BH-13 (6)	120	96	
390-1502-14	BH-14 (6)	130	95	
390-1502-15	BH-15 (6)	137 S1+	98	
390-1502-16	BH-16 (6)	110	82	
390-1502-17	BH-17 (6)	123	98	
390-1502-18	BH-18 (6)	127	98	
390-1502-19	BH-19 (6)	117	81	
390-1502-20	BH-20 (6)	113	94	
90-1502-21	BH-21 (6)	99	72	
890-1502-21 MS	BH-21 (6)	133 S1+	111	
390-1502-21 MSD	BH-21 (6)	113	104	
390-1502-22	BH-22 (6)	130	98	
390-1502-23	BH-23 (6)	116	100	
390-1502-24	BH-24 (6)	126	96	
390-1502-25	BH-25 (15)	122	97	
390-1502-26	BH-26 (15)	123	107	
390-1502-27	BH-27 (15)	112	85	
390-1502-28	BH-28 (15)	121	104	
390-1502-29	BH-29 (15)	123	91	
390-1502-30	BH-30 (15)	71	70	
390-1502-31	BH-31 (15)	114	111	
390-1502-32	BH-32 (15)	86	93	
390-1502-33	BH-33 (15)	132 S1+	108	
390-1502-34	BH-34 (15)	124	100	
390-1502-35	BH-35 (15)	127	110	
390-1502-36	BH-36 (15)	128	109	
390-1502-37	BH-37 (15)	117	101	
390-1502-38	BH-38 (15)	129	118	
390-1502-39	BH-39 (15)	117	100	
390-1502-40	BH-40 (15)	115	100	
890-1502-41	BH-41 (15)	132 S1+	110	
390-1502-41 MS	BH-41 (15)	66 S1-	179 S1+	
390-1502-41 MSD	BH-41 (15)	70	216 S1+	
390-1502-41 W3D	BH-42 (15)	86	198 S1+	
890-1502-43	BH-43 (15)	88	215 S1+	

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

Matrix: Solid				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-1502-44	BH-44 (15)	99	211 S1+	
890-1502-45	BH-45 (15)	88	203 S1+	
890-1502-46	BH-46 (15)	102	226 S1+	
890-1502-47	BH-47 (15)	86	211 S1+	
890-1502-48	BH-48 (15)	94	220 S1+	
890-1502-49	BH-49 (15)	91	17 S1-	
890-1502-50	BH-50 (15)	11591	65 S1-	
	,	S1+		
890-1502-51	BH-51 (15)	112	199 S1+	
890-1502-52	BH-52 (15)	105	233 S1+	
890-1502-53	BH-53 (15)	114	99	
890-1502-53 MS	BH-53 (15)	124	100	
890-1502-53 MSD	BH-53 (15)	109	96	
890-1502-54	BH-54 (15)	90	202 S1+	
890-1502-55	BH-55 (15)	88	191 S1+	
890-1502-56	BH-56 (15)	116	115	
890-1502-57	BH-57 (15)	96	221 S1+	
890-1502-58	BH-58 (15)	112	243 S1+	
890-1502-59	BH-59 (15)	111	243 S1+	
890-1502-60	BH-60 (15)	13 S1-	230 S1+	
890-1502-61	BH-61 (15)	115	99	
890-1502-61 MS	BH-61 (15)	131 S1+	110	
890-1502-61 MSD	BH-61 (15)	134 S1+	100	
890-1502-62	BH-62 (15)	118	103	
890-1502-63	BH-63 (15)	124	102	
890-1502-64	BH-64 (15)	120	99	
890-1502-65	BH-65 (15)	134 S1+	101	
890-1502-66	BH-66 (15)	95	72	
890-1502-67	BH-67 (15)	115	100	
890-1502-68	BH-68 (15)	125	109	
890-1502-69	BH-69 (15)	129	103	
890-1502-70	BH-70 (15)	130	102	
890-1502-71	BH-71 (15)	116	97	
890-1502-72	BH-72 (15)	122	103	
890-1502-73	BH-73 (15)	130	102	
890-1502-74	BH-74 (15)	121	98	
890-1502-75	BH-75 (15)	88	79	
890-1502-76	BH-76 (15)	119	104	
890-1502-77	BH-77 (15)	82	71	
890-1502-78	BH-78 (15)	118	99	
890-1502-79	BH-79 (15)	129	104	
890-1502-80	BH-80 (15)	116	106	
890-1502-81	BH-81 (15)	80	69 S1-	
890-1502-81 MS	BH-81 (15)	118	103	
890-1502-81 MSD	BH-81 (15)	96	86	
890-1502-81 MSD	BH-82 (15)	105	83	
890-1502-83	BH-83 (15)	107	90	
890-1502-84	BH-84 (15)	126	101	
890-1502-64		114		
	BH-85 (15)		110	
890-1502-86	BH-86 (15)	115	100	

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-1502-87	BH-87 (15)	110	98	
0-1502-88	BH-88 (15)	128	101	
0-1502-89	BH-89 (15)	129	112	
90-1502-90	BH90 (RS) (6)	128	126	
0-1502-91	BH-91 (RS) (6)	114	111	
0-1502-92	SW-1 (0-6)	93	122	
90-1502-93	SW-2 (0-6)	108	74	
90-1502-94	SW-3 (0-6)	128	97	
90-1502-95	SW-4 (0-6)	133 S1+	105	
0-1502-96	SW-5 (0-6)	129	110	
0-1502-97	SW-6 (0-6)	112	98	
)-1502-98	SW-7 (0-6)	114	96	
0-1502-99	SW-8 (0-6)	119	104	
0-1502-100	SW-9 (0-6)	126	101	
-1502-101	SW-10 (0-6)	111	92	
-1502-101 MS	SW-10 (0-6)	123	99	
-1502-101 MSD	SW-10 (0-6)	123	101	
1502-101 MOD	SW-11 (0-6)	113	88	
-1502-102 -1502-103	SW-12 (10)	140 S1+	113	
-1502-103 -1502-104	SW-12 (10)	123	110	
-1502-10 4 -1502-105	• •	135 S1+	108	
	SW-14 (15)			
-1502-106	SW-15 (15)	85	57 S1-	
-1502-107	SW-16 (15)	129	108	
-1502-108	SW-17 (15)	122	105	
-1502-109	SW-18 (15)	118	101	
)-1502-110	SW-19 (15)	88	83	
-1502-111	SW-20 (15)	116	101	
-1502-112	SW-21 (15)	126	111	
-1502-113	SW-22 (15)	116	97	
-1502-114	SW-23 (15)	123	104	
-1502-115	SW-24 (15)	110	114	
1502-116	SW-25 (15)	134 S1+	108	
1502-117	SW-26 (15)	118	96	
1502-118	SW-27 (15)	121	103	
1502-119	SW-28 (15)	128	107	
-1502-120	SW-29 (15)	125	215 S1+	
-1502-121	SW-30 (RS) (6)	136 S1+	96	
-1502-121 MS	SW-30 (RS) (6)	122	97	
0-1502-121 MSD	SW-30 (RS) (6)	114	103	
)-1502-122	SW-31 (RS) (4)	109	95	
0-1502-123	SW-32 (RS) (6)	151 S1+	78	
)-1502-124	SW-33 (RS) (8)	142 S1+	98	
0-1502-12 4 0-1520-A-1-B MS	Matrix Spike	101	103	
)-1520-A-1-B MS)-1520-A-1-C MSD	Matrix Spike Duplicate	61 S1-	204 S1+	
	·			
S 880-11075/1-A	Lab Control Sample	113	101	
S 880-11076/1-A	Lab Control Sample	106	87	
S 880-11109/1-A	Lab Control Sample	113	103	
S 880-11111/1-A	Lab Control Sample	87	223 S1+	
880-11112/1-A	Lab Control Sample	112	103	

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Sample ID	Client Sample ID	(70-130)	(70-130)	
S 880-11114/1-A	Lab Control Sample	114	106	
S 880-11388/1-A	Lab Control Sample	129	85	
S 880-11445/1-A	Lab Control Sample	103	230 S1+	
880-11449/3	Lab Control Sample	94	190 S1+	
D 880-11075/2-A	Lab Control Sample Dup	107	106	
0 880-11076/2-A	Lab Control Sample Dup	108	97	
O 880-11109/2-A	Lab Control Sample Dup	128	103	
D 880-11112/2-A	Lab Control Sample Dup	121	106	
D 880-11113/2-A	Lab Control Sample Dup	116	107	
D 880-11114/2-A	Lab Control Sample Dup	112	107	
O 880-11388/2-A	Lab Control Sample Dup	105	102	
) 880-11445/2-A	Lab Control Sample Dup	82	234 S1+	
D 880-11449/4	Lab Control Sample Dup	95	198 S1+	
80-11021/5-A	Method Blank	106	101	
80-11075/5-A	Method Blank	120	97	
880-11076/5-A	Method Blank	115	93	
80-11109/5-A	Method Blank	120	106	
80-11111/5-A	Method Blank	58 S1-	189 S1+	
380-11112/5-A	Method Blank	117	106	
80-11113/5-A	Method Blank	117	107	
380-11114/5-A	Method Blank	116	105	
880-11207/5-A	Method Blank	107	71	
880-11258/5-A	Method Blank	54 S1-	182 S1+	
880-11388/5-A	Method Blank	96	99	
880-11445/5-A	Method Blank	65 S1-	196 S1+	
880-11449/8	Method Blank	63 S1-	187 S1+	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

-				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID			
LCSD 880-11111/2-A	Lab Control Sample Dup			
Surrogate Legend				
BFB = 4-Bromofluorobe	enzene (Surr)			
DFBZ = 1,4-Difluorober	nzene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-1502-1	BH-1 (6)	108	118	
890-1502-1 MS	BH-1 (6)	122	114	
890-1502-1 MSD	BH-1 (6)	114	109	

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	ОТРН1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-1502-2	BH-2 (6)	119	131 S1+	
390-1502-3	BH-3 (6)	105	117	
390-1502-4	BH-4 (6)	112	125	
990-1502-5	BH-5 (6)	104	117	
90-1502-6	BH-6 (6)	111	123	
90-1502-7	BH-7 (6)	103	115	
90-1502-8	BH-8 (6)	104	117	
90-1502-9	BH-9 (6)	111	122	
990-1502-9	BH-10 (6)	106	118	
390-1302-10 390-1502-11		109		
	BH-11 (6)		123	
90-1502-12	BH-12 (6)	104	112	
90-1502-13	BH-13 (6)	103	116	
90-1502-14	BH-14 (6)	102	113	
90-1502-15	BH-15 (6)	111	123	
90-1502-16	BH-16 (6)	100	113	
90-1502-17	BH-17 (6)	102	113	
90-1502-18	BH-18 (6)	100	107	
90-1502-19	BH-19 (6)	105	115	
90-1502-20	BH-20 (6)	9 S1-	10 S1-	
90-1502-21	BH-21 (6)	103	123	
90-1502-21 MS	BH-21 (6)	89	94	
90-1502-21 MSD	BH-21 (6)	94	101	
90-1502-22	BH-22 (6)	103	117	
90-1502-23	BH-23 (6)	92	106	
90-1502-24	BH-24 (6)	109	123	
90-1502-25	BH-25 (15)	107	122	
90-1502-26	BH-26 (15)	102	119	
90-1502-27	BH-27 (15)	105	120	
90-1502-28	BH-28 (15)	104	120	
90-1502-29	BH-29 (15)	109	128	
90-1502-30	BH-30 (15)	115	136 S1+	
90-1502-31	BH-31 (15)	105	123	
90-1502-32	BH-32 (15)	123	150 S1+	
90-1502-33	BH-33 (15)	112	133 S1+	
90-1502-34	BH-34 (15)	124	152 S1+	
90-1502-35	BH-35 (15)	107	132 S1+	
90-1502-36	BH-36 (15)	95	110	
90-1502-37	BH-37 (15)	95	112	
90-1502-38	BH-38 (15)	95	117	
90-1502-39	BH-39 (15)	94	117	
90-1502-40	BH-40 (15)	91	110	
90-1502-41	BH-41 (15)	96	95	
90-1502-41 MS	BH-41 (15)	95	87	
90-1502-41 MSD	BH-41 (15)	96	87	
90-1502-41 M3D 90-1502-42				
	BH-42 (15)	101	105	
90-1502-43	BH-43 (15)	94	93	
90-1502-44	BH-44 (15)	110	116	
90-1502-45	BH-45 (15)	107	112	
90-1502-46	BH-46 (15)	106	107	

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid				Prep Type: Total/N/
				Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID 890-1502-48	Client Sample ID	(70-130) 111	(70-130)	
	BH-48 (15)		111	
890-1502-49	BH-49 (15)	101	106	
890-1502-50	BH-50 (15)	114	119	
890-1502-51	BH-51 (15)	101	106	
890-1502-52	BH-52 (15)	101	103	
890-1502-53	BH-53 (15)	96	98	
890-1502-54	BH-54 (15)	99	100	
890-1502-55	BH-55 (15)	99	99	
890-1502-56	BH-56 (15)	106	113	
890-1502-57	BH-57 (15)	99	102	
890-1502-58	BH-58 (15)	93	93	
890-1502-59	BH-59 (15)	110	110	
890-1502-60	BH-60 (15)	88	87	
890-1502-61	BH-61 (15)	50 S1-	34 S1-	
890-1502-61 MS	BH-61 (15)	41 S1-	31 S1-	
890-1502-61 MSD	BH-61 (15)	75	61 S1-	
890-1502-62	BH-62 (15)	93	90	
890-1502-63	BH-63 (15)	95	95	
890-1502-64	BH-64 (15)	97	103	
890-1502-65	BH-65 (15)	99	107	
890-1502-66	BH-66 (15)	102	112	
390-1502-67	BH-67 (15)	102	110	
890-1502-68	BH-68 (15)	97	98	
890-1502-69	BH-69 (15)	109	114	
890-1502-70	BH-70 (15)	97	103	
890-1502-71	BH-71 (15)	99	107	
890-1502-72	BH-72 (15)	115	128	
390-1502-73	BH-73 (15)	90	91	
390-1502-74	BH-74 (15)	98	102	
890-1502-75	BH-75 (15)	100	109	
890-1502-76	BH-76 (15)	93	96	
890-1502-77	BH-77 (15)	99	105	
890-1502-78	BH-78 (15)	108	112	
890-1502-79	BH-79 (15)	103	103	
890-1502-80	BH-80 (15)	109	122	
890-1502-81	BH-81 (15)	91	101	
890-1502-81 MS	BH-81 (15)	95	99	
890-1502-81 MSD	BH-81 (15)	95	97	
890-1502-82	BH-82 (15)	89	102	
890-1502-83	BH-83 (15)	91	105	
890-1502-84		94		
	BH-84 (15)		105	
890-1502-85	BH-85 (15)	93	106	
890-1502-86	BH-86 (15)	93	110	
890-1502-87	BH-87 (15)	93	110	
890-1502-88	BH-88 (15)	98	108	
890-1502-89	BH-89 (15)	92	107	
890-1502-90	BH90 (RS) (6)	94	112	
890-1502-90 890-1502-91 890-1502-92 890-1502-93	BH-91 (RS) (6) SW-1 (0-6) SW-2 (0-6)	92 90 89	107 106 106	

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

Matrix: Solid				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	ОТРН1	· · · · · · · · · · · · · · · · · · ·
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-1502-94	SW-3 (0-6)	89	106	. — — — — — — — — — — — — — — — — — — —
890-1502-95	SW-4 (0-6)	90	107	
890-1502-96	SW-5 (0-6)	102	122	
890-1502-97	SW-6 (0-6)	89	98	
890-1502-98	SW-7 (0-6)	91	109	
890-1502-99	SW-8 (0-6)	91	104	
890-1502-100	SW-9 (0-6)	94	112	
890-1502-101	SW-10 (0-6)	100	100	
890-1502-101 MS	SW-10 (0-6)	101	93	
890-1502-101 MSD	SW-10 (0-6)	109	97	
890-1502-102	SW-11 (0-6)	106	104	
890-1502-103	SW-12 (10)	101	98	
890-1502-104	SW-13 (15)	86	83	
890-1502-105	SW-14 (15)	107	106	
890-1502-106	SW-15 (15)	102	100	
890-1502-107	SW-16 (15)	106	105	
890-1502-108	SW-17 (15)	97	97	
890-1502-109	SW-18 (15)	103	103	
890-1502-110	SW-19 (15)	103	103	
890-1502-111	SW-20 (15)	104	105	
890-1502-112	SW-21 (15)	107	107	
890-1502-113	SW-22 (15)	106	108	
890-1502-114	SW-23 (15)	104	101	
890-1502-115	SW-24 (15)	107	106	
890-1502-116	SW-25 (15)	104	105	
890-1502-117	SW-26 (15)	104	103	
890-1502-118	SW-27 (15)	99	97	
890-1502-119	SW-28 (15)	90	83	
890-1502-120	SW-29 (15)	103	99	
890-1502-121	SW-30 (RS) (6)	90	108	
890-1502-121 MS	SW-30 (RS) (6)	100	92	
890-1502-121 MSD	SW-30 (RS) (6)	92	84	
890-1502-122	SW-31 (RS) (4)	86	93	
890-1502-123	SW-32 (RS) (6)	84	83	
890-1502-124	SW-33 (RS) (8)	80	80	
LCS 880-11223/2-A	Lab Control Sample	116	109	
LCS 880-11255/2-A	Lab Control Sample	98	106	
LCS 880-11273/2-A	Lab Control Sample	84	80	
LCS 880-11356/2-A	Lab Control Sample	103	100	
LCS 880-11364/2-A	Lab Control Sample	81	89	
LCS 880-11375/2-A	Lab Control Sample	102	99	
LCS 880-11376/2-A	Lab Control Sample	108	88	
LCSD 880-11223/3-A	Lab Control Sample Dup	113	106	
LCSD 880-11255/3-A	Lab Control Sample Dup	100	108	
LCSD 880-11273/3-A	Lab Control Sample Dup	87	85	
LCSD 880-11356/3-A	Lab Control Sample Dup	87	84	
LCSD 880-11364/3-A	Lab Control Sample Dup	89	97	
LCSD 880-11375/3-A	Lab Control Sample Dup	92	85	
LCSD 880-11376/3-A	Lab Control Sample Dup	103	95	
MB 880-11223/1-A	Method Blank	108	113	
-				

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
MB 880-11255/1-A	Method Blank	98	115	
MB 880-11273/1-A	Method Blank	100	103	
MB 880-11356/1-A	Method Blank	110	109	
MB 880-11364/1-A	Method Blank	99	115	
MB 880-11375/1-A	Method Blank	112	123	
MB 880-11376/1-A	Method Blank	89	94	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-11021/5-A

Matrix: Solid

Analysis Batch: 11022

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11021

1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 08:33	11/01/21 12:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 08:33	11/01/21 12:08	•
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 08:33	11/01/21 12:08	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 08:33	11/01/21 12:08	
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 08:33	11/01/21 12:08	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 08:33	11/01/21 12:08	•

MB MB

MR MR

<0.00200 U

Result Qualifier

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106	70 - 130	11/01/21 08:33	11/01/21 12:08	1
1,4-Difluorobenzene (Surr)	101	70 - 130	11/01/21 08:33	11/01/21 12:08	1

RL

0.00200

Lab Sample ID: MB 880-11075/5-A

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Analysis Batch: 11206

Client Sample ID: Method Blank

Analyzed

11/03/21 00:26

Prepared

11/01/21 11:05

Prep Type: Total/NA

Prep Batch: 11075

Dil Fac

<0.00200 U 0.00200 mg/Kg 11/01/21 11:05 11/03/21 00:26 <0.00200 U 0.00200 mg/Kg 11/01/21 11:05 11/03/21 00:26 <0.00400 U 0.00400 11/03/21 00:26 mg/Kg 11/01/21 11:05 <0.00200 U 0.00200 11/03/21 00:26 mg/Kg 11/01/21 11:05 11/01/21 11:05 <0.00400 U 0.00400 mg/Kg 11/03/21 00:26

mg/Kg

MDL Unit

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130	11/01/21 11:05	11/03/21 00:26	1
1,4-Difluorobenzene (Surr)	97		70 - 130	11/01/21 11:05	11/03/21 00:26	1

Lab Sample ID: LCS 880-11075/1-A

Matrix: Solid

Analysis Batch: 11206

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11075

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07732		mg/Kg		77	70 - 130	
Toluene	0.100	0.07602		mg/Kg		76	70 - 130	
Ethylbenzene	0.100	0.07511		mg/Kg		75	70 - 130	
m-Xylene & p-Xylene	0.200	0.1537		mg/Kg		77	70 - 130	
o-Xylene	0.100	0.09253		mg/Kg		93	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	113	70 - 130
1.4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: LCSD 880-11075/2-A

Matrix: Solid

Analysis Batch: 11206

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11075 0/ Baa

	Spike	LCSD LCSD				70Rec.		KPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09604	mg/Kg		96	70 - 130	22	35

LCCD LCCD

Chiles

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-11075/2-A Matrix: Solid

Analysis Batch: 11206

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 11075

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.08281		mg/Kg		83	70 - 130	9	35
Ethylbenzene	0.100	0.08382		mg/Kg		84	70 - 130	11	35
m-Xylene & p-Xylene	0.200	0.1739		mg/Kg		87	70 - 130	12	35
o-Xylene	0.100	0.09914		mg/Kg		99	70 - 130	7	35

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 890-1502-1 MS

Matrix: Solid

Analysis Batch: 11206

Client Sample ID: BH-1 (6)
Prep Type: Total/NA

Prep Batch: 11075

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F1	0.101	0.06514	F1	mg/Kg		65	70 - 130	
Toluene	<0.00199	U F1	0.101	0.05844	F1	mg/Kg		58	70 - 130	
Ethylbenzene	<0.00199	U F1	0.101	0.06080	F1	mg/Kg		60	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F1	0.201	0.06489	F1	mg/Kg		32	70 - 130	
o-Xylene	<0.00199	U	0.101	0.07557		mg/Kg		74	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	111	70 - 130
1,4-Difluorobenzene (Surr)	105	70 - 130

Lab Sample ID: 890-1502-1 MSD

Matrix: Solid

Analysis Batch: 11206

Client Sample ID: BH-1 (6)

Prep Type: Total/NA

Prep Batch: 11075

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U F1	0.0996	0.07109		mg/Kg		71	70 - 130	9	35
Toluene	<0.00199	U F1	0.0996	0.06473	F1	mg/Kg		65	70 - 130	10	35
Ethylbenzene	<0.00199	U F1	0.0996	0.06748	F1	mg/Kg		68	70 - 130	10	35
m-Xylene & p-Xylene	<0.00398	U F1	0.199	0.07381	F1	mg/Kg		37	70 - 130	13	35
o-Xylene	<0.00199	U	0.0996	0.08065		mg/Kg		80	70 - 130	7	35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	109	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: MB 880-11076/5-A

Matrix: Solid

Analysis Batch: 11022

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11076

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:18	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 11:07	11/01/21 23:18	1

Eurofins Xenco, Carlsbad

Page 117 of 248

2

3

4

5

7

9

11

13

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-11076/5-A

Matrix: Solid

Analysis Batch: 11022

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11076

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 11:07	11/01/21 23:18	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 11:07	11/01/21 23:18	1

MP MP

MR MR

	INID INID				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115	70 - 130	11/01/21 11:07	11/01/21 23:18	1
1,4-Difluorobenzene (Surr)	93	70 - 130	11/01/21 11:07	11/01/21 23:18	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-11076/1-A **Matrix: Solid**

Analysis Batch: 11022

Prep Type: Total/NA

Prep Batch: 11076

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07785	-	mg/Kg		78	70 - 130	
Toluene	0.100	0.07783		mg/Kg		78	70 - 130	
Ethylbenzene	0.100	0.08142		mg/Kg		81	70 - 130	
m-Xylene & p-Xylene	0.200	0.1672		mg/Kg		84	70 - 130	
o-Xylene	0.100	0.08586		mg/Kg		86	70 - 130	
T and the second								

LCS LCS

Surrogate	%Recovery Qualifi	ier Limits
4-Bromofluorobenzene (Surr)	106	70 - 130
1.4-Difluorobenzene (Surr)	87	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11076

Lab Sample ID: LCSD 880-11076/2-A Matrix: Solid **Analysis Batch: 11022**

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08048		mg/Kg		80	70 - 130	3	35
Toluene	0.100	0.07699		mg/Kg		77	70 - 130	1	35
Ethylbenzene	0.100	0.07972		mg/Kg		80	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1619		mg/Kg		81	70 - 130	3	35
o-Xylene	0.100	0.08493		mg/Kg		85	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	108	70 - 130
1.4-Difluorobenzene (Surr)	97	70 - 130

Lab Sample ID: 890-1502-121 MS Client Sample ID: SW-30 (RS) (6)

Matrix: Solid Analysis Batch: 11022

Prep Type: Total/NA

Prep Batch: 11076

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1	0.0990	0.04100	F1	mg/Kg		41	70 - 130	
Toluene	<0.00200	U F1	0.0990	0.04297	F1	mg/Kg		43	70 - 130	
Ethylbenzene	<0.00200	U F1	0.0990	0.04022	F1	mg/Kg		41	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F1	0.198	0.09185	F1	mg/Kg		46	70 - 130	
o-Xylene	<0.00200	U F1	0.0990	0.04676	F1	mg/Kg		47	70 - 130	

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1502-121 MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 11022

Client Sample ID: SW-30 (RS) (6)

Prep Type: Total/NA

Prep Batch: 11076

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	122		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: 890-1502-121 MSD Client Sample ID: SW-30 (RS) (6)

Prep Type: Total/NA **Matrix: Solid**

Prep Batch: 11076 **Analysis Batch: 11022**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.0996	0.05695	F1	mg/Kg		57	70 - 130	33	35
Toluene	<0.00200	U F1	0.0996	0.05604	F1	mg/Kg		56	70 - 130	26	35
Ethylbenzene	<0.00200	U F1	0.0996	0.05757	F1	mg/Kg		58	70 - 130	35	35
m-Xylene & p-Xylene	<0.00399	U F1	0.199	0.1165	F1	mg/Kg		59	70 - 130	24	35
o-Xylene	<0.00200	U F1	0.0996	0.06067	F1	mg/Kg		61	70 - 130	26	35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	114	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: MB 880-11109/5-A Client Sample ID: Method Blank

Analysis Batch: 11221

ı		MR	MR							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 17:47	1
	Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 17:47	1
	Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 17:47	1
	m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:05	11/02/21 17:47	1
	o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:05	11/02/21 17:47	1
	Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		11/01/21 12:05	11/02/21 17:47	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130	11/01/21 1	12:05	11/02/21 17:47	1
1,4-Difluorobenzene (Surr)	106		70 - 130	11/01/21 1	12:05	11/02/21 17:47	1

Lab Sample ID: LCS 880-11109/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Analysis Batch: 11221

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09326		mg/Kg		93	70 - 130	
Toluene	0.100	0.09333		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.1039		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	0.200	0.2053		mg/Kg		103	70 - 130	
o-Xylene	0.100	0.09913		mg/Kg		99	70 - 130	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 113 70 - 130

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Prep Batch: 11109

Prep Type: Total/NA

Prep Batch: 11109

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-11109/1-A

Matrix: Solid

Analysis Batch: 11221

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11109

LCS LCS

%Recovery Qualifier Surrogate Limits 1,4-Difluorobenzene (Surr) 103 70 - 130

Lab Sample ID: LCSD 880-11109/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 11221

Prep Type: Total/NA

Prep Batch: 11109

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1108		mg/Kg		111	70 - 130	17	35
Toluene	0.100	0.1179		mg/Kg		118	70 - 130	23	35
Ethylbenzene	0.100	0.1173		mg/Kg		117	70 - 130	12	35
m-Xylene & p-Xylene	0.200	0.2363		mg/Kg		118	70 - 130	14	35
o-Xylene	0.100	0.1143		mg/Kg		114	70 - 130	14	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	128	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: 890-1502-21 MS Client Sample ID: BH-21 (6)

Matrix: Solid

Analysis Batch: 11221

Prep Type: Total/NA

Prep Batch: 11109

Sample	Sample	Spike	MS	MS				%Rec.	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
<0.00202	U F1 F2	0.100	0.05197	F1	mg/Kg		51	70 - 130	
<0.00202	U	0.100	0.07531		mg/Kg		74	70 - 130	
<0.00202	U F1	0.100	0.06742	F1	mg/Kg		67	70 - 130	
<0.00403	U F1	0.200	0.1125	F1	mg/Kg		56	70 - 130	
<0.00202	U F1	0.100	0.06405	F1	mg/Kg		64	70 - 130	
	Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00403	Result Qualifier <0.00202 U F1 F2 <0.00202 U F1 <0.00202 U F1 <0.00403 U F1 <0.00202 U F1	Result Qualifier Added <0.00202	Result Qualifier Added Result <0.00202	Result Qualifier Added Result Qualifier <0.00202	Result Qualifier Added Result Qualifier Unit <0.00202	Result Qualifier Added Result Qualifier Unit D <0.00202	Result Qualifier Added Result Qualifier Unit D %Rec <0.00202	Result Qualifier Added Result Qualifier Unit D %Rec Limits <0.00202

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130
1.4-Difluorobenzene (Surr)	111		70 ₋ 130

Lab Sample ID: 890-1502-21 MSD Client Sample ID: BH-21 (6)

Matrix: Solid

Analysis Batch: 11221

Prep Type: Total/NA

Prep Batch: 11109

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00202	U F1 F2	0.101	0.08364	F2	mg/Kg		82	70 - 130	47	35	
Toluene	<0.00202	U	0.101	0.07898		mg/Kg		78	70 - 130	5	35	
Ethylbenzene	<0.00202	U F1	0.101	0.06977	F1	mg/Kg		69	70 - 130	3	35	
m-Xylene & p-Xylene	<0.00403	U F1	0.202	0.1359	F1	mg/Kg		67	70 - 130	19	35	
o-Xylene	<0.00202	U F1	0.101	0.06888	F1	mg/Kg		68	70 - 130	7	35	

	MSD MSD	
Surrogate	%Recovery Quality	fier Limits
4-Bromofluorobenzene (Surr)	113	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-11111/5-A

Analysis Batch: 11259

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 11111

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 01:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 01:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 01:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 01:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/21 12:11	11/04/21 01:52	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/21 12:11	11/04/21 01:52	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	58	S1-	70 - 130	11/01/21 12:11	11/04/21 01:52	1
1,4-Difluorobenzene (Surr)	189	S1+	70 - 130	11/01/21 12:11	11/04/21 01:52	1

Lab Sample ID: LCS 880-11111/1-A

Matrix: Solid

Analysis Batch: 11259

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11111

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1068		mg/Kg		107	70 - 130	
Toluene	0.100	0.1000		mg/Kg		100	70 - 130	
Ethylbenzene	0.100	0.08895		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.1848		mg/Kg		92	70 - 130	
o-Xylene	0.100	0.1111		mg/Kg		111	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	87		70 - 130		
1,4-Difluorobenzene (Surr)	223	S1+	70 - 130		

Lab Sample ID: LCSD 880-11111/2-A

Matrix: Solid

Analysis Batch: 11259

Client Sample ID	: Lab Control	Sample	Dup
-------------------------	---------------	--------	-----

Prep Type: Total/NA

Prep Batch: 11111

%Rec. RPD
Rec Limits RPD Limit
Rec Limits RPD

LCSD LCSD

%Recovery Qualifier Surrogate Limits

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-1502-41 MS

Matrix: Solid

Analysis Batch: 11259

Client Sample ID: BH-41 (15)

Prep Type: Total/NA

Prep Batch: 11111

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F2 F1	0.101	0.01309	F1	mg/Kg		12	70 - 130	
Toluene	<0.00200	U F2 F1	0.101	0.005176	F1	mg/Kg		4	70 - 130	

Eurofins Xenco, Carlsbad

Page 121 of 248

QC Sample Results

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1502-41 MSD

Analysis Batch: 11259

Lab Sample ID: 890-1502-41 MS	Client Sample ID: BH-41 (15)
Matrix: Solid	Prep Type: Total/NA

Prep Batch: 11111

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U F2 F1	0.101	0.006767	F1	mg/Kg		6	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F1	0.202	<0.00403	U F1	mg/Kg		0	70 - 130	
o-Xylene	<0.00200	U F2 F1	0.101	0.01517	F1	mg/Kg		14	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130
1,4-Difluorobenzene (Surr)	179	S1+	70 - 130

Client Sample ID: BH-41 (15)

Prep Type: Total/NA Prep Batch: 11111

Analysis Batch: 11259 Sample Sample Spike MSD MSD Result Qualifier Added Analyte Result Qualifier Unit

%Rec. RPD %Rec RPD Limit Limits 0.0994 Benzene <0.00200 U F2 F1 0.02353 F2 F1 mg/Kg 23 70 - 130 57 35 0.0994 12 Toluene <0.00200 U F2 F1 0.01239 F2 F1 mg/Kg 70 - 130 82 35 Ethylbenzene <0.00200 U F2 F1 0.0994 0.01841 F2 F1 18 70 - 130 92 35 mg/Kg 0.199 3 70 - 130 NC 35 m-Xylene & p-Xylene < 0.00399 U F1 0.006042 F1 mg/Kg 0.0994 <0.00200 U F2 F1 0.03039 F2 F1 30 70 - 130 67 o-Xylene mg/Kg

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	70		70 - 130
1,4-Difluorobenzene (Surr)	216	S1+	70 - 130

Lab Sample ID: MB 880-11112/5-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 11221

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11112

MB MB Analyte Result Qualifier MDL Unit Prepared Dil Fac RL Analyzed Benzene <0.00200 U 0.00200 mg/Kg 11/01/21 12:13 11/03/21 05:19 Toluene <0.00200 U 0.00200 mg/Kg 11/01/21 12:13 11/03/21 05:19 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/01/21 12:13 11/03/21 05:19 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/01/21 12:13 11/03/21 05:19 <0.00200 U 0.00200 11/01/21 12:13 11/03/21 05:19 o-Xylene mg/Kg <0.00400 U 0.00400 11/03/21 05:19 Xylenes, Total mg/Kg 11/01/21 12:13

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130	11/01/21 12:	13 11/03/21 05:19	1
1,4-Difluorobenzene (Surr)	106		70 - 130	11/01/21 12:	13 11/03/21 05:19	1

Lab Sample ID: LCS 880-11112/1-A

Matrix: Solid

Analysis Batch: 11221

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11112

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.08714		mg/Kg		87	70 - 130
Toluene	0.100	0.09081		mg/Kg		91	70 - 130
Ethylbenzene	0.100	0.09455		mg/Kg		95	70 - 130
m-Xylene & p-Xylene	0.200	0.1857		mg/Kg		93	70 - 130

1,4-Difluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

o-Xylene

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-11112/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 11221** Prep Batch: 11112

	Бріке	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	 0.100	0.09260		mg/Kg		93	70 - 130	 '

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

106

110

<0.00199 U F1 F2

Lab Sample ID: LCSD 880-11112/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 11221 Prep Batch: 11112

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09459		mg/Kg		95	70 - 130	8	35
Toluene	0.100	0.09920		mg/Kg		99	70 - 130	9	35
Ethylbenzene	0.100	0.1011		mg/Kg		101	70 - 130	7	35
m-Xylene & p-Xylene	0.200	0.1972		mg/Kg		99	70 - 130	6	35
o-Xylene	0.100	0.09839		mg/Kg		98	70 - 130	6	35

m-Xylene & p-Xylene			0.200	0.1972	mg/Kg	99	70 - 130	6
o-Xylene			0.100	0.09839	mg/Kg	98	70 - 130	6
	LCSD	LCSD						
Surrogate	%Recovery	Qualifier	Limits					
4-Bromofluorobenzene (Surr)	121		70 - 130					

70 - 130

Lab Sample ID: 890-1502-61 MS Client Sample ID: BH-61 (15)

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 11221** Prep Batch: 11112

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F1 F2	0.100	0.02127	F1	mg/Kg		21	70 - 130	
Toluene	<0.00199	U F1 F2	0.100	0.03376	F1	mg/Kg		32	70 - 130	
Ethylbenzene	< 0.00199	U F1 F2	0.100	0.03579	F1	mg/Kg		36	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F1 F2	0.200	0.06567	F1	mg/Kg		33	70 - 130	
o-Xylene	< 0.00199	U F1 F2	0.100	0.03476	F1	mg/Kg		34	70 - 130	

o-Xylene	<0.00199	U F1 F2	0.100	0.03476 F1	mg/Kg	34
	MS	MS				
Surrogate	%Recovery	Qualifier	Limits			
4-Bromofluorobenzene (Surr)	131	S1+	70 - 130			

Client Sample ID: BH-61 (15) Lab Sample ID: 890-1502-61 MSD

70 - 130

0.0998

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 11221								Prep Batch: 11112					
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Benzene	<0.00199	U F1 F2	0.0998	0.05929	F1 F2	mg/Kg		59	70 - 130	94	35		
Toluene	<0.00199	U F1 F2	0.0998	0.06669	F1 F2	mg/Kg		65	70 - 130	66	35		
Ethylbenzene	<0.00199	U F1 F2	0.0998	0.07404	F2	mg/Kg		74	70 - 130	70	35		
m-Xylene & p-Xylene	<0.00398	U F1 F2	0.200	0.1347	F1 F2	mg/Kg		67	70 - 130	69	35		

0.07123 F2

mg/Kg

Eurofins Xenco, Carlsbad

70 - 130

35

QC Sample Results

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1502-61 MSD

Matrix: Solid

Analysis Batch: 11221

Client Sample ID: BH-61 (15)

Prep Type: Total/NA

Prep Batch: 11112

MSD MSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 134 S1+ 70 - 130 1,4-Difluorobenzene (Surr) 100 70 - 130

Lab Sample ID: MB 880-11113/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 11374

Prep Type: Total/NA

Prep Batch: 11113

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <0.00200 U 0.00200 11/01/21 12:16 11/03/21 17:26 Benzene mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 11/01/21 12:16 11/03/21 17:26 <0.00200 U 0.00200 11/01/21 12:16 11/03/21 17:26 Ethylbenzene mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/01/21 12:16 11/03/21 17:26 o-Xylene <0.00200 U 0.00200 mg/Kg 11/01/21 12:16 11/03/21 17:26 Xylenes, Total <0.00400 U 0.00400 mg/Kg 11/01/21 12:16 11/03/21 17:26

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117	70 - 130	11/01/21 12:16	11/03/21 17:26	1
1,4-Difluorobenzene (Surr)	107	70 - 130	11/01/21 12:16	11/03/21 17:26	1

Lab Sample ID: LCS 880-11113/1-A

Matrix: Solid

Analysis Batch: 11374

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 11113

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09035	-	mg/Kg		90	70 - 130	
Toluene	0.100	0.09580		mg/Kg		96	70 - 130	
Ethylbenzene	0.100	0.1041		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	0.200	0.1993		mg/Kg		100	70 - 130	
o-Xylene	0.100	0.09761		mg/Kg		98	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	115	70 - 130
1,4-Difluorobenzene (Surr)	105	70 - 130

Lab Sample ID: LCSD 880-11113/2-A

Matrix: Solid

Analysis Batch: 11374

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11113

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09227		mg/Kg		92	70 - 130	2	35
Toluene	0.100	0.09735		mg/Kg		97	70 - 130	2	35
Ethylbenzene	0.100	0.1026		mg/Kg		103	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.1995		mg/Kg		100	70 - 130	0	35
o-Xylene	0.100	0.09796		mg/Kg		98	70 - 130	0	35

LCSD LCSD

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 116 70 - 130

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1 SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-11113/2-A

Matrix: Solid

Analysis Batch: 11374

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11113

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1,4-Difluorobenzene (Surr) 107 70 - 130

Client Sample ID: BH-81 (15) Lab Sample ID: 890-1502-81 MS

Matrix: Solid

Analysis Batch: 11374

Prep Type: Total/NA

Prep Batch: 11113

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F2 F1	0.0990	0.08474	-	mg/Kg		85	70 - 130	
Toluene	<0.00199	U F2 F1	0.0990	0.09027		mg/Kg		89	70 - 130	
Ethylbenzene	<0.00199	U F2 F1	0.0990	0.09777		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.198	0.1912		mg/Kg		96	70 - 130	
o-Xylene	<0.00199	U F2 F1	0.0990	0.09409		mg/Kg		95	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	118	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: 890-1502-81 MSD Client Sample ID: BH-81 (15)

Matrix: Solid

Analysis Batch: 11374

Prep Type: Total/NA

Prep Batch: 11113

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U F2 F1	0.100	0.04227	F2 F1	mg/Kg		41	70 - 130	67	35
Toluene	<0.00199	U F2 F1	0.100	0.04380	F2 F1	mg/Kg		42	70 - 130	69	35
Ethylbenzene	<0.00199	U F2 F1	0.100	0.05968	F2 F1	mg/Kg		58	70 - 130	48	35
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.201	0.1091	F2 F1	mg/Kg		53	70 - 130	55	35
o-Xylene	<0.00199	U F2 F1	0.100	0.04780	F2 F1	mg/Kg		48	70 - 130	65	35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	96	70 - 130
1.4-Difluorobenzene (Surr)	86	70 - 130

Lab Sample ID: MB 880-11114/5-A

мв мв

Matrix: Solid Analysis Batch: 11374

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Released to Imaging: 9/1/2023 2:07:08 PM

Client Sample ID: Method Blank

11/04/21 05:00

11/04/21 05:00

11/01/21 12:18

11/01/21 12:18

Prep Type: Total/NA

Prep Batch: 11114

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.00200 11/01/21 12:18 11/04/21 05:00 <0.00200 U mg/Kg 11/01/21 12:18 <0.00200 U 0.00200 mg/Kg 11/04/21 05:00 <0.00200 U 0.00200 mg/Kg 11/01/21 12:18 11/04/21 05:00 <0.00400 U 0.00400 11/01/21 12:18 11/04/21 05:00 mg/Kg

mg/Kg

mg/Kg

<0.00400 U мв мв

<0.00200 U

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130	11/01/21 12:18	11/04/21 05:00	1
1,4-Difluorobenzene (Surr)	105		70 - 130	11/01/21 12:18	11/04/21 05:00	1

0.00200

0.00400

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-11114/1-A

Matrix: Solid

Analysis Batch: 11374

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 11114

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09032		mg/Kg		90	70 - 130	
Toluene	0.100	0.09084		mg/Kg		91	70 - 130	
Ethylbenzene	0.100	0.09641		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene	0.200	0.1881		mg/Kg		94	70 - 130	
o-Xylene	0.100	0.09302		mg/Kg		93	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1.4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: LCSD 880-11114/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 11374

Prep Type: Total/NA

Prep Batch: 11114

LCSD LCSD RPD Spike %Rec. Added Result Qualifier Limits Limit Analyte Unit %Rec RPD Benzene 0.100 0.08744 mg/Kg 87 70 - 130 3 35 Toluene 0.100 0.09130 mg/Kg 91 70 - 130 35 Ethylbenzene 0.100 0.09282 mg/Kg 93 70 - 130 35 0.200 0.1809 m-Xylene & p-Xylene mg/Kg 90 70 - 130 35 0.100 0.09153 92 o-Xylene mg/Kg 70 - 130 2 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1.4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: 890-1502-101 MS Client Sample ID: SW-10 (0-6)

Matrix: Solid

Analysis Batch: 11374

Prep Type: Total/NA

Prep Batch: 11114

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F2 F1	0.100	0.05871	F1	mg/Kg		58	70 - 130	
Toluene	<0.00200	U F2 F1	0.100	0.06635	F1	mg/Kg		66	70 - 130	
Ethylbenzene	<0.00200	U F2 F1	0.100	0.07485		mg/Kg		75	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F2 F1	0.200	0.1433		mg/Kg		72	70 - 130	
o-Xylene	<0.00200	U F2 F1	0.100	0.07000	F1	mg/Kg		69	70 - 130	

MS MS

Surrogate	%Recovery Qualific	er Limits
4-Bromofluorobenzene (Surr)	123	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: 890-1502-101 MSD Client Sample ID: SW-10 (0-6)

Matrix: Solid

Analysis Batch: 11374

Prep Batch: 11114 MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Added Limit Analyte Result Qualifier Unit %Rec Limits RPD Benzene <0.00200 U F2 F1 0.100 0.04046 F2 F1 39 70 - 130 37 35 mg/Kg 0.04350 F2 F1 Toluene <0.00200 U F2 F1 0.100 mg/Kg 43 70 - 130 42 35 Ethylbenzene <0.00200 U F2 F1 0.100 0.04739 F2 F1 mg/Kg 47 70 - 130 45 35

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Page 126 of 248

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 SDG: 212C-MD-02230 Project/Site: Kaiser SWD

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1502-101 MSD Client Sample ID: SW-10 (0-6) **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 11374

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	<0.00399	U F2 F1	0.200	0.09484	F2 F1	mg/Kg		47	70 - 130	41	35
o-Xylene	<0.00200	U F2 F1	0.100	0.04771	F2 F1	mg/Kg		47	70 - 130	38	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	123		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

MB MB

MR MR

Lab Sample ID: MB 880-11207/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 11206

Prep Type: Total/NA

Prep Batch: 11207

Prep Batch: 11114

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/02/21 09:20	11/02/21 13:33	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/02/21 09:20	11/02/21 13:33	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/02/21 09:20	11/02/21 13:33	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/02/21 09:20	11/02/21 13:33	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/02/21 09:20	11/02/21 13:33	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/02/21 09:20	11/02/21 13:33	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 107 70 - 130 11/02/21 09:20 11/02/21 13:33 1,4-Difluorobenzene (Surr) 71 70 - 130 11/02/21 09:20 11/02/21 13:33

Lab Sample ID: MB 880-11258/5-A

Matrix: Solid

Analysis Batch: 11259

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 11258

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/02/21 15:13	11/03/21 12:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/02/21 15:13	11/03/21 12:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/02/21 15:13	11/03/21 12:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/02/21 15:13	11/03/21 12:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/02/21 15:13	11/03/21 12:01	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/02/21 15:13	11/03/21 12:01	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	54	S1-	70 - 130	11/02/21 15:13	11/03/21 12:01	1
1,4-Difluorobenzene (Surr)	182	S1+	70 - 130	11/02/21 15:13	11/03/21 12:01	1

Lab Sample ID: MB 880-11388/5-A

Matrix: Solid

Analysis Batch: 11420

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 11388

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/04/21 08:30	11/04/21 11:26	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/04/21 08:30	11/04/21 11:26	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/04/21 08:30	11/04/21 11:26	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/04/21 08:30	11/04/21 11:26	1
	Benzene Toluene Ethylbenzene	Analyte Result Benzene <0.00200 Toluene <0.00200 Ethylbenzene <0.00200	Benzene <0.00200 U Toluene <0.00200 U Ethylbenzene <0.00200 U	Analyte Result Qualifier RL Benzene <0.00200 U 0.00200 Toluene <0.00200 U 0.00200 Ethylbenzene <0.00200 U 0.00200	Analyte Result Qualifier RL MDL Benzene <0.00200 U 0.00200 Toluene <0.00200 U 0.00200 Ethylbenzene <0.00200 U 0.00200	Analyte Result Qualifier RL MDL Unit Benzene <0.00200 U 0.00200 mg/Kg Toluene <0.00200 U 0.00200 mg/Kg Ethylbenzene <0.00200 U 0.00200 mg/Kg	Analyte Result Qualifier RL MDL Unit D Benzene <0.00200 U 0.00200 mg/Kg Toluene <0.00200 U 0.00200 mg/Kg Ethylbenzene <0.00200 U 0.00200 mg/Kg	Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200 U 0.00200 mg/Kg 11/04/21 08:30 Toluene <0.00200 U 0.00200 mg/Kg 11/04/21 08:30 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/04/21 08:30	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Benzene <0.00200 U 0.00200 mg/Kg 11/04/21 08:30 11/04/21 11:26 Toluene <0.00200 U 0.00200 mg/Kg 11/04/21 08:30 11/04/21 11:26 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/04/21 08:30 11/04/21 11:26

Eurofins Xenco, Carlsbad

1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-11388/5-A

Matrix: Solid

Analysis Batch: 11420

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11388

	1110	1110							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/04/21 08:30	11/04/21 11:26	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/04/21 08:30	11/04/21 11:26	1

MD MD

MR MR

		W.D				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130	11/04/21 08:30	11/04/21 11:26	1
1,4-Difluorobenzene (Surr)	99		70 - 130	11/04/21 08:30	11/04/21 11:26	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-11388/1-A **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 11388 **Analysis Batch: 11420**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07875		mg/Kg		79	70 - 130	
Toluene	0.100	0.09099		mg/Kg		91	70 - 130	
Ethylbenzene	0.100	0.1049		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.1959		mg/Kg		98	70 - 130	
o-Xylene	0.100	0.1016		mg/Kg		102	70 - 130	

LCS LCS

Surrogate	%Recovery Qual	lifier Limits
4-Bromofluorobenzene (Surr)	129	70 - 130
1.4-Difluorobenzene (Surr)	85	70 - 130

Lab Sample ID: LCSD 880-11388/2-A

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 11420 Prep Batch: 11388

RPD Limit	
0 35	
16 35	
31 35	
19 35	
24 35	
)	16 35 31 35 19 35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	105	70 - 130
1.4-Difluorobenzene (Surr)	102	70 ₋ 130

Lab Sample ID: 890-1502-53 MS Client Sample ID: BH-53 (15)

Matrix: Solid Prep Type: Total/NA Analysis Batch: 11420 Prep Batch: 11388

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0994	0.07316		mg/Kg		74	70 - 130	
Toluene	<0.00202	U	0.0994	0.07604		mg/Kg		75	70 - 130	
Ethylbenzene	<0.00202	U	0.0994	0.07655		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	<0.00403	U	0.199	0.1626		mg/Kg		82	70 - 130	
o-Xylene	<0.00202	U	0.0994	0.08042		mg/Kg		81	70 - 130	

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-1502-53 MS

Matrix: Solid

Analysis Batch: 11420

Client Sample ID: BH-53 (15)

Prep Type: Total/NA

Prep Batch: 11388

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 124 70 - 130 1,4-Difluorobenzene (Surr) 100 70 - 130

Lab Sample ID: 890-1502-53 MSD Client Sample ID: BH-53 (15)

Matrix: Solid

Analysis Batch: 11420

Prep Type: Total/NA

Prep Batch: 11388

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00202	U	0.0998	0.08660		mg/Kg		87	70 - 130	17	35
Toluene	<0.00202	U	0.0998	0.08136		mg/Kg		80	70 - 130	7	35
Ethylbenzene	<0.00202	U	0.0998	0.07768		mg/Kg		78	70 - 130	1	35
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1611		mg/Kg		81	70 - 130	1	35
o-Xylene	<0.00202	U	0.0998	0.08199		mg/Kg		82	70 - 130	2	35

MSD MSD

Surrogate	%Recovery Qualit	ier Limits
4-Bromofluorobenzene (Surr)	109	70 - 130
1,4-Difluorobenzene (Surr)	96	70 - 130

Lab Sample ID: MB 880-11445/5-A Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 11449 мв мв Prep Type: Total/NA Prep Batch: 11445

MDL Dil Fac Analyte Result Qualifier RL Unit Prepared Analyzed Benzene <0.00200 U 0.00200 11/04/21 11:11 11/04/21 21:28 mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 11/04/21 11:11 11/04/21 21:28 Ethylbenzene <0.00200 U 0.00200 11/04/21 11:11 11/04/21 21:28 mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/04/21 11:11 11/04/21 21:28 <0.00200 U 11/04/21 21:28 o-Xylene 0.00200 mg/Kg 11/04/21 11:11 Xylenes, Total <0.00400 U 0.00400 mg/Kg 11/04/21 11:11 11/04/21 21:28

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	65	S1-	70 - 130	11/04/21 11:11	11/04/21 21:28	1
1,4-Difluorobenzene (Surr)	196	S1+	70 - 130	11/04/21 11:11	11/04/21 21:28	1

Lab Sample ID: LCS 880-11445/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 11449

Prep Type: Total/NA Prep Batch: 11445

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qual	lifier Unit	D %Rec	Limits	
Benzene	0.100	0.1225	mg/Kg	122	70 - 130	
Toluene	0.100	0.1133	mg/Kg	113	70 - 130	
Ethylbenzene	0.100	0.1054	mg/Kg	105	70 - 130	
m-Xylene & p-Xylene	0.200	0.2176	mg/Kg	109	70 _ 130	
o-Xylene	0.100	0.1278	mg/Kg	128	70 ₋ 130	

LCS LCS

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 70 - 130 103

Eurofins Xenco, Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-11445/1-A

Lab Sample ID: LCSD 880-11445/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 11449

Analysis Batch: 11449

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11445

LCS LCS

Surrogate %Recovery Qualifier Limits 1,4-Difluorobenzene (Surr) 230 S1+ 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11445

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.09174 mg/Kg 92 70 - 130 29 35 Toluene 0.100 0.08621 86 70 - 130 27 35 mg/Kg Ethylbenzene 0.100 0.07899 mg/Kg 79 70 - 130 29 35 0.200 0.1558 m-Xylene & p-Xylene mg/Kg 78 70 - 130 33 35 o-Xylene 0.100 0.09402 mg/Kg 94 70 - 130 30 35

LCSD LCSD

Surrogate	%Recovery Qualif	ier Limits
4-Bromofluorobenzene (Surr)	82	70 - 130
1,4-Difluorobenzene (Surr)	234 S1+	70 - 130

Client Sample ID: Matrix Spike Lab Sample ID: 890-1520-A-1-B MS

Matrix: Solid

Analysis Batch: 11449

Prep Type: Total/NA

Prep Batch: 11445

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00453	F1	0.0996	0.07184	F1	mg/Kg		68	70 - 130	
Toluene	0.00416	F1 F2	0.0996	0.002115	F1	mg/Kg		-2	70 - 130	
Ethylbenzene	<0.00200	U F1 F2	0.0996	0.06456	F1	mg/Kg		65	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F1 F2	0.199	0.1288	F1	mg/Kg		64	70 - 130	
o-Xylene	<0.00200	U F1 F2	0.0996	0.08438		mg/Kg		85	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 890-1520-A-1-C MSD

Matrix: Solid

Analysis Batch: 11449

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 11445

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.00453	F1	0.100	0.06470	F1	mg/Kg		60	70 - 130	10	35
Toluene	0.00416	F1 F2	0.100	0.03154	F1 F2	mg/Kg		27	70 - 130	175	35
Ethylbenzene	<0.00200	U F1 F2	0.100	0.02033	F1 F2	mg/Kg		20	70 - 130	104	35
m-Xylene & p-Xylene	<0.00399	U F1 F2	0.200	0.01225	F1 F2	mg/Kg		5	70 - 130	165	35
o-Xylene	<0.00200	U F1 F2	0.100	0.01299	F1 F2	mg/Kg		13	70 - 130	147	35

MSD	MSD
%Recovery	Qualifier

Limits Surrogate 61 S1-70 - 130 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 204 S1+ 70 - 130

Eurofins Xenco, Carlsbad

11/10/2021

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-11449/8

Matrix: Solid Analysis Batch: 11449 Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg			11/04/21 15:47	1
Toluene	<0.00200	U	0.00200		mg/Kg			11/04/21 15:47	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg			11/04/21 15:47	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg			11/04/21 15:47	1
o-Xylene	<0.00200	U	0.00200		mg/Kg			11/04/21 15:47	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg			11/04/21 15:47	1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 70 - 130 4-Bromofluorobenzene (Surr) 63 S1-11/04/21 15:47 1,4-Difluorobenzene (Surr) 187 S1+ 70 - 130 11/04/21 15:47

Lab Sample ID: LCS 880-11449/3

Matrix: Solid

Analysis Batch: 11449

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1209	-	mg/Kg		121	70 - 130	
Toluene	0.100	0.1145		mg/Kg		114	70 - 130	
Ethylbenzene	0.100	0.1064		mg/Kg		106	70 - 130	
m-Xylene & p-Xylene	0.200	0.2177		mg/Kg		109	70 - 130	
o-Xylene	0.100	0.1244		mg/Kg		124	70 - 130	

LCS LCS %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 94 190 S1+ 70 - 130 1,4-Difluorobenzene (Surr)

Lab Sample ID: LCSD 880-11449/4

Matrix: Solid

Analysis Batch: 11449

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD LC	CSD			%Rec.		RPD
Analyte	Added	Result Q	ualifier Unit	D %	Rec	Limits	RPD	Limit
Benzene	0.100	0.1235	mg/Kg		123	70 - 130	2	35
Toluene	0.100	0.1165	mg/Kg		117	70 - 130	2	35
Ethylbenzene	0.100	0.1076	mg/Kg		108	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.2185	mg/Kg		109	70 - 130	0	35
o-Xylene	0.100	0.1273	mg/Kg		127	70 - 130	2	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	198	S1+	70 - 130

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-11223/1-A

Matrix: Solid Analysis Batch: 11317 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11223

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 10:40	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 10:40	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 11:44	11/03/21 10:40	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				11/02/21 11:44	11/03/21 10:40	1
o-Terphenyl	113		70 - 130				11/02/21 11:44	11/03/21 10:40	1

Lab Sample ID: LCS 880-11223/2-A

Matrix: Solid

Analysis Batch: 11317

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 11223

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 1194 119 70 - 130 mg/Kg (GRO)-C6-C10 1000 1003 Diesel Range Organics (Over mg/Kg 100 70 - 130C10-C28)

LCS LCS %Recovery Qualifier Limits Surrogate 1-Chlorooctane 116 70 - 130 o-Terphenyl 109 70 - 130

Lab Sample ID: LCSD 880-11223/3-A

Matrix: Solid

Analysis Batch: 11317

Client Sample ID: Lab Co	ontrol Sample Dup
--------------------------	-------------------

Prep Batch: 11223

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1154		mg/Kg		115	70 - 130	3	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	986.8		mg/Kg		99	70 - 130	2	20
C10-C28)									

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	113	70 - 130
o-Terphenyl	106	70 - 130

Lab Sample ID: 890-1502-1 MS

Matrix: Solid

Analysis Batch: 11317

Prep Type: Total/NA Prep Batch: 11223

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	<49.9	U F1 F2	997	1550	F1	mg/Kg		155	70 - 130
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	997	1181		mg/Kg		116	70 - 130
C10-C28)									

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1502-1 MS Client Sample

Matrix: Solid

Analysis Batch: 11317

Client Sample ID: BH-1 (6)
Prep Type: Total/NA
Prep Batch: 11223

 Surrogate
 %Recovery
 Qualifier
 Limits

 1-Chlorooctane
 122
 70 - 130

 o-Terphenyl
 114
 70 - 130

Lab Sample ID: 890-1502-1 MSD Client Sample ID: BH-1 (6)

Matrix: Solid

Analysis Batch: 11317

Prep Type: Total/NA Prep Batch: 11223

•									•		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U F1 F2	1000	1120	F2	mg/Kg		112	70 - 130	32	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	1000	1198		mg/Kg		117	70 - 130	1	20
C10-C28)											

 Surrogate
 %Recovery
 Qualifier
 Limits

 1-Chlorooctane
 114
 70 - 130

 o-Terphenyl
 109
 70 - 130

MD MD

Lab Sample ID: MB 880-11255/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 11321

Prep Type: Total/NA

Prep Batch: 11255

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 10:22	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 10:22	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 14:45	11/03/21 10:22	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130	11/02/21 14:45	11/03/21 10:22	1
o-Terphenyl	115		70 - 130	11/02/21 14:45	11/03/21 10:22	1

Lab Sample ID: LCS 880-11255/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 11321

Prep Type: Total/NA Prep Batch: 11255

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	942.0		mg/Kg		94	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1089		mg/Kg		109	70 - 130	
C10-C28)								

LCS	LCS
0/5	_

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	98		70 - 130
o-Terphenyl	106		70 - 130

Lab Sample ID: LCSD 880-11255/3-A

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

1037

mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Lab Control Sample Dup

104

Prep Type: Total/NA

70 - 130

Prep Batch: 11255

5

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1055		mg/Kg		105	70 - 130	11	20
(GRO)-C6-C10									

1000

C10-C28)

Matrix: Solid

Analysis Batch: 11321

Diesel Range Organics (Over

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	100		70 - 130
o-Terphenyl	108		70 - 130

Lab Sample ID: 890-1502-21 MS Client Sample ID: BH-21 (6)

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 11321** Prep Batch: 11255 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits <49.9 U 997 101 70 - 130 Gasoline Range Organics 1011 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 997 847.1 mg/Kg 85 70 - 130

C10-C28)

MS MS %Recovery Qualifier Limits Surrogate 1-Chlorooctane 89 70 - 130 o-Terphenyl 94 70 - 130

Lab Sample ID: 890-1502-21 MSD Client Sample ID: BH-21 (6)

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 11321** Prep Batch: 11255 Sample Sample Spike MSD MSD %Rec. **RPD**

Added Limit Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD 1000 Gasoline Range Organics <49.9 U 1099 110 20 70 - 130 8 mg/Kg (GRO)-C6-C10 <49.9 U 1000 943.3 94 70 - 130 Diesel Range Organics (Over mg/Kg 11 20 C10-C28)

Surrogate	%Recovery Q	ualifier	Limits
1-Chlorooctane	94		70 - 130
o-Terphenyl	101		70 - 130

MSD MSD

Lab Sample ID: MB 880-11273/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 11323

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 10:22	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 10:22	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/21 16:07	11/03/21 10:22	1

Eurofins Xenco, Carlsbad

Prep Batch: 11273

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-11273/1-A

Lab Sample ID: LCSD 880-11273/3-A

Matrix: Solid

Analysis Batch: 11323

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11273

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 100 70 - 130 11/02/21 16:07 11/03/21 10:22 o-Terphenyl 103 70 - 130 11/02/21 16:07 11/03/21 10:22

Lab Sample ID: LCS 880-11273/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 11323

Prep Type: Total/NA

Prep Batch: 11273

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1000 883.1 88 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 916.4 mg/Kg 92 70 - 130C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	84		70 - 130
o-Terphenyl	80		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11273

Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Gasoline Range Organics 1000 879.9 mg/Kg 88 70 - 130 0 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1024 mg/Kg 102 70 - 130 11 20 C10-C28)

Matrix: Solid

Analysis Batch: 11323

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	87	70 - 130
o-Terphenyl	85	70 - 130

Lab Sample ID: 890-1502-41 MS Client Sample ID: BH-41 (15)

Matrix: Solid Analysis Batch: 11323

Prep Batch: 11273

	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	997	1108		mg/Kg		111	70 - 130		_
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	997	897.0		mg/Kg		90	70 - 130		
C40 C30\											

C10-C28)

MS MS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	95	70 - 130
o-Terphenyl	87	70 - 130

Eurofins Xenco, Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Prep Type: Total/NA

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1502-41 MSD

Matrix: Solid

Analysis Batch: 11323

Client Sample ID: BH-41 (15) Prep Type: Total/NA

Prep Batch: 11273

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	1000	1109		mg/Kg		111	70 - 130	0	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	1000	910.8		mg/Kg		91	70 - 130	2	20
0.10 0.00											

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 130
o-Terphenyl	87		70 - 130

Lab Sample ID: MB 880-11356/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 11323

мв мв

Prep Type: Total/NA

Prep Batch: 11356

Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 11/03/21 10:38 11/03/21 19:59 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 11/03/21 10:38 11/03/21 19:59 C10-C28) Oll Range Organics (Over C28-C36) 50.0 <50.0 U mg/Kg 11/03/21 10:38 11/03/21 19:59

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	110	70 - 130	11/03/21 10:38	11/03/21 19:59	1
o-Terphenyl	109	70 - 130	11/03/21 10:38	11/03/21 19:59	1

Lab Sample ID: LCS 880-11356/2-A

Matrix: Solid

Analysis Batch: 11323

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 11356

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	905.5		mg/Kg		91	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	1094		mg/Kg		109	70 - 130
C10-C28)							

LCS LCS

Surrogate	%Recovery Qualifie	er Limits
1-Chlorooctane	103	70 - 130
o-Terphenyl	100	70 - 130

Lab Sample ID: LCSD 880-11356/3-A

Matrix: Solid

Analysis Batch: 11323

Client San	iple ID: La	ab Contro	I Sample	Dup
-------------------	-------------	-----------	----------	-----

Prep Type: Total/NA

Prep Batch: 11356

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1023		mg/Kg		102	70 - 130	12	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	960.5		mg/Kg		96	70 - 130	13	20
C10-C28)									

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-11356/3-A

Matrix: Solid

Analysis Batch: 11323

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11356

LCSD LCSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 87 70 - 130 o-Terphenyl 84 70 - 130

Lab Sample ID: 890-1502-61 MS

Matrix: Solid

Analysis Batch: 11323

Client Sample ID: BH-61 (15) Prep Type: Total/NA

Prep Batch: 11356

Sample Sample Spike MS MS %Rec. Qualifier Analyte Result Qualifier Added Result Unit D %Rec Limits <49.9 U F1 F2 482.0 F1 997 48 70 - 130Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U F1 F2 997 328.9 F1 mg/Kg 31 70 - 130C10-C28)

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	41	S1-	70 - 130
o-Terphenyl	31	S1-	70 - 130

Lab Sample ID: 890-1502-61 MSD

Matrix: Solid

Analysis Batch: 11323

Client Sample ID: BH-61 (15)

Prep Type: Total/NA Prep Batch: 11356

Sample Sample Spike MSD MSD RPD %Rec. Result Qualifier Analyte Result Qualifier Added Unit D %Rec Limits RPD Limit Gasoline Range Organics <49.9 U F1 F2 1000 918.0 F2 mg/Kg 92 70 - 130 62 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U F1 F2 1000 633.8 F1 F2 mg/Kg 61 70 - 130 63 20

C10-C28)

MSD MSD %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 75

61 S1-70 - 130 o-Terphenyl

Lab Sample ID: MB 880-11364/1-A **Matrix: Solid**

Analysis Batch: 11416

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 11364

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 11/03/21 11:37 11/04/21 10:00 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 11/03/21 11:37 11/04/21 10:00 C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 11/03/21 11:37 11/04/21 10:00

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130	11/03/21 11:37	11/04/21 10:00	1
o-Terphenyl	115		70 - 130	11/03/21 11:37	11/04/21 10:00	1

Job ID: 890-1502-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Prep Type: Total/NA

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-11364/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 11416 Prep Batch: 11364

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	840.1		mg/Kg		84	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	883.5		mg/Kg		88	70 - 130	
C10-C28)								

LCS LCS %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 81 o-Terphenyl 89 70 - 130

Lab Sample ID: LCSD 880-11364/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 11416

Prep Batch: 11364 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 887.3 89 70 - 130 Gasoline Range Organics mg/Kg 5 (GRO)-C6-C10 Diesel Range Organics (Over 1000 925.6 mg/Kg 93 70 - 130 5 C10-C28)

	LCSD LCSD	
Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	89	70 - 130
o-Terphenvl	97	70 - 130

Lab Sample ID: 890-1502-81 MS Client Sample ID: BH-81 (15) **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 11416

Prep Batch: 11364 Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Gasoline Range Organics <49.9 U 997 995.4 100 70 - 130 mg/Kg (GRO)-C6-C10 <49.9 U 997 818.8 80 70 - 130 Diesel Range Organics (Over mg/Kg

C10-C28)

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	95		70 - 130
o-Terphenyl	99		70 - 130

Lab Sample ID: 890-1502-81 MSD Client Sample ID: BH-81 (15) Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 11416									Prep	Batch:	11364
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	1000	985.1		mg/Kg		99	70 - 130	1	20
Diesel Range Organics (Over C10-C28)	<49.9	U	1000	815.8		mg/Kg		79	70 ₋ 130	0	20

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 70 - 130 95

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1502-81 MSD

Lab Sample ID: MB 880-11375/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 11416

Analysis Batch: 11418

Client Sample ID: BH-81 (15)

Prep Type: Total/NA

Prep Batch: 11364

MSD MSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 97 70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 11375

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 mg/Kg 11/03/21 13:15 11/04/21 10:00 (GRO)-C6-C10 50.0 Diesel Range Organics (Over <50.0 U mg/Kg 11/03/21 13:15 11/04/21 10:00 C10-C28) <50.0 U OII Range Organics (Over C28-C36) 50.0 mg/Kg 11/03/21 13:15 11/04/21 10:00

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130	11/03/21 13:15	11/04/21 10:00	1
o-Terphenyl	123		70 - 130	11/03/21 13:15	11/04/21 10:00	1

Client Sample ID: Lab Control Sample

Matrix: Solid

Lab Sample ID: LCS 880-11375/2-A

Analysis Batch: 11418

Prep Type: Total/NA Prep Batch: 11375 LCS LCS

Spike Analyte Added Result Qualifier Unit %Rec Limits D Gasoline Range Organics 1000 976.2 mg/Kg 98 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1075 mg/Kg 107 70 - 130

C10-C28)

LCS LCS

Surrogate	%Recovery Quali	fier Limits
1-Chlorooctane	102	70 - 130
o-Terphenyl	99	70 - 130

Lab Sample ID: LCSD 880-11375/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 11418

Prep Type: Total/NA Prep Batch: 11375

Spike LCSD LCSD RPD %Rec. Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 1000 747.4 75 Gasoline Range Organics mg/Kg 70 - 130 27 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 959.3 mg/Kg 96 70 - 130 20

C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	85		70 - 130

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-1502-101 MS

Matrix: Solid

Analysis Batch: 11418

Client Sample ID: SW-10 (0-6)

Prep Type: Total/NA Prep Batch: 11375

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U *1	997	925.0		mg/Kg		91	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	997	908.6		mg/Kg		88	70 - 130	
C10-C28)										

o-Terphenyl

MS MS Surrogate %Recovery Qualifier 1-Chlorooctane

Limits 70 - 130 101 93 70 - 130

Lab Sample ID: 890-1502-101 MSD Client Sample ID: SW-10 (0-6) Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 11418

Sample Sample Spike MSD MSD %Rec. RPD Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit <49.9 U *1 1000 1063 105 70 - 130 Gasoline Range Organics mg/Kg 14 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 1000 979.4 mg/Kg 94 70 - 130 8 20

C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 _ 130
o-Terphenyl	97		70 - 130

Lab Sample ID: MB 880-11376/1-A

Matrix: Solid

Analysis Batch: 11414

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 11376

Prep Batch: 11375

мв мв

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 09:53	1
<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 09:53	1
<50.0	U	50.0		mg/Kg		11/03/21 13:58	11/04/21 09:53	1
	<50.0 <50.0	Result Qualifier	<50.0 U 50.0 <50.0	<50.0 U 50.0 <50.0	<50.0 U 50.0 mg/Kg <50.0 U 50.0 mg/Kg	<50.0 U 50.0 mg/Kg <50.0 U 50.0 mg/Kg	<50.0 U	<50.0 U

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130	11/03/21 13:58	11/04/21 09:53	1
o-Terphenyl	94		70 - 130	11/03/21 13:58	11/04/21 09:53	1

Lab Sample ID: LCS 880-11376/2-A

Matrix: Solid

Analysis Batch: 11414

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 11376

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	977.8		mg/Kg		98	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	838.1		mg/Kg		84	70 - 130	
C10-C28)								

Job ID: 890-1502-1 SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

%Recovery Qualifier

108

Lab Sample ID: LCS 880-11376/2-A

Limits

70 - 130

70 - 130

Matrix: Solid

Analysis Batch: 11414

Surrogate

1-Chlorooctane

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

> **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 11376

o-Terphenyl 88

Lab Sample ID: LCSD 880-11376/3-A **Matrix: Solid**

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 11376

Analysis Batch: 11414

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 965.5 97 70 - 130 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 913.0 91 mg/Kg 70 - 1309 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	103		70 - 130
o-Terphenyl	95		70 - 130

Lab Sample ID: 890-1502-121 MS Client Sample ID: SW-30 (RS) (6)

Matrix: Solid

Analysis Batch: 11414

Prep Type: Total/NA

Prep Batch: 11376

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	997	1036		mg/Kg		101	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	997	863.0		mg/Kg		84	70 - 130	
C10-C28)										

C10-C28)

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 100 o-Terphenyl 92 70 - 130

Lab Sample ID: 890-1502-121 MSD Client Sample ID: SW-30 (RS) (6) **Matrix: Solid**

Analysis Batch: 11414

Prep Type: Total/NA

Prep Batch: 11376

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	1000	954.6		mg/Kg		93	70 - 130	8	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	1000	789.2		mg/Kg		77	70 - 130	9	20
C10-C28)											

MSD MSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 92 70 - 130 84 70 - 130 o-Terphenyl

Client Sample ID: Method Blank

Prep Type: Soluble

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-11227/1-A

Matrix: Solid

Analysis Batch: 11379

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			11/06/21 05:15	1

Lab Sample ID: LCS 880-11227/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11379

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	266.7		mg/Kg		107	90 - 110	

Lab Sample ID: LCSD 880-11227/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 11379

		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride		250	267.5		mg/Kg		107	90 - 110	0	20

Client Sample ID: Matrix Spike Lab Sample ID: 890-1499-A-1-H MS **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11379

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	987	F1	248	1189	F1	mg/Kg		82	90 - 110	

Lab Sample ID: 890-1499-A-1-I MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11379

	Sample	Sample	Бріке	MSD	M2D				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	987	F1	248	1194	F1	mg/Kg		84	90 - 110	0	20	

Lab Sample ID: MB 880-11233/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11381

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			11/07/21 01:48	1

Lab Sample ID: LCS 880-11233/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11381

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	 250	229.5	-	ma/Ka		92	90 - 110

Lab Sample ID: LCSD 880-11233/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11381

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	233.0		mg/Kg		93	90 - 110	1	20

Client Sample ID: SW-1 (0-6)

Client Sample ID: SW-1 (0-6)

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Client Sample ID: BH-4 (6)

Client Sample ID: BH-4 (6)

Client Sample ID: SW-20 (15)

90 - 110

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-1502-92 MS

Matrix: Solid Prep Type: Soluble Analysis Batch: 11381 Sample Sample Spike MS MS %Rec. Result Qualifier Added Qualifier Limits

1250

Chloride

Lab Sample ID: 890-1502-92 MSD **Matrix: Solid**

Analyte

Analysis Batch: 11381

Sample Sample Spike MSD MSD %Rec. RPD Qualifier RPD Analyte Result Added Result Qualifier Unit D %Rec Limits Limit Chloride 1430 1250 2746 mg/Kg 105 90 - 110

Result

2745

Unit

mg/Kg

D

%Rec

105

Lab Sample ID: MB 880-11236/1-A

Matrix: Solid

Analysis Batch: 11452

мв мв

1430

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 11/08/21 08:34 mg/Kg

Lab Sample ID: LCS 880-11236/2-A

Matrix: Solid

Analysis Batch: 11452

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Chloride 250 249.1 100 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-11236/3-A

Matrix: Solid

Analysis Batch: 11452

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 249.5 mg/Kg 100 90 - 110

Lab Sample ID: 890-1502-4 MS

Matrix: Solid

Analysis Batch: 11452

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Chloride 48 9 253 282 3 mg/Kg 92 90 - 110

Lab Sample ID: 890-1502-4 MSD

Matrix: Solid

Analysis Batch: 11452

MSD MSD %Rec. RPD Sample Sample Spike Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 48.9 253 277.9 mg/Kg 91 90 - 110 20

Lab Sample ID: 890-1502-111 MS

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Analysis Batch: 11452

Spike Sample MS MS %Rec. Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride 1150 248 1264 mg/Kg 48 90 - 110

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-1502-111 MSD Client Sample ID: SW-20 (15) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11452

		Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
l	Chloride	1150		248	1261	4	mg/Kg		46	90 - 110	0	20	

Lab Sample ID: MB 880-11237/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11453

MB MB

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 11/07/21 05:07

Lab Sample ID: LCS 880-11237/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 11453

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride		250	236.9		mg/Kg	_	95	90 - 110	

Lab Sample ID: LCSD 880-11237/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 11453

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	241.4		mg/Kg		97	90 - 110	2	20

Lab Sample ID: 890-1502-5 MS Client Sample ID: BH-5 (6) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11453

	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	123		249	353.6		ma/Ka		93	90 - 110		_

Lab Sample ID: 890-1502-5 MSD Client Sample ID: BH-5 (6) **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 11453

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	123		249	352.1		mg/Kg		92	90 - 110	0	20	

Lab Sample ID: 890-1502-15 MS Client Sample ID: BH-15 (6) **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 11453

	Sample Sample	Spike	MS	MS				%Rec.
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	4220 F1	1250	5802	F1	mg/Kg		126	90 - 110

Lab Sample ID: 890-1502-15 MSD Client Sample ID: BH-15 (6) **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 11453											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	4220	F1	1250	5826	F1	mg/Kg		128	90 - 110	0	20

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Client Sample ID: BH-25 (15)

Client Sample ID: BH-25 (15)

Client Sample ID: BH-35 (15)

Client Sample ID: BH-35 (15)

Client Sample ID: Method Blank

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-11238/1-A

Matrix: Solid

Analysis Batch: 11454

мв мв

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 11/07/21 09:27

Lab Sample ID: LCS 880-11238/2-A

Matrix: Solid

Analysis Batch: 11454

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 238.0 mg/Kg 95 90 - 110

Lab Sample ID: LCSD 880-11238/3-A

Matrix: Solid

Analysis Batch: 11454

LCSD LCSD %Rec. RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 234.9 mg/Kg 90 - 110

Lab Sample ID: 890-1502-25 MS

Matrix: Solid

Analysis Batch: 11454

Sample Sample MS MS Spike %Rec. Result Qualifier Added Result Qualifier %Rec Analyte Unit Limits Chloride 447 F1 250 648.9 F1 81 90 - 110 mg/Kg

Lab Sample ID: 890-1502-25 MSD

Matrix: Solid

Analysis Batch: 11454

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 447 F1 656.3 F1 Chloride 250 mg/Kg 84 90 - 110

Lab Sample ID: 890-1502-35 MS

Matrix: Solid

Analysis Batch: 11454

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Chloride 333 F1 253 539.3 F1 mg/Kg 90 - 110

Lab Sample ID: 890-1502-35 MSD

Matrix: Solid

Analysis Batch: 11454

MSD MSD %Rec. RPD Sample Sample Spike Added Result Qualifier Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 333 F1 253 539.2 F1 mg/Kg 82 90 - 110

Lab Sample ID: MB 880-11240/1-A

Matrix: Solid

Analysis Batch: 11455

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 5.00 <5.00 mg/Kg 11/08/21 04:07

Job ID: 890-1502-1

SDG: 212C-MD-02230

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: BH-45 (15)

Client Sample ID: BH-45 (15)

Client Sample ID: BH-55 (15)

Client Sample ID: BH-55 (15)

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCS 880-11240/2-A

Matrix: Solid

Analysis Batch: 11455

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	232.0		mg/Kg		93	90 - 110	

Lab Sample ID: LCSD 880-11240/3-A

Matrix: Solid

Analysis Batch: 11455

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	233.4		mg/Kg		93	90 - 110	1	20

Lab Sample ID: 890-1502-45 MS

Matrix: Solid

Analysis Batch: 11455

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	284	F1	248	510.8		mg/Kg		91	90 - 110	

Lab Sample ID: 890-1502-45 MSD

Matrix: Solid

Analysis Batch: 11455

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	284	F1	248	499.4	F1	mg/Kg		87	90 - 110	2	20

Lab Sample ID: 890-1502-55 MS

Matrix: Solid

Analysis Batch: 11455

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	4680	F1	1250	5790	F1	ma/Ka		89	90 - 110	 Т

Lab Sample ID: 890-1502-55 MSD

Matrix: Solid

Analysis Batch: 11455

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	4680	F1	1250	5826		ma/Ka		92	90 - 110		20	

Lab Sample ID: MB 880-11242/1-A

Matrix: Solid

Analysis Batch: 11456

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			11/08/21 08:35	1

Lab Sample ID: LCS 880-11242/2-A

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Analysis Batch: 11456

Analysis Baton: 11400								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 250	236.3		mg/Kg		95	90 - 110	

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCSD 880-11242/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11456

LCSD LCSD %Rec. RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Chloride 250 237.4 mg/Kg 95 90 - 110 20

Lab Sample ID: 890-1502-65 MS Client Sample ID: BH-65 (15) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11456

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Chloride 823 F1 250 1040 F1 mg/Kg 87 90 - 110

Lab Sample ID: 890-1502-65 MSD Client Sample ID: BH-65 (15) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11456

MSD MSD %Rec. RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 823 F1 250 1044 F1 mg/Kg 90 - 110

Lab Sample ID: 890-1502-75 MS Client Sample ID: BH-75 (15) **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 11456

MS MS Sample Sample Spike %Rec. Result Qualifier Result Qualifier Added %Rec Analyte Unit Limits Chloride 982 249 1200 F1 90 - 110 mg/Kg

Lab Sample ID: 890-1502-75 MSD Client Sample ID: BH-75 (15) **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 11456

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 982 F1 1186 F1 Chloride 249 mg/Kg 82 90 - 110

Lab Sample ID: MB 880-11243/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11705

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride <5.00 5.00 mg/Kg 11/09/21 12:29

Lab Sample ID: LCS 880-11243/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11705

LCS LCS %Rec. Spike Added Result Qualifier Limits Analyte Unit %Rec Chloride 250 251.9 mg/Kg 101 90 - 110

Lab Sample ID: LCSD 880-11243/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11705

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 253.1 mg/Kg 101 90 - 110 20

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-1502-85 MS Client Sample ID: BH-85 (15) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11705

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Chloride 656 F1 250 870.1 F1 mg/Kg 86 90 - 110

Lab Sample ID: 890-1502-85 MSD Client Sample ID: BH-85 (15) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11705

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limits Limit Analyte Unit D %Rec RPD Chloride 656 F1 250 878.2 F1 mg/Kg 89 90 - 110

Lab Sample ID: 890-1502-124 MS Client Sample ID: SW-33 (RS) (8)

Matrix: Solid Prep Type: Soluble

Analysis Batch: 11705

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit Limits Chloride 831 F1 252 1043 F1 90 - 110 mg/Kg

Lab Sample ID: 890-1502-124 MSD Client Sample ID: SW-33 (RS) (8) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 11705

Spike MSD MSD RPD Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec RPD Limit Limits 252 Chloride 831 F1 1043 F1 84 90 - 110 20 mg/Kg

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC VOA

Prep Batch: 11021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-11021/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 11022

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-121	SW-30 (RS) (6)	Total/NA	Solid	8021B	11076
890-1502-122	SW-31 (RS) (4)	Total/NA	Solid	8021B	11076
890-1502-123	SW-32 (RS) (6)	Total/NA	Solid	8021B	11076
890-1502-124	SW-33 (RS) (8)	Total/NA	Solid	8021B	11076
MB 880-11021/5-A	Method Blank	Total/NA	Solid	8021B	11021
MB 880-11076/5-A	Method Blank	Total/NA	Solid	8021B	11076
LCS 880-11076/1-A	Lab Control Sample	Total/NA	Solid	8021B	11076
LCSD 880-11076/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11076
890-1502-121 MS	SW-30 (RS) (6)	Total/NA	Solid	8021B	11076
890-1502-121 MSD	SW-30 (RS) (6)	Total/NA	Solid	8021B	11076

Prep Batch: 11075

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-1	BH-1 (6)	Total/NA	Solid	5035	
890-1502-2	BH-2 (6)	Total/NA	Solid	5035	
890-1502-3	BH-3 (6)	Total/NA	Solid	5035	
890-1502-4	BH-4 (6)	Total/NA	Solid	5035	
890-1502-5	BH-5 (6)	Total/NA	Solid	5035	
890-1502-6	BH-6 (6)	Total/NA	Solid	5035	
890-1502-7	BH-7 (6)	Total/NA	Solid	5035	
890-1502-8	BH-8 (6)	Total/NA	Solid	5035	
890-1502-9	BH-9 (6)	Total/NA	Solid	5035	
890-1502-10	BH-10 (6)	Total/NA	Solid	5035	
890-1502-11	BH-11 (6)	Total/NA	Solid	5035	
890-1502-12	BH-12 (6)	Total/NA	Solid	5035	
890-1502-13	BH-13 (6)	Total/NA	Solid	5035	
890-1502-14	BH-14 (6)	Total/NA	Solid	5035	
890-1502-15	BH-15 (6)	Total/NA	Solid	5035	
890-1502-16	BH-16 (6)	Total/NA	Solid	5035	
890-1502-17	BH-17 (6)	Total/NA	Solid	5035	
890-1502-18	BH-18 (6)	Total/NA	Solid	5035	
890-1502-19	BH-19 (6)	Total/NA	Solid	5035	
890-1502-20	BH-20 (6)	Total/NA	Solid	5035	
MB 880-11075/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11075/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11075/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-1 MS	BH-1 (6)	Total/NA	Solid	5035	
890-1502-1 MSD	BH-1 (6)	Total/NA	Solid	5035	

Prep Batch: 11076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-121	SW-30 (RS) (6)	Total/NA	Solid	5035	
890-1502-122	SW-31 (RS) (4)	Total/NA	Solid	5035	
890-1502-123	SW-32 (RS) (6)	Total/NA	Solid	5035	
890-1502-124	SW-33 (RS) (8)	Total/NA	Solid	5035	
MB 880-11076/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11076/1-A	Lab Control Sample	Total/NA	Solid	5035	

Eurofins Xenco, Carlsbad

2

2

3

6

g

9

11

1 /

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC VOA (Continued)

Prep Batch: 11076 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-11076/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-121 MS	SW-30 (RS) (6)	Total/NA	Solid	5035	
890-1502-121 MSD	SW-30 (RS) (6)	Total/NA	Solid	5035	

Prep Batch: 11109

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-21	BH-21 (6)	Total/NA	Solid	5035	
890-1502-22	BH-22 (6)	Total/NA	Solid	5035	
890-1502-23	BH-23 (6)	Total/NA	Solid	5035	
890-1502-24	BH-24 (6)	Total/NA	Solid	5035	
890-1502-25	BH-25 (15)	Total/NA	Solid	5035	
890-1502-26	BH-26 (15)	Total/NA	Solid	5035	
890-1502-27	BH-27 (15)	Total/NA	Solid	5035	
890-1502-28	BH-28 (15)	Total/NA	Solid	5035	
890-1502-29	BH-29 (15)	Total/NA	Solid	5035	
890-1502-30	BH-30 (15)	Total/NA	Solid	5035	
890-1502-31	BH-31 (15)	Total/NA	Solid	5035	
890-1502-32	BH-32 (15)	Total/NA	Solid	5035	
890-1502-33	BH-33 (15)	Total/NA	Solid	5035	
890-1502-34	BH-34 (15)	Total/NA	Solid	5035	
890-1502-35	BH-35 (15)	Total/NA	Solid	5035	
890-1502-36	BH-36 (15)	Total/NA	Solid	5035	
890-1502-37	BH-37 (15)	Total/NA	Solid	5035	
890-1502-38	BH-38 (15)	Total/NA	Solid	5035	
890-1502-39	BH-39 (15)	Total/NA	Solid	5035	
890-1502-40	BH-40 (15)	Total/NA	Solid	5035	
MB 880-11109/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11109/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11109/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-21 MS	BH-21 (6)	Total/NA	Solid	5035	
890-1502-21 MSD	BH-21 (6)	Total/NA	Solid	5035	

Prep Batch: 11111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-41	BH-41 (15)	Total/NA	Solid	5035	
890-1502-42	BH-42 (15)	Total/NA	Solid	5035	
890-1502-43	BH-43 (15)	Total/NA	Solid	5035	
890-1502-44	BH-44 (15)	Total/NA	Solid	5035	
890-1502-45	BH-45 (15)	Total/NA	Solid	5035	
890-1502-46	BH-46 (15)	Total/NA	Solid	5035	
890-1502-47	BH-47 (15)	Total/NA	Solid	5035	
890-1502-48	BH-48 (15)	Total/NA	Solid	5035	
890-1502-49	BH-49 (15)	Total/NA	Solid	5035	
890-1502-50	BH-50 (15)	Total/NA	Solid	5035	
890-1502-51	BH-51 (15)	Total/NA	Solid	5035	
890-1502-52	BH-52 (15)	Total/NA	Solid	5035	
890-1502-54	BH-54 (15)	Total/NA	Solid	5035	
890-1502-55	BH-55 (15)	Total/NA	Solid	5035	
890-1502-56	BH-56 (15)	Total/NA	Solid	5035	
MB 880-11111/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11111/1-A	Lab Control Sample	Total/NA	Solid	5035	

Eurofins Xenco, Carlsbad

2

3

5

0

8

10

12

13

14

11

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC VOA (Continued)

Prep Batch: 11111 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-11111/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-41 MS	BH-41 (15)	Total/NA	Solid	5035	
890-1502-41 MSD	BH-41 (15)	Total/NA	Solid	5035	

Prep Batch: 11112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-1502-61	BH-61 (15)	Total/NA	Solid	5035	
890-1502-62	BH-62 (15)	Total/NA	Solid	5035	
890-1502-63	BH-63 (15)	Total/NA	Solid	5035	
890-1502-64	BH-64 (15)	Total/NA	Solid	5035	
890-1502-65	BH-65 (15)	Total/NA	Solid	5035	
890-1502-66	BH-66 (15)	Total/NA	Solid	5035	
890-1502-67	BH-67 (15)	Total/NA	Solid	5035	
890-1502-68	BH-68 (15)	Total/NA	Solid	5035	
890-1502-69	BH-69 (15)	Total/NA	Solid	5035	
890-1502-70	BH-70 (15)	Total/NA	Solid	5035	
890-1502-71	BH-71 (15)	Total/NA	Solid	5035	
890-1502-72	BH-72 (15)	Total/NA	Solid	5035	
890-1502-73	BH-73 (15)	Total/NA	Solid	5035	
890-1502-74	BH-74 (15)	Total/NA	Solid	5035	
890-1502-75	BH-75 (15)	Total/NA	Solid	5035	
890-1502-76	BH-76 (15)	Total/NA	Solid	5035	
890-1502-77	BH-77 (15)	Total/NA	Solid	5035	
890-1502-78	BH-78 (15)	Total/NA	Solid	5035	
890-1502-79	BH-79 (15)	Total/NA	Solid	5035	
890-1502-80	BH-80 (15)	Total/NA	Solid	5035	
MB 880-11112/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11112/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11112/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-61 MS	BH-61 (15)	Total/NA	Solid	5035	
890-1502-61 MSD	BH-61 (15)	Total/NA	Solid	5035	

Prep Batch: 11113

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-1502-81	BH-81 (15)	Total/NA	Solid	5035	
890-1502-82	BH-82 (15)	Total/NA	Solid	5035	
890-1502-83	BH-83 (15)	Total/NA	Solid	5035	
890-1502-84	BH-84 (15)	Total/NA	Solid	5035	
890-1502-85	BH-85 (15)	Total/NA	Solid	5035	
890-1502-86	BH-86 (15)	Total/NA	Solid	5035	
890-1502-87	BH-87 (15)	Total/NA	Solid	5035	
390-1502-88	BH-88 (15)	Total/NA	Solid	5035	
890-1502-89	BH-89 (15)	Total/NA	Solid	5035	
890-1502-90	BH90 (RS) (6)	Total/NA	Solid	5035	
890-1502-91	BH-91 (RS) (6)	Total/NA	Solid	5035	
890-1502-92	SW-1 (0-6)	Total/NA	Solid	5035	
890-1502-93	SW-2 (0-6)	Total/NA	Solid	5035	
890-1502-94	SW-3 (0-6)	Total/NA	Solid	5035	
890-1502-95	SW-4 (0-6)	Total/NA	Solid	5035	
890-1502-96	SW-5 (0-6)	Total/NA	Solid	5035	
890-1502-97	SW-6 (0-6)	Total/NA	Solid	5035	

Eurofins Xenco, Carlsbad

Page 151 of 248

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC VOA (Continued)

Prep Batch: 11113 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-98	SW-7 (0-6)	Total/NA	Solid	5035	
890-1502-99	SW-8 (0-6)	Total/NA	Solid	5035	
890-1502-100	SW-9 (0-6)	Total/NA	Solid	5035	
MB 880-11113/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11113/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11113/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-81 MS	BH-81 (15)	Total/NA	Solid	5035	
890-1502-81 MSD	BH-81 (15)	Total/NA	Solid	5035	

Prep Batch: 11114

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-101	SW-10 (0-6)	Total/NA	Solid	5035	
890-1502-102	SW-11 (0-6)	Total/NA	Solid	5035	
890-1502-103	SW-12 (10)	Total/NA	Solid	5035	
890-1502-104	SW-13 (15)	Total/NA	Solid	5035	
890-1502-105	SW-14 (15)	Total/NA	Solid	5035	
890-1502-106	SW-15 (15)	Total/NA	Solid	5035	
890-1502-107	SW-16 (15)	Total/NA	Solid	5035	
890-1502-108	SW-17 (15)	Total/NA	Solid	5035	
890-1502-109	SW-18 (15)	Total/NA	Solid	5035	
890-1502-110	SW-19 (15)	Total/NA	Solid	5035	
890-1502-111	SW-20 (15)	Total/NA	Solid	5035	
890-1502-112	SW-21 (15)	Total/NA	Solid	5035	
890-1502-113	SW-22 (15)	Total/NA	Solid	5035	
890-1502-114	SW-23 (15)	Total/NA	Solid	5035	
890-1502-115	SW-24 (15)	Total/NA	Solid	5035	
890-1502-116	SW-25 (15)	Total/NA	Solid	5035	
890-1502-117	SW-26 (15)	Total/NA	Solid	5035	
890-1502-118	SW-27 (15)	Total/NA	Solid	5035	
890-1502-119	SW-28 (15)	Total/NA	Solid	5035	
MB 880-11114/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11114/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11114/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-101 MS	SW-10 (0-6)	Total/NA	Solid	5035	
890-1502-101 MSD	SW-10 (0-6)	Total/NA	Solid	5035	

Analysis Batch: 11206

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-1	BH-1 (6)	Total/NA	Solid	8021B	11075
890-1502-2	BH-2 (6)	Total/NA	Solid	8021B	11075
890-1502-3	BH-3 (6)	Total/NA	Solid	8021B	11075
890-1502-4	BH-4 (6)	Total/NA	Solid	8021B	11075
890-1502-5	BH-5 (6)	Total/NA	Solid	8021B	11075
890-1502-6	BH-6 (6)	Total/NA	Solid	8021B	11075
890-1502-7	BH-7 (6)	Total/NA	Solid	8021B	11075
890-1502-8	BH-8 (6)	Total/NA	Solid	8021B	11075
890-1502-9	BH-9 (6)	Total/NA	Solid	8021B	11075
890-1502-10	BH-10 (6)	Total/NA	Solid	8021B	11075
890-1502-11	BH-11 (6)	Total/NA	Solid	8021B	11075
890-1502-12	BH-12 (6)	Total/NA	Solid	8021B	11075
890-1502-13	BH-13 (6)	Total/NA	Solid	8021B	11075

Eurofins Xenco, Carlsbad

11/10/2021

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC VOA (Continued)

Analysis Batch: 11206 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-14	BH-14 (6)	Total/NA	Solid	8021B	11075
890-1502-15	BH-15 (6)	Total/NA	Solid	8021B	11075
890-1502-16	BH-16 (6)	Total/NA	Solid	8021B	11075
890-1502-17	BH-17 (6)	Total/NA	Solid	8021B	11075
890-1502-18	BH-18 (6)	Total/NA	Solid	8021B	11075
890-1502-19	BH-19 (6)	Total/NA	Solid	8021B	11075
890-1502-20	BH-20 (6)	Total/NA	Solid	8021B	11075
MB 880-11075/5-A	Method Blank	Total/NA	Solid	8021B	11075
MB 880-11207/5-A	Method Blank	Total/NA	Solid	8021B	11207
LCS 880-11075/1-A	Lab Control Sample	Total/NA	Solid	8021B	11075
LCSD 880-11075/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11075
890-1502-1 MS	BH-1 (6)	Total/NA	Solid	8021B	11075
890-1502-1 MSD	BH-1 (6)	Total/NA	Solid	8021B	11075

Prep Batch: 11207

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-11207/5-A	Method Blank	Total/NA	Solid	5035	_

Analysis Batch: 11221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
390-1502-21	BH-21 (6)	Total/NA	Solid	8021B	1110
890-1502-22	BH-22 (6)	Total/NA	Solid	8021B	1110
390-1502-23	BH-23 (6)	Total/NA	Solid	8021B	1110
390-1502-24	BH-24 (6)	Total/NA	Solid	8021B	1110
390-1502-25	BH-25 (15)	Total/NA	Solid	8021B	1110
390-1502-26	BH-26 (15)	Total/NA	Solid	8021B	1110
390-1502-27	BH-27 (15)	Total/NA	Solid	8021B	1110
390-1502-28	BH-28 (15)	Total/NA	Solid	8021B	1110
390-1502-29	BH-29 (15)	Total/NA	Solid	8021B	1110
390-1502-30	BH-30 (15)	Total/NA	Solid	8021B	1110
90-1502-31	BH-31 (15)	Total/NA	Solid	8021B	1110
390-1502-32	BH-32 (15)	Total/NA	Solid	8021B	1110
90-1502-33	BH-33 (15)	Total/NA	Solid	8021B	1110
90-1502-34	BH-34 (15)	Total/NA	Solid	8021B	1110
90-1502-35	BH-35 (15)	Total/NA	Solid	8021B	1110
90-1502-36	BH-36 (15)	Total/NA	Solid	8021B	1110
90-1502-37	BH-37 (15)	Total/NA	Solid	8021B	1110
90-1502-38	BH-38 (15)	Total/NA	Solid	8021B	1110
390-1502-39	BH-39 (15)	Total/NA	Solid	8021B	1110
90-1502-40	BH-40 (15)	Total/NA	Solid	8021B	1110
90-1502-61	BH-61 (15)	Total/NA	Solid	8021B	1111
90-1502-62	BH-62 (15)	Total/NA	Solid	8021B	1111
90-1502-63	BH-63 (15)	Total/NA	Solid	8021B	1111
90-1502-64	BH-64 (15)	Total/NA	Solid	8021B	1111
90-1502-65	BH-65 (15)	Total/NA	Solid	8021B	1111
90-1502-66	BH-66 (15)	Total/NA	Solid	8021B	1111
90-1502-67	BH-67 (15)	Total/NA	Solid	8021B	1111
90-1502-68	BH-68 (15)	Total/NA	Solid	8021B	1111
90-1502-69	BH-69 (15)	Total/NA	Solid	8021B	1111
90-1502-70	BH-70 (15)	Total/NA	Solid	8021B	1111
390-1502-71	BH-71 (15)	Total/NA	Solid	8021B	1111

Eurofins Xenco, Carlsbad

2

O

R

11

4.0

14

Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

GC VOA (Continued)

Analysis Batch: 11221 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-72	BH-72 (15)	Total/NA	Solid	8021B	11112
890-1502-73	BH-73 (15)	Total/NA	Solid	8021B	11112
890-1502-74	BH-74 (15)	Total/NA	Solid	8021B	11112
890-1502-75	BH-75 (15)	Total/NA	Solid	8021B	11112
890-1502-76	BH-76 (15)	Total/NA	Solid	8021B	11112
890-1502-77	BH-77 (15)	Total/NA	Solid	8021B	11112
890-1502-78	BH-78 (15)	Total/NA	Solid	8021B	11112
890-1502-79	BH-79 (15)	Total/NA	Solid	8021B	11112
890-1502-80	BH-80 (15)	Total/NA	Solid	8021B	11112
MB 880-11109/5-A	Method Blank	Total/NA	Solid	8021B	11109
MB 880-11112/5-A	Method Blank	Total/NA	Solid	8021B	11112
LCS 880-11109/1-A	Lab Control Sample	Total/NA	Solid	8021B	11109
LCS 880-11112/1-A	Lab Control Sample	Total/NA	Solid	8021B	11112
LCSD 880-11109/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11109
LCSD 880-11112/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11112
890-1502-21 MS	BH-21 (6)	Total/NA	Solid	8021B	11109
890-1502-21 MSD	BH-21 (6)	Total/NA	Solid	8021B	11109
890-1502-61 MS	BH-61 (15)	Total/NA	Solid	8021B	11112
890-1502-61 MSD	BH-61 (15)	Total/NA	Solid	8021B	11112

Prep Batch: 11258

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-11258/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 11259

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-41	BH-41 (15)	Total/NA	Solid	8021B	1111
890-1502-42	BH-42 (15)	Total/NA	Solid	8021B	11111
890-1502-43	BH-43 (15)	Total/NA	Solid	8021B	11111
890-1502-44	BH-44 (15)	Total/NA	Solid	8021B	11111
890-1502-45	BH-45 (15)	Total/NA	Solid	8021B	11111
890-1502-46	BH-46 (15)	Total/NA	Solid	8021B	11111
890-1502-47	BH-47 (15)	Total/NA	Solid	8021B	11111
890-1502-48	BH-48 (15)	Total/NA	Solid	8021B	11111
890-1502-49	BH-49 (15)	Total/NA	Solid	8021B	11111
390-1502-50	BH-50 (15)	Total/NA	Solid	8021B	11111
390-1502-51	BH-51 (15)	Total/NA	Solid	8021B	11111
390-1502-52	BH-52 (15)	Total/NA	Solid	8021B	11111
890-1502-54	BH-54 (15)	Total/NA	Solid	8021B	11111
390-1502-55	BH-55 (15)	Total/NA	Solid	8021B	11111
890-1502-56	BH-56 (15)	Total/NA	Solid	8021B	11111
MB 880-11111/5-A	Method Blank	Total/NA	Solid	8021B	11111
MB 880-11258/5-A	Method Blank	Total/NA	Solid	8021B	11258
LCS 880-11111/1-A	Lab Control Sample	Total/NA	Solid	8021B	11111
LCSD 880-11111/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11111
390-1502-41 MS	BH-41 (15)	Total/NA	Solid	8021B	11111
890-1502-41 MSD	BH-41 (15)	Total/NA	Solid	8021B	1111

Analysis Batch: 11374

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch					
890-1502-81	BH-81 (15)	Total/NA	Solid	8021B	11113					

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC VOA (Continued)

Analysis Batch: 11374 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
390-1502-82	BH-82 (15)	Total/NA	Solid	8021B	1111:
390-1502-83	BH-83 (15)	Total/NA	Solid	8021B	1111:
890-1502-84	BH-84 (15)	Total/NA	Solid	8021B	11113
890-1502-85	BH-85 (15)	Total/NA	Solid	8021B	11113
390-1502-86	BH-86 (15)	Total/NA	Solid	8021B	11113
390-1502-87	BH-87 (15)	Total/NA	Solid	8021B	11113
390-1502-88	BH-88 (15)	Total/NA	Solid	8021B	11113
390-1502-89	BH-89 (15)	Total/NA	Solid	8021B	11113
390-1502-90	BH90 (RS) (6)	Total/NA	Solid	8021B	11113
390-1502-91	BH-91 (RS) (6)	Total/NA	Solid	8021B	11113
390-1502-92	SW-1 (0-6)	Total/NA	Solid	8021B	11113
390-1502-93	SW-2 (0-6)	Total/NA	Solid	8021B	11113
390-1502-94	SW-3 (0-6)	Total/NA	Solid	8021B	11113
390-1502-95	SW-4 (0-6)	Total/NA	Solid	8021B	11113
390-1502-96	SW-5 (0-6)	Total/NA	Solid	8021B	11113
390-1502-97	SW-6 (0-6)	Total/NA	Solid	8021B	11113
390-1502-98	SW-7 (0-6)	Total/NA	Solid	8021B	11113
390-1502-99	SW-8 (0-6)	Total/NA	Solid	8021B	11113
390-1502-100	SW-9 (0-6)	Total/NA	Solid	8021B	11113
390-1502-101	SW-10 (0-6)	Total/NA	Solid	8021B	11114
390-1502-102	SW-11 (0-6)	Total/NA	Solid	8021B	11114
390-1502-103	SW-12 (10)	Total/NA	Solid	8021B	11114
390-1502-104	SW-13 (15)	Total/NA	Solid	8021B	11114
390-1502-105	SW-14 (15)	Total/NA	Solid	8021B	11114
390-1502-106	SW-15 (15)	Total/NA	Solid	8021B	11114
890-1502-107	SW-16 (15)	Total/NA	Solid	8021B	11114
390-1502-108	SW-17 (15)	Total/NA	Solid	8021B	11114
390-1502-109	SW-18 (15)	Total/NA	Solid	8021B	11114
390-1502-109 390-1502-110		Total/NA	Solid	8021B	11114
390-1502-110 390-1502-111	SW-19 (15)	Total/NA	Solid	8021B	11114
	SW-20 (15)				
390-1502-112	SW-21 (15)	Total/NA	Solid	8021B	11114
390-1502-113	SW-22 (15)	Total/NA	Solid	8021B	11114
390-1502-114	SW-23 (15)	Total/NA	Solid	8021B	11114
390-1502-115	SW-24 (15)	Total/NA	Solid	8021B	11114
390-1502-116	SW-25 (15)	Total/NA	Solid	8021B	11114
390-1502-117	SW-26 (15)	Total/NA	Solid	8021B	11114
390-1502-118	SW-27 (15)	Total/NA	Solid	8021B	11114
390-1502-119	SW-28 (15)	Total/NA	Solid	8021B	11114
MB 880-11113/5-A	Method Blank	Total/NA	Solid	8021B	11113
MB 880-11114/5-A	Method Blank	Total/NA	Solid	8021B	11114
CS 880-11113/1-A	Lab Control Sample	Total/NA	Solid	8021B	11113
_CS 880-11114/1-A	Lab Control Sample	Total/NA	Solid	8021B	11114
_CSD 880-11113/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11113
CSD 880-11114/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11114
890-1502-81 MS	BH-81 (15)	Total/NA	Solid	8021B	11113
890-1502-81 MSD	BH-81 (15)	Total/NA	Solid	8021B	11113
890-1502-101 MS	SW-10 (0-6)	Total/NA	Solid	8021B	11114
890-1502-101 MSD	SW-10 (0-6)	Total/NA	Solid	8021B	11114

Eurofins Xenco, Carlsbad

2

3

4

6

8

10

12

15

Н

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC VOA

Prep Batch: 11388

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-53	BH-53 (15)	Total/NA	Solid	5035	
MB 880-11388/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11388/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11388/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1502-53 MS	BH-53 (15)	Total/NA	Solid	5035	
890-1502-53 MSD	BH-53 (15)	Total/NA	Solid	5035	

Analysis Batch: 11420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-53	BH-53 (15)	Total/NA	Solid	8021B	11388
MB 880-11388/5-A	Method Blank	Total/NA	Solid	8021B	11388
LCS 880-11388/1-A	Lab Control Sample	Total/NA	Solid	8021B	11388
LCSD 880-11388/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11388
890-1502-53 MS	BH-53 (15)	Total/NA	Solid	8021B	11388
890-1502-53 MSD	BH-53 (15)	Total/NA	Solid	8021B	11388

Prep Batch: 11445

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-57	BH-57 (15)	Total/NA	Solid	5035	
890-1502-58	BH-58 (15)	Total/NA	Solid	5035	
890-1502-59	BH-59 (15)	Total/NA	Solid	5035	
890-1502-60	BH-60 (15)	Total/NA	Solid	5035	
890-1502-120	SW-29 (15)	Total/NA	Solid	5035	
MB 880-11445/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-11445/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-11445/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-1520-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
890-1520-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 11449

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-57	BH-57 (15)	Total/NA	Solid	8021B	11445
890-1502-58	BH-58 (15)	Total/NA	Solid	8021B	11445
390-1502-59	BH-59 (15)	Total/NA	Solid	8021B	11445
390-1502-60	BH-60 (15)	Total/NA	Solid	8021B	11445
390-1502-120	SW-29 (15)	Total/NA	Solid	8021B	11445
MB 880-11445/5-A	Method Blank	Total/NA	Solid	8021B	11445
MB 880-11449/8	Method Blank	Total/NA	Solid	8021B	
LCS 880-11445/1-A	Lab Control Sample	Total/NA	Solid	8021B	11445
LCS 880-11449/3	Lab Control Sample	Total/NA	Solid	8021B	
LCSD 880-11445/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	11445
LCSD 880-11449/4	Lab Control Sample Dup	Total/NA	Solid	8021B	
390-1520-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	11445
890-1520-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	11445

Analysis Batch: 11768

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
890-1502-1	BH-1 (6)	Total/NA	Solid	Total BTEX
890-1502-2	BH-2 (6)	Total/NA	Solid	Total BTEX
890-1502-3	BH-3 (6)	Total/NA	Solid	Total BTEX
890-1502-4	BH-4 (6)	Total/NA	Solid	Total BTEX

Eurofins Xenco, Carlsbad

.

1

5

8

46

13

14

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC VOA (Continued)

Analysis Batch: 11768 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-5	BH-5 (6)	Total/NA	Solid	Total BTEX	
890-1502-6	BH-6 (6)	Total/NA	Solid	Total BTEX	
890-1502-7	BH-7 (6)	Total/NA	Solid	Total BTEX	
390-1502-8	BH-8 (6)	Total/NA	Solid	Total BTEX	
890-1502-9	BH-9 (6)	Total/NA	Solid	Total BTEX	
890-1502-10	BH-10 (6)	Total/NA	Solid	Total BTEX	
890-1502-11	BH-11 (6)	Total/NA	Solid	Total BTEX	
890-1502-12	BH-12 (6)	Total/NA	Solid	Total BTEX	
890-1502-13	BH-13 (6)	Total/NA	Solid	Total BTEX	
890-1502-14	BH-14 (6)	Total/NA	Solid	Total BTEX	
890-1502-15	BH-15 (6)	Total/NA	Solid	Total BTEX	
890-1502-16	BH-16 (6)	Total/NA	Solid	Total BTEX	
890-1502-17	BH-17 (6)	Total/NA	Solid	Total BTEX	
890-1502-18	BH-18 (6)	Total/NA	Solid	Total BTEX	
890-1502-19	BH-19 (6)	Total/NA	Solid	Total BTEX	
390-1502-19 390-1502-20	BH-20 (6)	Total/NA	Solid	Total BTEX	
390-1502-20 390-1502-21	BH-21 (6)	Total/NA	Solid	Total BTEX	
890-1502-21		Total/NA	Solid	Total BTEX	
	BH-22 (6)				
890-1502-23	BH-23 (6)	Total/NA	Solid	Total BTEX	
890-1502-24	BH-24 (6)	Total/NA	Solid	Total BTEX	
390-1502-25	BH-25 (15)	Total/NA	Solid	Total BTEX	
890-1502-26	BH-26 (15)	Total/NA	Solid	Total BTEX	
390-1502-27	BH-27 (15)	Total/NA	Solid	Total BTEX	
390-1502-28	BH-28 (15)	Total/NA	Solid	Total BTEX	
390-1502-29	BH-29 (15)	Total/NA	Solid	Total BTEX	
390-1502-30	BH-30 (15)	Total/NA	Solid	Total BTEX	
390-1502-31	BH-31 (15)	Total/NA	Solid	Total BTEX	
890-1502-32	BH-32 (15)	Total/NA	Solid	Total BTEX	
390-1502-33	BH-33 (15)	Total/NA	Solid	Total BTEX	
890-1502-34	BH-34 (15)	Total/NA	Solid	Total BTEX	
390-1502-35	BH-35 (15)	Total/NA	Solid	Total BTEX	
890-1502-36	BH-36 (15)	Total/NA	Solid	Total BTEX	
390-1502-37	BH-37 (15)	Total/NA	Solid	Total BTEX	
390-1502-38	BH-38 (15)	Total/NA	Solid	Total BTEX	
390-1502-39	BH-39 (15)	Total/NA	Solid	Total BTEX	
890-1502-40	BH-40 (15)	Total/NA	Solid	Total BTEX	
390-1502-41	BH-41 (15)	Total/NA	Solid	Total BTEX	
890-1502-42	BH-42 (15)	Total/NA	Solid	Total BTEX	
890-1502-43	BH-43 (15)	Total/NA	Solid	Total BTEX	
390-1502-44	BH-44 (15)	Total/NA	Solid	Total BTEX	
890-1502-45	BH-45 (15)	Total/NA	Solid	Total BTEX	
890-1502-46	BH-46 (15)	Total/NA	Solid	Total BTEX	
390-1502-47	BH-47 (15)	Total/NA	Solid	Total BTEX	
390-1502-48	BH-48 (15)	Total/NA	Solid	Total BTEX	
890-1502-49	BH-49 (15)	Total/NA	Solid	Total BTEX	
890-1502-50	BH-50 (15)	Total/NA	Solid	Total BTEX	
890-1502-51	BH-51 (15)	Total/NA	Solid	Total BTEX	
890-1502-52	BH-52 (15)	Total/NA	Solid	Total BTEX	
890-1502-53	BH-53 (15)	Total/NA	Solid	Total BTEX	
890-1502-54	BH-54 (15)	Total/NA	Solid	Total BTEX	
890-1502-55	BH-55 (15)	Total/NA	Solid	Total BTEX	

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC VOA (Continued)

Analysis Batch: 11768 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-56	BH-56 (15)	Total/NA	Solid	Total BTEX	
390-1502-57	BH-57 (15)	Total/NA	Solid	Total BTEX	
390-1502-58	BH-58 (15)	Total/NA	Solid	Total BTEX	
390-1502-59	BH-59 (15)	Total/NA	Solid	Total BTEX	
390-1502-60	BH-60 (15)	Total/NA	Solid	Total BTEX	
390-1502-61	BH-61 (15)	Total/NA	Solid	Total BTEX	
390-1502-62	BH-62 (15)	Total/NA	Solid	Total BTEX	
390-1502-63	BH-63 (15)	Total/NA	Solid	Total BTEX	
390-1502-64	BH-64 (15)	Total/NA	Solid	Total BTEX	
390-1502-65	BH-65 (15)	Total/NA	Solid	Total BTEX	
390-1502-66	BH-66 (15)	Total/NA	Solid	Total BTEX	
390-1502-67	BH-67 (15)	Total/NA	Solid	Total BTEX	
390-1502-68	BH-68 (15)	Total/NA	Solid	Total BTEX	
390-1502-69	BH-69 (15)	Total/NA	Solid	Total BTEX	
390-1502-70	BH-70 (15)	Total/NA	Solid	Total BTEX	
390-1502-71	BH-71 (15)	Total/NA	Solid	Total BTEX	
390-1502-72	BH-72 (15)	Total/NA	Solid	Total BTEX	
390-1502-73	BH-73 (15)	Total/NA	Solid	Total BTEX	
390-1502-74	BH-74 (15)	Total/NA	Solid	Total BTEX	
390-1502-75	BH-75 (15)	Total/NA	Solid	Total BTEX	
390-1502-76	BH-76 (15)	Total/NA	Solid	Total BTEX	
390-1502-77	BH-77 (15)	Total/NA	Solid	Total BTEX	
390-1502-78	BH-78 (15)	Total/NA	Solid	Total BTEX	
390-1502-78		Total/NA	Solid	Total BTEX	
390-1502-79 390-1502-80	BH-79 (15) BH-80 (15)	Total/NA	Solid	Total BTEX	
		Total/NA	Solid		
890-1502-81	BH-81 (15)			Total BTEX	
390-1502-82	BH-82 (15)	Total/NA	Solid	Total BTEX	
890-1502-83	BH-83 (15)	Total/NA	Solid	Total BTEX	
390-1502-84	BH-84 (15)	Total/NA	Solid	Total BTEX	
390-1502-85	BH-85 (15)	Total/NA	Solid	Total BTEX	
390-1502-86	BH-86 (15)	Total/NA	Solid	Total BTEX	
390-1502-87	BH-87 (15)	Total/NA	Solid	Total BTEX	
390-1502-88	BH-88 (15)	Total/NA	Solid	Total BTEX	
390-1502-89	BH-89 (15)	Total/NA	Solid	Total BTEX	
390-1502-90	BH90 (RS) (6)	Total/NA	Solid	Total BTEX	
390-1502-91	BH-91 (RS) (6)	Total/NA	Solid	Total BTEX	
390-1502-92	SW-1 (0-6)	Total/NA	Solid	Total BTEX	
390-1502-93	SW-2 (0-6)	Total/NA	Solid	Total BTEX	
390-1502-94	SW-3 (0-6)	Total/NA	Solid	Total BTEX	
890-1502-95	SW-4 (0-6)	Total/NA	Solid	Total BTEX	
390-1502-96	SW-5 (0-6)	Total/NA	Solid	Total BTEX	
890-1502-97	SW-6 (0-6)	Total/NA	Solid	Total BTEX	
390-1502-98	SW-7 (0-6)	Total/NA	Solid	Total BTEX	
390-1502-99	SW-8 (0-6)	Total/NA	Solid	Total BTEX	
390-1502-100	SW-9 (0-6)	Total/NA	Solid	Total BTEX	
890-1502-101	SW-10 (0-6)	Total/NA	Solid	Total BTEX	
890-1502-102	SW-11 (0-6)	Total/NA	Solid	Total BTEX	
390-1502-103	SW-12 (10)	Total/NA	Solid	Total BTEX	
390-1502-104	SW-13 (15)	Total/NA	Solid	Total BTEX	
890-1502-105	SW-14 (15)	Total/NA	Solid	Total BTEX	
890-1502-106	SW-15 (15)	Total/NA	Solid	Total BTEX	

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

GC VOA (Continued)

Analysis Batch: 11768 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-107	SW-16 (15)	Total/NA	Solid	Total BTEX	
890-1502-108	SW-17 (15)	Total/NA	Solid	Total BTEX	
890-1502-109	SW-18 (15)	Total/NA	Solid	Total BTEX	
890-1502-110	SW-19 (15)	Total/NA	Solid	Total BTEX	
890-1502-111	SW-20 (15)	Total/NA	Solid	Total BTEX	
890-1502-112	SW-21 (15)	Total/NA	Solid	Total BTEX	
890-1502-113	SW-22 (15)	Total/NA	Solid	Total BTEX	
890-1502-114	SW-23 (15)	Total/NA	Solid	Total BTEX	
890-1502-115	SW-24 (15)	Total/NA	Solid	Total BTEX	
890-1502-116	SW-25 (15)	Total/NA	Solid	Total BTEX	
890-1502-117	SW-26 (15)	Total/NA	Solid	Total BTEX	
890-1502-118	SW-27 (15)	Total/NA	Solid	Total BTEX	
890-1502-119	SW-28 (15)	Total/NA	Solid	Total BTEX	
890-1502-120	SW-29 (15)	Total/NA	Solid	Total BTEX	
890-1502-121	SW-30 (RS) (6)	Total/NA	Solid	Total BTEX	
890-1502-122	SW-31 (RS) (4)	Total/NA	Solid	Total BTEX	
890-1502-123	SW-32 (RS) (6)	Total/NA	Solid	Total BTEX	
890-1502-124	SW-33 (RS) (8)	Total/NA	Solid	Total BTEX	

GC Semi VOA

Pron Batch: 11223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-1	BH-1 (6)	Total/NA	Solid	8015NM Prep	
890-1502-2	BH-2 (6)	Total/NA	Solid	8015NM Prep	
890-1502-3	BH-3 (6)	Total/NA	Solid	8015NM Prep	
890-1502-4	BH-4 (6)	Total/NA	Solid	8015NM Prep	
890-1502-5	BH-5 (6)	Total/NA	Solid	8015NM Prep	
890-1502-6	BH-6 (6)	Total/NA	Solid	8015NM Prep	
890-1502-7	BH-7 (6)	Total/NA	Solid	8015NM Prep	
890-1502-8	BH-8 (6)	Total/NA	Solid	8015NM Prep	
890-1502-9	BH-9 (6)	Total/NA	Solid	8015NM Prep	
890-1502-10	BH-10 (6)	Total/NA	Solid	8015NM Prep	
890-1502-11	BH-11 (6)	Total/NA	Solid	8015NM Prep	
890-1502-12	BH-12 (6)	Total/NA	Solid	8015NM Prep	
890-1502-13	BH-13 (6)	Total/NA	Solid	8015NM Prep	
890-1502-14	BH-14 (6)	Total/NA	Solid	8015NM Prep	
890-1502-15	BH-15 (6)	Total/NA	Solid	8015NM Prep	
890-1502-16	BH-16 (6)	Total/NA	Solid	8015NM Prep	
890-1502-17	BH-17 (6)	Total/NA	Solid	8015NM Prep	
890-1502-18	BH-18 (6)	Total/NA	Solid	8015NM Prep	
890-1502-19	BH-19 (6)	Total/NA	Solid	8015NM Prep	
890-1502-20	BH-20 (6)	Total/NA	Solid	8015NM Prep	
MB 880-11223/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11223/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11223/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1502-1 MS	BH-1 (6)	Total/NA	Solid	8015NM Prep	
890-1502-1 MSD	BH-1 (6)	Total/NA	Solid	8015NM Prep	

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

GC Semi VOA

Prep Batch: 11255

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-21	BH-21 (6)	Total/NA	Solid	8015NM Prep	
890-1502-22	BH-22 (6)	Total/NA	Solid	8015NM Prep	
890-1502-23	BH-23 (6)	Total/NA	Solid	8015NM Prep	
890-1502-24	BH-24 (6)	Total/NA	Solid	8015NM Prep	
890-1502-25	BH-25 (15)	Total/NA	Solid	8015NM Prep	
890-1502-26	BH-26 (15)	Total/NA	Solid	8015NM Prep	
890-1502-27	BH-27 (15)	Total/NA	Solid	8015NM Prep	
890-1502-28	BH-28 (15)	Total/NA	Solid	8015NM Prep	
890-1502-29	BH-29 (15)	Total/NA	Solid	8015NM Prep	
890-1502-30	BH-30 (15)	Total/NA	Solid	8015NM Prep	
890-1502-31	BH-31 (15)	Total/NA	Solid	8015NM Prep	
890-1502-32	BH-32 (15)	Total/NA	Solid	8015NM Prep	
890-1502-33	BH-33 (15)	Total/NA	Solid	8015NM Prep	
890-1502-34	BH-34 (15)	Total/NA	Solid	8015NM Prep	
890-1502-35	BH-35 (15)	Total/NA	Solid	8015NM Prep	
890-1502-36	BH-36 (15)	Total/NA	Solid	8015NM Prep	
890-1502-37	BH-37 (15)	Total/NA	Solid	8015NM Prep	
890-1502-38	BH-38 (15)	Total/NA	Solid	8015NM Prep	
890-1502-39	BH-39 (15)	Total/NA	Solid	8015NM Prep	
890-1502-40	BH-40 (15)	Total/NA	Solid	8015NM Prep	
MB 880-11255/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11255/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11255/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1502-21 MS	BH-21 (6)	Total/NA	Solid	8015NM Prep	
890-1502-21 MSD	BH-21 (6)	Total/NA	Solid	8015NM Prep	

Prep Batch: 11273

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-1502-41	BH-41 (15)	Total/NA	Solid	8015NM Prep	
890-1502-42	BH-42 (15)	Total/NA	Solid	8015NM Prep	
890-1502-43	BH-43 (15)	Total/NA	Solid	8015NM Prep	
890-1502-44	BH-44 (15)	Total/NA	Solid	8015NM Prep	
890-1502-45	BH-45 (15)	Total/NA	Solid	8015NM Prep	
890-1502-46	BH-46 (15)	Total/NA	Solid	8015NM Prep	
890-1502-47	BH-47 (15)	Total/NA	Solid	8015NM Prep	
890-1502-48	BH-48 (15)	Total/NA	Solid	8015NM Prep	
390-1502-49	BH-49 (15)	Total/NA	Solid	8015NM Prep	
390-1502-50	BH-50 (15)	Total/NA	Solid	8015NM Prep	
390-1502-51	BH-51 (15)	Total/NA	Solid	8015NM Prep	
390-1502-52	BH-52 (15)	Total/NA	Solid	8015NM Prep	
390-1502-53	BH-53 (15)	Total/NA	Solid	8015NM Prep	
390-1502-54	BH-54 (15)	Total/NA	Solid	8015NM Prep	
390-1502-55	BH-55 (15)	Total/NA	Solid	8015NM Prep	
890-1502-56	BH-56 (15)	Total/NA	Solid	8015NM Prep	
890-1502-57	BH-57 (15)	Total/NA	Solid	8015NM Prep	
890-1502-58	BH-58 (15)	Total/NA	Solid	8015NM Prep	
890-1502-59	BH-59 (15)	Total/NA	Solid	8015NM Prep	
390-1502-60	BH-60 (15)	Total/NA	Solid	8015NM Prep	
MB 880-11273/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11273/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11273/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

GC Semi VOA (Continued)

Prep Batch: 11273 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	890-1502-41 MS	BH-41 (15)	Total/NA	Solid	8015NM Prep	
Į	890-1502-41 MSD	BH-41 (15)	Total/NA	Solid	8015NM Prep	

Analysis Batch: 11317

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-1	BH-1 (6)	Total/NA	Solid	8015B NM	11223
890-1502-2	BH-2 (6)	Total/NA	Solid	8015B NM	11223
890-1502-3	BH-3 (6)	Total/NA	Solid	8015B NM	11223
890-1502-4	BH-4 (6)	Total/NA	Solid	8015B NM	11223
890-1502-5	BH-5 (6)	Total/NA	Solid	8015B NM	11223
890-1502-6	BH-6 (6)	Total/NA	Solid	8015B NM	11223
890-1502-7	BH-7 (6)	Total/NA	Solid	8015B NM	11223
890-1502-8	BH-8 (6)	Total/NA	Solid	8015B NM	11223
890-1502-9	BH-9 (6)	Total/NA	Solid	8015B NM	11223
890-1502-10	BH-10 (6)	Total/NA	Solid	8015B NM	11223
890-1502-11	BH-11 (6)	Total/NA	Solid	8015B NM	11223
890-1502-12	BH-12 (6)	Total/NA	Solid	8015B NM	11223
890-1502-13	BH-13 (6)	Total/NA	Solid	8015B NM	11223
890-1502-14	BH-14 (6)	Total/NA	Solid	8015B NM	11223
890-1502-15	BH-15 (6)	Total/NA	Solid	8015B NM	11223
890-1502-16	BH-16 (6)	Total/NA	Solid	8015B NM	11223
890-1502-17	BH-17 (6)	Total/NA	Solid	8015B NM	11223
890-1502-18	BH-18 (6)	Total/NA	Solid	8015B NM	11223
890-1502-19	BH-19 (6)	Total/NA	Solid	8015B NM	11223
890-1502-20	BH-20 (6)	Total/NA	Solid	8015B NM	11223
MB 880-11223/1-A	Method Blank	Total/NA	Solid	8015B NM	11223
LCS 880-11223/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11223
LCSD 880-11223/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11223
890-1502-1 MS	BH-1 (6)	Total/NA	Solid	8015B NM	11223
890-1502-1 MSD	BH-1 (6)	Total/NA	Solid	8015B NM	11223

Analysis Batch: 11321

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-21	BH-21 (6)	Total/NA	Solid	8015B NM	1125
890-1502-22	BH-22 (6)	Total/NA	Solid	8015B NM	1125
890-1502-23	BH-23 (6)	Total/NA	Solid	8015B NM	1125
890-1502-24	BH-24 (6)	Total/NA	Solid	8015B NM	1125
890-1502-25	BH-25 (15)	Total/NA	Solid	8015B NM	1125
890-1502-26	BH-26 (15)	Total/NA	Solid	8015B NM	1125
890-1502-27	BH-27 (15)	Total/NA	Solid	8015B NM	1125
890-1502-28	BH-28 (15)	Total/NA	Solid	8015B NM	1125
890-1502-29	BH-29 (15)	Total/NA	Solid	8015B NM	1125
890-1502-30	BH-30 (15)	Total/NA	Solid	8015B NM	1125
890-1502-31	BH-31 (15)	Total/NA	Solid	8015B NM	1125
890-1502-32	BH-32 (15)	Total/NA	Solid	8015B NM	1125
890-1502-33	BH-33 (15)	Total/NA	Solid	8015B NM	1125
890-1502-34	BH-34 (15)	Total/NA	Solid	8015B NM	1125
890-1502-35	BH-35 (15)	Total/NA	Solid	8015B NM	1125
890-1502-36	BH-36 (15)	Total/NA	Solid	8015B NM	1125
890-1502-37	BH-37 (15)	Total/NA	Solid	8015B NM	1125
890-1502-38	BH-38 (15)	Total/NA	Solid	8015B NM	1125

Eurofins Xenco, Carlsbad

Page 161 of 248

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Analysis Batch: 11321 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-39	BH-39 (15)	Total/NA	Solid	8015B NM	11255
890-1502-40	BH-40 (15)	Total/NA	Solid	8015B NM	11255
MB 880-11255/1-A	Method Blank	Total/NA	Solid	8015B NM	11255
LCS 880-11255/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11255
LCSD 880-11255/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11255
890-1502-21 MS	BH-21 (6)	Total/NA	Solid	8015B NM	11255
890-1502-21 MSD	BH-21 (6)	Total/NA	Solid	8015B NM	11255

Analysis Batch: 11323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-1502-41	BH-41 (15)	Total/NA	Solid	8015B NM	11273
390-1502-42	BH-42 (15)	Total/NA	Solid	8015B NM	11273
390-1502-43	BH-43 (15)	Total/NA	Solid	8015B NM	11273
90-1502-44	BH-44 (15)	Total/NA	Solid	8015B NM	11273
90-1502-45	BH-45 (15)	Total/NA	Solid	8015B NM	11273
90-1502-46	BH-46 (15)	Total/NA	Solid	8015B NM	11273
90-1502-47	BH-47 (15)	Total/NA	Solid	8015B NM	11273
90-1502-48	BH-48 (15)	Total/NA	Solid	8015B NM	11273
90-1502-49	BH-49 (15)	Total/NA	Solid	8015B NM	11273
90-1502-50	BH-50 (15)	Total/NA	Solid	8015B NM	11273
90-1502-51	BH-51 (15)	Total/NA	Solid	8015B NM	11273
90-1502-52	BH-52 (15)	Total/NA	Solid	8015B NM	11273
90-1502-53	BH-53 (15)	Total/NA	Solid	8015B NM	11273
90-1502-54	BH-54 (15)	Total/NA	Solid	8015B NM	11273
90-1502-55	BH-55 (15)	Total/NA	Solid	8015B NM	11273
90-1502-56	BH-56 (15)	Total/NA	Solid	8015B NM	11273
90-1502-57	BH-57 (15)	Total/NA	Solid	8015B NM	11273
90-1502-58	BH-58 (15)	Total/NA	Solid	8015B NM	11273
90-1502-59	BH-59 (15)	Total/NA	Solid	8015B NM	11273
90-1502-60	BH-60 (15)	Total/NA	Solid	8015B NM	11273
90-1502-61	BH-61 (15)	Total/NA	Solid	8015B NM	11356
90-1502-62	BH-62 (15)	Total/NA	Solid	8015B NM	11356
90-1502-63	BH-63 (15)	Total/NA	Solid	8015B NM	11356
90-1502-64	BH-64 (15)	Total/NA	Solid	8015B NM	11356
90-1502-65	BH-65 (15)	Total/NA	Solid	8015B NM	11356
90-1502-66	BH-66 (15)	Total/NA	Solid	8015B NM	11356
90-1502-67	BH-67 (15)	Total/NA	Solid	8015B NM	11356
90-1502-68	BH-68 (15)	Total/NA	Solid	8015B NM	11356
90-1502-69	BH-69 (15)	Total/NA	Solid	8015B NM	11356
90-1502-70	BH-70 (15)	Total/NA	Solid	8015B NM	11356
90-1502-71	BH-71 (15)	Total/NA	Solid	8015B NM	11356
90-1502-72	BH-72 (15)	Total/NA	Solid	8015B NM	11356
90-1502-73	BH-73 (15)	Total/NA	Solid	8015B NM	11356
90-1502-74	BH-74 (15)	Total/NA	Solid	8015B NM	11356
90-1502-75	BH-75 (15)	Total/NA	Solid	8015B NM	11356
90-1502-76	BH-76 (15)	Total/NA	Solid	8015B NM	11356
90-1502-77	BH-77 (15)	Total/NA	Solid	8015B NM	11356
90-1502-78	BH-78 (15)	Total/NA	Solid	8015B NM	11356
90-1502-79	BH-79 (15)	Total/NA	Solid	8015B NM	11356
90-1502-80	BH-80 (15)	Total/NA	Solid	8015B NM	11356
MB 880-11273/1-A	Method Blank	Total/NA	Solid	8015B NM	11273

Eurofins Xenco, Carlsbad

2

3

4

6

8

9

11

13

М

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Analysis Batch: 11323 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-11356/1-A	Method Blank	Total/NA	Solid	8015B NM	11356
LCS 880-11273/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11273
LCS 880-11356/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11356
LCSD 880-11273/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11273
LCSD 880-11356/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11356
890-1502-41 MS	BH-41 (15)	Total/NA	Solid	8015B NM	11273
890-1502-41 MSD	BH-41 (15)	Total/NA	Solid	8015B NM	11273
890-1502-61 MS	BH-61 (15)	Total/NA	Solid	8015B NM	11356
890-1502-61 MSD	BH-61 (15)	Total/NA	Solid	8015B NM	11356

Prep Batch: 11356

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-61	BH-61 (15)	Total/NA	Solid	8015NM Prep	
890-1502-62	BH-62 (15)	Total/NA	Solid	8015NM Prep	
890-1502-63	BH-63 (15)	Total/NA	Solid	8015NM Prep	
890-1502-64	BH-64 (15)	Total/NA	Solid	8015NM Prep	
890-1502-65	BH-65 (15)	Total/NA	Solid	8015NM Prep	
890-1502-66	BH-66 (15)	Total/NA	Solid	8015NM Prep	
890-1502-67	BH-67 (15)	Total/NA	Solid	8015NM Prep	
890-1502-68	BH-68 (15)	Total/NA	Solid	8015NM Prep	
890-1502-69	BH-69 (15)	Total/NA	Solid	8015NM Prep	
890-1502-70	BH-70 (15)	Total/NA	Solid	8015NM Prep	
890-1502-71	BH-71 (15)	Total/NA	Solid	8015NM Prep	
890-1502-72	BH-72 (15)	Total/NA	Solid	8015NM Prep	
890-1502-73	BH-73 (15)	Total/NA	Solid	8015NM Prep	
890-1502-74	BH-74 (15)	Total/NA	Solid	8015NM Prep	
890-1502-75	BH-75 (15)	Total/NA	Solid	8015NM Prep	
890-1502-76	BH-76 (15)	Total/NA	Solid	8015NM Prep	
890-1502-77	BH-77 (15)	Total/NA	Solid	8015NM Prep	
890-1502-78	BH-78 (15)	Total/NA	Solid	8015NM Prep	
890-1502-79	BH-79 (15)	Total/NA	Solid	8015NM Prep	
890-1502-80	BH-80 (15)	Total/NA	Solid	8015NM Prep	
MB 880-11356/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11356/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11356/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1502-61 MS	BH-61 (15)	Total/NA	Solid	8015NM Prep	
890-1502-61 MSD	BH-61 (15)	Total/NA	Solid	8015NM Prep	

Prep Batch: 11364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-81	BH-81 (15)	Total/NA	Solid	8015NM Prep	
890-1502-82	BH-82 (15)	Total/NA	Solid	8015NM Prep	
890-1502-83	BH-83 (15)	Total/NA	Solid	8015NM Prep	
890-1502-84	BH-84 (15)	Total/NA	Solid	8015NM Prep	
890-1502-85	BH-85 (15)	Total/NA	Solid	8015NM Prep	
890-1502-86	BH-86 (15)	Total/NA	Solid	8015NM Prep	
890-1502-87	BH-87 (15)	Total/NA	Solid	8015NM Prep	
890-1502-88	BH-88 (15)	Total/NA	Solid	8015NM Prep	
890-1502-89	BH-89 (15)	Total/NA	Solid	8015NM Prep	
890-1502-90	BH90 (RS) (6)	Total/NA	Solid	8015NM Prep	
890-1502-91	BH-91 (RS) (6)	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Carlsbad

2

3

6

8

9

11

13

14

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Prep Batch: 11364 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-92	SW-1 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-93	SW-2 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-94	SW-3 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-95	SW-4 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-96	SW-5 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-97	SW-6 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-98	SW-7 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-99	SW-8 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-100	SW-9 (0-6)	Total/NA	Solid	8015NM Prep	
MB 880-11364/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11364/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11364/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1502-81 MS	BH-81 (15)	Total/NA	Solid	8015NM Prep	
890-1502-81 MSD	BH-81 (15)	Total/NA	Solid	8015NM Prep	

Prep Batch: 11375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-101	SW-10 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-102	SW-11 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-103	SW-12 (10)	Total/NA	Solid	8015NM Prep	
890-1502-104	SW-13 (15)	Total/NA	Solid	8015NM Prep	
890-1502-105	SW-14 (15)	Total/NA	Solid	8015NM Prep	
890-1502-106	SW-15 (15)	Total/NA	Solid	8015NM Prep	
890-1502-107	SW-16 (15)	Total/NA	Solid	8015NM Prep	
890-1502-108	SW-17 (15)	Total/NA	Solid	8015NM Prep	
890-1502-109	SW-18 (15)	Total/NA	Solid	8015NM Prep	
890-1502-110	SW-19 (15)	Total/NA	Solid	8015NM Prep	
890-1502-111	SW-20 (15)	Total/NA	Solid	8015NM Prep	
890-1502-112	SW-21 (15)	Total/NA	Solid	8015NM Prep	
890-1502-113	SW-22 (15)	Total/NA	Solid	8015NM Prep	
890-1502-114	SW-23 (15)	Total/NA	Solid	8015NM Prep	
890-1502-115	SW-24 (15)	Total/NA	Solid	8015NM Prep	
890-1502-116	SW-25 (15)	Total/NA	Solid	8015NM Prep	
890-1502-117	SW-26 (15)	Total/NA	Solid	8015NM Prep	
890-1502-118	SW-27 (15)	Total/NA	Solid	8015NM Prep	
890-1502-119	SW-28 (15)	Total/NA	Solid	8015NM Prep	
890-1502-120	SW-29 (15)	Total/NA	Solid	8015NM Prep	
MB 880-11375/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11375/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-11375/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1502-101 MS	SW-10 (0-6)	Total/NA	Solid	8015NM Prep	
890-1502-101 MSD	SW-10 (0-6)	Total/NA	Solid	8015NM Prep	

Prep Batch: 11376

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-121	SW-30 (RS) (6)	Total/NA	Solid	8015NM Prep	
890-1502-122	SW-31 (RS) (4)	Total/NA	Solid	8015NM Prep	
890-1502-123	SW-32 (RS) (6)	Total/NA	Solid	8015NM Prep	
890-1502-124	SW-33 (RS) (8)	Total/NA	Solid	8015NM Prep	
MB 880-11376/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-11376/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Carlsbad

Page 164 of 248

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Prep Batch: 11376 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-11376/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-1502-121 MS	SW-30 (RS) (6)	Total/NA	Solid	8015NM Prep	
890-1502-121 MSD	SW-30 (RS) (6)	Total/NA	Solid	8015NM Prep	

Analysis Batch: 11414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-121	SW-30 (RS) (6)	Total/NA	Solid	8015B NM	11376
890-1502-122	SW-31 (RS) (4)	Total/NA	Solid	8015B NM	11376
890-1502-123	SW-32 (RS) (6)	Total/NA	Solid	8015B NM	11376
890-1502-124	SW-33 (RS) (8)	Total/NA	Solid	8015B NM	11376
MB 880-11376/1-A	Method Blank	Total/NA	Solid	8015B NM	11376
LCS 880-11376/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11376
LCSD 880-11376/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11376
890-1502-121 MS	SW-30 (RS) (6)	Total/NA	Solid	8015B NM	11376
890-1502-121 MSD	SW-30 (RS) (6)	Total/NA	Solid	8015B NM	11376

Analysis Batch: 11416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-81	BH-81 (15)	Total/NA	Solid	8015B NM	11364
890-1502-82	BH-82 (15)	Total/NA	Solid	8015B NM	11364
890-1502-83	BH-83 (15)	Total/NA	Solid	8015B NM	11364
890-1502-84	BH-84 (15)	Total/NA	Solid	8015B NM	11364
890-1502-85	BH-85 (15)	Total/NA	Solid	8015B NM	11364
890-1502-86	BH-86 (15)	Total/NA	Solid	8015B NM	11364
890-1502-87	BH-87 (15)	Total/NA	Solid	8015B NM	11364
890-1502-88	BH-88 (15)	Total/NA	Solid	8015B NM	11364
890-1502-89	BH-89 (15)	Total/NA	Solid	8015B NM	11364
890-1502-90	BH90 (RS) (6)	Total/NA	Solid	8015B NM	11364
890-1502-91	BH-91 (RS) (6)	Total/NA	Solid	8015B NM	11364
890-1502-92	SW-1 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-93	SW-2 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-94	SW-3 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-95	SW-4 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-96	SW-5 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-97	SW-6 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-98	SW-7 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-99	SW-8 (0-6)	Total/NA	Solid	8015B NM	11364
890-1502-100	SW-9 (0-6)	Total/NA	Solid	8015B NM	11364
MB 880-11364/1-A	Method Blank	Total/NA	Solid	8015B NM	11364
LCS 880-11364/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11364
LCSD 880-11364/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11364
890-1502-81 MS	BH-81 (15)	Total/NA	Solid	8015B NM	11364
890-1502-81 MSD	BH-81 (15)	Total/NA	Solid	8015B NM	11364

Analysis Batch: 11418

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-101	SW-10 (0-6)	Total/NA	Solid	8015B NM	11375
890-1502-102	SW-11 (0-6)	Total/NA	Solid	8015B NM	11375
890-1502-103	SW-12 (10)	Total/NA	Solid	8015B NM	11375
890-1502-104	SW-13 (15)	Total/NA	Solid	8015B NM	11375
890-1502-105	SW-14 (15)	Total/NA	Solid	8015B NM	11375

Eurofins Xenco, Carlsbad

5

0

10

12

13

14

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Analysis Batch: 11418 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-106	SW-15 (15)	Total/NA	Solid	8015B NM	11375
890-1502-107	SW-16 (15)	Total/NA	Solid	8015B NM	11375
890-1502-108	SW-17 (15)	Total/NA	Solid	8015B NM	11375
890-1502-109	SW-18 (15)	Total/NA	Solid	8015B NM	11375
890-1502-110	SW-19 (15)	Total/NA	Solid	8015B NM	11375
890-1502-111	SW-20 (15)	Total/NA	Solid	8015B NM	11375
890-1502-112	SW-21 (15)	Total/NA	Solid	8015B NM	11375
890-1502-113	SW-22 (15)	Total/NA	Solid	8015B NM	11375
890-1502-114	SW-23 (15)	Total/NA	Solid	8015B NM	11375
890-1502-115	SW-24 (15)	Total/NA	Solid	8015B NM	11375
890-1502-116	SW-25 (15)	Total/NA	Solid	8015B NM	11375
890-1502-117	SW-26 (15)	Total/NA	Solid	8015B NM	11375
890-1502-118	SW-27 (15)	Total/NA	Solid	8015B NM	11375
890-1502-119	SW-28 (15)	Total/NA	Solid	8015B NM	11375
890-1502-120	SW-29 (15)	Total/NA	Solid	8015B NM	11375
MB 880-11375/1-A	Method Blank	Total/NA	Solid	8015B NM	11375
LCS 880-11375/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	11375
LCSD 880-11375/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	11375
890-1502-101 MS	SW-10 (0-6)	Total/NA	Solid	8015B NM	11375
890-1502-101 MSD	SW-10 (0-6)	Total/NA	Solid	8015B NM	11375

Analysis Batch: 11598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-1502-1	BH-1 (6)	Total/NA	Solid	8015 NM	
890-1502-2	BH-2 (6)	Total/NA	Solid	8015 NM	
890-1502-3	BH-3 (6)	Total/NA	Solid	8015 NM	
890-1502-4	BH-4 (6)	Total/NA	Solid	8015 NM	
890-1502-5	BH-5 (6)	Total/NA	Solid	8015 NM	
390-1502-6	BH-6 (6)	Total/NA	Solid	8015 NM	
390-1502-7	BH-7 (6)	Total/NA	Solid	8015 NM	
390-1502-8	BH-8 (6)	Total/NA	Solid	8015 NM	
390-1502-9	BH-9 (6)	Total/NA	Solid	8015 NM	
390-1502-10	BH-10 (6)	Total/NA	Solid	8015 NM	
390-1502-11	BH-11 (6)	Total/NA	Solid	8015 NM	
390-1502-12	BH-12 (6)	Total/NA	Solid	8015 NM	
390-1502-13	BH-13 (6)	Total/NA	Solid	8015 NM	
390-1502-14	BH-14 (6)	Total/NA	Solid	8015 NM	
390-1502-15	BH-15 (6)	Total/NA	Solid	8015 NM	
390-1502-16	BH-16 (6)	Total/NA	Solid	8015 NM	
390-1502-17	BH-17 (6)	Total/NA	Solid	8015 NM	
390-1502-18	BH-18 (6)	Total/NA	Solid	8015 NM	
90-1502-19	BH-19 (6)	Total/NA	Solid	8015 NM	
390-1502-20	BH-20 (6)	Total/NA	Solid	8015 NM	
390-1502-21	BH-21 (6)	Total/NA	Solid	8015 NM	
390-1502-22	BH-22 (6)	Total/NA	Solid	8015 NM	
390-1502-23	BH-23 (6)	Total/NA	Solid	8015 NM	
390-1502-24	BH-24 (6)	Total/NA	Solid	8015 NM	
390-1502-25	BH-25 (15)	Total/NA	Solid	8015 NM	
90-1502-26	BH-26 (15)	Total/NA	Solid	8015 NM	
90-1502-27	BH-27 (15)	Total/NA	Solid	8015 NM	
390-1502-28	BH-28 (15)	Total/NA	Solid	8015 NM	

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Analysis Batch: 11598 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix Matrix	Method	Prep Batcl
890-1502-29	BH-29 (15)	Total/NA	Solid	8015 NM	
390-1502-30	BH-30 (15)	Total/NA	Solid	8015 NM	
390-1502-31	BH-31 (15)	Total/NA	Solid	8015 NM	
390-1502-32	BH-32 (15)	Total/NA	Solid	8015 NM	
390-1502-33	BH-33 (15)	Total/NA	Solid	8015 NM	
390-1502-34	BH-34 (15)	Total/NA	Solid	8015 NM	
390-1502-35	BH-35 (15)	Total/NA	Solid	8015 NM	
390-1502-36	BH-36 (15)	Total/NA	Solid	8015 NM	
390-1502-37	BH-37 (15)	Total/NA	Solid	8015 NM	
390-1502-38	BH-38 (15)	Total/NA	Solid	8015 NM	
390-1502-39	BH-39 (15)	Total/NA	Solid	8015 NM	
390-1502-40	BH-40 (15)	Total/NA	Solid	8015 NM	
390-1502-41	BH-41 (15)	Total/NA	Solid	8015 NM	
390-1502-42	BH-42 (15)	Total/NA	Solid	8015 NM	
390-1502-43	BH-43 (15)	Total/NA	Solid	8015 NM	
390-1502-44	BH-44 (15)	Total/NA	Solid	8015 NM	
390-1502-45	BH-45 (15)	Total/NA	Solid	8015 NM	
390-1502-46	BH-46 (15)	Total/NA	Solid	8015 NM	
390-1502-47	BH-47 (15)	Total/NA	Solid	8015 NM	
390-1502-48	BH-48 (15)	Total/NA	Solid	8015 NM	
390-1502-49	BH-49 (15)	Total/NA	Solid	8015 NM	
390-1502-49 390-1502-50	BH-50 (15)	Total/NA	Solid	8015 NM	
		Total/NA			
890-1502-51	BH-51 (15)		Solid	8015 NM	
390-1502-52	BH-52 (15)	Total/NA	Solid	8015 NM	
390-1502-53	BH-53 (15)	Total/NA	Solid	8015 NM	
390-1502-54	BH-54 (15)	Total/NA	Solid	8015 NM	
390-1502-55	BH-55 (15)	Total/NA	Solid	8015 NM	
390-1502-56	BH-56 (15)	Total/NA	Solid	8015 NM	
390-1502-57	BH-57 (15)	Total/NA	Solid	8015 NM	
390-1502-58	BH-58 (15)	Total/NA	Solid	8015 NM	
390-1502-59	BH-59 (15)	Total/NA	Solid	8015 NM	
390-1502-60	BH-60 (15)	Total/NA	Solid	8015 NM	
390-1502-61	BH-61 (15)	Total/NA	Solid	8015 NM	
390-1502-62	BH-62 (15)	Total/NA	Solid	8015 NM	
390-1502-63	BH-63 (15)	Total/NA	Solid	8015 NM	
390-1502-64	BH-64 (15)	Total/NA	Solid	8015 NM	
390-1502-65	BH-65 (15)	Total/NA	Solid	8015 NM	
390-1502-66	BH-66 (15)	Total/NA	Solid	8015 NM	
390-1502-67	BH-67 (15)	Total/NA	Solid	8015 NM	
390-1502-68	BH-68 (15)	Total/NA	Solid	8015 NM	
390-1502-69	BH-69 (15)	Total/NA	Solid	8015 NM	
390-1502-70	BH-70 (15)	Total/NA	Solid	8015 NM	
390-1502-71	BH-71 (15)	Total/NA	Solid	8015 NM	
390-1502-72	BH-72 (15)	Total/NA	Solid	8015 NM	
390-1502-73	BH-73 (15)	Total/NA	Solid	8015 NM	
390-1502-74	BH-74 (15)	Total/NA	Solid	8015 NM	
390-1502-75	BH-75 (15)	Total/NA	Solid	8015 NM	
390-1502-76	BH-76 (15)	Total/NA	Solid	8015 NM	
390-1502-77	BH-77 (15)	Total/NA	Solid	8015 NM	
390-1502-78	BH-78 (15)	Total/NA	Solid	8015 NM	
890-1502-79	BH-79 (15)	Total/NA	Solid	8015 NM	

Eurofins Xenco, Carlsbad

5

3

6

8

10

12

13

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Analysis Batch: 11598 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
890-1502-80	BH-80 (15)	Total/NA	Solid	8015 NM	
890-1502-81	BH-81 (15)	Total/NA	Solid	8015 NM	
890-1502-82	BH-82 (15)	Total/NA	Solid	8015 NM	
890-1502-83	BH-83 (15)	Total/NA	Solid	8015 NM	
890-1502-84	BH-84 (15)	Total/NA	Solid	8015 NM	
890-1502-85	BH-85 (15)	Total/NA	Solid	8015 NM	
890-1502-86	BH-86 (15)	Total/NA	Solid	8015 NM	
890-1502-87	BH-87 (15)	Total/NA	Solid	8015 NM	
890-1502-88	BH-88 (15)	Total/NA	Solid	8015 NM	
890-1502-89	BH-89 (15)	Total/NA	Solid	8015 NM	
890-1502-90	BH90 (RS) (6)	Total/NA	Solid	8015 NM	
890-1502-91	BH-91 (RS) (6)	Total/NA	Solid	8015 NM	
890-1502-92	SW-1 (0-6)	Total/NA	Solid	8015 NM	
890-1502-93	SW-2 (0-6)	Total/NA	Solid	8015 NM	
390-1502-94	SW-3 (0-6)	Total/NA	Solid	8015 NM	
890-1502-95	SW-4 (0-6)	Total/NA	Solid	8015 NM	
890-1502-96	SW-5 (0-6)	Total/NA	Solid	8015 NM	
890-1502-97	SW-6 (0-6)	Total/NA	Solid	8015 NM	
890-1502-98	SW-7 (0-6)	Total/NA	Solid	8015 NM	
890-1502-99	SW-8 (0-6)	Total/NA	Solid	8015 NM	
390-1502-100	SW-9 (0-6)	Total/NA	Solid	8015 NM	
890-1502-101	SW-10 (0-6)	Total/NA	Solid	8015 NM	
890-1502-102	SW-11 (0-6)	Total/NA	Solid	8015 NM	
890-1502-103	SW-12 (10)	Total/NA	Solid	8015 NM	
890-1502-104	SW-13 (15)	Total/NA	Solid	8015 NM	
390-1502-105	SW-14 (15)	Total/NA	Solid	8015 NM	
390-1502-106	SW-15 (15)	Total/NA	Solid	8015 NM	
390-1502-107	SW-16 (15)	Total/NA	Solid	8015 NM	
890-1502-108	SW-17 (15)	Total/NA	Solid	8015 NM	
890-1502-109	SW-18 (15)	Total/NA	Solid	8015 NM	
890-1502-110	SW-19 (15)	Total/NA	Solid	8015 NM	
890-1502-111	SW-20 (15)	Total/NA	Solid	8015 NM	
890-1502-112	SW-21 (15)	Total/NA	Solid	8015 NM	
890-1502-113	SW-22 (15)	Total/NA	Solid	8015 NM	
890-1502-114	SW-23 (15)	Total/NA	Solid	8015 NM	
890-1502-115	SW-24 (15)	Total/NA	Solid	8015 NM	
890-1502-116	SW-25 (15)	Total/NA	Solid	8015 NM	
890-1502-117	SW-26 (15)	Total/NA	Solid	8015 NM	
890-1502-118	SW-27 (15)	Total/NA	Solid	8015 NM	
890-1502-119	SW-28 (15)	Total/NA	Solid	8015 NM	
890-1502-120	SW-29 (15)	Total/NA	Solid	8015 NM	
890-1502-121	SW-30 (RS) (6)	Total/NA	Solid	8015 NM	
890-1502-122	SW-31 (RS) (4)	Total/NA	Solid	8015 NM	
890-1502-123	SW-32 (RS) (6)	Total/NA	Solid	8015 NM	
890-1502-124	SW-32 (RS) (8)	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 11227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-1	BH-1 (6)	Soluble	Solid	DI Leach	

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

HPLC/IC (Continued)

Leach Batch: 11227 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-2	BH-2 (6)	Soluble	Solid	DI Leach	
890-1502-3	BH-3 (6)	Soluble	Solid	DI Leach	
MB 880-11227/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11227/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11227/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1499-A-1-H MS	Matrix Spike	Soluble	Solid	DI Leach	
890-1499-A-1-I MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 11233

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-92	SW-1 (0-6)	Soluble	Solid	DI Leach	
890-1502-93	SW-2 (0-6)	Soluble	Solid	DI Leach	
890-1502-94	SW-3 (0-6)	Soluble	Solid	DI Leach	
890-1502-95	SW-4 (0-6)	Soluble	Solid	DI Leach	
890-1502-96	SW-5 (0-6)	Soluble	Solid	DI Leach	
890-1502-97	SW-6 (0-6)	Soluble	Solid	DI Leach	
890-1502-98	SW-7 (0-6)	Soluble	Solid	DI Leach	
890-1502-99	SW-8 (0-6)	Soluble	Solid	DI Leach	
890-1502-100	SW-9 (0-6)	Soluble	Solid	DI Leach	
890-1502-101	SW-10 (0-6)	Soluble	Solid	DI Leach	
MB 880-11233/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11233/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11233/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1502-92 MS	SW-1 (0-6)	Soluble	Solid	DI Leach	
890-1502-92 MSD	SW-1 (0-6)	Soluble	Solid	DI Leach	

Leach Batch: 11236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-1502-4	BH-4 (6)	Soluble	Solid	DI Leach	
890-1502-102	SW-11 (0-6)	Soluble	Solid	DI Leach	
390-1502-103	SW-12 (10)	Soluble	Solid	DI Leach	
890-1502-104	SW-13 (15)	Soluble	Solid	DI Leach	
890-1502-105	SW-14 (15)	Soluble	Solid	DI Leach	
890-1502-106	SW-15 (15)	Soluble	Solid	DI Leach	
890-1502-107	SW-16 (15)	Soluble	Solid	DI Leach	
890-1502-108	SW-17 (15)	Soluble	Solid	DI Leach	
890-1502-109	SW-18 (15)	Soluble	Solid	DI Leach	
890-1502-110	SW-19 (15)	Soluble	Solid	DI Leach	
890-1502-111	SW-20 (15)	Soluble	Solid	DI Leach	
890-1502-112	SW-21 (15)	Soluble	Solid	DI Leach	
390-1502-113	SW-22 (15)	Soluble	Solid	DI Leach	
890-1502-114	SW-23 (15)	Soluble	Solid	DI Leach	
890-1502-115	SW-24 (15)	Soluble	Solid	DI Leach	
890-1502-116	SW-25 (15)	Soluble	Solid	DI Leach	
890-1502-117	SW-26 (15)	Soluble	Solid	DI Leach	
890-1502-118	SW-27 (15)	Soluble	Solid	DI Leach	
890-1502-119	SW-28 (15)	Soluble	Solid	DI Leach	
890-1502-120	SW-29 (15)	Soluble	Solid	DI Leach	
MB 880-11236/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11236/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11236/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Xenco, Carlsbad

2

3

4

6

8

9

11

. .

. .

| | 4

Released to Imaging: 9/1/2023 2:07:08 PM Page 169 of 248

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

HPLC/IC (Continued)

Leach Batch: 11236 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-4 MS	BH-4 (6)	Soluble	Solid	DI Leach	
890-1502-4 MSD	BH-4 (6)	Soluble	Solid	DI Leach	
890-1502-111 MS	SW-20 (15)	Soluble	Solid	DI Leach	
890-1502-111 MSD	SW-20 (15)	Soluble	Solid	DI Leach	

Leach Batch: 11237

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-5	BH-5 (6)	Soluble	Solid	DI Leach	
890-1502-6	BH-6 (6)	Soluble	Solid	DI Leach	
890-1502-7	BH-7 (6)	Soluble	Solid	DI Leach	
890-1502-8	BH-8 (6)	Soluble	Solid	DI Leach	
890-1502-9	BH-9 (6)	Soluble	Solid	DI Leach	
890-1502-10	BH-10 (6)	Soluble	Solid	DI Leach	
890-1502-11	BH-11 (6)	Soluble	Solid	DI Leach	
890-1502-12	BH-12 (6)	Soluble	Solid	DI Leach	
890-1502-13	BH-13 (6)	Soluble	Solid	DI Leach	
890-1502-14	BH-14 (6)	Soluble	Solid	DI Leach	
890-1502-15	BH-15 (6)	Soluble	Solid	DI Leach	
890-1502-16	BH-16 (6)	Soluble	Solid	DI Leach	
890-1502-17	BH-17 (6)	Soluble	Solid	DI Leach	
890-1502-18	BH-18 (6)	Soluble	Solid	DI Leach	
890-1502-19	BH-19 (6)	Soluble	Solid	DI Leach	
890-1502-20	BH-20 (6)	Soluble	Solid	DI Leach	
890-1502-21	BH-21 (6)	Soluble	Solid	DI Leach	
890-1502-22	BH-22 (6)	Soluble	Solid	DI Leach	
890-1502-23	BH-23 (6)	Soluble	Solid	DI Leach	
890-1502-24	BH-24 (6)	Soluble	Solid	DI Leach	
MB 880-11237/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11237/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11237/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1502-5 MS	BH-5 (6)	Soluble	Solid	DI Leach	
890-1502-5 MSD	BH-5 (6)	Soluble	Solid	DI Leach	
890-1502-15 MS	BH-15 (6)	Soluble	Solid	DI Leach	
890-1502-15 MSD	BH-15 (6)	Soluble	Solid	DI Leach	

Leach Batch: 11238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-25	BH-25 (15)	Soluble	Solid	DI Leach	_
890-1502-26	BH-26 (15)	Soluble	Solid	DI Leach	
890-1502-27	BH-27 (15)	Soluble	Solid	DI Leach	
890-1502-28	BH-28 (15)	Soluble	Solid	DI Leach	
890-1502-29	BH-29 (15)	Soluble	Solid	DI Leach	
890-1502-30	BH-30 (15)	Soluble	Solid	DI Leach	
890-1502-31	BH-31 (15)	Soluble	Solid	DI Leach	
890-1502-32	BH-32 (15)	Soluble	Solid	DI Leach	
890-1502-33	BH-33 (15)	Soluble	Solid	DI Leach	
890-1502-34	BH-34 (15)	Soluble	Solid	DI Leach	
890-1502-35	BH-35 (15)	Soluble	Solid	DI Leach	
890-1502-36	BH-36 (15)	Soluble	Solid	DI Leach	
890-1502-37	BH-37 (15)	Soluble	Solid	DI Leach	
890-1502-38	BH-38 (15)	Soluble	Solid	DI Leach	

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

HPLC/IC (Continued)

Leach Batch: 11238 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-39	BH-39 (15)	Soluble	Solid	DI Leach	_
890-1502-40	BH-40 (15)	Soluble	Solid	DI Leach	
890-1502-41	BH-41 (15)	Soluble	Solid	DI Leach	
890-1502-42	BH-42 (15)	Soluble	Solid	DI Leach	
890-1502-43	BH-43 (15)	Soluble	Solid	DI Leach	
890-1502-44	BH-44 (15)	Soluble	Solid	DI Leach	
MB 880-11238/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11238/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11238/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1502-25 MS	BH-25 (15)	Soluble	Solid	DI Leach	
890-1502-25 MSD	BH-25 (15)	Soluble	Solid	DI Leach	
890-1502-35 MS	BH-35 (15)	Soluble	Solid	DI Leach	
890-1502-35 MSD	BH-35 (15)	Soluble	Solid	DI Leach	

Leach Batch: 11240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-45	BH-45 (15)	Soluble	Solid	DI Leach	
890-1502-46	BH-46 (15)	Soluble	Solid	DI Leach	
890-1502-47	BH-47 (15)	Soluble	Solid	DI Leach	
890-1502-48	BH-48 (15)	Soluble	Solid	DI Leach	
890-1502-49	BH-49 (15)	Soluble	Solid	DI Leach	
890-1502-50	BH-50 (15)	Soluble	Solid	DI Leach	
890-1502-51	BH-51 (15)	Soluble	Solid	DI Leach	
890-1502-52	BH-52 (15)	Soluble	Solid	DI Leach	
890-1502-53	BH-53 (15)	Soluble	Solid	DI Leach	
890-1502-54	BH-54 (15)	Soluble	Solid	DI Leach	
890-1502-55	BH-55 (15)	Soluble	Solid	DI Leach	
890-1502-56	BH-56 (15)	Soluble	Solid	DI Leach	
890-1502-57	BH-57 (15)	Soluble	Solid	DI Leach	
890-1502-58	BH-58 (15)	Soluble	Solid	DI Leach	
890-1502-59	BH-59 (15)	Soluble	Solid	DI Leach	
890-1502-60	BH-60 (15)	Soluble	Solid	DI Leach	
890-1502-61	BH-61 (15)	Soluble	Solid	DI Leach	
890-1502-62	BH-62 (15)	Soluble	Solid	DI Leach	
890-1502-63	BH-63 (15)	Soluble	Solid	DI Leach	
890-1502-64	BH-64 (15)	Soluble	Solid	DI Leach	
MB 880-11240/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11240/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11240/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1502-45 MS	BH-45 (15)	Soluble	Solid	DI Leach	
890-1502-45 MSD	BH-45 (15)	Soluble	Solid	DI Leach	
890-1502-55 MS	BH-55 (15)	Soluble	Solid	DI Leach	
890-1502-55 MSD	BH-55 (15)	Soluble	Solid	DI Leach	

Leach Batch: 11242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-65	BH-65 (15)	Soluble	Solid	DI Leach	
890-1502-66	BH-66 (15)	Soluble	Solid	DI Leach	
890-1502-67	BH-67 (15)	Soluble	Solid	DI Leach	
890-1502-68	BH-68 (15)	Soluble	Solid	DI Leach	
890-1502-69	BH-69 (15)	Soluble	Solid	DI Leach	

Eurofins Xenco, Carlsbad

Page 171 of 248

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

HPLC/IC (Continued)

Leach Batch: 11242 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-70	BH-70 (15)	Soluble	Solid	DI Leach	
890-1502-71	BH-71 (15)	Soluble	Solid	DI Leach	
890-1502-72	BH-72 (15)	Soluble	Solid	DI Leach	
890-1502-73	BH-73 (15)	Soluble	Solid	DI Leach	
890-1502-74	BH-74 (15)	Soluble	Solid	DI Leach	
890-1502-75	BH-75 (15)	Soluble	Solid	DI Leach	
890-1502-76	BH-76 (15)	Soluble	Solid	DI Leach	
890-1502-77	BH-77 (15)	Soluble	Solid	DI Leach	
890-1502-78	BH-78 (15)	Soluble	Solid	DI Leach	
890-1502-79	BH-79 (15)	Soluble	Solid	DI Leach	
890-1502-80	BH-80 (15)	Soluble	Solid	DI Leach	
890-1502-81	BH-81 (15)	Soluble	Solid	DI Leach	
890-1502-82	BH-82 (15)	Soluble	Solid	DI Leach	
890-1502-83	BH-83 (15)	Soluble	Solid	DI Leach	
890-1502-84	BH-84 (15)	Soluble	Solid	DI Leach	
MB 880-11242/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11242/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11242/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1502-65 MS	BH-65 (15)	Soluble	Solid	DI Leach	
890-1502-65 MSD	BH-65 (15)	Soluble	Solid	DI Leach	
890-1502-75 MS	BH-75 (15)	Soluble	Solid	DI Leach	
890-1502-75 MSD	BH-75 (15)	Soluble	Solid	DI Leach	

Leach Batch: 11243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-1502-85	BH-85 (15)	Soluble	Solid	DI Leach	
890-1502-86	BH-86 (15)	Soluble	Solid	DI Leach	
890-1502-87	BH-87 (15)	Soluble	Solid	DI Leach	
890-1502-88	BH-88 (15)	Soluble	Solid	DI Leach	
890-1502-89	BH-89 (15)	Soluble	Solid	DI Leach	
890-1502-90	BH90 (RS) (6)	Soluble	Solid	DI Leach	
890-1502-91	BH-91 (RS) (6)	Soluble	Solid	DI Leach	
890-1502-121	SW-30 (RS) (6)	Soluble	Solid	DI Leach	
890-1502-122	SW-31 (RS) (4)	Soluble	Solid	DI Leach	
890-1502-123	SW-32 (RS) (6)	Soluble	Solid	DI Leach	
890-1502-124	SW-33 (RS) (8)	Soluble	Solid	DI Leach	
MB 880-11243/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-11243/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-11243/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-1502-85 MS	BH-85 (15)	Soluble	Solid	DI Leach	
890-1502-85 MSD	BH-85 (15)	Soluble	Solid	DI Leach	
890-1502-124 MS	SW-33 (RS) (8)	Soluble	Solid	DI Leach	
890-1502-124 MSD	SW-33 (RS) (8)	Soluble	Solid	DI Leach	

Analysis Batch: 11379

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-1	BH-1 (6)	Soluble	Solid	300.0	11227
890-1502-2	BH-2 (6)	Soluble	Solid	300.0	11227
890-1502-3	BH-3 (6)	Soluble	Solid	300.0	11227
MB 880-11227/1-A	Method Blank	Soluble	Solid	300.0	11227
LCS 880-11227/2-A	Lab Control Sample	Soluble	Solid	300.0	11227

Eurofins Xenco, Carlsbad

-

12

13

14

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

HPLC/IC (Continued)

Analysis Batch: 11379 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-11227/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11227
890-1499-A-1-H MS	Matrix Spike	Soluble	Solid	300.0	11227
890-1499-A-1-I MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	11227

Analysis Batch: 11381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-92	SW-1 (0-6)	Soluble	Solid	300.0	11233
890-1502-93	SW-2 (0-6)	Soluble	Solid	300.0	11233
890-1502-94	SW-3 (0-6)	Soluble	Solid	300.0	11233
890-1502-95	SW-4 (0-6)	Soluble	Solid	300.0	11233
890-1502-96	SW-5 (0-6)	Soluble	Solid	300.0	11233
890-1502-97	SW-6 (0-6)	Soluble	Solid	300.0	11233
890-1502-98	SW-7 (0-6)	Soluble	Solid	300.0	11233
890-1502-99	SW-8 (0-6)	Soluble	Solid	300.0	11233
890-1502-100	SW-9 (0-6)	Soluble	Solid	300.0	11233
890-1502-101	SW-10 (0-6)	Soluble	Solid	300.0	11233
MB 880-11233/1-A	Method Blank	Soluble	Solid	300.0	11233
LCS 880-11233/2-A	Lab Control Sample	Soluble	Solid	300.0	11233
LCSD 880-11233/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11233
890-1502-92 MS	SW-1 (0-6)	Soluble	Solid	300.0	11233
890-1502-92 MSD	SW-1 (0-6)	Soluble	Solid	300.0	11233

Analysis Batch: 11452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-1502-4	BH-4 (6)	Soluble	Solid	300.0	11230
890-1502-102	SW-11 (0-6)	Soluble	Solid	300.0	11230
890-1502-103	SW-12 (10)	Soluble	Solid	300.0	11230
890-1502-104	SW-13 (15)	Soluble	Solid	300.0	11230
890-1502-105	SW-14 (15)	Soluble	Solid	300.0	11236
890-1502-106	SW-15 (15)	Soluble	Solid	300.0	11230
890-1502-107	SW-16 (15)	Soluble	Solid	300.0	11230
890-1502-108	SW-17 (15)	Soluble	Solid	300.0	11236
890-1502-109	SW-18 (15)	Soluble	Solid	300.0	11236
890-1502-110	SW-19 (15)	Soluble	Solid	300.0	11236
890-1502-111	SW-20 (15)	Soluble	Solid	300.0	11236
890-1502-112	SW-21 (15)	Soluble	Solid	300.0	11236
890-1502-113	SW-22 (15)	Soluble	Solid	300.0	11230
890-1502-114	SW-23 (15)	Soluble	Solid	300.0	11236
890-1502-115	SW-24 (15)	Soluble	Solid	300.0	11236
890-1502-116	SW-25 (15)	Soluble	Solid	300.0	11236
890-1502-117	SW-26 (15)	Soluble	Solid	300.0	11236
890-1502-118	SW-27 (15)	Soluble	Solid	300.0	11230
890-1502-119	SW-28 (15)	Soluble	Solid	300.0	11236
890-1502-120	SW-29 (15)	Soluble	Solid	300.0	11230
MB 880-11236/1-A	Method Blank	Soluble	Solid	300.0	11230
LCS 880-11236/2-A	Lab Control Sample	Soluble	Solid	300.0	11236
LCSD 880-11236/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11236
890-1502-4 MS	BH-4 (6)	Soluble	Solid	300.0	11236
890-1502-4 MSD	BH-4 (6)	Soluble	Solid	300.0	11236
890-1502-111 MS	SW-20 (15)	Soluble	Solid	300.0	11236
890-1502-111 MSD	SW-20 (15)	Soluble	Solid	300.0	11236

Eurofins Xenco, Carlsbad

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

HPLC/IC

Analysis Batch: 11453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-5	BH-5 (6)	Soluble	Solid	300.0	11237
890-1502-6	BH-6 (6)	Soluble	Solid	300.0	11237
890-1502-7	BH-7 (6)	Soluble	Solid	300.0	11237
890-1502-8	BH-8 (6)	Soluble	Solid	300.0	11237
890-1502-9	BH-9 (6)	Soluble	Solid	300.0	11237
890-1502-10	BH-10 (6)	Soluble	Solid	300.0	11237
890-1502-11	BH-11 (6)	Soluble	Solid	300.0	11237
890-1502-12	BH-12 (6)	Soluble	Solid	300.0	11237
890-1502-13	BH-13 (6)	Soluble	Solid	300.0	11237
890-1502-14	BH-14 (6)	Soluble	Solid	300.0	11237
890-1502-15	BH-15 (6)	Soluble	Solid	300.0	11237
890-1502-16	BH-16 (6)	Soluble	Solid	300.0	11237
890-1502-17	BH-17 (6)	Soluble	Solid	300.0	11237
890-1502-18	BH-18 (6)	Soluble	Solid	300.0	11237
890-1502-19	BH-19 (6)	Soluble	Solid	300.0	11237
890-1502-20	BH-20 (6)	Soluble	Solid	300.0	11237
890-1502-21	BH-21 (6)	Soluble	Solid	300.0	11237
890-1502-22	BH-22 (6)	Soluble	Solid	300.0	11237
890-1502-23	BH-23 (6)	Soluble	Solid	300.0	11237
890-1502-24	BH-24 (6)	Soluble	Solid	300.0	11237
MB 880-11237/1-A	Method Blank	Soluble	Solid	300.0	11237
LCS 880-11237/2-A	Lab Control Sample	Soluble	Solid	300.0	11237
LCSD 880-11237/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11237
890-1502-5 MS	BH-5 (6)	Soluble	Solid	300.0	11237
890-1502-5 MSD	BH-5 (6)	Soluble	Solid	300.0	11237
890-1502-15 MS	BH-15 (6)	Soluble	Solid	300.0	11237
890-1502-15 MSD	BH-15 (6)	Soluble	Solid	300.0	11237

Analysis Batch: 11454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-25	BH-25 (15)	Soluble	Solid	300.0	11238
890-1502-26	BH-26 (15)	Soluble	Solid	300.0	11238
890-1502-27	BH-27 (15)	Soluble	Solid	300.0	11238
890-1502-28	BH-28 (15)	Soluble	Solid	300.0	11238
390-1502-29	BH-29 (15)	Soluble	Solid	300.0	11238
890-1502-30	BH-30 (15)	Soluble	Solid	300.0	11238
890-1502-31	BH-31 (15)	Soluble	Solid	300.0	11238
390-1502-32	BH-32 (15)	Soluble	Solid	300.0	11238
390-1502-33	BH-33 (15)	Soluble	Solid	300.0	11238
390-1502-34	BH-34 (15)	Soluble	Solid	300.0	11238
390-1502-35	BH-35 (15)	Soluble	Solid	300.0	11238
390-1502-36	BH-36 (15)	Soluble	Solid	300.0	11238
390-1502-37	BH-37 (15)	Soluble	Solid	300.0	11238
390-1502-38	BH-38 (15)	Soluble	Solid	300.0	11238
90-1502-39	BH-39 (15)	Soluble	Solid	300.0	11238
390-1502-40	BH-40 (15)	Soluble	Solid	300.0	11238
390-1502-41	BH-41 (15)	Soluble	Solid	300.0	11238
390-1502-42	BH-42 (15)	Soluble	Solid	300.0	11238
390-1502-43	BH-43 (15)	Soluble	Solid	300.0	11238
90-1502-44	BH-44 (15)	Soluble	Solid	300.0	11238
MB 880-11238/1-A	Method Blank	Soluble	Solid	300.0	11238

Eurofins Xenco, Carlsbad

2

3

5

7

9

10

12

| | 4

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

HPLC/IC (Continued)

Analysis Batch: 11454 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-11238/2-A	Lab Control Sample	Soluble	Solid	300.0	11238
LCSD 880-11238/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11238
890-1502-25 MS	BH-25 (15)	Soluble	Solid	300.0	11238
890-1502-25 MSD	BH-25 (15)	Soluble	Solid	300.0	11238
890-1502-35 MS	BH-35 (15)	Soluble	Solid	300.0	11238
890-1502-35 MSD	BH-35 (15)	Soluble	Solid	300.0	11238

Analysis Batch: 11455

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-45	BH-45 (15)	Soluble	Solid	300.0	11240
890-1502-46	BH-46 (15)	Soluble	Solid	300.0	11240
890-1502-47	BH-47 (15)	Soluble	Solid	300.0	11240
890-1502-48	BH-48 (15)	Soluble	Solid	300.0	11240
890-1502-49	BH-49 (15)	Soluble	Solid	300.0	11240
890-1502-50	BH-50 (15)	Soluble	Solid	300.0	11240
890-1502-51	BH-51 (15)	Soluble	Solid	300.0	11240
890-1502-52	BH-52 (15)	Soluble	Solid	300.0	11240
890-1502-53	BH-53 (15)	Soluble	Solid	300.0	11240
890-1502-54	BH-54 (15)	Soluble	Solid	300.0	11240
890-1502-55	BH-55 (15)	Soluble	Solid	300.0	11240
890-1502-56	BH-56 (15)	Soluble	Solid	300.0	11240
890-1502-57	BH-57 (15)	Soluble	Solid	300.0	11240
890-1502-58	BH-58 (15)	Soluble	Solid	300.0	11240
890-1502-59	BH-59 (15)	Soluble	Solid	300.0	11240
890-1502-60	BH-60 (15)	Soluble	Solid	300.0	11240
890-1502-61	BH-61 (15)	Soluble	Solid	300.0	11240
890-1502-62	BH-62 (15)	Soluble	Solid	300.0	11240
890-1502-63	BH-63 (15)	Soluble	Solid	300.0	11240
890-1502-64	BH-64 (15)	Soluble	Solid	300.0	11240
MB 880-11240/1-A	Method Blank	Soluble	Solid	300.0	11240
LCS 880-11240/2-A	Lab Control Sample	Soluble	Solid	300.0	11240
LCSD 880-11240/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11240
890-1502-45 MS	BH-45 (15)	Soluble	Solid	300.0	11240
890-1502-45 MSD	BH-45 (15)	Soluble	Solid	300.0	11240
890-1502-55 MS	BH-55 (15)	Soluble	Solid	300.0	11240
890-1502-55 MSD	BH-55 (15)	Soluble	Solid	300.0	11240

Analysis Batch: 11456

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-65	BH-65 (15)	Soluble	Solid	300.0	11242
890-1502-66	BH-66 (15)	Soluble	Solid	300.0	11242
890-1502-67	BH-67 (15)	Soluble	Solid	300.0	11242
890-1502-68	BH-68 (15)	Soluble	Solid	300.0	11242
890-1502-69	BH-69 (15)	Soluble	Solid	300.0	11242
890-1502-70	BH-70 (15)	Soluble	Solid	300.0	11242
890-1502-71	BH-71 (15)	Soluble	Solid	300.0	11242
890-1502-72	BH-72 (15)	Soluble	Solid	300.0	11242
890-1502-73	BH-73 (15)	Soluble	Solid	300.0	11242
890-1502-74	BH-74 (15)	Soluble	Solid	300.0	11242
890-1502-75	BH-75 (15)	Soluble	Solid	300.0	11242
890-1502-76	BH-76 (15)	Soluble	Solid	300.0	11242

Eurofins Xenco, Carlsbad

Page 175 of 248

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-1502-1

SDG: 212C-MD-02230

HPLC/IC (Continued)

Analysis Batch: 11456 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-77	BH-77 (15)	Soluble	Solid	300.0	11242
890-1502-78	BH-78 (15)	Soluble	Solid	300.0	11242
890-1502-79	BH-79 (15)	Soluble	Solid	300.0	11242
890-1502-80	BH-80 (15)	Soluble	Solid	300.0	11242
890-1502-81	BH-81 (15)	Soluble	Solid	300.0	11242
890-1502-82	BH-82 (15)	Soluble	Solid	300.0	11242
890-1502-83	BH-83 (15)	Soluble	Solid	300.0	11242
890-1502-84	BH-84 (15)	Soluble	Solid	300.0	11242
MB 880-11242/1-A	Method Blank	Soluble	Solid	300.0	11242
LCS 880-11242/2-A	Lab Control Sample	Soluble	Solid	300.0	11242
LCSD 880-11242/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11242
890-1502-65 MS	BH-65 (15)	Soluble	Solid	300.0	11242
890-1502-65 MSD	BH-65 (15)	Soluble	Solid	300.0	11242
890-1502-75 MS	BH-75 (15)	Soluble	Solid	300.0	11242
890-1502-75 MSD	BH-75 (15)	Soluble	Solid	300.0	11242

Analysis Batch: 11705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1502-85	BH-85 (15)	Soluble	Solid	300.0	11243
890-1502-86	BH-86 (15)	Soluble	Solid	300.0	11243
890-1502-87	BH-87 (15)	Soluble	Solid	300.0	11243
890-1502-88	BH-88 (15)	Soluble	Solid	300.0	11243
890-1502-89	BH-89 (15)	Soluble	Solid	300.0	11243
890-1502-90	BH90 (RS) (6)	Soluble	Solid	300.0	11243
890-1502-91	BH-91 (RS) (6)	Soluble	Solid	300.0	11243
890-1502-121	SW-30 (RS) (6)	Soluble	Solid	300.0	11243
890-1502-122	SW-31 (RS) (4)	Soluble	Solid	300.0	11243
890-1502-123	SW-32 (RS) (6)	Soluble	Solid	300.0	11243
890-1502-124	SW-33 (RS) (8)	Soluble	Solid	300.0	11243
MB 880-11243/1-A	Method Blank	Soluble	Solid	300.0	11243
LCS 880-11243/2-A	Lab Control Sample	Soluble	Solid	300.0	11243
LCSD 880-11243/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	11243
890-1502-85 MS	BH-85 (15)	Soluble	Solid	300.0	11243
890-1502-85 MSD	BH-85 (15)	Soluble	Solid	300.0	11243
890-1502-124 MS	SW-33 (RS) (8)	Soluble	Solid	300.0	11243
890-1502-124 MSD	SW-33 (RS) (8)	Soluble	Solid	300.0	11243

Eurofins Xenco, Carlsbad

Client Sample ID: BH-1 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 00:47	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 11:42	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11227	11/02/21 11:52	CH	XEN MID
Soluble	Analysis	300.0		5			11379	11/06/21 06:01	CH	XEN MID

Client Sample ID: BH-2 (6) Lab Sample ID: 890-1502-2 Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 01:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 12:43	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11227	11/02/21 11:52	CH	XEN MID
Soluble	Analysis	300.0		1			11379	11/06/21 06:09	CH	XEN MID

Client Sample ID: BH-3 (6) Lab Sample ID: 890-1502-3 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 01:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 13:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11227	11/02/21 11:52	CH	XEN MID
Soluble	Analysis	300.0		1			11379	11/06/21 06:17	CH	XEN MID

Client Sample ID: BH-4 (6) Lab Sample ID: 890-1502-4

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 01:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 177 of 248

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-4 (6)

Lab Sample ID: 890-1502-4 Date Collected: 10/27/21 00:00

4.95 g

Matrix: Solid

Lab

XEN MID

XEN MID

Date Received: 10/29/21 12:45 Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA 8015 NM Analysis 11598 11/05/21 13:50 AJ Total/NA Prep 8015NM Prep 10.01 g 10 mL 11223 11/02/21 11:44 DM

1

1

11/03/21 13:23 ΑJ XEN MID 11/02/21 12:22 CH XEN MID 11/08/21 09:05 CH XEN MID

11317

11236

11452

50 mL

Client Sample ID: BH-5 (6)

Total/NA

Soluble

Soluble

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Analysis

Analysis

Leach

8015B NM

DI Leach

300.0

Lab Sample ID: 890-1502-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 02:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 13:43	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 05:30	CH	XEN MID

Client Sample ID: BH-6 (6) Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

Lab Sample ID: 890-1502-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 02:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 14:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 05:52	CH	XEN MID

Client Sample ID: BH-7 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Lab Sample ID: 890-1502-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 02:50	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g	10 mL	11223 11317	11/02/21 11:44 11/03/21 14:23	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Client Sample ID: BH-7 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	11237	11/02/21 12:31	СН	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 05:59	CH	XEN MID

Client Sample ID: BH-8 (6) Lab Sample ID: 890-1502-8 **Matrix: Solid**

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 03:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 14:43	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 06:07	CH	XEN MID

Client Sample ID: BH-9 (6) Lab Sample ID: 890-1502-9

Date Collected: 10/27/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 03:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 15:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 06:14	CH	XEN MID

Client Sample ID: BH-10 (6) Lab Sample ID: 890-1502-10

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 03:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 15:23	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 06:36	CH	XEN MID

Eurofins Xenco, Carlsbad

Matrix: Solid

Released to Imaging: 9/1/2023 2:07:08 PM

SDG: 212C-MD-02230

Client Sample ID: BH-11 (6)

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-11

Lab Sample ID: 890-1502-13

Lab Sample ID: 890-1502-14

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 05:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 16:02	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 06:44	CH	XEN MID

Client Sample ID: BH-12 (6) Lab Sample ID: 890-1502-12 Matrix: Solid

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 05:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/08/21 17:11	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 16:22	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 06:51	CH	XEN MID

Client Sample ID: BH-13 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 05:54	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 16:42	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 14:10	CH	XEN MID

Client Sample ID: BH-14 (6)

Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 06:15	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 180 of 248

Job ID: 890-1502-1 SDG: 212C-MD-02230

Project/Site: Kaiser SWD

Client: Tetra Tech, Inc.

Lab Sample ID: 890-1502-14

Matrix: Solid

Client Sample ID: BH-14 (6)
Date Collected: 10/27/21 00:00
Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 17:02	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 07:06	CH	XEN MID

Lab Sample ID: 890-1502-15

Lab Gample 15. 030-1302-13

Matrix: Solid

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Client Sample ID: BH-15 (6)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 06:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 17:22	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 07:13	CH	XEN MID

Client Sample ID: BH-16 (6)

Lab Sample ID: 890-1502-16

Date Collected: 10/27/21 00:00 Matrix: Solid
Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 06:55	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 17:42	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 07:35	CH	XEN MID

Client Sample ID: BH-17 (6) Lab Sample ID: 890-1502-17

Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Released to Imaging: 9/1/2023 2:07:08 PM

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 07:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 18:03	AJ	XEN MID

Eurofins Xenco, Carlsbad

2

<u>ی</u>

5

7

9

11

1 /

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: BH-17 (6)

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-17

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	11237	11/02/21 12:31	СН	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 07:43	CH	XEN MID

Client Sample ID: BH-18 (6) Lab Sample ID: 890-1502-18

Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 07:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 18:22	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		5			11453	11/07/21 08:05	CH	XEN MID

Client Sample ID: BH-19 (6) Lab Sample ID: 890-1502-19

Date Collected: 10/27/21 00:00 Matrix: Solid
Date Received: 10/29/21 12:45

Batch Dil Final Batch Initial Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.99 g 5 mL 11075 11/01/21 11:05 KL XEN MID 11/03/21 07:57 Total/NA 8021B 5 mL 5 mL XEN MID Analysis 11206 MR Total/NA Analysis Total BTEX 1 11768 11/09/21 10:40 AJ XEN MID Total/NA Analysis 8015 NM 1 11598 11/05/21 13:50 AJ XEN MID 11/02/21 11:44 Total/NA Prep 8015NM Prep 10.03 g 11223 DM XEN MID 10 mL Total/NA Analysis 8015B NM 1 11317 11/03/21 18:42 AJ XEN MID Soluble Leach DI Leach 5.05 g 50 mL 11237 11/02/21 12:31 СН XEN MID Soluble Analysis 300.0 5 11453 11/07/21 08:13 CH XEN MID

Client Sample ID: BH-20 (6) Lab Sample ID: 890-1502-20

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11075	11/01/21 11:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11206	11/03/21 08:17	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11223	11/02/21 11:44	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11317	11/03/21 19:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 08:20	CH	XEN MID

Eurofins Xenco, Carlsbad

2

<u>ی</u>

5

6

_

10

12

1 4

.

Client Sample ID: BH-21 (6)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-21

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 18:15	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 11:27	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 08:27	CH	XEN MID

Client Sample ID: BH-22 (6) Lab Sample ID: 890-1502-22 Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 18:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 12:32	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 08:35	CH	XEN MID

Client Sample ID: BH-23 (6) Lab Sample ID: 890-1502-23 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 18:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 12:53	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 08:42	CH	XEN MID

Client Sample ID: BH-24 (6) Lab Sample ID: 890-1502-24 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 19:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 183 of 248

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Lab Sample ID: 890-1502-24 Matrix: Solid

Client Sample ID: BH-24 (6) Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 13:14	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11237	11/02/21 12:31	CH	XEN MID
Soluble	Analysis	300.0		1			11453	11/07/21 08:49	CH	XEN MID

Client Sample ID: BH-25 (15) Lab Sample ID: 890-1502-25 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 19:37	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 13:36	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 09:49	CH	XEN MID

Client Sample ID: BH-26 (15) Lab Sample ID: 890-1502-26 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 19:57	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 13:57	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		5			11454	11/07/21 10:11	CH	XEN MID

Lab Sample ID: 890-1502-27 Client Sample ID: BH-27 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 20:17	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g	10 mL	11255 11321	11/02/21 14:45 11/03/21 14:18	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Page 184 of 248

Prep

8015NM Prep

Total/NA

Job ID: 890-1502-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-27 (15) Lab Sample ID: 890-1502-27

Date Collected: 10/27/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	11238	11/02/21 12:34	СН	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 10:18	CH	XEN MID

Client Sample ID: BH-28 (15) Lab Sample ID: 890-1502-28

Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45 Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 5035 5.03 g 11109 11/01/21 12:05 KL XEN MID Prep 5 mL 8021B Total/NA 5 mL 5 mL 11/02/21 20:38 MR Analysis 1 11221 XEN MID Total/NA Total BTEX 11768 XEN MID Analysis 11/09/21 10:40 AJ 1 Total/NA Analysis 8015 NM 11598 11/05/21 13:50 AJ XEN MID

8015B NM Total/NA Analysis 11321 11/03/21 14:39 AJ XEN MID 50 mL Soluble DI Leach 5.05 g 11238 11/02/21 12:34 СН XEN MID Leach 300.0 Analysis 11454 11/07/21 10:26 CH XEN MID Soluble 1

10.01 g

10 mL

11255

11/02/21 14:45

DM

Client Sample ID: BH-29 (15) Lab Sample ID: 890-1502-29 Date Collected: 10/27/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 20:58	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 15:00	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 10:33	CH	XEN MID

Client Sample ID: BH-30 (15) Lab Sample ID: 890-1502-30

Date Collected: 10/27/21 00:00 Matrix: Solid Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 21:19	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 15:21	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 10:56	CH	XEN MID

Eurofins Xenco, Carlsbad

XEN MID

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-31 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Lab Sample ID: 890-1502-31

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 23:07	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 16:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 11:03	CH	XEN MID

Client Sample ID: BH-32 (15) Lab Sample ID: 890-1502-32

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 Total/NA Prep 5.00 g 5 mL 11109 11/01/21 12:05 KL XEN MID Total/NA 8021B 5 mL 11/02/21 23:28 XEN MID Analysis 1 5 mL 11221 MR 11/09/21 10:40 Total/NA Total BTEX 11768 XEN MID Analysis 1 A.I Total/NA Analysis 8015 NM 11598 11/05/21 13:50 XEN MID Total/NA 11255 XEN MID Prep 8015NM Prep 10.03 g 11/02/21 14:45 DM 10 mL Total/NA Analysis 8015B NM 11321 11/03/21 16:24 AJ XEN MID Soluble XEN MID Leach DI Leach 5 g 50 mL 11238 11/02/21 12:34 CH Soluble Analysis 300.0 1 11454 11/07/21 11:10 CH XEN MID

Lab Sample ID: 890-1502-33 Client Sample ID: BH-33 (15) Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/02/21 23:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 16:46	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 11:18	CH	XEN MID

Client Sample ID: BH-34 (15) Lab Sample ID: 890-1502-34 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 00:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 186 of 248

Released to Imaging: 9/1/2023 2:07:08 PM

Job ID: 890-1502-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-34 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-34

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 17:07	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11238	11/02/21 12:34	СН	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 11:25	CH	XEN MID

Client Sample ID: BH-35 (15) Lab Sample ID: 890-1502-35 Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 00:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 17:28	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 11:33	CH	XEN MID

Client Sample ID: BH-36 (15) Lab Sample ID: 890-1502-36 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 00:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 17:49	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 11:55	CH	XEN MID

Lab Sample ID: 890-1502-37 Client Sample ID: BH-37 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 01:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 18:11	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 187 of 248

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Lab Sample ID: 890-1502-37

Matrix: Solid

Client Sample ID: BH-37 (15) Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		5			11454	11/07/21 12:02	CH	XEN MID

Client Sample ID: BH-38 (15) Lab Sample ID: 890-1502-38

Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 01:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 18:32	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		5			11454	11/07/21 12:25	CH	XEN MID

Client Sample ID: BH-39 (15) Lab Sample ID: 890-1502-39

Date Collected: 10/27/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 01:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 18:53	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		5			11454	11/07/21 12:32	CH	XEN MID

Client Sample ID: BH-40 (15) Lab Sample ID: 890-1502-40

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11109	11/01/21 12:05	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 02:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11255	11/02/21 14:45	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11321	11/03/21 19:15	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 12:39	CH	XEN MID

Eurofins Xenco, Carlsbad

Job ID: 890-1502-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: BH-41 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-41

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 02:19	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 11:27	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 12:47	CH	XEN MID

Client Sample ID: BH-42 (15) Lab Sample ID: 890-1502-42 Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 02:46	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 12:32	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 12:54	CH	XEN MID

Client Sample ID: BH-43 (15) Lab Sample ID: 890-1502-43 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 03:14	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 12:53	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		5			11454	11/07/21 13:02	CH	XEN MID

Client Sample ID: BH-44 (15) Lab Sample ID: 890-1502-44 Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 03:41	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 189 of 248

Client Sample ID: BH-44 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-44

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 13:14	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11238	11/02/21 12:34	CH	XEN MID
Soluble	Analysis	300.0		1			11454	11/07/21 13:09	CH	XEN MID

Lab Sample ID: 890-1502-45 Client Sample ID: BH-45 (15) Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 04:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 13:36	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 04:30	CH	XEN MID

Client Sample ID: BH-46 (15) Lab Sample ID: 890-1502-46 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 04:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 13:57	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 04:53	CH	XEN MID

Lab Sample ID: 890-1502-47 Client Sample ID: BH-47 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 05:03	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g	10 mL	11273 11323	11/02/21 16:07 11/03/21 14:18	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Page 190 of 248

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1502-1

SDG: 212C-MD-02230

Client Sample ID: BH-47 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-47

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 05:00	CH	XEN MID

Client Sample ID: BH-48 (15) Lab Sample ID: 890-1502-48

Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 05:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 14:39	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 05:08	CH	XEN MID

Client Sample ID: BH-49 (15) Lab Sample ID: 890-1502-49

Initial

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

Batch

Batch

Final	Batch	Prepared		
Amount	Number	or Analyzed	Analyst	Lab
5 mL	11111	11/01/21 12:11	KL	XEN MID
5 mL	11259	11/04/21 05:57	MR	XEN MID

Total/NA Prep 5035 5.02 g 5 mL 11111 11/01/21 12:11 KL XEN MID Total/NA Analysis 8021B 1 5 mL 5 mL 11259 11/04/21 05:57 MR XEN MID Total/NA Analysis Total BTEX 1 11768 11/09/21 10:40 AJ XEN MID	
	_
Total/N/A Applysis Total DTEV 1 11769 11/00/21 10:40 A 1 VENIMID	
TOTALINA ATTAINS TOTAL TEXT TO THE TOTAL ATTAINS TO	
Total/NA Analysis 8015 NM 1 11598 11/05/21 13:50 AJ XEN MID	
Total/NA Prep 8015NM Prep 10.02 g 10 mL 11273 11/02/21 16:07 DM XEN MID	
Total/NA Analysis 8015B NM 1 11323 11/03/21 15:00 AJ XEN MID	
Soluble Leach DI Leach 5.05 g 50 mL 11240 11/02/21 12:39 CH XEN MID	
Soluble Analysis 300.0 1 11455 11/08/21 05:16 CH XEN MID	

Dil

Client Sample ID: BH-50 (15) Lab Sample ID: 890-1502-50

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 06:24	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 15:21	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 05:39	CH	XEN MID

Eurofins Xenco, Carlsbad

Matrix: Solid

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Lab Sample ID: 890-1502-51

Matrix: Solid

Client Sample ID: BH-51 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 08:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 16:03	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 05:46	CH	XEN MID

Client Sample ID: BH-52 (15) Lab Sample ID: 890-1502-52

Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 08:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 16:24	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 05:54	CH	XEN MID

Client Sample ID: BH-53 (15)

Date Collected: 10/27/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11388	11/03/21 08:30	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11420	11/04/21 11:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 16:46	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 06:02	CH	XEN MID

Client Sample ID: BH-54 (15) Lab Sample ID: 890-1502-54 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 09:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-1502-53

Client Sample ID: BH-54 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-54

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 17:07	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 06:09	CH	XEN MID

Lab Sample ID: 890-1502-55 Client Sample ID: BH-55 (15) Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 09:54	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 17:28	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 06:17	CH	XEN MID

Client Sample ID: BH-56 (15) Lab Sample ID: 890-1502-56 Date Collected: 10/27/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11111	11/01/21 12:11	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11259	11/04/21 10:20	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 17:49	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 06:40	CH	XEN MID

Lab Sample ID: 890-1502-57 Client Sample ID: BH-57 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11445	11/04/21 11:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11449	11/05/21 00:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	11273 11323	11/02/21 16:07 11/03/21 18:11	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Page 193 of 248

Matrix: Solid

Client Sample ID: BH-57 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-57

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 06:48	CH	XEN MID

Client Sample ID: BH-58 (15) Lab Sample ID: 890-1502-58

Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11445	11/04/21 11:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11449	11/05/21 00:58	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 18:32	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 07:11	CH	XEN MID

Client Sample ID: BH-59 (15) Lab Sample ID: 890-1502-59

Date Collected: 10/27/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11445	11/04/21 11:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11449	11/05/21 01:24	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 18:53	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 07:18	CH	XEN MID

Client Sample ID: BH-60 (15) Lab Sample ID: 890-1502-60

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11445	11/04/21 11:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11449	11/05/21 01:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11273	11/02/21 16:07	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 19:15	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 07:26	CH	XEN MID

Eurofins Xenco, Carlsbad

Client Sample ID: BH-61 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-61

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 05:47	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 21:06	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		10			11455	11/08/21 07:33	CH	XEN MID

Client Sample ID: BH-62 (15) Lab Sample ID: 890-1502-62 Date Collected: 10/27/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 06:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 22:16	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 07:41	CH	XEN MID

Client Sample ID: BH-63 (15) Lab Sample ID: 890-1502-63 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 06:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 22:39	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11240	11/02/21 12:39	CH	XEN MID
Soluble	Analysis	300.0		1			11455	11/08/21 07:49	CH	XEN MID

Client Sample ID: BH-64 (15) Lab Sample ID: 890-1502-64 Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 06:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 195 of 248

Client Sample ID: BH-64 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-64

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 23:00	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11240	11/02/21 12:39	СН	XEN MID
Soluble	Analysis	300.0		5			11455	11/08/21 07:56	CH	XEN MID

Lab Sample ID: 890-1502-65 Client Sample ID: BH-65 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 07:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 23:21	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 08:58	CH	XEN MID

Client Sample ID: BH-66 (15) Lab Sample ID: 890-1502-66 Date Collected: 10/27/21 00:00 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 07:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/03/21 23:41	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 09:21	CH	XEN MID

Lab Sample ID: 890-1502-67 Client Sample ID: BH-67 (15) Date Collected: 10/27/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 07:50	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g	10 mL	11356 11323	11/03/21 10:38 11/04/21 00:02	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Page 196 of 248

Released to Imaging: 9/1/2023 2:07:08 PM

Client Sample ID: BH-67 (15)

Date Collected: 10/27/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-67

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	11242	11/02/21 12:43	СН	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 09:29	CH	XEN MID

Client Sample ID: BH-68 (15)

Lab Sample ID: 890-1502-68

Date Collected: 10/28/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 08:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 00:23	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		5			11456	11/08/21 09:36	CH	XEN MID

Client Sample ID: BH-69 (15)

Lab Sample ID: 890-1502-69

Date Collected: 10/28/21 00:00 Matrix: Solid
Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 08:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 00:44	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 09:44	CH	XEN MID

Client Sample ID: BH-70 (15)

Lab Sample ID: 890-1502-70

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 08:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 01:05	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 10:07	CH	XEN MID

Eurofins Xenco, Carlsbad

2

3

Ē

6

8

10

12

4 4

Client Sample ID: BH-71 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-71

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 10:40	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 01:48	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 10:15	CH	XEN MID

Client Sample ID: BH-72 (15) Lab Sample ID: 890-1502-72

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 11:00	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 02:09	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 10:22	CH	XEN MID

Client Sample ID: BH-73 (15) Lab Sample ID: 890-1502-73 Date Collected: 10/28/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 11:21	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 02:31	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		5			11456	11/08/21 10:30	CH	XEN MID

Client Sample ID: BH-74 (15) Lab Sample ID: 890-1502-74 Date Collected: 10/28/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 11:41	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 198 of 248 Released to Imaging: 9/1/2023 2:07:08 PM

Client Sample ID: BH-74 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-74

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 02:52	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11242	11/02/21 12:43	СН	XEN MID
Soluble	Analysis	300.0		5			11456	11/08/21 10:37	CH	XEN MID

Client Sample ID: BH-75 (15)

Date Collected: 10/28/21 00:00

Lab Sample ID: 890-1502-75

Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 12:02	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 03:14	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 10:45	CH	XEN MID

Client Sample ID: BH-76 (15)

Date Collected: 10/28/21 00:00

Lab Sample ID: 890-1502-76

Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 12:22	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 03:36	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 11:08	CH	XEN MID

Client Sample ID: BH-77 (15)

Lab Sample ID: 890-1502-77

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 12:42	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	11356 11323	11/03/21 10:38 11/04/21 03:57	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Matrix: Solid

11/10/2021

Client Sample ID: BH-77 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-77

Matrix: Solid

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Soluble DI Leach Leach 5.03 g 50 mL 11242 11/02/21 12:43 СН XEN MID 300.0 11/08/21 12:34 Soluble Analysis 5 11456 CH XEN MID

Client Sample ID: BH-78 (15) Lab Sample ID: 890-1502-78

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 13:03	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 04:18	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 11:39	CH	XEN MID

Client Sample ID: BH-79 (15) Lab Sample ID: 890-1502-79

Date Collected: 10/28/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 13:23	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 04:40	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 11:46	CH	XEN MID

Client Sample ID: BH-80 (15) Lab Sample ID: 890-1502-80

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	11112	11/01/21 12:13	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11221	11/03/21 13:44	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11356	11/03/21 10:38	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11323	11/04/21 05:01	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 11:54	CH	XEN MID

Eurofins Xenco, Carlsbad

Matrix: Solid

Released to Imaging: 9/1/2023 2:07:08 PM

Client Sample ID: BH-81 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-81

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 17:55	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 11:05	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 12:02	CH	XEN MID

Client Sample ID: BH-82 (15) Lab Sample ID: 890-1502-82

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 18:15	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 12:11	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 12:09	CH	XEN MID

Client Sample ID: BH-83 (15) Lab Sample ID: 890-1502-83 Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035		·	5.00 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 18:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 12:32	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 12:17	CH	XEN MID

Client Sample ID: BH-84 (15) Lab Sample ID: 890-1502-84 Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 18:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 201 of 248

Matrix: Solid

Matrix: Solid

SDG: 212C-MD-02230

Client Sample ID: BH-84 (15)

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-84

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 12:55	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11242	11/02/21 12:43	CH	XEN MID
Soluble	Analysis	300.0		1			11456	11/08/21 12:25	CH	XEN MID

Lab Sample ID: 890-1502-85

Client Sample ID: BH-85 (15) Date Collected: 10/28/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 19:17	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/05/21 13:50	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 13:16	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 12:52	CH	XEN MID

Client Sample ID: BH-86 (15) Lab Sample ID: 890-1502-86 Date Collected: 10/28/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 19:37	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 13:38	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 13:15	CH	XEN MID

Lab Sample ID: 890-1502-87 Client Sample ID: BH-87 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 19:57	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g	10 mL	11364 11416	11/03/21 11:37 11/04/21 13:59	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Page 202 of 248

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client Sample ID: BH-87 (15)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Lab Sample ID: 890-1502-87

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 13:22	CH	XEN MID

Client Sample ID: BH-88 (15) Lab Sample ID: 890-1502-88

Date Collected: 10/28/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 20:18	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 14:20	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		5			11705	11/09/21 13:30	CH	XEN MID

Client Sample ID: BH-89 (15) Lab Sample ID: 890-1502-89

Date Collected: 10/28/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 20:38	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 14:41	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		5			11705	11/09/21 13:38	CH	XEN MID

Client Sample ID: BH90 (RS) (6) Lab Sample ID: 890-1502-90

Date Collected: 10/28/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 20:59	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 15:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11243	11/02/21 12:46	СН	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 14:01	CH	XEN MID

Eurofins Xenco, Carlsbad

Job ID: 890-1502-1 SDG: 212C-MD-02230

Project/Site: Kaiser SWD Client Sample ID: BH-91 (RS) (6)

Lab Sample ID: 890-1502-91

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45

Client: Tetra Tech, Inc.

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 22:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 15:46	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 14:08	CH	XEN MID

Lab Sample ID: 890-1502-92

Client Sample ID: SW-1 (0-6)

Date Collected: 10/25/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 23:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 16:07	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		5			11381	11/07/21 02:54	CH	XEN MID

Client Sample ID: SW-2 (0-6) Lab Sample ID: 890-1502-93

Date Collected: 10/25/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 23:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 16:29	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		1			11381	11/07/21 03:16	CH	XEN MID

Client Sample ID: SW-3 (0-6) Lab Sample ID: 890-1502-94

Date Collected: 10/25/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/03/21 23:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Client Sample ID: SW-3 (0-6)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-94

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 16:51	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		1			11381	11/07/21 03:24	CH	XEN MID

Client Sample ID: SW-4 (0-6)

Date Collected: 10/25/21 00:00

Lab Sample ID: 890-1502-95

Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 00:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 17:14	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		1			11381	11/07/21 03:46	CH	XEN MID

Client Sample ID: SW-5 (0-6)

Date Collected: 10/25/21 00:00

Lab Sample ID: 890-1502-96

Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 00:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 17:35	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		5			11381	11/07/21 03:53	CH	XEN MID

Client Sample ID: SW-6 (0-6)

Lab Sample ID: 890-1502-97

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 00:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 17:56	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 205 of 248

Matrix: Solid

2

3

5

7

9

11

13

Client Sample ID: SW-6 (0-6)

Date Collected: 10/25/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-97

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		10			11381	11/07/21 04:01	CH	XEN MID

Client Sample ID: SW-7 (0-6) Lab Sample ID: 890-1502-98

Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 01:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 18:17	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		10			11381	11/07/21 04:08	CH	XEN MID

Client Sample ID: SW-8 (0-6) Lab Sample ID: 890-1502-99

Date Collected: 10/26/21 00:00 **Matrix: Solid** Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 01:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 18:39	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		5			11381	11/07/21 04:15	CH	XEN MID

Client Sample ID: SW-9 (0-6) Lab Sample ID: 890-1502-100

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11113	11/01/21 12:16	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 01:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11364	11/03/21 11:37	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11416	11/04/21 19:01	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		5			11381	11/07/21 04:23	CH	XEN MID

Eurofins Xenco, Carlsbad

Job ID: 890-1502-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-10 (0-6)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Lab Sample ID: 890-1502-101

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 05:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 11:05	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11233	11/02/21 12:00	CH	XEN MID
Soluble	Analysis	300.0		5			11381	11/07/21 04:30	CH	XEN MID

Client Sample ID: SW-11 (0-6) Lab Sample ID: 890-1502-102 Date Collected: 10/26/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 11114 Total/NA 5.00 g 5 mL 11/01/21 12:18 KL XEN MID Total/NA 8021B 5 mL 11/04/21 05:49 XEN MID Analysis 1 5 mL 11374 MR Total/NA Total BTEX 11768 11/09/21 10:40 XEN MID Analysis 1 A.I Total/NA Analysis 8015 NM 11598 11/08/21 15:54 XEN MID Total/NA XEN MID Prep 8015NM Prep 10.02 g 11375 11/03/21 13:15 DM 10 mL Total/NA Analysis 8015B NM 11418 11/04/21 12:11 AJ XEN MID Soluble 5.01 g XEN MID Leach DI Leach 50 mL 11236 11/02/21 12:22 CH

Client Sample ID: SW-12 (10) Lab Sample ID: 890-1502-103 Date Collected: 10/26/21 00:00 **Matrix: Solid**

11452

11/08/21 09:36

CH

1

Date Received: 10/29/21 12:45

Analysis

300.0

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035		·	5.03 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 06:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 12:32	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 09:46	CH	XEN MID

Client Sample ID: SW-13 (15) Lab Sample ID: 890-1502-104 Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Released to Imaging: 9/1/2023 2:07:08 PM

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 06:29	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 207 of 248

XEN MID

SDG: 212C-MD-02230

Lab Sample ID: 890-1502-104

Matrix: Solid

Client Sample ID: SW-13 (15) Date Collected: 10/26/21 00:00

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 12:55	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		5			11452	11/08/21 09:57	CH	XEN MID

Client Sample ID: SW-14 (15) Lab Sample ID: 890-1502-105 **Matrix: Solid**

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 06:50	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 13:16	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 10:07	CH	XEN MID

Client Sample ID: SW-15 (15) Lab Sample ID: 890-1502-106 Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 07:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 13:38	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 10:39	CH	XEN MID

Lab Sample ID: 890-1502-107 Client Sample ID: SW-16 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 07:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g	10 mL	11375 11418	11/03/21 13:15 11/04/21 13:59	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Page 208 of 248

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-16 (15)

Lab Sample ID: 890-1502-107 Date Collected: 10/26/21 00:00 Matrix: Solid Date Received: 10/29/21 12:45

Prepared Batch Batch Dil Initial Final Batch Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Soluble DI Leach 11236 Leach 5.04 g 50 mL 11/02/21 12:22 СН XEN MID 300.0 11/08/21 10:49 Soluble Analysis 1 11452 CH XEN MID

Client Sample ID: SW-17 (15) Lab Sample ID: 890-1502-108

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 07:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 14:20	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		5			11452	11/08/21 11:00	CH	XEN MID

Client Sample ID: SW-18 (15) Lab Sample ID: 890-1502-109 Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 08:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 14:41	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 11:10	CH	XEN MID

Client Sample ID: SW-19 (15) Lab Sample ID: 890-1502-110

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 08:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 15:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 11:20	CH	XEN MID

Eurofins Xenco, Carlsbad

SDG: 212C-MD-02230

Client Sample ID: SW-20 (15)

Lab Sample ID: 890-1502-111

Matrix: Solid

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 10:21	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:40	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 15:46	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 11:31	CH	XEN MID

Client Sample ID: SW-21 (15) Lab Sample ID: 890-1502-112

Date Collected: 10/26/21 00:00 Matrix: Solid

Date Received: 10/29/21 12:45

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 11114 Total/NA 5.02 g 5 mL 11/01/21 12:18 KL XEN MID Total/NA 8021B 5 mL 11/04/21 10:41 XEN MID Analysis 1 5 mL 11374 MR 11/09/21 10:40 Total/NA Total BTEX 11768 XEN MID Analysis 1 A.I Total/NA Analysis 8015 NM 11598 11/08/21 15:54 XEN MID Total/NA XEN MID Prep 8015NM Prep 10.03 g 11375 11/03/21 13:15 DM 10 mL Total/NA Analysis 8015B NM 11418 11/04/21 16:07 AJ XEN MID Soluble XEN MID Leach DI Leach 4.99 g 50 mL 11236 11/02/21 12:22 CH Soluble Analysis 300.0 10 11452 11/08/21 12:02 CH XEN MID

Client Sample ID: SW-22 (15) Lab Sample ID: 890-1502-113 Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 11:01	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 16:29	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		10			11452	11/08/21 12:12	CH	XEN MID

Client Sample ID: SW-23 (15) Lab Sample ID: 890-1502-114

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 11:22	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 210 of 248

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-23 (15)

Lab Sample ID: 890-1502-114 Date Collected: 10/26/21 00:00 Matrix: Solid Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 16:51	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 12:43	CH	XEN MID

Client Sample ID: SW-24 (15) Lab Sample ID: 890-1502-115 Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 11:42	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 17:14	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		5			11452	11/08/21 12:54	CH	XEN MID

Client Sample ID: SW-25 (15) Lab Sample ID: 890-1502-116 Date Collected: 10/26/21 00:00 **Matrix: Solid**

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 12:03	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 17:35	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11236	11/02/21 12:22	СН	XEN MID
Soluble	Analysis	300.0		10			11452	11/08/21 13:04	CH	XEN MID

Lab Sample ID: 890-1502-117 Client Sample ID: SW-26 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 12:23	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	11375 11418	11/03/21 13:15 11/04/21 17:56	DM AJ	XEN MID XEN MID

Eurofins Xenco, Carlsbad

Page 211 of 248

Matrix: Solid

11/10/2021

Job ID: 890-1502-1 SDG: 212C-MD-02230

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: SW-26 (15)

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-117

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	11236	11/02/21 12:22	СН	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 13:15	CH	XEN MID

Client Sample ID: SW-27 (15) Lab Sample ID: 890-1502-118

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 12:44	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 18:17	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		10			11452	11/08/21 13:25	CH	XEN MID

Client Sample ID: SW-28 (15) Lab Sample ID: 890-1502-119

Date Collected: 10/26/21 00:00

Date Received: 10/29/21 12:45

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	11114	11/01/21 12:18	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11374	11/04/21 13:04	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 18:39	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		5			11452	11/08/21 13:36	CH	XEN MID

Client Sample ID: SW-29 (15) Lab Sample ID: 890-1502-120

Date Collected: 10/26/21 00:00 Date Received: 10/29/21 12:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11445	11/04/21 11:11	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11449	11/05/21 03:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	11375	11/03/21 13:15	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11418	11/04/21 19:01	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11236	11/02/21 12:22	CH	XEN MID
Soluble	Analysis	300.0		1			11452	11/08/21 13:46	CH	XEN MID

Eurofins Xenco, Carlsbad

Client: Tetra Tech, Inc. Job ID: 890-1502-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-30 (RS) (6)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-121

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	11076	11/01/21 11:07	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11022	11/01/21 23:40	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	11376	11/03/21 13:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11414	11/04/21 10:53	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 14:45	CH	XEN MID

Client Sample ID: SW-31 (RS) (4)

Date Collected: 10/28/21 00:00

Lab Sample ID: 890-1502-122

Matrix: Solid

Date Received: 10/29/21 12:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	11076	11/01/21 11:07	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11022	11/02/21 00:00	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	11376	11/03/21 13:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11414	11/04/21 11:55	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 14:53	CH	XEN MID

Client Sample ID: SW-32 (RS) (6)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-123 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	11076	11/01/21 11:07	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11022	11/02/21 00:21	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11376	11/03/21 13:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11414	11/04/21 12:15	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 15:01	CH	XEN MID

Client Sample ID: SW-33 (RS) (8)

Date Collected: 10/28/21 00:00

Date Received: 10/29/21 12:45

Lab Sample I	D: 890-1502-124
	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	11076	11/01/21 11:07	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	11022	11/02/21 00:41	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			11768	11/09/21 10:58	AJ	XEN MID

Eurofins Xenco, Carlsbad

Page 213 of 248

Lab Chronicle

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-33 (RS) (8)

Date Collected: 10/28/21 00:00 Date Received: 10/29/21 12:45 Lab Sample ID: 890-1502-124

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			11598	11/08/21 15:54	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	11376	11/03/21 13:58	DM	XEN MID
Total/NA	Analysis	8015B NM		1			11414	11/04/21 12:36	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	11243	11/02/21 12:46	CH	XEN MID
Soluble	Analysis	300.0		1			11705	11/09/21 15:08	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

6

3

11

13

14

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, but	it the laboratory is not certifi	ed by the governing authority. This list ma	av include analytes for w
the agency does not of	fer certification.	,	, g	ly molade analytes for th
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	y moduce analytee for the
9 ,		•	, , ,	

4

6

R

10

4.0

13

14

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-1502-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

2

4

5

9

12

13

14

Client Sample ID

Sample Summary

Collected

Received

Depth

Matrix

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Lab Sample ID

Job ID: 890-1502-1 SDG: 212C-MD-02230

_2

890-1502-1	BH-1 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-2	BH-2 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-3	BH-3 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-4	BH-4 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-5	BH-5 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-6	BH-6 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-7	BH-7 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-8	BH-8 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-9	BH-9 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-10	BH-10 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-11	BH-11 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-12	BH-12 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-13	BH-13 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-14	BH-14 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-15	BH-15 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-16	BH-16 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-17	BH-17 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-18	BH-18 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-19	BH-19 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-20	BH-20 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-21	BH-21 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-22	BH-22 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-23	BH-23 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-24	BH-24 (6)	Solid	10/27/21 00:00	10/29/21 12:45	6
890-1502-25	BH-25 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-26	BH-26 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-27	BH-27 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-28	BH-28 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-29	BH-29 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-30	BH-30 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-31	BH-31 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-32	BH-32 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-33	BH-33 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-34	BH-34 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-35	BH-35 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-36	BH-36 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-37	BH-37 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-38	BH-38 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-39	BH-39 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-40	BH-40 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-41	BH-41 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15

2

4

5

7

40

11

40

14

Solid

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/27/21 00:00

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

10/29/21 12:45

15

15

15

15

15

15

15

15

15

15

15

BH-42 (15)

BH-43 (15)

BH-44 (15)

BH-45 (15)

BH-46 (15)

BH-47 (15)

BH-48 (15)

BH-49 (15)

BH-50 (15)

BH-51 (15)

BH-52 (15)

BH-53 (15)

BH-54 (15)

890-1502-42

890-1502-43

890-1502-44

890-1502-45

890-1502-46

890-1502-47

890-1502-48

890-1502-49

890-1502-50

890-1502-51

890-1502-52

890-1502-53

890-1502-54

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1502-1 SDG: 212C-MD-02230

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-1502-55	BH-55 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-56	BH-56 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-57	BH-57 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-58	BH-58 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-59	BH-59 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-60	BH-60 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-61	BH-61 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-62	BH-62 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-63	BH-63 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-64	BH-64 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-65	BH-65 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-66	BH-66 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-67	BH-67 (15)	Solid	10/27/21 00:00	10/29/21 12:45	15
890-1502-68	BH-68 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-69	BH-69 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-70	BH-70 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-71	BH-71 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-72	BH-72 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-73	BH-73 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-74	BH-74 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-75	BH-75 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-76	BH-76 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-77	BH-77 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-78	BH-78 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-79	BH-79 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-80	BH-80 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-81	BH-81 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-82	BH-82 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-83	BH-83 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-84	BH-84 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-85	BH-85 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-86	BH-86 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-87		Solid	10/28/21 00:00	10/29/21 12:45	15
890-1502-88	BH-87 (15)	Solid	10/28/21 00:00	10/29/21 12:45	15
	BH-88 (15)				15
890-1502-89	BH-89 (15)	Solid	10/28/21 00:00	10/29/21 12:45	
890-1502-90 890-1502-91	BH90 (RS) (6) BH-91 (RS) (6)	Solid	10/28/21 00:00 10/28/21 00:00	10/29/21 12:45 10/29/21 12:45	6
		Solid			
890-1502-92	SW-1 (0-6)	Solid	10/25/21 00:00	10/29/21 12:45	
890-1502-93	SW-2 (0-6)	Solid	10/25/21 00:00	10/29/21 12:45	0 - 6
890-1502-94	SW-3 (0-6)	Solid	10/25/21 00:00	10/29/21 12:45	0 - 6
890-1502-95	SW-4 (0-6)	Solid	10/25/21 00:00	10/29/21 12:45	0 - 6
890-1502-96	SW-5 (0-6)	Solid	10/25/21 00:00	10/29/21 12:45	0 - 6
890-1502-97	SW-6 (0-6)	Solid	10/25/21 00:00	10/29/21 12:45	0 - 6
890-1502-98	SW-7 (0-6)	Solid	10/26/21 00:00	10/29/21 12:45	0 - 6
890-1502-99	SW-8 (0-6)	Solid	10/26/21 00:00	10/29/21 12:45	0 - 6
890-1502-100	SW-9 (0-6)	Solid	10/26/21 00:00	10/29/21 12:45	0 - 6
890-1502-101	SW-10 (0-6)	Solid	10/26/21 00:00	10/29/21 12:45	0 - 6
890-1502-102	SW-11 (0-6)	Solid	10/26/21 00:00	10/29/21 12:45	0 - 6
890-1502-103	SW-12 (10)	Solid	10/26/21 00:00	10/29/21 12:45	10
890-1502-104	SW-13 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-105	SW-14 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-106	SW-15 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-107	SW-16 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
			40/00/04 00:00		

10/26/21 00:00

10/29/21 12:45 15

Solid

SW-17 (15)

890-1502-108

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-1502-1

SDG: 212C-MD-02230

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-1502-109	SW-18 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-110	SW-19 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-111	SW-20 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-112	SW-21 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-113	SW-22 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-114	SW-23 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-115	SW-24 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-116	SW-25 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-117	SW-26 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-118	SW-27 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-119	SW-28 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-120	SW-29 (15)	Solid	10/26/21 00:00	10/29/21 12:45	15
890-1502-121	SW-30 (RS) (6)	Solid	10/28/21 00:00	10/29/21 12:45	6
890-1502-122	SW-31 (RS) (4)	Solid	10/28/21 00:00	10/29/21 12:45	4
890-1502-123	SW-32 (RS) (6)	Solid	10/28/21 00:00	10/29/21 12:45	6
890-1502-124	SW-33 (RS) (8)	Solid	10/28/21 00:00	10/29/21 12:45	8

Relinquished by:		Relinquished by:	Trank 1	Relinquished by:											(LAB USE)	LAB#		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	7	Analysis Reque
Date: Time:		Date: Time:		Ti.	BH-10 (6')	BH-9 (6')	BH-8 (6')	BH-7 (6')	BH-6 (6')	BH-5 (6')	BH-4 (6')	BH-3 (6')	BH-2 (6')	BH-1 (6')		SAMPLE IDENTIFICATION			Eurofins Xenco	Dusty McInturff - Permian Water Solution	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
Received by:		Received by: V	1 (Væ af	Received by:	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021	DATE TIME	YEAR: 2020	SAMPLING		Sampier Signature:	าร	Project #:		Site Manager:	1	
Date: Time:		Date: Time:	P 10.29.21 1245	Date: Time;	×	×	×	×	×	×	×	×	×	×	WATEF SOIL HCL HNO ₃ ICE None	2	MATRIX PRESERVATIVE METHOD		Ezequiel Moreno		212C-MD-02230		Clair Gonzales	90-1502 Chain of Custody	
2	7	Sample Temperature	ONLY	REMARK	×	×	×	×	×	×	×	×	×	×	FILTERI BTEX 8 TPH TX TPH 80 PAH 82 Total Me TCLP M TCLP V TCLP S RCI GC/MS RCI GC/MS CHOride Chloride General	DED (NO DEED	BTE (Ext to (GRO - GRO - GR	C35) DRO - 6 a Cd Cr Ba Cd Cd 624 270C/62 TDS mistry (s	Pb Se Pb Se	Hg Hg	st)		QUEST		Page 1 of
	Date: Time: Received by: Date: Time: 2.2	Date: Time: Received by: Date: Time: 2.7	Date: Time: Received by: V Date: Time: Sample Temperature Rush: Same Day 24 hr 48 hr Date: Time: Received by: Date: Time: Z, Z Special Report Limits or TRRP Report	Date: Time: Received by: Date: Time: Sample Temperature Date: Time: Received by: Date: Time: 2.4 Date: Time: Received by: Date: Time: 2.2	Date: Time: Received by: Date: Time: LAB USE ONLY Io/29/21 12:45 Clee Cleft 10:29:21 12:45 ONLY Date: Time: Received by: Date: Time: Sample Temperature 2:4 Rush: Same Day 24 hr 48 hr	BH-10 (6') 10/27/2021 X X X X X X X X X	BH-9 (6') BH-10 (6') BH-10 (6') Date: Time: LAB USE Received by: Date: Time: LAB USE Remarks: X X X X X X X X X	BH-8 (6') BH-9 (6') BH-9 (6') BH-10 (6') Date: Time:	BH-7 (6') 10/27/2021 X X X X X X X X X	BH-6 (6) 10/27/2021 X X X X X X X X X	BH-5 (6') 10/27/2021 X	BH-4 (6') 10/27/2021 X	BH-3 (6) 10/27/2021 X X X X X X X X X	BH-2 (6') 10/27/2021 X X X X X X X X X	BH-1 (6) 10/27/2021 X X X X X X X X X X X X X X X X X X X	BH-1 (6) 1027/2021 X X X X X X X X X	SAMPLE IDENTIFICATION	SAMPLE IDENTIFICATION	SAMPLE IDENTIFICATION	SAMPLE IDENTIFICATION	Dusty McInturff - Permian Water Solutions Exequie Moreno Exequie Mor	Dusty McInhurff - Permian Water Solutions Sampler Signature: Ezequiel Moreno Ezequiel Moreno	Lea County, New Mexico	Citro O or O project Fractions Sample Signature: Ezequie Moreno Citro O or O pocify Method No.	Permian Water Solutions

Page 220 of 248

Circle) HAND DELIVERED

FEDEX

UPS

Page 221 of 248

Page 222 of 248

Page 223 of 248

Page 224 of 248

Page 225 of 248

Page 226 of 248

Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 Fax Clair Gonzales Project #: 212C-MD-02230	Midland,Texas 79705 Tel (432) 682-4559 (432) 682-3946 Clair Gonzales 212C-MD-022	Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 Clair Gonzales 212C-MD-02230	Midland,Texas 79705 Tet (432) 682-4559	Clair Gonzales C12C-MD-02230 Tel (432) 682-4559 Fax ANALYSIS REQUES (Circle	### Clair Gonzales Clair Gonzales 212C-MD-02230 Tel (432):682-3946 Fax ANALYSIS REQUEST (Circle or S	Clair Gonzales C12C-MD-02230 CONTROL 032) 682-3946 Fax (Circle or
22: 22:	22: 22:	Fax 246 Fax 2230	ANALYSIS Ph Se Ha	ANALYSIS REQUES ORO - MRO) Pb Se Hg Pb Se Hg	ANALYSIS REQUEST (Circle or S Pb Se Hg Pb Se Hg	ANALYSIS REQUEST (Circle or Specify Pb Se Hg Pb Se Hg Fb Se Hg
222:	Fax Fax 346 Fax Fax Fax Fax Fax Fax Fax Fax	Fax Fax Preno Pren	### DYEN 8260B RS /N) BTEX 8260B (Ext to C35) GRO - DRO - ORO - MRO) GAS Ba Cd Cr Ph Se Ho	ANALYSIS REQUES ANALYSIS REQUES AS Ba Cd Cr Pb Se Hg	BTEX 8260B Ext to C35) GRO - DRO - ORO - MRO) AAS Ba Cd Cr Pb Se Hg g As Ba Cd Cr Pb Se Hg atiles 160B / 624	RS //N) BTEX 8260B (Ext to C35) GRO - DRO - ORO - MRO) ag As Ba Cd Cr Pb Se Hg Ag As Ba Cd Cr Pb Se Hg solutiles 260B / 624 Vol. 8270C/625 608
		/(N)	MAS Ba Cd Cr Ph Se Hg	BTEX 8260B Ext to C35) RO - DRO - ORO - MRO) As Ba Cd Cr Pb Se Hg As Ba Cd Cr Pb Se Hg As Ba Cd Cr Pb Se Hg TO COMB Astrict Case And Case An	BTEX 8260B Ext to C35) GRO - DRO - ORO - MRO) AS Ba Cd Cr Pb Se Hg g As Ba Cd Cr Pb Se Hg atiles GROB / 624	(Ext to C35) GRO - DRO - ORO - MRO) Ag As Ba Cd Cr Pb Se Hg Ag As Ba Cd Cr Pb Se Hg solatiles 07 Specific Section 1

Page 227 of 248

Page 228 of 248

11/10/2021

ДI		χ)		701													-	0	20	=	- P	TI	0	
Relinquished by:	omique of	Relinguished by:	11	Relinquished by:											LAB USE)	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	႕
Date: Time:		Date: Time:	94:21 1218210) 15:46	Date: Time:	SW-9 (0-6')	SW-8 (0-6')	SW-7 (0-6')	SW-6 (0-6')	SW-5 (0-6')	SW-4 (0-6')	SW-3 (0-6')	SW-2 (0-6')	SW-1 (0-6')	BH-91 (RS) (6')		SAMPLE IDENTIFICATION			y: Eurofins Xenco	Dusty McInturff - Permian Water Solutions	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.
Received by:		Received by:) AN()	Received by:	10/26/2021	10/26/2021	10/26/2021	10/25/2021	10/25/2021	10/25/2021	10/25/2021	10/25/2021	10/25/2021	10/28/2021	DATE TIME	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
	•		t 10	-	×	×	×	×	×	×	×	×	×	×	WATER	2	MATRIX		Ezec		2120		Clair Gonzales	901W Midland Tel (43)
Date: Time:		Date: Time:	12.62	Date: Time:	×	×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE None		X PRESERVATIVE METHOD		Ezequiel Moreno		212C-MD-02230		onzales	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
9.			/045												# CONT		ERS							
	Sample (emperature	2	ONLY	LAB USE	×	×	×	×	×	×	×	×	×	×	BTEX 8 TPH TX TPH 80 PAH 82	021E (100! 15M	B BTI 5 (Ext to (GRO	- DRO -	ORO -				ANALYSIS	
<u></u>				_ Z											TOTAL ME TCLP MO TCLP SO TCLP SO RCI	etals olatil	Ag As es	Ba Cd C					REQUEST (Circle or	
ecial Report Limi	Rush Charges Authorized	RUSH: Same Day 24 hr		STANDARD S:											GC/MS S GC/MS S PCB's 8 NORM PLM (As	Sem 3082	i. Vol. i / 608	/ 624 8270C/6	25				Specify	
Special Report Limits or TRRP Report	norized	y 24 hr 48 hr		-	×	×	×	×	×	×	×	×	×	×	Chloride Chloride	e S	Sulfate ter Che	emistry (see att	ached (list)		Method No.)	
or		72 hr																						

Page 229 of 248

Page 230 of 248

	Relinquished by:		Relinquished by:	Kind	Relinquished by:											(LAB USE)	LAB#			Comments:	Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
	Date: Time:		Date: Time:	Mary 10/29121 12:46	Date: Time:	SW-29 (15')	SW-28 (15')	SW-27 (15')	SW-26 (15')	SW-25 (15')	SW-24 (15')	SW-23 (15')	SW-22 (15')	SW-21 (15')	SW-20 (15')		SAMPLE IDENTIFICATION				: Eurofins Xenco	Dusty McInturff - Permian Water Solutions	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	ъ Tetra Tech, Inc.
	Received by:		Received by:	(Juph)	Received by:	10/26/2021	10/26/2021	10/26/2021	10/26/2021	10/26/2021	10/26/2021	10/26/2021	10/26/2021	10/26/2021	10/26/2021	DATE		YEAR 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
	_			2.01		×	×	×	×	×	×	×	×	×	×	WATE SOIL	ĒR		MATRIX		Ezequ		212C-		Clair Gonzales	901W Wall Sifeel, St Midland,Texas 79705 Tel (432) 682-4559 (432) 682-394
	Date: Time:		Date: Time:	0129.21	Date: Time:	×	×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE None	3		PRESERVATIVE METHOD		Ezequiel Moreno		212C-MD-02230		zales	901W wall Sifeet, Ste 100 Aidland,Texas 79705 *el (432) 682-4569 Fax (432) 682-3946
				ઝ												# CON	REC	(Y/I	N)							
			Sample Temperature	0	SE.	×		×	×	×	×		×	×	×	TPH 1	ΓX10	05 (E	Ext to	EX 8260 C35) - DRO -		MPO		_	ANALYSIS	
			empera	ONLY	LAB USE											PAH 8	8270	С		Ba Cd Cr					YSIS	
L			an								_				L		Meta	als A	g As	Ba Cd C					REQUES	
			¢] [REMARKS:			E					ļ	L	上	TCLP		_		s					UEST	
	Special	Rush Charges Authorized	KUSH: Same Day	9	χ. XS:											GC/M										
	Repo	harges	Vam		STANDARD	E	\perp		\perp							GC/M PCB's	_			8270C/62	25				Specify	
	t Limit	Autho	e Day	, ;	Ž D	F	\vdash	-		-	-	├	\vdash	\vdash	+	PLM (estos	s)							
*	s or Tf	prized	-			×	×	×	×	×	×	×	×	×	×	Chlori		Su	Ifate	TDS					Method 1	
	Special Report Limits or TRRP Report		9			F	F			F	F	-	F	F	Ŧ		ral V	/ate	r Che	emistry (see att	ached I	list)		Z	
	port		11 7 6 11			F	1	1	1	1	F	1	1	T	#											
			111			+	\dagger	\dagger	+	\dagger	\dagger	T	1	+	\dagger											
				1			1	T	T	1	Т	T	T	1		Hold										I

Page 231 of 248

	Reinquisned by:		Relinquished by:	1	Relinquished by:										(INB USE)	LAB#		Comments:	neceiving Laboratory:	Blvoice to:	(county, state)	Project Name:	Cient Name:	Image: Control of the	Analysis Rec
	Date: Time:		Date: Time:	Mr. 21 12182101 10000	<u>-</u> !						SW-33 (RS) (8')	SW-32 (RS) (6')	SW-31 (RS) (4")	SW-30 (RS) (6')		SAMPLE IDENTIFICATION			Eurofins Xenco	Dusty McInturff - Permian Water Solutions	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
	Received by:		Received by:	Chip G	Received by:						10/28/2021	10/28/2021	10/28/2021	10/28/2021	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project#:		Site Manager:		
	D		- V	Ap 10.29.							×	×	×	×	TIME WATER SOIL	?	NG MATRIX				212C-		Clair Gonzales	Midland, Texas 787 Tel (432) 682-4559	W ON LIB
	Date: Time:		Date: Time:	9-21 1045	Date: Time:						×	×	×	×	HCL HNO ₃ ICE None		PRESERVATIVE METHOD		Ezequiel Moreno		212C-MD-02230		nzales	Midand, Texas 79705 Tel (432) 682-4559 Fex (432) 682-3546	
	:			S											# CONT										
(Circ			Sam					\downarrow	+		×	×	×	×	BTEX 80			X 8260B							
(Circle) HAND DELIVERED			Sample Temperature	ONLY	AB			\pm	\pm		×	×	×	×	TPH TX				RO - 1	MRO)			ANALYSIS		
AD DE			peratu	7	JSE			+	-	<u> </u>					PAH 82 Total Me		ng As B	a Cd Cr F	b Se	Hg		_			
LIVER			ře	_				1							TCLP Me	etals	Ag As I	Ba Cd Cr					REQUEST		
					REMARKS:			\pm							TCLP Vo								EQUES	:	
FEDEX	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH. Same Day 24 hr	·	RKS:		\prod	\bot	\perp						RCI GC/MS \	/ol 8	3260R /	624				_ 5	2 7		
(UPS	ial Re	Char	J O	STANDARD				\pm	士						GC/MS	Semi.	Vol. 8	270C/625	5						
	port L	ges A	amet	Į Ž		_	H	+	+-	\vdash	-			<u> </u>	PCB's 8 NORM	082 /	608								
Tracking #:	imits	uthor	Jay	ć	í										PLM (As		os)								Page
#	or TF	ized	24 11			H		-+	+	-	×	×	×	×	Chloride Chloride		ulfate	TDS				}	<u> </u>		e
	RP F		46 nr					\dashv										mistry (se	ee atta	ched li	st)	:	Z		
	leport					-	\vdash	+	+-	-	-	\vdash	\vdash		Anion/C	ation	Balan	ce				3			13
			72 111	-					1																으
						\vdash	$\vdash \vdash$	_	+	-	-	\vdash	-	_	lucia.										
													200	_	Hold									<u> </u>	<u>၂</u>

Page 232 of 248

Chain of Custody Record

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199 Client Information (Sub Contract Lab)	Sampler	hain c	of Cust	Chain of Custody Record	er Je	ord Jessica							Carrier Tracking No(s)	Trace	ing N	o(s)				<u> </u>	coc No. 890-488 1	Environment Testing America
Company Eurofins Xenco					Accreditations Required (See note): NELAP - Louisiana NELAP	itations	Requ	ired (S	See no	1 11	Texas	l								တ္က ည	Job#: 890-1502-1	
Address 1211 W Florida Ave,	Due Date Requested 11/4/2021	ă							_} │	ਵ ।	sis Requested	ĝ	est	<u> </u>					- 1	. Ţ	Preservation Codes	١ ١
City Midland	TAT Requested (days	ys)			(m. 1) 170 ja	deresdedels													<i>pp</i>) B >	HCL NaOH Zn Acetate	M Hexane N None
State Zip: TX, 79701					- 12 - 18 - 10 10 10 10 10 10 10 10 10 10 10 10 10	TPH													7	mυ		P Na204S Q Na2SO3
Phone: 432-704-5440(Tel)	PO #:				Karasa sk	D) Full		le											ye seriye	LOΠ		R Na2S2O3 S H2SO4
Email	WO#				N/35,352,	p (MO		Chloric											1 200	<u> </u>	Ice DI Water	
Project Name: Kaiser SWD	Project #: 88000039				20000075000970	_S_Pre	ΈX	EACH											tainer	гχ		W pH 4-5 Z other (specify)
Site:	SSOW#:				assertation in	015NM	Calc B	D/DI_L	v										of con	ð	Other:	
		Sample	Sample Type	Matrix (W=water S=solid,	d Filtered S form MS/M	MOD_NM/8	B/5035FP_0	ORGFM_28	_BTEX_GC	MOD_Calc			·····						l Number			
Onlibro Indianosanos Colores De Carollo	Valley Page		Preservation Code:		100007 NO	8	8	3	Т	8								4	Χİτ		opeciai in	pecial instructions/Note:
BH-1 (6) (890-1502-1)	10/27/21	Mountain		Solid		×	×	×	×	×									40	antikan da		
BH-2 (6) (890-1502-2)	10/27/21	Mountain		Solid		×	×	×	×	×										1		
BH-3 (6) (890-1502-3)	10/27/21	Mountain		Solid		×	×	×	×	×									4	n diam's		
BH-4 (6) (890-1502-4)	10/27/21	Mountain		Solid		×	×	×	×	×									اريشي			
ВН-5 (6) (890-1502-5)	10/27/21	Mountain		Solid		×	×	×	×	×									4	كممسم		
ВН-6 (6) (890-1502-6)	10/27/21	Mountain		Solid		×	×	×	×	×									200	diamen		Transition of the
BH-7 (6) (890-1502-7)	10/27/21	Mountain		Solid		×	×	×	×	×									خوان			
BH-8 (6) (890-1502-8)	10/27/21	Mountain		Solid		×	×	×	×	×									<i>i</i>	an anni		
BH-9 (6) (890-1502-9)	10/27/21	Mountain		Solid		×	×	×	×	×									A			
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC.	places the ownership being analyzed the sa ne signed Chain of Cus	of method, ana ₃mples must be stody attesting	ilyte & accredita shipped back to said complic	ation compliance to the Eurofins i ance to Eurofine	e upon Xenco s Xenc	out su LLC la	bcontr	act lab ry or o	orator ther in	ies. T	his sa ons w	mple :	shipm	entis	forwa	rded	unde to a	r cha ccrec	in-of	on st	tody If the laborat	ory does not currently ught to Eurofins Xenco LLC
Possible Hazard Identification Unconfirmed					S	Sample Disposal (A fee	ple Disposal (A f ☐Return To Client	oosa 7 To (I (A	fee r	nay t	oe as	assessed if san Disposal By Lab	ed i	f sai	ğ	Sa	∐e re	A tai	hiv.	may be assessed if samples are retained longer than 1 month) Disposal By Lab Archive For Mon	month) Months
Deliverable Requested I II III IV Other (specify)	Primary Deliverable Rank 2	able Rank 2	10		Sp	Special Instructions/QC Requirements	Instr	uctio	ns/Q	₽ Re	quire	men	Š	l								
Empty Kit Relinquished by:		Date			Time		Α							Method of Shipment:	d of S	hipm	ent:	1				
Relinquished by	Date/Time Date/Time		0 0	Company		Receive Receive	and by	Y W	B	(2)	7	\geq	0	O		Date/Time Date/Time	Time	-	J.	W	1	Company Company
J	Date/Time [.]			Company		Re	Rebeived by	¥								Date	Date/Time	~ `				Company
Custody Seals Intact: Custody Seal No						Coo	Cooler Temperature(s) °C	nperat	ure(s)		and Other Remarks	r Ren	ıarks:	, ,		, annually	2)	Ų			

	Citalli Of Custody Record	
		eurotins
America	Environment Testing	

Eurofins Xenco, Carlsbad 1089 N Canal St Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199 Client Information (Sub Contract Lab) Client Contact: Shipping/Receiving Company Eurofins Xenco Address 1211 W Florida Ave City Midland State Zip. TX 79701 Phone 432-704-5440(Tel) Email	Ch Sampler Phone Due Date Requested 11/4/2021 TAT Requested (days): PO#	Chain of Custody Record Lab PM Kramer Jessica E-Mail jessica kramer@ Accreditation NELAP - L 1993): 1994 1995 1995 1995 1995 1995 1995 199	of Cus	Lab PM Krame E-Mail jessica	Record Iab PM Kramer Jessica E-Mail Jessica Kramer@eurofinset com Accreditations Required (See not NELAP - Louisiana NELAI An: An: An: An: An: An: An: An: An: An:	ecord A er Jessica a kramer@eurofinset com Accreditations Required (See note) NELAP - Louisiana NELAP MDD) MDD) MDD) MDD) MDD) MDD) Anal	uisia.	oride a set in s	Ana Ana	Carrier Tra State of Or New Mer P - Texas Alysis Requested		que Sta	Carrier Tracking No(s) State of Origin New Mexico uested	rigin acking	No(s)			क्षात्रकान इत्तर कार्यकृत्य कार्यन वार्या कार्या	- ± Ω ¬ π ∪ C ₪ > ¬ □ @ 5 ¬ □ 0 @ C	COC No 890-488 2 Page: Page 2 of 14 Job# B90-1502-1 Page 2 of 14 Job# B NOH B	# I I I		Environment Testing America America Anne A None A None A NASO ASNAO2 ASN	immer ia ia ia ia ia ia ia ia ia ia ia ia ia	nt Te	Test
Email	WO#				276177899999	ep (MOD)		Chloride								·		S	<u>с — т</u>			< C -1	TSP Dode Acetone MCAA	Dodec	λ.	
Project Name: Kaiser SWD	Project #- 88000039				· · · · · · · · · · · · · · · · · · ·	S_Pre		EACH										ainer	ᅮᆽ	EDTA EDA		N ≶	pH 4-5 other (specify)	-5 (spec	₹	
Site	SSOW#:				N=270-W0000	015NM_			v 									of cont	δ	Other:						
		Sample	Sample Type (C=comp.	Matrix (W=water S=solid,	d Filtered S form MS/M	5MOD_NM/8	1B/6036FP_C	ORGFM_28	il_BTEX_GC	SINOD_ONIC						***************************************		ıl Number o	territaria de la constitución de		1			- 1	- 1	
	X	X	Preserva	Preservation Code:	0000° 100	8	250	Carried	-4-	-	+							Źπ	T	special instructions/Note.				N/SI	10	48 🖂
BH-10 (6) (890-1502-10)	10/27/21	Mountain		Solid		×	×	×	×	×				ľ	ř		100	- 1	Ť			100	A CONTRACTOR			126
BH-11 (6) (890-1502-11)	10/27/21	Mountain		Solid		×	×		+	×	$\neg \dagger$		\top	Ì		T	\top	4),		-				-	- 1	1
BH-12 (6) (890-1502-12)	10/27/21	Mountain		Solid		×	×	×	<u>×</u>	<u>*</u>	\neg		\top	\top		7		4	ono dia						1	1
BH-13 (6) (890-1502-13)	10/27/21	Mountain		Solid		×	×	×	\dashv	<u>*</u>	\dashv	\dashv	1			\top	\top	24	estantilla.	MANUFACTURE AND ASSESSMENT OF THE PERSON OF					ı	- 1
BH-14 (6) (890-1502-14)	10/27/21	Mountain		Solid		×	×	×	×	$\stackrel{\times}{+}$	-	\neg				$\neg \dagger$		-								- 1
BH-15 (6) (890-1502 15)	10/27/21	Mountain		Solid		×	×	×	×	×		1	1	1		一		- A	attendite						- 1	
BH-16 (6) (890-1502-16)	10/27/21	Mountain		Solid		×	×	×	×	<u> </u>	1							_							- 1	
BH-17 (6) (890-1502-17)	10/27/21	Mountain		Solid		×	×	×	`	×	+	1				\neg		ا (هند							1	
BH-18 (6) (890-1502-18)	10/27/21	Mountain		Solid		×	×	<u> </u>	×	<u> </u>								44							- 1	- 1
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC.	places the ownership being analyzed the sa e signed Chain of Cu	of method ana amples must be stody attesting	llyte & accredit → shipped back to said complic	tation complian to the Eurofins	ce upon o Xenco L	out sub	contrac	or oth	ratories er instr	. This	samp will b	e ship	ment	is forw Any c	ardec	unde s to a	r cha	in-of- itatio	custo n sta	ody If the labratus should be	orator	ght to	es no Euro	offins :	e e	0 5
Possible Hazard Identification Unconfirmed					Sa	m _{ple}	Disp	osal (Afe	e ma	∫be	sse	ssea	if sa	mp/	es a		fain	e	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	7 1 1	non	3		- 1	
Deliverable Requested I II III IV Other (specify)	Primary Deliverable Rank	able Rank 2			Ş	Special Instructions/QC	al Instructions/QC	ctions		Requirements	reme	nts	osai i	3 <i>y</i> L	õ			Arc	71/6	Archive For			Months	ns	1	
Empty Kit Relinquished by:		Date			Time	l	=	*	2	1			Met	Method of Shipment	Shipr	nent:	ı	ı	1						1	
Relinquished by	Date/Time			Company	Ī	Receiv			Z	¥	\preceq	A	M		Date	Date/Time						Con	Company			- 1
Kemidusited by	Date/Time			Company		Pécei	eceived by:		İ				İ	l	Date	Date/Time						ဝ္ခ	Company		- 1	
Relinquished by	Date/Time [.]			Company		Recei	Received by:								Date	Date/Time:						င္ခ	Company		- 1	
Custody Seals Intact: Custody Seal No						Coole	Cooler Temperature(s) °	eratur	o, (s)	and Other Remarks	ther R	eman	s l			l	ı	1				ľ			- 1	

Chain of Custody Record

State Zip TX 79701 BH-25 (15) (890-1502-25) BH 20 (6) (890-1502-20) BH-19 (6) (890-1502-19) Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco
attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC. BH-26 (15) (890-1502-26) BH-24 (6) (890-1502-24) BH-23 (6) (890-1502-23) BH-21 (6) (890-1502-21) Kaiser SWD Possible Hazard Identification BH-27 (15) (890-1502-27) BH-22 (6) (890-1502-22) Sample Identification - Client ID (Lab ID 432-704-5440(Tel) Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199 Deliverable Requested I II III IV Other (specify) Midland 1211 W Florida Ave linquished by linquished by: npty Kit Relinquished by urofins Xenco inquished by npping/Receiving ient Information (Sub Contract Lab) Custody Seal S Project # 88000039 Date/Time Primary Deliverable Rank. 2 Due Date Requested 11/4/2021 Phone Jate/Time FAT Requested (days): Sample Date 10/27/21 10/27/21 Time 10/27/21 10/27/21 10/27/21 10/27/21 0/27/21 10/27/21 0/27/21 Date Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Sample G=grab) (C=comp, Type Preservation Code: BT=Tissue, A≃Ai Company Company Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid jessica kramer@eurofinset com E-Mail Kramer Jessica NELAP - Louisiana NELAP - Texas Ime Perform MS/MSD (Yes or No) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Special Instructions/QC Requirements 8015MOD_NM/8015NM_S_Prep (MOD) Full TPH \times × × × × × × Cooler Temperature(s) °C and Other Remarks \times \times × × \times × × × × 8021B/5035FP_Calc BTEX × × × × × × 300_ORGFM_28D/DI_LEACH Chloride × × × Total BTEX GCV × × × × × × × × Analysis Requested 8015MOD_Calc × × × \times \times × × × × State of Origin
New Mexico Carrier Tracking No(s) Date/Time Total Number of containers -print. . 2000) . درې**ند**ندو ** A HCL
A NACH
A Zn Acetate
C Zn Acetate
D Nitric Acid
E NAHSO4
F Mach
G Amethor
H Ascorbic Acid
I Ice
J Di Water
K EDTA
L EDA COC No: 890-488 3 Page 3 of 14 Preservation Codes 390-1502-1 Special Instructions/Note Q K S L J S S N TOZZ M Hexane
V None
D AsNaC2
Na2O4S
Na2SC3
RA2SC3
RA2S2C3
R12SC4
FTSP Dodecahydrate Company Company MCAA / pH 4-5 other (specify) Acetone Months E

eurofins |

Environment Testing America

Chain of Custody Record

🖏 eurofins

Environment Testing

Project Name Kaiser SWD Midland BH-35 (15) (890-1502-35) BH-34 (15) (890-1502-34) BH-33 (15) (890-1502-33) BH-28 (15) (890-1502-28) State Zip BH-36 (15) (890-1502-36) BH-32 (15) (890-1502-32) BH-31 (15) (890-1502-31) BH-30 (15) (890-1502-30) BH-29 (15) (890-1502-29) Sample Identification - Client ID (Lab ID) Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199 tote: Since laboratory accreditations are subject to change. Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody natiralin accreditation in the State of Origin listed above for analysis/fests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status intension in mediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC. 432-704-5440(Tel) 1211 W Florida Ave impty Kit Relinquished by Deliverable Requested I II III IV Other (specify) ossible Hazard Identification Custody Seals Intact elinquished by: linquished by rconfirmed lient Information (Sub Contract Lab) rofins Xenco ipping/Receiving Custody Seal No Project #: 88000039 Date/Time: Primary Deliverable Rank 2 ₩0 # Due Date Requested 11/4/2021 Phone FAT Requested (days) 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 Date Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Time (C=comp, G=grab Preservation Code: Company Company Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid jessica.kramer@eurofinset.com Kramer Jessica Time Accreditations Required (See note)
NELAP - Louisiana NELAP - Texas Special Instructions/QC Requirements Perform MS/MSD (Yes or No) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Received by 8015MOD_NM/8016NM_S_Prep (MOD) Full TPH Cooler Temperature(s) °C and Other Remarks × \times \times × × \times \times × × Return To Client × × × 8021B/5035FP_Calc BTEX × × 300_ORGFM_28D/DI_LEACH Chloride × × × × × × × × × × × × × × \times × Total_BTEX_GCV Analysis Requested 8015MOD_Calo × × × × × Disposal By Lab State of Origin: New Mexico Carrier Tracking No(s) Date/Time Date/Time Date/Time Archive For Total Number of containers 4 (mar) A HCL
B NaOH
C Zn Acetate
D Nitric Acid
E NaHSO4
F MeOH
G Annohlor
H Ascorbiic Acid
J I low
D Nitric Acid
L EDTA
L EDA COC No 890-488 4 Preservation Codes Page 4 of 14 890-1502-1 If the laboratory does not currently should be brought to Eurofins Xenco N \ < C - I O T O T O Z Z Company Company 4 Mone
4 None
5 AsNaO2
5 NaSO4S
5 NaSO3
6 NaSSO3
6 NaSSCO3
6 H2SO4
6 TSP Dodecahydrate
7 Acetone
7 MCAA
7 MCAA other (specify) **Vionths**

Chain of Custody Record

\$ 0 0 0 \$ 0 0 0
eur
ofir
S

Carisbad NM 88220 Phone, 575-988-3199 Fax, 575-988-3199			Chain of castody Necold		ָ כ כ	Ž														America
Client Information (Sub Contract Lab)	Sampler			Lab PM Krame	Lab PM Kramer Jessica	ssica	- [1			Carrie	Carrier Tracking No(s)	N Bur	Ĩ	-	-	8 S	COC No	
	Phone:			E-Mail	S-Mail	ner@	Pinof	heat	3]	State	State of Origin	3 5			-	2 20	age.	
Company Eurofins Xenco					Accreditations Required (See NELAP - Louisiana NE	P - Lo	Requi	na K	e note)	note): AP - Texas	y			- 18	- 1		- 1	ည္က ည	Job # 890-1502-1	
Address 1211 W Florida Ave	Due Date Requested 11/4/2021	å					1		Ang	Analysis Requested	₽	SOIL	3					1	Preservation Codes	les
City Midland	TAT Requested (days)	ays)					_	_		-				_		\dashv	4	> □ >		
State Zip TX 79701						TPH												m o c	Nitric Acid	P Na2O4S Q Na2SO3
Phone: 432-704-5440(Tel)	PO#				entification attitudion attitudion) Full		e										OΠ		
Email	WO#				and individually	OM)		hlorid										I	ice	U Acetone
Project Name: Kaiser SWD	Project #: 88000039				**********	S_Pre	X	ACH C									ilnere	「ス		
Site:	SSOW#:				000000000000000000000000000000000000000	16NM_	alc BT		<i></i>								f cont	11. 6. 6 Broke	Other:	
			Sample Type	Matrix (w=water	Filtered S m MS/MS	OD_NM/80	5035FP_C	RGFM_28	BTEX_GC\	OD_Caic							Number c	1		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	ु ए	O=waste/oil, BT=Tissue, A=Air)		8015M	8021B			00 1 DIVI							Total		Special In	structions/Note
	N.	X	00	Preservation Code:	\times								1			4	\forall	4		
BH-37 (15) (890-1502-37)	10/27/21	Mountain		Solid		×	×	×	×	×				_						
BH-38 (15) (890-1502-38)	10/27/21	Mountain		Solid		×	×	×	×	×	\dashv						Neiles III			
ВН-39 (15) (890-1502-39)	10/27/21	Mountain		Solid		×	×	×	×	×	7		\perp	_		\dashv	ا خفت		***************************************	
BH-40 (15) (890-1502-40)	10/27/21	Mountain		Solid		×	×	×	<u> </u>	<u> </u>	1			_		-				
BH-41 (15) (890-1502-41)	10/27/21	Mountain		Solid		×	×	<u> </u>	×	×	_				\dashv		_			
BH-42 (15) (890-1502-42)	10/27/21	Mountain		Solid		×	×	×	×	<u>×</u>	7					_	وخشو	-		
BH-43 (15) (890-1502-43)	10/27/21	Mountain		Solid		×	×	×	×	×	_						-4	-	***************************************	
BH-44 (15) (890-1502-44)	10/27/21	Mountain		Solid		×	×	×	×	<u> </u>	-				_		ادر			
BH-45 (15) (890-1502-45)	10/27/21	Mountain		Solid		×	×	×	×	×					\longrightarrow		À.			
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody if the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC.	LLC places the ownership strix being analyzed, the sim the signed Chain of Cu	of method and amples must bu stody attesting	alyte & accredite e shipped back to said complic	ation compliand to the Eurofins ance to Eurofir	xe upon o Xenco L s Xenco	LLC labo	contra	ct labo	ratorie Ier inst	s. This	sample will be	shipm	ed A	forwar ıy cha	ded ur	ider ch	ain-oi editati	f-cust	tody If the laboral	tory does not currently rught to Eurofins Xenco L
Possible Hazard Identification					Sa	Sample Disposal (A fee	Disp	osal	Afe	e ma] è	sses	sed i	san	ples	are	etai	ned	may be assessed if samples are retained longer than 1 month)	month)
Deliverable Requested 1 II III IV Other (specify)	Primary Deliverable Rank	able Rank 2	2		Sg	Special Instructions/	nstru	I Instructions/QC	S	Requirements	reme	ents	Sal B	, Lab	-		E	37)76	AICINVE FOI	Wonths
Empty Kit Relinquished by		Date			Time	I	\exists	-	l		1	┛	Method of Shipment:	of S	ipmer	Ť		I		
Relinquished by	Date/Time			Company	ſ	Receive	- P	3	1	9	\geq]	Date/Time	me	-			Company
Relinquished by:	Date/Time.			Company		Réceive	- Por	1	1		-	S	1		Date/Time	me				Company
Relinquished by:	Date/Time			Company		Rebei	Received by								Date/Time	me				Company
Custody Seals Intact: Custody Seal No						Coole	r Temp	Cooler Temperature	e(s)°(s) °C and Other Remarks.	ther Re	marks		1		- 1				
						ľ											l			

Phone: 575-988-3199 Fax 575-988-3199

1089 N Canal St. Carlsbad NM 88220 2

3

4

Eurofins Xenco, Carlsbad

5

8

10

12

18

Chain of Custody Record

eurofins .

Environment Testing
America

BH-54 (15) (890-1502-54) BH-52 (15) (890-1502-52) Project Name Kaiser SWD State Zip: TX, 79701 vote: Since laboratory accreditations are subject to change, Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently resintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco
attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC. BH-53 (15) (890-1502-53) BH-51 (15) (890-1502-51) BH-50 (15) (890-1502-50) BH-49 (15) (890-1502-49) BH-46 (15) (890-1502-46) BH-48 (15) (890-1502-48) BH-47 (15) (890-1502-47) Sample Identification - Client ID (Lab ID) elinquished by mpty Kit Relinquished by ossible Hazard Identification 432-704-5440(Tel) Custody Seals Intact: eliverable Requested | || || || || || Other (specify) **Midland** linquished by: 211 W Florida Ave lient Information urofins Xenco nipping/Receiving nquished by: Yes 8 Custody Seal No (Sub Contract Lab Date/Time Date/Time Primary Deliverable Rank 2 88000039 Due Date Requested 11/4/2021 Phone ŏ# TAT Requested (days): roject# 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 10/27/21 Date Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain G=grab (C=comp Type Preservation Code: Company Company Company Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid Kramer Jessica essica kramer@eurofinset com Field Filtered Sample (Yes or No) lime. Accreditations Required (See note)
NELAP - Louisíana NELAP - Texas Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client

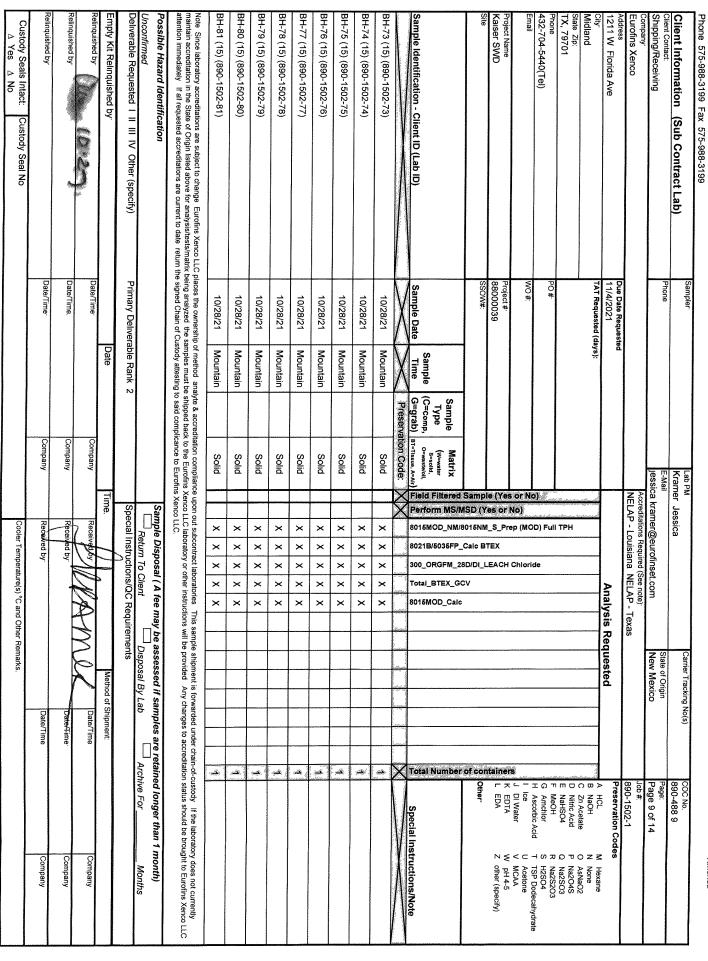
Increase But to be a feet and the feet are the feet and the feet are the feet and the feet are the feet and the feet are the feet are the feet and the feet are th Perform MS/MSD (Yes or No) Special Instructions/QC Requirements Received by 8015MOD_NM/8015NM_S_Prep (MOD) Full TPH Cooler Temperature(s) °C and Other Remarks × × × \times × × × × × Return To Client × × × × 8021B/5035FP_Calc BTEX × × × × × × × × 300_ORGFM_28D/DI_LEACH Chloride × × × × × × × × × × Total BTEX GCV Analysis Requested × × × × 8015MOD_Calc \times × × × × Disposal By Lab New Mexico Carrier Tracking No(s) State of Origin. ethod of Shipment Date/Time Date/Time Date/Time Archive For Total Number of containers × 1 *** <u> 1281</u>6 , party. A HCL
B NAOH
C Zn Acetate
D Nitric Acid
E NaHSO4
F MeOH
G Amchlor
H Ascorbic Acid COC No 890-488 6 Page. Page 6 of 14 Preservation Codes 890-1502-1 Ice
DI Water
EDTA
EDA Special Instructions/Note -02020Z Company Company M Hexane
N None
N None
N None
N None
N None
N Na2O4S
N Na2O4S
N Na2SO3
R Na2SO3
R Na2SO3
R Na2SO4
T TSP Dodecahydrate
U Accione
U Accione other (specify) PH 4-5 E

Chain of Custody Record

eurofins Environment Testing America

Phone 575-988-3199 Fax 575-988-3199																
Client Information (Sub Contract Lab)	Sampler		<u>ح</u> ا	Lab PM Kramer Jessica	sica				င္စ	Carrier Tracking No(s)	cking N	Š		COC No 890-488 7	37	
	Phone		E-I	E-Mail: lessica.kramer@eurofinset.com	er@eu	ofinse	t com		zg	State of Origin	gi gin			Page:	of 14	
Company Eurofins Xenco				Accreditations Required (See note) NELAP - Louisiana NELAP	tions Rec	uired (S	ee note)) - Texas	L					Job #	<u>ن</u> د	
Address 1211 W Florida Ave	Due Date Requested 11/4/2021	ا ة					Ana	Sis.	Requested	sted				Preserv	Preservation Codes	des
City Midland	TAT Requested (days)	ıys)			_							\dashv	_		1	
State Zip TX 79701				produkten konsekliten tennennik	TPH									D Nitric Acid	Nitric Acid	P Na2O4S Q Na2SO3
Phone: 432-704-5440(Tel)	PO#			Yang Tang) Full	e									ō 1	
Email	WO#				(MOL	hlorid	· · · · · · · · · · · · · · · · · · ·							I Ice	ASCORDIC ACIO Ce DI Water	U Acetone V MCAA
Project Name Kajser SWD	Project #:			2016		ACH C								K EDTA		
Site	SSOW#			Committee of the		/DI_LE								Other		
			Sample Matrix			W_28D							Bala al			
Sample Identification - Client ID (1 sh ID)		Sample		ield Filte erform N	21B/5038	0_ORGF	otal_BTE)15MOD_(otal Num			
		\langle	Preservation Code:	X	icità	3			-			+			pecial	Special Instructions/Note
BH-55 (15) (890-1502-55)	10/27/21	Mountain	Solid		×	×	×	×	1				١			
BH-56 (15) (890-1502-56)	10/27/21	Mountain	Solid		×	×	×	×		\dashv		-	<u> </u>			
BH-57 (15) (890-1502-57)	10/27/21	Mountain	Solid		×	×	×	×		\dashv		\dashv	اعد			
BH-58 (15) (890-1502-58)	10/27/21	Mountain	Solid		×	×	×	×		_						
BH-59 (15) (890-1502-59)	10/27/21	Mountain	Solid		×	×	×	×		\neg						
BH-60 (15) (890-1502-60)	10/27/21	Mountain	Solid		×	×	×	×					<u></u>			THE PROPERTY OF THE PROPERTY O
BH-61 (15) (890-1502-61)	10/27/21	Mountain	Solid		×	×	×	×				\dashv	انقد			
BH-62 (15) (890-1502-62)	10/27/21	Mountain	Solid		×	×	×	×				\dashv	<u> </u>		-	***************************************
BH-63 (15) (890-1502-63)	10/27/21	Mountain	Solid		×	×	×	×					4			***************************************
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instruatement in mediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC.	C places the ownership x being analyzed the sa the signed Chain of Cu	of method and amples must be stody attesting	lyte & accreditation complies shipped back to the Eurof to said complicance to Eur	ance upon ou ins Xenco LL ofins Xenco I	ut subcon .C labora .L.C.	tract lab	oratorie: ther inst	s This s	ample sh vill be pri	ipment i ovided	s forwar Any cha	ded und	er chain-o	-custody If on status sh	the labora ould be bro	ories This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC
Possible Hazard Identification Unconfirmed				San □	Sample Disposal (A	le Disposal (A f Return To Client	(A fee	e may	be ass	essed	if san	ples a	re reta	may be assessed if samples are retained longer	er than 1	8
Deliverable Requested I II III IV Other (specify)	Primary Deliverable Rank	able Rank 2		Spe	cial Ins	ruction	ıs/QC	Special Instructions/QC Requirements	ments	ents	1					11011011
Empty Kit Relinquished by		Date		Time	>	-	`			Meth	od of S	Method of Shipment				
Relinquished by	Date/Time:		Company		Received	Ž		3	2	Y		Date/Time [.]	9.			Company
Relinquished by	Date/Time		Company		Received by	by:	ŀ			1	To the second second	Date/Time				Company
Relinquished by	Date/Time		Company		Received by	by:						Date/Time				Company
Custody Seal No A Yes A No					Cooler Temperature(s)	mperati	J° (s)ar	and	Other Remarks	κ̈́ς		ı				

Eurofins Xenco, Carlsbad 1089 N Canal St Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199


Chain of Custody Record

eurofins 🤼	

Environment Testing
America

	Sampler:			Lab PM	Š						Car	Calliel Hacking (vo(s)		(4)				
Client Information (Sub Contract Lab)				Krar	Kramer Jessica	ssica					H						890-488 8	
Shipping/Receiving				jessic	jessica kramer@eurofinset com	ner@e	eurofir	nset c	om		Ne S	New Mexico	8				Page 8 of 14	
Company Eurofins Xenco					Accreditations Required (See note) NELAP - Louisiana, NELAP	ations i	Require Luisian	d (See a, NE	note)	ote) [.] AP - Texas							Job# 890-1502-1	
Address 1211 W Flonda Ave	Due Date Requested 11/4/2021	ă							Analy	nalvsis Requested	2	etac		1	- 1	l	Preservation Codes	}
City Midland	TAT Requested (days):	ıys):				\Box	_	\dashv						_		-	HCL NaOH	
State, Zip: TX 79701						TPH											— a	P Na2O4S Q Na2SO3
Phone 432-704-5440(Tel)	PO#				Y 16 16) Full		e 									MeOH Amchlor	
Email	WO#				007 - 0007 - 7 - 0 - 0	p (MOI		JNIONG								j.	I Ice J DI Water	U Acetone V MCAA
Project Name Kaiser SWD	Project # 88000039				-2- 7-W-	S_Pre		ACH								ainer	K EDTA	W pH 4-5 Z other (specify)
Site	SSOW#:				SON CONTROL	6NM_		/DI_LI								cont	Other:	
					Olive Hombrid	M/801										er of		
		Sample	Sample Type (C=comp	Matrix (w=water s=solid,	d Filtere form MS	MOD_N	IB/5035FI	ORGFM_	MOD_Ca							ıl Numbi		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	33: JL	∃=grab) BT=TISSUE, A=AIr) Preservation Code:	200 A 100 Compa	801	4-	-	-		1				-	Tot		Special Instructions/Note:
BH-64 (15) (890-1502-64)	10/27/21	Mountain		Solid	3	×	×	×	×	lia.	00			- (,,,	-	<u> </u>		
BH-65 (15) (890-1502-65)	10/27/21	Mountain		Solid		×	<u>×</u>	<u>×</u> ×	×		_	7		\dashv				
BH-66 (15) (890-1502-66)	10/27/21	Mountain		Solid		×	×	×	×			\dashv		_	\dashv			
BH-67 (15) (890-1502-67)	10/27/21	Mountain		Solid		×	×	×	×		\dashv			_		- I		
BH-68 (15) (890-1502-68)	10/28/21	Mountain		Solid		×	×	×	×		_			_		الخد		
BH-69 (15) (890-1502-69)	10/28/21	Mountain		Solid		×	×	×	×		\dashv	1		_		- A		
BH-70 (15) (890-1502-70)	10/28/21	Mountain		Solid		×	×	×	×		\dashv	_		_		-		
BH-71 (15) (890-1502-71)	10/28/21	Mountain		Solid		×	×	×	×						_	ا بقد		
ВН-72 (15) (890-1502-72)	10/28/21	Mountain		Solid		×	×	×	×		_	7				ا بد		
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laborator maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC	_C places the ownership rix being analyzed the so the signed Chain of Cu	of method and amples must b stody attesting	alyte & accredi e shipped back j to said compli	tation complian (to the Eurofins cance to Eurofi	ce upon o ; Xenco L ns Xenco	LLC labo	contract oratory	t labora or other	tories.	This sam	ple shi be pro	oment i vided	s forwa	rded u	nder ch o accr	nain-of editatio	ories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xence	y does not currently ht to Eurofins Xenco LLC
Possible Hazard Identification Unconfirmed					Sa	Sample Disposal (A	Dispo	sal (may be	asse	ssed	if sa	nples	⊓å	□ retai	er than 1	month)
Deliverable Requested II II V Other (specify)	Primary Deliverable Rank		2		Sp	ecial I	l Instructions/QC	tions/	QC R	Special Instructions/QC Requirements	ents	ints			1			
Empty Kit Relinquished by		Date			Time:	ı	5	5	ı		١	Meth	Method of Shipment:	hipme	7	1		
Relinquished by	Date/Time			Company		Received by	C B	D		3	2	5	7	Date/Time	me.			Company
Keinquished by	Date/Time			Company		Receive	el by:	1						Date/Time	me:			Company
Relinquished by	Date/Time			Company		Recei	Received by							Date/Time	me	İ		Company
Custody Seals Intact. Custody Seal No						Coole	Cooler Temperature(s)	erature	റ്	and Other Remarks	Remar	ŝ		l	l	1		

1089 N Canal St	Chain of Custody	Popul		sis eurofins
Carlsbad NM 88220	Chain of Custony Necota	Vecola		America
⁹ hone 575-988-3199 Fax 575-988-3199				
	Sampler	Lab PM	Carrier Tracking No(s)	COC No.
Client Information (Sub Contract Lab)		Kramer Jessica		890-488 9
Slient Contact:	Phone	E-Mail	State of Origin	Page
Shipping/Receiving		ນa kramer@eurofinset.com	New Mexico	Page 9 of 14
Company:		۲.		
Eurofins Xenco		NEI AD Oniciana NEI AD Toyon		
		NELAT - LOUISIANIA NELAT - LOXUS		900 4503 4

1089 N Canal St.

Eurofins Xenco, Carlsbad

Chain of Custody Record

eurofins .

Environment Testing

Project Name Kaiser SWD State Zip: TX 79701 BH-86 (15) (890-1502-86) BH-82 (15) (890-1502-82) BH90 (RS) (6) (890-1502-90) BH-89 (15) (890-1502-89) BH-88 (15) (890-1502-88) BH-87 (15) (890-1502-87) BH-85 (15) (890-1502-85) Sample Identification - Client ID (Lab ID) BH-84 (15) (890-1502-84) BH-83 (15) (890-1502-83) Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199 Deliverable Requested I II III IV Other (specify) Possible Hazard Identification vote Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody naintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC. 432-704-5440(Tel) Midland 1211 W Florida Ave Shipping/Receiving Client Information (Sub Contract Lab) Eurofins Xenco elinquished by elinquished by linquished by mpty Kit Relinquished by Custody Seal No Project #: 88000039 Date/Time Primary Deliverable Rank Due Date Requested 11/4/2021)ate/Time AT Requested (days): hone Sample Date 10/28/21 10/28/21 10/28/21 10/28/21 10/28/21 10/28/21 10/28/21 10/28/21 10/28/21 Date Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Sample (C=comp, G=grab Sample Type Preservation Code: Company Company Matrix Solid Solid Solid Solid Solid Solid Solid Solid Lab PM jessıca kramer@eurofinset.com Kramer Jessica NELAP - Louisiana, NELAP - Texas Ime Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Perform MS/MSD (Yes or No) Special Instructions/QC Requirements Cooler Temperature(s) °C and Other Remarks Received by 8015MOD_NM/8015NM_S_Prep (MOD) Full TPH × \times × × × 8021B/6035FP_Calc BTEX × × × × × × × × × × × × × 300 ORGFM 28D/DI LEACH Chioride × × × × × × × × × Total BTEX GCV Analysis Requested 8015MOD_Calc × × × × × × × × × State of Origin
New Mexico Carrier Tracking No(s) ethod of Shipment. Date/Time Jate/Time → Total Number of containers والكنيو بكنيو 1<u>148</u>4 بالكفي *(28*) ****** COC No. 890-488 10 u u o c a > 890-1502-1 Preservation Codes Page 10 of 14 age A HCL
NACHTE
NACHTE
NITIC ACID
NITIC ACID
NITIC ACID
NAHSO4
NAHSO4
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHTE
NACHT If the laboratory does not currently should be brought to Eurofins Xenco N ≶ < C → W J D D D Z Z Company M Hexane
V None
D AsNaO2
S Na2O4S
V Na2O4S
V Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3
R Na2S2O3 pH 4-5 Months other (specify) E

Eurofins Xenco, Carlsbad

Chain of Custody Record

1089 N Canal St Carlsbad NM 88220	Chain of Custody Record	/ Record		Environment Testing America
Phone 575-988-3199 Fax 575-988-3199				
	Sampler	Lab PM	Carrier Tracking No(s)	COC No.
Client Information (Sub Contract Lab)		Kramer Jessica		890-488 11
Client Contact:	Phone:	E-Mail	State of Origin	Page:
Shipping/Receiving		jessica kramer@eurofinset com	New Mexico	Page 11 of 14
Company:		Accreditations Required (See note)		Job#:
Eurofins Xenco		NELAP - Louisiana NELAP - Texas		890-1502-1
Address 1211 W Florida Ave	Due Date Requested 11/4/2021	Analysis Re	vsis Reguested	Preservation Codes

Client Information (Sub Contract Lab)	Camplet			K	<u> </u>	2												
- 1	Phone:			E-Mail	E-Mail						Sta	State of Origin	gin			70.0	Page:	
Company Eurofins Xenco					Accreditations Required (See note)	P - I o	Require	o (See	note)	Техас	L					، یا ه	Job #:	
Address 1211 W Florida Ave	Due Date Requested 11/4/2021	ă							\nal\	Sis R	Analvsis Requested	sted				4	Preservation Codes	des
City: Midland	TAT Requested (days):	ys):			<u>Salan</u>			-	\dashv			\dashv		_	\dashv		NaOH	M Hexane N None
State Zip: TX 79701					erenengene gan mangene	ТРН										m c ·		P Na2O4S Q Na2SO3
Phone: 432-704-5440(Tel)	PO#				<u>Versit ber</u>	D) Full		ie 								LOπ		
Email	WO#				Grouper, or with the or	p (MOI		Chlorid								and the delice		U Acetone V MCAA
Project Name Kaiser SWD	Project #: 88000039				7-001V 1: 011V	S_Pre		EACH								ainer	C EDTA	W pH 4-5 Z other (specify)
Site	SSOW#				1739 A LACT YES	15NM										Solden.	Other:	
			Sample Type	Matrix (w=water	iltered S m MS/M	D_NM/8	5036FP_C	RGFM_28	D_Calc			******				lumber (
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	O=waste/oil, BT=Tissue, A=Air	Manual Story See	8015			-							Tota	Special I	Special Instructions/Note
	W	\setminus	J. 800 7	Preservation Code:	X											X		
BH-91 (RS) (6) (890-1502-91)	10/28/21	Mountain		Solid		×	×	× ×	×		****					أكثر		
SW-1 (0-6) (890-1502-92)	10/25/21	Mountain		Solid		×	×	×	×			\dashv				4]		
SW-2 (0-6) (890-1502-93)	10/25/21	Mountain		Solid		×	×	×	×		\dashv	\dashv				4	Territor de la companya de la compan	
SW-3 (0-6) (890-1502-94)	10/25/21	Mountain		Solid		×	×	×	×		_				1	بخي		***************************************
SW-4 (0-6) (890-1502-95)	10/25/21	Mountain		Solid		×	×	×	×									
SW-5 (0-6) (890-1502-96)	10/25/21	Mountain		Solid		×	×	×	×							, A.		***************************************
SW-6 (0-6) (890-1502-97)	10/25/21	Mountain		Solid		×	×	×	×							-4		***************************************
SW-7 (0-6) (890-1502-98)	10/26/21	Mountain		Solid		×	×	×	×							4		
SW-8 (0-6) (890-1502-99)	10/26/21	Mountain		Solid		×	×	×	×							24 0		
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC at the first to the Eurofins Xenco LLC and the samples must be shipped back to the Eurofins Xenco LLC.	C places the ownership x being analyzed the sa the signed Chain of Cu	of method ana amples must be stody attesting	llyte & accredi	tation compliand to the Eurofins cance to Eurofir	xe upon . Xenco L	out sub LC lab	contrac	t labora or othe	tories r instruc	This sau	mple sh	ipment wided	is forwa	irded un	der chai) accred	n-of-cu tation s	stody If the labor tatus should be b	ratory does not currently rought to Eurofins Xence
Possible Hazard Identification Unconfirmed					Sa [∐p/e R	Sample Disposal (A f	osal (~	тау ь	e ass	assessed if san Disposal By Lab	lifsa. Sv Lad	nples	are re	taine.	fee may be assessed if samples are retained longer than 1 month) Archive For Mon	1 month)
Deliverable Requested I II III IV Other (specify)	Primary Deliverable Rank	able Rank 2	10		Sp	ecial	Special Instructions/Q	tions	<u>ဂ</u> ါ	Requirements	ments		ŀ					
Empty Kit Relinquished by		Date			Time:			_				Met	nod of s	Method of Shipment:	ť			With the second second
Relinquished by:	Date/Time			Company		Received	ved by				\Rightarrow	P	Ü	Date/Time	ne			Company
Relinquished by	Date/Time ⁻			Company		Recente	- de de	ł	1					Date/Time	me			Company
Relinquished by	Date/Time			Company		Recei	Received by					İ		Date/Time	me:			Company
Custody Seals Intact: Custody Seal No						Coole	Cooler Temperature(s)	erature	റ്	nd Othe	and Other Remarks	rks.						

Carlsbad NM 88220 Phone. 575-988-3199 Fax 575-988-3199

1089 N Canal St.

Eurofins Xenco, Carlsbad

Chain of Custody Record

	Sampler			Lab PM	, -	j. F						Carrie	Carrier Tracking No(s)	ing No	(s)			COC No	8		Ì					
Client Contact	Phone:			E-Mail	E-Mail	Sica						State	State of Origin	5				068	890-488 12	Ĭ.						
₃ /Receiving				jessio	essica kramer@eurofinset com	ner@e	eurofi	nset	ŏm			New	New Mexico	8				Page	Page 12 of 14	오 1	42					
Eurofins Xenco					Accreditations Required (See note) NELAP - Louisiana NELAP	ations F	Requin	ad (Sed	ELAP	- Texas	as							-068 # 90	Job#: 890-1502-1	7						لــــ
Address 1211 W Florida Ave	Due Date Requested 11/4/2021	Ď							Anal		vsis Requested	lles	₹				1	Pres	Preservation Codes	ion	å	٥				
City Midland	TAT Requested (days)	ys)			etisseedida 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -		_	\dashv	\dashv		\exists			_	\dashv	\dashv			HCL NaOH	100		ZZ	Hexane None	-		
State, Zip TX 79701						TPH				*****	************			******					Nitric Acid NaHSO4	ocid (Na2O4S Na2SO3	J. 07 1		
Phone 432-704-5440(Tel)	PO#:				Verselli,	D) Full		ie									u. A. Allada eta	I O T	MeOH Amchlor	5 Q 2			Na2S2O3 H2SO4	i ii		
Email	WO#				10/19/2000	OM)		hloric								····	i.		Ce Di Water	P 2			Acetone	Acetone Acetone	ydiale	
Project Name Kalser SWD	Project #:				W. THEY SHARE	S_Pre		ACH C					_				liners		EDTA EDA			_	pH 4-5 other (sp	pH 4-5 other (specify)		
Site	8500000				200	M_S		LE									nta	?								
Site	SSOW#				0000000 (1500)	015N											of co	Other:	٦							
			Sample Type	Matrix (w=water	iltered m MS/N	OD_NM/8	6035FP_	RGFM_28 BTEX_GO	OD_Calc								Number				1	l				
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) _B	O≃waste/oil, BT≔Tissue, A≍Air)	000000000000000000000000000000000000000	8015											Tota		န္	ecia	IIns	truci	tions	Special Instructions/Note	U	
		X	Preservation Code:	on Code:	X								444	الميسا	-	at pet	X		H	11	V			II	П	
SW-9 (0-6) (890-1502-100)	10/26/21	Mountain		Solid		×	×	×	× ×								- C									
SW-10 (0-6) (890-1502-101)	10/26/21	Mountain		Solid		×	×	×	×								- A									
SW-11 (0-6) (890-1502-102)	10/26/21	Mountain		Solid		×	×	×	×	-	\neg															
SW-12 (10) (890-1502-103)	10/26/21	Mountain		Solid		×	×	×	×				_													
SW-13 (15) (890-1502-104)	10/26/21	Mountain		Solid		×	×	×	×	-				_	-		A									
SW-14 (15) (890-1502-105)	10/26/21	Mountain		Solid		×	×	×	×					_			مد				1		Ì			
SW-15 (15) (890-1502-106)	10/26/21	Mountain		Solid		×	×	×	×	-			_			\dashv						l	l			
SW-16 (15) (890-1502-107)	10/26/21	Mountain		Solid		×	×	×	×	\neg									1			Ì	Ì			
SW-17 (15) (890-1502-108)	10/26/21	Mountain		Solid		×	×	×	×								-		1				Ì			
Note: Since laboratory accreditations are subject to change, Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC.	aces the ownership sing analyzed the sa signed Chain of Cu	of method anal amples must be stody attesting t	lyte & accredita shipped back to said complica	ition compliance to the Eurofins	upon o Kenco Ll	ut subc	contrac	t labora or othe	atories er instn	This	sample will be	shipm	ent is ed Ar	forward	led und	ler cha	in-of-o	:ustod	ly Ift	he lab uld be	orator	y doe ght to	s not o	current ns Xer	This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently thous will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC	O
Possible Hazard Identification Unconfirmed					Sar	Sample Disposal (A fee	le Disposal (A f	sal (A fee	may	□ be a	be assessed if samples are retained longer	sed ii	sam	ples		A fain	tained long	nge	r than 1		month)	nth)			
Deliverable Requested I II III IV Other (specify)	Primary Deliverable Rank 2	able Rank 2			Spe	Special Instructions/QC R	nstruc	tions	QC F		equirements	ङ			1		١					ľ	Ì			
Empty Kit Relinquished by		Date			Time		\Rightarrow	3	١				Method of Shipment.	of St	pment		١		١		1		Ì			
Relinquished by	Date/Time.			Company		Received by	F	7	\sum_{i}	P	2		N		Date/Time	ġ.	1	l	1	ı		Company	bany			
Reinquished by	Date/Time			Company		Receiv	ed by	ĺ		ł	ļ		t		Date/Time	le	١		1	l		Company	oany	Į		
Relinquished by	Date/Time			Company		Rèceived by	ed by	ı							Date/Time [.]	ē						Company	pany			
Custody Seals Intact: Custody Seal No						Cooler Temperature(s) °C	Temp	erature	(s) °C	and Ot	and Other Remarks	marks.				İ		ı								

eurofins Environment Testing

Ver 06/08/2021

Chain of Custody Record

Eurofins Xenco, Carlsbad 1089 N Canal St Carlsbad NM 88220 Phone 575-988-3199 Fax. 575-988-3199 Client Information (Sub Contract Lab) Client Contact: Shipping/Receiving Company Eurofins Xenco	Sampler	Chain c	of Cus	Chain of Custody Record Lab PM Kramer Jessicz E-Mair jessica kramer@ Accreditation	Record Lab PM Kramer Jessica E-Mail Jessica kramer@eurofinset.com Accreditations Required (See not	ecord I I I I I I I I I I I I I	ns Re la	quire	set.c	onote	~ I		700	Carrier Tracking No(s). State of Origin. New Mexico	Track Origi	Ö P. Ing K) (s)			हिंच्याळूट 🐉	ins —	Environment Testing America	
Address 1211 W Florida Ave	Due Date Requested 11/4/2021	•								Ana	5	S Z	ē	Requested	ă						eservation Code	. 1	
City City Midland	TAT Requested (days)	ys)			de spirit lies	the color of the constitution of the color o			-													M Hexane N None D AsNaO2	
State, Zip TX 79701		i			the second	TPH														пσ	Nitric Acid NaHSO4	Na204S Na2SO3	
Phone: 432-704-5440(TeI)	PO#:				<u>Virginia</u>	D) Full	·	le							**************					О П	Amchlor Amchlor		
Email	WO#:				VALSA, 103009	S. P. G. S. S. S. S. S. S. S. S. S. S. S. S. S.		Chloric							*					terred total	ice DI Water	Acetone MCAA	
Project Name Kaiser SWD	Project #: 88000039				ALC: A MARKET	20,146,900													. 1800 A	ainer	EDTA EDA	N pH 4-5 2 other (specify)	
Site	SSOW#:				300000000000000000000000000000000000000	Miller Stalling									·				. Sec Se	televistic seller	Other		
	:	Sample	Sample Type (C=comp.	Matrix (w=water S=solid	ld Filtered form MS/N	6MOD_NM/8	1B/6036FP_	ORGFM_28	al_BTEX_GC		5MOD_Calc								6200a - 12 Sept. de	al Number			
	Valle Date		Preserva	Preservation Code:	VOTO 1982	2.3	-	100	-		- 0	-	4	_			4	4493		<u>*</u>	Special Inst	Special Instructions/Note	
SW-18 (15) (890-1502-109)	10/26/21	Mountain		Solid		×	×	×		×	$\stackrel{\times}{\dashv}$						_	_			The second secon		ŀ
SW-19 (15) (890-1502-110)	10/26/21	Mountain		Solid		×	×	×		<u> </u>	$\stackrel{\times}{\dashv}$							_		, 6	- SWASSAS - SWAS		
SW-20 (15) (890-1502-111)	10/26/21	Mountain		Solid		×	×	×		×	×												
SW-21 (15) (890-1502-112)	10/26/21	Mountain		Solid		×	×	×		×	<u>~</u>		_							A			
SW-22 (15) (890-1502-113)	10/26/21	Mountain		Solid		×	×	×		×	<u>~</u>								/	-			
SW-23 (15) (890-1502-114)	10/26/21	Mountain		Solid		×	×	×		×	<u>×</u>									*			
SW-24 (15) (890-1502-115)	10/26/21	Mountain		Solid		×	×	×		×	<u> </u>									(400)			
SW-25 (15) (890-1502-116)	10/26/21	Mountain		Solid		×	×	×		×	×									<u> </u>			
SW-26 (15) (890-1502-117)	10/26/21	Mountain		Solid		×	×	×	-	×	×									- 22			
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofin's Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofin's Xenco LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofin's Xenco LLC.	blaces the ownership obeing analyzed the sa seing analyzed the sa e signed Chain of Cus	of method ana mples must be tody attesting t	lyte & accredit shipped back to said complic	ation compliand to the Eurofins ance to Eurofir	xencc	n out s	ubcor labora	ntract Itory o	labor or other	atorie er inst	s. Th ructio	is sar ns wil	ple s	hipme	ntist d Ar	orwar y cha	ded u	nder o	hain- redita	of-cus tion st	stody If the laboratory tatus should be brougi	y does not currently ht to Eurofins Xenco LLC	()
Possible Hazard Identification Unconfirmed					S		le Disposal (A f	spo	sal (Afe	e m	□b	e as	sess	edi	san	ple	⊓are	□ reta	inec	er than	1 month)	
Deliverable Requested I II III IV Other (specify)	Primary Deliverable Rank	ble Rank 2			-8	Special Instructions/QC	l Ins	truct	ions		Requirements	ur er	nent	ents		Ę]	9	a convo	Monuns	
Empty Kit Relinquished by		Date			Time:	"		_						-	letho	Method of Shipment:	ipme	nt:				A CONTRACTOR OF THE PROPERTY O	
Relinquisted by	Date/Iime			Company		₽ Re	Received b	1		The same	B	X	\bowtie	0	A.		Date/Time	ime				Company	L
Sindwind of	Date/Iline			Company		2	Received	V							/		Date/Time	me				Company	
Relinquished by	Date/Time			Company		Recei	ceive	by	1	- 1			ļ				Date/Time	me:				Company	
Custody Seals Intact. Custody Seal No						S	Cooler Temperature(s) °C	empe	rature	(8)		and Other Remarks	Rem	arks		ļ	- [l	1	l			

Ver: 06/08/2021

Eurofins Xenco, Carlsbad 1089 N Canal St.

Chain of Custody Record

000	
eurofins	
Environ	

Environment Testing
America

Phone 575-988-3199 Fax 575-988-3199 Client Information (Sub Contract Lab)	Sampler			Lab PM	Lab PM	⁵					Carrier Tracking No(s)	Tracki	ng No	s)		0	COC No	
- 1	Phone.			E-Mail	krame		fine				State of Origin.	f Origin	,]			J 0 0	Page:	
Oompany Eurofins Xenco				Z À	Accreditations Required (See NELAP - Louisiana NEI	ins Requ	iired (S	ee note)) - Texas	1			ľ	1		<u> </u>	Job #: 890-1502-1	
Address 1211 W Florida Ave	Due Date Requested 11/4/2021	ă							nalysis	Requested	ues	3	1	- 1		╗	Preservation Codes	des
City- Midland	TAT Requested (days):	ıys):			<u>Leas</u>	-		\dashv	\dashv					\dashv		C ₪ >		M Hexane N None O AsNaO2
State, Zip. TX 79701				ia.	and seed											m 🗆 (D Nitric Acid	
Phone: 432-704-5440(Tel)	PO#				argar njara maasalkans		e						······································			:ОП		R Na2S2O3 S H2SO4
Email	WO#:			or No	6)		Chlorid						 -			in Sections	H ASCORDIC ACIO	
Project Name. Kaiser SWD	Project #. 88000039			(Ves	s or N		ACH (A 100 110 at	K EDTA K EDA	W pH 4-5 Z other (specify)
Site	SSOW#			Samole	SD (Ye		D/DI_LE	v								89 Mag	Other:	
		Sample	Sample II Type (C=comp, o.	Matrix (W=water S=solid, O=waste/oil, id	rform MS/M 15MOD_NM/8	21B/5035FP_0	O_ORGFM_28	tal_BTEX_GC	I6MOD_Calc							tal Number		
	X	\langle	Preservation Code:		X			-	4				+			XĮ:	abeciai ilisti uctionis/Note	i su ucuo
SW-27 (15) (890-1502-118)	10/26/21	Mountain		Solid	×	×	×	×	×			_		-		-		The state of the s
SW-28 (15) (890-1502-119)	10/26/21	Mountain		Solid	×	×	×	×	$\stackrel{\times}{+}$	\dashv		_		_				
SW-29 (15) (890-1502-120)	10/26/21	Mountain		Solid	×	×	×	×	×			+	\dashv	\dashv		**		
SW-30 (RS) (6) (890-1502-121)	10/28/21	Mountain		Solid	×	×	×	×	<u> </u>		\perp	_	-+	+				
SW-31 (RS) (4) (890-1502-122)	10/28/21	Mountain		Solid	×	×	×	×	×		\perp	\dashv		\dashv		4	en elektrisk de de en en en en en en en en en en en en en	
SW-32 (RS) (6) (890-1502-123)	10/28/21	Mountain		Solid	×	×	×	×	<u> </u>	\dashv	\perp	_	\dashv			4		
SW-33 (RS) (8) (890-1502-124)	10/28/21	Mountain		Solid	×	×	×	×		1-1		_	-++	++		, itis,		
								-			ļ		\dashv					
Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laborat maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC attention immediately.	C places the ownership x being analyzed the sa the signed Chain of Cu	of method ana amples must be stody attesting	llyte & accreditation shipped back to the to said complicance	າ compliance າe Eurofins Xo e to Eurofins)	upon out : enco LLC Xenco LL:	subcontu laborato	act lab	watories. her instruc	s. This	sample will be	shipm provid	entis f	orward / chan	ed und	r chain ccredit	of-cus	ories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC.	atory does no ought to Euro
Possible Hazard Identification Unconfirmed					Samp	Sample Disposal (A fee	e Disposal (A f Return To Client	(Afe		may be assessed if samples	assessed if san Disposal By I ah	ed if	sam,	les a	□re ret	ainec	are retained longer than 1	1 mo
Deliverable Requested I II III IV Other (specify)	Primary Deliverable Rank. 2	ble Rank. 2			Speci	Special Instructions/	uction	s/QC	QC Requirements	remer	ts look	2	[ı				MOIMIS
Empty Kit Relinquished by:		Date			Time	\exists	,	` ┃	١	ı		Method of Shipment:	of Shi	oment:	İ	ļ		
Relinquished by	Date/Time		Соп	Company		Received	The state of the s	X	$ ag{1}$	$\sum_{i=1}^{\infty}$	M	4	-	Date/Time.		1		Company
Relinquished by	Date/Time		Com	Company	Re	deived by	Ϋ1		k		\frac{1}{2}			Date/Time		1		Company
Relinquished by:	Date/Time		Com	Company	- ₹	Received by	¥						0	Date/Time				Company
Custody Seals Intact. Custody Seal No					ဂ္ဂ	Cooler Temperature	nperatu	re(s) °C	and	Other Remarks	marks		ŀ		1			-

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-1502-1

SDG Number: 212C-MD-02230

Login Number: 1502 List Source: Eurofins Xenco, Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

Eurofins Xenco, Carlsbad

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-1502-1 SDG Number: 212C-MD-02230

List Source: Eurofins Xenco, Midland

List Creation: 11/01/21 08:46 AM

List Number: 2 Creator: Kramer, Jessica

Login Number: 1502

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.6/2.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Euronnis Aerico, Carisbau

1

ŏ

10

46

13

14

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2290-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

SKRAMER

Authorized for release by: 5/16/2022 4:19:28 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Review your project

.....LINKS

results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 9/1/2023 2:07:08 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

3

4

5

7

9

1 4

12

16

Н

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2290-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	23
QC Sample Results	25
QC Association Summary	32
Lab Chronicle	38
Certification Summary	45
Method Summary	46
Sample Summary	47
Chain of Custody	48
Receipt Checklists	54

2

3

4

6

8

10

12

13

Definitions/Glossary

Job ID: 890-2290-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** *1 LCS/LCSD RPD exceeds control limits.

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

%R

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA

Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

Presumptive **PRES** QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2290-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2290-1

Receipt

The samples were received on 5/6/2022 3:23 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 11.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-25199/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-25199 and analytical batch 880-25231 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-25221 and analytical batch 880-25235 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

6

o

9

12

13

Lab Sample ID: 890-2290-1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-92

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 14:33	
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 14:33	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 14:33	
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		05/14/22 12:33	05/15/22 14:33	
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 14:33	
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		05/14/22 12:33	05/15/22 14:33	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	98		70 - 130			05/14/22 12:33	05/15/22 14:33	
1,4-Difluorobenzene (Surr)	103		70 - 130			05/14/22 12:33	05/15/22 14:33	
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			05/16/22 16:56	
Analyte Total TPH	Result 522	Qualifier		Unit mg/Kg	D	Prepared	Analyzed 05/11/22 10:27	Dil Fa
IOIAI IPH -	522		30.0	mg/Kg			03/11/22 10.27	
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C10	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 13:54	
Diesel Range Organics (Over C10-C28)	346		50.0	mg/Kg		05/10/22 08:18	05/10/22 13:54	
Oll Range Organics (Over C28-C36)	176		50.0	mg/Kg		05/10/22 08:18	05/10/22 13:54	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	119		70 - 130			05/10/22 08:18	05/10/22 13:54	
o-Terphenyl (Surr)	108		70 - 130			05/10/22 08:18	05/10/22 13:54	
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble						
Analyte	Result	Qualifier		Unit mg/Kg	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-93 Lab Sample ID: 890-2290-2

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 15:01	1
Toluene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 15:01	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 15:01	1
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		05/14/22 12:33	05/15/22 15:01	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 15:01	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		05/14/22 12:33	05/15/22 15:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			05/14/22 12:33	05/15/22 15:01	1

Eurofins Carlsbad

Matrix: Solid

2

3

7

9

11

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-93 Lab Sample ID: 890-2290-2

Date Collected: 05/06/22 00:00 Matrix: Solid
Date Received: 05/06/22 15:23

Sample Depth: 5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130			05/14/22 12:33	05/15/22 15:01	1
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	145		49.9	mg/Kg			05/11/22 10:27	1
- Method: 8015B NM - Diesel Ran	nge Organics (Di	RO) (GC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 16:05	1
Diesel Range Organics (Over	62.5		49.9	mg/Kg		05/10/22 08:18	05/10/22 16:05	1
C10-C28) Oll Range Organics (Over	82.6		49.9	mg/Kg		05/10/22 08:18	05/10/22 16:05	1
C28-C36)	02.0							
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	122		70 - 130			05/10/22 08:18	05/10/22 16:05	1

 Chloride
 976
 24.9
 mg/Kg
 05/12/22 07:44
 5

 Client Sample ID: BH-94
 Lab Sample ID: 890-2290-3

Unit

Prepared

Analyzed

Matrix: Solid

Result Qualifier

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Method: 300.0 - Anions, Ion Chromatography - Soluble

Sample Depth: 5

Analyte

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:33	05/15/22 15:28	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:33	05/15/22 15:28	•
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:33	05/15/22 15:28	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/14/22 12:33	05/15/22 15:28	
o-Xylene	< 0.00199	U	0.00199	mg/Kg		05/14/22 12:33	05/15/22 15:28	•
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/14/22 12:33	05/15/22 15:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		70 - 130			05/14/22 12:33	05/15/22 15:28	1
1,4-Difluorobenzene (Surr)	102		70 - 130			05/14/22 12:33	05/15/22 15:28	1
Method: Total BTEX - Total B	ΓEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	412		50.0	mg/Kg			05/11/22 10:27	

Eurofins Carlsbad

2

3

6

8

10

12

Lab Sample ID: 890-2290-3

Job ID: 890-2290-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-94

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 14:16	1
Diesel Range Organics (Over	247		50.0	mg/Kg		05/10/22 08:18	05/10/22 14:16	1
C10-C28)								
Oll Range Organics (Over	165		50.0	mg/Kg		05/10/22 08:18	05/10/22 14:16	1
C28-C36)								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)			70 - 130			05/10/22 08:18	05/10/22 14:16	1
o-Terphenyl (Surr)	100		70 - 130			05/10/22 08:18	05/10/22 14:16	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-2290-4 **Client Sample ID: BH-95** Matrix: Solid

Date Collected: 05/06/22 00:00

Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 15:56	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 15:56	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 15:56	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		05/14/22 12:33	05/15/22 15:56	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 15:56	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		05/14/22 12:33	05/15/22 15:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			05/14/22 12:33	05/15/22 15:56	1
1,4-Difluorobenzene (Surr)	102		70 - 130			05/14/22 12:33	05/15/22 15:56	1
Method: Total BTEX - Total BTI	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/16/22 16:56	1
Method: 2015 NM Discal Bone	no Organico (DB)	0) (CC)						
Method: 8015 NM - Diesel Ranç Analyte	• • •		RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Rang Analyte Total TPH	• • •	O) (GC) Qualifier	RL 50.0	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/11/22 10:27	Dil Fac
Analyte Total TPH	Result 244	Qualifier			<u> </u>	Prepared		
Analyte	Result 244 nge Organics (D	Qualifier			D_	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte	Result 244 nge Organics (D	Qualifier RO) (GC) Qualifier	50.0	mg/Kg			05/11/22 10:27	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ra	Result 244 nge Organics (D	Qualifier RO) (GC) Qualifier	50.0	mg/Kg		Prepared	05/11/22 10:27 Analyzed	1
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte C6-C10	nge Organics (D Result <50.0	Qualifier RO) (GC) Qualifier	50.0 RL 50.0	mg/Kg Unit mg/Kg		Prepared 05/10/22 08:18	05/11/22 10:27 Analyzed 05/10/22 14:37	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte C6-C10 Diesel Range Organics (Over	nge Organics (D Result <50.0	Qualifier RO) (GC) Qualifier	50.0 RL 50.0	mg/Kg Unit mg/Kg		Prepared 05/10/22 08:18	05/11/22 10:27 Analyzed 05/10/22 14:37	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Result	Qualifier RO) (GC) Qualifier U	50.0 RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/10/22 08:18 05/10/22 08:18	05/11/22 10:27 Analyzed 05/10/22 14:37 05/10/22 14:37	1 Dil Fac 1 1
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 244	Qualifier RO) (GC) Qualifier U	50.0 RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/10/22 08:18 05/10/22 08:18	05/11/22 10:27 Analyzed 05/10/22 14:37 05/10/22 14:37	1 Dil Fac

Job ID: 890-2290-1

SDG: Lea County NM

Client Sample ID: BH-95

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Lab Sample ID: 890-2290-4

Matrix: Solid

Method: 300.0 - Anions, Ion Chron	natography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3780		49.5	mg/Kg			05/12/22 08:00	10

Client Sample ID: BH-96 Lab Sample ID: 890-2290-5 Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 16:23	
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 16:23	•
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 16:23	
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/14/22 12:33	05/15/22 16:23	
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 16:23	
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/14/22 12:33	05/15/22 16:23	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	107		70 - 130			05/14/22 12:33	05/15/22 16:23	
1,4-Difluorobenzene (Surr)	102		70 - 130			05/14/22 12:33	05/15/22 16:23	1
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400	mg/Kg			05/16/22 16:56	•
Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	166		49.9	mg/Kg			05/11/22 10:27	,
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 15:21	,
Diesel Range Organics (Over C10-C28)	55.3		49.9	mg/Kg		05/10/22 08:18	05/10/22 15:21	•
Oll Range Organics (Over C28-C36)	111		49.9	mg/Kg		05/10/22 08:18	05/10/22 15:21	•
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	107		70 - 130			05/10/22 08:18	05/10/22 15:21	
o-Terphenyl (Surr)	95		70 - 130			05/10/22 08:18	05/10/22 15:21	:
Method: 300.0 - Anions, Ion Ch	nromatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1350		25.2	mg/Kg	_		05/12/22 08:08	

Lab Sample ID: 890-2290-6

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-97

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 16:50	
Toluene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 16:50	
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 16:50	
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		05/14/22 12:33	05/15/22 16:50	
o-Xylene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 16:50	
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		05/14/22 12:33	05/15/22 16:50	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	106		70 - 130			05/14/22 12:33	05/15/22 16:50	
1,4-Difluorobenzene (Surr)	101		70 - 130			05/14/22 12:33	05/15/22 16:50	
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00397	U	0.00397	mg/Kg			05/16/22 16:56	
Analyte Total TPH	Result	Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/11/22 10:27	Dil Fa
IOTALIPH	238		49.9	mg/kg			05/11/22 10.27	
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C10	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 14:59	
Diesel Range Organics (Over C10-C28)	97.6		49.9	mg/Kg		05/10/22 08:18	05/10/22 14:59	
Oll Range Organics (Over C28-C36)	140		49.9	mg/Kg		05/10/22 08:18	05/10/22 14:59	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	108		70 - 130			05/10/22 08:18	05/10/22 14:59	
o-Terphenyl (Surr)	99		70 - 130			05/10/22 08:18	05/10/22 14:59	
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble						
Analyte	Result	Qualifier	RL 49.8		D	Prepared	Analyzed	Dil Fa

Client Sample ID: BH-98 Lab Sample ID: 890-2290-7

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 17:16	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 17:16	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 17:16	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/14/22 12:33	05/15/22 17:16	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 17:16	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/14/22 12:33	05/15/22 17:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			05/14/22 12:33	05/15/22 17:16	

Eurofins Carlsbad

Matrix: Solid

2

3

4

6

0

10

12

13

=/4*E*/2022

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-98 Lab Sample ID: 890-2290-7

Date Collected: 05/06/22 00:00 Matrix: Solid Date Received: 05/06/22 15:23

Sample Depth: 5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100		70 - 130			05/14/22 12:33	05/15/22 17:16	1
Method: Total BTEX - Total BT	ΓEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Ran	nge Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	102		50.0	mg/Kg			05/11/22 10:27	1
•								
Mothod: 004ED NM Discol De	anga Organica /D							
Method: 8015B NM - Diesel Ra	• • •	, , ,	DI	Unit	n	Dranarad	Analyzod	Dil Fac
Analyte	Result	Qualifier	RL	Unit ma/Ka	D	Prepared 05/10/22 08:18	Analyzed	Dil Fac
Analyte C6-C10	Result <50.0	Qualifier U	50.0	mg/Kg	<u>D</u>	05/10/22 08:18	05/10/22 15:43	Dil Fac
Analyte C6-C10 Diesel Range Organics (Over	Result	Qualifier U			<u>D</u>			Dil Fac
Analyte C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	Qualifier U	50.0	mg/Kg mg/Kg	<u>D</u>	05/10/22 08:18	05/10/22 15:43	Dil Fac 1 1
Analyte C6-C10 Diesel Range Organics (Over	Result <50.0	Qualifier U	50.0 50.0	mg/Kg	<u>D</u>	05/10/22 08:18 05/10/22 08:18	05/10/22 15:43 05/10/22 15:43	1 1 1
Analyte C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Result <50.0 <50.0	Qualifier U	50.0 50.0	mg/Kg mg/Kg	<u>D</u>	05/10/22 08:18 05/10/22 08:18	05/10/22 15:43 05/10/22 15:43	Dil Fac 1 1 1 Dil Fac
Analyte C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <102	Qualifier U	50.0 50.0 50.0	mg/Kg mg/Kg	<u> </u>	05/10/22 08:18 05/10/22 08:18 05/10/22 08:18	05/10/22 15:43 05/10/22 15:43 05/10/22 15:43	1 1

25.0 Client Sample ID: BH-99 Lab Sample ID: 890-2290-8

RL

Unit

mg/Kg

D

Prepared

Result Qualifier

2090

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:33	05/15/22 17:42	1
Toluene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:33	05/15/22 17:42	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:33	05/15/22 17:42	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		05/14/22 12:33	05/15/22 17:42	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:33	05/15/22 17:42	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		05/14/22 12:33	05/15/22 17:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130			05/14/22 12:33	05/15/22 17:42	1
1,4-Difluorobenzene (Surr)	103		70 - 130			05/14/22 12:33	05/15/22 17:42	1
- Method: Total BTEX - Total B1	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	73.6		50.0	mg/Kg			05/11/22 10:27	

Eurofins Carlsbad

Dil Fac

Matrix: Solid

Analyzed

05/12/22 13:33

Lab Sample ID: 890-2290-8

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-99

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 16:26	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 16:26	1
Oll Range Organics (Over C28-C36)	73.6		50.0	mg/Kg		05/10/22 08:18	05/10/22 16:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	107		70 - 130			05/10/22 08:18	05/10/22 16:26	1
o-Terphenyl (Surr)	96		70 - 130			05/10/22 08:18	05/10/22 16:26	1
– Method: 300.0 - Anions, Ion C	hromatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2860		24.9	mg/Kg			05/12/22 13:41	5

Client Sample ID: BH-100 Lab Sample ID: 890-2290-9 Date Collected: 05/06/22 00:00 **Matrix: Solid**

Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 18:09	-
Toluene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 18:09	•
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 18:09	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		05/14/22 12:33	05/15/22 18:09	
o-Xylene	<0.00198	U	0.00198	mg/Kg		05/14/22 12:33	05/15/22 18:09	,
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		05/14/22 12:33	05/15/22 18:09	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			05/14/22 12:33	05/15/22 18:09	1
1,4-Difluorobenzene (Surr)	99		70 - 130			05/14/22 12:33	05/15/22 18:09	1
Method: Total BTEX - Total BT	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	
			RL 0.00396	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/16/22 16:56	
Analyte	<0.00396	U			<u>D</u>	Prepared		
Analyte Total BTEX	Result <0.00396	U			<u>D</u>	Prepared Prepared		1
Analyte Total BTEX . Method: 8015 NM - Diesel Ran	Result <0.00396	U (GC)	0.00396	mg/Kg			05/16/22 16:56	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	Result <0.00396 age Organics (DR Result 56.8	O) (GC) Qualifier	0.00396	mg/Kg			05/16/22 16:56 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH	Result <0.00396 age Organics (DR Result 56.8 ange Organics (D	O) (GC) Qualifier	0.00396	mg/Kg			05/16/22 16:56 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra	Result <0.00396 age Organics (DR Result 56.8 ange Organics (D	O) (GC) Qualifier RO) (GC) Qualifier	0.00396 RL 49.9	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	05/16/22 16:56 Analyzed 05/11/22 10:27	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte	Result 	O) (GC) Qualifier RO) (GC) Qualifier U	0.00396 RL 49.9	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	05/16/22 16:56 Analyzed 05/11/22 10:27 Analyzed	Dil Fac

Eurofins Carlsbad

Analyzed

05/10/22 16:49

05/10/22 16:49

Prepared

05/10/22 08:18

05/10/22 08:18

Limits

70 - 130

70 - 130

%Recovery Qualifier

106

96

Dil Fac

Surrogate

1-Chlorooctane (Surr)

o-Terphenyl (Surr)

Lab Sample ID: 890-2290-9

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-100

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Method: 300.0 - Anions, Ion Chron	natography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5050	49.7	mg/Kg			05/12/22 13:49	10

Client Sample ID: BH-101 Lab Sample ID: 890-2290-10 **Matrix: Solid**

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 18:28	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 18:28	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 18:28	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/14/22 12:37	05/14/22 18:28	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 18:28	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/14/22 12:37	05/14/22 18:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			05/14/22 12:37	05/14/22 18:28	1
1,4-Difluorobenzene (Surr)	101		70 - 130			05/14/22 12:37	05/14/22 18:28	1

Total BTEX	<0.00398	U	0.00398	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Range Or	ganics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/11/22 10:27	1

Unit

Prepared

Analyzed

Result Qualifier

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<49.9	U F1 F2	49.9	mg/Kg		05/10/22 08:18	05/10/22 12:49	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 12:49	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 12:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	105		70 - 130			05/10/22 08:18	05/10/22 12:49	1

o-Terphenyl (Surr)	103		70 - 130			05/10/22 08:18	05/10/22 12:49	1
Method: 300.0 - Anions, Ion Chrom	atography - S	Soluble						
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2460		24.8	mg/Kg			05/12/22 13:57	5

Client Sample ID: BH-102 Lab Sample ID: 890-2290-11 Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Method: 8021B - Volatile Organic	Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/14/22 18:55	1

Eurofins Carlsbad

Dil Fac

Lab Sample ID: 890-2290-11

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-102

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/14/22 18:55	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/14/22 18:55	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		05/14/22 12:37	05/14/22 18:55	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/14/22 18:55	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		05/14/22 12:37	05/14/22 18:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			05/14/22 12:37	05/14/22 18:55	1
1,4-Difluorobenzene (Surr)	103		70 - 130			05/14/22 12:37	05/14/22 18:55	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 17:32	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 17:32	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 17:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	124		70 - 130			05/10/22 08:18	05/10/22 17:32	1
o-Terphenyl (Surr)	118		70 - 130			05/10/22 08:18	05/10/22 17:32	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-103

Date Collected: 05/06/22 00:00

Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 19:21	1
Toluene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 19:21	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 19:21	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		05/14/22 12:37	05/14/22 19:21	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 19:21	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		05/14/22 12:37	05/14/22 19:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			05/14/22 12:37	05/14/22 19:21	1
1,4-Difluorobenzene (Surr)	104		70 - 130			05/14/22 12:37	05/14/22 19:21	1

Eurofins Carlsbad

Lab Sample ID: 890-2290-12

Matrix: Solid

2

5

7

9

11

13

Lab Sample ID: 890-2290-12

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-103

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 17:54	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 17:54	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 17:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	105		70 - 130			05/10/22 08:18	05/10/22 17:54	1
o-Terphenyl (Surr)	97		70 - 130			05/10/22 08:18	05/10/22 17:54	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7750	-	49.9	mg/Kg		·	05/12/22 14:30	10

Client Sample ID: BH-104 Lab Sample ID: 890-2290-13 Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 19:48	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 19:48	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 19:48	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/14/22 12:37	05/14/22 19:48	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/14/22 19:48	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/14/22 12:37	05/14/22 19:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			05/14/22 12:37	05/14/22 19:48	1
1,4-Difluorobenzene (Surr)	103		70 - 130			05/14/22 12:37	05/14/22 19:48	1
• '								
Method: Total BTEX - Total BT	TEX Calculation							
Method: Total BTEX - Total BT Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			RL	<mark>Unit</mark> mg/Kg	<u>D</u>	Prepared	Analyzed 05/16/22 16:56	Dil Fac
Analyte Total BTEX	<0.00398	U			<u>D</u>	Prepared		Dil Fac
	Result <0.00398	U			<u>D</u>	Prepared Prepared		Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran	Result <0.00398	O) (GC) Qualifier	0.00398	mg/Kg			05/16/22 16:56	1
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH	Result <0.00398 nge Organics (DR) Result <50.0	U O) (GC) Qualifier U	0.00398	mg/Kg			05/16/22 16:56 Analyzed	1
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	nge Organics (DR Result <50.0	U O) (GC) Qualifier U	0.00398	mg/Kg			05/16/22 16:56 Analyzed	1

Lab Sample ID: 890-2290-13

05/12/22 14:38

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-104

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 18:15	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 18:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	116		70 - 130			05/10/22 08:18	05/10/22 18:15	1
o-Terphenyl (Surr)	113		70 - 130			05/10/22 08:18	05/10/22 18:15	1
Method: 300.0 - Anions, Ion Chro	omatography -	Solublo						
Analyte	0 . ,	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-105 Lab Sample ID: 890-2290-14 Matrix: Solid

24.8

3010

mg/Kg

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:15	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:15	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		05/14/22 12:37	05/14/22 20:15	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:15	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		05/14/22 12:37	05/14/22 20:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			05/14/22 12:37	05/14/22 20:15	1
1,4-Difluorobenzene (Surr)	92		70 - 130			05/14/22 12:37	05/14/22 20:15	1
Method: Total BTEX - Total BTI	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/16/22 16:56	1
• -								
Method: 8015 NM - Diesel Rang	• •							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	176		49.9	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
00.040	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 20:02	1
C6-C10	·+0.0							•
Diesel Range Organics (Over	54.4		49.9	mg/Kg		05/10/22 08:18	05/10/22 20:02	1
			49.9	mg/Kg		05/10/22 08:18	05/10/22 20:02	1
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over			49.9 49.9	mg/Kg mg/Kg		05/10/22 08:18 05/10/22 08:18	05/10/22 20:02 05/10/22 20:02	1
Diesel Range Organics (Over C10-C28)	54.4							·
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	54.4	Qualifier					05/10/22 20:02 Analyzed	·
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	54.4 122	Qualifier	49.9			05/10/22 08:18	05/10/22 20:02	1

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-105

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

	Method: 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Į	Chloride	954		5.01	mg/Kg			05/12/22 15:03	1	

Client Sample ID: BH-106

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23 **REMOVED FROM ANALYSIS TABLE**

Result Qualifier

105

Lab Sample ID: 890-2290-15

Analyzed

05/10/22 18:37

Dil Fac

Lab Sample ID: 890-2290-14

Matrix: Solid

Sample Depth: 5

o-Terphenyl (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.400	U	0.400	mg/Kg		05/14/22 12:37	05/14/22 22:04	200
Toluene	<0.400	U	0.400	mg/Kg		05/14/22 12:37	05/14/22 22:04	200
Ethylbenzene	<0.400	U	0.400	mg/Kg		05/14/22 12:37	05/14/22 22:04	200
m-Xylene & p-Xylene	<0.800	U	0.800	mg/Kg		05/14/22 12:37	05/14/22 22:04	200
o-Xylene	<0.400	U	0.400	mg/Kg		05/14/22 12:37	05/14/22 22:04	200
Xylenes, Total	<0.800	U	0.800	mg/Kg		05/14/22 12:37	05/14/22 22:04	200
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130			05/14/22 12:37	05/14/22 22:04	200
1,4-Difluorobenzene (Surr)	94		70 - 130			05/14/22 12:37	05/14/22 22:04	200

Total BTEX	<0.800	U	0.800	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Range	organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	9690		249	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	412		249	mg/Kg		05/10/22 08:18	05/10/22 18:37	5

Unit

Prepared

05/10/22 08:18

000.0	· · · ·		5 5			
Diesel Range Organics (Over	7610	249	mg/Kg	05/10/22 08:18	05/10/22 18:37	5
C10-C28)						
Oll Range Organics (Over	1670	249	mg/Kg	05/10/22 08:18	05/10/22 18:37	5
C28-C36)						
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	110	70 - 130		05/10/22 08:18	05/10/22 18:37	5

Method: 300.0 - Anions, Ion Chrom	natography - S	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	736		24.9	mg/Kg			05/12/22 16:27	5

70 - 130

Lab Sample ID: 890-2290-16

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-107

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:42	
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:42	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:42	
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		05/14/22 12:37	05/14/22 20:42	
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 20:42	
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		05/14/22 12:37	05/14/22 20:42	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90		70 - 130			05/14/22 12:37	05/14/22 20:42	
1,4-Difluorobenzene (Surr)	98		70 - 130			05/14/22 12:37	05/14/22 20:42	
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			05/16/22 16:56	
Analyte Total TPH	Result	Qualifier	RL 50.0	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/11/22 10:27	Dil Fa
Total IPH	330		30.0	mg/Kg			03/11/22 10.27	
Method: 8015B NM - Diesel Ra	• •							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C10	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 19:41	
Diesel Range Organics (Over C10-C28)	169		50.0	mg/Kg		05/10/22 08:18	05/10/22 19:41	
Oll Range Organics (Over C28-C36)	169		50.0	mg/Kg		05/10/22 08:18	05/10/22 19:41	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	113		70 - 130			05/10/22 08:18	05/10/22 19:41	
o-Terphenyl (Surr)	99		70 - 130			05/10/22 08:18	05/10/22 19:41	
Method: 300.0 - Anions, Ion Ch								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	1530		24.9	mg/Kg	=		05/12/22 16:35	

Client Sample ID: BH-108
Date Collected: 05/06/22 00:00
Date Received: 05/06/22 15:23

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-2290-17

Matrix: Solid

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.398	U	0.398	mg/Kg		05/14/22 12:37	05/14/22 22:31	200
Toluene	<0.398	U	0.398	mg/Kg		05/14/22 12:37	05/14/22 22:31	200
Ethylbenzene	<0.398	U	0.398	mg/Kg		05/14/22 12:37	05/14/22 22:31	200
m-Xylene & p-Xylene	<0.795	U	0.795	mg/Kg		05/14/22 12:37	05/14/22 22:31	200
o-Xylene	<0.398	U	0.398	mg/Kg		05/14/22 12:37	05/14/22 22:31	200
Xylenes, Total	<0.795	U	0.795	mg/Kg		05/14/22 12:37	05/14/22 22:31	200
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			05/14/22 12:37	05/14/22 22:31	200

Eurofins Carlsbad

2

3

7

9

11

13

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-108

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23 Sample Depth: 5 REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2290-17

Matrix: Solid

olia

5

7

9

11

13

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98		70 - 130			05/14/22 12:37	05/14/22 22:31	200
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.795	U	0.795	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	8980		250	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<250	U	250	mg/Kg		05/10/22 08:18	05/10/22 18:58	5
Diesel Range Organics (Over C10-C28)	7670		250	mg/Kg		05/10/22 08:18	05/10/22 18:58	5
Oll Range Organics (Over	1310		250	mg/Kg		05/10/22 08:18	05/10/22 18:58	5
C28-C36)								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)			70 - 130			05/10/22 08:18	05/10/22 18:58	5
o-Terphenyl (Surr)	98		70 - 130			05/10/22 08:18	05/10/22 18:58	5
Method: 300.0 - Anions, Ion Chi	romatography -	Soluble						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1120		25.1	mg/Kg			05/12/22 16:44	5

Client Sample ID: BH-109

Date Collected: 05/06/22 00:00

Lab Sample ID: 890-2290-18

Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Total TPH

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 21:09	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 21:09	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 21:09	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		05/14/22 12:37	05/14/22 21:09	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 21:09	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		05/14/22 12:37	05/14/22 21:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130			05/14/22 12:37	05/14/22 21:09	1
1,4-Difluorobenzene (Surr)	105		70 - 130			05/14/22 12:37	05/14/22 21:09	1
- Method: Total BTEX - Total B1	TEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/16/22 16:56	1
- Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

05/11/22 10:27

49.9

mg/Kg

86.4

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-109

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 20:24	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 20:24	1
Oll Range Organics (Over C28-C36)	86.4		49.9	mg/Kg		05/10/22 08:18	05/10/22 20:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)			70 - 130			05/10/22 08:18	05/10/22 20:24	1
o-Terphenyl (Surr)	109		70 - 130			05/10/22 08:18	05/10/22 20:24	1
- Method: 300.0 - Anions, Ion C	hromatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	946		25.0	mg/Kg			05/12/22 15:14	5

Client Sample ID: BH-110

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-2290-19

Lab Sample ID: 890-2290-18

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.402	U	0.402	mg/Kg		05/14/22 12:37	05/14/22 22:58	200
Toluene	<0.402	U	0.402	mg/Kg		05/14/22 12:37	05/14/22 22:58	200
Ethylbenzene	<0.402	U	0.402	mg/Kg		05/14/22 12:37	05/14/22 22:58	200
m-Xylene & p-Xylene	<0.805	U	0.805	mg/Kg		05/14/22 12:37	05/14/22 22:58	200
o-Xylene	<0.402	U	0.402	mg/Kg		05/14/22 12:37	05/14/22 22:58	200
Xylenes, Total	<0.805	U	0.805	mg/Kg		05/14/22 12:37	05/14/22 22:58	200
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130			05/14/22 12:37	05/14/22 22:58	200
1,4-Difluorobenzene (Surr)	96		70 - 130			05/14/22 12:37	05/14/22 22:58	200
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.805	U	0.805	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Rang	ge Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1660		50.0	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
						Prepared	Analyzed	
Analyte		Qualifier	RL	Unit	D		· · · · · · · · · · · · · · · · · · ·	Dil Fac
Analyte				Unit mg/Kg	D	05/10/22 08:18	05/11/22 07:03	
Analyte C6-C10 Diesel Range Organics (Over	Result				<u>D</u>	05/10/22 08:18 05/10/22 08:18		
Analyte C6-C10	Result <50.0		50.0	mg/Kg	<u>D</u>		05/11/22 07:03	1
Analyte C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Result <50.0 1400	U	50.0 50.0	mg/Kg mg/Kg	<u>D</u>	05/10/22 08:18	05/11/22 07:03 05/11/22 07:03	·
Analyte C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 1400 263	U	50.0 50.0 50.0	mg/Kg mg/Kg	<u>D</u>	05/10/22 08:18 05/10/22 08:18	05/11/22 07:03 05/11/22 07:03 05/11/22 07:03	1 1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-110

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23 **REMOVED FROM ANALYSIS TABLE** Lab Sample ID: 890-2290-19

Matrix: Solid

Sample Depth: 5

Me	thod: 300.0 - Anions, Ion Chromat	ography -	Soluble						
Ana	alyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chl	oride	577		25.2	mg/Kg			05/12/22 16:52	5

Client Sample ID: BH-111 Lab Sample ID: 890-2290-20

Date Collected: 05/06/22 00:00 Matrix: Solid

Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 21:36	
Toluene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 21:36	
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 21:36	
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		05/14/22 12:37	05/14/22 21:36	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/14/22 21:36	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		05/14/22 12:37	05/14/22 21:36	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		70 - 130			05/14/22 12:37	05/14/22 21:36	1
1,4-Difluorobenzene (Surr)	100		70 - 130			05/14/22 12:37	05/14/22 21:36	1
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Ran	• • •							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	64.3		49.9	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<49.9		49.9	mg/Kg		05/10/22 08:18	05/10/22 20:45	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/10/22 08:18	05/10/22 20:45	1
Oll Range Organics (Over C28-C36)	64.3		49.9	mg/Kg		05/10/22 08:18	05/10/22 20:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	103		70 - 130			05/10/22 08:18	05/10/22 20:45	1
o-Terphenyl (Surr)	94		70 - 130			05/10/22 08:18	05/10/22 20:45	1
Method: 300.0 - Anions, Ion Cl	hromatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3640		25.1	mg/Kg			05/12/22 15:24	- 5

Eurofins Carlsbad

5/16/2022

Lab Sample ID: 890-2290-21

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-112

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/15/22 00:44	
Toluene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/15/22 00:44	
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/15/22 00:44	
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		05/14/22 12:37	05/15/22 00:44	
o-Xylene	<0.00202	U	0.00202	mg/Kg		05/14/22 12:37	05/15/22 00:44	
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		05/14/22 12:37	05/15/22 00:44	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	87		70 - 130			05/14/22 12:37	05/15/22 00:44	
1,4-Difluorobenzene (Surr)	92		70 - 130			05/14/22 12:37	05/15/22 00:44	
Method: Total BTEX - Total BTE	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403	mg/Kg			05/16/22 16:56	•
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	362		50.0	mg/Kg			05/11/22 10:27	•
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	362	*1	50.0	mg/Kg		05/09/22 16:33	05/10/22 19:05	•
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 19:05	,
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 19:05	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	116		70 - 130			05/09/22 16:33	05/10/22 19:05	
o-Terphenyl (Surr)	123		70 - 130			05/09/22 16:33	05/10/22 19:05	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	374		5.00	mg/Kg			05/12/22 13:00	1

Client Sample ID: BH-113

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/15/22 01:10	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/15/22 01:10	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/15/22 01:10	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/14/22 12:37	05/15/22 01:10	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		05/14/22 12:37	05/15/22 01:10	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/14/22 12:37	05/15/22 01:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			05/14/22 12:37	05/15/22 01:10	1
1,4-Difluorobenzene (Surr)	102		70 - 130			05/14/22 12:37	05/15/22 01:10	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2290-22

Lab Sample ID: 890-2290-22

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-113

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U *1	50.0	mg/Kg		05/09/22 16:33	05/10/22 19:27	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 19:27	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 19:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	101		70 - 130			05/09/22 16:33	05/10/22 19:27	1
o-Terphenyl (Surr)	108		70 - 130			05/09/22 16:33	05/10/22 19:27	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	942		4.97	mg/Kg			05/12/22 13:09	

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recover	,
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-2290-1	BH-92	98	103		
890-2290-2	BH-93	96	100		
890-2290-3	BH-94	99	102		
890-2290-4	BH-95	99	102		
890-2290-5	BH-96	107	102		
890-2290-6	BH-97	106	101		
890-2290-7	BH-98	103	100		
890-2290-8	BH-99	113	103		
890-2290-9	BH-100	109	99		
890-2290-10	BH-101	105	101		
890-2290-10 MS	BH-101	103	108		
890-2290-10 MSD	BH-101	87	96		
890-2290-11	BH-102	103	103		
890-2290-12	BH-103	108	104		
890-2290-13	BH-104	106	103		
390-2290-14	BH-105	105	92		
890-2290-15	BH-106	90	94		
890-2290-16	BH-107	90	98		
390-2290-17	BH-108	99	98		
890-2290-18	BH-109	110	105		
890-2290-19	BH-110	74	96		
890-2290-20	BH-111	100	100		
890-2290-21	BH-112	87	92		
890-2290-22	BH-113	107	102		
LCS 880-25563/1-A	Lab Control Sample	95	103		
LCS 880-25564/1-A	Lab Control Sample	101	100		
LCSD 880-25563/2-A	Lab Control Sample Dup	99	105		
LCSD 880-25564/2-A	Lab Control Sample Dup	96	107		
MB 880-25563/5-A	Method Blank	77	94		
MB 880-25564/5-A	Method Blank	77	92		

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Su
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-14554-A-1-C MS	Matrix Spike	109	108	
880-14554-A-1-D MSD	Matrix Spike Duplicate	94	94	
890-2290-1	BH-92	119	108	
890-2290-2	BH-93	122	113	
890-2290-3	BH-94	114	100	
890-2290-4	BH-95	104	93	
890-2290-5	BH-96	107	95	
890-2290-6	BH-97	108	99	
890-2290-7	BH-98	117	108	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2290-8	BH-99	107	96	
890-2290-9	BH-100	106	96	
890-2290-10	BH-101	105	103	
890-2290-10 MS	BH-101	107	92	
890-2290-10 MSD	BH-101	121	105	
890-2290-11	BH-102	124	118	
890-2290-12	BH-103	105	97	
890-2290-13	BH-104	116	113	
890-2290-14	BH-105	108	96	
890-2290-15	BH-106	110	105	
890-2290-16	BH-107	113	99	
890-2290-17	BH-108	100	98	
890-2290-18	BH-109	117	109	
890-2290-19	BH-110	111	106	
890-2290-20	BH-111	103	94	
890-2290-21	BH-112	116	123	
890-2290-22	BH-113	101	108	
LCS 880-25199/2-A	Lab Control Sample	123	124	
LCS 880-25221/2-A	Lab Control Sample	104	93	
LCSD 880-25199/3-A	Lab Control Sample Dup	129	132 S1+	
LCSD 880-25221/3-A	Lab Control Sample Dup	124	109	
MB 880-25199/1-A	Method Blank	99	103	
MB 880-25221/1-A	Method Blank	110	117	

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Released to Imaging: 9/1/2023 2:07:08 PM

_

5

7

9

11

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-25563/5-A

Matrix: Solid Analysis Batch: 25561 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25563

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 07:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 07:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 07:45	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/14/22 12:33	05/15/22 07:45	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:33	05/15/22 07:45	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/14/22 12:33	05/15/22 07:45	1

MB MB

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77	70 - 130	05/14/22 12:33	05/15/22 07:45	1
1,4-Difluorobenzene (Surr)	94	70 - 130	05/14/22 12:33	05/15/22 07:45	1

Lab Sample ID: LCS 880-25563/1-A

Matrix: Solid

Analysis Batch: 25561

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 25563

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1040		mg/Kg		104	70 - 130	
Toluene	0.100	0.09693		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.09485		mg/Kg		95	70 - 130	
m-Xylene & p-Xylene	0.200	0.1880		mg/Kg		94	70 - 130	
o-Xylene	0.100	0.09337		mg/Kg		93	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-25563/2-A

Matrix: Solid

Analysis Batch: 25561

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 25563

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1174	mg/Kg		117	70 - 130	12	35
Toluene	0.100	0.1064	mg/Kg		106	70 - 130	9	35
Ethylbenzene	0.100	0.1024	mg/Kg		102	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.2038	mg/Kg		102	70 - 130	8	35
o-Xylene	0.100	0.1007	mg/Kg		101	70 - 130	8	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1 4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: MB 880-25564/5-A

Matrix: Solid

Analysis Batch: 25561

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25564

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg	_	05/14/22 12:37	05/14/22 18:01	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 18:01	1

Eurofins Carlsbad

Page 25 of 55

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2290-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-25564/5-A **Matrix: Solid**

Analysis Batch: 25561

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25564

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/14/22 12:37	05/14/22 18:01	1

MB MB

MR MR

	Surrogate	%Recovery	Qualifier	Limits	Prepare	ed Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	77		70 - 130	05/14/22 1	2:37 05/14/22 18	:01 1
ı	1,4-Difluorobenzene (Surr)	92		70 - 130	05/14/22 1	2:37 05/14/22 18	:01 1

Lab Sample ID: LCS 880-25564/1-A Client Sample ID: Lab Control Sample **Matrix: Solid**

Analysis Batch: 25561

Prep Type: Total/NA Prep Batch: 25564

Spike LCS LCS %Rec Result Qualifier Analyte Added Unit %Rec Limits Benzene 0.100 0.1104 110 70 - 130 mg/Kg Toluene 0.100 0.1137 mg/Kg 114 70 - 130 Ethylbenzene 0.100 0.1151 mg/Kg 115 70 - 130 0.200 m-Xylene & p-Xylene 0.2290 70 - 130 mg/Kg 115 o-Xylene 0.100 0.1106 mg/Kg 111 70 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: LCSD 880-25564/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 25561

Prep Type: Total/NA Prep Batch: 25564

	Spike	LCSD LC	SD			%Rec		RPD
Analyte	Added	Result Qu	ıalifier Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1232	mg/Kg		123	70 - 130	11	35
Toluene	0.100	0.1126	mg/Kg		113	70 - 130	1	35
Ethylbenzene	0.100	0.1066	mg/Kg		107	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.2139	mg/Kg		107	70 - 130	7	35
o-Xylene	0.100	0.1122	mg/Kg		112	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene (Surr)	96	70 - 130
1,4-Difluorobenzene (Surr)	107	70 - 130

Lab Sample ID: 890-2290-10 MS Client Sample ID: BH-101

Matrix: Solid

Analysis Batch: 25561

Prep Type: Total/NA Prep Batch: 25564

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.1011		mg/Kg		100	70 - 130	
Toluene	<0.00199	U	0.101	0.09136		mg/Kg		91	70 - 130	
Ethylbenzene	<0.00199	U	0.101	0.08965		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.201	0.1797		mg/Kg		89	70 - 130	

Job ID: 890-2290-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2290-10 MS Client Sample ID: BH-101 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 25561 Prep Batch: 25564 Sample Sample Spike MS MS

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D <0.00199 U 0.101 0.08784 87 70 - 130 o-Xylene mg/Kg

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 103 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 108

Lab Sample ID: 890-2290-10 MSD

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 25561** Prep Batch: 25564

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.100	0.08471		mg/Kg		85	70 - 130	18	35
Toluene	<0.00199	U	0.100	0.08214		mg/Kg		82	70 - 130	11	35
Ethylbenzene	<0.00199	U	0.100	0.08185		mg/Kg		82	70 - 130	9	35
m-Xylene & p-Xylene	<0.00398	U	0.200	0.1660		mg/Kg		83	70 - 130	8	35
o-Xylene	<0.00199	U	0.100	0.07935		mg/Kg		79	70 - 130	10	35

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 87 70 - 130 1,4-Difluorobenzene (Surr) 96 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-25199/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 25231

MD MD

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 11:21	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 11:21	1
C10-C28)								
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 11:21	1

MB MB Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed 1-Chlorooctane (Surr) 70 - 130 05/09/22 16:33 05/10/22 11:21 99 o-Terphenyl (Surr) 103 70 - 130 05/09/22 16:33 05/10/22 11:21

Lab Sample ID: LCS 880-25199/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 25231 Prep Batch: 25199

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	1000	858.3		mg/Kg		86	70 - 130	
Diesel Range Organics (Over	1000	1226		mg/Kg		123	70 - 130	
C10-C28)								

LCS LCS %Recovery Surrogate Qualifier Limits 1-Chlorooctane (Surr) 70 - 130 123

Eurofins Carlsbad

Client Sample ID: BH-101

Prep Batch: 25199

Job ID: 890-2290-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-25199/2-A

Matrix: Solid

Analysis Batch: 25231

Prep Type: Total/NA

Prep Batch: 25199

LCS LCS Surrogate %Recovery Qualifier Limits o-Terphenyl (Surr) 124 70 - 130

Lab Sample ID: LCSD 880-25199/3-A

Matrix: Solid

Analysis Batch: 25231

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 25199

LCSD LCSD Spike %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit C6-C10 1000 1077 mg/Kg 108 70 - 130 23 20 Diesel Range Organics (Over 1000 1304 130 70 - 1306 20 mg/Kg

C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 129 70 - 130 1-Chlorooctane (Surr) o-Terphenyl (Surr) 132 S1+ 70 - 130

Lab Sample ID: 880-14554-A-1-C MS

Matrix: Solid

Analysis Batch: 25231

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 25199

Spike MS MS %Rec Sample Sample Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec C6-C10 <50.0 U *1 1000 1064 106 70 - 130 mg/Kg <50.0 U 1000 109 Diesel Range Organics (Over 1112 mg/Kg 70 - 130

C10-C28)

MS MS %Recovery Qualifier Limits Surrogate 1-Chlorooctane (Surr) 70 - 130 109 o-Terphenyl (Surr) 108 70 - 130

Lab Sample ID: 880-14554-A-1-D MSD

Matrix: Solid

Analysis Batch: 25231

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 25199

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit C6-C10 <50.0 U *1 998 90 20 899.1 mg/Kg 70 - 130 17 998 969.3 95 Diesel Range Organics (Over <50.0 U mg/Kg 70 - 13014 20 C10-C28)

MSD MSD

%Recovery Qualifier Limits Surrogate 1-Chlorooctane (Surr) 94 70 - 130 o-Terphenyl (Surr) 94 70 - 130

Lab Sample ID: MB 880-25221/1-A

Matrix: Solid Analysis Batch: 25235

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25221

MB MB

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac C6-C10 <50.0 U 50.0 mg/Kg 05/10/22 08:18 05/10/22 11:44 50.0 05/10/22 08:18 Diesel Range Organics (Over <50.0 U 05/10/22 11:44 mg/Kg C10-C28)

Job ID: 890-2290-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-25221/1-A

Matrix: Solid

Analysis Batch: 25235

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 25221

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/10/22 08:18	05/10/22 11:44	1

мв мв

MB MB

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane (Surr)	110	70 - 130
o-Terphenyl (Surr)	117	70 - 130

Prepared Analyzed Dil Fac 05/10/22 08:18 05/10/22 11:44 05/10/22 08:18 05/10/22 11:44

Client Sample ID: Lab Control Sample

Matrix: Solid

Lab Sample ID: LCS 880-25221/2-A

Analysis Batch: 25235

			Prep Batch: 25221
Spike	LCS LCS		%Rec
Added	Desuit Ouglifier	Unit	D % Poo Limito

Analyte Result C6-C10 1000 1043 104 70 - 130 Diesel Range Organics (Over 1000 993.9 mg/Kg 99 70 - 130

C10-C28)

	LCS LCS	
Surrogate	%Recovery Quali	fier Limits
1-Chlorooctane (Surr)	104	70 - 130
o-Terphenyl (Surr)	93	70 - 130

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 880-25221/3-A **Matrix: Solid**

Analysis Batch: 25235

Prep Type: Total/NA Prep Batch: 25221

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10	1000	1171		mg/Kg		117	70 - 130	12	20
Diesel Range Organics (Over C10-C28)	1000	1177		mg/Kg		118	70 - 130	17	20

LCSD	LCSD
n	0

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	124		70 - 130
o-Terphenyl (Surr)	109		70 - 130

Lab Sample ID: 890-2290-10 MS Client Sample ID: BH-101 M

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid				Prep Type: Total/NA
Analysis Batch: 25235				Prep Batch: 25221
	Sample Sample	Spike	MS MS	%Rec

Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits C6-C10 <49.9 U F1 F2 1000 1218 mg/Kg 119 70 - 130 1000 983.9 Diesel Range Organics (Over <49.9 U mg/Kg 70 - 130

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	107		70 - 130
o-Terphenyl (Surr)	92		70 - 130

Client Sample ID: BH-101

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

115

90 - 110

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: BH-92

Client Sample ID: BH-92

Prep Type: Soluble

RPD

RPD

Limit

20

Prep Type: Soluble

Prep Type: Total/NA

Client: Tetra Tech, Inc.

Job ID: 890-2290-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

_____ Lab Sample ID: 890-2290-10 MSD

Matrix: Solid Analysis Batch: 25235

Prep Batch: 25221 Sample Sample Spike MSD MSD RPD Result Qualifier RPD Limit Analyte Added Result Qualifier Unit %Rec Limits C6-C10 <49.9 U F1 F2 998 1540 F1 F2 mg/Kg 151 70 - 130 23 20 Diesel Range Organics (Over <49.9 U 998 1141 mg/Kg 114 70 - 130 15 20

C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	121		70 - 130
o-Terphenyl (Surr)	105		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-25289/1-A

Matrix: Solid

Analysis Batch: 25351

MB MB

4070 F1

 Analyte
 Result Chloride
 Qualifier RL VIII State
 Unit Minimal

Lab Sample ID: LCS 880-25289/2-A

Matrix: Solid

Analysis Batch: 25351

Spike LCS LCS %Rec Added Result Analyte Qualifier %Rec Limits Unit D Chloride 250 270.0 mg/Kg 108 90 - 110

Lab Sample ID: LCSD 880-25289/3-A

Matrix: Solid

Analysis Batch: 25351

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 269.9 mg/Kg 108

Lab Sample ID: 890-2290-1 MS

Matrix: Solid

Analysis Batch: 25351

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 4070 F1 2530 6956 F1 114 90 - 110 ma/Ka

Lab Sample ID: 890-2290-1 MSD

Matrix: Solid

Chloride

Analysis Batch: 25351

Sample Sample Spike MSD MSD %Rec

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

2530

6972 F1

mg/Kg

Eurofins Carlsbad

1

3

6

Q

9

11

Job ID: 890-2290-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2290-11 MS Client Sample ID: BH-102 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25351

	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	2550		1260	3909		mg/Kg		107	90 - 110		

Lab Sample ID: 890-2290-11 MSD Client Sample ID: BH-102 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25351

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2550		1260	3911		mg/Kg		107	90 - 110	0	20

Lab Sample ID: MB 880-25414/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25429

мв мв Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 05/12/22 11:56 mg/Kg

Lab Sample ID: LCS 880-25414/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25429

	Spil	e LCS	LCS			%Rec	
Analyte	Adde	d Result	Qualifier	Unit D	%Rec	Limits	
Chloride	25	0 245.3		mg/Kg	98	90 - 110	

Lab Sample ID: LCSD 880-25414/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25429

	Spike	LCGD	LUGD				/ortec		KFD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	245.1		mg/Kg		98	90 - 110	0	20	

Lab Sample ID: 880-14738-A-1-B MS Client Sample ID: Matrix Spike **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 25429

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	208		248	/38 3		ma/Ka			00 110	

Lab Sample ID: 880-14738-A-1-C MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25429

Analysis Baton. 20420											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	208		248	435.7		mg/Kg		92	90 - 110	1	20

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2290-1

SDG: Lea County NM

GC VOA

Analysis Batch: 25561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-1	BH-92	Total/NA	Solid	8021B	25563
890-2290-2	BH-93	Total/NA	Solid	8021B	25563
890-2290-3	BH-94	Total/NA	Solid	8021B	25563
890-2290-4	BH-95	Total/NA	Solid	8021B	25563
890-2290-5	BH-96	Total/NA	Solid	8021B	25563
890-2290-6	BH-97	Total/NA	Solid	8021B	25563
890-2290-7	BH-98	Total/NA	Solid	8021B	25563
890-2290-8	BH-99	Total/NA	Solid	8021B	25563
890-2290-9	BH-100	Total/NA	Solid	8021B	25563
890-2290-10	BH-101	Total/NA	Solid	8021B	25564
890-2290-11	BH-102	Total/NA	Solid	8021B	25564
890-2290-12	BH-103	Total/NA	Solid	8021B	25564
890-2290-13	BH-104	Total/NA	Solid	8021B	25564
890-2290-14	BH-105	Total/NA	Solid	8021B	25564
890-2290-15	BH-106	Total/NA	Solid	8021B	25564
890-2290-16	BH-107	Total/NA	Solid	8021B	25564
890-2290-17	BH-108	Total/NA	Solid	8021B	25564
890-2290-18	BH-109	Total/NA	Solid	8021B	25564
890-2290-19	BH-110	Total/NA	Solid	8021B	25564
890-2290-20	BH-111	Total/NA	Solid	8021B	25564
890-2290-21	BH-112	Total/NA	Solid	8021B	25564
890-2290-22	BH-113	Total/NA	Solid	8021B	25564
MB 880-25563/5-A	Method Blank	Total/NA	Solid	8021B	25563
MB 880-25564/5-A	Method Blank	Total/NA	Solid	8021B	25564
LCS 880-25563/1-A	Lab Control Sample	Total/NA	Solid	8021B	25563
LCS 880-25564/1-A	Lab Control Sample	Total/NA	Solid	8021B	25564
LCSD 880-25563/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25563
LCSD 880-25564/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25564
890-2290-10 MS	BH-101	Total/NA	Solid	8021B	25564
890-2290-10 MSD	BH-101	Total/NA	Solid	8021B	25564

Prep Batch: 25563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-1	BH-92	Total/NA	Solid	5035	
890-2290-2	BH-93	Total/NA	Solid	5035	
890-2290-3	BH-94	Total/NA	Solid	5035	
890-2290-4	BH-95	Total/NA	Solid	5035	
890-2290-5	BH-96	Total/NA	Solid	5035	
890-2290-6	BH-97	Total/NA	Solid	5035	
890-2290-7	BH-98	Total/NA	Solid	5035	
890-2290-8	BH-99	Total/NA	Solid	5035	
890-2290-9	BH-100	Total/NA	Solid	5035	
MB 880-25563/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-25563/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-25563/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Prep Batch: 25564

Lab Sample ID 890-2290-10	Client Sample ID BH-101	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
890-2290-11	BH-102	Total/NA	Solid	5035	
890-2290-12	BH-103	Total/NA	Solid	5035	

Eurofins Carlsbad

2

3

4

6

8

4.6

11

12

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA (Continued)

Prep Batch: 25564 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2290-13	BH-104	Total/NA	Solid	5035	
890-2290-14	BH-105	Total/NA	Solid	5035	
890-2290-15	BH-106	Total/NA	Solid	5035	
890-2290-16	BH-107	Total/NA	Solid	5035	
890-2290-17	BH-108	Total/NA	Solid	5035	
890-2290-18	BH-109	Total/NA	Solid	5035	
890-2290-19	BH-110	Total/NA	Solid	5035	
890-2290-20	BH-111	Total/NA	Solid	5035	
890-2290-21	BH-112	Total/NA	Solid	5035	
890-2290-22	BH-113	Total/NA	Solid	5035	
MB 880-25564/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-25564/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-25564/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2290-10 MS	BH-101	Total/NA	Solid	5035	
890-2290-10 MSD	BH-101	Total/NA	Solid	5035	

Analysis Batch: 25658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2290-1	BH-92	Total/NA	Solid	Total BTEX	
890-2290-2	BH-93	Total/NA	Solid	Total BTEX	
890-2290-3	BH-94	Total/NA	Solid	Total BTEX	
890-2290-4	BH-95	Total/NA	Solid	Total BTEX	
890-2290-5	BH-96	Total/NA	Solid	Total BTEX	
890-2290-6	BH-97	Total/NA	Solid	Total BTEX	
890-2290-7	BH-98	Total/NA	Solid	Total BTEX	
890-2290-8	BH-99	Total/NA	Solid	Total BTEX	
890-2290-9	BH-100	Total/NA	Solid	Total BTEX	
890-2290-10	BH-101	Total/NA	Solid	Total BTEX	
890-2290-11	BH-102	Total/NA	Solid	Total BTEX	
890-2290-12	BH-103	Total/NA	Solid	Total BTEX	
890-2290-13	BH-104	Total/NA	Solid	Total BTEX	
890-2290-14	BH-105	Total/NA	Solid	Total BTEX	
890-2290-15	BH-106	Total/NA	Solid	Total BTEX	
890-2290-16	BH-107	Total/NA	Solid	Total BTEX	
890-2290-17	BH-108	Total/NA	Solid	Total BTEX	
890-2290-18	BH-109	Total/NA	Solid	Total BTEX	
890-2290-19	BH-110	Total/NA	Solid	Total BTEX	
890-2290-20	BH-111	Total/NA	Solid	Total BTEX	
890-2290-21	BH-112	Total/NA	Solid	Total BTEX	
890-2290-22	BH-113	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 25199

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-21	BH-112	Total/NA	Solid	8015NM Prep	
890-2290-22	BH-113	Total/NA	Solid	8015NM Prep	
MB 880-25199/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-25199/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-25199/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14554-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 33 of 55

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA (Continued)

Prep Batch: 25199 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14554-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 25221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
390-2290-1	BH-92	Total/NA	Solid	8015NM Prep	
890-2290-2	BH-93	Total/NA	Solid	8015NM Prep	
890-2290-3	BH-94	Total/NA	Solid	8015NM Prep	
890-2290-4	BH-95	Total/NA	Solid	8015NM Prep	
890-2290-5	BH-96	Total/NA	Solid	8015NM Prep	
390-2290-6	BH-97	Total/NA	Solid	8015NM Prep	
890-2290-7	BH-98	Total/NA	Solid	8015NM Prep	
390-2290-8	BH-99	Total/NA	Solid	8015NM Prep	
890-2290-9	BH-100	Total/NA	Solid	8015NM Prep	
890-2290-10	BH-101	Total/NA	Solid	8015NM Prep	
390-2290-11	BH-102	Total/NA	Solid	8015NM Prep	
390-2290-12	BH-103	Total/NA	Solid	8015NM Prep	
390-2290-13	BH-104	Total/NA	Solid	8015NM Prep	
890-2290-14	BH-105	Total/NA	Solid	8015NM Prep	
390-2290-15	BH-106	Total/NA	Solid	8015NM Prep	
390-2290-16	BH-107	Total/NA	Solid	8015NM Prep	
390-2290-17	BH-108	Total/NA	Solid	8015NM Prep	
390-2290-18	BH-109	Total/NA	Solid	8015NM Prep	
390-2290-19	BH-110	Total/NA	Solid	8015NM Prep	
890-2290-20	BH-111	Total/NA	Solid	8015NM Prep	
MB 880-25221/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-25221/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-25221/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2290-10 MS	BH-101	Total/NA	Solid	8015NM Prep	
890-2290-10 MSD	BH-101	Total/NA	Solid	8015NM Prep	

Analysis Batch: 25231

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-21	BH-112	Total/NA	Solid	8015B NM	25199
890-2290-22	BH-113	Total/NA	Solid	8015B NM	25199
MB 880-25199/1-A	Method Blank	Total/NA	Solid	8015B NM	25199
LCS 880-25199/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	25199
LCSD 880-25199/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	25199
880-14554-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	25199
880-14554-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	25199

Analysis Batch: 25235

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-1	BH-92	Total/NA	Solid	8015B NM	25221
890-2290-2	BH-93	Total/NA	Solid	8015B NM	25221
890-2290-3	BH-94	Total/NA	Solid	8015B NM	25221
890-2290-4	BH-95	Total/NA	Solid	8015B NM	25221
890-2290-5	BH-96	Total/NA	Solid	8015B NM	25221
890-2290-6	BH-97	Total/NA	Solid	8015B NM	25221
890-2290-7	BH-98	Total/NA	Solid	8015B NM	25221
890-2290-8	BH-99	Total/NA	Solid	8015B NM	25221
890-2290-9	BH-100	Total/NA	Solid	8015B NM	25221

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 25235 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-10	BH-101	Total/NA	Solid	8015B NM	25221
890-2290-11	BH-102	Total/NA	Solid	8015B NM	25221
890-2290-12	BH-103	Total/NA	Solid	8015B NM	25221
890-2290-13	BH-104	Total/NA	Solid	8015B NM	25221
890-2290-14	BH-105	Total/NA	Solid	8015B NM	25221
890-2290-15	BH-106	Total/NA	Solid	8015B NM	25221
890-2290-16	BH-107	Total/NA	Solid	8015B NM	25221
890-2290-17	BH-108	Total/NA	Solid	8015B NM	25221
890-2290-18	BH-109	Total/NA	Solid	8015B NM	25221
890-2290-19	BH-110	Total/NA	Solid	8015B NM	25221
890-2290-20	BH-111	Total/NA	Solid	8015B NM	25221
MB 880-25221/1-A	Method Blank	Total/NA	Solid	8015B NM	25221
LCS 880-25221/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	25221
LCSD 880-25221/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	25221
890-2290-10 MS	BH-101	Total/NA	Solid	8015B NM	25221
890-2290-10 MSD	BH-101	Total/NA	Solid	8015B NM	25221

Analysis Batch: 25343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2290-1	BH-92	Total/NA	Solid	8015 NM	
890-2290-2	BH-93	Total/NA	Solid	8015 NM	
890-2290-3	BH-94	Total/NA	Solid	8015 NM	
890-2290-4	BH-95	Total/NA	Solid	8015 NM	
890-2290-5	BH-96	Total/NA	Solid	8015 NM	
890-2290-6	BH-97	Total/NA	Solid	8015 NM	
890-2290-7	BH-98	Total/NA	Solid	8015 NM	
890-2290-8	BH-99	Total/NA	Solid	8015 NM	
890-2290-9	BH-100	Total/NA	Solid	8015 NM	
890-2290-10	BH-101	Total/NA	Solid	8015 NM	
890-2290-11	BH-102	Total/NA	Solid	8015 NM	
890-2290-12	BH-103	Total/NA	Solid	8015 NM	
890-2290-13	BH-104	Total/NA	Solid	8015 NM	
890-2290-14	BH-105	Total/NA	Solid	8015 NM	
890-2290-15	BH-106	Total/NA	Solid	8015 NM	
890-2290-16	BH-107	Total/NA	Solid	8015 NM	
890-2290-17	BH-108	Total/NA	Solid	8015 NM	
890-2290-18	BH-109	Total/NA	Solid	8015 NM	
890-2290-19	BH-110	Total/NA	Solid	8015 NM	
890-2290-20	BH-111	Total/NA	Solid	8015 NM	
890-2290-21	BH-112	Total/NA	Solid	8015 NM	
890-2290-22	BH-113	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 25289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-1	BH-92	Soluble	Solid	DI Leach	
890-2290-2	BH-93	Soluble	Solid	DI Leach	
890-2290-3	BH-94	Soluble	Solid	DI Leach	
890-2290-4	BH-95	Soluble	Solid	DI Leach	
890-2290-5	BH-96	Soluble	Solid	DI Leach	

Eurofins Carlsbad

2

3

4

6

8

10

15

13

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

HPLC/IC (Continued)

Leach Batch: 25289 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-6	BH-97	Soluble	Solid	DI Leach	_
890-2290-7	BH-98	Soluble	Solid	DI Leach	
890-2290-8	BH-99	Soluble	Solid	DI Leach	
890-2290-9	BH-100	Soluble	Solid	DI Leach	
890-2290-10	BH-101	Soluble	Solid	DI Leach	
890-2290-11	BH-102	Soluble	Solid	DI Leach	
890-2290-12	BH-103	Soluble	Solid	DI Leach	
890-2290-13	BH-104	Soluble	Solid	DI Leach	
890-2290-14	BH-105	Soluble	Solid	DI Leach	
890-2290-15	BH-106	Soluble	Solid	DI Leach	
890-2290-16	BH-107	Soluble	Solid	DI Leach	
890-2290-17	BH-108	Soluble	Solid	DI Leach	
890-2290-18	BH-109	Soluble	Solid	DI Leach	
890-2290-19	BH-110	Soluble	Solid	DI Leach	
890-2290-20	BH-111	Soluble	Solid	DI Leach	
MB 880-25289/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-25289/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-25289/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2290-1 MS	BH-92	Soluble	Solid	DI Leach	
890-2290-1 MSD	BH-92	Soluble	Solid	DI Leach	
890-2290-11 MS	BH-102	Soluble	Solid	DI Leach	
890-2290-11 MSD	BH-102	Soluble	Solid	DI Leach	

Analysis Batch: 25351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-1	BH-92	Soluble	Solid	300.0	25289
890-2290-2	BH-93	Soluble	Solid	300.0	25289
890-2290-3	BH-94	Soluble	Solid	300.0	25289
890-2290-4	BH-95	Soluble	Solid	300.0	25289
890-2290-5	BH-96	Soluble	Solid	300.0	25289
890-2290-6	BH-97	Soluble	Solid	300.0	25289
890-2290-7	BH-98	Soluble	Solid	300.0	25289
890-2290-8	BH-99	Soluble	Solid	300.0	25289
890-2290-9	BH-100	Soluble	Solid	300.0	25289
890-2290-10	BH-101	Soluble	Solid	300.0	25289
890-2290-11	BH-102	Soluble	Solid	300.0	25289
890-2290-12	BH-103	Soluble	Solid	300.0	25289
890-2290-13	BH-104	Soluble	Solid	300.0	25289
890-2290-14	BH-105	Soluble	Solid	300.0	25289
890-2290-15	BH-106	Soluble	Solid	300.0	25289
890-2290-16	BH-107	Soluble	Solid	300.0	25289
890-2290-17	BH-108	Soluble	Solid	300.0	25289
890-2290-18	BH-109	Soluble	Solid	300.0	25289
890-2290-19	BH-110	Soluble	Solid	300.0	25289
890-2290-20	BH-111	Soluble	Solid	300.0	25289
MB 880-25289/1-A	Method Blank	Soluble	Solid	300.0	25289
LCS 880-25289/2-A	Lab Control Sample	Soluble	Solid	300.0	25289
LCSD 880-25289/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	25289
890-2290-1 MS	BH-92	Soluble	Solid	300.0	25289
890-2290-1 MSD	BH-92	Soluble	Solid	300.0	25289
890-2290-11 MS	BH-102	Soluble	Solid	300.0	25289

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

HPLC/IC (Continued)

Analysis Batch: 25351 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-11 MSD	BH-102	Soluble	Solid	300.0	25289

Leach Batch: 25414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-21	BH-112	Soluble	Solid	DI Leach	
890-2290-22	BH-113	Soluble	Solid	DI Leach	
MB 880-25414/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-25414/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-25414/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-14738-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-14738-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 25429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-21	BH-112	Soluble	Solid	300.0	25414
890-2290-22	BH-113	Soluble	Solid	300.0	25414
MB 880-25414/1-A	Method Blank	Soluble	Solid	300.0	25414
LCS 880-25414/2-A	Lab Control Sample	Soluble	Solid	300.0	25414
LCSD 880-25414/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	25414
880-14738-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	25414
880-14738-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	25414

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-92 Lab Sample ID: 890-2290-1 Date Collected: 05/06/22 00:00

Matrix: Solid

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 14:33	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 13:54	SM	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		10			25351	05/12/22 07:19	CH	XEN MID

Client Sample ID: BH-93 Lab Sample ID: 890-2290-2

Date Collected: 05/06/22 00:00 Matrix: Solid

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 15:01	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 16:05	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 07:44	CH	XEN MID

Client Sample ID: BH-94 Lab Sample ID: 890-2290-3 Date Collected: 05/06/22 00:00

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 15:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 14:16	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 07:52	CH	XEN MID

Client Sample ID: BH-95 Lab Sample ID: 890-2290-4 Date Collected: 05/06/22 00:00 **Matrix: Solid**

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 15:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID

Eurofins Carlsbad

Page 38 of 55

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-95

Lab Sample ID: 890-2290-4 Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 14:37	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		10			25351	05/12/22 08:00	CH	XEN MID

Client Sample ID: BH-96 Lab Sample ID: 890-2290-5

Date Collected: 05/06/22 00:00 **Matrix: Solid** Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 16:23	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 15:21	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 08:08	CH	XEN MID

Client Sample ID: BH-97 Lab Sample ID: 890-2290-6

Date Collected: 05/06/22 00:00 **Matrix: Solid** Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 16:50	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 14:59	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		10			25351	05/12/22 13:24	CH	XEN MID

Client Sample ID: BH-98 Lab Sample ID: 890-2290-7

Date Collected: 05/06/22 00:00 **Matrix: Solid** Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 17:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 15:43	SM	XEN MID

Client Sample ID: BH-98

Date Collected: 05/06/22 00:00

Date Received: 05/06/22 15:23

Job ID: 890-2290-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

SDG: Lea County NM

Lab Sample ID: 890-2290-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 13:33	CH	XEN MID

Client Sample ID: BH-99 Lab Sample ID: 890-2290-8

Date Collected: 05/06/22 00:00 **Matrix: Solid**

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 17:42	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 16:26	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 13:41	CH	XEN MID

Client Sample ID: BH-100 Lab Sample ID: 890-2290-9

Date Collected: 05/06/22 00:00 **Matrix: Solid** Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	25563	05/14/22 12:33	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 18:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 16:49	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		10			25351	05/12/22 13:49	CH	XEN MID

Client Sample ID: BH-101 Lab Sample ID: 890-2290-10

Date Collected: 05/06/22 00:00 **Matrix: Solid** Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 18:28	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 12:49	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 13:57	CH	XEN MID

Client: Tetra Tech, Inc. Job ID: 890-2290-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-102 Lab Sample ID: 890-2290-11

Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 18:55	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 17:32	SM	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 14:05	CH	XEN MID

Client Sample ID: BH-103 Lab Sample ID: 890-2290-12

Date Collected: 05/06/22 00:00 Matrix: Solid

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 19:21	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 17:54	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		10			25351	05/12/22 14:30	CH	XEN MID

Client Sample ID: BH-104 Lab Sample ID: 890-2290-13 Date Collected: 05/06/22 00:00 **Matrix: Solid**

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 19:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 18:15	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 14:38	CH	XEN MID

Client Sample ID: BH-105 Lab Sample ID: 890-2290-14

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 20:15	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID

Eurofins Carlsbad

Matrix: Solid

Page 41 of 55

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-105
Date Collected: 05/06/22 00:00

Lab Sample ID: 890-2290-14

Matrix: Solid

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 20:02	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		1			25351	05/12/22 15:03	CH	XEN MID

Client Sample ID: BH-106 Lab Sample ID: 890-2290-15

Date Collected: 05/06/22 00:00 Matrix: Solid
Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		200			25561	05/14/22 22:04	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		5			25235	05/10/22 18:37	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 16:27	CH	XEN MID

Client Sample ID: BH-107 Lab Sample ID: 890-2290-16

Date Collected: 05/06/22 00:00

Date Received: 05/06/22 15:23

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 20:42	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 19:41	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 16:35	CH	XEN MID

Client Sample ID: BH-108 Lab Sample ID: 890-2290-17

Date Collected: 05/06/22 00:00
Date Received: 05/06/22 15:23

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		200			25561	05/14/22 22:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		5	10.01 g	10 mL	25221 25235	05/10/22 08:18 05/10/22 18:58	DM SM	XEN MID XEN MID

Eurofins Carlsbad

Matrix: Solid

3

4

9

6

9

11

13

Job ID: 890-2290-1 SDG: Lea County NM

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Client Sample ID: BH-108

Lab Sample ID: 890-2290-17

Pate Collected: 05/05/23 00:00

Date Collected: 05/06/22 00:00 Matrix: Solid
Date Received: 05/06/22 15:23

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Soluble	Leach	DI Leach			4.98 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
l	Soluble	Analysis	300.0		5			25351	05/12/22 16:44	CH	XEN MID

Client Sample ID: BH-109 Lab Sample ID: 890-2290-18

Date Collected: 05/06/22 00:00 Matrix: Solid

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 21:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 20:24	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 15:14	CH	XEN MID

Client Sample ID: BH-110 Lab Sample ID: 890-2290-19

Date Collected: 05/06/22 00:00 Matrix: Solid
Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		200			25561	05/14/22 22:58	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/11/22 07:03	SM	XEN MID
Soluble	Leach	DI Leach			4.97 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 16:52	CH	XEN MID

Client Sample ID: BH-111 Lab Sample ID: 890-2290-20

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/14/22 21:36	MR	XEN MIC
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	25221	05/10/22 08:18	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25235	05/10/22 20:45	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	25289	05/10/22 17:06	SC	XEN MID
Soluble	Analysis	300.0		5			25351	05/12/22 15:24	CH	XEN MID

Eurofins Carlsbad

Matrix: Solid

2

3

_

6

0

9

12

A A

Job ID: 890-2290-1 SDG: Lea County NM

Client Sample ID: BH-112

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23 Lab Sample ID: 890-2290-21

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 00:44	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25199	05/09/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25231	05/10/22 19:05	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	25414	05/12/22 11:30	CH	XEN MID
Soluble	Analysis	300.0		1			25429	05/12/22 13:00	CH	XEN MID

Lab Sample ID: 890-2290-22

Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Client Sample ID: BH-113

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 01:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25658	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25343	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25199	05/09/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25231	05/10/22 19:27	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	25414	05/12/22 11:30	CH	XEN MID
Soluble	Analysis	300.0		1			25429	05/12/22 13:09	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Released to Imaging: 9/1/2023 2:07:08 PM

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report bu	it the laboratory is not certifi	ied by the governing authority. This list ma	av include analytes for
the agency does not of	• •	it the laboratory is not ocitin	led by the governing authority. This list his	ay include analytes for
0 ,	• •	Matrix	Analyte	ay include analytes for
the agency does not of	fer certification.	•	, , ,	ay include analytes for y

3

4

5

7

9

44

12

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2290-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

6

9

10

12

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2290-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2290-1	BH-92	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-2	BH-93	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-3	BH-94	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-4	BH-95	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-5	BH-96	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-6	BH-97	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-7	BH-98	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-8	BH-99	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-9	BH-100	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-10	BH-101	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-11	BH-102	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-12	BH-103	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-13	BH-104	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-14	BH-105	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-15	BH-106	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-16	BH-107	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-17	BH-108	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-18	BH-109	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-19	BH-110	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-20	BH-111	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-21	BH-112	Solid	05/06/22 00:00	05/06/22 15:23	5
890-2290-22	BH-113	Solid	05/06/22 00:00	05/06/22 15:23	5

2

3

4

6

9

11

TCLP Semi Volatiles	## CONTRINE Stempler Sepreture: Clair Gonzales Sepreture:		Relinquished by:		Relinquished by:	Fred Ma	Relinquished by:											(LAB USE)	LAB#		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
Project #: 212C-MD-02230 Sampler Signature: Ezequiel Moreno Signature: Ezequiel Moreno Sig	Site Manager: Clair Gonzales Site Manager: Clair Gonzales						.e.	BH-101 (5')	BH-100 (5')	BH-99 (5")	BH-98 (5")	BH-97 (5')	BH-96 (5')	BH-95 (5')	BH-94 (5')	ВН-93 (5')	BH-92 (5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Dusty McInturff - Permian Water Solutions	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.
Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Tel (432) 862-3946 Clair Gonzales	Clair Gonzales Clai		Received by:		Received by:	(100 /24	Received by:	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022		YEAR: 2020	SAMPLING		sampier signature:]	Project #:		Site Manager:	
# CONTAINERS #	# CONTAINERS # CONTAINERS # FILTERED (Y/N) # CONTAINERS FILTERED (Y/N) # CONTAINERS FILTERED (Y/N) # CONTAINERS FILTERED (Y/N) # CONTAINERS FILTERED (Y/N) # CONTAINERS # CONTAINERS FILTERED (Y/N) # CONTAINERS # CO																	WATI SOIL HCL HNO		1-		Ezequiel Moreno		212C-MD-02230		Clair Gonzales	901W Wall Street, Sie 100 Midland, Texas 79705 Tel (432) 882-4559 Fax (432) 682-3946
TPH TX1005 (Ext to C35) AB C S T TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TOTAL Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) NORM PLM (Asbestos) Chloride Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance	(C	me:			593	me:	×	×	×	×	×	×	×	×	×	×	# CON	RED (ERS (Y/N)		DB DB					
TCLP Semi Volatiles	TCLP Semi Volatiles	ircle) HAND DELIVE	11.8	12.9/	mple Temperature	ONLY	LAB USE									L		TPH TPH E	X100: 3015M 3270C Metals	5 (Ext I	to C35) - DRO - Ba Cd C	ORO -	e Hg				
	# PLM (Asbestos) PLM (Asbestos) PLM (Asbestos) X X X X X X X X X X X X X X X X X X X	FEDEX UPS	Special Report I	Rush Charges A	RUSH: Same I	N O I AND A	REMARKS:											TCLP RCI GC/M GC/M PCB's	Semi V S Vol. S Sem 8082	Volatile 8260E ni. Vol.	3 / 624	25			- 9		

1

3

4

5

ا و

10

12

	Relinquished by:		Relinquished by:	1	Relinquished by											(LAB USE)	LAB#		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
	Date: Time:		Date: Time:	New 516/12 1523	e: Time:	BH-111 (5')	BH-110 (5')	BH-109 (5')	BH-108 (5')	BH-107 (5')	BH-106 (5')	BH-105 (5')	BH-104 (5')	Вн-103 (5')	BH-102 (5')		SAMPLE IDENTIFICATION			y: Eurofins Xenco	Dusty McInturff - Permian Water Solutions	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.
OBIGINAL COBY	Received by:		Received by:	((14)	Received by:	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
סע	Date:		/ Date:	W 5.1	Date:	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL HNO ₃		MATRIX PRE		Ezequiel Moreno		212C-MD-02230		Clair Gonzales	901W Wall Street, Ste 100 Midland, Texas 79705 Te (432) 682-4559 Fax (432) 682-3946
	Time:		Time	@ る よ	Time:	×	×	×	×	×	×	×	×	×	×	ICE None # CON		PRESERVATIVE SO		oreno		2230			, Ste 100 79705 4559 -3946
(Cir			Sar			×	×	×	×	×	×	×	×	×	×	FILTE BTEX			EX 8260)B		<u> </u>	<u> </u>	L	
(Circle) HA			Sample Temperature	ONLY	LAB USE	×	×	×	×	×	×	×	×	×	×		015M		o C35) - DRO -	ORO -	MRO)		_		
HAND DELIVERED			peratur	7	USE		-			$\frac{1}{1}$			\vdash	L	L	PAH 8		Ag As	Ba Cd Ci	Pb Se	Hg		[(Circle	:
VERE			Φ		RE	F	H	+	-	F	\vdash	\vdash	-	\vdash	-	TCLP TCLP			Ba Cd C	r Pb S	e Hg			rie o	
-11-1	S				REMARKS:		L			F		F			F	TCLP RCI	Semi \	/olatile	s				;	ANALYSIS REQUEST	
FEDEX	pecial	ush CI	RUSH: Same Day	U	S:		Ι.		I						T	GC/M				0.5			_	SIS,	
UPS	Repo	harges	Sam	STANDARD				\pm	\vdash	╁						PCB's			8270C/6	25		_	_	REQUEST fv Metho	
Tracking #:	t Limi	Auth	e Day	Ź	Ì		F	-	\vdash	-	F	-	-	+	-	NORM PLM (os)					:	UES.	
ng #:	ts or 1	Rush Charges Authorized	24 hr			×	×	×	×	×	×	×	×	×	×	Chlori	de		TOC						
	Special Report Limits or TRRP Report	_	hr 48				\vdash	1	\pm	\pm	+	+	\pm	\pm	╁╴	Chlori		Sulfate ter Ch	TDS emistry (see at	tached I	ist)	<u> </u>	No.)	
	Repo		2			F	F	F	F	F	F	1	T	F	F	Anion	/Catio	n Balai	nce						
	, a		72 hr			L		1	1	上	#	士	1	士	#										
							1	1	1	1	1	1	1	1	1	1									

ORIGINAL COPY

2

3

5

8

10

12

-

	Relinquished by:		Relinquished by:	1 mil	Relinquished by:											(LAB USE)	LAB#		Comments:	Receiving Laboratory:		Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
	Date: Time:		Date: Time:		Date: Time:				SW-3/ (0-5)	004-30 (0-3)	SW/ 38 (0 5)	SW-35 (0-5')	SW-34 (0-5')	BH-113 (5')	BH-112 (5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Dusty McInturff - Permian Water Solutions		Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.
	Received by:		Received by:	(1)(1)	Received by:				5/6/2022	2020202	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	DATE	YEAR: 2020	SAMPLING		Ciginal Cigina Cigina Cigina Cigina Cigina Cigina Cigina Cigina Cigina Cigina Cigina Cigina Cigina Cig			Project #:		Site Manager:	
	Date:		Date:	OF 5.6	Date:							×	×	×	×	WATE SOIL HCL HNO ₃		MATRIX ME		Ezequiel Moreno			212C-MD-02230		Clair Gonzales	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
	Time:		Time:	97	Time:				1	\ ;	×	×	×	×	×	ICE None # CON		-		ono			30			e 100 705 39
			Sar			\dashv	+	+	٠	. 	×	×	×	×	×	BTEX			EX 8260	DB						
			Sample Temperature	9	- AR		\dashv	7	1,	× :	×	×	×	×	×				to C35)) - DRO -	ORO	- MR	0)		_		
			mperatu	ONLY	I AR USF		_	1	#	7	_			-	F	PAH 8	3270C		Ba Cd C					<u> </u>	<u>C</u>	
			ire				_	#	\downarrow	#				F	L	TCLP	Metal	Ag A	Ba Cd (Circle	
] [REMARKS:		\exists	\pm	\pm	_						TCLP		_	es					_	ANALYSIS REQUEST	
Obeciai Neboli Filmia or Tixixi Weboir	Specia	Rush Charges Authorized	RUSH: Same Day	ဟု	RKS:	\mathbb{H}		-	+	\dashv	\dashv		-	_	\vdash	RCI GC/M	S Vol.	8260	3 / 624						YSIS	
200	D .	Charg	Sa	STANDARD		П	耳	1	7	#		_	_			GC/MS			8270C/6	25	_			_,	ify I	
2	2	es Au	me Da	DAR				\pm	\pm	_	\exists			$^{\perp}$	上	NORM									QUE	
	dire o	thoriz				H	-1	\dashv	$-\frac{1}{1}$	×	×	×	×	×	×	PLM (tos)				_			hod TS	
2	T TRA	e Q	24 hr					\dashv	Ī	\exists				#	Ė	Chlori	de	Sulfat	_						Z	
2	Ö ZO B		48 hr			H	\vdash	+	+	+	-	_	\vdash	+	╁	_		n Bala	nemistry ince	(see a	ttach	ed li	ist)	—`	ٺ	
١	9		72					1	\dashv	1			F	F	+							_				ļ
			₹	•		H	$\mid \mid \mid$	\dashv	+	\dashv		-	+	\dagger	+	-	_	+-	-							
							\vdash	-	\dashv	+	-	_	+-	+	+-	Hold		-				_				I

Carlsbad, NM 88220 Phone: 575-988-3199 Fax. 575-988-3199

Eurofins Carlsbad

1089 N Canal St

Chain of Custody Record

eurofins |

Environment Testing America

BH-95 (890-2290-4) BH-94 (890-2290-3) BH-93 (890-2290-2) Project Name[.] Kaiser SWD BH-97 (890-2290-6) BH-92 (890-2290-1) Sample Identification - Client ID (Lab ID) BH-100 (890-2290-9) BH-99 (890-2290-8) BH-98 (890-2290-7) BH-96 (890-2290-5) 432-704-5440(Tel) Midland lote Since laboratory accreditations are subject to change Eurofins Environment Testing South Central LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the aboratory does not currently maintain accreditation in the State of Origin listed above for analysis/hests/matrix being analyzed the samples must be shipped back to the Eurofins Environment Testing South Central LLC laboratory or other instructions will be provided. Any changes to careditation status should be brought to Eurofins Environment Testing South Central LLC, attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Environment Testing South Central LLC. ΓX, 79701 tate, Zip: Shipping/Receiving ossible Hazard Identification 211 W Florida Ave eliverable Requested | | | | | | | | | | | | Other (specify) mpty Kit Relinquished by lient Information (Sub Contract Lab) linquished by linquished by linquished by: urofins Environment Testing South Centr Ž 3 Custody Seal No かららる Primary Deliverable Rank PO# Due Date Requested 5/12/2022 Date/Time Date/Time 88001057 TAT Requested (days): Sample Date roject# 5/6/22 5/6/22 5/6/22 5/6/22 5/6/22 5/6/22 5/6/22 5/6/22 5/6/22 Date Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Mountain Sample (C=comp, G=grab) Sample Preservation Code: Type Company Company Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid E-Mail Lab PM Kramer Jessica Jessica Kramer@et.eurofinsus com Field Filtered Sample (Yes or No) lime: NELAP - Texas Accreditations Required (See note) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Perform MS/MSD (Yes or No) Special Instructions/QC Requirements 8015MOD_NM/8015NM_S_Prep Full TPH Received by: × × × × × × × × Cooler Temperature(s) °C and Other Remarks × × × 8016MOD Calc × × × × Analysis Requested State of Origin: New Mexico Carrier Tracking No(s) Date/Time - N **Total Number of containers** 7 1910 A HCL
B. NAOH
C. TA Acetale
D. Nitric Acid
E. NaHSO4
F. MeOH
G. Amchlor
H. Ascorbic Acid J - DI Water K EDTA L EDA COC No 890-747 1 Preservation 890-2290-1 Page 1 of 3 Special Instructions/Note M Hexane
N None
O AsNaO2
P-NaZO4S
O NaZSO3
R NaZSO3
R NaZSO3
S H2SO4
T TSP Dodecahydrate
U Acetione
V MCAA
W--JH 4-5
Z offer (specify) Company Ver: 06/08/2021 Months

Eurofins Carlsbad

Chain of Custody Record

	_	:hain c	Chain of Custody Record	iod v R	ב ב	ž												💸 eurofins	Environment Testing
Carisbad NM 88220 Phone. 575-988-3199 Fax 575-988-3199						5												*******	America
Client Information (Sub Contract Lab)	Sampler			Lab PM Kramer	er Je	Jessica						Carrie	Carrier Tracking No(s)	ng No	(s)			COC No: 890-747 2	
	Phone			E-Mail Jessi	E-Mail Jessica Kramer@et eurofinsus co	amer(Øet ei	rofin	SO SU	3		State of Origin New Mexico	Mexic	8 3				Page: Page 2 of 3	
Company Eurofins Environment Testing South Centr					Accreditations Requ NELAP - Texas	itations P - T	reditations Required (See note)	ed (Se	note)		l							Job # 890-2290-1	
Address 1211 W Florida Ave	Due Date Requested 5/12/2022	o.							Analy	ysis	Req	Requested	ed					eservation Code	
City: Midland	TAT Requested (days):	ys):			1016. d	dilliculada			\dashv						\dashv			NaOH NaOH	
State Zip: TX 79701					lla marina qui marina	er senti est de de de de de de de de de de de de de											ry 1500	D Nitric Acid E NaHSO4	P Na2O4S Q Na2SO3
Phone 432-704-5440(Tel)	PO#:				No.	TPH												MeOH Amchlor	
Email	#OW				EDG I MADOUROUS Y	6.022.08.2.1											\$	Ice DI Water	Acetone MCAA
Project Name Kaiser SWD	Project #: 88001057				Symmetric son	4886048340											ainer		W pH 4-5 Z other (specify)
Site	#WOSS				975 2 17 17 17 17 17 17												f con	Other:	
		Sample	Sample Type (C=comp,	Matrix (W=water S=solid O=waste/oll,	eld Filtered : erform MS/M	15MOD_NM/8	15MOD_Calc										stal Number		
	\setminus	X	Preservation Code:	tion Code:	VINEUE S				100					6700	-4		X		
BH-101 (890-2290-10)	5/6/22	Mountain		Solid		×	×												
BH-102 (890-2290-11)	5/6/22	Mountain		Solid		×	×	_									-		
BH-103 (890-2290-12)	5/6/22	Mountain		Solid		×	×									-+	ا رفقتور		
BH-104 (890-2290-13)	5/6/22	Mountain		Solid		×	×										200		
BH-105 (890-2290-14)	5/6/22	Mountain		Solid		×	×										÷ (€		
BH-106 (890-2290-15)	5/6/22	Mountain		Solid		×	×	_									ا تقدو		
BH-107 (890-2290-16)	5/6/22	Mountain		Solid		×	×									-	144		
BH-108 (890-2290-17)	5/6/22	Mountain		Solid		×	×							\dashv		$\neg \dagger$	-		
BH-109 (890-2290-18)	5/6/22	Mountain		Solid		×	×									\dashv	, a,		
Note. Since laboratory accreditations are subject to change Eurofins Environment Testing South Central LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins Environment Testing South Central LLC.	Testing South Centra ve for analysis/tests/ tral LLC attention im	al LLC places of matrix being an mediately If a	the ownership on alyzed, the sail requested acceptable.	of method anal mples must be creditations are	yte & a shipped curren	ccredit d back t to dat	ation co to the E	mplian urofins	ce upoi Enviro gned C	out sunment	bconte Testine Custo	act lab J South dy atte	oratori Centr	es Th	is sam labora	ple shi atory o	pmen r other	is forwarded under chainstructions will be pro instructions will be pro offins Environment Testi	nain-of-custody If the wided Any changes to ing South Central LLC.
Possible Hazard Identification Unconfirmed					S	∏m _D	Sample Disposal (A fee	osal (A fe	may	∏be a	assessed if san Disposal By Lah	sed ii	sam	ples	□are	etain	be assessed if samples are retained longer than 1 month) — Disposal RV Lab — Archive For	month)
Deliverable Requested V Other (specify)	Primary Deliverable Rank. 2	ble Rank. 2	10		S	ecial	Special Instructions/QC Requirements	ctions	ΩC.	equi	eme	ıts			ı	- 1			
Empty Kit Relinquished by:		Date			Time		7	١		.	ĺ		Method of Shipment:	of Sh	ipmen	.			
Relinquished by Clay Cup 5.9.30	Date/Time Date/Time			Company		R R	Ricely by Received by	67		F	1			0 0	Date/Time	\$\bar{\pi}\$	101	28	Company
Relinquished by	Date/Time [.]			Company		Rece	Received by			ı			l	0	Date/Time:	ę.			Company
Custody Seals Intact: Custody Seal No						Coo	Cooler Temperature(s) °C	peratur	∋(s) °C	and O	and Other Remarks.	marks		-					
						ľ													

eurofins Environment Testing America

Ver: 06/08/2021

Chain of Custody Record

Eurofins Carlsbad		i																						
1089 N Canal St. Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199	0	hain o	of Cus	Chain of Custody Record	ecc	ă											٠, ٩	e C	🖒 eurofins		Envir Ameri	onmer ica	Environment Testing America	<u>~</u>
	Sampler			Lab PM Kramer		Jessica						Carrier Tracking No(s)	Trackir	g No(s	ŭ.			COC No:	0.0					
Shipping/Receiving	Phone			E-Mail Jessi	E-Mail Jessica Kramer@et.eurofinsus	amer@)et.eu	rofins	us com	3		State of Origin New Mexico	Origin					Page:	Page:				-	
Company Eurofins Environment Testing South Centr					Accreditatio	Accreditations Required (See not NELAP - Texas	ons Require	d (See			- [$oldsymbol{\bot}$	3 do #	Job #.					$oldsymbol{\perp}$
Address. 1211 W Florida Ave	Due Date Requested 5/12/2022	۵					ı		20		2		۱ ا		Ì	ı	\bot	Prese	Preservation Cod	Codes	"			\perp
City Midland	TAT Requested (days):	ys):				*******	_	┨.		- Jai	104	Veducated	- 5	\dashv	\dashv	7			HCL NaOH			Hexane None		
State Zip TX 79701					<u>Albabarah</u>												a nagara Meneralah	m D C Z Z Z	Zn Acetate Nitric Acid NaHSO4		O Asn O Na2 O Na2	AsNaO2 Na2O4S Na2SO3		
Phone 432-704-5440(Tel)	PO #				Selection Selection Section 1980	РН		••••									and be		MeOH Amchlor	<i>(</i> 0 –	R Na2	S203	Na2S2O3 H2SO4	
Email	WO#				organisa (managa	p Full											Sambara.		ASCORDIC ACID		Ace F	Acetone	ahydra	æ
Project Name Kaiser SWD	Project # 88001057				receivements	S_Pre							······································				ainers	L EDT	ΑŢ	N -		pH 4-5 other (specify)	₹	
Site	SSOW#:				POCTATED PROPERTY.	015NM											Barren delen	Other:						
		•	Sample Type	Matrix (W=water S=solid.	Filtered	MOD_NM/8	MOD_Calc						,				Number							
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	BT=Tissue, A=Air)	or resemble	8016	8016	1						1			Tota		Special Instructions/Note	al inst	ructic	N/smc	ote	
BH-110 (890-2290-19)	5/6/22	Mountain	i isosi i	Solid	3	×	×	-	S S	ledote ledote		- [-		-			· 🗴			W	1	1		1
BH-111 (890-2290-20)	5/6/22	Mountain		Solid		×	×		+				\dashv	+	1		4 1							
BH-112 (890-2290-21)	5/6/22	Mountain		Solid		×	×	+					-		\neg	1								
BH-113 (890-2290-22)	5/6/22	Mountain		Solid		×	×					_	+				/ 43 /							
SW-34 (890-2290-23)	5/6/22	Mountain		Solid		×	×																	
SW-35 (890-2290-24)	5/6/22	Mountain		Solid		×	×										æ/ j							
SW-36 (890-2290-25)	5/6/22	Mountain		Solid		×	×							\dashv			, 4 , .							
SW-37 (890-2290-26)	5/6/22	Mountain		Solid		×	×										إخدا							
Note Since laboratory accreditations are subject to change Eurofins Environment Testing South Central LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Environment Testing South Central LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central LLC.	Testing South Centra /e for analysis/tests/r ral LLC attention imr	II LLC places t natrix being ar nediately If al	he ownership alyzed the sa	of method ana mples must be creditations are	lyte & ac shipped current	creditat back to to date	ion con the Eu	pliance rofins t	upon Environ ned Ch	out sut ment T ain of C	contra esting Custod	ct labor South C	atories Central	This LLC II	sampl aborato	e ship ory or o	ment i other i Eurofi	s forwa nstructi ns Env	rded unc ons will t	der chair be provi	n-of-cu ded A	stody ny cha Centra	If the nges to	
Possible Hazard Identification Unconfirmed					Sa	Sample Disposal (A fe	le Disposal (A f Return To Client	sal (4 fee	may	∐e as	sess	dif	ämp	les a		aine	d lon	e may be assessed if samples are retained longer than 1 month	n 1 m	onth,			
II III IV Other (specify)	Primary Deliverable Rank. 2	ble Rank. 2			Sp	Special Instructions/QC	nstruc	tions/		Requirements	ment	ents.									Months	3		
Empty Kit Relinquished by		Date			Time	5			١			Z	Method of Shipment:	of Ship	ment:	٠								
Relinquished by W. Cap 5.9.20	Date/Time [.] Date/Time			Company		Receive			(T	\mathcal{M}				Dat Dat	Date/Tipes	K	H	3			Company	*		
Relinquished by	Date/Time			Company		Received by	ed by							Dat	Date/Time					\perp	Company	γį		
Custody Seals Intact						Cooler	Cooler Temperature(s) °C	rature(and Other Remarks	ar Rem	arks.		-		ı				-				

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2290-1

SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 2290 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

y 1777

3

Δ

6

8

10

12

10

14

<6mm (1/4").

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2290-1

SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 05/09/22 12:39 PM

List Number: 2 Creator: Teel, Brianna

Login Number: 2290

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2290-2

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

SKRAMER

Authorized for release by: 5/16/2022 4:19:36 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Links

results through

Review your project

TOTAL RECESSION

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 9/1/2023 2:07:08 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

6

<u>/</u>

10

12

13

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2290-2 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	24

2

3

4

5

0

9

11

12

Definitions/Glossary

Job ID: 890-2290-2 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

*1 LCS/LCSD RPD exceeds control limits.

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2290-2

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2290-2

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2290-2

Receipt

The samples were received on 5/6/2022 3:23 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 11.8°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-25199/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-25199 and analytical batch 880-25231 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

2

3

4

6

7

10

13

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: SW-34 Date Collected: 05/06/22 00:00

Date Received: 05/06/22 15:23 Sample Depth: 0 - 5

REMOVED FROM **ANALYSIS TABLE** Lab Sample ID: 890-2290-23

Matrix: Solid

Job ID: 890-2290-2

SDG: Lea County NM

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/15/22 01:36	1
Toluene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/15/22 01:36	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/15/22 01:36	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		05/14/22 12:37	05/15/22 01:36	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		05/14/22 12:37	05/15/22 01:36	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		05/14/22 12:37	05/15/22 01:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			05/14/22 12:37	05/15/22 01:36	1
1,4-Difluorobenzene (Surr)	98		70 - 130			05/14/22 12:37	05/15/22 01:36	1
Method: Total BTEX - Total BT	EX Calculation	Qualifier	70 ₋ 130 R L	Unit	D	05/14/22 12:37 Prepared	05/15/22 01:36 Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte	EX Calculation			Unit mg/Kg	<u>D</u>			Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX	EX Calculation Result <0.00402	U	RL		<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran	EX Calculation Result <0.00402 ge Organics (DR0	U	RL		<u>D</u>		Analyzed	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	EX Calculation Result <0.00402 ge Organics (DR0	U (GC)	RL 0.00402	mg/Kg		Prepared	Analyzed 05/16/22 16:56	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH	EX Calculation Result <0.00402 ge Organics (DRO Result 1520	O) (GC) Qualifier	RL 0.00402	mg/Kg		Prepared	Analyzed 05/16/22 16:56 Analyzed	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra	EX Calculation Result <0.00402 ge Organics (DRO Result 1520 unge Organics (DI	O) (GC) Qualifier	RL 0.00402	mg/Kg		Prepared	Analyzed 05/16/22 16:56 Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte C6-C10	EX Calculation Result <0.00402 ge Organics (DRO Result 1520 unge Organics (DI	O) (GC) Qualifier RO) (GC) Qualifier	RL 0.00402 RL 49.9	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 05/16/22 16:56 Analyzed 05/11/22 10:27	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane (Surr) 108 70 - 130 05/09/22 16:33 05/10/22 20:10 o-Terphenyl (Surr) 106 70 - 130 05/09/22 16:33 05/10/22 20:10 Method: 300.0 - Anions, Ion Chromatography - Soluble

RL

24.8

49.9

mg/Kg

Unit

mg/Kg

D

Chloride Client Sample ID: SW-35

Oll Range Organics (Over C28-C36)

C10-C28)

Analyte

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 0 - 5

REMOVED FROM ANALYSIS TABLE

Result Qualifier

1170

<49.9 U

Lab Sample ID: 890-2290-24

Analyzed

05/12/22 13:19

05/10/22 20:10

05/09/22 16:33

Prepared

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <0.00199 U 0.00199 05/14/22 12:37 05/15/22 02:02 Benzene mg/Kg Toluene <0.00199 U 0.00199 05/14/22 12:37 05/15/22 02:02 mg/Kg 0.00199 05/15/22 02:02 Ethylbenzene <0.00199 U mg/Kg 05/14/22 12:37 m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 05/14/22 12:37 05/15/22 02:02 o-Xylene <0.00199 U 0.00199 05/14/22 12:37 05/15/22 02:02 mg/Kg 0.00398 Xylenes, Total <0.00398 U mg/Kg 05/14/22 12:37 05/15/22 02:02 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 103 70 - 130 05/14/22 12:37 05/15/22 02:02 1,4-Difluorobenzene (Surr) 101 70 - 130 05/14/22 12:37 05/15/22 02:02

Eurofins Carlsbad

Dil Fac

Client Sample Results

Job ID: 890-2290-2 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-35

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23 Sample Depth: 0 - 5

Method: Total BTEX - Total BTEX Calculation

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2290-24

Matrix: Solid

Analyte Result Qualifier Unit Dil Fac RL D Prepared Analyzed Total BTEX <0.00398 U 0.00398 05/16/22 16:56 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH 49.9 mg/Kg 05/11/22 10:27 435 Method: 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL Unit D Prepared Analyzed Dil Fac C6-C10 <49.9 U *1 49.9 05/09/22 16:33 05/10/22 20:32 mg/Kg 05/09/22 16:33 05/10/22 20:32 **Diesel Range Organics (Over** 49.9 435 mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <49.9 U 49.9 mg/Kg 05/09/22 16:33 05/10/22 20:32 %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 05/09/22 16:33 70 - 130 1-Chlorooctane (Surr) 118 05/10/22 20:32 o-Terphenyl (Surr) 116 70 - 130 05/09/22 16:33 05/10/22 20:32 Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Dil Fac Analyte RL Unit D Prepared Analyzed

24.8

mg/Kg

Client Sample ID: SW-36

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 0 - 5

Chloride

REMOVED FROM ANALYSIS TABLE

1150

Lab Sample ID: 890-2290-25

05/12/22 13:46

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.100	U	0.100	mg/Kg		05/14/22 12:37	05/15/22 03:46	50
Toluene	<0.100	U	0.100	mg/Kg		05/14/22 12:37	05/15/22 03:46	50
Ethylbenzene	<0.100	U	0.100	mg/Kg		05/14/22 12:37	05/15/22 03:46	50
m-Xylene & p-Xylene	<0.201	U	0.201	mg/Kg		05/14/22 12:37	05/15/22 03:46	50
o-Xylene	<0.100	U	0.100	mg/Kg		05/14/22 12:37	05/15/22 03:46	50
Xylenes, Total	<0.201	U	0.201	mg/Kg		05/14/22 12:37	05/15/22 03:46	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			05/14/22 12:37	05/15/22 03:46	50
1,4-Difluorobenzene (Surr)	97		70 - 130			05/14/22 12:37	05/15/22 03:46	50
Method: Total BTEX - Total B1	ΓEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.201	U	0.201	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	4280		50.0	mg/Kg			05/11/22 10:27	1
Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			50.0	mg/Kg		05/09/22 16:33	05/10/22 19:48	

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-2 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-36

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23 Sample Depth: 0 - 5

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2290-25

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	4130		50.0	mg/Kg		05/09/22 16:33	05/10/22 19:48	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 19:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	124		70 - 130			05/09/22 16:33	05/10/22 19:48	1
o-Terphenyl (Surr)	126		70 - 130			05/09/22 16:33	05/10/22 19:48	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit Prepared Dil Fac D Analyzed 25.0 05/12/22 13:55 Chloride 1980 mg/Kg

Client Sample ID: SW-37

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

Sample Depth: 0 - 5

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2290-26

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0500	U	0.0500	mg/Kg		05/14/22 12:37	05/15/22 04:13	25
Toluene	<0.0500	U	0.0500	mg/Kg		05/14/22 12:37	05/15/22 04:13	25
Ethylbenzene	<0.0500	U	0.0500	mg/Kg		05/14/22 12:37	05/15/22 04:13	25
m-Xylene & p-Xylene	<0.100	U	0.100	mg/Kg		05/14/22 12:37	05/15/22 04:13	25
o-Xylene	<0.0500	U	0.0500	mg/Kg		05/14/22 12:37	05/15/22 04:13	25
Xylenes, Total	<0.100	U	0.100	mg/Kg		05/14/22 12:37	05/15/22 04:13	25
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			05/14/22 12:37	05/15/22 04:13	25
1,4-Difluorobenzene (Surr)	102		70 - 130			05/14/22 12:37	05/15/22 04:13	25
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.100	U	0.100	mg/Kg			05/16/22 16:56	1
Method: 8015 NM - Diesel Range		a) (aa)						
	e Organics (DR	O) (GC)						
Analyte	•	O) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
•	•	, ,	RL 50.0	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/11/22 10:27	Dil Fac
Analyte Total TPH	Result 346	Qualifier			<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Ran	Result 346 ge Organics (D	Qualifier			<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte	Result 346 ge Organics (D	Qualifier RO) (GC) Qualifier	50.0	mg/Kg			05/11/22 10:27	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte C6-C10 Diesel Range Organics (Over	Result 346 ge Organics (D Result	Qualifier RO) (GC) Qualifier	50.0	mg/Kg		Prepared	05/11/22 10:27 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte C6-C10 Diesel Range Organics (Over C10-C28)	Result 346 ge Organics (D Result <50.0	Qualifier RO) (GC) Qualifier U*1	50.0 RL 50.0	mg/Kg Unit mg/Kg		Prepared 05/09/22 16:33	05/11/22 10:27 Analyzed 05/10/22 20:53	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte C6-C10	Result Ge Organics (D Result <50.0 346	Qualifier RO) (GC) Qualifier U*1	50.0 RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/09/22 16:33 05/09/22 16:33	05/11/22 10:27 Analyzed 05/10/22 20:53 05/10/22 20:53	1
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 346 ge Organics (D Result <50.0 346 <50.0	Qualifier RO) (GC) Qualifier U*1	50.0 RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/09/22 16:33 05/09/22 16:33	05/11/22 10:27 Analyzed 05/10/22 20:53 05/10/22 20:53	Dil Fac

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2290-2 Project/Site: Kaiser SWD SDG: Lea County NM

RL

25.3

Unit

mg/Kg

D

Prepared

Client Sample ID: SW-37

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23 Sample Depth: 0 - 5

Analyte

Chloride

Method: 300.0 - Anions, Ion Chromatography - Soluble

REMOVED FROM ANALYSIS TABLE

Result Qualifier

1510

Lab Sample ID: 890-2290-26

Analyzed

05/12/22 14:05

Matrix: Solid

Dil Fac

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-2290-2 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Reco
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2290-23	SW-34	99	98	
890-2290-24	SW-35	103	101	
890-2290-25	SW-36	99	97	
890-2290-26	SW-37	102	102	
890-2290-A-10-E MS	Matrix Spike	103	108	
890-2290-A-10-F MSD	Matrix Spike Duplicate	87	96	
LCS 880-25564/1-A	Lab Control Sample	101	100	
LCSD 880-25564/2-A	Lab Control Sample Dup	96	107	
MB 880-25564/5-A	Method Blank	77	92	
Surrogate Legend				
BFB = 4-Bromofluorobenzen	e (Surr)			
DFBZ = 1,4-Difluorobenzene	(Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA **Matrix: Solid**

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
Sample ID	Client Sample ID	(70-130)	(70-130)	
-14554-A-1-C MS	Matrix Spike	109	108	
-14554-A-1-D MSD	Matrix Spike Duplicate	94	94	
-2290-23	SW-34	108	106	
-2290-24	SW-35	118	116	
-2290-25	SW-36	124	126	
-2290-26	SW-37	108	108	
880-25199/2-A	Lab Control Sample	123	124	
SD 880-25199/3-A	Lab Control Sample Dup	129	132 S1+	
880-25199/1-A	Method Blank	99	103	

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Client: Tetra Tech, Inc. Job ID: 890-2290-2 SDG: Lea County NM Project/Site: Kaiser SWD

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-25564/5-A

Matrix: Solid

Analysis Batch: 25561

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25564

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/14/22 12:37	05/14/22 18:01	1
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		05/14/22 12:37	05/14/22 18:01	1

MB MB

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77	70 - 130	05/14/22 12:37	05/14/22 18:01	1
1.4-Difluorobenzene (Surr)	92	70 - 130	05/14/22 12:37	05/14/22 18:01	1

Lab Sample ID: LCS 880-25564/1-A

Matrix: Solid

Analysis Batch: 25561

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 25564

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1104		mg/Kg		110	70 - 130	
Toluene	0.100	0.1137		mg/Kg		114	70 - 130	
Ethylbenzene	0.100	0.1151		mg/Kg		115	70 - 130	
m-Xylene & p-Xylene	0.200	0.2290		mg/Kg		115	70 - 130	
o-Xylene	0.100	0.1106		mg/Kg		111	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-25564/2-A

Matrix: Solid

Analysis Batch: 25561

	Client Sam	ple ID: Lab	Control Sam	ple Dup
--	------------	-------------	--------------------	---------

Prep Type: Total/NA

Prep Batch: 25564

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1232		mg/Kg		123	70 - 130	11	35
Toluene	0.100	0.1126		mg/Kg		113	70 - 130	1	35
Ethylbenzene	0.100	0.1066		mg/Kg		107	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.2139		mg/Kg		107	70 - 130	7	35
o-Xylene	0.100	0.1122		mg/Kg		112	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	96	70 - 130
1,4-Difluorobenzene (Surr)	107	70 - 130

Lab Sample ID: 890-2290-A-10-E MS

Matrix: Solid

Analysis Batch: 25561

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 25564

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.1011		mg/Kg		100	70 - 130	
Toluene	< 0.00199	U	0.101	0.09136		mg/Kg		91	70 - 130	

QC Sample Results

Job ID: 890-2290-2 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2290-A-10-E MS Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 25561

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00199	U	0.101	0.08965		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.201	0.1797		mg/Kg		89	70 - 130	
o-Xylene	< 0.00199	U	0.101	0.08784		mg/Kg		87	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	103	70 - 130
1,4-Difluorobenzene (Surr)	108	70 - 130

Lab Sample ID: 890-2290-A-10-F MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 25561

Prep Type: Total/NA

Prep Batch: 25564

Prep Batch: 25564

Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 0.100 Benzene <0.00199 U 0.08471 mg/Kg 85 70 - 130 18 35 Toluene <0.00199 U 0.100 82 70 - 130 0.08214 mg/Kg 11 35 Ethylbenzene <0.00199 U 0.100 0.08185 mg/Kg 82 70 - 130 9 35 <0.00398 U 0.200 0.1660 83 70 - 130 35 m-Xylene & p-Xylene mg/Kg 8 0.100 <0.00199 U 0.07935 79 70 - 130 o-Xylene mg/Kg 10

MSD MSD

Surrogate	%Recovery Qua	lifier Limits
4-Bromofluorobenzene (Surr)	87	70 - 130
1,4-Difluorobenzene (Surr)	96	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-25199/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 25199

Analysis Batch: 25231

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 11:21	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 11:21	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/09/22 16:33	05/10/22 11:21	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	99		70 - 130	05/09/22 16:33	05/10/22 11:21	1
o-Terphenyl (Surr)	103		70 - 130	05/09/22 16:33	05/10/22 11:21	1

Lab Sample ID: LCS 880-25199/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid Analysis Batch: 25231

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	1000	858.3		mg/Kg		86	70 - 130	
Diesel Range Organics (Over	1000	1226		mg/Kg		123	70 - 130	

C10-C28)

Eurofins Carlsbad

Prep Batch: 25199

Job ID: 890-2290-2 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 880-25199/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 25231

Prep Type: Total/NA

Prep Batch: 25199

Surrogate %Recovery Qualifier Limits 1-Chlorooctane (Surr) 123 70 - 130 o-Terphenyl (Surr) 124 70 - 130

Lab Sample ID: LCSD 880-25199/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 25231

Prep Type: Total/NA

Prep Batch: 25199

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit C6-C10 1000 1077 108 70 - 13023 20 mg/Kg Diesel Range Organics (Over 1000 1304 mg/Kg 130 70 - 130 20 C10-C28)

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctane (Surr) 129 70 - 130 o-Terphenyl (Surr) 132 S1+ 70 - 130

Lab Sample ID: 880-14554-A-1-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 25231

Prep Type: Total/NA

Prep Batch: 25199

MS MS %Rec Sample Sample Spike Qualifier Qualifier Added Analyte Result Result Unit D %Rec Limits C6-C10 U *1 1000 1064 106 70 - 130 <50.0 mg/Kg Diesel Range Organics (Over <50.0 U 1000 1112 mg/Kg 109 70 - 130 C10-C28)

MS MS

%Recovery Qualifier Surrogate Limits 1-Chlorooctane (Surr) 109 70 - 130 o-Terphenyl (Surr) 108 70 - 130

Lab Sample ID: 880-14554-A-1-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 25231

Prep Type: Total/NA Prep Batch: 25199

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit C6-C10 <50.0 U *1 90 70 - 130 998 899.1 mg/Kg 17 20 Diesel Range Organics (Over <50.0 U 998 969.3 mg/Kg 95 70 - 130 14 20

C10-C28)

MSD MSD %Recovery Surrogate Qualifier Limits 1-Chlorooctane (Surr) 94 70 - 130 94 o-Terphenyl (Surr) 70 - 130

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Method: 300.0 - Anions, Ion Chromatography

Job ID: 890-2290-2

SDG: Lea County NM

Lab Sample ID: MB 880-25414/1-A **Matrix: Solid**

Lab Sample ID: LCS 880-25414/2-A

Client Sample ID: Method Blank

Prep Type: Soluble

Analysis Batch: 25429

MB MB

Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 05/12/22 11:56

Client Sample ID: Lab Control Sample

Prep Type: Soluble

Matrix: Solid Analysis Batch: 25429

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 245.3 mg/Kg 98 90 - 110

Lab Sample ID: LCSD 880-25414/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Soluble

Analysis Batch: 25429

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 245.1 mg/Kg 90 - 110

Lab Sample ID: 880-14738-A-1-B MS Client Sample ID: Matrix Spike **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 25429

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Qualifier %Rec Result Unit Limits 438.3 Chloride 208 248 90 - 110 mg/Kg

Lab Sample ID: 880-14738-A-1-C MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25429

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 248 208 435.7 mg/Kg 92 90 - 110 20

QC Association Summary

Job ID: 890-2290-2 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA

Analysis Batch: 25561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-23	SW-34	Total/NA	Solid	8021B	25564
890-2290-24	SW-35	Total/NA	Solid	8021B	25564
890-2290-25	SW-36	Total/NA	Solid	8021B	25564
890-2290-26	SW-37	Total/NA	Solid	8021B	25564
MB 880-25564/5-A	Method Blank	Total/NA	Solid	8021B	25564
LCS 880-25564/1-A	Lab Control Sample	Total/NA	Solid	8021B	25564
LCSD 880-25564/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25564
890-2290-A-10-E MS	Matrix Spike	Total/NA	Solid	8021B	25564
890-2290-A-10-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	25564

Prep Batch: 25564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2290-23	SW-34	Total/NA	Solid	5035	
890-2290-24	SW-35	Total/NA	Solid	5035	
890-2290-25	SW-36	Total/NA	Solid	5035	
890-2290-26	SW-37	Total/NA	Solid	5035	
MB 880-25564/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-25564/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-25564/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2290-A-10-E MS	Matrix Spike	Total/NA	Solid	5035	
890-2290-A-10-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 25659

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-23	SW-34	Total/NA	Solid	Total BTEX	
890-2290-24	SW-35	Total/NA	Solid	Total BTEX	
890-2290-25	SW-36	Total/NA	Solid	Total BTEX	
890-2290-26	SW-37	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 25199

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-23	SW-34	Total/NA	Solid	8015NM Prep	
890-2290-24	SW-35	Total/NA	Solid	8015NM Prep	
890-2290-25	SW-36	Total/NA	Solid	8015NM Prep	
890-2290-26	SW-37	Total/NA	Solid	8015NM Prep	
MB 880-25199/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-25199/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-25199/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14554-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-14554-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 25231

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-23	SW-34	Total/NA	Solid	8015B NM	25199
890-2290-24	SW-35	Total/NA	Solid	8015B NM	25199
890-2290-25	SW-36	Total/NA	Solid	8015B NM	25199
890-2290-26	SW-37	Total/NA	Solid	8015B NM	25199
MB 880-25199/1-A	Method Blank	Total/NA	Solid	8015B NM	25199
LCS 880-25199/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	25199

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-2290-2

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 25231 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-25199/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	25199
880-14554-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	25199
880-14554-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	25199

Analysis Batch: 25344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-23	SW-34	Total/NA	Solid	8015 NM	
890-2290-24	SW-35	Total/NA	Solid	8015 NM	
890-2290-25	SW-36	Total/NA	Solid	8015 NM	
890-2290-26	SW-37	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 25414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-23	SW-34	Soluble	Solid	DI Leach	
890-2290-24	SW-35	Soluble	Solid	DI Leach	
890-2290-25	SW-36	Soluble	Solid	DI Leach	
890-2290-26	SW-37	Soluble	Solid	DI Leach	
MB 880-25414/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-25414/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-25414/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-14738-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-14738-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 25429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2290-23	SW-34	Soluble	Solid	300.0	25414
890-2290-24	SW-35	Soluble	Solid	300.0	25414
890-2290-25	SW-36	Soluble	Solid	300.0	25414
890-2290-26	SW-37	Soluble	Solid	300.0	25414
MB 880-25414/1-A	Method Blank	Soluble	Solid	300.0	25414
LCS 880-25414/2-A	Lab Control Sample	Soluble	Solid	300.0	25414
LCSD 880-25414/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	25414
880-14738-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	25414
880-14738-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	25414

Eurofins Carlsbad

2

3

E

0

10

12

13

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2290-2 SDG: Lea County NM

Client Sample ID: SW-34 Lab Sample ID: 890-2290-23

Date Collected: 05/06/22 00:00 **Matrix: Solid** Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		1			25561	05/15/22 01:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25659	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25344	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25199	05/09/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25231	05/10/22 20:10	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25414	05/12/22 11:30	CH	XEN MID
Soluble	Analysis	300.0		5			25429	05/12/22 13:19	CH	XEN MID

Lab Sample ID: 890-2290-24 Client Sample ID: SW-35 Date Collected: 05/06/22 00:00 **Matrix: Solid**

Date Received: 05/06/22 15:23

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 25564 Total/NA 5.02 g 05/14/22 12:37 MR XEN MID 5 mL Total/NA 8021B 25561 05/15/22 02:02 XEN MID Analysis 1 MR Total/NA Total BTEX 25659 05/16/22 16:56 XEN MID Analysis 1 SM Total/NA Analysis 8015 NM 25344 05/11/22 10:27 SM XEN MID Total/NA 25199 XEN MID Prep 8015NM Prep 10.03 g 05/09/22 16:33 DM 10 mL Total/NA Analysis 8015B NM 25231 05/10/22 20:32 SM XEN MID Soluble 25414 XEN MID Leach DI Leach 5.04 g 50 mL 05/12/22 11:30 CH Soluble Analysis 300.0 5 25429 05/12/22 13:46 CH XEN MID

Lab Sample ID: 890-2290-25 Client Sample ID: SW-36 Date Collected: 05/06/22 00:00 **Matrix: Solid**

Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		50			25561	05/15/22 03:46	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25659	05/16/22 16:56	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25344	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	25199	05/09/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25231	05/10/22 19:48	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	25414	05/12/22 11:30	СН	XEN MID
Soluble	Analysis	300.0		5			25429	05/12/22 13:55	CH	XEN MID

Client Sample ID: SW-37 Lab Sample ID: 890-2290-26 Date Collected: 05/06/22 00:00 **Matrix: Solid**

Date Received: 05/06/22 15:23

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	25564	05/14/22 12:37	MR	XEN MID
Total/NA	Analysis	8021B		25			25561	05/15/22 04:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25659	05/16/22 16:56	SM	XEN MID

Page 16 of 25

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 890-2290-2 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-37

Lab Sample ID: 890-2290-26

Matrix: Solid

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 15:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			25344	05/11/22 10:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25199	05/09/22 16:33	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25231	05/10/22 20:53	SM	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	25414	05/12/22 11:30	CH	XEN MID
Soluble	Analysis	300.0		5			25429	05/12/22 14:05	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2290-2

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
Texas	NE	ELAP	T104704400-21-22	06-30-22	
The following analytes	and the street and the state of the state of		and have the annual control of the Third Had an		
the agency does not of	• •	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for	
,	• •	it the laboratory is not certifi Matrix	led by the governing authority. This list ma	ay include analytes for	
the agency does not of	fer certification.	•	, , ,	ay include analytes for	

2

J

4

6

8

10

12

13

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2290-2

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

9

Л

5

7

10

13

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2290-2

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2290-23	SW-34	Solid	05/06/22 00:00	05/06/22 15:23	0 - 5
890-2290-24	SW-35	Solid	05/06/22 00:00	05/06/22 15:23	0 - 5
890-2290-25	SW-36	Solid	05/06/22 00:00	05/06/22 15:23	0 - 5
890-2290-26	SW-37	Solid	05/06/22 00:00	05/06/22 15:23	0 - 5

1

3

4

6

8

10

	Relinquished by:		Relinquished by:	The Man	Relinquished by:											(LAB USE)	LAB#		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
	Date: Time:		Date: Time:	5/6/22 1523	Ċ.	BH-101 (5')	BH-100 (5')	BH-99 (5")	BH-98 (5")	BH-97 (5')	BH-96 (5')	ВН-95 (5')	BH-94 (5')	BH-93 (5')	BH-92 (5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Dusty McInturff - Permian Water Solutions	Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.
	Received by:		Received by:	(100 /24	Received by:	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:]	Project #:		Site Manager:	
	Date:		Date:	1 5.6.39 1	Date:	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL HNO ₃	R	MATRIX PRESE		Ezequiel Moreno		212C-MD-02230		Clair Gonzales	901W Wall Street, Sie 100 Midland,Texas 79705 Tel (432) 862-4559 Fax (432) 682-3946
	Time:		Time:	ひる3	Time:											# CON				по		30			100 35 9
(Circle) HAND DELIVERED	11.8	12.0/	Sample Temperature	ONLY	П	×	×	×	×	×	×	×		×	×	TPH 8 PAH 8 Total N TCLP	X1005 015M 270C detais Metais	(Ext to (GRO Ag As Ag As	EX 8260 o C35) - DRO - Ba Cd Ci	ORO - Pb Se	Hg		890-2290 0		
FEDEX UPS .	Special Report L	Rush Charges Authorized	RUSH: Same Day		REMARKS:											RCI GC/M	Semi \ S Vol. S Semi 8082	/olatile 8260B		25		-	Chain of Custody		
Tracking #:	Special Report Limits or TRRP Report	uthorized	Day 24 hr 48 hr /2 hr		Š	×	×	×	×	×	×	×	×	×	×	PLM (Chlori Chlori Gene	Asbest de de S al Wa	Sulfate	emistry (see at	tached l	ist)	- +		
			2			\vdash	+	+	\top	1	1	T	+	1	T	1									

ORIGINAL COPY

2

3

5

8

10

ORIGINAL COPY

3

4

6

0

10

13

-

	Relinquished by:		Relinquished by:	1 miles	Relinquished by:										(LAB USE)	LAB#		Comments:		Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4	Analysis Request
	Date: Time:		Date: Time:	June 5/6/22 1524	Date: Time:			344-01 (0-0)	SW.37 (0.5')	SW-36 (0-5')	SW-35 (0-5')	SW-34 (0-5')	BH-113 (5')	BH-112 (5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Dusty McInturff - Permian Water Solutions		Lea County, New Mexico	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
	Received by:		Received by:	()(co (Received by:		-	CICIECE	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	5/6/2022	DATE	YEAR: 2020	SAMPLING			Sampler Signature:		Project #:		Site Manager:		
	Date: Time:		Date: Time:	JP 5.693	Date: Time:					×	×	×	×	×	WAT SOIL HCL HNO ICE None	3	MATRIX PRESERVATIVE		Ezequiel Moreno			212C-MD-02230		Clair Gonzales	901W Wall Street, Ste 100 Midland,Tcxas 79705 Tel (432) 862-459 Fax (432) 862-3946	
(Circle) HAND DELIVERED FEDEX UPS Tracking #:	Special Report Limits or TRRP Report	Rush Charges Authorized	Sample Temperature RUSH: Same Day 24 hr 48 nr	ONLY	LAB USE REMARK					×	×	×		×	BTEX TPH TPH PAH Total TCLP TCLP RCI GC/M GC/M PCB's NORI PLM Chlor Gene	8021 TX100 8015N 82700 Metals Metals Volat Semi IS Vol. IS Sems M (Asbe: ide ide cral W	(Y/N) B BT 55 (Ext to 1 (GRC) c Ag As as Ag As Ag As as Ag As as Ag As Ag As as Ag As Ag As as Ag Ag As as Ag As Ag As as Ag Ag As as Ag Ag Ag As Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag	Ba Cd C Ba Cd C Ba Cd C S 3 / 624 B270C/6	ORO Or Pb S Cr Pb	Se H	9	list)		ANALYSIS REQUEST (Circle or Specify Method No.)		T agg a
	port		7 /2 07	;											Hold											2

5/16/2022

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-2290-2

SDG Number: Lea County NM

Login Number: 2290 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2290-2

SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 05/09/22 12:39 PM

Login Number: 2290 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Euronnis Carisbau

Released to Imaging: 9/1/2023 2:07:08 PM

3

4

6

8

1 N

12

13

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2515-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 7/20/2022 7:58:20 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2515-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	6
Surrogate Summary	34
QC Sample Results	37
QC Association Summary	48
Lab Chronicle	56
Certification Summary	67
Method Summary	68
Sample Summary	69
Chain of Custody	70
Receipt Checklists	74

2

3

4

6

0

10

12

13

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

2

Qualifiers

GC	VOA
Qua	lifier

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

Qualifier Description

GC Semi VOA

Qualifier

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2515-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2515-1

Receipt

The samples were received on 7/8/2022 4:08 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-121 8 (890-2515-14), BH-122 8 (890-2515-15), BH-123 8 (890-2515-16), BH-124 8 (890-2515-17), BH-125 8 (890-2515-18), BH-126 8 (890-2515-19), BH-127 8 (890-2515-20), BH-128 8 (890-2515-21), BH-130 8 (890-2515-23), BH-131 8 (890-2515-24), BH-132 8 (890-2515-25), BH-133 8 (890-2515-26), BH-134 8 (890-2515-27), BH-136 8 (890-2515-29), BH-137 8 (890-2515-30), BH-138 8 (890-2515-31), BH-139 8 (890-2515-32), (CCV 880-29700/33) and (CCV 880-29700/51). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: SW35 0-6 (890-2515-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-114 10 (890-2515-7), BH-115 10 (890-2515-8), BH-116 10 (890-2515-9) and BH-117 10 (890-2515-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The following sample was diluted due to the nature of the sample matrix: BH-118 10 (890-2515-11). Elevated reporting limits (RLs) are provided.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH-118 10 (890-2515-11). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-29987 and analytical batch 880-30016 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH-117 10 (890-2515-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-29557 and analytical batch 880-29499 was outside control limits. Sample non-homogeneity is suspected.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-29563 and analytical batch 880-29603 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH-131 8 (890-2515-24). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

3

ė

_

7

8

1 N

12

13

| | 4

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2515-1 (Continued)

Laboratory: Eurofins Carlsbad (Continued)

3

5

7

9

4 4

12

10

Lab Sample ID: 890-2515-1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW34 0-6

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 12:56	1
Toluene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 12:56	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 12:56	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/14/22 09:52	07/15/22 12:56	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 12:56	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/14/22 09:52	07/15/22 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				07/14/22 09:52	07/15/22 12:56	1
1,4-Difluorobenzene (Surr)	104		70 - 130				07/14/22 09:52	07/15/22 12:56	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/15/22 08:13	1
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared		
				MDL	Oilit		riepaieu	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	WIDE	mg/Kg			07/13/22 09:51	
- -				MIDL					
Method: 8015B NM - Diesel Ran	ge Organics (D					<u></u>	Prepared		1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D	RO) (GC) Qualifier	49.9		mg/Kg		<u> </u>	07/13/22 09:51	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier U F2	49.9		mg/Kg		Prepared	07/13/22 09:51 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <49.9	RO) (GC) Qualifier U F2	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 07/12/22 14:24	07/13/22 09:51 Analyzed 07/12/22 20:46	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.9	RO) (GC) Qualifier U F2 U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/12/22 14:24 07/12/22 14:24	07/13/22 09:51 Analyzed 07/12/22 20:46 07/12/22 20:46	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9 <49.9	RO) (GC) Qualifier U F2 U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/12/22 14:24 07/12/22 14:24	07/13/22 09:51 Analyzed 07/12/22 20:46 07/12/22 20:46	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U F2 U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared	07/13/22 09:51 Analyzed 07/12/22 20:46 07/12/22 20:46 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 95 109	RO) (GC) Qualifier U F2 U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	07/13/22 09:51 Analyzed 07/12/22 20:46 07/12/22 20:46 Analyzed 07/12/22 20:46	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 95 109 omatography -	RO) (GC) Qualifier U F2 U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	07/13/22 09:51 Analyzed 07/12/22 20:46 07/12/22 20:46 Analyzed 07/12/22 20:46	Dil Fac

Client Sample ID: SW35 0-6

Released to Imaging: 9/1/2023 2:07:08 PM

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:52	07/15/22 13:17	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:52	07/15/22 13:17	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:52	07/15/22 13:17	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/14/22 09:52	07/15/22 13:17	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:52	07/15/22 13:17	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/14/22 09:52	07/15/22 13:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	160	S1+	70 - 130				07/14/22 09:52	07/15/22 13:17	1

Eurofins Carlsbad

Lab Sample ID: 890-2515-2

Matrix: Solid

2

4

6

Ö

10

12

13

Lab Sample ID: 890-2515-2

07/12/22 14:24 07/12/22 21:50

Lab Sample ID: 890-2515-3

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW35 0-6

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 0 - 6

Method: 8021B - Volatile Organic Compounds	(GC) (Continued)
--	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	96	70 - 130	07/14/22 09:52	07/15/22 13:17	1

ı	Mothodi	Total DTEV	- Total BTEX	Coloulation
ı	wethou.	TOTAL DIEV	- IUIAI DIEA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			07/15/22 08:13	1

Mothod: 8015 NM -	Diesal Pance	Organics (DRO) ((201

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			07/13/22 09:51	1

Method: 8015B NM - Diese	I Range Organics	(DRO)	(GC)
moundar of ros run Sido	tungo organioo	()	1/

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/12/22 21:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/12/22 21:50	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/12/22 21:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92	-	70 - 130				07/12/22 14:24	07/12/22 21:50	1

1-Chlorooctane	92	70 - 130
o-Terphenyl	106	70 - 130

Method: 300.0 - Anions, Ion Chrom	atography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result Qualifier	NL.	WIDE OTHE	 riepaieu	Allalyzeu	Dil Fac
Chloride	244	4.98	mg/Kg		07/14/22 04:18	1

Client Sample ID: SW36 0-6

Date Collected: 07/06/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 0 - 6

		/							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:52	07/15/22 17:36	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:52	07/15/22 17:36	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:52	07/15/22 17:36	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		07/14/22 09:52	07/15/22 17:36	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:52	07/15/22 17:36	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		07/14/22 09:52	07/15/22 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				07/14/22 09:52	07/15/22 17:36	1
1,4-Difluorobenzene (Surr)	107		70 - 130				07/14/22 09:52	07/15/22 17:36	1

Method: Tot	al RTFY -	Total RTFY	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403		ma/Ka			07/15/22 08:13	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			07/13/22 09:51	1

Eurofins Carlsbad

9

2

4

6

8

4.0

11

13

Lab Sample ID: 890-2515-3

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW36 0-6

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/12/22 22:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/12/22 22:11	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/12/22 22:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				07/12/22 14:24	07/12/22 22:11	1
o-Terphenyl	102		70 - 130				07/12/22 14:24	07/12/22 22:11	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SW37 0-6 Lab Sample ID: 890-2515-4 Date Collected: 07/06/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 16:25	1
Toluene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 16:25	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 16:25	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/14/22 09:52	07/15/22 16:25	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:52	07/15/22 16:25	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/14/22 09:52	07/15/22 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				07/14/22 09:52	07/15/22 16:25	1
1,4-Difluorobenzene (Surr)	107		70 - 130				07/14/22 09:52	07/15/22 16:25	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/15/22 08:13	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/12/22 22:33	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/12/22 22:33	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/12/22 22:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				07/12/22 14:24	07/12/22 22:33	1
o-Terphenyl	112		70 - 130				07/12/22 14:24	07/12/22 22:33	1

Lab Sample ID: 890-2515-4

Client: Tetra Tech, Inc.

Job ID: 890-2515-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW37 0-6

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 0 - 6

Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	21.7		4.99		mg/Kg			07/14/22 04:37	1	

Client Sample ID: BH-106 6

Lab Sample ID: 890-2515-5

Date Collected: 07/06/22 00:00

Matrix: Solid

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:18	
Toluene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:18	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:18	
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		07/14/22 09:52	07/15/22 18:18	
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:18	
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		07/14/22 09:52	07/15/22 18:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	114		70 - 130				07/14/22 09:52	07/15/22 18:18	
1,4-Difluorobenzene (Surr)	113		70 - 130				07/14/22 09:52	07/15/22 18:18	
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00396	U	0.00396		mg/Kg			07/15/22 08:13	
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			07/13/22 09:51	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/12/22 22:54	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/12/22 22:54	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/12/22 22:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	111		70 - 130				07/12/22 14:24	07/12/22 22:54	
o-Terphenyl	125		70 - 130				07/12/22 14:24	07/12/22 22:54	
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

5

3

4

J

7

9

11

Lab Sample ID: 890-2515-6

Client: Tetra Tech, Inc.

Job ID: 890-2515-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-108 6

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:38	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:38	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:38	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		07/14/22 09:52	07/15/22 18:38	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:52	07/15/22 18:38	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		07/14/22 09:52	07/15/22 18:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				07/14/22 09:52	07/15/22 18:38	1
1,4-Difluorobenzene (Surr)	107		70 - 130				07/14/22 09:52	07/15/22 18:38	1
Method: Total BTEX - Total BTE	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			07/15/22 08:13	1
Analyte Total TPH	<50.0	Qualifier U	RL 50.0	MDL	mg/Kg	<u>D</u>	Prepared	Analyzed 07/13/22 09:51	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Rang									
Analyte									
		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0		RL	MDL	mg/Kg	<u>D</u>	Prepared 07/12/22 14:24	Analyzed 07/12/22 23:16	Dil Fac
Gasoline Range Organics (GRO)-C6-C10		U		MDL		<u>D</u>	<u>.</u>		1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0	MDL	mg/Kg	<u>D</u>	07/12/22 14:24	07/12/22 23:16	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 <50.0	U U U	50.0	MDL	mg/Kg	<u> </u>	07/12/22 14:24	07/12/22 23:16 07/12/22 23:16	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	<50.0 <50.0 <50.0	U U U	50.0 50.0 50.0	MDL	mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24	07/12/22 23:16 07/12/22 23:16 07/12/22 23:16	1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 <50.0 <50.0 %Recovery	U U U	50.0 50.0 50.0 <i>Limits</i>	MDL	mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 <i>Prepared</i>	07/12/22 23:16 07/12/22 23:16 07/12/22 23:16 07/12/22 23:16 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 <50.0 %Recovery 89 103	U U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	07/12/22 23:16 07/12/22 23:16 07/12/22 23:16 07/12/22 23:16 Analyzed 07/12/22 23:16	1 1 1 Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 <50.0 <50.0 %Recovery 89 103 comatography -	U U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	07/12/22 23:16 07/12/22 23:16 07/12/22 23:16 07/12/22 23:16 Analyzed 07/12/22 23:16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: BH-114 10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0202	U	0.0202		mg/Kg		07/14/22 09:52	07/15/22 19:20	10
Toluene	<0.0202	U	0.0202		mg/Kg		07/14/22 09:52	07/15/22 19:20	10
Ethylbenzene	<0.0202	U	0.0202		mg/Kg		07/14/22 09:52	07/15/22 19:20	10
m-Xylene & p-Xylene	<0.0404	U	0.0404		mg/Kg		07/14/22 09:52	07/15/22 19:20	10
o-Xylene	<0.0202	U	0.0202		mg/Kg		07/14/22 09:52	07/15/22 19:20	10
Xylenes, Total	<0.0404	U	0.0404		mg/Kg		07/14/22 09:52	07/15/22 19:20	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130				07/14/22 09:52	07/15/22 19:20	10

Eurofins Carlsbad

Lab Sample ID: 890-2515-7

Matrix: Solid

Lab Sample ID: 890-2515-7

Lab Sample ID: 890-2515-8

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-114 10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 10

Method: 8021B -	Volatile Ord	anic Com	nounds (GC) ((Continued)	
Method. 002 1D	Volatile Oit	jaine com	poullus ($\circ\circ$	(Continueu)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	126	70 - 130	07/14/22 09:52	07/15/22 19:20	10

Method:	Total BTEX	- Total BTEX	Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0404 U	0.0404	mg/Kg			07/15/22 08:13	1

Method: 8015 NM - Diesel Range O	rganics (DRC	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	99.5		50.0		mg/Kg			07/13/22 09:51	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)	
Method. 0013D NM - Dieser Kange Organics (DICO)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 04:16	1
Diesel Range Organics (Over C10-C28)	99.5		50.0		mg/Kg		07/12/22 14:24	07/13/22 04:16	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 04:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	l Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130	07/12/22 14	:24 07/13/22 04:16	1
o-Terphenyl	105		70 - 130	07/12/22 14	:24 07/13/22 04:16	1

Method: 300.0 - Anions, Ion	Chromatography - Soluble
	D 11 0 110

Analyte		Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	266	5.00	mg/Kg			07/14/22 08:09	1

Client Sample ID: BH-115 10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 10

Mothod: 0001D	Valatile Or	aonio Comp	aunda (CC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0439		0.0201		mg/Kg		07/14/22 09:52	07/15/22 19:40	10
Toluene	<0.0201	U	0.0201		mg/Kg		07/14/22 09:52	07/15/22 19:40	10
Ethylbenzene	<0.0201	U	0.0201		mg/Kg		07/14/22 09:52	07/15/22 19:40	10
m-Xylene & p-Xylene	<0.0402	U	0.0402		mg/Kg		07/14/22 09:52	07/15/22 19:40	10
o-Xylene	<0.0201	U	0.0201		mg/Kg		07/14/22 09:52	07/15/22 19:40	10
Xylenes, Total	<0.0402	U	0.0402		mg/Kg		07/14/22 09:52	07/15/22 19:40	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	205	S1+	70 - 130				07/14/22 09:52	07/15/22 19:40	10
1.4-Difluorobenzene (Surr)	128		70 - 130				07/14/22 09:52	07/15/22 19:40	10

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	0.0439		0.0402		mg/Kg				07/15/22 08:13	1

Method: 8015 NM - Diesel	Range Organics	(DRO)	(GC)	١
Mictilioa. 00 10 Min - Diesei	Range Organics	(Divo)	(\mathbf{c})	ı.

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	86.1	49.9	mg/Kg			07/13/22 09:51	1

Eurofins Carlsbad

2

3

_

7

9

10

Lab Sample ID: 890-2515-8

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-115 10

Date Collected: 07/06/22 00:00

Date Collected: 07/06/22 00:00	Matrix: Solid
Date Received: 07/08/22 16:08	
Sample Depth: 10	
Method: 8015B NM - Diesel Range Organics (DRO) (GC)	

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/13/22 04:38	1
(GRO)-C6-C10									
Diesel Range Organics (Over	86.1		49.9		mg/Kg		07/12/22 14:24	07/13/22 04:38	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/13/22 04:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				07/12/22 14:24	07/13/22 04:38	1
o-Terphenyl	96		70 - 130				07/12/22 14:24	07/13/22 04:38	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	47.4		5.00		mg/Kg			07/14/22 08:18	

Client Sample ID: BH-116 10 Lab Sample ID: 890-2515-9 Date Collected: 07/06/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

Method: 8021B - Volatile Organic	Compounds ((CC)							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.0597		0.0202		mg/Kg		07/14/22 09:52	07/15/22 20:01	10
Toluene	<0.0202	U	0.0202		mg/Kg		07/14/22 09:52	07/15/22 20:01	10
Ethylbenzene	<0.0202	U	0.0202		mg/Kg		07/14/22 09:52	07/15/22 20:01	10
m-Xylene & p-Xylene	<0.0403	U	0.0403		mg/Kg		07/14/22 09:52	07/15/22 20:01	10
o-Xylene	<0.0202	U	0.0202		mg/Kg		07/14/22 09:52	07/15/22 20:01	10
Xylenes, Total	<0.0403	U	0.0403		mg/Kg		07/14/22 09:52	07/15/22 20:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	180	S1+	70 - 130				07/14/22 09:52	07/15/22 20:01	10
1,4-Difluorobenzene (Surr)	126		70 - 130				07/14/22 09:52	07/15/22 20:01	10
- Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0597	-	0.0403		mg/Kg			07/15/22 08:13	
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TDU	196		49.9		mg/Kg			07/13/22 09:51	1
Total TPH									
- -	ge Organics (D	RO) (GC)							
Iotal IPH - Method: 8015B NM - Diesel Rang Analyte		RO) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
 Method: 8015B NM - Diesel Rang		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 07/12/22 14:24	Analyzed 07/13/22 03:54	
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result	Qualifier		MDL		<u>D</u>			Dil Fac

Eurofins Carlsbad

Analyzed

07/13/22 03:54

07/13/22 03:54

Prepared

07/12/22 14:24

07/12/22 14:24

Limits

70 - 130

70 - 130

%Recovery Qualifier

113

125

Dil Fac

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2515-1

SDG: Lea County NM Lab Sample ID: 890-2515-9

Client Sample ID: BH-116 10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 10

Method: 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result Qu	ualifier RL	MDL Uni	. D	Prepared	Analyzed	Dil Fac		
Chloride	76.8	4.98	mg/	Kg —		07/14/22 08:28	1		

Client Sample ID: BH-117 10 Lab Sample ID: 890-2515-10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.0553		0.0199		mg/Kg		07/14/22 09:52	07/15/22 20:22	1
Toluene	<0.0199	U	0.0199		mg/Kg		07/14/22 09:52	07/15/22 20:22	1
Ethylbenzene	< 0.0199	U	0.0199		mg/Kg		07/14/22 09:52	07/15/22 20:22	10
m-Xylene & p-Xylene	<0.0398	U	0.0398		mg/Kg		07/14/22 09:52	07/15/22 20:22	10
o-Xylene	< 0.0199	U	0.0199		mg/Kg		07/14/22 09:52	07/15/22 20:22	10
Xylenes, Total	<0.0398	U	0.0398		mg/Kg		07/14/22 09:52	07/15/22 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	186	S1+	70 - 130				07/14/22 09:52	07/15/22 20:22	1
1,4-Difluorobenzene (Surr)	127		70 - 130				07/14/22 09:52	07/15/22 20:22	10
· Method: Total BTEX - Total BTI	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.0553		0.0398		mg/Kg			07/15/22 08:13	
Method: 8015 NM - Diesel Rand	ge Organics (DR	O) (GC)							
Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	743		50.0		mg/Kg			07/13/22 09:51	
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 02:50	
Diesel Range Organics (Over C10-C28)	644		50.0		mg/Kg		07/12/22 14:24	07/13/22 02:50	
Oll Range Organics (Over C28-C36)	98.9		50.0		mg/Kg		07/12/22 14:24	07/13/22 02:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	120		70 - 130				07/12/22 14:24	07/13/22 02:50	
o-Terphenyl	133	S1+	70 - 130				07/12/22 14:24	07/13/22 02:50	
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Allalyte					•	_		·	

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-118 10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Sample Depth: 10

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2515-11

Matrix: Solid

-

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.101	U	0.101		mg/Kg		07/18/22 15:14	07/19/22 16:21	50
Toluene	<0.101	U	0.101		mg/Kg		07/18/22 15:14	07/19/22 16:21	50
Ethylbenzene	<0.101	U	0.101		mg/Kg		07/18/22 15:14	07/19/22 16:21	50
m-Xylene & p-Xylene	<0.202	U	0.202		mg/Kg		07/18/22 15:14	07/19/22 16:21	50
o-Xylene	<0.101	U	0.101		mg/Kg		07/18/22 15:14	07/19/22 16:21	50
Xylenes, Total	<0.202	U	0.202		mg/Kg		07/18/22 15:14	07/19/22 16:21	50

Surrogate	%Recovery Qualif	ier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103	70 - 130	07/18/22 15:14	07/19/22 16:21	50
1,4-Difluorobenzene (Surr)	62 S1-	70 - 130	07/18/22 15:14	07/19/22 16:21	50

Method: Total BTEX - Total BTEX Ca	Iculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.202	U	0.202		mg/Kg			07/15/22 08:13	1
-									

Method: 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	4480		249		mg/Kg			07/13/22 09:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<249	U	249		mg/Kg		07/12/22 14:24	07/13/22 03:12	5
(GRO)-C6-C10									
Diesel Range Organics (Over	3970		249		mg/Kg		07/12/22 14:24	07/13/22 03:12	5
C10-C28)									
Oll Range Organics (Over	507		249		mg/Kg		07/12/22 14:24	07/13/22 03:12	5
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 130				07/12/22 14:24	07/13/22 03:12	

— Method: 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	187	4.95	mg/Kg			07/14/22 08:46	1		

70 - 130

Client Sample ID: BH-119 8

o-Terphenyl

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Sample Depth: 8

REMOVED FROM ANALYSIS TABLE

94

Lab Sample ID: 890-2515-12

Matrix: Solid

Mothod: 9024D	Volatile	Organia	Compounds	/CC

Method: 8021B - Volatile Organic Compounds (GC)									
Analyte	Result Qua	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	<0.00200 U	0.00200	mg/Kg		07/14/22 09:52	07/15/22 18:59	1		
Toluene	<0.00200 U	0.00200	mg/Kg		07/14/22 09:52	07/15/22 18:59	1		
Ethylbenzene	<0.00200 U	0.00200	mg/Kg		07/14/22 09:52	07/15/22 18:59	1		
m-Xylene & p-Xylene	<0.00400 U	0.00400	mg/Kg		07/14/22 09:52	07/15/22 18:59	1		
o-Xylene	<0.00200 U	0.00200	mg/Kg		07/14/22 09:52	07/15/22 18:59	1		
Xylenes, Total	<0.00400 U	0.00400	mg/Kg	l	07/14/22 09:52	07/15/22 18:59	1		

Job ID: 890-2515-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-119 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Sample Depth: 8

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2515-12

Matrix: Solid

Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 118 70 - 130 07/14/22 09:52 07/15/22 18:59 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 110 70 - 130 07/14/22 09:52 07/15/22 18:59

Method: Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Total BTEX <0.00400 U 0.00400 07/15/22 08:13 mg/Kg

Method: 8015 NM - Diesel Range Organics (DRO) (GC) RL MDL Unit D Prepared Analyzed Dil Fac **Total TPH** 5070 250 07/13/22 09:51 mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC) MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Gasoline Range Organics <250 U 250 07/12/22 14:24 07/13/22 03:33 mg/Kg (GRO)-C6-C10 4490 250 mg/Kg 07/12/22 14:24 07/13/22 03:33 5 **Diesel Range Organics (Over** C10-C28) **Oll Range Organics (Over 578** 250 mg/Kg 07/12/22 14:24 07/13/22 03:33 C28-C36)

Qualifier Limits Prepared Analyzed Dil Fac Surrogate %Recovery 07/12/22 14:24 1-Chlorooctane 97 70 - 130 07/13/22 03:33 o-Terphenyl 100 70 - 130 07/12/22 14:24 07/13/22 03:33 5

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 25.1 3960 07/14/22 09:14 mg/Kg

Client Sample ID: BH-120 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2515-13

Matrix: Solid

Method: 8021B - Volati	ile Organic	Compounds	(GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U F1 F2	0.00201		mg/Kg		07/14/22 09:57	07/15/22 01:35	1
Toluene	<0.00201	U F1 F2	0.00201		mg/Kg		07/14/22 09:57	07/15/22 01:35	1
Ethylbenzene	<0.00201	U F1 F2	0.00201		mg/Kg		07/14/22 09:57	07/15/22 01:35	1
m-Xylene & p-Xylene	<0.00402	U F1 F2	0.00402		mg/Kg		07/14/22 09:57	07/15/22 01:35	1
o-Xylene	<0.00201	U F1 F2	0.00201		mg/Kg		07/14/22 09:57	07/15/22 01:35	1
Xylenes, Total	<0.00402	U F1 F2	0.00402		mg/Kg		07/14/22 09:57	07/15/22 01:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				07/14/22 09:57	07/15/22 01:35	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/14/22 09:57	07/15/22 01:35	1

Method: Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00402 U 0.00402 07/15/22 08:13 mg/Kg

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-120 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Sample Depth: 8

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2515-13

Lab Sample ID: 890-2515-14

Matrix: Solid

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		07/12/22 14:24	07/12/22 23:37	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		07/12/22 14:24	07/12/22 23:37	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		07/12/22 14:24	07/12/22 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				07/12/22 14:24	07/12/22 23:37	1
o-Terphenyl	102		70 - 130				07/12/22 14:24	07/12/22 23:37	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1150		25.2		mg/Kg			07/14/22 09:23	5

Client Sample ID: BH-121 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 02:01	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 02:01	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 02:01	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/14/22 09:57	07/15/22 02:01	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 02:01	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/14/22 09:57	07/15/22 02:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130				07/14/22 09:57	07/15/22 02:01	1
1,4-Difluorobenzene (Surr)	80		70 - 130				07/14/22 09:57	07/15/22 02:01	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range	<0.00402 Organics (DR	U (GC)	0.00402		mg/Kg		<u> </u>	07/15/22 08:13	1
Total BTEX Method: 8015 NM - Diesel Range Analyte	<0.00402 Organics (DRO	U) (GC) Qualifier	0.00402		mg/Kg	<u>D</u>	Prepared Prepared	07/15/22 08:13 Analyzed	1
Total BTEX Method: 8015 NM - Diesel Range	<0.00402 Organics (DR) Result <49.9 ge Organics (DI)	O) (GC) Qualifier U	0.00402		mg/Kg Unit mg/Kg		<u> </u>	07/15/22 08:13	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	<0.00402 Organics (DR) Result <49.9 ge Organics (DI)	O) (GC) Qualifier U RO) (GC) Qualifier	0.00402 RL 49.9	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	07/15/22 08:13 Analyzed 07/13/22 09:51	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte	<0.00402 Organics (DR) Result <49.9 ge Organics (DI) Result	O) (GC) Qualifier U RO) (GC) Qualifier U	0.00402 RL 49.9	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	07/15/22 08:13 Analyzed 07/13/22 09:51 Analyzed	Dil Fac

Matrix: Solid

Lab Sample ID: 890-2515-14

Lab Sample ID: 890-2515-15

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-121 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	107	70 - 130	07/12/22 14:24	07/12/22 23:59	1
o-Terphenyl	118	70 - 130	07/12/22 14:24	07/12/22 23:59	1

 Method: 300.0 - Anions, Ion Chromatography - Soluble

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Chloride
 5280
 101
 mg/Kg
 07/14/22 18:25
 20

Client Sample ID: BH-122 8 Date Collected: 07/06/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 02:27	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 02:27	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 02:27	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/14/22 09:57	07/15/22 02:27	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 02:27	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/14/22 09:57	07/15/22 02:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	135	S1+	70 - 130				07/14/22 09:57	07/15/22 02:27	
1,4-Difluorobenzene (Surr)	76		70 - 130				07/14/22 09:57	07/15/22 02:27	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			07/15/22 08:13	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	II							
_	00.0	U	50.0		mg/Kg			07/13/22 09:51	1
- -			50.0		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Ranç Analyte	ge Organics (D		50.0 RL	MDL		D	Prepared	07/13/22 09:51 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		D_	Prepared 07/12/22 14:24		
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (Di Result <50.0	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	<u> </u>	07/12/22 14:24	Analyzed 07/13/22 00:20	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (Di Result <50.0	RO) (GC) Qualifier U	RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/12/22 14:24	Analyzed 07/13/22 00:20 07/13/22 00:20	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D) Result <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u> </u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24	Analyzed 07/13/22 00:20 07/13/22 00:20 07/13/22 00:20	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U		MDL	Unit mg/Kg mg/Kg	<u> </u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 <i>Prepared</i>	Analyzed 07/13/22 00:20 07/13/22 00:20 07/13/22 00:20 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <50.0 <50.0 <50.0 **Recovery** 108 119	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	Analyzed 07/13/22 00:20 07/13/22 00:20 07/13/22 00:20 Analyzed 07/13/22 00:20	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <50.0 <50.0 <50.0 **Recovery 108 119 Domatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	Analyzed 07/13/22 00:20 07/13/22 00:20 07/13/22 00:20 Analyzed 07/13/22 00:20	Dil Fac

Lab Sample ID: 890-2515-16

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-123 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/14/22 09:57	07/15/22 02:54	1
Toluene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:57	07/15/22 02:54	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:57	07/15/22 02:54	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/14/22 09:57	07/15/22 02:54	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		07/14/22 09:57	07/15/22 02:54	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/14/22 09:57	07/15/22 02:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	149	S1+	70 - 130				07/14/22 09:57	07/15/22 02:54	1
1,4-Difluorobenzene (Surr)	80		70 - 130				07/14/22 09:57	07/15/22 02:54	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/15/22 08:13	1
Analyte Total TPH	<49.9	Qualifier U	49.9		mg/Kg		Prepared	Analyzed 07/13/22 09:51	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Rang	na Ormanica (D								
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL	MDL	Unit mg/Kg	D	Prepared 07/12/22 14:24	Analyzed 07/13/22 00:41	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U		MDL		<u>D</u>	<u>.</u>		
Analyte Gasoline Range Organics	Result <49.9	Qualifier U	49.9	MDL	mg/Kg	<u>D</u>	07/12/22 14:24	07/13/22 00:41	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9	Qualifier U U U	49.9	MDL	mg/Kg	<u>D</u>	07/12/22 14:24	07/13/22 00:41 07/13/22 00:41	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	Result <49.9 <49.9 <49.9	Qualifier U U U	49.9 49.9 49.9	MDL	mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24	07/13/22 00:41 07/13/22 00:41 07/13/22 00:41	1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U U U	49.9 49.9 49.9 <i>Limits</i>	MDL	mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 <i>Prepared</i>	07/13/22 00:41 07/13/22 00:41 07/13/22 00:41 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	07/13/22 00:41 07/13/22 00:41 07/13/22 00:41 Analyzed 07/13/22 00:41	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/12/22 14:24 07/12/22 14:24 07/12/22 14:24 Prepared 07/12/22 14:24	07/13/22 00:41 07/13/22 00:41 07/13/22 00:41 Analyzed 07/13/22 00:41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: BH-124 8 Date Collected: 07/06/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-2515-17

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 03:20	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 03:20	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 03:20	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		07/14/22 09:57	07/15/22 03:20	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 03:20	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		07/14/22 09:57	07/15/22 03:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	145	S1+	70 - 130				07/14/22 09:57	07/15/22 03:20	1

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-124 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-2515-17

Lab Sample ID: 890-2515-18

Matrix: Solid

Matrix: Solid

Sample Depth: 8

Method: 8021B - Volatile Organic Compounds	(GC)	(Continued)	
Michiga, 002 ID - Volatile Organic Compounds	100	(Continued)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	74	70 - 130	07/14/22 09:57	07/15/22 03:20	1

Markle and a	Takel	DTEV	T-4-1	DTEV	0-11-4
wetnoa:	iotai	BIEX -	rotai	BIEX	Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00397	U	0.00397	mg/Kg			07/15/22 08:13	1

Method: 8015 NM - Diesel Rang	ge Organics (DRO) (GC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			07/13/22 09:51	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 01:24	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 01:24	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 01:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130	07	7/12/22 14:24	07/13/22 01:24	1
o-Terphenyl	107		70 - 130	07	7/12/22 14:24	07/13/22 01:24	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	106		4.96		mg/Kg			07/14/22 18:52	1

Client Sample ID: BH-125 8

Date Collected: 07/06/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8021B -	. Volatila	Organic (Compounds	(GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 03:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 03:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 03:46	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/14/22 09:57	07/15/22 03:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 03:46	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/14/22 09:57	07/15/22 03:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	147	S1+	70 - 130				07/14/22 09:57	07/15/22 03:46	1
1,4-Difluorobenzene (Surr)	74		70 - 130				07/14/22 09:57	07/15/22 03:46	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/15/22 08:13	1

	Method: 8015 NM - Diesel	Range Organics (DRO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organics (Dito	, (00)

Analyte	•	Result	Qualifier	RL	MDL	Unit	ļ	D	Prepared	Analyzed	Dil Fac
Total TPH		<50.0	U	50.0		mg/Kg				07/13/22 09:51	1

Eurofins Carlsbad

2

А

5

7

9

4 4

12

13

Н

...

Lab Sample ID: 890-2515-18

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-125 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 01:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 01:46	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 01:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				07/12/22 14:24	07/13/22 01:46	1
o-Terphenyl	98		70 - 130				07/12/22 14:24	07/13/22 01:46	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-126 8 Lab Sample ID: 890-2515-19 Date Collected: 07/07/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 04:13	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 04:13	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 04:13	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 04:13	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 04:13	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 04:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	147	S1+	70 - 130				07/14/22 09:57	07/15/22 04:13	1
1,4-Difluorobenzene (Surr)	76		70 - 130				07/14/22 09:57	07/15/22 04:13	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			07/15/22 08:13	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 02:07	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 02:07	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 14:24	07/13/22 02:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				07/12/22 14:24	07/13/22 02:07	1
o-Terphenyl	115		70 ₋ 130				07/12/22 14:24	07/13/22 02:07	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2515-1 SDG: Lea County NM

Client Sample ID: BH-126 8 Lab Sample ID: 890-2515-19 Date Collected: 07/07/22 00:00

Matrix: Solid

Sample Depth: 8

Date Received: 07/08/22 16:08

Method: 300.0 - Anions, Ion Chro	matography - Sol	luble						
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4170	100		mg/Kg			07/14/22 19:11	20

Client Sample ID: BH-127 8 Lab Sample ID: 890-2515-20

Date Collected: 07/07/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 04:39	
Toluene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 04:39	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 04:39	
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/14/22 09:57	07/15/22 04:39	
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 04:39	
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/14/22 09:57	07/15/22 04:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130				07/14/22 09:57	07/15/22 04:39	
1,4-Difluorobenzene (Surr)	77		70 - 130				07/14/22 09:57	07/15/22 04:39	
· Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00404	U	0.00404		mg/Kg			07/15/22 08:13	
Method: 8015 NM - Diesel Range	Organics (DR)	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			07/13/22 09:51	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/13/22 02:29	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/13/22 02:29	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 14:24	07/13/22 02:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	93		70 - 130				07/12/22 14:24	07/13/22 02:29	
o-Terphenyl	106		70 - 130				07/12/22 14:24	07/13/22 02:29	
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	472		25.0	_	mg/Kg	_		07/14/22 19:20	

Lab Sample ID: 890-2515-21

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-128 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 05:05	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 05:05	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 05:05	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		07/14/22 09:57	07/15/22 05:05	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 05:05	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		07/14/22 09:57	07/15/22 05:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	147	S1+	70 - 130				07/14/22 09:57	07/15/22 05:05	1
1,4-Difluorobenzene (Surr)	72		70 - 130				07/14/22 09:57	07/15/22 05:05	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			07/15/22 08:13	1
Analyte Total TPH		Qualifier	RL	MDL	UIIIL	D	Prepared	Analyzed	Dil Fac
Total TPH									
-	~49.9	U	49.9		mg/Kg			07/13/22 09:51	
: Method: 8015B NM - Diesel Ran			49.9		mg/Kg				1
Method: 8015B NM - Diesel Ran Analyte	ge Organics (D		49.9	MDL		D	Prepared		
	ge Organics (D	RO) (GC)		MDL		<u>D</u>	Prepared 07/12/22 15:30	07/13/22 09:51	1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D	RO) (GC) Qualifier U F1	RL	MDL	Unit	<u>D</u>		07/13/22 09:51 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <49.9	RO) (GC) Qualifier U F1	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	07/12/22 15:30	07/13/22 09:51 Analyzed 07/13/22 11:31	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.9	RO) (GC) Qualifier U F1 U F1	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30	07/13/22 09:51 Analyzed 07/13/22 11:31 07/13/22 11:31	1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9 <49.9	RO) (GC) Qualifier U F1 U F1	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30	07/13/22 09:51 Analyzed 07/13/22 11:31 07/13/22 11:31	Dil Face 1 1 1 Dil Face
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U F1 U F1	RL 49.9 49.9 49.9 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30 Prepared	07/13/22 09:51 Analyzed 07/13/22 11:31 07/13/22 11:31 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 93 107	RO) (GC) Qualifier U F1 U F1 U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30 Prepared 07/12/22 15:30	07/13/22 09:51 Analyzed 07/13/22 11:31 07/13/22 11:31 Analyzed 07/13/22 11:31	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 93 107 omatography -	RO) (GC) Qualifier U F1 U F1 U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30 Prepared 07/12/22 15:30	07/13/22 09:51 Analyzed 07/13/22 11:31 07/13/22 11:31 Analyzed 07/13/22 11:31	Dil Fac

Client Sample ID: BH-129 8 Lab Sample ID: 890-2515-22

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Xylenes, Total

Method: 8021B - Volatile Organic Compounds (GC) MDL Unit Analyte Result Qualifier RL D Prepared Benzene <0.00201 U 0.00201 mg/Kg 07/14/22 09:57 Toluene <0.00201 U 0.00201 mg/Kg 07/14/22 09:57 Ethylbenzene <0.00201 U 0.00201 mg/Kg 07/14/22 09:57 <0.00402 U 0.00402 07/14/22 09:57 m-Xylene & p-Xylene mg/Kg <0.00201 U 0.00201 07/14/22 09:57 o-Xylene mg/Kg

Surrogate%RecoveryQualifierLimits4-Bromofluorobenzene (Surr)12970 - 130

<0.00402 U

Eurofins Carlsbad

0.00402

mg/Kg

2

3

5

7

9

11

12

11

Matrix: Solid

Dil Fac

Dil Fac

Analyzed

07/15/22 05:32

07/15/22 05:32

07/15/22 05:32

07/15/22 05:32

07/15/22 05:32

07/15/22 05:32

Analyzed

07/15/22 05:32

07/14/22 09:57

Prepared

07/14/22 09:57

Lab Sample ID: 890-2515-22

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-129 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	74	70 - 130	07/14/22 09:57	07/15/22 05:32	1

Mathad:	Total	RTFY.	. Total	RTEY	Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg		_	07/15/22 08:13	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			07/13/22 09:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 12:36	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 12:36	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 12:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	89	70 - 130	07/12/22 15:30	07/13/22 12:36	1
o-Terphenyl	103	70 - 130	07/12/22 15:30	07/13/22 12:36	1

Method: 300.0	- Anions, I	Ion C	hromat	ograph	y - Soluble

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	1	Prepared	Analyzed	Dil Fac
Chloride	926		4.95		mg/Kg				07/14/22 07:52	1

Client Sample ID: BH-130 8 Lab Sample ID: 890-2515-23

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8021B - Volatile Organic Compounds (GC)

lt Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
9 U	0.00199	mg/Kg		07/14/22 09:57	07/15/22 07:18	1
9 U	0.00199	mg/Kg		07/14/22 09:57	07/15/22 07:18	1
9 U	0.00199	mg/Kg		07/14/22 09:57	07/15/22 07:18	1
8 U	0.00398	mg/Kg		07/14/22 09:57	07/15/22 07:18	1
9 U	0.00199	mg/Kg		07/14/22 09:57	07/15/22 07:18	1
8 U	0.00398	mg/Kg		07/14/22 09:57	07/15/22 07:18	1
y Qualifier	Limits			Prepared	Analyzed	Dil Fac
5 S1+	70 - 130			07/14/22 09:57	07/15/22 07:18	1
0	70 - 130			07/14/22 09:57	07/15/22 07:18	1
9 9 9	99 U 99 U 98 U 99 U 98 U 98 U 98 U	99 U 0.00199 99 U 0.00199 99 U 0.00199 98 U 0.00398 99 U 0.00199 98 U 0.00398 99 U 0.00398 99 U 0.00398 99 U 0.00398 99 U 0.00398	mg/Kg mg/Kg	199 U 0.00199 mg/Kg 199 U 0.00199 mg/Kg 199 U 0.00199 mg/Kg 199 U 0.00398 mg/Kg 199 U 0.00199 mg/Kg 199 U 0.00199 mg/Kg 199 U 0.00398 mg/Kg 199 U 0.00398 mg/Kg 198 U 0.00398 mg/Kg	199 U 0.00199 mg/Kg 07/14/22 09:57 199 U 0.00199 mg/Kg 07/14/22 09:57 199 U 0.00199 mg/Kg 07/14/22 09:57 198 U 0.00398 mg/Kg 07/14/22 09:57 199 U 0.00199 mg/Kg 07/14/22 09:57 198 U 0.00398 mg/Kg 07/14/22 09:57 199 Qualifier Limits Prepared 195 S1+ 70 - 130 07/14/22 09:57	mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00199 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00199 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00199 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00398 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00199 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00398 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00398 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00398 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00398 mg/Kg 07/14/22 09:57 07/15/22 07:18 09 U 0.00398 mg/Kg 07/14/22 09:57 07/15/22 07:18

Mothod:	Total RT	Y - Total I	RTEY Ca	lculation

Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398		ma/Ka				07/15/22 08:13	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC	Method: 8015 NM -	- Diesel Range	Organics (DRO)	(GC
---	-------------------	----------------	------------	------	-----

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			07/13/22 09:51	1

Eurofins Carlsbad

2

3

4

7

10

12

13

Matrix: Solid

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2515-1 SDG: Lea County NM

Lab Sample ID: 890-2515-23

Client Sample ID: BH-130 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8									
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 12:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 12:58	1

C10-C28) mg/Kg Oll Range Organics (Over C28-C36) <49.9 U 49.9 07/12/22 15:30 07/13/22 12:58 %Recovery Qualifier Limits Analyzed Dil Fac Surrogate Prepared

70 - 130 07/12/22 15:30 07/13/22 12:58 1-Chlorooctane 102 o-Terphenyl 113 70 - 130 07/12/22 15:30 07/13/22 12:58 Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Chloride 675 4.99 mg/Kg 07/14/22 08:00

Client Sample ID: BH-131 8 Lab Sample ID: 890-2515-24 Date Collected: 07/07/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8021B - Volatile Organic	Compounds (C	GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 07:45	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 07:45	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 07:45	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 07:45	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 07:45	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 07:45	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 132 S1+ 70 - 130 07/15/22 07:45 07/14/22 09:57 1,4-Difluorobenzene (Surr) 76 70 - 130 07/15/22 07:45 07/14/22 09:57

Method: Total BTEX - Total BTEX Calculation

Analyte Result Qualifier MDL Unit Analyzed Dil Fac Prepared Total BTEX <0.00400 U 0.00400 07/15/22 08:13 mg/Kg

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **Total TPH** 49.9 07/13/22 09:51 mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

moniour corez itm. Diocor italigo	Organico (D.	(00)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 13:20	1
(GRO)-C6-C10									
Diesel Range Organics (Over	63.5		49.9		mg/Kg		07/12/22 15:30	07/13/22 13:20	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 13:20	1

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	86	70 - 130	07/12/22 15:30	07/13/22 13:20	1
o-Terphenyl	0.05 S1-	70 - 130	07/12/22 15:30	07/13/22 13:20	1

Eurofins Carlsbad

7/20/2022

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-131 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	85.5		5.00		mg/Kg			07/14/22 08:07	1	

Client Sample ID: BH-132 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Method: Total BTEX - Total BTEX Calculation

REMOVED FROM ANALYSIS TABLE

Result Qualifier

<0.00396 U

Lab Sample ID: 890-2515-25

Analyzed

07/15/22 08:13

Lab Sample ID: 890-2515-24

Matrix: Solid

Sample Depth: 8

Analyte

Total BTEX

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 08:11	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 08:11	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 08:11	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		07/14/22 09:57	07/15/22 08:11	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/14/22 09:57	07/15/22 08:11	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		07/14/22 09:57	07/15/22 08:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130				07/14/22 09:57	07/15/22 08:11	1
1,4-Difluorobenzene (Surr)	74		70 - 130				07/14/22 09:57	07/15/22 08:11	1

Method: 8015 NM - Diesel Range O	rganics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Range	Organics (DI								

0.00396

MDL Unit

mg/Kg

Prepared

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 13:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 13:41	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				07/12/22 15:30	07/13/22 13:41	1
o-Terphenyl	102		70 - 130				07/12/22 15:30	07/13/22 13:41	1

Method: 300.0 - Anions, Ion Chroma	tography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	172		4.96		mg/Kg			07/14/22 08:15	1

Eurofins Carlsbad

Dil Fac

Lab Sample ID: 890-2515-26

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-133 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 08:49	
Toluene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 08:49	•
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 08:49	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/14/22 09:57	07/15/22 08:49	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 08:49	•
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/14/22 09:57	07/15/22 08:49	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	142	S1+	70 - 130				07/14/22 09:57	07/15/22 08:49	
1,4-Difluorobenzene (Surr)	81		70 - 130				07/14/22 09:57	07/15/22 08:49	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			07/15/22 08:13	-
Analyte Total TPH	<50.0	Qualifier U	50.0		mg/Kg	D	Prepared	Analyzed 07/13/22 09:51	Dil Fa
			30.0		mg/Rg			07/13/22 09.31	
Method: 8015B NM - Diesel Rang									
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 14:03	,
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	П	50.0		mg/Kg		07/12/22 15:30	07/13/22 14:03	
C10-C28)	100.0	J	00.0		mg/itg		01712/22 10:00	07710/22 14.00	
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 14:03	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	86		70 - 130				07/12/22 15:30	07/13/22 14:03	
o-Terphenyl	101		70 - 130				07/12/22 15:30	07/13/22 14:03	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
	0 . ,								
Analyte	0 . ,	Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-134 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Date Received: 07700/22

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 09:16	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 09:16	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 09:16	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		07/14/22 09:57	07/15/22 09:16	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 09:16	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		07/14/22 09:57	07/15/22 09:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130				07/14/22 09:57	07/15/22 09:16	1

Eurofins Carlsbad

Lab Sample ID: 890-2515-27

3

4

7

9

4.6

13

ins Cansbac

Matrix: Solid

Lab Sample ID: 890-2515-27

Lab Sample ID: 890-2515-28

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-134 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	78	70 - 130	07/14/22 09:57	07/15/22 09:16	1

Method: Total	BTEX - Total	BTEX Calculati	on

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg		_	07/15/22 08:13	1

Method: 8015 NM - Diesel Range Organics	IUKU	11661

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/13/22 09:51	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 14:24	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 14:24	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 14:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130	07/12/22 1	15:30	07/13/22 14:24	1
o-Terphenyl	101		70 - 130	07/12/22 1	15:30	07/13/22 14:24	1

 ${\bf Method: 300.0 - Anions, \, lon \, Chromatography - Soluble}$

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1300		5.01		mg/Kg			07/14/22 08:47	1

Client Sample ID: BH-135 8

Date Collected: 07/07/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

		/							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 09:42	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 09:42	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 09:42	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/14/22 09:57	07/15/22 09:42	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 09:42	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/14/22 09:57	07/15/22 09:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				07/14/22 09:57	07/15/22 09:42	1
1,4-Difluorobenzene (Surr)	74		70 - 130				07/14/22 09:57	07/15/22 09:42	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/15/22 08:13	1

	Method: 8015 NM - Diesel	Range Organics (DRO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organics (Dito	, (00)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			07/13/22 09:51	1

Eurofins Carlsbad

2

3

4

0

10

Lab Sample ID: 890-2515-28

Lab Sample ID: 890-2515-29

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-135 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 14:45	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 14:45	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 14:45	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	92		70 - 130				07/12/22 15:30	07/13/22 14:45	
o-Terphenyl	103		70 - 130				07/12/22 15:30	07/13/22 14:45	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	722		4.97		mg/Kg			07/14/22 10:01	1

Client Sample ID: BH-136 8

Date Collected: 07/07/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 10:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 10:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 10:08	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 10:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 10:08	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 10:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	148	S1+	70 - 130				07/14/22 09:57	07/15/22 10:08	1
1,4-Difluorobenzene (Surr)	72		70 - 130				07/14/22 09:57	07/15/22 10:08	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg	<u></u>		07/15/22 08:13	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 15:07	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 15:07	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130				07/12/22 15:30	07/13/22 15:07	1
o-Terphenyl	103		70 - 130				07/12/22 15:30	07/13/22 15:07	1

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD SDG: Lea County NM

Lab Sample ID: 890-2515-29

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Client Sample ID: BH-136 8

Matrix: Solid

Sample Depth: 8

	Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
L	Chloride	490		4.98		mg/Kg			07/14/22 10:09	1

Lab Sample ID: 890-2515-30 Client Sample ID: BH-137 8

Date Collected: 07/07/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 10:34	
Toluene	< 0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 10:34	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 10:34	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/14/22 09:57	07/15/22 10:34	
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/14/22 09:57	07/15/22 10:34	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/14/22 09:57	07/15/22 10:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	17	S1-	70 - 130				07/14/22 09:57	07/15/22 10:34	
1,4-Difluorobenzene (Surr)	79		70 - 130				07/14/22 09:57	07/15/22 10:34	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			07/15/22 08:13	
Method: 8015 NM - Diesel Range	•								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			07/13/22 09:51	
Method: 8015B NM - Diesel Rang	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 15:28	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 15:28	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 15:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	91		70 - 130				07/12/22 15:30	07/13/22 15:28	
o-Terphenyl	104		70 - 130				07/12/22 15:30	07/13/22 15:28	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Lab Sample ID: 890-2515-31

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-138 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 11:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 11:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 11:01	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		07/14/22 09:57	07/15/22 11:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 11:01	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		07/14/22 09:57	07/15/22 11:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	139	S1+	70 - 130				07/14/22 09:57	07/15/22 11:01	1
1,4-Difluorobenzene (Surr)	76		70 - 130				07/14/22 09:57	07/15/22 11:01	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			07/15/22 08:13	1
Analyte		Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed 07/13/22 09:51	Dil Fac
Total TPH	55.9		50.0		mg/Kg				
								07/13/22 09:51	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						07/13/22 09.51	1
		RO) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 07/12/22 15:30		
Analyte Gasoline Range Organics	Result	Qualifier		MDL		<u>D</u>		Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result < 50.0	Qualifier U	50.0	MDL	mg/Kg	<u> </u>	07/12/22 15:30	Analyzed 07/13/22 16:11	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 55.9	Qualifier U	50.0	MDL	mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30	Analyzed 07/13/22 16:11 07/13/22 16:11	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 55.9 <50.0	Qualifier U	50.0 50.0 50.0	MDL	mg/Kg	<u> </u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30	Analyzed 07/13/22 16:11 07/13/22 16:11 07/13/22 16:11	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0 55.9 <50.0 %Recovery	Qualifier U	50.0 50.0 50.0 Limits	MDL	mg/Kg	<u> </u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30 Prepared	Analyzed 07/13/22 16:11 07/13/22 16:11 07/13/22 16:11 Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30 Prepared 07/12/22 15:30	Analyzed 07/13/22 16:11 07/13/22 16:11 07/13/22 16:11 Analyzed 07/13/22 16:11	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U Qualifier	50.0 50.0 50.0 Limits 70 - 130		mg/Kg	<u>D</u>	07/12/22 15:30 07/12/22 15:30 07/12/22 15:30 Prepared 07/12/22 15:30	Analyzed 07/13/22 16:11 07/13/22 16:11 07/13/22 16:11 Analyzed 07/13/22 16:11	Dil Face

Client Sample ID: BH-139 8

Date Collected: 07/07/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 11:27	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 11:27	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 11:27	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/14/22 09:57	07/15/22 11:27	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/14/22 09:57	07/15/22 11:27	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/14/22 09:57	07/15/22 11:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	135	S1+	70 - 130				07/14/22 09:57	07/15/22 11:27	

Eurofins Carlsbad

Lab Sample ID: 890-2515-32

Matrix: Solid

2

3

4

6

8

10

12

1 0

. .

Lab Sample ID: 890-2515-32

Lab Sample ID: 890-2515-33

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-139 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8021B - Volatile Organic Compou	unds (GC) (Continued)
---	-----------------------

Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	74	70 - 130	07/14/22 09:57	07/15/22 11:27	1

Method: Total	BTEX - Total	BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg		_	07/15/22 08:13	1

Analyte	Result Qualifie	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			07/13/22 09:51	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 16:32	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 16:32	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 16:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Pre	epared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130	07/12/	/22 15:30	07/13/22 16:32	1
o-Terphenyl	106		70 - 130	07/12/	/22 15:30	07/13/22 16:32	1

Method: 300.	.U - Anions, Ior	i Chromatography	- Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1390		25.0		mg/Kg			07/14/22 15:23	5

Client Sample ID: BH-140 8

Date Collected: 07/06/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 8021B -	Volatile	Organic (Compounds (GC)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/14/22 10:08	07/15/22 23:49	1
Toluene	<0.00199	U	0.00199		mg/Kg		07/14/22 10:08	07/15/22 23:49	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		07/14/22 10:08	07/15/22 23:49	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/14/22 10:08	07/15/22 23:49	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		07/14/22 10:08	07/15/22 23:49	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/14/22 10:08	07/15/22 23:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				07/14/22 10:08	07/15/22 23:49	1
1,4-Difluorobenzene (Surr)	107		70 - 130				07/14/22 10:08	07/15/22 23:49	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398		ma/Ka				07/15/22 08:13	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8 U	49.8	mg/Kg			07/13/22 09:51	1

Eurofins Carlsbad

2

3

4

7

ŏ

10

Lab Sample ID: 890-2515-33

Lab Sample ID: 890-2515-34

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-140 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		07/12/22 15:30	07/13/22 16:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		07/12/22 15:30	07/13/22 16:53	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		07/12/22 15:30	07/13/22 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				07/12/22 15:30	07/13/22 16:53	1
o-Terphenyl	103		70 - 130				07/12/22 15:30	07/13/22 16:53	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-141 8

Date Collected: 07/07/22 00:00

Date Received: 07/08/22 16:08

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/14/22 10:08	07/16/22 00:10	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/14/22 10:08	07/16/22 00:10	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/14/22 10:08	07/16/22 00:10	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		07/14/22 10:08	07/16/22 00:10	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/14/22 10:08	07/16/22 00:10	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		07/14/22 10:08	07/16/22 00:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				07/14/22 10:08	07/16/22 00:10	1
1,4-Difluorobenzene (Surr)	104		70 - 130				07/14/22 10:08	07/16/22 00:10	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			07/15/22 08:13	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	61.0		49.9		mg/Kg			07/13/22 09:51	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 17:15	1
Diesel Range Organics (Over C10-C28)	61.0		49.9		mg/Kg		07/12/22 15:30	07/13/22 17:15	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/12/22 15:30	07/13/22 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				07/12/22 15:30	07/13/22 17:15	1
o-Terphenyl	101		70 - 130				07/12/22 15:30	07/13/22 17:15	1

Lab Sample ID: 890-2515-34

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-141 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Sample Depth: 8

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2410		24.8		mg/Kg			07/14/22 15:55	5

-

_

0

10

12

13

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

-				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	researce during attended by (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-17011-A-1-D MS	Matrix Spike	122	79	· —— —— —— —— ——
880-17011-A-1-E MSD	Matrix Spike Duplicate	124	80	
890-2515-1	SW34 0-6	109	104	
890-2515-2	SW35 0-6	160 S1+	96	
890-2515-3	SW36 0-6	107	107	
890-2515-4	SW37 0-6	103	107	
890-2515-5	BH-106 6	114	113	
890-2515-6	BH-108 6	110	107	
890-2515-7	BH-114 10	174 S1+	126	
890-2515-8	BH-115 10	205 S1+	128	
890-2515-9	BH-116 10	180 S1+	126	
890-2515-10	BH-117 10	186 S1+	127	
890-2515-11	BH-118 10	103	62 S1-	
890-2515-12	BH-119 8	118	110	
890-2515-13	BH-120 8	120	95	
890-2515-13 MS	BH-120 8	132 S1+	78	
890-2515-13 MSD	BH-120 8	112	91	
890-2515-14	BH-121 8	137 S1+	80	
890-2515-15 890-2515-16	BH-122 8 BH-123 8	135 S1+	76	
		149 S1+	80	
890-2515-17	BH-124 8	145 S1+	74	
890-2515-18	BH-125 8	147 S1+	74	
890-2515-19	BH-126 8	147 S1+	76 77	
890-2515-20	BH-127 8	144 S1+	77	
890-2515-21	BH-128 8	147 S1+	72	
890-2515-22	BH-129 8	129	74	
890-2515-23	BH-130 8	135 S1+	80	
890-2515-24	BH-131 8	132 S1+	76	
890-2515-25	BH-132 8	150 S1+	74	
890-2515-26	BH-133 8	142 S1+	81	
890-2515-27	BH-134 8	142 S1+	78	
890-2515-28	BH-135 8	118	74	
890-2515-29	BH-136 8	148 S1+	72	
890-2515-30	BH-137 8	17 S1-	79	
890-2515-31	BH-138 8	139 S1+	76	
890-2515-32	BH-139 8	135 S1+	74	
890-2515-33	BH-140 8	107	107	
890-2515-33 MS	BH-140 8	98	100	
890-2515-33 MSD	BH-140 8	97	98	
890-2515-34	BH-141 8	104	104	
LCS 880-29722/1-A	Lab Control Sample	94	102	
LCS 880-29723/1-A	Lab Control Sample	129	77	
LCS 880-29739/1-A	Lab Control Sample	97	98	
LCS 880-29987/1-A	Lab Control Sample	119	90	
LCSD 880-29722/2-A	Lab Control Sample Dup	98	101	
LCSD 880-29723/2-A	Lab Control Sample Dup	138 S1+	78	
LCSD 880-29739/2-A	Lab Control Sample Dup	102	96	
LCSD 880-29987/2-A	Lab Control Sample Dup	127	92	
MB 880-29669/5-A	Method Blank	95	77	

Eurofins Carlsbad

9

3

4

6

8

11

12

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
MB 880-29722/5-A	Method Blank	106	108	
MB 880-29723/5-A	Method Blank	98	74	
MB 880-29739/5-A	Method Blank	102	108	
MB 880-29987/5-A	Method Blank	87	84	
Surrogate Legend				
BFB = 4-Bromofluorob	enzene (Surr)			
DFBZ = 1.4-Difluorobe	nzene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

				Percent Surrogate Recovery (Acceptance Limits)
		1001	ОТРН1	recent during at recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-2515-1	SW34 0-6	95	109	
390-2515-1 MS	SW34 0-6	80	79	
890-2515-1 MSD	SW34 0-6	81	79	
390-2515-2	SW35 0-6	92	106	
390-2515-3	SW36 0-6	91	102	
390-2515-4	SW37 0-6	98	112	
390-2515-5	BH-106 6	111	125	
390-2515-6	BH-108 6	89	103	
390-2515-7	BH-114 10	95	105	
890-2515-8	BH-115 10	84	96	
390-2515-9	BH-116 10	113	125	
390-2515-10	BH-117 10	120	133 S1+	
390-2515-11	BH-118 10	90	94	
390-2515-12	BH-119 8	97	100	
390-2515-13	BH-120 8	88	102	
390-2515-14	BH-121 8	107	118	
390-2515-15	BH-122 8	108	119	
390-2515-16	BH-123 8	89	103	
390-2515-17	BH-124 8	93	107	
390-2515-18	BH-125 8	86	98	
390-2515-19	BH-126 8	106	115	
390-2515-20	BH-127 8	93	106	
390-2515-21	BH-128 8	93	107	
890-2515-21 MS	BH-128 8	79	92	
890-2515-21 MSD	BH-128 8	80	93	
390-2515-22	BH-129 8	89	103	
390-2515-23	BH-130 8	102	113	
390-2515-24	BH-131 8	86	0.05 S1-	
890-2515-25	BH-132 8	88	102	
390-2515-26	BH-133 8	86	102	
390-2515-27	BH-134 8	86	101	
390-2515-28	BH-135 8	92	103	
390-2515-29	BH-136 8	92	103	
390-2515-29	BH-137 8	91	104	
390-2515-31	BH-138 8	98	111	
390-2515-32	BH-139 8	92	106	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2515-33	BH-140 8	90	103	
890-2515-34	BH-141 8	91	101	
LCS 880-29557/2-A	Lab Control Sample	99	107	
LCS 880-29563/2-A	Lab Control Sample	99	112	
LCSD 880-29557/3-A	Lab Control Sample Dup	101	110	
LCSD 880-29563/3-A	Lab Control Sample Dup	102	113	
MB 880-29557/1-A	Method Blank	94	108	
MB 880-29563/1-A	Method Blank	100	118	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Eurofins Carlsbad

2

5

7

10

12

13

Client: Tetra Tech, Inc. Job ID: 890-2515-1 SDG: Lea County NM Project/Site: Kaiser SWD

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-29669/5-A

Analysis Batch: 29700

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29669

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000400	U	0.000400		mg/Kg		07/13/22 13:52	07/14/22 11:30	1
Toluene	<0.000400	U	0.000400		mg/Kg		07/13/22 13:52	07/14/22 11:30	1
Ethylbenzene	<0.000400	U	0.000400		mg/Kg		07/13/22 13:52	07/14/22 11:30	1
m-Xylene & p-Xylene	<0.000800	U	0.000800		mg/Kg		07/13/22 13:52	07/14/22 11:30	1
o-Xylene	<0.000400	U	0.000400		mg/Kg		07/13/22 13:52	07/14/22 11:30	1
Xylenes, Total	<0.000800	U	0.000800		mg/Kg		07/13/22 13:52	07/14/22 11:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130	_	07/13/22 13:52	07/14/22 11:30	1
1,4-Difluorobenzene (Surr)	77		70 - 130		07/13/22 13:52	07/14/22 11:30	1

Lab Sample ID: MB 880-29722/5-A

Matrix: Solid

Analysis Batch: 29790

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29722

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:52	07/15/22 11:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:52	07/15/22 11:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:52	07/15/22 11:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 09:52	07/15/22 11:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:52	07/15/22 11:11	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 09:52	07/15/22 11:11	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Pr	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130	07/14	4/22 09:52	07/15/22 11:11	1
1,4-Difluorobenzene (Surr)	108		70 - 130	07/14	4/22 09:52	07/15/22 11:11	1

Lab Sample ID: LCS 880-29722/1-A

Matrix: Solid

Analysis Batch: 29790

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 29722

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1075		mg/Kg		107	70 - 130	
Toluene	0.100	0.09814		mg/Kg		98	70 - 130	
Ethylbenzene	0.100	0.08616		mg/Kg		86	70 - 130	
m-Xylene & p-Xylene	0.200	0.1710		mg/Kg		85	70 - 130	
o-Xylene	0.100	0.09010		mg/Kg		90	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	94	70 - 130
1.4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: LCSD 880-29722/2-A

Matrix: Solid

Analysis Batch: 29790

Client Sample ID: Lab	Control Sample Dup
	Dron Type, Total/NA

Prep Type: Total/NA

Prep Batch: 29722

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09685	mg/Kg		97	70 - 130	10	35

Client: Tetra Tech, Inc. Job ID: 890-2515-1 SDG: Lea County NM Project/Site: Kaiser SWD

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-29722/2-A

Matrix: Solid

Analysis Batch: 29790

Client Sample	ID:	Lab	Control	Sample	Dup

Prep Type: Total/NA

Prep Batch: 29722

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09023		mg/Kg		90	70 - 130	8	35
Ethylbenzene	0.100	0.08012		mg/Kg		80	70 - 130	7	35
m-Xylene & p-Xylene	0.200	0.1601		mg/Kg		80	70 - 130	7	35
o-Xylene	0.100	0.08531		mg/Kg		85	70 - 130	5	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	98	70 _ 130
1,4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: MB 880-29723/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 29700

Prep Type: Total/NA

Prep Batch: 29723

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 01:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 01:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 01:08	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 01:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 09:57	07/15/22 01:08	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 09:57	07/15/22 01:08	1

MB MB

Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	70 - 130	07/14/22 09:57	07/15/22 01:08	1
1.4-Difluorobenzene (Surr)	74	70 - 130	07/14/22 09:57	07/15/22 01:08	1

Lab Sample ID: LCS 880-29723/1-A

Matrix: Solid

Analysis Batch: 29700

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29723

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07927		mg/Kg		79	70 - 130	
Toluene	0.100	0.08725		mg/Kg		87	70 - 130	
Ethylbenzene	0.100	0.09476		mg/Kg		95	70 - 130	
m-Xylene & p-Xylene	0.200	0.1923		mg/Kg		96	70 - 130	
o-Xylene	0.100	0.1021		mg/Kg		102	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	129		70 - 130
1.4-Difluorobenzene (Surr)	77		70 ₋ 130

Lab Sample ID: LCSD 880-29723/2-A

Matrix: Solid

Analysis Batch: 29700

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29723

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08406		mg/Kg		84	70 - 130	6	35
Toluene	0.100	0.09646		mg/Kg		96	70 - 130	10	35
Ethylbenzene	0.100	0.09969		mg/Kg		100	70 - 130	5	35

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-29723/2-A **Matrix: Solid**

Analysis Batch: 29700

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 29723

	opiito	2002	_005				701100		5
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	0.200	0.2043		mg/Kg		102	70 - 130	6	35
o-Xylene	0.100	0.1087		mg/Kg		109	70 - 130	6	35

Snike

LCSD LCSD %Recovery Qualifier Limits Surrogate 138 S1+ 4-Bromofluorobenzene (Surr) 70 - 130 1,4-Difluorobenzene (Surr) 78 70 - 130

Lab Sample ID: 890-2515-13 MS

Matrix: Solid

Analysis Batch: 29700

Client Sample ID: BH-120 8 Prep Type: Total/NA

LCSD LCSD

Prep Batch: 29723

%Rec Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene <0.00201 U F1 F2 0.100 0.08436 mg/Kg 84 70 - 130 Toluene <0.00201 UF1F2 0.100 0.08782 mg/Kg 88 70 - 130 0.100 0.08772 88 Ethylbenzene <0.00201 UF1F2 mg/Kg 70 - 130 m-Xylene & p-Xylene <0.00402 U F1 F2 0.200 0.1196 F1 mg/Kg 60 70 - 130 <0.00201 UF1F2 0.100 0.09763 o-Xylene mg/Kg 70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130
1,4-Difluorobenzene (Surr)	78		70 - 130

Lab Sample ID: 890-2515-13 MSD

Matrix: Solid

Analysis Batch: 29700

Client Sample ID: BH-120 8 Prep Type: Total/NA

Prep Batch: 29723

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00201	U F1 F2	0.0994	0.05294	F1 F2	mg/Kg		53	70 - 130	46	35	
Toluene	<0.00201	U F1 F2	0.0994	0.03890	F1 F2	mg/Kg		39	70 - 130	77	35	
Ethylbenzene	<0.00201	U F1 F2	0.0994	0.04605	F1 F2	mg/Kg		46	70 - 130	62	35	
m-Xylene & p-Xylene	<0.00402	U F1 F2	0.199	0.04969	F1 F2	mg/Kg		25	70 - 130	83	35	
o-Xylene	<0.00201	U F1 F2	0.0994	0.05486	F1 F2	mg/Kg		55	70 - 130	56	35	

MSD MSD

Surrogate	%Recovery Qualifie	r Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	91	70 - 130

Lab Sample ID: MB 880-29739/5-A

Matrix: Solid

Analysis Batch: 29790

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29739

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 10:08	07/15/22 23:27	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 10:08	07/15/22 23:27	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 10:08	07/15/22 23:27	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 10:08	07/15/22 23:27	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 10:08	07/15/22 23:27	1
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		07/14/22 10:08	07/15/22 23:27	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2515-1 SDG: Lea County NM

Prep Batch: 29739

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130	07/14/22 10	:08 07/15/22 23:27	1
1,4-Difluorobenzene (Surr)	108		70 - 130	07/14/22 10	:08 07/15/22 23:27	1

Lab Sample ID: LCS 880-29739/1-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 29790

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.09154 92 70 - 130 0.100 mg/Kg Toluene 70 - 130 0.100 0.08982 mg/Kg 90 Ethylbenzene 0.100 0.08005 mg/Kg 80 70 - 130 m-Xylene & p-Xylene 0.200 0.1608 80 70 - 130 mg/Kg

0.08701

mg/Kg

0.100

LCS LCS %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 97 1,4-Difluorobenzene (Surr) 98 70 - 130

Lab Sample ID: LCSD 880-29739/2-A

Matrix: Solid

o-Xylene

Analysis Batch: 29790

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

70 - 130

87

Prep Batch: 29739

LCSD LCSD Spike %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Benzene 0.100 0.07913 mg/Kg 79 70 - 130 15 35 Toluene 0.100 0.08469 85 70 - 130 35 mg/Kg 6 0.100 0.07885 79 70 - 130 35 Ethylbenzene mg/Kg m-Xylene & p-Xylene 0.200 0.1600 mg/Kg 80 70 - 130 35 o-Xylene 0.100 0.08634 mg/Kg 86 70 - 130 35

LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 102 1,4-Difluorobenzene (Surr) 96 70 - 130

Lab Sample ID: 890-2515-33 MS Client Sample ID: BH-140 8 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 29790 Prep Batch: 29739

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00199	U	0.101	0.09282		mg/Kg		92	70 - 130
Toluene	<0.00199	U	0.101	0.08759		mg/Kg		87	70 - 130
Ethylbenzene	<0.00199	U	0.101	0.07718		mg/Kg		77	70 - 130
m-Xylene & p-Xylene	<0.00398	U	0.201	0.1511		mg/Kg		75	70 - 130
o-Xylene	<0.00199	U	0.101	0.08237		mg/Kg		82	70 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2515-33 MSD

Analysis Batch: 29790

Matrix: Solid

Client Sample ID: BH-140 8 Prep Type: Total/NA

Prep Batch: 29739

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.100	0.09466		mg/Kg		94	70 - 130	2	35
Toluene	<0.00199	U	0.100	0.08989		mg/Kg		90	70 - 130	3	35
Ethylbenzene	<0.00199	U	0.100	0.07866		mg/Kg		79	70 - 130	2	35
m-Xylene & p-Xylene	<0.00398	U	0.200	0.1542		mg/Kg		77	70 - 130	2	35
o-Xylene	<0.00199	U	0.100	0.08371		mg/Kg		84	70 - 130	2	35

MSD MSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1 4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: MB 880-29987/5-A

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29987

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000400	U	0.000400		mg/Kg		07/18/22 15:14	07/19/22 11:53	1
Toluene	<0.000400	U	0.000400		mg/Kg		07/18/22 15:14	07/19/22 11:53	1
Ethylbenzene	<0.000400	U	0.000400		mg/Kg		07/18/22 15:14	07/19/22 11:53	1
m-Xylene & p-Xylene	<0.000800	U	0.000800		mg/Kg		07/18/22 15:14	07/19/22 11:53	1
o-Xylene	<0.000400	U	0.000400		mg/Kg		07/18/22 15:14	07/19/22 11:53	1
Xylenes, Total	<0.000800	U	0.000800		mg/Kg		07/18/22 15:14	07/19/22 11:53	1

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130	07/18/22 15:14	07/19/22 11:53	1
1,4-Difluorobenzene (Surr)	84		70 - 130	07/18/22 15:14	07/19/22 11:53	1

Lab Sample ID: LCS 880-29987/1-A

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 29987

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1014 mg/Kg 101 70 - 130 Toluene 0.100 0.1022 mg/Kg 102 70 - 130 Ethylbenzene 0.100 0.1103 mg/Kg 110 70 - 130 0.200 m-Xylene & p-Xylene 0.2162 mg/Kg 108 70 - 130 0.100 0.1134 70 - 130 o-Xylene mg/Kg 113

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1.4-Difluorobenzene (Surr)	90		70 - 130

Lab Sample ID: LCSD 880-29987/2-A

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29987

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1075		mg/Kg		108	70 - 130	6	35
Toluene	0.100	0.1084		mg/Kg		108	70 - 130	6	35

Job ID: 890-2515-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-29987/2-A

Matrix: Solid Analysis Batch: 30016 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 29987

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit D Ethylbenzene 0.100 0.1173 117 70 - 130 35 mg/Kg 6 m-Xylene & p-Xylene 0.200 0.2293 mg/Kg 115 70 - 130 6 35 0.100 o-Xylene 0.1192 70 - 130 mg/Kg 119

LCSD LCSD

Surrogate	%Recovery C	Qualifier	Limits
4-Bromofluorobenzene (Surr)	127		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: 880-17011-A-1-D MS

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 29987

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Benzene <0.00200 U F1 0.0998 0.05315 F1 mg/Kg 53 70 - 130 Toluene <0.00200 UF1 0.0998 0.05812 F1 mg/Kg 58 70 - 130 Ethylbenzene <0.00200 U F1 0.0998 0.06366 F1 64 70 - 130 mg/Kg 0.200 m-Xylene & p-Xylene < 0.00399 UF1 0.1212 F1 mg/Kg 61 70 - 130 0.0998 <0.00200 U F1 0.06845 F1 69 70 - 130 o-Xylene mg/Kg

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	122		70 - 130
1,4-Difluorobenzene (Surr)	79		70 - 130

Lab Sample ID: 880-17011-A-1-E MSD

Matrix: Solid

Analysis Batch: 30016

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 29987

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.100	0.03929	F1	mg/Kg		39	70 - 130	30	35
Toluene	<0.00200	U F1	0.100	0.04309	F1	mg/Kg		43	70 - 130	30	35
Ethylbenzene	<0.00200	U F1	0.100	0.04664	F1	mg/Kg		47	70 - 130	31	35
m-Xylene & p-Xylene	<0.00399	U F1	0.200	0.08957	F1	mg/Kg		45	70 - 130	30	35
o-Xylene	<0.00200	U F1	0.100	0.05185	F1	mg/Kg		52	70 - 130	28	35

MSD MSD %Recovery Qualifier

Surrogate Limits 4-Bromofluorobenzene (Surr) 124 70 - 130 1,4-Difluorobenzene (Surr) 80 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-29557/1-A

Analysis Batch: 29499

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 29557

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <50.0 U 50.0 07/12/22 14:24 07/12/22 19:42 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 07/12/22 14:24 07/12/22 19:42

C10-C28)

Eurofins Carlsbad

Page 42 of 75

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-29557/1-A

Matrix: Solid

Analysis Batch: 29499

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29557

Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg			07/12/22 14:24	07/12/22 19:42	1

мв мв

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130	07/12/22 14:24	07/12/22 19:42	1
o-Terphenyl	108		70 - 130	07/12/22 14:24	07/12/22 19:42	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-29557/2-A **Matrix: Solid** Prep Type: Total/NA Prep Batch: 29557

Analysis Batch: 29499

Spike LCS LCS Added Analyte Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 841.3 mg/Kg 84 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 860.2 mg/Kg 70 - 130 86 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	99		70 - 130
o-Terphenyl	107		70 - 130

Lab Sample ID: LCSD 880-29557/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 29499

Prep Type: Total/NA

Prep Batch: 29557

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	831.8		mg/Kg		83	70 - 130	1	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	872.7		mg/Kg		87	70 - 130	1	20	
C10-C28)										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	101		70 - 130
o-Terphenyl	110		70 - 130

Lab Sample ID: 890-2515-1 MS Client Sample ID: SW34 0-6

Matrix: Solid

Analysis Batch: 29499

Prep Type: Total/NA

Prep Batch: 29557

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F2	996	1008		mg/Kg		98	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	996	849.4		mg/Kg		85	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	80		70 - 130
o-Terphenyl	79		70 - 130

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-2515-1 MSD

Matrix: Solid

Analysis Batch: 29499

Client Sample ID: SW34 0-6 Prep Type: Total/NA

Prep Batch: 29557

Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits Gasoline Range Organics <49.9 U F2 998 742.9 F2 mg/Kg 72 70 - 130 30 20 (GRO)-C6-C10 998 860.6 Diesel Range Organics (Over <49.9 U mg/Kg 86 70 - 130 1

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	81		70 - 130
o-Terphenyl	79		70 - 130

Lab Sample ID: MB 880-29563/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 29603

Prep Type: Total/NA Prep Batch: 29563

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 10:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 10:27	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/12/22 15:30	07/13/22 10:27	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130	07/12/22 15:30	07/13/22 10:27	1
o-Terphenyl	118		70 - 130	07/12/22 15:30	07/13/22 10:27	1

Lab Sample ID: LCS 880-29563/2-A

Matrix: Solid

Analysis Batch: 29603

Client	Sample	ID:	Lab	Control	Sample
--------	--------	-----	-----	---------	--------

Prep Type: Total/NA

Prep Batch: 29563

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	877.2		mg/Kg		88	70 - 130	·
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	913.4		mg/Kg		91	70 - 130	
C10 C28)								

C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	99		70 - 130
o-Terphenyl	112		70 - 130

Lab Sample ID: LCSD 880-29563/3-A

Matrix: Solid

Analysis Batch: 29603

Client Sample ID	: Lab Control	Sample	Dup
-------------------------	---------------	--------	-----

Prep Type: Total/NA

Prep Batch: 29563

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	889.2		mg/Kg		89	70 - 130	1	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	975.7		mg/Kg		98	70 - 130	7	20
C10-C28)									

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: BH-128 8

Prep Type: Total/NA

Prep Batch: 29563

Job ID: 890-2515-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-29563/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Analysis Batch: 29603

LCSD LCSD %Recovery Qualifier Limits

1-Chlorooctane 102 70 - 130 o-Terphenyl 113 70 - 130

Lab Sample ID: 890-2515-21 MS Client Sample ID: BH-128 8

Matrix: Solid

Surrogate

Analysis Batch: 29603

Prep Batch: 29563 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits <49.9 UF1 <49.8 UF1 996 0 70 - 130Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 996 0 <49.9 U F1 <49.8 U F1 mg/Kg 70 - 130

C10-C28)

MS MS %Recovery Surrogate Qualifier Limits 79 70 - 130 1-Chlorooctane 92 70 - 130 o-Terphenyl

Lab Sample ID: 890-2515-21 MSD

Matrix: Solid

Analysis Batch: 29603

Prep Batch: 29563 MSD MSD Sample Sample Spike %Rec Analyte Result Qualifier hahhA Result Qualifier Unit %Rec Limits RPD Limit D Gasoline Range Organics <49.9 U F1 998 <49.9 UF1 mg/Kg 0 70 - 130 NC 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 UF1 998 <49.9 U F1 mg/Kg 0 70 - 130 NC 20

C10-C28)

MSD MSD %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 80 70 - 130 o-Terphenyl 93

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29402/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29640

мв мв MDL Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 07/14/22 03:23

Lab Sample ID: LCS 880-29402/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29640

Spike LCS LCS %Rec Analyte Added Result Qualifier Limits Unit Chloride 250 258.0 mg/Kg 103 90 - 110

Job ID: 890-2515-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-29402/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29640

Spike LCSD LCSD RPD %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Chloride 250 258.0 mg/Kg 103 90 - 110 20

Lab Sample ID: 890-2515-1 MS Client Sample ID: SW34 0-6 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29640

Sample Sample Spike MS MS %Rec Qualifier Added Analyte Result Result Qualifier Unit D %Rec Limits Chloride 20.4 251 271.0 mg/Kg 100 90 - 110

Lab Sample ID: 890-2515-1 MSD Client Sample ID: SW34 0-6 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29640

MSD MSD RPD Spike %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 20.4 251 271.1 mg/Kg 100 90 - 110

Lab Sample ID: 890-2515-11 MS Client Sample ID: BH-118 10 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29640

MS MS Spike %Rec Sample Sample Added %Rec Analyte Result Qualifier Result Qualifier Unit Limits Chloride 187 248 437.9 101 90 - 110 mg/Kg

Lab Sample ID: 890-2515-11 MSD Client Sample ID: BH-118 10 **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29640

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 187 248 438.6 mg/Kg 101 90 - 110

Lab Sample ID: MB 880-29401/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29646

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride <5.00 5.00 mg/Kg 07/14/22 07:05

Lab Sample ID: LCS 880-29401/2-A Client Sample ID: Lab Control Sample **Matrix: Solid**

Analysis Batch: 29646

LCS LCS %Rec Spike Added Result Qualifier Limits Analyte Unit %Rec Chloride 250 257.7 mg/Kg 103 90 - 110

Lab Sample ID: LCSD 880-29401/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 29646

Released to Imaging: 9/1/2023 2:07:08 PM

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 266.9 mg/Kg 107 90 - 110 20

Eurofins Carlsbad

Prep Type: Soluble

Dil Fac

Prep Type: Soluble

Client Sample ID: BH-128 8

Client Sample ID: BH-128 8

Client Sample ID: BH-138 8

Client Sample ID: BH-138 8

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-2515-21 MS Matrix: Solid

Analysis Batch: 29646

Analysis Batch: 29646

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	582		252	824.4		mg/Kg		96	90 - 110	

Lab Sample ID: 890-2515-21 MSD

Matrix: Solid

Analysis Batch: 29646

		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
l	Chloride	582		252	828.8		mg/Kg		98	90 - 110	1	20

Lab Sample ID: 890-2515-31 MS

Matrix: Solid

Analysis Batch: 29646

-	Alialysis balcii. 29040										
		Sample	Sample	Spike	MS	MS				%Rec	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Į	Chloride	512		250	772.9		mg/Kg		105	90 - 110	

Lab Sample ID: 890-2515-31 MSD

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Analysis Batch: 29646

Alialysis Balcii. 29040											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	512		250	779.8		mg/Kg		107	90 - 110	1	20

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA

Prep Batch: 29669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-29669/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 29700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-13	BH-120 8	Total/NA	Solid	8021B	29723
890-2515-14	BH-121 8	Total/NA	Solid	8021B	29723
890-2515-15	BH-122 8	Total/NA	Solid	8021B	29723
890-2515-16	BH-123 8	Total/NA	Solid	8021B	29723
890-2515-17	BH-124 8	Total/NA	Solid	8021B	29723
890-2515-18	BH-125 8	Total/NA	Solid	8021B	29723
890-2515-19	BH-126 8	Total/NA	Solid	8021B	29723
890-2515-20	BH-127 8	Total/NA	Solid	8021B	29723
890-2515-21	BH-128 8	Total/NA	Solid	8021B	29723
890-2515-22	BH-129 8	Total/NA	Solid	8021B	29723
890-2515-23	BH-130 8	Total/NA	Solid	8021B	29723
890-2515-24	BH-131 8	Total/NA	Solid	8021B	29723
890-2515-25	BH-132 8	Total/NA	Solid	8021B	29723
890-2515-26	BH-133 8	Total/NA	Solid	8021B	29723
890-2515-27	BH-134 8	Total/NA	Solid	8021B	29723
890-2515-28	BH-135 8	Total/NA	Solid	8021B	29723
890-2515-29	BH-136 8	Total/NA	Solid	8021B	29723
890-2515-30	BH-137 8	Total/NA	Solid	8021B	29723
890-2515-31	BH-138 8	Total/NA	Solid	8021B	29723
890-2515-32	BH-139 8	Total/NA	Solid	8021B	29723
MB 880-29669/5-A	Method Blank	Total/NA	Solid	8021B	29669
MB 880-29723/5-A	Method Blank	Total/NA	Solid	8021B	29723
LCS 880-29723/1-A	Lab Control Sample	Total/NA	Solid	8021B	29723
LCSD 880-29723/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29723
890-2515-13 MS	BH-120 8	Total/NA	Solid	8021B	29723
890-2515-13 MSD	BH-120 8	Total/NA	Solid	8021B	29723

Prep Batch: 29722

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-1	SW34 0-6	Total/NA	Solid	5035	
890-2515-2	SW35 0-6	Total/NA	Solid	5035	
890-2515-3	SW36 0-6	Total/NA	Solid	5035	
890-2515-4	SW37 0-6	Total/NA	Solid	5035	
890-2515-5	BH-106 6	Total/NA	Solid	5035	
890-2515-6	BH-108 6	Total/NA	Solid	5035	
890-2515-7	BH-114 10	Total/NA	Solid	5035	
890-2515-8	BH-115 10	Total/NA	Solid	5035	
890-2515-9	BH-116 10	Total/NA	Solid	5035	
890-2515-10	BH-117 10	Total/NA	Solid	5035	
890-2515-12	BH-119 8	Total/NA	Solid	5035	
MB 880-29722/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29722/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29722/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Prep Batch: 29723

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-13	BH-120 8	Total/NA	Solid	5035	

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA (Continued)

Prep Batch: 29723 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-14	BH-121 8	Total/NA	Solid	5035	
890-2515-15	BH-122 8	Total/NA	Solid	5035	
890-2515-16	BH-123 8	Total/NA	Solid	5035	
890-2515-17	BH-124 8	Total/NA	Solid	5035	
890-2515-18	BH-125 8	Total/NA	Solid	5035	
890-2515-19	BH-126 8	Total/NA	Solid	5035	
890-2515-20	BH-127 8	Total/NA	Solid	5035	
890-2515-21	BH-128 8	Total/NA	Solid	5035	
890-2515-22	BH-129 8	Total/NA	Solid	5035	
890-2515-23	BH-130 8	Total/NA	Solid	5035	
890-2515-24	BH-131 8	Total/NA	Solid	5035	
890-2515-25	BH-132 8	Total/NA	Solid	5035	
890-2515-26	BH-133 8	Total/NA	Solid	5035	
890-2515-27	BH-134 8	Total/NA	Solid	5035	
890-2515-28	BH-135 8	Total/NA	Solid	5035	
890-2515-29	BH-136 8	Total/NA	Solid	5035	
890-2515-30	BH-137 8	Total/NA	Solid	5035	
890-2515-31	BH-138 8	Total/NA	Solid	5035	
890-2515-32	BH-139 8	Total/NA	Solid	5035	
MB 880-29723/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29723/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29723/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2515-13 MS	BH-120 8	Total/NA	Solid	5035	
890-2515-13 MSD	BH-120 8	Total/NA	Solid	5035	

Prep Batch: 29739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-33	BH-140 8	Total/NA	Solid	5035	
890-2515-34	BH-141 8	Total/NA	Solid	5035	
MB 880-29739/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29739/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29739/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2515-33 MS	BH-140 8	Total/NA	Solid	5035	
890-2515-33 MSD	BH-140 8	Total/NA	Solid	5035	

Analysis Batch: 29790

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-1	SW34 0-6	Total/NA	Solid	8021B	29722
890-2515-2	SW35 0-6	Total/NA	Solid	8021B	29722
890-2515-3	SW36 0-6	Total/NA	Solid	8021B	29722
890-2515-4	SW37 0-6	Total/NA	Solid	8021B	29722
890-2515-5	BH-106 6	Total/NA	Solid	8021B	29722
890-2515-6	BH-108 6	Total/NA	Solid	8021B	29722
890-2515-7	BH-114 10	Total/NA	Solid	8021B	29722
890-2515-8	BH-115 10	Total/NA	Solid	8021B	29722
890-2515-9	BH-116 10	Total/NA	Solid	8021B	29722
890-2515-10	BH-117 10	Total/NA	Solid	8021B	29722
890-2515-12	BH-119 8	Total/NA	Solid	8021B	29722
890-2515-33	BH-140 8	Total/NA	Solid	8021B	29739
890-2515-34	BH-141 8	Total/NA	Solid	8021B	29739
MB 880-29722/5-A	Method Blank	Total/NA	Solid	8021B	29722

Eurofins Carlsbad

Page 49 of 75

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 29790 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-29739/5-A	Method Blank	Total/NA	Solid	8021B	29739
LCS 880-29722/1-A	Lab Control Sample	Total/NA	Solid	8021B	29722
LCS 880-29739/1-A	Lab Control Sample	Total/NA	Solid	8021B	29739
LCSD 880-29722/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29722
LCSD 880-29739/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29739
890-2515-33 MS	BH-140 8	Total/NA	Solid	8021B	29739
890-2515-33 MSD	BH-140 8	Total/NA	Solid	8021B	29739

Analysis Batch: 29793

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-1	SW34 0-6	Total/NA	Solid	Total BTEX	
890-2515-2	SW35 0-6	Total/NA	Solid	Total BTEX	
890-2515-3	SW36 0-6	Total/NA	Solid	Total BTEX	
890-2515-4	SW37 0-6	Total/NA	Solid	Total BTEX	
890-2515-5	BH-106 6	Total/NA	Solid	Total BTEX	
890-2515-6	BH-108 6	Total/NA	Solid	Total BTEX	
890-2515-7	BH-114 10	Total/NA	Solid	Total BTEX	
890-2515-8	BH-115 10	Total/NA	Solid	Total BTEX	
890-2515-9	BH-116 10	Total/NA	Solid	Total BTEX	
890-2515-10	BH-117 10	Total/NA	Solid	Total BTEX	
890-2515-11	BH-118 10	Total/NA	Solid	Total BTEX	
890-2515-12	BH-119 8	Total/NA	Solid	Total BTEX	
890-2515-13	BH-120 8	Total/NA	Solid	Total BTEX	
890-2515-14	BH-121 8	Total/NA	Solid	Total BTEX	
890-2515-15	BH-122 8	Total/NA	Solid	Total BTEX	
890-2515-16	BH-123 8	Total/NA	Solid	Total BTEX	
890-2515-17	BH-124 8	Total/NA	Solid	Total BTEX	
890-2515-18	BH-125 8	Total/NA	Solid	Total BTEX	
890-2515-19	BH-126 8	Total/NA	Solid	Total BTEX	
890-2515-20	BH-127 8	Total/NA	Solid	Total BTEX	
890-2515-21	BH-128 8	Total/NA	Solid	Total BTEX	
890-2515-22	BH-129 8	Total/NA	Solid	Total BTEX	
890-2515-23	BH-130 8	Total/NA	Solid	Total BTEX	
890-2515-24	BH-131 8	Total/NA	Solid	Total BTEX	
890-2515-25	BH-132 8	Total/NA	Solid	Total BTEX	
890-2515-26	BH-133 8	Total/NA	Solid	Total BTEX	
890-2515-27	BH-134 8	Total/NA	Solid	Total BTEX	
890-2515-28	BH-135 8	Total/NA	Solid	Total BTEX	
890-2515-29	BH-136 8	Total/NA	Solid	Total BTEX	
890-2515-30	BH-137 8	Total/NA	Solid	Total BTEX	
890-2515-31	BH-138 8	Total/NA	Solid	Total BTEX	
890-2515-32	BH-139 8	Total/NA	Solid	Total BTEX	
890-2515-33	BH-140 8	Total/NA	Solid	Total BTEX	
890-2515-34	BH-141 8	Total/NA	Solid	Total BTEX	

Prep Batch: 29987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-11	BH-118 10	Total/NA	Solid	5035	
MB 880-29987/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29987/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29987/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA (Continued)

Prep Batch: 29987 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-17011-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-17011-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 30016

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-11	BH-118 10	Total/NA	Solid	8021B	29987
MB 880-29987/5-A	Method Blank	Total/NA	Solid	8021B	29987
LCS 880-29987/1-A	Lab Control Sample	Total/NA	Solid	8021B	29987
LCSD 880-29987/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29987
880-17011-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	29987
880-17011-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	29987

GC Semi VOA

Analysis Batch: 29499

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-1	SW34 0-6	Total/NA	Solid	8015B NM	29557
890-2515-2	SW35 0-6	Total/NA	Solid	8015B NM	29557
890-2515-3	SW36 0-6	Total/NA	Solid	8015B NM	29557
890-2515-4	SW37 0-6	Total/NA	Solid	8015B NM	29557
890-2515-5	BH-106 6	Total/NA	Solid	8015B NM	29557
890-2515-6	BH-108 6	Total/NA	Solid	8015B NM	29557
890-2515-7	BH-114 10	Total/NA	Solid	8015B NM	29557
890-2515-8	BH-115 10	Total/NA	Solid	8015B NM	29557
890-2515-9	BH-116 10	Total/NA	Solid	8015B NM	29557
890-2515-10	BH-117 10	Total/NA	Solid	8015B NM	29557
890-2515-11	BH-118 10	Total/NA	Solid	8015B NM	29557
890-2515-12	BH-119 8	Total/NA	Solid	8015B NM	29557
890-2515-13	BH-120 8	Total/NA	Solid	8015B NM	29557
890-2515-14	BH-121 8	Total/NA	Solid	8015B NM	29557
890-2515-15	BH-122 8	Total/NA	Solid	8015B NM	29557
890-2515-16	BH-123 8	Total/NA	Solid	8015B NM	29557
890-2515-17	BH-124 8	Total/NA	Solid	8015B NM	29557
890-2515-18	BH-125 8	Total/NA	Solid	8015B NM	29557
890-2515-19	BH-126 8	Total/NA	Solid	8015B NM	29557
890-2515-20	BH-127 8	Total/NA	Solid	8015B NM	29557
MB 880-29557/1-A	Method Blank	Total/NA	Solid	8015B NM	29557
LCS 880-29557/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29557
LCSD 880-29557/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29557
890-2515-1 MS	SW34 0-6	Total/NA	Solid	8015B NM	29557
890-2515-1 MSD	SW34 0-6	Total/NA	Solid	8015B NM	29557

Prep Batch: 29557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-1	SW34 0-6	Total/NA	Solid	8015NM Prep	
890-2515-2	SW35 0-6	Total/NA	Solid	8015NM Prep	
890-2515-3	SW36 0-6	Total/NA	Solid	8015NM Prep	
890-2515-4	SW37 0-6	Total/NA	Solid	8015NM Prep	
890-2515-5	BH-106 6	Total/NA	Solid	8015NM Prep	
890-2515-6	BH-108 6	Total/NA	Solid	8015NM Prep	
890-2515-7	BH-114 10	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

2

3

4

O —

9

IU

12

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA (Continued)

Prep Batch: 29557 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-8	BH-115 10	Total/NA	Solid	8015NM Prep	
890-2515-9	BH-116 10	Total/NA	Solid	8015NM Prep	
890-2515-10	BH-117 10	Total/NA	Solid	8015NM Prep	
890-2515-11	BH-118 10	Total/NA	Solid	8015NM Prep	
890-2515-12	BH-119 8	Total/NA	Solid	8015NM Prep	
890-2515-13	BH-120 8	Total/NA	Solid	8015NM Prep	
890-2515-14	BH-121 8	Total/NA	Solid	8015NM Prep	
890-2515-15	BH-122 8	Total/NA	Solid	8015NM Prep	
890-2515-16	BH-123 8	Total/NA	Solid	8015NM Prep	
890-2515-17	BH-124 8	Total/NA	Solid	8015NM Prep	
890-2515-18	BH-125 8	Total/NA	Solid	8015NM Prep	
890-2515-19	BH-126 8	Total/NA	Solid	8015NM Prep	
890-2515-20	BH-127 8	Total/NA	Solid	8015NM Prep	
MB 880-29557/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29557/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29557/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2515-1 MS	SW34 0-6	Total/NA	Solid	8015NM Prep	
890-2515-1 MSD	SW34 0-6	Total/NA	Solid	8015NM Prep	

Prep Batch: 29563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-21	BH-128 8	Total/NA	Solid	8015NM Prep	
890-2515-22	BH-129 8	Total/NA	Solid	8015NM Prep	
890-2515-23	BH-130 8	Total/NA	Solid	8015NM Prep	
890-2515-24	BH-131 8	Total/NA	Solid	8015NM Prep	
890-2515-25	BH-132 8	Total/NA	Solid	8015NM Prep	
890-2515-26	BH-133 8	Total/NA	Solid	8015NM Prep	
890-2515-27	BH-134 8	Total/NA	Solid	8015NM Prep	
890-2515-28	BH-135 8	Total/NA	Solid	8015NM Prep	
890-2515-29	BH-136 8	Total/NA	Solid	8015NM Prep	
890-2515-30	BH-137 8	Total/NA	Solid	8015NM Prep	
890-2515-31	BH-138 8	Total/NA	Solid	8015NM Prep	
890-2515-32	BH-139 8	Total/NA	Solid	8015NM Prep	
890-2515-33	BH-140 8	Total/NA	Solid	8015NM Prep	
890-2515-34	BH-141 8	Total/NA	Solid	8015NM Prep	
MB 880-29563/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29563/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29563/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
390-2515-21 MS	BH-128 8	Total/NA	Solid	8015NM Prep	
890-2515-21 MSD	BH-128 8	Total/NA	Solid	8015NM Prep	

Analysis Batch: 29603

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-21	BH-128 8	Total/NA	Solid	8015B NM	29563
890-2515-22	BH-129 8	Total/NA	Solid	8015B NM	29563
890-2515-23	BH-130 8	Total/NA	Solid	8015B NM	29563
890-2515-24	BH-131 8	Total/NA	Solid	8015B NM	29563
890-2515-25	BH-132 8	Total/NA	Solid	8015B NM	29563
890-2515-26	BH-133 8	Total/NA	Solid	8015B NM	29563
890-2515-27	BH-134 8	Total/NA	Solid	8015B NM	29563
890-2515-28	BH-135 8	Total/NA	Solid	8015B NM	29563

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 29603 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-29	BH-136 8	Total/NA	Solid	8015B NM	29563
890-2515-30	BH-137 8	Total/NA	Solid	8015B NM	29563
890-2515-31	BH-138 8	Total/NA	Solid	8015B NM	29563
890-2515-32	BH-139 8	Total/NA	Solid	8015B NM	29563
890-2515-33	BH-140 8	Total/NA	Solid	8015B NM	29563
890-2515-34	BH-141 8	Total/NA	Solid	8015B NM	29563
MB 880-29563/1-A	Method Blank	Total/NA	Solid	8015B NM	29563
LCS 880-29563/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29563
LCSD 880-29563/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29563
890-2515-21 MS	BH-128 8	Total/NA	Solid	8015B NM	29563
890-2515-21 MSD	BH-128 8	Total/NA	Solid	8015B NM	29563

Analysis Batch: 29634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2515-1	SW34 0-6	Total/NA	Solid	8015 NM	
890-2515-2	SW35 0-6	Total/NA	Solid	8015 NM	
890-2515-3	SW36 0-6	Total/NA	Solid	8015 NM	
890-2515-4	SW37 0-6	Total/NA	Solid	8015 NM	
890-2515-5	BH-106 6	Total/NA	Solid	8015 NM	
890-2515-6	BH-108 6	Total/NA	Solid	8015 NM	
890-2515-7	BH-114 10	Total/NA	Solid	8015 NM	
890-2515-8	BH-115 10	Total/NA	Solid	8015 NM	
890-2515-9	BH-116 10	Total/NA	Solid	8015 NM	
890-2515-10	BH-117 10	Total/NA	Solid	8015 NM	
890-2515-11	BH-118 10	Total/NA	Solid	8015 NM	
890-2515-12	BH-119 8	Total/NA	Solid	8015 NM	
890-2515-13	BH-120 8	Total/NA	Solid	8015 NM	
890-2515-14	BH-121 8	Total/NA	Solid	8015 NM	
890-2515-15	BH-122 8	Total/NA	Solid	8015 NM	
890-2515-16	BH-123 8	Total/NA	Solid	8015 NM	
890-2515-17	BH-124 8	Total/NA	Solid	8015 NM	
890-2515-18	BH-125 8	Total/NA	Solid	8015 NM	
890-2515-19	BH-126 8	Total/NA	Solid	8015 NM	
890-2515-20	BH-127 8	Total/NA	Solid	8015 NM	
890-2515-21	BH-128 8	Total/NA	Solid	8015 NM	
890-2515-22	BH-129 8	Total/NA	Solid	8015 NM	
890-2515-23	BH-130 8	Total/NA	Solid	8015 NM	
890-2515-24	BH-131 8	Total/NA	Solid	8015 NM	
890-2515-25	BH-132 8	Total/NA	Solid	8015 NM	
890-2515-26	BH-133 8	Total/NA	Solid	8015 NM	
890-2515-27	BH-134 8	Total/NA	Solid	8015 NM	
890-2515-28	BH-135 8	Total/NA	Solid	8015 NM	
890-2515-29	BH-136 8	Total/NA	Solid	8015 NM	
890-2515-30	BH-137 8	Total/NA	Solid	8015 NM	
890-2515-31	BH-138 8	Total/NA	Solid	8015 NM	
890-2515-32	BH-139 8	Total/NA	Solid	8015 NM	
890-2515-33	BH-140 8	Total/NA	Solid	8015 NM	
890-2515-34	BH-141 8	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

5

3

5

0

8

9

11

4.0

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

HPLC/IC

Leach Batch: 29401

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2515-21	BH-128 8	Soluble	Solid	DI Leach	_
890-2515-22	BH-129 8	Soluble	Solid	DI Leach	
890-2515-23	BH-130 8	Soluble	Solid	DI Leach	
890-2515-24	BH-131 8	Soluble	Solid	DI Leach	
890-2515-25	BH-132 8	Soluble	Solid	DI Leach	
890-2515-26	BH-133 8	Soluble	Solid	DI Leach	
890-2515-27	BH-134 8	Soluble	Solid	DI Leach	
890-2515-28	BH-135 8	Soluble	Solid	DI Leach	
890-2515-29	BH-136 8	Soluble	Solid	DI Leach	
390-2515-30	BH-137 8	Soluble	Solid	DI Leach	
390-2515-31	BH-138 8	Soluble	Solid	DI Leach	
390-2515-32	BH-139 8	Soluble	Solid	DI Leach	
390-2515-33	BH-140 8	Soluble	Solid	DI Leach	
390-2515-34	BH-141 8	Soluble	Solid	DI Leach	
MB 880-29401/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-29401/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-29401/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-2515-21 MS	BH-128 8	Soluble	Solid	DI Leach	
390-2515-21 MSD	BH-128 8	Soluble	Solid	DI Leach	
390-2515-31 MS	BH-138 8	Soluble	Solid	DI Leach	
890-2515-31 MSD	BH-138 8	Soluble	Solid	DI Leach	

Leach Batch: 29402

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2515-1	SW34 0-6	Soluble	Solid	DI Leach	
890-2515-2	SW35 0-6	Soluble	Solid	DI Leach	
890-2515-3	SW36 0-6	Soluble	Solid	DI Leach	
890-2515-4	SW37 0-6	Soluble	Solid	DI Leach	
890-2515-5	BH-106 6	Soluble	Solid	DI Leach	
890-2515-6	BH-108 6	Soluble	Solid	DI Leach	
890-2515-7	BH-114 10	Soluble	Solid	DI Leach	
890-2515-8	BH-115 10	Soluble	Solid	DI Leach	
890-2515-9	BH-116 10	Soluble	Solid	DI Leach	
390-2515-10	BH-117 10	Soluble	Solid	DI Leach	
890-2515-11	BH-118 10	Soluble	Solid	DI Leach	
390-2515-12	BH-119 8	Soluble	Solid	DI Leach	
390-2515-13	BH-120 8	Soluble	Solid	DI Leach	
890-2515-14	BH-121 8	Soluble	Solid	DI Leach	
390-2515-15	BH-122 8	Soluble	Solid	DI Leach	
390-2515-16	BH-123 8	Soluble	Solid	DI Leach	
390-2515-17	BH-124 8	Soluble	Solid	DI Leach	
390-2515-18	BH-125 8	Soluble	Solid	DI Leach	
390-2515-19	BH-126 8	Soluble	Solid	DI Leach	
390-2515-20	BH-127 8	Soluble	Solid	DI Leach	
MB 880-29402/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29402/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29402/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2515-1 MS	SW34 0-6	Soluble	Solid	DI Leach	
390-2515-1 MSD	SW34 0-6	Soluble	Solid	DI Leach	
390-2515-11 MS	BH-118 10	Soluble	Solid	DI Leach	
890-2515-11 MSD	BH-118 10	Soluble	Solid	DI Leach	

Eurofins Carlsbad

2

3

Λ

6

8

10

12

13

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2515-1

SDG: Lea County NM

HPLC/IC

Analysis Batch: 29640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-1	SW34 0-6	Soluble	Solid	300.0	29402
890-2515-2	SW35 0-6	Soluble	Solid	300.0	29402
890-2515-3	SW36 0-6	Soluble	Solid	300.0	29402
890-2515-4	SW37 0-6	Soluble	Solid	300.0	29402
890-2515-5	BH-106 6	Soluble	Solid	300.0	29402
390-2515-6	BH-108 6	Soluble	Solid	300.0	29402
890-2515-7	BH-114 10	Soluble	Solid	300.0	29402
890-2515-8	BH-115 10	Soluble	Solid	300.0	29402
890-2515-9	BH-116 10	Soluble	Solid	300.0	29402
890-2515-10	BH-117 10	Soluble	Solid	300.0	29402
390-2515-11	BH-118 10	Soluble	Solid	300.0	29402
390-2515-12	BH-119 8	Soluble	Solid	300.0	29402
390-2515-13	BH-120 8	Soluble	Solid	300.0	29402
390-2515-14	BH-121 8	Soluble	Solid	300.0	29402
390-2515-15	BH-122 8	Soluble	Solid	300.0	29402
390-2515-16	BH-123 8	Soluble	Solid	300.0	29402
390-2515-17	BH-124 8	Soluble	Solid	300.0	29402
390-2515-18	BH-125 8	Soluble	Solid	300.0	29402
390-2515-19	BH-126 8	Soluble	Solid	300.0	29402
390-2515-20	BH-127 8	Soluble	Solid	300.0	29402
ИВ 880-29402/1-A	Method Blank	Soluble	Solid	300.0	29402
CS 880-29402/2-A	Lab Control Sample	Soluble	Solid	300.0	29402
CSD 880-29402/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29402
390-2515-1 MS	SW34 0-6	Soluble	Solid	300.0	29402
390-2515-1 MSD	SW34 0-6	Soluble	Solid	300.0	29402
390-2515-11 MS	BH-118 10	Soluble	Solid	300.0	29402
890-2515-11 MSD	BH-118 10	Soluble	Solid	300.0	29402

Analysis Batch: 29646

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2515-21	BH-128 8	Soluble	Solid	300.0	2940
890-2515-22	BH-129 8	Soluble	Solid	300.0	29401
890-2515-23	BH-130 8	Soluble	Solid	300.0	29401
890-2515-24	BH-131 8	Soluble	Solid	300.0	29401
890-2515-25	BH-132 8	Soluble	Solid	300.0	29401
890-2515-26	BH-133 8	Soluble	Solid	300.0	29401
890-2515-27	BH-134 8	Soluble	Solid	300.0	29401
890-2515-28	BH-135 8	Soluble	Solid	300.0	29401
390-2515-29	BH-136 8	Soluble	Solid	300.0	29401
390-2515-30	BH-137 8	Soluble	Solid	300.0	29401
390-2515-31	BH-138 8	Soluble	Solid	300.0	29401
390-2515-32	BH-139 8	Soluble	Solid	300.0	29401
390-2515-33	BH-140 8	Soluble	Solid	300.0	29401
390-2515-34	BH-141 8	Soluble	Solid	300.0	29401
MB 880-29401/1-A	Method Blank	Soluble	Solid	300.0	29401
CS 880-29401/2-A	Lab Control Sample	Soluble	Solid	300.0	29401
CSD 880-29401/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29401
390-2515-21 MS	BH-128 8	Soluble	Solid	300.0	29401
390-2515-21 MSD	BH-128 8	Soluble	Solid	300.0	29401
390-2515-31 MS	BH-138 8	Soluble	Solid	300.0	29401
390-2515-31 MSD	BH-138 8	Soluble	Solid	300.0	29401

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

2

3

5

7

9

10

12

Job ID: 890-2515-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW34 0-6 Lab Sample ID: 890-2515-1

Date Collected: 07/06/22 00:00 **Matrix: Solid** Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/15/22 12:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/12/22 20:46	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 03:51	CH	XEN MID

Client Sample ID: SW35 0-6 Lab Sample ID: 890-2515-2 Date Collected: 07/06/22 00:00

Date Received: 07/08/22 16:08

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 29722 Total/NA 4.98 g 5 mL 07/14/22 09:52 EL XEN MID Total/NA 8021B 5 mL 07/15/22 13:17 XEN MID Analysis 1 5 mL 29790 MR Total/NA Total BTEX 29793 07/15/22 08:13 XEN MID Analysis 1 A.I Total/NA Analysis 8015 NM 29634 07/13/22 09:51 SM XEN MID Total/NA 29557 XEN MID Prep 8015NM Prep 10.01 g 07/12/22 14:24 DM 10 mL Total/NA Analysis 8015B NM 29499 07/12/22 21:50 SM XEN MID 07/11/22 09:13 Soluble KS XEN MID Leach DI Leach 5.02 g 50 mL 29402 Soluble Analysis 300.0 1 29640 07/14/22 04:18 CH XEN MID

Lab Sample ID: 890-2515-3 Client Sample ID: SW36 0-6 Date Collected: 07/06/22 00:00 **Matrix: Solid**

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/15/22 17:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/12/22 22:11	SM	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 04:27	CH	XEN MID

Client Sample ID: SW37 0-6 Lab Sample ID: 890-2515-4 Date Collected: 07/06/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

Released to Imaging: 9/1/2023 2:07:08 PM

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/15/22 16:25	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-2515-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Client Sample ID: SW37 0-6

Lab Sample ID: 890-2515-4

Matrix: Solid

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/12/22 22:33	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 04:37	CH	XEN MID

Client Sample ID: BH-106 6 Lab Sample ID: 890-2515-5

Date Collected: 07/06/22 00:00 **Matrix: Solid** Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/15/22 18:18	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/12/22 22:54	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 04:46	CH	XEN MID

Client Sample ID: BH-108 6 Lab Sample ID: 890-2515-6

Date Collected: 07/06/22 00:00 **Matrix: Solid** Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/15/22 18:38	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/12/22 23:16	SM	XEN MID
Soluble	Leach	DI Leach			4.98 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 08:00	CH	XEN MID

Client Sample ID: BH-114 10 Lab Sample ID: 890-2515-7

Date Collected: 07/06/22 00:00 **Matrix: Solid** Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	29790	07/15/22 19:20	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/13/22 04:16	SM	XEN MID

Client: Tetra Tech, Inc. Job ID: 890-2515-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-114 10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Lab Sample ID: 890-2515-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 08:09	СН	XEN MID

Client Sample ID: BH-115 10 Lab Sample ID: 890-2515-8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	29790	07/15/22 19:40	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/13/22 04:38	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 08:18	CH	XEN MID

Client Sample ID: BH-116 10 Lab Sample ID: 890-2515-9

Date Collected: 07/06/22 00:00

Matrix: Solid

Date Received: 07/08/22 16:08

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		10	5 mL	5 mL	29790	07/15/22 20:01	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/13/22 03:54	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 08:28	CH	XEN MID

Client Sample ID: BH-117 10 Lab Sample ID: 890-2515-10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		10	5 mL	5 mL	29790	07/15/22 20:22	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/13/22 02:50	SM	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 08:37	CH	XEN MID

Eurofins Carlsbad

Matrix: Solid

Client Sample ID: BH-118 10

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Lab Sample ID: 890-2515-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29987	07/18/22 15:14	MR	XEN MID
Total/NA	Analysis	8021B		50			30016	07/19/22 16:21	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		5			29499	07/13/22 03:12	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 08:46	CH	XEN MID

Client Sample ID: BH-119 8 Lab Sample ID: 890-2515-12 Date Collected: 07/06/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	29722	07/14/22 09:52	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/15/22 18:59	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		5			29499	07/13/22 03:33	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		5			29640	07/14/22 09:14	CH	XEN MID

Client Sample ID: BH-120 8 Lab Sample ID: 890-2515-13 Date Collected: 07/06/22 00:00

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 01:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/12/22 23:37	SM	XEN MID
Soluble	Leach	DI Leach			4.97 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		5			29640	07/14/22 09:23	CH	XEN MID

Client Sample ID: BH-121 8 Lab Sample ID: 890-2515-14

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 02:01	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Page 59 of 75

Matrix: Solid

Client Sample ID: BH-121 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Lab Sample ID: 890-2515-14

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/12/22 23:59	SM	XEN MID
Soluble	Leach	DI Leach			4.97 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		20			29640	07/14/22 18:25	CH	XEN MID

Client Sample ID: BH-122 8 Lab Sample ID: 890-2515-15

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab Total/NA 5035 29723 Prep 4.95 g 5 mL 07/14/22 09:57 EL XEN MID Total/NA Analysis 8021B 29700 07/15/22 02:27 MR XEN MID 1 Total/NA Total BTEX 29793 XEN MID Analysis 1 07/15/22 08:13 AJ Total/NA Analysis 8015 NM 29634 07/13/22 09:51 SM XEN MID 1 XEN MID Total/NA Prep 8015NM Prep 10.01 g 10 mL 29557 07/12/22 14:24 DM Total/NA Analysis 8015B NM 29499 07/13/22 00:20 SM XEN MID 1 Soluble Leach DI Leach 4.95 g 50 mL 29402 07/11/22 09:13 KS XEN MID Soluble Analysis 300.0 5 29640 07/14/22 18:34 CH XEN MID

Client Sample ID: BH-123 8

Date Collected: 07/06/22 00:00

Lab Sample ID: 890-2515-16

Matrix: Solid

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 02:54	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/13/22 00:41	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 18:43	CH	XEN MID

Client Sample ID: BH-124 8 Lab Sample ID: 890-2515-17

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 03:20	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	29557 29499	07/12/22 14:24 07/13/22 01:24	DM SM	XEN MID XEN MID

Eurofins Carlsbad

Matrix: Solid

3

5

6

R

3

11

13

Dau

Client Sample ID: BH-124 8

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08 Lab Sample ID: 890-2515-17

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		1			29640	07/14/22 18:52	CH	XEN MID

Lab Sample ID: 890-2515-18 Client Sample ID: BH-125 8

Date Collected: 07/06/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 03:46	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/13/22 01:46	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		5			29640	07/14/22 19:02	CH	XEN MID

Client Sample ID: BH-126 8 Lab Sample ID: 890-2515-19

Initial

Amount

5.00 g

10.01 g

5 g

Final

Amount

5 mL

10 mL

50 mL

29499

29402

29640

Dil

1

1

1

20

Factor

Run

Date Collected: 07/07/22 00:00

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Leach

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Date Received: 07/08/22 16:08

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Batch	Prepared		
Number	or Analyzed	Analyst	Lab
29723	07/14/22 09:57	EL	XEN MID
29700	07/15/22 04:13	MR	XEN MID
29793	07/15/22 08:13	AJ	XEN MID
29634	07/13/22 09:51	SM	XEN MID
29557	07/12/22 14:24	DM	XEN MID

SM

KS

CH

07/13/22 02:07

07/11/22 09:13

07/14/22 19:11

Client Sample ID: BH-127 8 Lab Sample ID: 890-2515-20 Date Collected: 07/07/22 00:00

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 04:39	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29557	07/12/22 14:24	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29499	07/13/22 02:29	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29402	07/11/22 09:13	KS	XEN MID
Soluble	Analysis	300.0		5			29640	07/14/22 19:20	CH	XEN MID

Eurofins Carlsbad

XEN MID

Matrix: Solid

XEN MID

XEN MID

Matrix: Solid

Job ID: 890-2515-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-128 8

Lab Sample ID: 890-2515-21 Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 Total/NA Prep 4.99 g 5 mL 29723 07/14/22 09:57 EL XEN MID 8021B Total/NA Analysis 1 29700 07/15/22 05:05 MR XEN MID Total/NA Analysis Total BTEX 29793 07/15/22 08:13 AJ XEN MID 1 Total/NA 8015 NM 29634 Analysis 1 07/13/22 09:51 SM XEN MID Total/NA 8015NM Prep 29563 07/12/22 15:30 XEN MID Prep 10.03 g 10 mL DM Total/NA Analysis 8015B NM 29603 07/13/22 11:31 AJ XEN MID Soluble DI Leach 4.96 g 50 mL 29401 07/11/22 09:10 KS XEN MID Leach Soluble Analysis 300.0 29646 07/14/22 07:28 CH XEN MID

Client Sample ID: BH-129 8 Lab Sample ID: 890-2515-22

Date Collected: 07/07/22 00:00 **Matrix: Solid** Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 05:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 12:36	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 07:52	CH	XEN MID

Client Sample ID: BH-130 8 Lab Sample ID: 890-2515-23

Date Collected: 07/07/22 00:00 **Matrix: Solid** Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 07:18	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 12:58	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 08:00	CH	XEN MID

Lab Sample ID: 890-2515-24 Client Sample ID: BH-131 8

Date Collected: 07/07/22 00:00 **Matrix: Solid** Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 07:45	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID

Client Sample ID: BH-131 8

Lab Sample ID: 890-2515-24 Date Collected: 07/07/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 13:20	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 08:07	CH	XEN MID

Lab Sample ID: 890-2515-25 Client Sample ID: BH-132 8

Date Collected: 07/06/22 00:00 **Matrix: Solid**

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 08:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 13:41	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 08:15	CH	XEN MID

Client Sample ID: BH-133 8 Lab Sample ID: 890-2515-26

Date Collected: 07/06/22 00:00 Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 08:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 14:03	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 08:39	CH	XEN MID

Lab Sample ID: 890-2515-27 Client Sample ID: BH-134 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 09:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	29563 29603	07/12/22 15:30 07/13/22 14:24	DM AJ	XEN MID XEN MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2515-1 SDG: Lea County NM

Client Sample ID: BH-134 8 Lab Sample ID: 890-2515-27 Date Collected: 07/07/22 00:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.99 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 08:47	CH	XEN MID

Client Sample ID: BH-135 8 Lab Sample ID: 890-2515-28

Matrix: Solid

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 09:42	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 14:45	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 10:01	CH	XEN MID

Client Sample ID: BH-136 8 Lab Sample ID: 890-2515-29

Date Collected: 07/07/22 00:00 **Matrix: Solid**

Date Received: 07/08/22 16:08

Final Batch Dil Initial Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.00 g 5 mL 29723 07/14/22 09:57 EL XEN MID Total/NA 8021B 29700 07/15/22 10:08 XEN MID Analysis MR Total/NA Analysis Total BTEX 1 29793 07/15/22 08:13 AJ XEN MID Total/NA Analysis 8015 NM 1 29634 07/13/22 09:51 SM XEN MID Total/NA Prep 8015NM Prep 10.01 g 29563 07/12/22 15:30 DM XEN MID 10 mL Total/NA Analysis XEN MID 8015B NM 1 29603 07/13/22 15:07 AJ Soluble Leach DI Leach 5.02 g 50 mL 29401 07/11/22 09:10 KS XEN MID Soluble Analysis 300.0 1 29646 07/14/22 10:09 CH XEN MID

Lab Sample ID: 890-2515-30 Client Sample ID: BH-137 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 10:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 15:28	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 10:17	CH	XEN MID

Eurofins Carlsbad

Matrix: Solid

Client Sample ID: BH-138 8

Lab Sample ID: 890-2515-31 Date Collected: 07/07/22 00:00

Matrix: Solid

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 11:01	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 16:11	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 10:25	CH	XEN MID

Client Sample ID: BH-139 8 Lab Sample ID: 890-2515-32

Date Collected: 07/07/22 00:00 Matrix: Solid

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29723	07/14/22 09:57	EL	XEN MID
Total/NA	Analysis	8021B		1			29700	07/15/22 11:27	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 16:32	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		5			29646	07/14/22 15:23	CH	XEN MID

Client Sample ID: BH-140 8 Lab Sample ID: 890-2515-33 Date Collected: 07/06/22 00:00 **Matrix: Solid**

Date Received: 07/08/22 16:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035		·	5.03 g	5 mL	29739	07/14/22 10:08	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/15/22 23:49	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 16:53	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		1			29646	07/14/22 15:31	CH	XEN MID

Client Sample ID: BH-141 8 Lab Sample ID: 890-2515-34 Date Collected: 07/07/22 00:00 **Matrix: Solid**

Date Received: 07/08/22 16:08

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	29739	07/14/22 10:08	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29790	07/16/22 00:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			29793	07/15/22 08:13	AJ	XEN MID

Eurofins Carlsbad

Page 65 of 75

Lab Chronicle

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-141 8

Date Collected: 07/07/22 00:00 Date Received: 07/08/22 16:08 Lab Sample ID: 890-2515-34

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29634	07/13/22 09:51	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29563	07/12/22 15:30	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29603	07/13/22 17:15	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29401	07/11/22 09:10	KS	XEN MID
Soluble	Analysis	300.0		5			29646	07/14/22 15:55	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

9

3

4

5

7

9

10

13

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report by	it the leberatory is not cortifi	ad by the gayerning outbority. This list may	arrimalizada amaliztaa farri
the agency does not of	• •	it the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for t
,	• •	Matrix	ed by the governing authority. This list ma	ay include analytes for t
the agency does not of	fer certification.	•	, , ,	ay include analytes for v

3

4

5

4.6

11

13

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2515-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

5

7

9

10

40

<u> 13</u>

_ _ _

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2515-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2515-1	SW34 0-6	Solid	07/06/22 00:00	07/08/22 16:08	0 - 6
890-2515-2	SW35 0-6	Solid	07/06/22 00:00	07/08/22 16:08	0 - 6
890-2515-3	SW36 0-6	Solid	07/06/22 00:00	07/08/22 16:08	0 - 6
890-2515-4	SW37 0-6	Solid	07/06/22 00:00	07/08/22 16:08	0 - 6
890-2515-5	BH-106 6	Solid	07/06/22 00:00	07/08/22 16:08	6
890-2515-6	BH-108 6	Solid	07/06/22 00:00	07/08/22 16:08	6
890-2515-7	BH-114 10	Solid	07/06/22 00:00	07/08/22 16:08	10
890-2515-8	BH-115 10	Solid	07/06/22 00:00	07/08/22 16:08	10
890-2515-9	BH-116 10	Solid	07/06/22 00:00	07/08/22 16:08	10
890-2515-10	BH-117 10	Solid	07/06/22 00:00	07/08/22 16:08	10
890-2515-11	BH-118 10	Solid	07/06/22 00:00	07/08/22 16:08	10
890-2515-12	BH-119 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-13	BH-120 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-14	BH-121 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-15	BH-122 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-16	BH-123 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-17	BH-124 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-18	BH-125 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-19	BH-126 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-20	BH-127 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-21	BH-128 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-22	BH-129 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-23	BH-130 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-24	BH-131 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-25	BH-132 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-26	BH-133 8	Solid	07/06/22 00:00	07/08/22 16:08	8
890-2515-27	BH-134 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-28	BH-135 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-29	BH-136 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-30	BH-137 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-31	BH-138 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-32	BH-139 8	Solid	07/07/22 00:00	07/08/22 16:08	8
890-2515-33	BH-140 8	Solid	07/06/22 00:00	07/08/22 16:08	8

Solid

07/07/22 00:00

07/08/22 16:08 8

9

Δ

5

8

9

10

12

13

1 4

890-2515-34

BH-141 8

Perman Water Solutions	Ralinquished by	Ag back nbatas	Per											CAN SAN	LAB *		Comments	Macetary Bases	CIN HEALDWAY	roped Location	reject Marea	Crent Mame	급
Solutions - Dusy McInium Respect Syndrom Case Concates Transcription Ca	¥	*	77	BH-117 (101)	BH-116 (10)	ВН-115 (10)	BH-114 (101)	BH 102 (6)	BH-106 (6)	\$14-37 (0-6)	S##-36 (0-61)	SW 35 (8-6)	SW-34 (0-6)		SAA							Permian '	
She Marager Clair Conzales Clair Conzales Peyton Officer P			3												IPLE IDENTIFICATION			(enco	Nater Solutions - Dusty Mointurf	N. NM	۷D	Water Solutions	
Convained fill formation of custody Call Convained file formation of custody ANALYSIS REQUEST Convained file formation ANALYSIS REQUEST Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver ANALYSIS REQUEST Convained file formation ANALYSIS REQUEST ANALYSIS REQUEST Convained file formation ANALYSIS REQUEST ANALYSIS REQUEST Convained file formation ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST Convained file formation ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST Convained file formation ANALYSIS REQUEST ANALYSIS RE	Received by	косомев ву	Close	76/2022	76/2022	7/6/2022	76/2022	7/6/2022	760202	760002	7 6/2/22	7 6:2022	760000		Mary SA P	SAMPLING		Sampler Signature		Project #		Site Manager	88 ≣
ANALYSIS REDUEST ANALYSIS REPORTS FILTERED (Y/N) FILTERED (D.		8. L M		×	×	×	×	×	×	×	×	×	WATE! SOIL	2			Peyton		212C-N	Conveles of labor	Clair Gonz	0-2515 Chain of C
ANALYSIS REQUEST ANALYSIS REPARTMENT AT THE TATOLOGICAL COLORS ANALYSIS REQUEST ANALYSIS REPARTMENT AT THE TATOLOGICAL COLORS ANALYSIS RECUEST ANALYSIS REPARTMENT AT THE TATOLOGICAL COLORS ANALYSIS RECUEST ANALYSIS REPARTMENT AT THE TATOLOGICAL COLORS			0	×	×	×	×	×	×	×	×	×	×	HNO ICE		PRESERVATING		Oliver		ID-02230	lech com	ales	Sustody
TCLP Verifies TCLP Gene Votaties TCLP Gene Votaties RCI RCI RCI RUSH Charles Verifies 4 CCLMS Service 42908 1624 CCLMS Service Verifies 4 CCLMS Service Verifies 4 PCB's HORD 1038 NORM PLM (Astestics) X X X X X X X X X X X X X Charles Chloride Sulfate TDS General Water Coemistry (see attached list) Anion/Cation Balance	ر س	ρ Î												FILTER BIEX B	ED (V	(Na) H-11- H-11-kc	G3(5)					ANAL	
RCI RCI RCI RCI RCI RCI RCI RCI RCI RCI	09													PAH 82 Total Me TCLP M TCLP Vo	700 tais A etais A	s As E	la Co Cr Ha Cd C	Pb Se	На			YSIS REQUEST	
PLM (Astesica) PLM (Astesica) PLM (Special Raport in	Rush Chages Aut	57	SXS										GCIMS GCIMS PCBS N NORM	Serie S CHO 4 i	on F		7,				Spe	
	* or TERP Resort		34 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10	×	×	×	×	×	×	×	×	×	×	Cho file Chloridi Genera	Si Wale	ul later	mistry (588 UŠ	3. 'Re 3	list;		Z	

3

<u>-</u>5

6

8

10

12

TOTAL Metals Ag As Ba Cd Cr Pt Se Hg TOLP Velaties TOLP Velaties TOLP Servi Velaties	Perman Water Solutions
Solutions Class Convenience Class Convenience Class Convenience Class Convenience Class Convenience Propert is 2 12 C-MD-02230 Class Convenience Propert is 2 12 C-MD-02230 Class Convenience Propert is 2 12 C-MD-02230 Class Convenience Propert is Class Convenience Propert is Class Convenience Propert is Class Convenience Propert is Class Convenience Propert is Class Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Propert is Convenience Convenience Propert is Convenience Convenience Propert is Convenience Convenience Convenience Propert is Convenience	Solutions Solutions Class Contralles Class Contralles Class Contralles Charles Physical Contralles Charles Physical Contralles Contralles AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method Contralles AMALYSIS REQUEST (Circle or Specify Method Contralles AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method Circle or Specify Method Circle or Specify Method AMALYSIS REQUEST (Circle or Specify Method C
Site Manager: Class Gonzales Spinitures Project 6 212C-MD-02236 Project 6 212C-MD-02236 Project 6 212C-MD-02236 ANALYSIS REQUEST Class Gonzales Spinitures Project 6 212C-MD-02236 ANALYSIS REQUEST (Circle of Circle	Ster Name of Springer
Clar Conzales Distriction WATER WATER WATER Peyton Oliver Peyton Oliver ANALYSIS REQUEST Clar Conzales Distriction Peyton Oliver ANALYSIS REQUEST Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling (Circle On The Conzales Distriction Colling ANALYSIS REQUEST (Circle On The Conzales Distriction Colling (Circle On The Conz	Clair Contailes Time Peyton Oliver Peyton Ol
ANALYSIS REQUES WAY AND ANALYSIS REQUES FILTERED (Y/N) ANALYSIS REQUES FILTERED (Y/N) ANALYSIS REQUES FILTERED (Y/N) FI	ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SERVICE CITCLE OF SERVICE CITCLE OF SERVICE CITCLE OF SERVICE ANALYSIS REQUEST CITCLE OF SERVICE CITCLE OF SE
ANALYSIS REQUES TO P Metals Ag As Ba Cd Cr Pti Se Hg TCLP Violaties TCLP Seria Violaties	ANALYSIS REQUEST FILTERED (Y/N)
TOLP Wetalles TOLP Wetalles TOLP Serra Volatiles TOLP Serra Volatiles	Temporal Per Volume Value
TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes TCLP Sens Volumes	STANDARD STANDA
	NDRM REMARKS SURVEYOR REMARKS

Tetra Tech, Inc.	Pentrian Water Solutions - Dusty Maintain Lea County, NM Pentrian Water Solutions - Dusty Maintain Lea County, NM Pentrian Water Solutions - Dusty Maintain Lea County, NM Pentrian Water Solutions - Dusty Maintain Pentrian Water Solutions - Pentrian Water Solution Pentrian Water Solutions - Pentrian Water Solution Pentrian Water Solutions - Pentrian Water Solution Pentrian Water Solutions - Pentrian Water Solution Pentrian Water Solutions - Pentrian Water Solution Pentrian Water Solutions - Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian Water Solution Pentrian		Relinquished by		Raingu stad by	1											C COREY	LAB #		Comments:	Receiving Leboratory	מו אמונגא לם	(countly state)	Project Name	Clent Name	ति
Solutions Clar Conzules Cleratech com Proper e Clar Conzules Cleratech com Proper e 212C-MD-02230 Character Sample Squelos Proper e 212C-MD-02230 Character Proper e 212C-MD-02230 Character Proper e 212C-MD-02230 Character Proper e 212C-MD-02230 Character Proper e 212C-MD-02230 Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST ANALYSIS REQUEST Character Proper e 212C-MD-02230 ANALYSIS REQUEST	Solutions - Dusty Michitarii Service Segment - Clar Controlles Clar Controlles		S.A.		2	1	BH-137 (8°)	BH-136 (8°)	BH-135 (8)	BH-134 (S)	BH-133 (8)	BH-132 (8)	BH-131 (8)	BH-130 (8)	BH-129 (8)	BH-128 (81)									Permi	
Clar Conzales Cler and the state of the stat	Time Clar Contailes Peyton Oliver				PL.	7												SAMPLE IDENTIFICATION			s Xenco		uniy, NM	SWD	an Water Solutions	etra Tech, Inc.
ANALYSIS REQUES **CONTAINERS FILTERED [YIN] **CONTAINERS FILTERED [YIN] **THE TX TOTAL BACK (C.S.D.) **X X X X X X X X X X X X X X X X X X	ANALYSIS REQUEST # CONTAINERS # CONTAINERS # LERED IVINI Fil. TERED IVINI Fil. TE		Received by		k		77/2022	7/7/2022	7/7/2022	177222	76/2022	76/2022	7772022	7/7/2022	17-2022	77000		A by la	SAMPLING		Sampler Signature		Project a	Clare	Site Manager	
ANALYSIS REQUES TOTAL P Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volations TCLP Semi Volations TCLP Semi Volations TCLP Semi Volations	ANALYSIS REQUEST # CONTAINERS # CONTAINERS # CONTAINERS # ITERED (MIN) Fill Tered (Min) Fill Tered (Min) Fill Tered (Min)		D		1	5		×	×	×	×	×	×	×	×	×	SOIL	R			Peyton (212C-M	onzales Cleira	Clair Gonza	
FILTERED IMM FILTERED IMM FILTERED IMM ANALYSIS REPORT FILTERED IMM FILT	ANALYSIS REQUEST ANALYSIS REQ						×	×	×	×	×	×	×	×	×	×	HNO IÇE		PRESERVATIVE METHOD		Oliver		D-02230	lech com	akes	
Total Metals Ag As Ba Co Cr Pt Se Hg TCLP Volumes TCLP Servi Volumes TCLP Servi Volumes TCLP Servi Volumes TCLP Servi Volumes	Temperature Value	ò					×	×	×	×	×	×	×	×	X	×	r I I E	KED I	/N)	x paid					Þ	
TCLP Volation	TCLP Voluties TCLP Semi Volutions TCLP Semi Volutions TCLP Semi Volutions TCLP Semi Volutions TCLP Semi Volutions TCLP Semi Volutions TCLP Semi Volutions TCLP Semi Volutions TCLP Semi Volutions TCLP Vo	HAND DEL		Colo l'Englishman		USE	×	×	×	×	×	×	×	×	×	×	TPH III PAH B Total M	state) 2700 etala A	isko	DRO ia Co Cr	Ft Se	113			NALYSIS REC	
PCRS DIRECTOR NORM PCRS DIRECTOR NORM PLM (Askestor) X X X X X X X X X X X X Chicago Chloride Substanting		FEDEX.	Special R	Russi Ch		×	REMARKS										TIGLE S RIGH GIG MS	ierans Vi	ola 1 (p.)	624					20	
		February #	laport 1 mrs or "Ri	riges Authorized	12 de	NDARO	×	×	×	×	×	×	×	×	×	×	HORM NORM PLN / Che to	ni ni o sienic	(v.18)						Method	

	Relinqueshed by		Rainquest de by	Astronomic History									CAB *		Comments:	Receiving Lebaretary	מו פנונאילונ	county states	Project Name	C ent Name	त्र	
	ñγ		NA COL	1/				100	DU 140 (0)	BH.140 (8)	0 10 10 10	BH-132-18	\$			Eurofins Xenco		Lea County, NM	Kaiser SWD	Permur		}
	Ozio Time		778	7/8/77 1609									SAMPLE IDENTIFICATION			Xenco	Permian Water Solutions - Dusty McInturff	nty. NM	SWD	Perman Water Solutions	letra lech, inc.	
	Received		Received by	March of the last				7	220033	76-2-22		77.2.72	DATE :	SAMPLING		Sampler Signature		Project #	Clar G	Site Manager		
	D	_	1	0, 7, 0				2	×)	××	×	×	WATER SOIL	MATRIX		Peyton Oliver		212C-N	Clar Gonzales@letratech.com	Clar Gonzales	Tel Har plants	Made and the
	Dake Tere		Date 1 me	Date lie				3	× :	×	*	×	HCL HNO ICE None	4671400	PRESENVATIVE	Oliver		212C-MD-02230	lech com	ales		2017/05
													# CONTAIN									
C det			ares	3	H			- 1	×	× :	×	×	BIEX BOTT	-	IER EZE	B			_	NA		
HAN			arreladua, aci	USE	士			3	×	× :	×	×	TPH RUTER	Hel 18		ORO -	MRO:			ANALYSIS REQUEST		
HAND DE			Def 31	E ONLY		+-		-	-	-	+		PAH 82700 Total Metals		s Ha Co O	Pt Se	Hip			Sis		
VERI-II			el						1	\pm			TC. P Meta	s Ag A						REQUES		
			П	REMARKS	-	++	+	-	+	-	+		TCLP Votati TCLP Semi		93					JES1		
x4034	Spa	H 5	RUSH	S		11			1				RCI							or S		
Sedf	<u>20</u>	Rush Charges Authorized		STANDARD	\vdash	+	-		+	\dashv	+		GCMS Sen			99				500		
	pos	a'ges	Sarre Dey	ON					1			_	PER'S NER							Ž		
Training #	7	ALT	Dey	RO		\perp		1	1				NORM	10.00						2		
-	3.	21.5	24 h		-	++	+		×	×	×	×	Charles Charles	1091						ethod		
П	RRA	La							1					Salta				1		No		
	Special Report I in ton TRRP Report		2			++	-	-	+		\dashv		General W An on/Cate		-	jsee at	luched	tist]		0		
	8		A.		廿	H			1													
			-11			H			1	\neg	4			**								
					1 1			1	- 1	- 1	- 1											

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2515-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 2515 List Number: 1 Creator: Clifton, Cloe

Question Answer	Comment
The cooler's custody seal, if present, is intact.	
Sample custody seals, if present, are intact.	
The cooler or samples do not appear to have been compromised or tampered with.	
Samples were received on ice.	
Cooler Temperature is acceptable.	
Cooler Temperature is recorded. True	
COC is present. True	
COC is filled out in ink and legible.	
COC is filled out with all pertinent information.	
Is the Field Sampler's name present on COC?	
There are no discrepancies between the containers received and the COC. True	
Samples are received within Holding Time (excluding tests with immediate True HTs)	
Sample containers have legible labels. True	
Containers are not broken or leaking.	
Sample collection date/times are provided.	
Appropriate sample containers are used.	
Sample bottles are completely filled. True	
Sample Preservation Verified. N/A	

True

N/A

4

7/20/2022

MS/MSDs

<6mm (1/4").

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2515-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 07/12/22 11:11 AM

Creator: Rodriguez, Leticia

Login Number: 2515

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

12

13

14

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2553-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Brittany Long

RAMER

Authorized for release by: 7/20/2022 11:48:05 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2553-1 SDG: Lea County NM

Table of Contents

1
2
3
4
5
21
23
29
34
41
42
43
44
46

3

÷

6

8

10

40

13

Definitions/Glossary

Job ID: 890-2553-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. F2 MS/MSD RPD exceeds control limits

GC Semi VOA

Qualifier **Qualifier Description**

HPLC/IC Qualifier

Qualifier Description

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Indicates the analyte was analyzed for but not detected.

Indicates the analyte was analyzed for but not detected.

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2553-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2553-1

Receipt

The samples were received on 7/12/2022 4:57 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 36.2°C

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-29774 and analytical batch 880-29893 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29947 and analytical batch 880-30015 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29754 and analytical batch 880-29864 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

6

4

5

0

_

9

11

_ _ _ _ _ _

Lab Sample ID: 890-2553-1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-142 5'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 5'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U F1	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:27	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:27	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:27	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		07/14/22 16:53	07/18/22 12:27	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:27	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		07/14/22 16:53	07/18/22 12:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				07/14/22 16:53	07/18/22 12:27	1
1,4-Difluorobenzene (Surr)	107		70 - 130				07/14/22 16:53	07/18/22 12:27	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			07/19/22 09:14	1
Made de 0045 NM - Diagram		0) (00)							
Method: 8015 NM - Diesel Range	•		RL	MDL	l lmi4	D	Duamanad	Amalumad	Dil Fac
Analyte		Qualifier		MDL	mg/Kg	— <u>–</u>	Prepared	Analyzed	DII Fac
Total TPH	<50.0	U						07/40/22 00:27	
			50.0		mg/rtg			07/18/22 09:27	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)	50.0		mg/rtg			07/18/22 09:27	1
Method: 8015B NM - Diesel Ran Analyte	• •	RO) (GC) Qualifier	50.0 RL	MDL		D	Prepared	07/18/22 09:27 Analyzed	Dil Fac
Analyte Gasoline Range Organics	• •	Qualifier		MDL		<u>D</u>	Prepared 07/15/22 08:42		Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	RL	MDL	Unit	<u>D</u>	<u>·</u>	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0	Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	07/15/22 08:42	Analyzed 07/15/22 11:12	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	Qualifier U U U	RL 50.0	MDL	Unit mg/Kg mg/Kg	<u> </u>	07/15/22 08:42 07/15/22 08:42	Analyzed 07/15/22 11:12 07/15/22 11:12	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <50.0	Qualifier U U U	RL 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42	Analyzed 07/15/22 11:12 07/15/22 11:12 07/15/22 11:12	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate	Result	Qualifier U U U	RL 50.0 50.0 50.0 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u> </u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared	Analyzed 07/15/22 11:12 07/15/22 11:12 07/15/22 11:12 Analyzed	Dil Face 1 1 1 Dil Face
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70.130	MDL	Unit mg/Kg mg/Kg	<u> </u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared 07/15/22 08:42	Analyzed 07/15/22 11:12 07/15/22 11:12 07/15/22 11:12 Analyzed 07/15/22 11:12	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70.130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared 07/15/22 08:42	Analyzed 07/15/22 11:12 07/15/22 11:12 07/15/22 11:12 Analyzed 07/15/22 11:12	Dil Face 1 1 1 Dil Face

Client Sample ID: BH-143 5'

Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Sample Depth: 5'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:48	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:48	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:48	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/14/22 16:53	07/18/22 12:48	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:48	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/14/22 16:53	07/18/22 12:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				07/14/22 16:53	07/18/22 12:48	1

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

2

5

7

9

11

13

14

Lab Sample ID: 890-2553-2

Matrix: Solid

Lab Sample ID: 890-2553-2

Lab Sample ID: 890-2553-3

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-143 5'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 5'

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98	70 - 130	07/14/22 16:53	07/18/22 12:48	1

ı	Mothodi	Total DTEV	- Total BTEX	Coloulation
ı	wethou.	TOTAL DIEV	- IUIAI DIEA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399		mg/Kg		_	07/19/22 09:14	1

l .		
Mothod: 904E NM Dia	sel Range Organics (DRO) (GC)	١
INICITIOU. OUTS ININI - DIC	sel Kalige Organics (DKO) (GC)	,

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			07/18/22 09:27	1

Method: 8015B NM - Diese	I Range Organics (D	RO) (GC)
--------------------------	---------------------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 12:16	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 12:16	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 12:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1-Chlorooctane	99	70 - 130
o-Terphenyl	104	70 - 130

– Method: 300.0 - Anions, Ion Chromatograp	hy - Soluble				
o-Terphenyl	104	70 - 130	07/15/22 08:42	07/15/22 12:16	1
1-Chlorooctane	99	70 - 130	07/15/22 08:42	07/15/22 12:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	984		4.98		mg/Kg			07/16/22 21:42	1

Client Sample ID: BH-144 5'

Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Sample Depth: 5'

Method: 8021B - Volatile Organic Compounds (GC)			
	Mothod: 9021D	Volatile Organie	Compounde (CC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 13:09	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 13:09	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 13:09	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/14/22 16:53	07/18/22 13:09	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 13:09	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/14/22 16:53	07/18/22 13:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				07/14/22 16:53	07/18/22 13:09	1
1,4-Difluorobenzene (Surr)	96		70 - 130				07/14/22 16:53	07/18/22 13:09	1

Method: Tot	al RTFY -	Total RTFY	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg		_	07/19/22 09:14	1

Method: 8015 NM - Diesel	Range Organics	(DRO)	(GC)	١
Mictilioa. 00 10 Min - Diesei	Range Organics	(Divo)	(\mathbf{c})	ı.

Analyte	Result	Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac
Total TPH	226		50.0	mg	g/Kg			07/18/22 09:27	1

Lab Sample ID: 890-2553-3

Lab Sample ID: 890-2553-4

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-144 5'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 5'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 14:02	1
Diesel Range Organics (Over C10-C28)	226		50.0		mg/Kg		07/15/22 08:42	07/15/22 14:02	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 14:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				07/15/22 08:42	07/15/22 14:02	1
o-Terphenyl	86		70 - 130				07/15/22 08:42	07/15/22 14:02	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			4.99		mg/Kg			07/16/22 21:52	

Client Sample ID: BH-145 5'

Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Sample Depth: 5'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 13:30	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 13:30	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 13:30	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/14/22 16:53	07/18/22 13:30	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 13:30	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/14/22 16:53	07/18/22 13:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				07/14/22 16:53	07/18/22 13:30	1
1,4-Difluorobenzene (Surr)	108		70 - 130				07/14/22 16:53	07/18/22 13:30	1
Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			07/19/22 09:14	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/18/22 09:27	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 12:37	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 12:37	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	78		70 - 130				07/15/22 08:42	07/15/22 12:37	1
o-Terphenyl	82		70 ₋ 130				07/15/22 08:42	07/15/22 12:37	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2553-1

SDG: Lea County NM

Client Sample ID: BH-145 5'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 5'

Lab Sample ID: 890-2553-4

Matrix: Solid

Method: 300.0 - Anions, Ion Chror	matography - Soluble						
Analyte	Result Qualifier	RL	MDL Ur	nit D	Prepared	Analyzed	Dil Fac
Chloride	903	5.00	mç	g/Kg		07/16/22 22:01	1

Client Sample ID: BH-146 5' Lab Sample ID: 890-2553-5 **Matrix: Solid**

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 5'

Analyte

(GRO)-C6-C10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 13:51	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 13:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 13:51	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/14/22 16:53	07/18/22 13:51	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 13:51	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/14/22 16:53	07/18/22 13:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/14/22 16:53	07/18/22 13:51	1
1,4-Difluorobenzene (Surr)	111		70 - 130				07/14/22 16:53	07/18/22 13:51	1

Total BTEX	<0.00399	U	0.00399		mg/Kg			07/19/22 09:14	1
Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/18/22 09:27	1
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 12:58	1

MDL Unit

Prepared

Analyzed

Result Qualifier

o-Terphenyl	82		70 - 130		07/15/22 08:42	07/15/22 12:58	
1-Chlorooctane	77		70 - 130		07/15/22 08:42	07/15/22 12:58	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	07/15/22 08:42	07/15/22 12:58	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg	07/15/22 08:42	07/15/22 12:58	1

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	751		4.96		mg/Kg			07/16/22 22:10	1

Eurofins Carlsbad

Dil Fac

Lab Sample ID: 890-2553-6

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-147 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 14:11	
Toluene	< 0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 14:11	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 14:11	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/14/22 16:53	07/18/22 14:11	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 14:11	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/14/22 16:53	07/18/22 14:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	106		70 - 130				07/14/22 16:53	07/18/22 14:11	
1,4-Difluorobenzene (Surr)	110		70 - 130				07/14/22 16:53	07/18/22 14:11	
Method: Total BTEX - Total BTI	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/19/22 09:14	
Method: 8015 NM - Diesel Rang	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	537		50.0		mg/Kg			07/18/22 09:27	
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 15:52	
Diesel Range Organics (Over C10-C28)	478		50.0		mg/Kg		07/15/22 08:42	07/15/22 15:52	
Oll Range Organics (Over C28-C36)	59.0		50.0		mg/Kg		07/15/22 08:42	07/15/22 15:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	85		70 - 130				07/15/22 08:42	07/15/22 15:52	
o-Terphenyl	88		70 - 130				07/15/22 08:42	07/15/22 15:52	
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: BH-148 6' Lab Sample ID: 890-2553-7 Matrix: Solid

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 14:32	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 14:32	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 14:32	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/14/22 16:53	07/18/22 14:32	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/14/22 16:53	07/18/22 14:32	1
Xylenes, Total	< 0.00402	U	0.00402		mg/Kg		07/14/22 16:53	07/18/22 14:32	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2553-1

SDG: Lea County NM

Lab Sample ID: 890-2553-7

Lab Sample ID: 890-2553-8

Matrix: Solid

Client Sample ID: BH-148 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130	07/14/22 16:53	07/18/22 14:32	1
1,4-Difluorobenzene (Surr)	96		70 - 130	07/14/22 16:53	07/18/22 14:32	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			07/19/22 09:14	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qualifie	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	190	49.9	mg/Kg			07/18/22 09:27	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 14:24	1
Diesel Range Organics (Over C10-C28)	138		49.9		mg/Kg		07/15/22 08:42	07/15/22 14:24	1
Oll Range Organics (Over C28-C36)	52.3		49.9		mg/Kg		07/15/22 08:42	07/15/22 14:24	1

Surrogate	%Recovery 0	Qualifier	Limits	Prepared	d Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130	07/15/22 08	3:42 07/15/22 14:24	1 1
o-Terphenyl	101		70 - 130	07/15/22 08	3:42 07/15/22 14:24	1 1

Method: 300.0 - Anions, Ion Chron	natography - Soluble						
Analyte	Result Qualifier	RL	MDL U	Init D	Prepared	Analyzed	Dil Fac
Chloride	6.69	4.97	m	na/Ka		07/16/22 22:47	1

Client Sample ID: BH-149 6'

Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Sample Depth: 6'

Total BTEX

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 14:53	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 14:53	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 14:53	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/14/22 16:53	07/18/22 14:53	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/14/22 16:53	07/18/22 14:53	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/14/22 16:53	07/18/22 14:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/14/22 16:53	07/18/22 14:53	1
1,4-Difluorobenzene (Surr)	110		70 - 130				07/14/22 16:53	07/18/22 14:53	1

07/19/22 09:14

0.00404

mg/Kg

<0.00404 U

Client: Tetra Tech, Inc.

Job ID: 890-2553-1 SDG: Lea County NM

Project/Site: Kaiser SWD

Lab Sample ID: 890-2553-8

Lab Sample ID: 890-2553-9

Matrix: Solid

Matrix: Solid

Client Sample ID: BH-149 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	64.6		49.9		mg/Kg			07/18/22 09:27	1
Method: 8015B NM - Diesel Range	e Organics (DF	RO) (GC)							
Method: 8015B NM - Diesel Rang Analyte	,	RO) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_	,	Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 07/15/22 08:42	Analyzed 07/15/22 17:38	Dil Fac
Analyte	Result	Qualifier		MDL		<u>D</u>			Dil Fac

C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	07/15/22 08:42	07/15/22 17:38	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130		07/15/22 08:42	07/15/22 17:38	1
o-Terphenyl	91		70 - 130		07/15/22 08:42	07/15/22 17:38	1

Method: 300.0 - Anions, Ion Chron	natography -	Soluble								
Analyte	Result	Qualifier	RL	MDL	Unit	D	- 1	Prepared	Analyzed	Dil Fac
Chloride	7.07		4.98		mg/Kg				07/16/22 22:56	1

Client Sample ID: BH-150 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Method: 8021B - Volatile Orga	•	•				_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 15:14	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 15:14	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 15:14	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/14/22 16:53	07/18/22 15:14	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 15:14	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/14/22 16:53	07/18/22 15:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				07/14/22 16:53	07/18/22 15:14	1
1.4-Difluorobenzene (Surr)	108		70 - 130				07/14/22 16:53	07/18/22 15:14	1

Method: Total BTEX - Total BTEX Calculation										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00399	U	0.00399		mg/Kg			07/19/22 09:14	1

Method: 8015 NM - Diesel Range (Organics (DRO) ((GC)						
Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	83.6	50.0		mg/Kg			07/18/22 09:27	1

Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 17:17	1
Diesel Range Organics (Over C10-C28)	83.6		50.0		mg/Kg		07/15/22 08:42	07/15/22 17:17	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 17:17	1

Matrix: Solid

Lab Sample ID: 890-2553-9

Lab Sample ID: 890-2553-10

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-150 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	96	70 - 130	07/15/22 08:42	07/15/22 17:17	1
o-Terphenyl	102	70 - 130	07/15/22 08:42	07/15/22 17:17	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 10.9 4.96 mg/Kg 07/16/22 23:05

Client Sample ID: BH-151 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 15:35	
Toluene	< 0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 15:35	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 15:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/14/22 16:53	07/18/22 15:35	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		07/14/22 16:53	07/18/22 15:35	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/14/22 16:53	07/18/22 15:35	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130				07/14/22 16:53	07/18/22 15:35	1
1,4-Difluorobenzene (Surr)	108		70 - 130				07/14/22 16:53	07/18/22 15:35	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/19/22 09:14	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	126		50.0		mg/Kg			07/18/22 09:27	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 16:56	1
Diesel Range Organics (Over C10-C28)	126		50.0		mg/Kg		07/15/22 08:42	07/15/22 16:56	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				07/15/22 08:42	07/15/22 16:56	1
o-Terphenyl	99		70 - 130				07/15/22 08:42	07/15/22 16:56	1
o-rerphenyi -									
Section (1997) Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-2553-11

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-152 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:37	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:37	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:37	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 17:37	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:37	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/18/22 13:40	07/19/22 17:37	1
1,4-Difluorobenzene (Surr)	99		70 - 130				07/18/22 13:40	07/19/22 17:37	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/19/22 09:14	1
	Result					D	Prepared	Analyzed	DII Fac
Total TDU			50.0		ma/Ka	— <u> </u>			Dil Fac
Total TPH	74.9		50.0		mg/Kg	=		07/18/22 09:27	1
: Method: 8015B NM - Diesel Ran	74.9 ge Organics (D							07/18/22 09:27	1
Method: 8015B NM - Diesel Ran Analyte	74.9 ge Organics (Di Result	Qualifier	RL	MDL	Unit	 	Prepared	07/18/22 09:27 Analyzed	1 Dil Fac
: Method: 8015B NM - Diesel Ran	74.9 ge Organics (D	Qualifier		MDL				07/18/22 09:27	1
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	74.9 ge Organics (Di Result	Qualifier	RL	MDL	Unit		Prepared	07/18/22 09:27 Analyzed	1 Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (Di Result <50.0	Qualifier U	RL	MDL	Unit mg/Kg		Prepared 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 18:42	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	74.9 ge Organics (Di Result <50.0 74.9	Qualifier U	RL 50.0	MDL	Unit mg/Kg mg/Kg		Prepared 07/15/22 08:42 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 18:42 07/15/22 18:42	1 Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	74.9 ge Organics (Di Result <50.0 74.9 <50.0	Qualifier U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg		Prepared 07/15/22 08:42 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 18:42 07/15/22 18:42	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	74.9 ge Organics (Di Result <50.0 74.9 <50.0 %Recovery	Qualifier U		MDL	Unit mg/Kg mg/Kg		Prepared 07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared	07/18/22 09:27 Analyzed 07/15/22 18:42 07/15/22 18:42 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	74.9 ge Organics (D) Result <50.0 74.9 <50.0 %Recovery 78 83	Qualifier U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg		Prepared 07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 18:42 07/15/22 18:42 Analyzed 07/15/22 18:42	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	74.9 ge Organics (D) Result <50.0 74.9 <50.0 %Recovery 78 83 omatography -	Qualifier U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130		Unit mg/Kg mg/Kg		Prepared 07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 18:42 07/15/22 18:42 Analyzed 07/15/22 18:42	Dil Fac

Client Sample ID: BH-153 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:57	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:57	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:57	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		07/18/22 13:40	07/19/22 17:57	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 17:57	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		07/18/22 13:40	07/19/22 17:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				07/18/22 13:40	07/19/22 17:57	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2553-12

Lab Sample ID: 890-2553-12

Lab Sample ID: 890-2553-13

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-153 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Method: 8021B - Volatile Organic Compou	nds (GC) (Continued)
Welliou. 002 ID - Volatile Organic Compou	iluə (OO) (Oolillilu c u)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	93	70 - 130	07/18/22 13:40	07/19/22 17:57	1

Method: Tot	al BTEX - Tota	al BTEX Ca	alculation
mounou. Tot	u. D. L		aiouiutioii

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg		_	07/19/22 09:14	1

l .		
Mothod: 904E NM Dia	sel Range Organics (DRO) (GC)	١
INICITIOU. OUTS ININI - DIC	sel Kalige Organics (DKO) (GC)	,

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	117	49.9	mg/Kg			07/18/22 09:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 15:06	1
(GRO)-C6-C10									
Diesel Range Organics (Over	117		49.9		mg/Kg		07/15/22 08:42	07/15/22 15:06	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 15:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130				07/15/22 08:42	07/15/22 15:06	1

1-Chlorooctane	81	70 - 130
o-Terphenyl	84	70 - 130

o-Terphenyl	84	70 - 130	07/15/22 08:42	07/15/22 15:06	1	
Method: 300.0 - Anions, Ion Chromatograph	ny - Soluble					

Analyte Result Qualifier

Allalyte	Result	Qualifier	KL	WIDE OIII	U	Frepareu	Allalyzeu	DII Fac
Chloride	22.7		4.98	mg/Kg		_	07/16/22 23:51	1

Client Sample ID: BH-154 6'

Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Sample Depth: 6'

Michiga. 002 1D - Volatile Orga	ine compounds	(30)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:18	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 18:18	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:18	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 18:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				07/18/22 13:40	07/19/22 18:18	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/18/22 13:40	07/19/22 18:18	1

Method: Tot	al RTFY -	Total RTFY	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/19/22 09:14	1

	Method: 8015 NM -	- Diesel Range	Organics	(DRO)	(GC)
--	-------------------	----------------	----------	-------	------

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1330	50.0	mg/Kg			07/18/22 09:27	1

Eurofins Carlsbad

2

3

4

b

8

10

12

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-154 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57 Sample Depth: 6'

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2553-13

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 13:41	1
Diesel Range Organics (Over C10-C28)	1070		50.0		mg/Kg		07/15/22 08:42	07/15/22 13:41	1
Oll Range Organics (Over C28-C36)	261		50.0		mg/Kg		07/15/22 08:42	07/15/22 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130				07/15/22 08:42	07/15/22 13:41	1
o-Terphenyl	82		70 - 130				07/15/22 08:42	07/15/22 13:41	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier MDL Unit Prepared Dil Fac RL D Analyzed Chloride 77.4 4.98 07/17/22 00:01 mg/Kg

Client Sample ID: BH-155 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Lab Sample ID: 890-2553-14

Matrix: Solid

Sample Depth: 6'									
	c Compounds ((GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 18:38	1
Toluene	< 0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 18:38	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 18:38	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/18/22 13:40	07/19/22 18:38	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 18:38	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/18/22 13:40	07/19/22 18:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				07/18/22 13:40	07/19/22 18:38	1
1,4-Difluorobenzene (Surr)	99		70 - 130				07/18/22 13:40	07/19/22 18:38	1
Method: Total BTEX - Total BTEX Analyte Total BTEX	Result <0.00398		RL 0.00398	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 07/19/22 09:14	Dil Fac
Method: 8015 NM - Diesel Range			D.	MDI	1114	_	Barranad	Amakanad	D!! E
Analyte		Qualifier	- RL 50.0	MDL		D	Prepared	Analyzed 07/18/22 09:27	Dil Fac
Total TPH	111		50.0		mg/Kg			07/18/22 09:27	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 14:45	1
Diesel Range Organics (Over C10-C28)	111		50.0		mg/Kg		07/15/22 08:42	07/15/22 14:45	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

07/15/22 14:45

07/15/22 14:45

07/15/22 08:42

07/15/22 08:42

70 - 130

70 - 130

78

80

1-Chlorooctane

o-Terphenyl

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2553-1

SDG: Lea County NM

Client Sample ID: BH-155 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Lab Sample ID: 890-2553-14

Matrix: Solid

Method: 300.0 - Anions, Ion Chromatography - Soluble											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	20.8		5.05		mg/Kg			07/17/22 00:29	1		

Client Sample ID: BH-156 6' Lab Sample ID: 890-2553-15 **Matrix: Solid**

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:58	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:58	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 18:58	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 18:58	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 18:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				07/18/22 13:40	07/19/22 18:58	1
1,4-Difluorobenzene (Surr)	89		70 - 130				07/18/22 13:40	07/19/22 18:58	1
Method: Total BTEX - Total BTE	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/19/22 09:14	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	94.0		50.0		mg/Kg			07/18/22 09:27	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 17:59	1
(GRO)-C6-C10 Diesel Range Organics (Over	94.0		50.0		mg/Kg		07/15/22 08:42	07/15/22 17:59	1
C10-C28)	94.0		30.0		mg/rxg		07/13/22 00.42	07/13/22 17.39	'
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/15/22 08:42	07/15/22 17:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				07/15/22 08:42	07/15/22 17:59	1
, cinorecotario	• • • • • • • • • • • • • • • • • • • •								

Eurofins Carlsbad

Analyzed 07/17/22 00:38

RL

5.00

MDL Unit

mg/Kg

D

Prepared

Dil Fac

Analyte

Chloride

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

16.3

Lab Sample ID: 890-2553-16

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-157 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 6'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 19:19	1
Toluene	<0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 19:19	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 19:19	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/18/22 13:40	07/19/22 19:19	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		07/18/22 13:40	07/19/22 19:19	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/18/22 13:40	07/19/22 19:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				07/18/22 13:40	07/19/22 19:19	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/18/22 13:40	07/19/22 19:19	1
Method: Total BTEX - Total BTE)	K Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/19/22 09:14	1
Markada 0045 NM - Diagram	Owners to a CDD	0) (00)							
Method: 8015 NM - Diesel Range Analyte	•	Qualifier	RL	MDL	l lmi4	D	Duamanad	Amalumad	Dil Fac
Analyte	Result	Qualifier	KL	MDL	Unit	U	Prepared	Analyzed	
Total TDU		11							
Total TPH	<50.0	U	50.0		mg/Kg			07/18/22 09:27	1
• •			50.0		mg/Kg				1
: Method: 8015B NM - Diesel Ranç	ge Organics (D		50.0 RL	MDL		D	Prepared		1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		D	Prepared 07/15/22 08:42	07/18/22 09:27	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	<u>·</u>	07/18/22 09:27 Analyzed	1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (Di Result <50.0	RO) (GC) Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 19:03	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (Di Result <50.0	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 19:03	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (DI Result <50.0	RO) (GC) Qualifier U	RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/15/22 08:42 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 19:03 07/15/22 19:03	1 Dil Fac 1 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D) Result <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 19:03 07/15/22 19:03	Dil Fac 1 1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared	07/18/22 09:27 Analyzed 07/15/22 19:03 07/15/22 19:03 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <50.0 <50.0 <50.0 **Recovery** 83 89	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70.130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 19:03 07/15/22 19:03 Analyzed 07/15/22 19:03	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <50.0 <50.0 <50.0 **Recovery 83 89 comatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70.130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	07/15/22 08:42 07/15/22 08:42 07/15/22 08:42 Prepared 07/15/22 08:42	07/18/22 09:27 Analyzed 07/15/22 19:03 07/15/22 19:03 Analyzed 07/15/22 19:03	1 Dil Fac 1 1 1 1 Dil Fac 1 1

Client Sample ID: BH-158 6' Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Sample Depth: 6'

REMOVED FROM ANALYSIS TABLE

105

Lab Sample ID: 890-2553-17

07/18/22 13:40

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 07/18/22 13:40 07/19/22 20:41 Toluene <0.00200 U 0.00200 mg/Kg 07/18/22 13:40 07/19/22 20:41 Ethylbenzene <0.00200 U 0.00200 mg/Kg 07/18/22 13:40 07/19/22 20:41 07/18/22 13:40 07/19/22 20:41 m-Xylene & p-Xylene <0.00401 U 0.00401 mg/Kg <0.00200 U 0.00200 07/18/22 13:40 07/19/22 20:41 o-Xylene mg/Kg Xylenes, Total <0.00401 U 0.00401 07/18/22 13:40 07/19/22 20:41 mg/Kg Limits Prepared Surrogate %Recovery Qualifier Analyzed Dil Fac

Eurofins Carlsbad

07/19/22 20:41

70 - 130

4-Bromofluorobenzene (Surr)

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-158 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57 **REMOVED FROM ANALYSIS TABLE**

Lab Sample ID: 890-2553-17

Matrix: Solid

Sample Depth: 6'

Method: 8021B - Volatile Organic Compounds	(GC) (Continued)
--	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1 4-Difluorobenzene (Surr)	91	70 - 130	07/18/22 13:40	07/19/22 20:41	

Mathod:	Total RTFY	- Total BTEX	Calculation
mictilou.	TOTAL DIEN	- IUIUI DI LA	Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401 U	0.00401	ma/Ka			07/19/22 09:14	1

Method: 8015 NM - Diesel Range	Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total TPH	9550		250		mg/Kg				07/18/22 09:27	1

		_			
Method: 8015B	NM - Diesel	Range Org	ranics ('DROL	GC
motriou. ou rob	THE DIGGOL	itunge or	garnoo (D. (U)	(–

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<250	U	250		mg/Kg		07/15/22 08:42	07/15/22 13:19	5
Diesel Range Organics (Over C10-C28)	7890		250		mg/Kg		07/15/22 08:42	07/15/22 13:19	5
Oll Range Organics (Over C28-C36)	1660		250		mg/Kg		07/15/22 08:42	07/15/22 13:19	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	77		70 - 130	07/15/22 08:42	07/15/22 13:19	5
o-Terphenyl	88		70 - 130	07/15/22 08:42	07/15/22 13:19	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	117		4.99		ma/Ka			07/17/22 00:56	1

Client Sample ID: SW-50 0-6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 0' - 6'

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-2553-18

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/18/22 13:40	07/19/22 19:39	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/18/22 13:40	07/19/22 19:39	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/18/22 13:40	07/19/22 19:39	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/18/22 13:40	07/19/22 19:39	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/18/22 13:40	07/19/22 19:39	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/18/22 13:40	07/19/22 19:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				07/18/22 13:40	07/19/22 19:39	1
1,4-Difluorobenzene (Surr)	96		70 - 130				07/18/22 13:40	07/19/22 19:39	1

Method: Total	RTFY - T	otal RTFX	Calculation

moniour rotal B 1 Ext	- aioaiatioii									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00402	U	0.00402		ma/Ka			07/19/22 09:14	1	

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-50 0-6'

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57 Sample Depth: 0' - 6'

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2553-18

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	152		49.9		mg/Kg			07/18/22 09:27	1
Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 18:21	1
Diesel Range Organics (Over C10-C28)	152		49.9		mg/Kg		07/15/22 08:42	07/15/22 18:21	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/15/22 08:42	07/15/22 18:21	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130	07/15/22 08:42	07/15/22 18:21	1
o-Terphenyl	78		70 - 130	07/15/22 08:42	07/15/22 18:21	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 9.67 4.95 mg/Kg 07/17/22 01:06 Chloride

Client Sample ID: SW-51 0-6' Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Sample Depth: 0' - 6'

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2553-19 **Matrix: Solid**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:00	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 20:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:00	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 20:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				07/18/22 13:40	07/19/22 20:00	1
1,4-Difluorobenzene (Surr)	104		70 - 130				07/18/22 13:40	07/19/22 20:00	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	Result < 0.00399			MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 07/19/22 09:14	Dil Fac
	<0.00399	U		MDL		<u>D</u>	Prepared		Dil Fac
Total BTEX	<0.00399 Organics (DR	U				D	Prepared Prepared		Dil Fac Dil Fac
Total BTEX Method: 8015 NM - Diesel Range	<0.00399 Organics (DR	U (GC)	0.00399		mg/Kg	_ =		07/19/22 09:14	1
Total BTEX Method: 8015 NM - Diesel Range Analyte	<0.00399 Organics (DR	O) (GC) Qualifier	0.00399		mg/Kg	_ =		07/19/22 09:14 Analyzed	1
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range	<0.00399 Organics (DR) Result 202 ge Organics (DI)	O) (GC) Qualifier	0.00399	MDL	mg/Kg	_ =		07/19/22 09:14 Analyzed	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH	<0.00399 Organics (DR) Result 202 ge Organics (DI)	O) (GC) Qualifier RO) (GC) Qualifier	0.00399 RL 50.0	MDL	mg/Kg Unit mg/Kg		Prepared	07/19/22 09:14 Analyzed 07/18/22 09:27	Dil Fac
Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	<0.00399 Organics (DR) Result 202 ge Organics (DI) Result	O) (GC) Qualifier RO) (GC) Qualifier	0.00399 RL 50.0	MDL	mg/Kg Unit mg/Kg Unit		Prepared Prepared	07/19/22 09:14 Analyzed 07/18/22 09:27 Analyzed	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-51 0-6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57 Sample Depth: 0' - 6'

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2553-19

Matrix: Solid

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 1-Chlorooctane 90 70 - 130 07/15/22 08:43 07/15/22 19:24 92 70 - 130 07/15/22 08:43 07/15/22 19:24 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier RL MDL Unit D Prepared Analyzed Chloride 143 4.95 07/17/22 01:15 mg/Kg

Client Sample ID: SW-52 0-6' Lab Sample ID: 890-2553-20 Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Matrix: Solid

Dil Fac

Method: 8021B - Volatile Orga	inic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:20	
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:20	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:20	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 20:20	
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 20:20	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/18/22 13:40	07/19/22 20:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	111		70 - 130				07/18/22 13:40	07/19/22 20:20	
1,4-Difluorobenzene (Surr)	97		70 - 130				07/18/22 13:40	07/19/22 20:20	
- Method: Total BTEX - Total B1	ΓEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/19/22 09:14	
- Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
			40.0		11.7			07/40/00 00 07	

Method: 8015 NM - Diese	el Range Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	81.4		49.8		mg/Kg			07/18/22 09:27	1
- Method: 8015B NM - Die	sel Range Organics (Di	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 8015B NM - Diesel Range	Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	n	ng/Kg		07/15/22 08:43	07/15/22 16:13	1
(GRO)-C6-C10									
Diesel Range Organics (Over	81.4		49.8	n	ng/Kg		07/15/22 08:43	07/15/22 16:13	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	n	ng/Kg		07/15/22 08:43	07/15/22 16:13	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130	07/15/22 08:43	07/15/22 16:13	1
o-Terphenyl	97		70 - 130	07/15/22 08:43	07/15/22 16:13	1

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	386		4.97		mg/Kg			07/17/22 01:24	1

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits
.ab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-17008-A-21-C MS	Matrix Spike	107	95	. — — — — — —
880-17008-A-21-D MSD	Matrix Spike Duplicate	117	92	
90-2553-1	BH-142 5'	109	107	
990-2553-1 MS	BH-142 5'	97	85	
90-2553-1 MSD	BH-142 5'	118	90	
990-2553-2	BH-143 5'	130	98	
990-2553-3	BH-144 5'	113	96	
390-2553-4	BH-145 5'	110	108	
390-2553-5	BH-146 5'	112	111	
990-2553-6	BH-147 6'	106	110	
390-2553-7	BH-148 6'	112	96	
890-2553-8	BH-149 6'	111	110	
990-2553-9	BH-150 6'	105	108	
390-2553-10	BH-151 6'	111	108	
390-2553-11	BH-152 6'	110	99	
390-2553-11 390-2553-12	BH-153 6'	108	93	
90-2553-12	BH-154 6'	96	95 95	
90-2553-14	BH-155 6'	106	99	
90-2553-14	BH-156 6'	109	89 89	
90-2553-16	BH-157 6'	118	95	
90-2553-17	BH-158 6'	105	95 91	
90-2553-17	SW-50 0-6'	103	96	
90-2553-18	SW-51 0-6'	116	104	
90-2553-19	SW-52 0-6'	111	97	
.CS 880-29774/1-A	Lab Control Sample	114	88	
.CS 880-29947/1-A	Lab Control Sample	108	96	
.CS 880-29947/1-A .CSD 880-29774/2-A	Lab Control Sample Dup	97	99	
.CSD 880-29774/2-A	Lab Control Sample Dup	109	99	
MB 880-29774/5-A	Method Blank	97	9 4 110	
ль 880-29947/5-A ЛВ 880-29947/5-A	Method Blank	97 97	97	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

-				Percent Surrogate Recovery (Acceptanc
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2553-1	BH-142 5'	81	88	
890-2553-1 MS	BH-142 5'	82	79	
890-2553-1 MSD	BH-142 5'	87	84	
890-2553-2	BH-143 5'	99	104	
890-2553-3	BH-144 5'	84	86	
390-2553-4	BH-145 5'	78	82	
890-2553-5	BH-146 5'	77	82	
890-2553-6	BH-147 6'	85	88	
890-2553-7	BH-148 6'	99	101	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2553-8	BH-149 6'	86	91	
890-2553-9	BH-150 6'	96	102	
890-2553-10	BH-151 6'	93	99	
890-2553-11	BH-152 6'	78	83	
890-2553-12	BH-153 6'	81	84	
890-2553-13	BH-154 6'	81	82	
890-2553-14	BH-155 6'	78	80	
890-2553-15	BH-156 6'	88	93	
890-2553-16	BH-157 6'	83	89	
890-2553-17	BH-158 6'	77	88	
890-2553-18	SW-50 0-6'	74	78	
890-2553-19	SW-51 0-6'	90	92	
890-2553-20	SW-52 0-6'	92	97	
LCS 880-29795/2-A	Lab Control Sample	118	124	
LCSD 880-29795/3-A	Lab Control Sample Dup	127	128	
MB 880-29795/1-A	Method Blank	92	103	

TCO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-2553-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-29774/5-A

Matrix: Solid

Analysis Batch: 29893

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29774

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:05	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:05	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:05	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/14/22 16:53	07/18/22 12:05	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/14/22 16:53	07/18/22 12:05	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/14/22 16:53	07/18/22 12:05	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130	07/14/22 16:53	07/18/22 12:05	1
1,4-Difluorobenzene (Surr)	110		70 - 130	07/14/22 16:53	07/18/22 12:05	1

Lab Sample ID: LCS 880-29774/1-A

Matrix: Solid

Analysis Batch: 29893

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29774

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09196	-	mg/Kg		92	70 - 130	
Toluene	0.100	0.1153		mg/Kg		115	70 - 130	
Ethylbenzene	0.100	0.1149		mg/Kg		115	70 - 130	
m-Xylene & p-Xylene	0.200	0.2397		mg/Kg		120	70 - 130	
o-Xylene	0.100	0.1241		mg/Kg		124	70 - 130	

LCSD LCSD

0.1022

0.09957

0.08943

0.1801

0.09438

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	114	70 - 130
1,4-Difluorobenzene (Surr)	88	70 - 130

Lab Sample ID: LCSD 880-29774/2-A

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 29893

Client Sample ID: Lab Control Sample Dup

70 - 130

70 - 130

90

Prep Type: Total/NA Prep Batch: 29774

28

35

35

RPD %Rec %Rec Limits **RPD** Limit 102 70 - 130 11 35 100 70 - 130 15 35 89 70 - 130 25 35

LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 97 1,4-Difluorobenzene (Surr) 99 70 - 130

Lab Sample ID: 890-2553-1 MS

Matrix: Solid

Analysis Batch: 29893

Client Sample ID: BH-142 5'

Prep Type: Total/NA

Prep Batch: 29774

Sample Sample Spike MS MS Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits <0.00200 U F1 83 Benzene 0.100 0.08275 mg/Kg 70 - 130 Toluene <0.00200 U 0.100 0.09095 mg/Kg 91 70 - 130

Spike

Added

0.100

0.100

0.100

0.200

0.100

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2553-1 MS

Lab Sample ID: 890-2553-1 MSD

Matrix: Solid

Matrix: Solid

Analysis Batch: 29893

Client Sample ID: BH-142 5'

Prep Type: Total/NA

Prep Batch: 29774

	Sample	Sample	Бріке	INIO	IVIS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.100	0.07967		mg/Kg		80	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1588		mg/Kg		79	70 - 130	
o-Xylene	<0.00200	U	0.100	0.08167		mg/Kg		82	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	97	70 - 130
1,4-Difluorobenzene (Surr)	85	70 - 130

Client Sample ID: BH-142 5'

Prep Type: Total/NA

Analysis Batch: 29893 Prep Batch: 29774 Sample Sample Spike MSD MSD %Rec Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit 0.0994 0.06644 F1 Benzene <0.00200 UF1 mg/Kg 67 70 - 130 22 35 Toluene <0.00200 U 0.0994 0.07947 80 70 - 130 mg/Kg 13 35 Ethylbenzene <0.00200 U 0.0994 0.07332 mg/Kg 74 70 - 130 8 35 <0.00401 U 0.199 0.1541 78 70 - 130 35 m-Xylene & p-Xylene mg/Kg 3 0.0994 o-Xylene <0.00200 U 0.08160 82 70 - 130 mg/Kg 0

MSD MSD

Surrogate	%Recovery Qu	alifier Limits
4-Bromofluorobenzene (Surr)	118	70 - 130
1,4-Difluorobenzene (Surr)	90	70 - 130

Lab Sample ID: MB 880-29947/5-A

Matrix: Solid

Analysis Batch: 30015

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29947

		MB	MB							
Α	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
В	enzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 11:47	1
To	oluene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 11:47	1
E	thylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 11:47	1
m	-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/18/22 13:40	07/19/22 11:47	1
0-	Xylene	<0.00200	U	0.00200		mg/Kg		07/18/22 13:40	07/19/22 11:47	1
X	ylenes, Total	<0.00400	U	0.00400		mg/Kg		07/18/22 13:40	07/19/22 11:47	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130	07/18/22 13:40	07/19/22 11:47	1
1,4-Difluorobenzene (Surr)	97		70 - 130	07/18/22 13:40	07/19/22 11:47	1

Lab Sample ID: LCS 880-29947/1-A

Matrix: Solid

Analysis Batch: 30015

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 29947

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08396		mg/Kg		84	70 - 130	
Toluene	0.100	0.08292		mg/Kg		83	70 - 130	
Ethylbenzene	0.100	0.08272		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene	0.200	0.1743		mg/Kg		87	70 - 130	

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-29947/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 30015** Prep Batch: 29947

		эріке	LUS	LUS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	 	0.100	0.09506		mg/Kg		95	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: LCSD 880-29947/2-A

Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA **Analysis Batch: 30015** Prep Batch: 29947

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08247		mg/Kg		82	70 - 130	2	35
Toluene	0.100	0.08858		mg/Kg		89	70 - 130	7	35
Ethylbenzene	0.100	0.08883		mg/Kg		89	70 - 130	7	35
m-Xylene & p-Xylene	0.200	0.1891		mg/Kg		95	70 - 130	8	35
o-Xylene	0.100	0.1032		mg/Kg		103	70 - 130	8	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 880-17008-A-21-C MS Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 30015

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F2 F1	0.100	0.01945	F1	mg/Kg		19	70 - 130	
Toluene	<0.00201	U F2 F1	0.100	0.01816	F1	mg/Kg		18	70 - 130	
Ethylbenzene	<0.00201	U F2 F1	0.100	0.01493	F1	mg/Kg		14	70 - 130	
m-Xylene & p-Xylene	<0.00402	U F2 F1	0.200	0.03295	F1	mg/Kg		15	70 - 130	
o-Xylene	0.00273	F2 F1	0.100	0.01888	F1	mg/Kg		16	70 - 130	

	IVIS	IVIS		
Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene (Surr)	107		70 - 130	
1,4-Difluorobenzene (Surr)	95		70 - 130	

Lab Sample ID: 880-17008-A-21-D MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 30015

Analysis Batch: 30015									Prep Batch: 299		
	Sample	Sample	Spike	MSD	MSD			%Rec F			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U F2 F1	0.0998	0.03835	F2 F1	mg/Kg		38	70 - 130	65	35
Toluene	<0.00201	U F2 F1	0.0998	0.05746	F2 F1	mg/Kg		58	70 - 130	104	35
Ethylbenzene	<0.00201	U F2 F1	0.0998	0.04190	F2 F1	mg/Kg		41	70 - 130	95	35
m-Xylene & p-Xylene	<0.00402	U F2 F1	0.200	0.05289	F2 F1	mg/Kg		25	70 - 130	46	35
o-Xylene	0.00273	F2 F1	0.0998	0.02937	F2 F1	mg/Kg		27	70 - 130	43	35

Eurofins Carlsbad

Prep Batch: 29947

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2553-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-17008-A-21-D MSD

Matrix: Solid

Analysis Batch: 30015

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 29947

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 117 70 - 130 1,4-Difluorobenzene (Surr) 92 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-29795/1-A

Matrix: Solid

Analysis Batch: 29788

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 29795

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 07/15/22 08:42 07/15/22 10:08 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 07/15/22 08:42 07/15/22 10:08 C10-C28) 50.0 07/15/22 08:42 07/15/22 10:08 Oll Range Organics (Over C28-C36) <50.0 U mg/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130	07/15/22 08:4	07/15/22 10:08	1
o-Terphenyl	103		70 - 130	07/15/22 08:4	2 07/15/22 10:08	1

Lab Sample ID: LCS 880-29795/2-A

Matrix: Solid

Analysis Batch: 29788

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 29795

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	867.0		mg/Kg		87	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	990.9		mg/Kg		99	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	118	70 - 130
o-Terphenyl	124	70 - 130

Lab Sample ID: LCSD 880-29795/3-A

Matrix: Solid Analysis Batch: 29788

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 29795

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	1009		mg/Kg		101	70 - 130	15	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	1041		mg/Kg		104	70 - 130	5	20	
C10-C28)										

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	127	70 - 130
o-Terphenyl	128	70 - 130

Job ID: 890-2553-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-2553-1 MS

Matrix: Solid

Analysis Batch: 29788

Client Sample ID: BH-142	5'
Prep Type: Total/N	NΑ

Prep Batch: 29795

Prep Type: Total/NA

Prep Batch: 29795

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	884.9		mg/Kg		87	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.0	U	1000	756.2		mg/Kg		72	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	82		70 - 130
o-Terphenyl	79		70 - 130

Lab Sample ID: 890-2553-1 MSD Client Sample ID: BH-142 5'

Matrix: Solid

Analysis Batch: 29788

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0	U	999	939.7		mg/Kg		92	70 - 130	6	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	999	809.8		mg/Kg		77	70 - 130	7	20
C10-C28)											

MSD MSD %Recovery Qualifier Limits Surrogate 1-Chlorooctane 87 70 - 130 o-Terphenyl 84 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29754/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29864

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			07/16/22 20:47	1

Lab Sample ID: LCS 880-29754/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29864

		Spike	LCS	LCS				%Rec
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	 	250	256.2		ma/Ka		102	90 - 110

Lab Sample ID: LCSD 880-29754/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29864

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier Uni	t D	%Rec	Limits	RPD	Limit
Chloride	250	254.8	mg/	/Kg	102	90 - 110	1	20

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2553-1 MS Client Sample ID: BH-142 5' **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29864

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Chloride 167 F1 248 444.9 F1 mg/Kg 112 90 - 110

Lab Sample ID: 890-2553-1 MSD Client Sample ID: BH-142 5' **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 29864

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 167 F1 248 444.7 F1 mg/Kg 112 90 - 110 0

Lab Sample ID: 890-2553-11 MS Client Sample ID: BH-152 6'

Matrix: Solid Prep Type: Soluble

Analysis Batch: 29864

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride 16.0 251 292.7 110 90 - 110 mg/Kg

Lab Sample ID: 890-2553-11 MSD Client Sample ID: BH-152 6' **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 29864

Spike Sample Sample MSD MSD RPD %Rec Analyte Result Qualifier Added Qualifier Unit %Rec RPD Limit Result Limits 292.7 Chloride 16.0 251 110 90 - 110 20 mg/Kg

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2553-1

SDG: Lea County NM

GC VOA

Prep Batch: 29774

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-1	BH-142 5'	Total/NA	Solid	5035	
890-2553-2	BH-143 5'	Total/NA	Solid	5035	
890-2553-3	BH-144 5'	Total/NA	Solid	5035	
890-2553-4	BH-145 5'	Total/NA	Solid	5035	
890-2553-5	BH-146 5'	Total/NA	Solid	5035	
890-2553-6	BH-147 6'	Total/NA	Solid	5035	
890-2553-7	BH-148 6'	Total/NA	Solid	5035	
890-2553-8	BH-149 6'	Total/NA	Solid	5035	
890-2553-9	BH-150 6'	Total/NA	Solid	5035	
890-2553-10	BH-151 6'	Total/NA	Solid	5035	
MB 880-29774/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29774/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29774/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2553-1 MS	BH-142 5'	Total/NA	Solid	5035	
890-2553-1 MSD	BH-142 5'	Total/NA	Solid	5035	

Analysis Batch: 29893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-1	BH-142 5'	Total/NA	Solid	8021B	29774
890-2553-2	BH-143 5'	Total/NA	Solid	8021B	29774
890-2553-3	BH-144 5'	Total/NA	Solid	8021B	29774
890-2553-4	BH-145 5'	Total/NA	Solid	8021B	29774
890-2553-5	BH-146 5'	Total/NA	Solid	8021B	29774
890-2553-6	BH-147 6'	Total/NA	Solid	8021B	29774
890-2553-7	BH-148 6'	Total/NA	Solid	8021B	29774
890-2553-8	BH-149 6'	Total/NA	Solid	8021B	29774
890-2553-9	BH-150 6'	Total/NA	Solid	8021B	29774
890-2553-10	BH-151 6'	Total/NA	Solid	8021B	29774
MB 880-29774/5-A	Method Blank	Total/NA	Solid	8021B	29774
LCS 880-29774/1-A	Lab Control Sample	Total/NA	Solid	8021B	29774
LCSD 880-29774/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29774
890-2553-1 MS	BH-142 5'	Total/NA	Solid	8021B	29774
890-2553-1 MSD	BH-142 5'	Total/NA	Solid	8021B	29774

Prep Batch: 29947

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-11	BH-152 6'	Total/NA	Solid	5035	
890-2553-12	BH-153 6'	Total/NA	Solid	5035	
890-2553-13	BH-154 6'	Total/NA	Solid	5035	
890-2553-14	BH-155 6'	Total/NA	Solid	5035	
890-2553-15	BH-156 6'	Total/NA	Solid	5035	
890-2553-16	BH-157 6'	Total/NA	Solid	5035	
890-2553-17	BH-158 6'	Total/NA	Solid	5035	
890-2553-18	SW-50 0-6'	Total/NA	Solid	5035	
890-2553-19	SW-51 0-6'	Total/NA	Solid	5035	
890-2553-20	SW-52 0-6'	Total/NA	Solid	5035	
MB 880-29947/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-29947/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-29947/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-17008-A-21-C MS	Matrix Spike	Total/NA	Solid	5035	
880-17008-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Eurofins Carlsbad

2

3

4

6

8

9

11

12

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Analysis Batch: 30015

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-11	BH-152 6'	Total/NA	Solid	8021B	29947
890-2553-12	BH-153 6'	Total/NA	Solid	8021B	29947
890-2553-13	BH-154 6'	Total/NA	Solid	8021B	29947
890-2553-14	BH-155 6'	Total/NA	Solid	8021B	29947
890-2553-15	BH-156 6'	Total/NA	Solid	8021B	29947
890-2553-16	BH-157 6'	Total/NA	Solid	8021B	29947
890-2553-17	BH-158 6'	Total/NA	Solid	8021B	29947
890-2553-18	SW-50 0-6'	Total/NA	Solid	8021B	29947
890-2553-19	SW-51 0-6'	Total/NA	Solid	8021B	29947
890-2553-20	SW-52 0-6'	Total/NA	Solid	8021B	29947
MB 880-29947/5-A	Method Blank	Total/NA	Solid	8021B	29947
LCS 880-29947/1-A	Lab Control Sample	Total/NA	Solid	8021B	29947
LCSD 880-29947/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	29947
880-17008-A-21-C MS	Matrix Spike	Total/NA	Solid	8021B	29947
880-17008-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	29947

Analysis Batch: 30030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2553-1	BH-142 5'	Total/NA	Solid	Total BTEX	
890-2553-2	BH-143 5'	Total/NA	Solid	Total BTEX	
890-2553-3	BH-144 5'	Total/NA	Solid	Total BTEX	
890-2553-4	BH-145 5'	Total/NA	Solid	Total BTEX	
890-2553-5	BH-146 5'	Total/NA	Solid	Total BTEX	
890-2553-6	BH-147 6'	Total/NA	Solid	Total BTEX	
890-2553-7	BH-148 6'	Total/NA	Solid	Total BTEX	
890-2553-8	BH-149 6'	Total/NA	Solid	Total BTEX	
890-2553-9	BH-150 6'	Total/NA	Solid	Total BTEX	
890-2553-10	BH-151 6'	Total/NA	Solid	Total BTEX	
890-2553-11	BH-152 6'	Total/NA	Solid	Total BTEX	
890-2553-12	BH-153 6'	Total/NA	Solid	Total BTEX	
890-2553-13	BH-154 6'	Total/NA	Solid	Total BTEX	
890-2553-14	BH-155 6'	Total/NA	Solid	Total BTEX	
890-2553-15	BH-156 6'	Total/NA	Solid	Total BTEX	
890-2553-16	BH-157 6'	Total/NA	Solid	Total BTEX	
890-2553-17	BH-158 6'	Total/NA	Solid	Total BTEX	
890-2553-18	SW-50 0-6'	Total/NA	Solid	Total BTEX	
890-2553-19	SW-51 0-6'	Total/NA	Solid	Total BTEX	
890-2553-20	SW-52 0-6'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 29788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-1	BH-142 5'	Total/NA	Solid	8015B NM	29795
890-2553-2	BH-143 5'	Total/NA	Solid	8015B NM	29795
890-2553-3	BH-144 5'	Total/NA	Solid	8015B NM	29795
890-2553-4	BH-145 5'	Total/NA	Solid	8015B NM	29795
890-2553-5	BH-146 5'	Total/NA	Solid	8015B NM	29795
890-2553-6	BH-147 6'	Total/NA	Solid	8015B NM	29795
890-2553-7	BH-148 6'	Total/NA	Solid	8015B NM	29795
890-2553-8	BH-149 6'	Total/NA	Solid	8015B NM	29795

Eurofins Carlsbad

2

3

6

8

3

11

. .

14

otins Carisbad

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 29788 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-9	BH-150 6'	Total/NA	Solid	8015B NM	29795
890-2553-10	BH-151 6'	Total/NA	Solid	8015B NM	29795
890-2553-11	BH-152 6'	Total/NA	Solid	8015B NM	29795
890-2553-12	BH-153 6'	Total/NA	Solid	8015B NM	29795
890-2553-13	BH-154 6'	Total/NA	Solid	8015B NM	29795
890-2553-14	BH-155 6'	Total/NA	Solid	8015B NM	29795
890-2553-15	BH-156 6'	Total/NA	Solid	8015B NM	29795
890-2553-16	BH-157 6'	Total/NA	Solid	8015B NM	29795
890-2553-17	BH-158 6'	Total/NA	Solid	8015B NM	29795
890-2553-18	SW-50 0-6'	Total/NA	Solid	8015B NM	29795
890-2553-19	SW-51 0-6'	Total/NA	Solid	8015B NM	29795
890-2553-20	SW-52 0-6'	Total/NA	Solid	8015B NM	29795
MB 880-29795/1-A	Method Blank	Total/NA	Solid	8015B NM	29795
LCS 880-29795/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	29795
LCSD 880-29795/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	29795
890-2553-1 MS	BH-142 5'	Total/NA	Solid	8015B NM	29795
890-2553-1 MSD	BH-142 5'	Total/NA	Solid	8015B NM	29795

Prep Batch: 29795

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-1	BH-142 5'	Total/NA	Solid	8015NM Prep	
890-2553-2	BH-143 5'	Total/NA	Solid	8015NM Prep	
890-2553-3	BH-144 5'	Total/NA	Solid	8015NM Prep	
890-2553-4	BH-145 5'	Total/NA	Solid	8015NM Prep	
890-2553-5	BH-146 5'	Total/NA	Solid	8015NM Prep	
890-2553-6	BH-147 6'	Total/NA	Solid	8015NM Prep	
890-2553-7	BH-148 6'	Total/NA	Solid	8015NM Prep	
890-2553-8	BH-149 6'	Total/NA	Solid	8015NM Prep	
890-2553-9	BH-150 6'	Total/NA	Solid	8015NM Prep	
890-2553-10	BH-151 6'	Total/NA	Solid	8015NM Prep	
890-2553-11	BH-152 6'	Total/NA	Solid	8015NM Prep	
890-2553-12	BH-153 6'	Total/NA	Solid	8015NM Prep	
890-2553-13	BH-154 6'	Total/NA	Solid	8015NM Prep	
890-2553-14	BH-155 6'	Total/NA	Solid	8015NM Prep	
890-2553-15	BH-156 6'	Total/NA	Solid	8015NM Prep	
890-2553-16	BH-157 6'	Total/NA	Solid	8015NM Prep	
890-2553-17	BH-158 6'	Total/NA	Solid	8015NM Prep	
890-2553-18	SW-50 0-6'	Total/NA	Solid	8015NM Prep	
890-2553-19	SW-51 0-6'	Total/NA	Solid	8015NM Prep	
890-2553-20	SW-52 0-6'	Total/NA	Solid	8015NM Prep	
MB 880-29795/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-29795/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-29795/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2553-1 MS	BH-142 5'	Total/NA	Solid	8015NM Prep	
890-2553-1 MSD	BH-142 5'	Total/NA	Solid	8015NM Prep	

Analysis Batch: 29911

Lab Sample ID 890-2553-1	Client Sample ID BH-142 5'	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
890-2553-2	BH-143 5'	Total/NA	Solid	8015 NM	
890-2553-3	BH-144 5'	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

Page 31 of 47

2

2

4

6

8

10

12

13

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2553-1

SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 29911 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-4	BH-145 5'	Total/NA	Solid	8015 NM	
890-2553-5	BH-146 5'	Total/NA	Solid	8015 NM	
890-2553-6	BH-147 6'	Total/NA	Solid	8015 NM	
890-2553-7	BH-148 6'	Total/NA	Solid	8015 NM	
890-2553-8	BH-149 6'	Total/NA	Solid	8015 NM	
890-2553-9	BH-150 6'	Total/NA	Solid	8015 NM	
890-2553-10	BH-151 6'	Total/NA	Solid	8015 NM	
890-2553-11	BH-152 6'	Total/NA	Solid	8015 NM	
890-2553-12	BH-153 6'	Total/NA	Solid	8015 NM	
890-2553-13	BH-154 6'	Total/NA	Solid	8015 NM	
890-2553-14	BH-155 6'	Total/NA	Solid	8015 NM	
890-2553-15	BH-156 6'	Total/NA	Solid	8015 NM	
890-2553-16	BH-157 6'	Total/NA	Solid	8015 NM	
890-2553-17	BH-158 6'	Total/NA	Solid	8015 NM	
890-2553-18	SW-50 0-6'	Total/NA	Solid	8015 NM	
890-2553-19	SW-51 0-6'	Total/NA	Solid	8015 NM	
890-2553-20	SW-52 0-6'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 29754

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2553-1	BH-142 5'	Soluble	Solid	DI Leach	_
890-2553-2	BH-143 5'	Soluble	Solid	DI Leach	
890-2553-3	BH-144 5'	Soluble	Solid	DI Leach	
890-2553-4	BH-145 5'	Soluble	Solid	DI Leach	
890-2553-5	BH-146 5'	Soluble	Solid	DI Leach	
890-2553-6	BH-147 6'	Soluble	Solid	DI Leach	
390-2553-7	BH-148 6'	Soluble	Solid	DI Leach	
390-2553-8	BH-149 6'	Soluble	Solid	DI Leach	
390-2553-9	BH-150 6'	Soluble	Solid	DI Leach	
390-2553-10	BH-151 6'	Soluble	Solid	DI Leach	
390-2553-11	BH-152 6'	Soluble	Solid	DI Leach	
390-2553-12	BH-153 6'	Soluble	Solid	DI Leach	
390-2553-13	BH-154 6'	Soluble	Solid	DI Leach	
390-2553-14	BH-155 6'	Soluble	Solid	DI Leach	
390-2553-15	BH-156 6'	Soluble	Solid	DI Leach	
390-2553-16	BH-157 6'	Soluble	Solid	DI Leach	
390-2553-17	BH-158 6'	Soluble	Solid	DI Leach	
390-2553-18	SW-50 0-6'	Soluble	Solid	DI Leach	
90-2553-19	SW-51 0-6'	Soluble	Solid	DI Leach	
390-2553-20	SW-52 0-6'	Soluble	Solid	DI Leach	
MB 880-29754/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-29754/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-29754/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-2553-1 MS	BH-142 5'	Soluble	Solid	DI Leach	
390-2553-1 MSD	BH-142 5'	Soluble	Solid	DI Leach	
390-2553-11 MS	BH-152 6'	Soluble	Solid	DI Leach	
890-2553-11 MSD	BH-152 6'	Soluble	Solid	DI Leach	

Eurofins Carlsbad

9

3

4

6

8

10

11

12

Н

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2553-1

SDG: Lea County NM

HPLC/IC

Analysis Batch: 29864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2553-1	BH-142 5'	Soluble	Solid	300.0	29754
890-2553-2	BH-143 5'	Soluble	Solid	300.0	29754
890-2553-3	BH-144 5'	Soluble	Solid	300.0	29754
890-2553-4	BH-145 5'	Soluble	Solid	300.0	29754
890-2553-5	BH-146 5'	Soluble	Solid	300.0	29754
890-2553-6	BH-147 6'	Soluble	Solid	300.0	29754
890-2553-7	BH-148 6'	Soluble	Solid	300.0	29754
890-2553-8	BH-149 6'	Soluble	Solid	300.0	29754
890-2553-9	BH-150 6'	Soluble	Solid	300.0	29754
890-2553-10	BH-151 6'	Soluble	Solid	300.0	29754
890-2553-11	BH-152 6'	Soluble	Solid	300.0	29754
890-2553-12	BH-153 6'	Soluble	Solid	300.0	29754
890-2553-13	BH-154 6'	Soluble	Solid	300.0	29754
890-2553-14	BH-155 6'	Soluble	Solid	300.0	29754
890-2553-15	BH-156 6'	Soluble	Solid	300.0	29754
890-2553-16	BH-157 6'	Soluble	Solid	300.0	29754
890-2553-17	BH-158 6'	Soluble	Solid	300.0	29754
890-2553-18	SW-50 0-6'	Soluble	Solid	300.0	29754
890-2553-19	SW-51 0-6'	Soluble	Solid	300.0	29754
890-2553-20	SW-52 0-6'	Soluble	Solid	300.0	29754
MB 880-29754/1-A	Method Blank	Soluble	Solid	300.0	29754
LCS 880-29754/2-A	Lab Control Sample	Soluble	Solid	300.0	29754
LCSD 880-29754/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29754
890-2553-1 MS	BH-142 5'	Soluble	Solid	300.0	29754
890-2553-1 MSD	BH-142 5'	Soluble	Solid	300.0	29754
890-2553-11 MS	BH-152 6'	Soluble	Solid	300.0	29754
890-2553-11 MSD	BH-152 6'	Soluble	Solid	300.0	29754

Eurofins Carlsbad

4

6

0

10

12

13

Job ID: 890-2553-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-142 5'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57 Lab Sample ID: 890-2553-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 12:27	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 11:12	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 21:15	CH	XEN MID

Client Sample ID: BH-143 5' Lab Sample ID: 890-2553-2

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 12:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 12:16	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 21:42	CH	XEN MID

Client Sample ID: BH-144 5' Lab Sample ID: 890-2553-3

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 13:09	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 14:02	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 21:52	CH	XEN MID

Client Sample ID: BH-145 5' Lab Sample ID: 890-2553-4 Date Collected: 07/12/22 00:00 **Matrix: Solid**

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 13:30	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-145 5'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

Lab Sample ID: 890-2553-4

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 12:37	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 22:01	CH	XEN MID

Client Sample ID: BH-146 5' Lab Sample ID: 890-2553-5

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 13:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 12:58	SM	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 22:10	CH	XEN MID

Client Sample ID: BH-147 6' Lab Sample ID: 890-2553-6 Date Collected: 07/12/22 00:00 **Matrix: Solid**

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 14:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 15:52	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 22:38	CH	XEN MID

Client Sample ID: BH-148 6' Lab Sample ID: 890-2553-7

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 14:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	29795 29788	07/15/22 08:42 07/15/22 14:24	DM SM	XEN MID XEN MID

Eurofins Carlsbad

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-148 6'

Date Collected: 07/12/22 00:00
Date Received: 07/12/22 16:57

Lab Sample ID: 890-2553-7 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 22:47	CH	XEN MID

Client Sample ID: BH-149 6' Lab Sample ID: 890-2553-8

Date Collected: 07/12/22 00:00 Matrix: Solid

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 14:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 17:38	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 22:56	CH	XEN MID

Client Sample ID: BH-150 6' Lab Sample ID: 890-2553-9

Date Collected: 07/12/22 00:00 Matrix: Solid
Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 15:14	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 17:17	SM	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 23:05	CH	XEN MID

Client Sample ID: BH-151 6' Lab Sample ID: 890-2553-10

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29774	07/14/22 16:53	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	29893	07/18/22 15:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 16:56	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 23:15	CH	XEN MID

Eurofins Carlsbad

2

5

7

g

10

13

14

Matrix: Solid

Job ID: 890-2553-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: BH-152 6' Lab Sample ID: 890-2553-11

Date Collected: 07/12/22 00:00 **Matrix: Solid** Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 17:37	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 18:42	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/16/22 23:24	CH	XEN MID

Client Sample ID: BH-153 6' Lab Sample ID: 890-2553-12 Date Collected: 07/12/22 00:00

Date Received: 07/12/22 16:57

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 29947 Total/NA 4.99 g 5 mL 07/18/22 13:40 MR XEN MID 8021B Total/NA 5 mL 30015 07/19/22 17:57 XEN MID Analysis 1 5 mL MR Total/NA Total BTEX 30030 07/19/22 09:14 XEN MID Analysis 1 SM Total/NA Analysis 8015 NM 29911 07/18/22 09:27 SM XEN MID Total/NA 29795 07/15/22 08:42 XEN MID Prep 8015NM Prep 10.02 g 10 mL DM Total/NA Analysis 8015B NM 29788 07/15/22 15:06 SM XEN MID Soluble 29754 07/14/22 12:47 XEN MID Leach DI Leach 5.02 g 50 mL SMC Soluble Analysis 300.0 1 29864 07/16/22 23:51 СН XEN MID

Lab Sample ID: 890-2553-13 Client Sample ID: BH-154 6' Date Collected: 07/12/22 00:00 **Matrix: Solid**

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 18:18	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 13:41	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29754	07/14/22 12:47	SMC	XEN MIC
Soluble	Analysis	300.0		1			29864	07/17/22 00:01	CH	XEN MID

Client Sample ID: BH-155 6' Lab Sample ID: 890-2553-14 Date Collected: 07/12/22 00:00 **Matrix: Solid**

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 18:38	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-155 6'

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57 Lab Sample ID: 890-2553-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 14:45	SM	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/17/22 00:29	CH	XEN MID

Client Sample ID: BH-156 6'

Date Collected: 07/12/22 00:00

Lab Sample ID: 890-2553-15

Matrix: Solid

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 18:58	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 17:59	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/17/22 00:38	CH	XEN MID

Client Sample ID: BH-157 6'

Date Collected: 07/12/22 00:00

Lab Sample ID: 890-2553-16

Matrix: Solid

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 19:19	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 19:03	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/17/22 00:47	CH	XEN MID

Client Sample ID: BH-158 6' Lab Sample ID: 890-2553-17

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 20:41	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		5	10.00 g	10 mL	29795 29788	07/15/22 08:42 07/15/22 13:19	DM SM	XEN MID XEN MID

Eurofins Carlsbad

Matrix: Solid

2

Л

5

7

9

11

Client: Tetra Tech, Inc. Job ID: 890-2553-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-158 6'

Lab Sample ID: 890-2553-17 Date Collected: 07/12/22 00:00 Matrix: Solid

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/17/22 00:56	CH	XEN MID

Client Sample ID: SW-50 0-6' Lab Sample ID: 890-2553-18

Date Collected: 07/12/22 00:00 **Matrix: Solid**

Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 19:39	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	29795	07/15/22 08:42	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 18:21	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/17/22 01:06	CH	XEN MID

Client Sample ID: SW-51 0-6' Lab Sample ID: 890-2553-19

Date Collected: 07/12/22 00:00 **Matrix: Solid** Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 20:00	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	29795	07/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 19:24	SM	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/17/22 01:15	CH	XEN MID

Client Sample ID: SW-52 0-6' Lab Sample ID: 890-2553-20

Date Collected: 07/12/22 00:00 Date Received: 07/12/22 16:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	29947	07/18/22 13:40	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30015	07/19/22 20:20	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30030	07/19/22 09:14	SM	XEN MID
Total/NA	Analysis	8015 NM		1			29911	07/18/22 09:27	SM	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	29795	07/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29788	07/15/22 16:13	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	29754	07/14/22 12:47	SMC	XEN MID
Soluble	Analysis	300.0		1			29864	07/17/22 01:24	CH	XEN MID

Eurofins Carlsbad

Matrix: Solid

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2553-1 SDG: Lea County NM

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

3

ی

4

6

8

9

11

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
exas		ELAP	T104704400-22-24	06-30-23	
The following analytes	ara inalizadad in thia ranart hi	it the leberatory is not contiffi	iad butba gavarning authority. This list was		
the agency does not of	. ,	at the laboratory is not certil	ied by the governing authority. This list ma	ay include analytes for t	
,	. ,	Matrix	Analyte	ay include analytes for t	
the agency does not of	fer certification.	•	, , ,	ay include analytes for v	

А

5

0

10

12

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2553-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

-

0

5

7

0

10

4.0

13

| | 4

BH-155 6'

BH-156 6'

BH-157 6'

BH-158 6'

SW-50 0-6'

SW-51 0-6'

SW-52 0-6'

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

890-2553-14

890-2553-15

890-2553-16

890-2553-17

890-2553-18

890-2553-19

890-2553-20

Job ID: 890-2553-1 SDG: Lea County NM

6'

6'

6' 0' - 6'

0' - 6'

07/12/22 16:57

07/12/22 16:57

07/12/22 16:57

07/12/22 16:57

07/12/22 16:57

07/12/22 16:57

07/12/22 16:57 0' - 6'

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2553-1	BH-142 5'	Solid	07/12/22 00:00	07/12/22 16:57	5'
890-2553-2	BH-143 5'	Solid	07/12/22 00:00	07/12/22 16:57	5'
890-2553-3	BH-144 5'	Solid	07/12/22 00:00	07/12/22 16:57	5'
890-2553-4	BH-145 5'	Solid	07/12/22 00:00	07/12/22 16:57	5'
890-2553-5	BH-146 5'	Solid	07/12/22 00:00	07/12/22 16:57	5'
890-2553-6	BH-147 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'
890-2553-7	BH-148 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'
890-2553-8	BH-149 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'
890-2553-9	BH-150 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'
890-2553-10	BH-151 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'
890-2553-11	BH-152 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'
890-2553-12	BH-153 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'
890-2553-13	BH-154 6'	Solid	07/12/22 00:00	07/12/22 16:57	6'

Solid

Solid

Solid

Solid

Solid

Solid

Solid

07/12/22 00:00

07/12/22 00:00

07/12/22 00:00

07/12/22 00:00

07/12/22 00:00

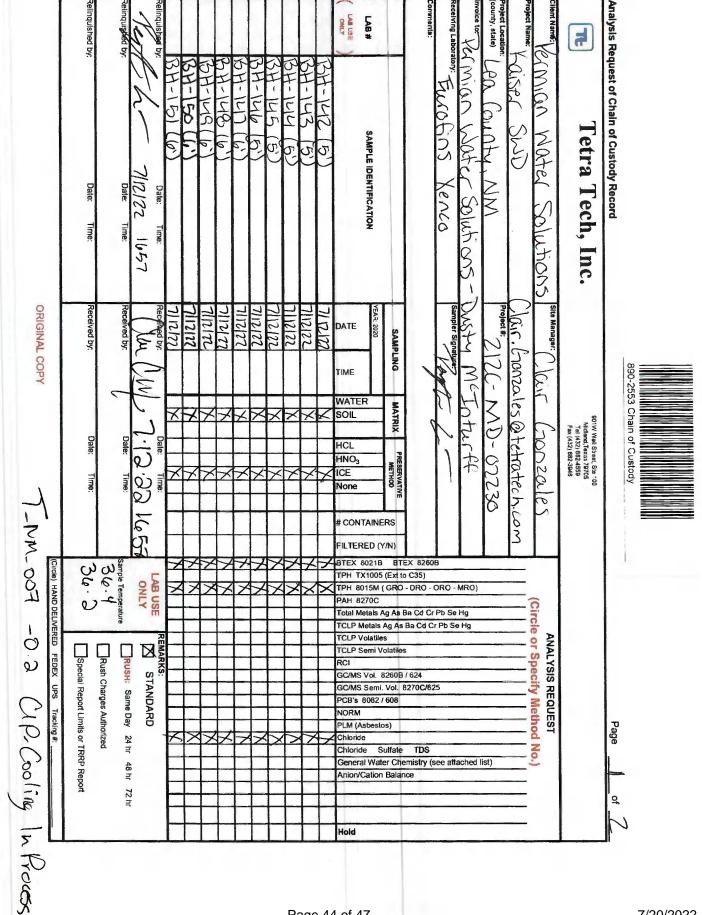
07/12/22 00:00

07/12/22 00:00

3

4

6


8

9

10

12

13

Tetra Tech, Inc. Control Contro		Relinquished by:	,	Relinquished by:	17	Relinquished by:											(ONLY)	LAB #			Comments:	Receiving Laboratory:	Thyolica to.	(county, state)	Project Location:	Client Name:	4
Silte Manager: WATER Soll HCL HNO3 ICE None Received by: Date: Time: Sampler Son MATRIX PRESERVATIVE WATER SOIL HCL HNO3 ICE None PRESERVATIVE WATER SOIL JUL 177 JUL 177 JUL 177 JUL 177 JUL 177 JUL 177 Jul 177		Date:		Date:	1/2/21/12 /	Date:	2 27	7 0 -)-0) ণ	58	57	_			-			SAMPLE IDENTIFICATION				KNIGGINS >	Watch	1	Charle)	rmion Jobster Soluti	Tetra Tech, Inc.
WATER WATE		Received by:		Received by:		Received by:	111111	12/2/16	17/12/172	21111	711172	7112/72	7/12/12	7/12/17	17/12/12/	7/12/22		YEAR: 2020	SAMPLING			Sampler Signature:	5- UNST	17.77	Project #: 2	Site Manager:	
FILTERED (Y/N) BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles				١		Date:	<i>Y</i>	X	×	X	\ \ \	X 3	X	₹ - ×	7	7	WATE SOIL HCL HNO ₃ ICE					WAT I	Intu	ND-0775		5	901W Wall Street, Ste 100 Midden'd, Texas 79705 Tel (432) 682 4559 Fax (432) 882-3946
	le) HAND DELIVERED FEDEX UPS	Special Report Limits or TRRP Report		ple Temperature RUSH: Same Day	- 	REMARK		ファ ファ ステ ステ	7	ブチー	X X	X X I		<i>Z</i>	<i>Z</i>	7	FILTEI BTEX TPH 1 TPH 8 PAH 8 Total N TCLP TCLP TCLP GC/MS GC/MS PCB'S NORM PLM (Chloric Gener	RED (8021E X1000 015M 0270C Metals Metals Volatil Semi V 8082 I Asbesi de de sal Wa	Y/N) 3 B 5 (Ext (GRC GRC Ag As Ag As Ext S Ag A Ext S Ag As Ext S Ag As Ext S S Ag As Ext S S S Ag As Ext S S S S S S S S S S S S S S S S S S S	to C35 D - DR Ba Cc Ba C	O - CO - CO - CO - CO - CO - CO - CO -	RO -	Hg e Hg				

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-2553-1

SDG Number: Lea County NM

List Source: Eurofins Carlsbad Login Number: 2553 List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Page 46 of 47 7/20/2022 Released to Imaging: 9/1/2023 2:07:08 PM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2553-1

SDG Number: Lea County NM

List Source: Eurofins Midland List Creation: 07/14/22 10:49 AM

Creator: Rodriguez, Leticia

Login Number: 2553

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

3

4

6

_

10

12

14

<6mm (1/4").

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 9/1/2023 2:07:08 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2689-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

Revision: 1

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMPR

Authorized for release by: 8/11/2022 8:29:02 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2689-1

SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	17
QC Sample Results	19
QC Association Summary	26
Lab Chronicle	30
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38
Receipt Checklists	40

4

0

8

10

12

13

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-2689-1

Project/Site: Kaiser SWD

SDG: Lea County NM

2

Qualifiers

GC VOA

Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

S1+ Surrogate recovery exceeds control limits, high biased.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2689-1

SDG: Lea County NM

Job ID: 890-2689-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2689-1

REVISION

The report being provided is a revision of the original report sent on 8/8/2022. The report (revision 1) is being revised due to Per client email, requesting sample ID edit.

Report revision history

Receipt

The samples were received on 7/29/2022 2:06 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 15.2°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-31669 and analytical batch 880-31654 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-159 (8') (890-2689-6) and BH-160 (8') (890-2689-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-31669 and analytical batch 880-31654 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad 8/11/2022 (Rev. 1) Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2689-1 SDG: Lea County NM

Client Sample ID: BH-118 (13')

Lab Sample ID: 890-2689-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		08/05/22 11:19	08/06/22 01:44	
Toluene	<0.00202	U	0.00202		mg/Kg		08/05/22 11:19	08/06/22 01:44	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/05/22 11:19	08/06/22 01:44	
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		08/05/22 11:19	08/06/22 01:44	
o-Xylene	< 0.00202	U	0.00202		mg/Kg		08/05/22 11:19	08/06/22 01:44	
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		08/05/22 11:19	08/06/22 01:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		70 - 130				08/05/22 11:19	08/06/22 01:44	
1,4-Difluorobenzene (Surr)	96		70 - 130				08/05/22 11:19	08/06/22 01:44	
Method: Total BTEX - Total B	TEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00404	U	0.00404		mg/Kg			08/08/22 14:27	-
Method: 8015 NM - Diesel Rai	nge Organic	s (DRO) (G	3C)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	247		49.9		mg/Kg			08/04/22 09:51	
Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/03/22 09:25	08/03/22 22:32	
(GRO)-C6-C10					0 0				
					m = /1/ ==		08/03/22 09:25	00/00/00 00 00	
` ,	247		49.9		mg/Kg		00/03/22 09.23	08/03/22 22:32	
Diesel Range Organics (Over C10-C28)	247		49.9		mg/Kg		00/03/22 09.23	08/03/22 22:32	
Diesel Range Organics (Over C10-C28)	247 <49.9	U	49.9 49.9		mg/Kg		08/03/22 09:25	08/03/22 22:32	
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate									Dil Fa
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9		49.9				08/03/22 09:25	08/03/22 22:32	

70 - 130 o-Terphenyl 94 Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Analyte RL MDL Unit Prepared Analyzed 5.03 Chloride 263 mg/Kg 08/06/22 06:13

Client Sample ID: BH-119 (10')

Lab Sample ID: 890-2689-2

Matrix: Solid

Date Received: 07/29/22 14:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:22	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:22	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:22	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/05/22 11:19	08/06/22 00:22	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:22	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/05/22 11:19	08/06/22 00:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				08/05/22 11:19	08/06/22 00:22	1
1,4-Difluorobenzene (Surr)	92		70 - 130				08/05/22 11:19	08/06/22 00:22	1

Eurofins Carlsbad

2

4

6

8

10

12

13

Client: Tetra Tech, Inc.

Job ID: 890-2689-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-119 (10')

Method: Total BTEX - Total BTEX Calculation

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06 Lab Sample ID: 890-2689-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			08/08/22 14:27	1
- Method: 8015 NM - Diesel Rang	je Organic	s (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/04/22 09:51	1
Analyte	•	• • • • • • • • • • • • • • • • • • • •	,00,						
Method: 8015B NM - Diesel Rai Analyte	•	• • • • • • • • • • • • • • • • • • • •	,00,						
,	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	Result <49.9		RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 08/03/22 09:25		Dil Fac
		U		MDL		<u>D</u>		08/03/22 20:23	Dil Fac 1
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	MDL	mg/Kg	<u>D</u>	08/03/22 09:25	08/03/22 20:23	Dil Fac 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130	08/03/22 09:25	08/03/22 20:23	1
o-Terphenyl	113		70 - 130	08/03/22 09:25	08/03/22 20:23	1
_						

Method: 300.0 - Anions, Ion Chromatography - SolubleAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacChloride38225.1mg/Kg08/06/22 06:415

Client Sample ID: BH-158 (8')

Date Collected: 07/26/22 12:00

Matrix: Solid

Date Received: 07/29/22 14:06

Dat	e veceiven	. 01123122 14	+.00	
_				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 00:42	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 00:42	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 00:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 00:42	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 00:42	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 00:42	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				08/05/22 11:19	08/06/22 00:42	
1,4-Difluorobenzene (Surr)	93		70 - 130				08/05/22 11:19	08/06/22 00:42	
Method: Total BTEX - Tota	I BTEX Calcula			MDI	l lait	Б			Dil Fa
Method: Total BTEX - Tota Analyte	I BTEX Calcula Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Tota	I BTEX Calcula	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: Total BTEX - Tota Analyte Total BTEX	I BTEX Calcula Result <0.00398	Qualifier U	RL 0.00398	MDL		<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel	I BTEX Calcula Result <0.00398 Range Organic	Qualifier U	RL 0.00398	MDL MDL	mg/Kg	<u>D</u>		Analyzed	
Method: Total BTEX - Tota Analyte	I BTEX Calcula Result <0.00398 Range Organic	Qualifier U S (DRO) (C	RL 0.00398		mg/Kg	=	Prepared	Analyzed 08/08/22 14:27	Dil Fac
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel Analyte	I BTEX Calcula Result <0.00398 Range Organic Result <50.0	Qualifier U S (DRO) (C Qualifier U	RL 0.00398		mg/Kg Unit	=	Prepared	Analyzed 08/08/22 14:27	
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel Analyte	I BTEX Calcula Result <0.00398 Range Organic Result <50.0 Pl Range Organ	Qualifier U S (DRO) (C Qualifier U	RL 0.00398		mg/Kg Unit mg/Kg	=	Prepared	Analyzed 08/08/22 14:27	
Method: Total BTEX - Tota Analyte Total BTEX Method: 8015 NM - Diesel Analyte Total TPH Method: 8015B NM - Diese	I BTEX Calcula Result <0.00398 Range Organic Result <50.0 Pl Range Organ	Qualifier U S (DRO) (C Qualifier U ics (DRO) Qualifier	RL 0.00398 GC) RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/08/22 14:27 Analyzed 08/04/22 09:51	Dil Fa

Job ID: 890-2689-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Client Sample ID: BH_158 (8')

Lab Sample ID: 890-2689-3

Lab Sample ID: 890-2689-4

Matrix: Solid

Matrix: Solid

Cilen	t San	npie	ID:	BH-1	58	(8°)
Date (Collect	od: 0	7/26	122 12	-00	

Date Received: 07/29/22 14:06

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/03/22 09:25	08/03/22 23:57	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
1-Chlorooctane	83		70 - 130				08/03/22 09:25	08/03/22 23:57	1		

Method: 300.0 - Anions, Ion Cl	nromatogra	phy - Solub	ole						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	99.8		5.00		mg/Kg			08/06/22 06:50	1

Client Sample ID: SW-50 (0-6') Date Collected: 07/26/22 12:00

Date Received: 07/29/22 14:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:03	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:03	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:03	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 01:03	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:03	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 01:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				08/05/22 11:19	08/06/22 01:03	1

1,4-Difluorobenzene (Surr)	89		70 - 130				08/05/22 11:19	08/06/22 01:03	1
Method: Total BTEX - Total BT	EX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/08/22 14:27	1

Method: 8015 NM - Diesel Ran	ge Organic	s (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			08/04/22 09:51	1

Method: 8015B NM - Diesel R Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		08/03/22 09:25	08/04/22 00:58	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		08/03/22 09:25	08/04/22 00:58	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/03/22 09:25	08/04/22 00:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				08/03/22 09:25	08/04/22 00:58	1
o-Terphenyl	96		70 - 130				08/03/22 09:25	08/04/22 00:58	1

Method: 300.0 - Anions, Ion Cl	hromatogra	phy - Solu	ble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	52.0		4.97		mg/Kg			08/06/22 07:00	1

Client: Tetra Tech, Inc.

Job ID: 890-2689-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-51 (0-6')

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06 Lab Sample ID: 890-2689-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:23	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:23	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:23	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 01:23	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 01:23	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 01:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				08/05/22 11:19	08/06/22 01:23	1
1,4-Difluorobenzene (Surr)	91		70 - 130				08/05/22 11:19	08/06/22 01:23	1
Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/08/22 14:27	1
Method: 8015 NM - Diesel F	Range Organic	s (DRO) (0	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	П	50.0		mg/Kg			08/04/22 09:51	

Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/03/22 09:25	08/04/22 01:18	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/03/22 09:25	08/04/22 01:18	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/03/22 09:25	08/04/22 01:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				08/03/22 09:25	08/04/22 01:18	1
o-Terphenyl	91		70 - 130				08/03/22 09:25	08/04/22 01:18	1

Method: 300.0 - Anions, Ion Cl	hromatogra	phy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	201		4.97		mg/Kg			08/06/22 07:09	1

Client Sample ID: BH-159 (8')
Date Collected: 07/26/22 12:00
Date Received: 07/29/22 14:06

REMOVED FROM ANALYSIS TABLE

Lab	Sample	ID:	890-2689-6
			Matrix: Solid

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 02:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 02:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 02:46	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/05/22 11:19	08/06/22 02:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 02:46	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/05/22 11:19	08/06/22 02:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	131	S1+	70 - 130				08/05/22 11:19	08/06/22 02:46	1
1,4-Difluorobenzene (Surr)	91		70 - 130				08/05/22 11:19	08/06/22 02:46	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2689-1 SDG: Lea County NM

Lab Sample ID: 890-2689-6

Matrix: Solid

Client Sample ID: BH-159 (8') Date Collected: 07/26/22 12:00

Date Received: 07/29/22 14:06

REMOVED FROM ANALYSIS TABLE

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			08/08/22 14:27	1
- Method: 8015 NM - Diesel R	ange Organic	s (DRO) (0	SC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	58.9		50.0		mg/Kg			08/04/22 09:51	1
- Method: 8015B NM - Diesel	Range Organi	ics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/03/22 09:25	08/03/22 22:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/03/22 09:25	08/03/22 22:53	1
C10-C28)									
Oll Range Organics (Over	58.9		50.0		mg/Kg		08/03/22 09:25	08/03/22 22:53	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	87		70 - 130				08/03/22 09:25	08/03/22 22:53	1
o-Terphenyl	91		70 - 130				08/03/22 09:25	08/03/22 22:53	1
_ Method: 300.0 - Anions, Ion	Chromatogra	nhy - Soli	ıble						
Analyte	_	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Chloride 581 25.3 mg/Kg 08/06/22 07:36 Client Sample ID: BH-160 (8') Lab Sample ID: 890-2689-7 Date Collected: 07/26/22 12:00 **Matrix: Solid**

Date Received: 07/29/22 14:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 03:06	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 03:06	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 03:06	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/05/22 11:19	08/06/22 03:06	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 03:06	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/05/22 11:19	08/06/22 03:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	135	S1+	70 - 130				08/05/22 11:19	08/06/22 03:06	1
1 1 Differenchemanne (Cerry)	89		70 - 130				08/05/22 11:19	08/06/22 03:06	1
1,4-Difluorobenzene (Surr)	09		70 - 130				06/05/22 11.19	06/06/22 03.00	,
·		tion	70 - 130				06/05/22 11.19	06/00/22 03.00	1
T,4-Dilluoroberizerie (Surr) Method: Total BTEX - Total Analyte	BTEX Calcula	tion Qualifier	70 - 730 RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total	BTEX Calcula	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: Total BTEX - Total Analyte Total BTEX	BTEX Calcula Result <0.00399	Qualifier U	RL	MDL		<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel I	BTEX Calcula Result <0.00399 Range Organic	Qualifier U	RL	MDL MDL		<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Total Analyte	BTEX Calcula Result <0.00399 Range Organic	Qualifier U	RL 0.00399		mg/Kg		Prepared	Analyzed 08/08/22 14:27	1
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel I Analyte Total TPH	BTEX Calcula Result <0.00399 Range Organic Result 217	Qualifier U s (DRO) (O Qualifier	RL 0.00399		mg/Kg		Prepared	Analyzed 08/08/22 14:27 Analyzed	1
Method: Total BTEX - Total Analyte Total BTEX Method: 8015 NM - Diesel I Analyte	BTEX Calcula Result <0.00399 Range Organic Result 217 I Range Organic	Qualifier U s (DRO) (O Qualifier	RL 0.00399		mg/Kg Unit mg/Kg		Prepared	Analyzed 08/08/22 14:27 Analyzed	1

Eurofins Carlsbad

(GRO)-C6-C10

Job ID: 890-2689-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-160 (8')
Date Collected: 07/26/22 12:00

Lab Sample ID: 890-2689-7

Date Received: 07/29/22 14:06

Matrix: Solid

08/06/22 07:46

9 1
) 1
Dil Fac
9 1
9 1
_

Client Sample ID: BH-161 (8')

Date Collected: 07/26/22 12:00

Lab Sample ID: 890-2689-8

Matrix: Solid

25.2

mg/Kg

563

Date Received: 07/29/22 14:06

Chloride

Date Received. 07/29/22 14.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 03:27	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 03:27	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 03:27	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 03:27	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 03:27	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 03:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				08/05/22 11:19	08/06/22 03:27	1
1,4-Difluorobenzene (Surr)	77		70 - 130				08/05/22 11:19	08/06/22 03:27	1

		70 - 130				00/00/22 11.10	08/06/22 03:27	•
ΓEX Calcula	tion							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00398	U	0.00398		mg/Kg			08/08/22 14:27	1
nge Organic	s (DRO) (G	SC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
218		49.9		mg/Kg			08/04/22 09:51	1
ange Organi	ics (DRO)	(GC)						
ango Organi	ice (DBO)	(CC)						
Result	Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
	Qualifier	• •	MDL	Unit mg/Kg	<u>D</u>	Prepared 08/03/22 09:25	Analyzed 08/03/22 22:11	Dil Fac
Result <49.9	Qualifier	RL 49.9	MDL	mg/Kg	<u>D</u>	08/03/22 09:25	08/03/22 22:11	Dil Fac
Result	Qualifier	RL _	MDL		<u>D</u>	<u>-</u>	08/03/22 22:11	Dil Fac
Result <49.9	Qualifier	RL 49.9	MDL	mg/Kg mg/Kg	<u>D</u>	08/03/22 09:25	08/03/22 22:11 08/03/22 22:11	Dil Fac 1 1
Result <49.9 147	Qualifier	RL 49.9	MDL	mg/Kg	<u>D</u>	08/03/22 09:25 08/03/22 09:25	08/03/22 22:11 08/03/22 22:11	1 1 1
Result <49.9 147	Qualifier U	RL 49.9	MDL	mg/Kg mg/Kg	<u>D</u>	08/03/22 09:25 08/03/22 09:25	08/03/22 22:11 08/03/22 22:11	Dil Fac 1 1 Dil Fac
Result <49.9 147 71.4	Qualifier U	RL 49.9 49.9 49.9	MDL	mg/Kg mg/Kg	<u> </u>	08/03/22 09:25 08/03/22 09:25 08/03/22 09:25	08/03/22 22:11 08/03/22 22:11 08/03/22 22:11	1 1
	Result <0.00398 nge Organic Result 218	Result Qualifier 218	Result Qualifier RL	Result Qualifier RL MDL	Result Qualifier RL MDL Unit mg/Kg	Result Qualifier RL MDL Unit mg/Kg D	Result Qualifier RL MDL Unit D Prepared <0.00398 U 0.00398 D Prepared mg/Kg nge Organics (DRO) (GC) Result Qualifier RL MDL Unit D Prepared	Result Qualifier RL MDL Unit D Prepared Analyzed

Eurofins Carlsbad

6

8

10

Job ID: 890-2689-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-161 (8')

Lab Sample ID: 890-2689-8

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06 **Matrix: Solid**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	515		25.0		mg/Kg			08/06/22 07:55	5

Client Sample ID: BH-162 (8')

REMOVED FROM

Lab Sample ID: 890-2689-9

Matrix: Solid

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06

ANALYSIS TABLE

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:05	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:05	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:05	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 02:05	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:05	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 02:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				08/05/22 11:19	08/06/22 02:05	1
1,4-Difluorobenzene (Surr)	87		70 - 130				08/05/22 11:19	08/06/22 02:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/08/22 14:27	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL Un	it [D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg	/Kg			08/04/22 09:51	1

1	/lethod:	8015B	NM -	Diesel	Range	Org	ani	CS	(DRO)	(GC)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/03/22 09:25	08/04/22 00:18	1	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/03/22 09:25	08/04/22 00:18	1	
C10-C28)										
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/03/22 09:25	08/04/22 00:18	1	
Surrente	9/ D agayamı	Ovalifian	Limita				Dronovod	A	Dil Foo	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	701 CCCVCI y	Qualifici	Lilling	1 Tepareu	Allalyzea	Diriac
1-Chlorooctane	87		70 - 130	08/03/22 09:25	08/04/22 00:18	1
o-Terphenyl	94		70 - 130	08/03/22 09:25	08/04/22 00:18	1
_						

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	106		24.9		mg/Kg			08/06/22 08:04	5

Client Sample ID: BH-163 (8')

Lab Sample ID: 890-2689-10 Date Collected: 07/26/22 12:00 **Matrix: Solid**

Date Received: 07/29/22 14:06

Method: 8021B - Volatile Organic Compounds (GC)

Welliou. 002 ID - Volatile Orga	ine compo	ulius (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:25	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:25	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:25	1

Client Sample ID: BH-163 (8') Lab Sample ID: 890-2689-10

Date Collected: 07/26/22 12:00 Matrix: Solid Date Received: 07/29/22 14:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 02:25	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/05/22 11:19	08/06/22 02:25	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/05/22 11:19	08/06/22 02:25	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	122		70 - 130				08/05/22 11:19	08/06/22 02:25	
1,4-Difluorobenzene (Surr)	82		70 - 130				08/05/22 11:19	08/06/22 02:25	
Method: Total BTEX - Total B	TEX Calcula	tion							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/08/22 14:27	-
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	
Method: 8015 NM - Diesel Rai Analyte Total TPH Method: 8015B NM - Diesel R	Result <50.0	Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/04/22 09:51	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel R	Result <50.0	Qualifier U	RL	MDL MDL	mg/Kg	<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diesel R Analyte Gasoline Range Organics	Result <50.0	Qualifier U ics (DRO) Qualifier	RL 50.0		mg/Kg	_ =	<u> </u>	08/04/22 09:51	
Analyte	Result <50.0	Qualifier U ics (DRO) Qualifier U	RL 50.0		mg/Kg Unit	_ =	Prepared	08/04/22 09:51 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel R Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 ange Organ Result <50.0	Qualifier U ics (DRO) Qualifier U	(GC) RL 50.0		mg/Kg Unit mg/Kg	_ =	Prepared 08/03/22 09:25	08/04/22 09:51 Analyzed 08/03/22 23:37	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel R Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	Result	Qualifier U ics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 08/03/22 09:25 08/03/22 09:25	08/04/22 09:51 Analyzed 08/03/22 23:37 08/03/22 23:37	
Analyte Total TPH Method: 8015B NM - Diesel R Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 ange Organ Result <50.0 <50.0 <50.0	Qualifier U ics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 08/03/22 09:25 08/03/22 09:25 08/03/22 09:25	08/04/22 09:51 Analyzed 08/03/22 23:37 08/03/22 23:37	Dil Fa

Method: 300.0 - Anions, ion Chromatography - Soluble									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	107	5.02		mg/Kg			08/06/22 08:13	1	

Client Sample ID: BH-164 (8') Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06

Released to Imaging: 9/1/2023 2:07:08 PM

REMOVED FROM ANALYSIS TABLE

Lab Sample	ID:	890-2689-11
		Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:34	1
Toluene	< 0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:34	1
Ethylbenzene	< 0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:34	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 07:34	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:34	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 07:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				08/05/22 11:19	08/06/22 07:34	1
1,4-Difluorobenzene (Surr)	99		70 - 130				08/05/22 11:19	08/06/22 07:34	1
- Method: Total BTEX - Total	BTEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/08/22 14:27	

Client Sample ID: BH-164 (8')

Lab Sample ID: 890-2689-11

Date Collected: 07/26/22 12:00 **Matrix: Solid** Date Received: 07/29/22 14:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	3450		250		mg/Kg			08/04/22 09:51	1
Method: 8015B NM - Diesel I	Range Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<250	U	250		mg/Kg		08/03/22 09:25	08/03/22 21:27	5
Diesel Range Organics (Over C10-C28)	2820		250		mg/Kg		08/03/22 09:25	08/03/22 21:27	5
Oll Range Organics (Over C28-C36)	625		250		mg/Kg		08/03/22 09:25	08/03/22 21:27	Ę
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				08/03/22 09:25	08/03/22 21:27	- 5
o-Terphenyl	105		70 - 130				08/03/22 09:25	08/03/22 21:27	5

Analyte Result Qualifier MDL Unit Analyzed Dil Fac RL D Prepared Chloride 1340 24.9 mg/Kg 08/06/22 08:22 Lab Sample ID: 890-2689-12

Client Sample ID: BH-165 (13')

Date Collected: 07/26/22 12:00 **Matrix: Solid**

Method: 8021B - Volatile Organists Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:54	
Toluene	< 0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:54	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:54	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 07:54	
o-Xylene	< 0.00201	U	0.00201		mg/Kg		08/05/22 11:19	08/06/22 07:54	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/05/22 11:19	08/06/22 07:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	115		70 - 130				08/05/22 11:19	08/06/22 07:54	
1,4-Difluorobenzene (Surr)	91		70 - 130				08/05/22 11:19	08/06/22 07:54	
Method: Total BTEX - Total B	TEX Calcula	tion							
Method: Total BTEX - Total B Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/08/22 14:27	Dil Fa
Analyte Total BTEX	<0.00402	Qualifier U	0.00402	MDL		<u>D</u>	Prepared		Dil Fa
Analyte Total BTEX Method: 8015 NM - Diesel Ra	Result <0.00402	Qualifier U	0.00402	MDL MDL	mg/Kg	<u>D</u>	Prepared Prepared		
Analyte Total BTEX Method: 8015 NM - Diesel Ra Analyte	Result <0.00402	Qualifier U	0.00402 OC)		mg/Kg		<u> </u>	08/08/22 14:27	
Analyte	Result <0.00402 nge Organic Result 64.6	Qualifier U s (DRO) (O Qualifier	0.00402 GC) RL 49.9		mg/Kg		<u> </u>	08/08/22 14:27 Analyzed	
Analyte Total BTEX Method: 8015 NM - Diesel Ra Analyte Total TPH Method: 8015B NM - Diesel R	Result <0.00402 nge Organic Result 64.6 cange Organic	Qualifier U s (DRO) (O Qualifier	0.00402 GC) RL 49.9		mg/Kg Unit mg/Kg		<u> </u>	08/08/22 14:27 Analyzed	Dil Fa
Analyte Total BTEX Method: 8015 NM - Diesel Ra Analyte Total TPH Method: 8015B NM - Diesel R Analyte Gasoline Range Organics	Result <0.00402 nge Organic Result 64.6 cange Organic	Qualifier U S (DRO) (O Qualifier ics (DRO) Qualifier	0.00402	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	08/08/22 14:27 Analyzed 08/04/22 09:51	Dil Fa
Analyte Total BTEX Method: 8015 NM - Diesel Ra Analyte Total TPH	Result <0.00402 nge Organic Result 64.6 cange Organic Result	Qualifier U S (DRO) (O Qualifier ics (DRO) Qualifier	0.00402 GC) RL 49.9 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	08/08/22 14:27 Analyzed 08/04/22 09:51 Analyzed 08/03/22 23:15	Dil Fa

Client Sample ID: BH-165 (13') Lab Sample ID: 890-2689-12

Date Collected: 07/26/22 12:00 Eab Sample 1D. 090-2009-12

Date Received: 07/29/22 14:06 Matrix: Solid

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	93	70 - 130	08/03/22 09:25	08/03/22 23:15	1
o-Terphenyl	98	70 - 130	08/03/22 09:25	08/03/22 23:15	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	613		24.9		mg/Kg			08/06/22 08:50	5

Client Sample ID: SW-43 (0-4')
Date Collected: 07/26/22 12:00

REMOVED FROM
ANALYSIS TABLE

Matrix: Solid

Date Received: 07/29/22 14:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/07/22 12:02	08/08/22 00:42	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/07/22 12:02	08/08/22 00:42	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/07/22 12:02	08/08/22 00:42	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/07/22 12:02	08/08/22 00:42	1
o-Xylene	<0.00202	U F1	0.00202		mg/Kg		08/07/22 12:02	08/08/22 00:42	1
Xylenes, Total	<0.00403	U F1	0.00403		mg/Kg		08/07/22 12:02	08/08/22 00:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				08/07/22 12:02	08/08/22 00:42	1
1,4-Difluorobenzene (Surr)	88		70 - 130				08/07/22 12:02	08/08/22 00:42	1

Method: Total BTEX - Total BTI	EX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			08/08/22 14:27	1
	_								

Method: 8015 NM - Diesel Range	Organic	s (DRO) (GC	;)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/04/22 09:51	1

Method: 8015B NM - Diesel R	ange Organi	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		08/03/22 09:25	08/04/22 01:38	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		08/03/22 09:25	08/04/22 01:38	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		08/03/22 09:25	08/04/22 01:38	1

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	88	70 - 130	08/03/22 09:25	08/04/22 01:38	1
o-Terphenyl	94	70 - 130	08/03/22 09:25	08/04/22 01:38	1

Method: 300.0 - Anions, Ion Cl	nromatogra	phy - Solu	ble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	86.9		5.00		mg/Kg			08/06/22 08:59	1

Eurofins Carlsbad

2

3

5

7

9

10

12

Client Sample ID: SW-39 (0-13')

Date Collected: 07/29/22 12:00 Date Received: 07/29/22 14:06 Lab Sample ID: 890-2689-14

Matrix: Solid

Method: 8021B - Volatile O	rganic Compo	unds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/07/22 12:02	08/08/22 01:03	1
Toluene	< 0.00201	U	0.00201		mg/Kg		08/07/22 12:02	08/08/22 01:03	1
Ethylbenzene	< 0.00201	U	0.00201		mg/Kg		08/07/22 12:02	08/08/22 01:03	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/07/22 12:02	08/08/22 01:03	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		08/07/22 12:02	08/08/22 01:03	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/07/22 12:02	08/08/22 01:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				08/07/22 12:02	08/08/22 01:03	1
1 4-Difluorobenzene (Surr)	93		70 - 130				08/07/22 12:02	08/08/22 01:03	1

Method: Total BTEX - Total BTEX Calculation

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total BTEX
 <0.00402</td>
 U
 0.00402
 mg/Kg
 08/08/22 14:27
 1

١	Method: 8015 NM - Diesel Rang	je Organics (DRO) (GC	5)					
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.9 U	49.9	mg/Kg			08/04/22 09:51	1

Method: 8015B NM - Diesel Ra	nge Organi	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/03/22 09:25	08/04/22 01:58	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		08/03/22 09:25	08/04/22 01:58	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/03/22 09:25	08/04/22 01:58	1

Surr	ogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Ch	lorooctane	87		70 - 130	08/03/22 09:25	08/04/22 01:58	1
o-Te	rphenyl	92		70 - 130	08/03/22 09:25	08/04/22 01:58	1

Method: 300.0 - Anions, Ion Ch	nromatogra	phy - Solu	ble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	111		5.04		mg/Kg			08/06/22 20:26	1

Client Sample ID: SW-40 (0-13')

Date Collected: 07/29/22 12:00

Lab Sample ID: 890-2689-15

Matrix: Solid

Date Received: 07/29/22 14:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/07/22 12:02	08/08/22 01:23	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/07/22 12:02	08/08/22 01:23	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/07/22 12:02	08/08/22 01:23	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/07/22 12:02	08/08/22 01:23	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/07/22 12:02	08/08/22 01:23	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/07/22 12:02	08/08/22 01:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				08/07/22 12:02	08/08/22 01:23	1
1,4-Difluorobenzene (Surr)	77		70 - 130				08/07/22 12:02	08/08/22 01:23	1

Eurofins Carlsbad

2

J

8

4.6

11

13

ofins Carisdad

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2689-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-40 (0-13')

Date Collected: 07/29/22 12:00 Date Received: 07/29/22 14:06

Lab Sample ID: 890-2689-15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/08/22 14:27	1
- Method: 8015 NM - Diesel Rar	nge Organic	s (DRO) (0	GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			08/04/22 09:51	1
_ Method: 8015B NM - Diesel R	ange Organ	ice (DRO)	(GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		08/03/22 09:25	08/04/22 02:18	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		08/03/22 09:25	08/04/22 02:18	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/03/22 09:25	08/04/22 02:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				08/03/22 09:25	08/04/22 02:18	1
o-Terphenyl	90		70 - 130				08/03/22 09:25	08/04/22 02:18	1
Method: 300.0 - Anions, Ion C	hromatogra	nhy - Soli	ıble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-									

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2689-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
0-2689-1	BH-118 (13')	94	96	
0-2689-2	BH-119 (10')	114	92	
0-2689-2 MS	BH-119 (10')	124	98	
0-2689-2 MSD	BH-119 (10')	112	93	
0-2689-3	BH-158 (8')	110	93	
0-2689-4	SW-50 (0-6')	117	89	
0-2689-5	SW-51 (0-6')	111	91	
0-2689-6	BH-159 (8')	131 S1+	91	
0-2689-7	BH-160 (8')	135 S1+	89	
0-2689-8	BH-161 (8')	106	77	
0-2689-9	BH-162 (8')	108	87	
0-2689-10	BH-163 (8')	122	82	
0-2689-11	BH-164 (8')	124	99	
0-2689-12	BH-165 (13')	115	91	
0-2689-13	SW-43 (0-4')	110	88	
0-2689-13 MS	SW-43 (0-4')	114	95	
)-2689-13 MSD	SW-43 (0-4')	120	94	
)-2689-14	SW-39 (0-13')	120	93	
0-2689-15	SW-40 (0-13')	108	77	
S 880-31573/1-A	Lab Control Sample	106	90	
S 880-31669/1-A	Lab Control Sample	100	99	
SD 880-31573/2-A	Lab Control Sample Dup	112	94	
SD 880-31669/2-A	Lab Control Sample Dup	101	101	
3 880-31335/5-A	Method Blank	99	89	
3 880-31573/5-A	Method Blank	101	91	
3 880-31602/5-A	Method Blank	95	80	
880-31669/5-A	Method Blank	130	111	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery	(Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	70-130)	
890-2689-1	BH-118 (13')	92	94	
890-2689-2	BH-119 (10')	99	113	
890-2689-2 MS	BH-119 (10')	96	92	
890-2689-2 MSD	BH-119 (10')	88	84	
890-2689-3	BH-158 (8')	83	88	
890-2689-4	SW-50 (0-6')	90	96	
890-2689-5	SW-51 (0-6')	84	91	
890-2689-6	BH-159 (8')	87	91	
890-2689-7	BH-160 (8')	88	91	
890-2689-8	BH-161 (8')	88	92	
890-2689-9	BH-162 (8')	87	94	
890-2689-10	BH-163 (8')	97	104	

Eurofins Carlsbad

2

3

5

8

10

12

. .

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2689-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				ent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2689-11	BH-164 (8')	99	105	
890-2689-12	BH-165 (13')	93	98	
890-2689-13	SW-43 (0-4')	88	94	
890-2689-14	SW-39 (0-13')	87	92	
890-2689-15	SW-40 (0-13')	84	90	
LCS 880-31397/2-A	Lab Control Sample	109	107	
LCSD 880-31397/3-A	Lab Control Sample Dup	111	110	
MB 880-31397/1-A	Method Blank	96	109	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-31335/5-A

Matrix: Solid

Analysis Batch: 31540

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 31335

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200 U	U	0.00200		mg/Kg		08/02/22 14:31	08/05/22 11:25	1
Toluene	<0.00200 l	U	0.00200		mg/Kg		08/02/22 14:31	08/05/22 11:25	1
Ethylbenzene	<0.00200 l	U	0.00200		mg/Kg		08/02/22 14:31	08/05/22 11:25	1
m-Xylene & p-Xylene	<0.00400 l	U	0.00400		mg/Kg		08/02/22 14:31	08/05/22 11:25	1
o-Xylene	<0.00200 l	U	0.00200		mg/Kg		08/02/22 14:31	08/05/22 11:25	1
Xylenes, Total	<0.00400 l	U	0.00400		mg/Kg		08/02/22 14:31	08/05/22 11:25	1

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130	08/02/22 14:31	08/05/22 11:25	1
1,4-Difluorobenzene (Surr)	89		70 - 130	08/02/22 14:31	08/05/22 11:25	1

Lab Sample ID: MB 880-31573/5-A

Matrix: Solid

Analysis Batch: 31540

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 31573

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:00	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/05/22 11:19	08/06/22 00:00	
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/05/22 11:19	08/06/22 00:00	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/05/22 11:19	08/06/22 00:00	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	08/05/22 11:19	08/06/22 00:00	1
1,4-Difluorobenzene (Surr)	91		70 - 130	08/05/22 11:19	08/06/22 00:00	1

Lab Sample ID: LCS 880-31573/1-A

Matrix: Solid

Analysis Batch: 31540

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 31573

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09897		mg/Kg		99	70 - 130	
Toluene	0.100	0.1022		mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.1050		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.2137		mg/Kg		107	70 - 130	
o-Xylene	0.100	0.1208		mg/Kg		121	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	90		70 - 130

Lab Sample ID: LCSD 880-31573/2-A

Matrix: Solid

Analyte Benzene

Analysis Batch: 31540

	Client Sample ID: Lab Control Sample Dup								
					Prep Ty	pe: Tot	al/NA		
					Prep B	atch: 3	31573		
LCSD	LCSD				%Rec		RPD		
Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
0.09262		mg/Kg	_	93	70 - 130	7	35		

Eurofins Carlsbad

0.09262

Spike

Added

0.100

1

8/11/2022 (Rev. 1)

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2689-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-31573/2-A

Matrix: Solid

Analysis Batch: 31540

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 31573

LCSD LCSD Spike %Rec **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Toluene 0.100 0.09534 mg/Kg 95 70 - 130 7 35 Ethylbenzene 0.100 0.1047 mg/Kg 105 70 - 130 0 35 m-Xylene & p-Xylene 0.200 0.2146 mg/Kg 107 70 - 130 35 0 0.100 70 - 130 2 35 o-Xylene 0.1189 mg/Kg 119

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 890-2689-2 MS Client Sample ID: BH-119 (10')

Matrix: Solid

Analysis Batch: 31540

Prep Type: Total/NA

Prep Batch: 31573

Sample Sample Spike MS MS %Rec Result Qualifier Result Qualifier Analyte Added Unit D %Rec Limits Benzene <0.00200 U 0.101 0.09178 91 70 - 130 mg/Kg Toluene <0.00200 U 0.101 0.1004 mg/Kg 100 70 - 130 Ethylbenzene <0.00200 U 0.101 0.1071 mg/Kg 107 70 - 130 m-Xylene & p-Xylene <0.00399 U 0.201 0.2218 mg/Kg 110 70 - 130 o-Xylene <0.00200 U 0.101 0.1258 mg/Kg 125 70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	124	70 - 130
1,4-Difluorobenzene (Surr)	98	70 - 130

Lab Sample ID: 890-2689-2 MSD Client Sample ID: BH-119 (10')

Matrix: Solid

Analysis Batch: 31540

Prep Type: Total/NA

Prep Batch: 31573

_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0998	0.08524		mg/Kg		85	70 - 130	7	35
Toluene	<0.00200	U	0.0998	0.08780		mg/Kg		88	70 - 130	13	35
Ethylbenzene	<0.00200	U	0.0998	0.08996		mg/Kg		90	70 - 130	17	35
m-Xylene & p-Xylene	<0.00399	U	0.200	0.1787		mg/Kg		90	70 - 130	22	35
o-Xylene	<0.00200	U	0.0998	0.1036		mg/Kg		104	70 - 130	19	35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	93	70 - 130

Lab Sample ID: MB 880-31602/5-A

Matrix: Solid

Analysis Batch: 31654

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 31602

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/05/22 13:42	08/07/22 13:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/05/22 13:42	08/07/22 13:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/05/22 13:42	08/07/22 13:44	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/05/22 13:42	08/07/22 13:44	1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-31602/5-A

Matrix: Solid

Analysis Batch: 31654

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 31602

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/05/22 13:42	08/07/22 13:44	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/05/22 13:42	08/07/22 13:44	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/05/22 13:42	08/07/22 13:44	1

70 - 130

Lab Sample ID: MB 880-31669/5-A

Matrix: Solid

Analysis Batch: 31654

1,4-Difluorobenzene (Surr)

Client Sample ID: Method Blank

08/05/22 13:42 08/07/22 13:44

Prep Type: Total/NA

Prep Batch: 31669

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/07/22 12:02	08/08/22 00:21	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/07/22 12:02	08/08/22 00:21	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/07/22 12:02	08/08/22 00:21	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/07/22 12:02	08/08/22 00:21	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/07/22 12:02	08/08/22 00:21	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/07/22 12:02	08/08/22 00:21	1

MB MB

Surrogate	%Recovery 0	Qualifier L	_imits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130	7	70 - 130	08/07/22 12:02	08/08/22 00:21	1
1,4-Difluorobenzene (Surr)	111	7	70 - 130	08/07/22 12:02	08/08/22 00:21	1

Lab Sample ID: LCS 880-31669/1-A

Matrix: Solid

Analysis Batch: 31654

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 31669

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1009		mg/Kg		101	70 - 130	
Toluene	0.100	0.09893		mg/Kg		99	70 - 130	
Ethylbenzene	0.100	0.09835		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	0.200	0.1984		mg/Kg		99	70 - 130	
o-Xylene	0.100	0.1126		mg/Kg		113	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: LCSD 880-31669/2-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 31654							Prep E	satcn: .	31669
	Spike	LCSD I	LCSD				%Rec		RPD
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1023		mg/Kg		102	70 - 130	1	35
Toluene	0.100	0.1004		mg/Kg		100	70 - 130	2	35
Ethylbenzene	0.100	0.1014		mg/Kg		101	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.2043		mg/Kg		102	70 - 130	3	35
o-Xylene	0.100	0.1134		mg/Kg		113	70 - 130	1	35

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc. Job ID: 890-2689-1 SDG: Lea County NM Project/Site: Kaiser SWD

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 890-2689-13 MS Client Sample ID: SW-43 (0-4')

Matrix: Solid

Analysis Batch: 31654

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.100	0.1058		mg/Kg		105	70 - 130	
Toluene	<0.00202	U	0.100	0.1129		mg/Kg		112	70 - 130	
Ethylbenzene	<0.00202	U	0.100	0.1179		mg/Kg		117	70 - 130	
m-Xylene & p-Xylene	< 0.00403	U	0.201	0.2446		mg/Kg		122	70 - 130	
o-Xylene	<0.00202	U F1	0.100	0.1369	F1	mg/Kg		136	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 70 - 130 114 1,4-Difluorobenzene (Surr) 95 70 - 130

Lab Sample ID: 890-2689-13 MSD

Matrix: Solid

Analysis Batch: 31654

Client Sample ID: SW-43 (0-4') Prep Type: Total/NA

Prep Batch: 31669

Prep Type: Total/NA

Prep Batch: 31669

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Benzene <0.00202 U 0.100 0.1039 104 70 - 130 2 35 mg/Kg Toluene 0.1120 <0.00202 U 0.100 mg/Kg 112 70 - 130 35 1 Ethylbenzene <0.00202 U 0.100 0.1218 mg/Kg 122 70 - 130 3 35 <0.00403 U 0.200 0.2532 126 70 - 130 35 m-Xylene & p-Xylene mg/Kg 3 o-Xylene <0.00202 UF1 0.100 0.1413 F1 mg/Kg 141 70 - 130 3 35

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 120 70 - 130 1,4-Difluorobenzene (Surr) 94 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-31397/1-A

Matrix: Solid

Analysis Batch: 31371

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 31397

MB MB Result Qualifier RL **MDL** Unit Dil Fac **Analyte** Prepared Analyzed Gasoline Range Organics <50.0 U 50.0 mg/Kg 08/03/22 09:25 08/03/22 19:19 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 08/03/22 09:25 08/03/22 19:19 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 08/03/22 09:25 08/03/22 19:19

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	96	70 - 130	08/03/22 09:25	08/03/22 19:19	1
o-Terphenyl	109	70 - 130	08/03/22 09:25	08/03/22 19:19	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2689-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-31397/2-A

Matrix: Solid

Analysis Batch: 31371

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 31397

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1052		mg/Kg		105	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1023		mg/Kg		102	70 - 130	
C10-C28)								

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 70 - 130 109 70 - 130 o-Terphenyl 107

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 31371

Lab Sample ID: LCSD 880-31397/3-A

Prep Type: Total/NA

Prep Batch: 31397

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	1144		mg/Kg		114	70 - 130	8	20
Diesel Range Organics (Over C10-C28)	1000	1065		mg/Kg		106	70 - 130	4	20

	LUSD LU	3 <i>D</i>
Surrogate	%Recovery Qu	alifier Limits
1-Chlorooctane	111	70 - 130
o-Terphenyl	110	70 - 130

LCCD LCCD

Lab Sample ID: 890-2689-2 MS Client Sample ID: BH-119 (10')

Matrix: Solid

Analysis Batch: 31371

Prep Type: Total/NA Prep Batch: 31397

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.9 U 999 104 70 - 130 1062 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 999 844.1 mg/Kg 84 70 - 130

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 130
o-Terphenyl	92		70 - 130

Lab Sample ID: 890-2689-2 MSD

Matrix: Solid

Analysis Batch: 31371

Client Sample ID: BH-119 (10') Prep Type: Total/NA

Prep Batch: 31397

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	906.5		mg/Kg		88	70 - 130	16	20
Diesel Range Organics (Over	<49.9	U	999	780.0		mg/Kg		78	70 - 130	8	20

MSD MSD

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 70 - 130 88

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2689-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-2689-2 MSD Client Sample ID: BH-119 (10')

Matrix: Solid

Analysis Batch: 31371

MSD MSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 84 70 - 130 Prep Type: Total/NA

Prep Batch: 31397

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-31360/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 31623

MB MB

Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac Chloride <5.00 5.00 08/06/22 05:46 U mg/Kg

Lab Sample ID: LCS 880-31360/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 31623

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec 250 Chloride 236.9 mg/Kg 95 90 - 110

Lab Sample ID: LCSD 880-31360/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 31623

LCSD LCSD Spike %Rec **RPD** Added Analyte Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 250 237.0 95 90 - 110 20 mg/Kg

Lab Sample ID: 890-2689-1 MS Client Sample ID: BH-118 (13') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 31623

MS MS Sample Sample Spike %Rec **Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 263 252 507.4 97 90 - 110 mg/Kg

Lab Sample ID: 890-2689-1 MSD

Matrix: Solid

Analysis Batch: 31623

MSD MSD **RPD** Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 263 252 505.2 90 - 110 mg/Kg

Lab Sample ID: 890-2689-11 MS

Matrix: Solid

Analysis Batch: 31623

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1240 Chloride 1340 2642 105 90 - 110 mg/Kg

Eurofins Carlsbad

Client Sample ID: BH-118 (13')

Client Sample ID: BH-164 (8')

Prep Type: Soluble

Prep Type: Soluble

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2689-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2689-11 MSD Client Sample ID: BH-164 (8') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 31623

•	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1340		1240	2664		mg/Kg		107	90 - 110	1	20

Job ID: 890-2689-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA

Prep	o Batcl	h: 31	335
------	---------	-------	-----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-31335/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 31540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Total/NA	Solid	8021B	31573
890-2689-2	BH-119 (10')	Total/NA	Solid	8021B	31573
890-2689-3	BH-158 (8')	Total/NA	Solid	8021B	31573
890-2689-4	SW-50 (0-6')	Total/NA	Solid	8021B	31573
890-2689-5	SW-51 (0-6')	Total/NA	Solid	8021B	31573
890-2689-6	BH-159 (8')	Total/NA	Solid	8021B	31573
890-2689-7	BH-160 (8')	Total/NA	Solid	8021B	31573
890-2689-8	BH-161 (8')	Total/NA	Solid	8021B	31573
890-2689-9	BH-162 (8')	Total/NA	Solid	8021B	31573
890-2689-10	BH-163 (8')	Total/NA	Solid	8021B	31573
890-2689-11	BH-164 (8')	Total/NA	Solid	8021B	31573
890-2689-12	BH-165 (13')	Total/NA	Solid	8021B	31573
MB 880-31335/5-A	Method Blank	Total/NA	Solid	8021B	31335
MB 880-31573/5-A	Method Blank	Total/NA	Solid	8021B	31573
LCS 880-31573/1-A	Lab Control Sample	Total/NA	Solid	8021B	31573
LCSD 880-31573/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	31573
890-2689-2 MS	BH-119 (10')	Total/NA	Solid	8021B	31573
890-2689-2 MSD	BH-119 (10')	Total/NA	Solid	8021B	31573

Prep Batch: 31573

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Total/NA	Solid	5035	_
890-2689-2	BH-119 (10')	Total/NA	Solid	5035	
890-2689-3	BH-158 (8')	Total/NA	Solid	5035	
890-2689-4	SW-50 (0-6')	Total/NA	Solid	5035	
890-2689-5	SW-51 (0-6')	Total/NA	Solid	5035	
890-2689-6	BH-159 (8')	Total/NA	Solid	5035	
890-2689-7	BH-160 (8')	Total/NA	Solid	5035	
890-2689-8	BH-161 (8')	Total/NA	Solid	5035	
890-2689-9	BH-162 (8')	Total/NA	Solid	5035	
890-2689-10	BH-163 (8')	Total/NA	Solid	5035	
890-2689-11	BH-164 (8')	Total/NA	Solid	5035	
890-2689-12	BH-165 (13')	Total/NA	Solid	5035	
MB 880-31573/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-31573/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-31573/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2689-2 MS	BH-119 (10')	Total/NA	Solid	5035	
890-2689-2 MSD	BH-119 (10')	Total/NA	Solid	5035	

Prep Batch: 31602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-31602/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 31654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-13	SW-43 (0-4')	Total/NA	Solid	8021B	31669
890-2689-14	SW-39 (0-13')	Total/NA	Solid	8021B	31669

Client: Tetra Tech, Inc. Job ID: 890-2689-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 31654 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-15	SW-40 (0-13')	Total/NA	Solid	8021B	31669
MB 880-31602/5-A	Method Blank	Total/NA	Solid	8021B	31602
MB 880-31669/5-A	Method Blank	Total/NA	Solid	8021B	31669
LCS 880-31669/1-A	Lab Control Sample	Total/NA	Solid	8021B	31669
LCSD 880-31669/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	31669
890-2689-13 MS	SW-43 (0-4')	Total/NA	Solid	8021B	31669
890-2689-13 MSD	SW-43 (0-4')	Total/NA	Solid	8021B	31669

Prep Batch: 31669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-13	SW-43 (0-4')	Total/NA	Solid	5035	
890-2689-14	SW-39 (0-13')	Total/NA	Solid	5035	
890-2689-15	SW-40 (0-13')	Total/NA	Solid	5035	
MB 880-31669/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-31669/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-31669/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2689-13 MS	SW-43 (0-4')	Total/NA	Solid	5035	
890-2689-13 MSD	SW-43 (0-4')	Total/NA	Solid	5035	

Analysis Batch: 31779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Total/NA	Solid	Total BTEX	
890-2689-2	BH-119 (10')	Total/NA	Solid	Total BTEX	
890-2689-3	BH-158 (8')	Total/NA	Solid	Total BTEX	
890-2689-4	SW-50 (0-6')	Total/NA	Solid	Total BTEX	
890-2689-5	SW-51 (0-6')	Total/NA	Solid	Total BTEX	
890-2689-6	BH-159 (8')	Total/NA	Solid	Total BTEX	
890-2689-7	BH-160 (8')	Total/NA	Solid	Total BTEX	
890-2689-8	BH-161 (8')	Total/NA	Solid	Total BTEX	
890-2689-9	BH-162 (8')	Total/NA	Solid	Total BTEX	
890-2689-10	BH-163 (8')	Total/NA	Solid	Total BTEX	
890-2689-11	BH-164 (8')	Total/NA	Solid	Total BTEX	
890-2689-12	BH-165 (13')	Total/NA	Solid	Total BTEX	
890-2689-13	SW-43 (0-4')	Total/NA	Solid	Total BTEX	
890-2689-14	SW-39 (0-13')	Total/NA	Solid	Total BTEX	
890-2689-15	SW-40 (0-13')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 31371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Total/NA	Solid	8015B NM	31397
890-2689-2	BH-119 (10')	Total/NA	Solid	8015B NM	31397
890-2689-3	BH-158 (8')	Total/NA	Solid	8015B NM	31397
890-2689-4	SW-50 (0-6')	Total/NA	Solid	8015B NM	31397
890-2689-5	SW-51 (0-6')	Total/NA	Solid	8015B NM	31397
890-2689-6	BH-159 (8')	Total/NA	Solid	8015B NM	31397
890-2689-7	BH-160 (8')	Total/NA	Solid	8015B NM	31397
890-2689-8	BH-161 (8')	Total/NA	Solid	8015B NM	31397
890-2689-9	BH-162 (8')	Total/NA	Solid	8015B NM	31397
890-2689-10	BH-163 (8')	Total/NA	Solid	8015B NM	31397

Client: Tetra Tech, Inc. Job ID: 890-2689-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 31371 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-11	BH-164 (8')	Total/NA	Solid	8015B NM	31397
890-2689-12	BH-165 (13')	Total/NA	Solid	8015B NM	31397
890-2689-13	SW-43 (0-4')	Total/NA	Solid	8015B NM	31397
890-2689-14	SW-39 (0-13')	Total/NA	Solid	8015B NM	31397
890-2689-15	SW-40 (0-13')	Total/NA	Solid	8015B NM	31397
MB 880-31397/1-A	Method Blank	Total/NA	Solid	8015B NM	31397
LCS 880-31397/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	31397
LCSD 880-31397/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	31397
890-2689-2 MS	BH-119 (10')	Total/NA	Solid	8015B NM	31397
890-2689-2 MSD	BH-119 (10')	Total/NA	Solid	8015B NM	31397

Prep Batch: 31397

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Total/NA	Solid	8015NM Prep	
890-2689-2	BH-119 (10')	Total/NA	Solid	8015NM Prep	
890-2689-3	BH-158 (8')	Total/NA	Solid	8015NM Prep	
890-2689-4	SW-50 (0-6')	Total/NA	Solid	8015NM Prep	
890-2689-5	SW-51 (0-6')	Total/NA	Solid	8015NM Prep	
890-2689-6	BH-159 (8')	Total/NA	Solid	8015NM Prep	
890-2689-7	BH-160 (8')	Total/NA	Solid	8015NM Prep	
890-2689-8	BH-161 (8')	Total/NA	Solid	8015NM Prep	
890-2689-9	BH-162 (8')	Total/NA	Solid	8015NM Prep	
890-2689-10	BH-163 (8')	Total/NA	Solid	8015NM Prep	
890-2689-11	BH-164 (8')	Total/NA	Solid	8015NM Prep	
890-2689-12	BH-165 (13')	Total/NA	Solid	8015NM Prep	
890-2689-13	SW-43 (0-4')	Total/NA	Solid	8015NM Prep	
890-2689-14	SW-39 (0-13')	Total/NA	Solid	8015NM Prep	
890-2689-15	SW-40 (0-13')	Total/NA	Solid	8015NM Prep	
MB 880-31397/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-31397/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-31397/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2689-2 MS	BH-119 (10')	Total/NA	Solid	8015NM Prep	
890-2689-2 MSD	BH-119 (10')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 31489

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Total/NA	Solid	8015 NM	
890-2689-2	BH-119 (10')	Total/NA	Solid	8015 NM	
890-2689-3	BH-158 (8')	Total/NA	Solid	8015 NM	
890-2689-4	SW-50 (0-6')	Total/NA	Solid	8015 NM	
890-2689-5	SW-51 (0-6')	Total/NA	Solid	8015 NM	
890-2689-6	BH-159 (8')	Total/NA	Solid	8015 NM	
890-2689-7	BH-160 (8')	Total/NA	Solid	8015 NM	
890-2689-8	BH-161 (8')	Total/NA	Solid	8015 NM	
890-2689-9	BH-162 (8')	Total/NA	Solid	8015 NM	
890-2689-10	BH-163 (8')	Total/NA	Solid	8015 NM	
890-2689-11	BH-164 (8')	Total/NA	Solid	8015 NM	
890-2689-12	BH-165 (13')	Total/NA	Solid	8015 NM	
890-2689-13	SW-43 (0-4')	Total/NA	Solid	8015 NM	
890-2689-14	SW-39 (0-13')	Total/NA	Solid	8015 NM	
890-2689-15	SW-40 (0-13')	Total/NA	Solid	8015 NM	

Job ID: 890-2689-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

HPLC/IC

Leach Batch: 31360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Soluble	Solid	DI Leach	
890-2689-2	BH-119 (10')	Soluble	Solid	DI Leach	
890-2689-3	BH-158 (8')	Soluble	Solid	DI Leach	
890-2689-4	SW-50 (0-6')	Soluble	Solid	DI Leach	
890-2689-5	SW-51 (0-6')	Soluble	Solid	DI Leach	
890-2689-6	BH-159 (8')	Soluble	Solid	DI Leach	
890-2689-7	BH-160 (8')	Soluble	Solid	DI Leach	
890-2689-8	BH-161 (8')	Soluble	Solid	DI Leach	
890-2689-9	BH-162 (8')	Soluble	Solid	DI Leach	
890-2689-10	BH-163 (8')	Soluble	Solid	DI Leach	
890-2689-11	BH-164 (8')	Soluble	Solid	DI Leach	
890-2689-12	BH-165 (13')	Soluble	Solid	DI Leach	
890-2689-13	SW-43 (0-4')	Soluble	Solid	DI Leach	
890-2689-14	SW-39 (0-13')	Soluble	Solid	DI Leach	
890-2689-15	SW-40 (0-13')	Soluble	Solid	DI Leach	
MB 880-31360/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-31360/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-31360/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2689-1 MS	BH-118 (13')	Soluble	Solid	DI Leach	
890-2689-1 MSD	BH-118 (13')	Soluble	Solid	DI Leach	
890-2689-11 MS	BH-164 (8')	Soluble	Solid	DI Leach	
890-2689-11 MSD	BH-164 (8')	Soluble	Solid	DI Leach	

Analysis Batch: 31623

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2689-1	BH-118 (13')	Soluble	Solid	300.0	31360
890-2689-2	BH-119 (10')	Soluble	Solid	300.0	31360
890-2689-3	BH-158 (8')	Soluble	Solid	300.0	31360
890-2689-4	SW-50 (0-6')	Soluble	Solid	300.0	31360
890-2689-5	SW-51 (0-6')	Soluble	Solid	300.0	31360
890-2689-6	BH-159 (8')	Soluble	Solid	300.0	31360
890-2689-7	BH-160 (8')	Soluble	Solid	300.0	31360
890-2689-8	BH-161 (8')	Soluble	Solid	300.0	31360
890-2689-9	BH-162 (8')	Soluble	Solid	300.0	31360
890-2689-10	BH-163 (8')	Soluble	Solid	300.0	31360
890-2689-11	BH-164 (8')	Soluble	Solid	300.0	31360
890-2689-12	BH-165 (13')	Soluble	Solid	300.0	31360
890-2689-13	SW-43 (0-4')	Soluble	Solid	300.0	31360
890-2689-14	SW-39 (0-13')	Soluble	Solid	300.0	31360
890-2689-15	SW-40 (0-13')	Soluble	Solid	300.0	31360
MB 880-31360/1-A	Method Blank	Soluble	Solid	300.0	31360
LCS 880-31360/2-A	Lab Control Sample	Soluble	Solid	300.0	31360
LCSD 880-31360/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	31360
890-2689-1 MS	BH-118 (13')	Soluble	Solid	300.0	31360
890-2689-1 MSD	BH-118 (13')	Soluble	Solid	300.0	31360
890-2689-11 MS	BH-164 (8')	Soluble	Solid	300.0	31360
890-2689-11 MSD	BH-164 (8')	Soluble	Solid	300.0	31360

Lab Chronicle

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2689-1
SDG: Lea County NM

Client Sample ID: BH-118 (13')

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06 Lab Sample ID: 890-2689-1

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	31573	08/05/22 11:19	MR	EETSC MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 01:44	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/03/22 22:32	AJ	EETSC M
Soluble	Leach	DI Leach			4.97 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 06:13	AJ	EETSC M

Client Sample ID: BH-119 (10') Lab Sample ID: 890-2689-2

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA 5035 31573 08/05/22 11:19 MR EETSC MID Prep 5.01 g 5 mL Total/NA 8021B 5 mL 31540 08/06/22 00:22 MR EETSC M Analysis 5 mL 1 Total/NA Total BTEX Analysis 31779 08/08/22 14:27 SM EETSC M 1 Total/NA 8015 NM EETSC M Analysis 1 31489 08/04/22 09:51 AJ Total/NA Prep 8015NM Prep 10.03 g 10 mL 31397 08/03/22 09:25 DM EETSC M Total/NA 8015B NM Analysis 1 31371 08/03/22 20:23 AJ EETSC M Soluble 31360 08/02/22 19:05 SMC Leach DI Leach 4.99 g 50 mL EETSC M 300.0 5 08/06/22 06:41 AJ Soluble Analysis 31623 EETSC M

Client Sample ID: BH-158 (8')

Date Collected: 07/26/22 12:00

Lab Sample ID: 890-2689-3

Matrix: Solid

Date Received: 07/29/22 14:06

	Batch	3atch Batch	Batch Batch Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	31573	08/05/22 11:19	MR	EETSC MII
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 00:42	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/03/22 23:57	AJ	EETSC M
Soluble	Leach	DI Leach			5 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 06:50	AJ	EETSC M

Client Sample ID: SW-50 (0-6')

Date Collected: 07/26/22 12:00

Lab Sample ID: 890-2689-4

Matrix: Solid

Date Received: 07/29/22 14:06

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	31573	08/05/22 11:19	MR	EETSC MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 01:03	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M

Eurofins Carlsbad

Page 30 of 41

2

<u>5</u>

5

7

9

10

13

irotins Carisbac

Client: Tetra Tech, Inc.

Job ID: 890-2689-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-50 (0-6')

Lab Sample ID: 890-2689-4 Date Collected: 07/26/22 12:00 **Matrix: Solid**

Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC MIC
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/04/22 00:58	AJ	EETSC M
Soluble	Leach	DI Leach			5.03 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 07:00	AJ	EETSC M

Lab Sample ID: 890-2689-5 Client Sample ID: SW-51 (0-6')

Date Collected: 07/26/22 12:00 **Matrix: Solid**

Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	31573	08/05/22 11:19	MR	EETSC MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 01:23	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/04/22 01:18	AJ	EETSC M
Soluble	Leach	DI Leach			5.03 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 07:09	AJ	EETSC M

Client Sample ID: BH-159 (8') Lab Sample ID: 890-2689-6

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	31573	08/05/22 11:19	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 02:46	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/03/22 22:53	AJ	EETSC M
Soluble	Leach	DI Leach			4.95 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		5			31623	08/06/22 07:36	AJ	EETSC M

Client Sample ID: BH-160 (8') Lab Sample ID: 890-2689-7 Date Collected: 07/26/22 12:00 Matrix: Solid

Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	31573	08/05/22 11:19	MR	EETSC MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 03:06	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.00 g	10 mL	31397 31371	08/03/22 09:25 08/03/22 21:49		EETSC M

Eurofins Carlsbad

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2689-1 SDG: Lea County NM

Client Sample ID: BH-160 (8')

Date Collected: 07/26/22 12:00 Date Received: 07/29/22 14:06

Lab Sample ID: 890-2689-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	31360	08/02/22 19:05	SMC	EETSC MIC
Soluble	Analysis	300.0		5			31623	08/06/22 07:46	AJ	EETSC M

Lab Sample ID: 890-2689-8 Client Sample ID: BH-161 (8') Date Collected: 07/26/22 12:00 Matrix: Solid

Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	31573	08/05/22 11:19	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 03:27	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/03/22 22:11	AJ	EETSC M
Soluble	Leach	DI Leach			5 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		5			31623	08/06/22 07:55	AJ	EETSC M

Lab Sample ID: 890-2689-9 Client Sample ID: BH-162 (8') **Matrix: Solid**

Date Collected: 07/26/22 12:00

Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	31573	08/05/22 11:19	MR	EETSC MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 02:05	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/04/22 00:18	AJ	EETSC M
Soluble	Leach	DI Leach			5.02 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		5			31623	08/06/22 08:04	AJ	EETSC M

Client Sample ID: BH-163 (8') Lab Sample ID: 890-2689-10 Date Collected: 07/26/22 12:00

Date Received: 07/29/22 14:06

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	31573	08/05/22 11:19	MR	EETSC MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 02:25	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/03/22 23:37	AJ	EETSC M
Soluble	Leach	DI Leach			4.98 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 08:13	AJ	EETSC M

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-2689-1 SDG: Lea County NM

Client Sample ID: BH-164 (8')

Lab Sample ID: 890-2689-11 Date Collected: 07/26/22 12:00

Matrix: Solid

Date Received: 07/29/22 14:06

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	31573	08/05/22 11:19	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 07:34	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		5			31371	08/03/22 21:27	AJ	EETSC M
Soluble	Leach	DI Leach			5.03 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		5			31623	08/06/22 08:22	AJ	EETSC M

Client Sample ID: BH-165 (13') Lab Sample ID: 890-2689-12 Date Collected: 07/26/22 12:00 **Matrix: Solid**

Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	31573	08/05/22 11:19	MR	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31540	08/06/22 07:54	MR	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/03/22 23:15	AJ	EETSC M
Soluble	Leach	DI Leach			5.02 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		5			31623	08/06/22 08:50	AJ	EETSC M

Client Sample ID: SW-43 (0-4') Lab Sample ID: 890-2689-13 Date Collected: 07/26/22 12:00 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	_		4.96 g	5 mL	31669	08/07/22 12:02	EL	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31654	08/08/22 00:42	EL	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/04/22 01:38	AJ	EETSC M
Soluble	Leach	DI Leach			5 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 08:59	AJ	EETSC M

Client Sample ID: SW-39 (0-13')

Date Received: 07/29/22 14:06

Date Received: 07/29/22 14:06

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	31669	08/07/22 12:02	EL	EETSC MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	31654	08/08/22 01:03	EL	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M

Eurofins Carlsbad

Page 33 of 41

Lab Sample ID: 890-2689-14 Date Collected: 07/29/22 12:00 **Matrix: Solid**

Client Sample ID: SW-39 (0-13')

Date Collected: 07/29/22 12:00 Date Received: 07/29/22 14:06

Lab Sample ID: 890-2689-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC MIC
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/04/22 01:58	AJ	EETSC M
Soluble	Leach	DI Leach			4.96 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 20:26	AJ	EETSC M

Client Sample ID: SW-40 (0-13') Lab Sample ID: 890-2689-15 **Matrix: Solid**

Date Collected: 07/29/22 12:00 Date Received: 07/29/22 14:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	31669	08/07/22 12:02	EL	EETSC MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	31654	08/08/22 01:23	EL	EETSC M
Total/NA	Analysis	Total BTEX		1			31779	08/08/22 14:27	SM	EETSC M
Total/NA	Analysis	8015 NM		1			31489	08/04/22 09:51	AJ	EETSC M
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	31397	08/03/22 09:25	DM	EETSC M
Total/NA	Analysis	8015B NM		1			31371	08/04/22 02:18	AJ	EETSC M
Soluble	Leach	DI Leach			4.97 g	50 mL	31360	08/02/22 19:05	SMC	EETSC M
Soluble	Analysis	300.0		1			31623	08/06/22 20:35	AJ	EETSC M

Laboratory References:

EETSC MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2689-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analyte the agency does not		ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
and agency does not	oner certification.			
Analysis Method	Prep Method	Matrix	Analyte	
0 ,		Matrix Solid	Analyte Total TPH	

4

6

9

10

12

13

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2689-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EETSC MID
Total BTEX	Total BTEX Calculation	TAL SOP	EETSC MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EETSC MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EETSC MID
300.0	Anions, Ion Chromatography	MCAWW	EETSC MID
5035	Closed System Purge and Trap	SW846	EETSC MID
8015NM Prep	Microextraction	SW846	EETSC MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EETSC MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EETSC MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

1

2

Λ

5

7

8

11

12

SW-40 (0-13')

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

890-2689-15

Job ID: 890-2689-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-2689-1	BH-118 (13')	Solid	07/26/22 12:00	07/29/22 14:06
390-2689-2	BH-119 (10')	Solid	07/26/22 12:00	07/29/22 14:06
390-2689-3	BH-158 (8')	Solid	07/26/22 12:00	07/29/22 14:06
390-2689-4	SW-50 (0-6')	Solid	07/26/22 12:00	07/29/22 14:06
390-2689-5	SW-51 (0-6')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-6	BH-159 (8')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-7	BH-160 (8')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-8	BH-161 (8')	Solid	07/26/22 12:00	07/29/22 14:06
0-2689-9	BH-162 (8')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-10	BH-163 (8')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-11	BH-164 (8')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-12	BH-165 (13')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-13	SW-43 (0-4')	Solid	07/26/22 12:00	07/29/22 14:06
90-2689-14	SW-39 (0-13')	Solid	07/29/22 12:00	07/29/22 14:06

Solid

07/29/22 12:00 07/29/22 14:06

6

4

6

10

11

	Relinquished by:	,	Rélinquished by:	Relinquished by											(LABUSE)	LAB#		Comments:	7 de de la companya d		(county, state)		Project Name:	Olient Name:	4	Analysis Re
	r: Date:			Date: 7/26/	BH-163 (8')	ВН-162 (8')	BH-161 (8')	ВН-160 (8')	Вн-159 (8')	SW-51 (0-6')	SW-50 (0-6')	ВН-158 (8')	BH-119 (10')	Вн-118 (13')		SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions -	Lea County, NM		Kaiser SWD	Permian Water Solutions	Tetra Tech,	Analysis Request of Chain of Custody Record
	Time:		Time:	177 1405												ATION				ns - Dusty McInturff				าร	ech, Inc.	đ
ORIGINAL COPY	Received by:			Received by:	7/26/2022	7/26/2022	7/26/2022	7/26/2022	7/26/2022	7/26/2022	7/26/2022	7/26/2022	7/26/2022	7/26/2022	DATE	YEAR: 2020	SAMPLING			Sampler Signature:		Project #		Site Manager		
	Date: Tii		(∫ Date: Ti	Date: The	×	×	×	×	×	×	×	×	×		WATEI SOIL HCL HNO ₃ ICE	R	MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair. Gonzales@tetratecn.com	and and attack and	Clair Gonzales	Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	890-2689 Chain
1 / L	Time:			7 1400 L	*	×	×	×	×	×	×	×	×	×	# CONT	ED (RS Y/N))B					A		Chain of Custody
(Circle) HAND DELIVERED	15.2	4.51	Sample Temperature	AB USE ONLY	×		×	×	×	×	×	×	×	×	PAH 82 Total Me	15M (270C etals / letals	GRO Ag As Ag As	o C35) - DRO - Ba Cd C	r Pb S	e Hg)			ANALYSIS REQUEST		
FEDEX UPS Tracking	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH: Same Day	X STANDARD											PCB's 8	Vol. 8 Semi. 8082/	3260B Vol. 1 608		25					Specify		T.
9#	its or TRRP Report	orized	24 hr 48 hr 72 hr		×	×	×	×	×	×	×	×	×	×	Chlorid	e S	Sulfate er Ch	emistry		ittache	ed list)		_ ;	Method No 1		Page 1 c
			7											F	Hold				,							of 2

Tetra Tech, Inc. Tetra Tech, Inc.		Relinquished by:		Relinquished by:	10	Relipquished by:								(LABUSE)	AB #		Comments:			(county, state)	Project Name:	Client Name:	(右	All all your
Sampler Signature: Peyton Oliver Perservative: Peyton Oliver Peyton Oliver Perservative: Peyton Oliver Perserv		Date:		Date:	11 - 1	Date:			SW-40 (0-13')	SW-39 (0-13')	SW-43 (0-4')	Вн-165 (8')	ВН-164 (8')		SAMPLE IDENTIFICATION							Permian Water Solutions		Tetra Tech, Inc	Cital Joint Codasses of Cital Constraint of Succession Succession
Date: Time: Clair Gonzales Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Peyton Oliver Pressavanve Peyton Oliver Pressavanve Peyton Oliver Peyt		Received by:		Received by:	5 January	Received by:			7/29/2022	7/29/2022	7/26/2022	7/26/2022	7/26/2022		YEAR: 2020	SAMPLING				Project #		Wite Managen		•	
# CONTAINERS FILTERED (Y/N) Sample Temporature NALLYSIS REQUEST TOTAL Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles					がんまれるが									WATER SOIL HCL HNO ₃ ICE	₹	MATRIX		Peyton Oliver		212C-MD-02230	.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Midland, Texas 79705 Tel (432) 682-4559	SOTAN AND Street, Ste 100
TPH TX1005 (Ext to C35)		Œ:			MAN CC/S	le:								# CONT	ED (ERS (/N)									
TCLP Semi Volatiles	(Circle) HAND DELIVER	55.0	15.4	Samole Temperature	LAB USE ONLY									TPH TX TPH 80 PAH 82 Total Me	1005 15M (70C tals A	(Ext to GRO -	C35) - DRO - 0	ORO - Pb Se	Hg			ANALYSIS REC			
Tracking ** On Limits or TRRP Re	FEDEX	Special Rep	Rush Charge	RUSH: Sar		REMARKS:								TCLP Se RCI GC/MS 1 GC/MS 1	vol. 8 Semi.	olatiles 3260B / Vol. 8	624	5				T or Speci			
Manion/Cation Balance	Tracking #:	ort Limits or TRRP Re	es Authorized	24 hr	DARU				×	×	×	×	×	NORM PLM (As Chloride Chloride General	besto e S Wat	os) Sulfate er Che	mistry (see a	ttached	d list)		Method			

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-2689-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 2689 List Number: 1

Creator: Stutzman, Amanda

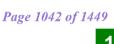
Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2689-1

SDG Number: Lea County NM


List Source: Eurofins Midland
List Number: 2
List Creation: 08/02/22 10:44 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

1041 OJ 1449

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2784-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

eurofins

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 9/1/2022 4:34:02 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

results through EOL

.....LINKS

Review your project

Have a Question?

Released to Imaging: 9/1/2023 2:07:08 PM

Received by OCD: 8/28/2023 1:38:11 PM

Visit us at: www.eurofinsus.com/Env

signature is intended to be the legally binding equivalent of a traditionally handwritten

This report has been electronically signed and authorized by the signatory. Electronic

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2784-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Client Sample Results	7
Surrogate Summary	54
QC Sample Results	58
QC Association Summary	72
Lab Chronicle	85
Certification Summary	103
Method Summary	104
Sample Summary	105
Chain of Custody	107
Receipt Checklists	112

2

3

4

6

8

10

11

13

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Use lift are

Qualifiers

GC VOA	
Qualifier	Qualifier Description
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
F1	MS and/or MSD recovery exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
LIDI OIIO	

HPLC/IC

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
U	Indicates the analyte was analyzed for but not detected.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Eurofins Carlsbad

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

RPD

TEF

TEQ

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
TNTC	Too Numerous To Count

2

3

5

7

9

4 4

12

10

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2784-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2784-1

Receipt

The samples were received on 8/19/2022 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 7.0°C

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: BH-120 (8') (890-2784-1), BH-124 (8') (890-2784-2), BH-132 (8') (890-2784-3), BH-159 (8') (890-2784-4), BH-162 (8') (890-2784-5), BH-164 (8') (890-2784-6), BH-166 (8') (890-2784-7), BH-167 (8') (890-2784-8), BH-168 (5') (890-2784-9), BH-169 (5') (890-2784-10), BH-170 (5') (890-2784-11), BH-171 (5') (890-2784-12), BH-172 (6') (890-2784-13), BH-173 (6') (890-2784-14), BH-174 (6') (890-2784-15), BH-175 (4.5') (890-2784-16), BH-176 (4.5') (890-2784-17), BH-177 (4.5') (890-2784-18), BH-178 (4.5') (890-2784-19), BH-179 (4.5') (890-2784-20), BH-180 (4.5') (890-2784-21), BH-181 (4.5') (890-2784-22), BH-182 (4.5') (890-2784-23), BH-183 (4.5') (890-2784-24), BH-184 (4.5') (890-2784-25), BH-185 (4.5') (890-2784-26), BH-186 (4.5') (890-2784-27), BH-187 (4.5') (890-2784-28), BH-188 (4.5') (890-2784-29), BH-189 (4.5') (890-2784-30), SW-38 (4.5-13') (890-2784-31), SW-42 (4.5-8') (890-2784-32), SW-43 (6-8') (890-2784-33), SW-44 (4.5-8') (890-2784-34), SW-45 (0-8') (890-2784-35), SW-46 (0-5') (890-2784-36), SW-47 (0-5') (890-2784-37), SW-48 (6-8') (890-2784-38), SW-49 (4.5-6') (890-2784-39), SW-53 (0-8') (890-2784-40), SW-54 (0-4.5') (890-2784-41), SW-55 (4.5-8') (890-2784-42), SW-56 (0-4.5') (890-2784-43), SW-57 (6-8') (890-2784-44), SW-58 (6-8') (890-2784-45), SW-69 (6-8') (890-2784-47), SW-61 (8-13') (890-2784-48), SW-62 (8-13') (890-2784-45), SW-63 (8-13') (890-2784-51), SW-65 (8-10') (890-2784-52), SW-66 (8-10') (890-2784-55), SW-66 (8-10') (890-2784-56), SW-70 (0-4.5') (890-2784-57), and SW-71 (0-4.5') (890-2784-58). There was no cooling media present in the cooler. The client was contacted regarding this issue, and the laboratory was instructed to <CHOOSE_ONE> proceed with/cancel analysis

890-2784 Sample temp 7.2/7.0 there was no temp blank and samples were taken on the 18th- client said they just brought samples from fridge with no cooler and no temp blank- wants to processed with testing

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: (890-2784-A-1-E MS) and (890-2784-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH-124 (8') (890-2784-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: SW-58 (6-8') (890-2784-45). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH-120 (8') (890-2784-1), BH-124 (8') (890-2784-2), BH-132 (8') (890-2784-3), BH-159 (8') (890-2784-4), BH-162 (8') (890-2784-5), BH-164 (8') (890-2784-6), BH-166 (8') (890-2784-7), BH-167 (8') (890-2784-8), BH-168 (5') (890-2784-9), BH-169 (5') (890-2784-10), (890-2784-A-1-C MS) and (890-2784-A-1-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH-170 (5') (890-2784-11), BH-173 (6') (890-2784-14), BH-174 (6') (890-2784-15), BH-175 (4.5') (890-2784-16), BH-176 (4.5') (890-2784-17), BH-177 (4.5') (890-2784-18), BH-178 (4.5') (890-2784-19) and BH-179 (4.5') (890-2784-20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-32669 and analytical batch 880-32586 was outside the upper control limits.

9

3

5

_

8

10

12

13

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2784-1 (Continued)

Laboratory: Eurofins Carlsbad (Continued)

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-32669 and analytical batch 880-32586 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-32713 and analytical batch 880-32730 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-32714/2-A) and (LCSD 880-32714/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-32774/2-A) and (LCSD 880-32774/3-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-32583 and analytical batch 880-33168 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-32584 and analytical batch 880-33169 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

0

1 1

12

12

Lab Sample ID: 890-2784-1

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-120 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 00:00	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 00:00	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 00:00	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		08/30/22 12:01	09/01/22 00:00	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 00:00	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		08/30/22 12:01	09/01/22 00:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				08/30/22 12:01	09/01/22 00:00	1
1,4-Difluorobenzene (Surr)	96		70 - 130				08/30/22 12:01	09/01/22 00:00	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			09/01/22 12:44	1
: Method: 8015 NM - Diesel Range			RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
: Method: 8015 NM - Diesel Range			DI	MDI	Unit	n	Propared	Analyzod	Dil Fac
•		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 11:36	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH	Result <49.9	Qualifier U		MDL		<u>D</u>	Prepared		
Method: 8015 NM - Diesel Range Analyte	Result <49.9 ge Organics (Di	Qualifier U		MDL MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <49.9 ge Organics (Di	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg		<u> </u>	08/23/22 11:36	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result <49.9 ge Organics (Di Result	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg		Prepared	08/23/22 11:36 Analyzed	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (Di Result	Qualifier U RO) (GC) Qualifier U F1	49.9		mg/Kg		Prepared	08/23/22 11:36 Analyzed	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U F1 U F1	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43	08/23/22 11:36 Analyzed 08/22/22 22:36 08/22/22 22:36	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D) Result <49.9 49.9	Qualifier U RO) (GC) Qualifier U F1 U F1	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 08/22/22 13:43	08/23/22 11:36 Analyzed 08/22/22 22:36	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U F1 U F1 U Qualifier	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43	08/23/22 11:36 Analyzed 08/22/22 22:36 08/22/22 22:36	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U F1 U F1	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43	08/23/22 11:36 Analyzed 08/22/22 22:36 08/22/22 22:36	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U RO) (GC) Qualifier U F1 U F1 U Qualifier	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared	08/23/22 11:36 Analyzed 08/22/22 22:36 08/22/22 22:36 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U F1 U F1 U Gualifier S1-	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	08/23/22 11:36 Analyzed 08/22/22 22:36 08/22/22 22:36 Analyzed 08/22/22 22:36	Dil Fac 1 1 Dil Fac Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U F1 U F1 U Gualifier S1-	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	08/23/22 11:36 Analyzed 08/22/22 22:36 08/22/22 22:36 Analyzed 08/22/22 22:36	1 1 1 Dil Fac 1

Client Sample ID: BH-124 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 00:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 00:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 00:20	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 00:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 00:20	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 00:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	143	S1+	70 - 130				08/30/22 12:01	09/01/22 00:20	

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2784-2

Lab Sample ID: 890-2784-2

Lab Sample ID: 890-2784-3

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2784-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-124 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8

Method: 8021B - Volatile Organic Compound	s (GC) (Continued)
---	--------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	85	70 - 130	08/30/22 12:01	09/01/22 00:20	1

Method: Total	BTEX - Total	BTEX Calculati	on

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399		mg/Kg		_	09/01/22 12:44	1

П				
ı	Method: 8015 NM	Diocal Ranc	no Organice	(DRO) (GC)

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			08/23/22 11:36	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/22/22 23:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/22/22 23:41	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/22/22 23:41	1
Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	D

Surroyate	Mecovery	Qualifier	Lilling	rrepareu	Allalyzeu
1-Chlorooctane	58	S1-	70 - 130	08/22/22 13:43	08/22/22 23:41
o-Terphenyl	71		70 - 130	08/22/22 13:43	08/22/22 23:41

Method: 300.0 - Ani	ons, Ion Chro	matography	/ - Soluble

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	298	5.02	mg/Kg			08/29/22 04:20	1

Client Sample ID: BH-132 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8

Method: 8021B -	Volatile	Organic (Compounds (GC)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 00:41	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 00:41	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 00:41	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/30/22 12:01	09/01/22 00:41	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 00:41	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/30/22 12:01	09/01/22 00:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				08/30/22 12:01	09/01/22 00:41	1
1,4-Difluorobenzene (Surr)	91		70 - 130				08/30/22 12:01	09/01/22 00:41	1

Method:	Total RTF	X - Total RTFX	Calculation

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403 U	J	0.00403		ma/Ka			09/01/22 12:44	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			08/23/22 11:36	1

Eurofins Carlsbad

2

3

7

8

10

12

13

rofins Carisbac

Lab Sample ID: 890-2784-3

Lab Sample ID: 890-2784-4

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-132 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 00:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 00:03	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 00:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	67	S1-	70 - 130				08/22/22 13:43	08/23/22 00:03	1
o-Terphenyl	80		70 - 130				08/22/22 13:43	08/23/22 00:03	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	325		5.00		mg/Kg			08/29/22 04:28	1

Client Sample ID: BH-159 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 01:01	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 01:01	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 01:01	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:01	09/01/22 01:01	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 01:01	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:01	09/01/22 01:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				08/30/22 12:01	09/01/22 01:01	1
1,4-Difluorobenzene (Surr)	80		70 - 130				08/30/22 12:01	09/01/22 01:01	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 00:24	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 00:24	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 00:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	69	S1-	70 - 130				08/22/22 13:43	08/23/22 00:24	1
	82		70 - 130				08/22/22 13:43	08/23/22 00:24	1

Eurofins Carlsbad

9/1/2022

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

Client Sample ID: BH-159 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8

Lab Sample ID: 890-2784-4

Matrix: Solid

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1010		25.0		mg/Kg			08/29/22 04:35	5

Client Sample ID: BH-162 (8') Lab Sample ID: 890-2784-5 Matrix: Solid

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:21	
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:21	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:21	
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/30/22 12:01	09/01/22 01:21	
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:21	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/30/22 12:01	09/01/22 01:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	121		70 - 130				08/30/22 12:01	09/01/22 01:21	
1,4-Difluorobenzene (Surr)	89		70 - 130				08/30/22 12:01	09/01/22 01:21	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			09/01/22 12:44	•
Method: 8015 NM - Diesel Range	•								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			08/23/22 11:36	•
Method: 8015B NM - Diesel Rang	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 00:45	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 00:45	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 00:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	68	S1-	70 - 130				08/22/22 13:43	08/23/22 00:45	
o-Terphenyl	82		70 - 130				08/22/22 13:43	08/23/22 00:45	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Lab Sample ID: 890-2784-6

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-164 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:42	
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:42	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:42	•
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 01:42	
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 01:42	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 01:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	114		70 - 130				08/30/22 12:01	09/01/22 01:42	
1,4-Difluorobenzene (Surr)	100		70 - 130				08/30/22 12:01	09/01/22 01:42	
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/01/22 12:44	
Analyte Total TPH	Result	Qualifier	RL 49.9	MDL	Unit	D	Prepared	Analyzed	Dil Fa
-	02.1				ma/na			08/23/22 11:36	
-			10.0		mg/Kg			08/23/22 11:36	
Method: 8015B NM - Diesel Ran			10.0		mg/Kg			08/23/22 11:36	,
Method: 8015B NM - Diesel Ran Analyte	Result	Qualifier	RL	MDL	Unit Unit	<u>D</u>	Prepared	08/23/22 11:36 Analyzed	
		Qualifier		MDL		<u>D</u>	Prepared 08/22/22 13:43		Dil Fa
Analyte Gasoline Range Organics	Result	Qualifier	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U	RL 49.9	MDL	Unit mg/Kg	<u> </u>	08/22/22 13:43	Analyzed 08/23/22 01:06	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u> </u>	08/22/22 13:43 08/22/22 13:43	Analyzed 08/23/22 01:06 08/23/22 01:06	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 13:43 08/22/22 13:43 08/22/22 13:43	Analyzed 08/23/22 01:06 08/23/22 01:06 08/23/22 01:06	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U U Qualifier	RL 49.9 49.9 49.9 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u> </u>	08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared	Analyzed 08/23/22 01:06 08/23/22 01:06 08/23/22 01:06 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U Qualifier S1-	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	Analyzed 08/23/22 01:06 08/23/22 01:06 08/23/22 01:06 Analyzed 08/23/22 01:06	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U Qualifier S1-	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	Analyzed 08/23/22 01:06 08/23/22 01:06 08/23/22 01:06 Analyzed 08/23/22 01:06	Dil Fac

Client Sample ID: BH-166 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 02:02	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 02:02	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 02:02	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:01	09/01/22 02:02	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:01	09/01/22 02:02	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:01	09/01/22 02:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				08/30/22 12:01	09/01/22 02:02	1

Eurofins Carlsbad

Lab Sample ID: 890-2784-7

2

4

6

8

10

12

13

no Ganobaa

Matrix: Solid

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-2784-1 SDG: Lea County NM

Lab Sample ID: 890-2784-7

Client Sample ID: BH-166 (8')
Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Matrix: Solid

Sample Depth: 8

Method: 8021B - Volatile Organic Compoun	ids (GC) (Continued)
--	----------------------

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	90	70 - 130	08/30/22 12:01	09/01/22 02:02	1

Method:	Total	RTFX	- Total	RTFX	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	0	כ	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			_	09/01/22 12:44	1

Method: 8015 NM - Diesel Range Organics (DRO) (CC	
Method. 6015 NW - Dieser Range Organics (DRO) (GC)	

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH		<50.0	U	50.0		mg/Kg			08/23/22 11:36	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 01:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 01:27	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 01:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1-Chlorooctane	59	S1-	70 - 130
o-Terphenyl	71		70 - 130

Prepared	Anaiyzea	DII Fac
08/22/22 13:43	08/23/22 01:27	1
08/22/22 13:43	08/23/22 01:27	1

Lab Sample ID: 890-2784-8

Matrix: Solid

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qu	ialifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	233	4.96	mg/Kg			08/29/22 05:30	1

Client Sample ID: BH-167 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8

Mothod: 9021D	Volatile Organie	Compounds (GC)
I WIELIIOU. OUZ ID '	- voiatile Organic	Compounds (GC)

Michiga. 002 1D - Volatile Orga	inc compounds	(30)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 02:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 02:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 02:23	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:01	09/01/22 02:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 02:23	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:01	09/01/22 02:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				08/30/22 12:01	09/01/22 02:23	1
1,4-Difluorobenzene (Surr)	90		70 - 130				08/30/22 12:01	09/01/22 02:23	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			09/01/22 12:44	1

	Method: 8015 NM - Diesel	Range Organics (DRO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organics (Dito	, (00)

Analyte	Result Qu	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			08/23/22 11:36	1

Eurofins Carlsbad

Palanada Imaina 0/1/2022 2

2

5

7

9

. .

12

Matrix: Solid

Lab Sample ID: 890-2784-8

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-167 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 01:49	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 01:49	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 01:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	61	S1-	70 - 130				08/22/22 13:43	08/23/22 01:49	1
o-Terphenyl	70		70 - 130				08/22/22 13:43	08/23/22 01:49	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-168 (5') Lab Sample ID: 890-2784-9

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 02:43	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 02:43	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 02:43	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 02:43	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 02:43	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 02:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				08/30/22 12:01	09/01/22 02:43	1
1,4-Difluorobenzene (Surr)	94		70 - 130				08/30/22 12:01	09/01/22 02:43	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 02:10	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 02:10	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 02:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	60	S1-	70 - 130				08/22/22 13:43	08/23/22 02:10	1
o-Terphenyl	71		70 ₋ 130				08/22/22 13:43	08/23/22 02:10	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2784-1

Lab Sample ID: 890-2784-9

08/29/22 05:46

08/22/22 13:43

08/22/22 13:43

08/23/22 02:31

08/23/22 02:31

SDG: Lea County NM

Client Sample ID: BH-168 (5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 5

Chloride

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed

mg/Kg

mg/Kg

mg/Kg

Client Sample ID: BH-169 (5') Lab Sample ID: 890-2784-10 **Matrix: Solid**

4.98

354

<50.0 U

80.5

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 5

Gasoline Range Organics

Diesel Range Organics (Over

(GRO)-C6-C10

C10-C28)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 03:04	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 03:04	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 03:04	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		08/30/22 12:01	09/01/22 03:04	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 03:04	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		08/30/22 12:01	09/01/22 03:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				08/30/22 12:01	09/01/22 03:04	1
1,4-Difluorobenzene (Surr)	84		70 - 130				08/30/22 12:01	09/01/22 03:04	1
- Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	80.5		50.0		mg/Kg			08/23/22 11:36	1
- Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	08/22/22 13:43	08/23/22 02:31	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	56	S1-	70 - 130		08/22/22 13:43	08/23/22 02:31	1
o-Terphenyl	69	S1-	70 - 130		08/22/22 13:43	08/23/22 02:31	1

50.0

50.0

Method: 300.0 - Anions, Ion Chroma	atography - S	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	382		4.98		mg/Kg			08/29/22 05:54	1

Lab Sample ID: 890-2784-11

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-170 (5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 04:25	
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 04:25	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 04:25	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 04:25	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 04:25	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 04:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				08/30/22 12:01	09/01/22 04:25	1
1,4-Difluorobenzene (Surr)	87		70 - 130				08/30/22 12:01	09/01/22 04:25	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range						_			
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 11:36	
Analyte	Result <49.9	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH	Result <49.9 ge Organics (Di	Qualifier U				<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9 ge Organics (Di	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg			08/23/22 11:36	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg		Prepared	08/23/22 11:36 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D) Result <49.9 49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 08/22/22 13:43	08/23/22 11:36 Analyzed 08/23/22 03:14	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43	08/23/22 11:36 Analyzed 08/23/22 03:14 08/23/22 03:14	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43	08/23/22 11:36 Analyzed 08/23/22 03:14 08/23/22 03:14 08/23/22 03:14	Dil Face 1 1 1 1 Dil Face
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier S1-	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared	08/23/22 11:36 Analyzed 08/23/22 03:14 08/23/22 03:14 08/23/22 03:14 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier S1- S1-	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	08/23/22 11:36 Analyzed 08/23/22 03:14 08/23/22 03:14 Analyzed 08/23/22 03:14	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier S1- S1-	49.9 RL 49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	08/23/22 11:36 Analyzed 08/23/22 03:14 08/23/22 03:14 Analyzed 08/23/22 03:14	Dil Fac

Client Sample ID: BH-171 (5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 04:46	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 04:46	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 04:46	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/30/22 12:01	09/01/22 04:46	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:01	09/01/22 04:46	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/30/22 12:01	09/01/22 04:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				08/30/22 12:01	09/01/22 04:46	

Eurofins Carlsbad

Lab Sample ID: 890-2784-12

Matrix: Solid

Lab Sample ID: 890-2784-12

Lab Sample ID: 890-2784-13

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2784-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-171 (5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 5

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	84	70 - 130	08/30/22 12:01	09/01/22 04:46	1

Mathod:	Total RTFY	- Total BTEX	Calculation
mictilou.	TOTAL DIEN	- IUIUI DI LA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396		mg/Kg			09/01/22 12:44	1

Method: 8015 NM - Diesel I	Range Organics (DRO) (GC)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	75.0	50.0	mg/Kg			08/23/22 11:36	1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 03:35	1
Diesel Range Organics (Over C10-C28)	75.0		50.0		mg/Kg		08/22/22 13:43	08/23/22 03:35	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 03:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	70	70 - 130	08/22/22 13:43	08/23/22 03:35	1
o-Terphenyl	84	70 - 130	08/22/22 13:43	08/23/22 03:35	1

Method: 300.0 - Anions, Ion	Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	180	5.04	mg/Kg			08/29/22 06:10	1

Client Sample ID: BH-172 (6')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 6

Method: 8021B -	Volatile	Organic (Compounds (GC)	

mountain colling and and and and		(/							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 05:06	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 05:06	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 05:06	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 05:06	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 05:06	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 05:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				08/30/22 12:01	09/01/22 05:06	1
1,4-Difluorobenzene (Surr)	80		70 - 130				08/30/22 12:01	09/01/22 05:06	1

Mothod:	Total F	STEX	Total R	TEY Ca	alculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg		_	09/01/22 12:44	1

Analyte	•	•	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Total TPH			<49.9	U	49.9		mg/Kg			08/23/22 11:36	1

Eurofins Carlsbad

2

3

4

6

8

10

10

Lab Sample ID: 890-2784-13

Lab Sample ID: 890-2784-14

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-172 (6')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 03:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 03:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 03:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	70		70 - 130				08/22/22 13:43	08/23/22 03:56	1
o-Terphenyl	84		70 - 130				08/22/22 13:43	08/23/22 03:56	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-173 (6')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 05:26	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 05:26	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 05:26	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 05:26	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 05:26	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 05:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				08/30/22 12:01	09/01/22 05:26	1
1,4-Difluorobenzene (Surr)	90		70 - 130				08/30/22 12:01	09/01/22 05:26	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 04:17	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 04:17	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 04:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	63	S1-	70 - 130				08/22/22 13:43	08/23/22 04:17	1

Eurofins Carlsbad

4

6

8

10

12

13

Matrix: Solid

Lab Sample ID: 890-2784-14

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-173 (6')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	329		4.95		mg/Kg			08/29/22 07:20	1

Lab Sample ID: 890-2784-15 Client Sample ID: BH-174 (6')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00196	U	0.00196		mg/Kg		08/30/22 12:01	09/01/22 05:47	1
Toluene	<0.00196	U	0.00196		mg/Kg		08/30/22 12:01	09/01/22 05:47	1
Ethylbenzene	<0.00196	U	0.00196		mg/Kg		08/30/22 12:01	09/01/22 05:47	1
m-Xylene & p-Xylene	<0.00393	U	0.00393		mg/Kg		08/30/22 12:01	09/01/22 05:47	1
o-Xylene	<0.00196	U	0.00196		mg/Kg		08/30/22 12:01	09/01/22 05:47	1
Xylenes, Total	<0.00393	U	0.00393		mg/Kg		08/30/22 12:01	09/01/22 05:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				08/30/22 12:01	09/01/22 05:47	1
1,4-Difluorobenzene (Surr)	81		70 - 130				08/30/22 12:01	09/01/22 05:47	1
· Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00393	U	0.00393		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DD)	o) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 04:38	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 04:38	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 04:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	64	S1-	70 - 130				08/22/22 13:43	08/23/22 04:38	1
o-Terphenyl	76		70 - 130				08/22/22 13:43	08/23/22 04:38	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-2784-16

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-175 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 06:07	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 06:07	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 06:07	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 06:07	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 06:07	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 06:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				08/30/22 12:01	09/01/22 06:07	1
1,4-Difluorobenzene (Surr)	92		70 - 130				08/30/22 12:01	09/01/22 06:07	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			09/01/22 12:44	1
Analyte Total TPH	<49.9	Qualifier U	49.9	MDL	mg/Kg	D	Prepared	Analyzed 08/23/22 11:36	Dil Fa
- 10tal 1PH 	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	• •								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 04:59	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 04:59	4
C10-C28)									'
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 04:59	
,					mg/Kg				1
Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9		49.9 Limits 70 - 130		mg/Kg		08/22/22 13:43 Prepared 08/22/22 13:43	08/23/22 04:59 Analyzed 08/23/22 04:59	Dil Fac
Surrogate	%Recovery	Qualifier	Limits		mg/Kg		Prepared	Analyzed	1 Dil Fac
Surrogate 1-Chlorooctane	%Recovery 59 71	Qualifier S1-	Limits 70 - 130		mg/Kg		Prepared 08/22/22 13:43	Analyzed 08/23/22 04:59	1 Dil Fac
Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 59 71 omatography -	Qualifier S1-	Limits 70 - 130	MDL		D	Prepared 08/22/22 13:43	Analyzed 08/23/22 04:59	Dil Fac

Client Sample ID: BH-176 (4.5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 06:28	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 06:28	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 06:28	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 06:28	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 06:28	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:01	09/01/22 06:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				08/30/22 12:01	09/01/22 06:28	

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2784-17

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-2784-1 SDG: Lea County NM

ah Sample ID: 890-2784-17

08/22/22 13:43

08/23/22 05:21

Matrix: Solid

Lab Sample ID: 890-2784-17

Matrix: Solid

Client Sample ID: BH-176 (4.5')
Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5

Method: 8021B - Volatile Organic Con	noounds (GC)	(Continued)
motifical collision of gains con	ipodiido (OO)	(Continuou,

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	91	70 - 130	08/30/22 12:01	09/01/22 06:28	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	 D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399		mg/Kg			09/01/22 12:44	1

П				
ı	Method: 8015 NM	Diocal Ranc	no Organice	(DRO) (GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/K			08/23/22 11:36	1

Method: 8015B	NM - Diesel	Range Ore	anice l	(DRO)	(GC)
Methou. ou isb	IAIN - DIESEI	Range Org	janics i	(DRU)	(GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		08/22/22 13:43	08/23/22 05:21	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		08/22/22 13:43	08/23/22 05:21	1
C10-C28)								
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		08/22/22 13:43	08/23/22 05:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	58	S1-	70 - 130			08/22/22 13:43	08/23/22 05:21	1

1-Chlorooctane	58 S1-	70 - 130
o-Terphenyl	69 S1-	70 - 130

Method: 300.0 - Anions, Ion Chrom	atography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

 Chloride
 554
 5.05
 mg/Kg
 08/29/22 08:00
 1

 Client Sample ID: BH-177 (4.5')
 Lab Sample ID: 890-2784-18

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Mathadi 0004D	Valatile Overen	ic Compounds (GC)
Memoo: Auzib	- voianie Urdan	ic Compounds (GC)

inic compounds ((30)							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 06:48	1
<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 06:48	1
<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 06:48	1
<0.00403	U	0.00403		mg/Kg		08/30/22 12:01	09/01/22 06:48	1
<0.00202	U	0.00202		mg/Kg		08/30/22 12:01	09/01/22 06:48	1
<0.00403	U	0.00403		mg/Kg		08/30/22 12:01	09/01/22 06:48	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
117		70 - 130				08/30/22 12:01	09/01/22 06:48	1
93		70 - 130				08/30/22 12:01	09/01/22 06:48	1
	Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202 <0.00403 %Recovery 117		Result Qualifier RL	Result Qualifier RL MDL <0.00202	Result Qualifier RL MDL Unit mg/Kg	Result Qualifier RL MDL Unit D <0.00202	Result Qualifier RL MDL Unit D Prepared <0.00202	Result Qualifier RL MDL Unit D Prepared Analyzed <0.00202 U

Method:	Total R	TFY - T	ntal RT	FX Calcu	ılation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403		ma/Ka			09/01/22 12:44	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			08/23/22 11:36	1

Eurofins Carlsbad

2

5

7

10

12

Lab Sample ID: 890-2784-18

08/29/22 08:07

Matrix: Solid

Lab Sample ID: 890-2784-19

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-177 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 05:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 05:42	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 13:43	08/23/22 05:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane		S1-	70 - 130				08/22/22 13:43	08/23/22 05:42	1
o-Terphenyl	73		70 - 130				08/22/22 13:43	08/23/22 05:42	1
- Mathada 200 0 - Aniana Jan Chu		Oalukla							
Method: 300.0 - Anions, Ion Chro	omatograpny -	Soluble							Dil Fac
Analyte			RL						

25.0

mg/Kg

1360

Client Sample ID: BH-178 (4.5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 07:09	
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 07:09	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 07:09	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:01	09/01/22 07:09	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	09/01/22 07:09	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:01	09/01/22 07:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				08/30/22 12:01	09/01/22 07:09	1
1,4-Difluorobenzene (Surr)	88		70 - 130				08/30/22 12:01	09/01/22 07:09	1
- Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 06:03	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 06:03	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/23/22 06:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	60	S1-	70 - 130				08/22/22 13:43	08/23/22 06:03	1
o-Terphenyl	72		70 ₋ 130				08/22/22 13:43	08/23/22 06:03	1

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

3

6

8

10

12

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

Lab Sample ID: 890-2784-19

Client Sample ID: BH-178 (4.5')

Date Collected: 08/18/22 00:00

Sample Depth: 4.5

Matrix: Solid Date Received: 08/19/22 08:00

Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed 5.02 08/29/22 08:31 Chloride 632 mg/Kg

Client Sample ID: BH-179 (4.5') Lab Sample ID: 890-2784-20 **Matrix: Solid**

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 07:29	
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 07:29	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 07:29	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 07:29	
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:01	09/01/22 07:29	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:01	09/01/22 07:29	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130				08/30/22 12:01	09/01/22 07:29	1
1,4-Difluorobenzene (Surr)	90		70 - 130				08/30/22 12:01	09/01/22 07:29	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX - -	<0.00402	U	0.00402		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH			50.0	WIDE	mg/Kg	_ =	Trepareu	08/23/22 11:36	1
	100.0	Ü	00.0		mg/rtg			00/20/22 11:00	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared		
-		-,	114	MDL		_	riepaieu	Analyzed	Dil Fac
5 5	<50.0	U	50.0	WIDL	mg/Kg	_ =	08/22/22 13:43	Analyzed 08/23/22 06:24	Dil Fac
5 5				MIDL	mg/Kg	_ =			
5 5 ,	<50.0	U	50.0	MDL			08/22/22 13:43	08/23/22 06:24	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 <50.0	U	50.0	MDL	mg/Kg		08/22/22 13:43 08/22/22 13:43	08/23/22 06:24 08/23/22 06:24	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 <50.0 <50.0	U U	50.0 50.0 50.0	WDL	mg/Kg		08/22/22 13:43 08/22/22 13:43 08/22/22 13:43	08/23/22 06:24 08/23/22 06:24 08/23/22 06:24	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 <50.0 <50.0 %Recovery	U U Qualifier	50.0 50.0 50.0 Limits	WDL	mg/Kg	_ =	08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared	08/23/22 06:24 08/23/22 06:24 08/23/22 06:24 Analyzed	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 <50.0 <8Recovery 60 75	U Qualifier S1-	50.0 50.0 50.0 Limits 70 - 130	WDL	mg/Kg		08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	08/23/22 06:24 08/23/22 06:24 08/23/22 06:24 Analyzed 08/23/22 06:24	1 1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 <50.0 <50.0 %Recovery 60 75 comatography -	U Qualifier S1-	50.0 50.0 50.0 Limits 70 - 130		mg/Kg		08/22/22 13:43 08/22/22 13:43 08/22/22 13:43 Prepared 08/22/22 13:43	08/23/22 06:24 08/23/22 06:24 08/23/22 06:24 Analyzed 08/23/22 06:24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Lab Sample ID: 890-2784-21

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-180 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:16	08/31/22 18:05	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:16	08/31/22 18:05	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:16	08/31/22 18:05	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:16	08/31/22 18:05	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:16	08/31/22 18:05	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:16	08/31/22 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				08/30/22 12:16	08/31/22 18:05	1
1,4-Difluorobenzene (Surr)	106		70 - 130				08/30/22 12:16	08/31/22 18:05	1
- Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/01/22 12:44	1
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TDLI							•		D uc
IOIAI IPTI	<49.9	U	49.9		mg/Kg			08/23/22 11:36	
Total TPH Method: 8015B NM - Diesel Ran			49.9		mg/Kg				
- -	ge Organics (D		49.9 RL	MDL		D	Prepared		1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier		MDL		<u>D</u>	Prepared 08/22/22 16:33	08/23/22 11:36	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (Di	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>		08/23/22 11:36 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <49.9	RO) (GC) Qualifier U	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 13:21	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result <49.9	RO) (GC) Qualifier U	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 13:21 08/24/22 13:21	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D) Result <49.9 <49.9	RO) (GC) Qualifier U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 13:21 08/24/22 13:21	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U	RL 49.9 49.9 49.9 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared	08/23/22 11:36 Analyzed 08/24/22 13:21 08/24/22 13:21 08/24/22 13:21 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D) Result <49.9 <49.9 <49.9 **Recovery** 117 114	RO) (GC) Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 13:21 08/24/22 13:21 Analyzed 08/24/22 13:21	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <49.9 <49.9 <49.9 // MRecovery 117 114 comatography -	RO) (GC) Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 13:21 08/24/22 13:21 Analyzed 08/24/22 13:21	Dil Fac

Client Sample ID: BH-181 (4.5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 18:25	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 18:25	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 18:25	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		08/30/22 12:16	08/31/22 18:25	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 18:25	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		08/30/22 12:16	08/31/22 18:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				08/30/22 12:16	08/31/22 18:25	1

Eurofins Carlsbad

Lab Sample ID: 890-2784-22

2

5

7

10

12

13

no Ganobaa

Matrix: Solid

Lab Sample ID: 890-2784-22

Lab Sample ID: 890-2784-23

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-181 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Method: 8021B - Volatile Organic Compounds	(GC)	(Continued)	
Michiga, 002 1B - Volatile Organic Compounds	1001	(Oditiliaca)	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	105		70 - 130	08/30/22 12:16	08/31/22 18:25	1

Method: Tot	al BTEX - Tota	al BTEX Ca	alculation
mounou. Tot	u. D. L		aiouiutioii

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			09/01/22 12:44	1

Method: 8015 NM - Diesel	Pango Organico		(CC)
WELLIOU. OU 13 INW - DIESEI	Range Organics	(UNU)	1001

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 14:26	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 14:26	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 14:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	∕∞Recovery	Qualifier	LIIIIII	r.	repareu	Allalyzeu	DII Fac
1-Chlorooctane	114		70 - 130	08/2	22/22 16:33	08/24/22 14:26	1
o-Terphenyl	110		70 - 130	08/2	22/22 16:33	08/24/22 14:26	1
_							

 ${\bf Method: 300.0 - Anions, \, lon \, Chromatography - Soluble}$

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	1560		25.1		mg/Kg			08/29/22 08:54	5

Client Sample ID: BH-182 (4.5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5

Method: 8021B -	Volatile Organic	c Compounds (GC)

wethou: 6021B - Volatile Orga	, (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 18:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 18:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 18:46	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	08/31/22 18:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 18:46	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	08/31/22 18:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/30/22 12:16	08/31/22 18:46	1
1,4-Difluorobenzene (Surr)	108		70 - 130				08/30/22 12:16	08/31/22 18:46	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			09/01/22 12:44	1

	Method: 8015 NM - Diesel	Range Organics (DRO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organics (Dito	, (00)

Analyte	•	•	Result	Qualifier	RL	MDL	Unit	D	Pr	epared	Analyzed	Dil Fac
Total TPH			<50.0	U	50.0		mg/Kg				08/23/22 11:36	1

Eurofins Carlsbad

2

3

_

7

10

12

13

-

Lab Sample ID: 890-2784-23

Lab Sample ID: 890-2784-24

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-182 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 14:47	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 14:47	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 14:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				08/22/22 16:33	08/24/22 14:47	1
o-Terphenyl	97		70 - 130				08/22/22 16:33	08/24/22 14:47	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
• •									

Client Sample ID: BH-183 (4.5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:06	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:06	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:06	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/30/22 12:16	08/31/22 19:06	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:06	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/30/22 12:16	08/31/22 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				08/30/22 12:16	08/31/22 19:06	1
1,4-Difluorobenzene (Surr)	108		70 - 130				08/30/22 12:16	08/31/22 19:06	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_	•	Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 11:36	Dil Fac
Analyte Total TPH	Result <49.9	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte	Result <49.9	Qualifier U		MDL	mg/Kg	<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg		<u> </u>	08/23/22 11:36	1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (Di Result	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg		Prepared	08/23/22 11:36 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <49.9 ge Organics (Di Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 15:17	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 15:17 08/24/22 15:17	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:33 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 15:17 08/24/22 15:17	1 Dil Fac

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2784-1

SDG: Lea County NM

Client Sample ID: BH-183 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Lab Sample ID: 890-2784-24

Matrix: Solid

Method: 300.0 - Anions, Ion Chromato	graphy -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1050		4.97		mg/Kg			08/29/22 09:10	1

Client Sample ID: BH-184 (4.5') Lab Sample ID: 890-2784-25 **Matrix: Solid**

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Method: Total BTEX - Total BTEX Calculation

Sample Depth: 4.5

Analyte

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:26	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:26	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:26	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	08/31/22 19:26	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 19:26	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	08/31/22 19:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/30/22 12:16	08/31/22 19:26	1
1,4-Difluorobenzene (Surr)	109		70 - 130				08/30/22 12:16	08/31/22 19:26	1

Total BTEX	<0.00400	U	0.00400		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Ran	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Ra		RO) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Analyte				MIDL					DII Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 16:17	1

MDL Unit

Prepared

Analyzed

Dil Fac

Result Qualifier

(GRO)-C6-C10							
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg	08/22/22 16:33	08/24/22 16:17	1
C10-C28)							
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	08/22/22 16:33	08/24/22 16:17	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130		08/22/22 16:33	08/24/22 16:17	1
o-Terphenyl	109		70 ₋ 130		08/22/22 16:33	08/24/22 16:17	1

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	898		5.05		mg/Kg			08/29/22 09:34	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-185 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 **REMOVED FROM ANALYSIS TABLE** Lab Sample ID: 890-2784-26

Matrix: Solid

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:16	08/31/22 19:47	1
Toluene	< 0.00201	U	0.00201		mg/Kg		08/30/22 12:16	08/31/22 19:47	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:16	08/31/22 19:47	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:16	08/31/22 19:47	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		08/30/22 12:16	08/31/22 19:47	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:16	08/31/22 19:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/30/22 12:16	08/31/22 19:47	1
1,4-Difluorobenzene (Surr)	110		70 - 130				08/30/22 12:16	08/31/22 19:47	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte									
Analyto	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	Result <49.9		RL 49.9	MDL	mg/Kg	<u>D</u>	Prepared 08/22/22 16:33	Analyzed 08/24/22 16:39	
Gasoline Range Organics		U		MDL		<u>D</u>			1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U	49.9	MDL	mg/Kg	<u>D</u>	08/22/22 16:33	08/24/22 16:39	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 <49.9	U U	49.9	MDL	mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33	08/24/22 16:39 08/24/22 16:39	1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9 <49.9 <49.9	U U	49.9 49.9 49.9	MDL	mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33	08/24/22 16:39 08/24/22 16:39 08/24/22 16:39	1 1 1 Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 <49.9 <49.9 %Recovery	U U	49.9 49.9 49.9 Limits	MDL	mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared	08/24/22 16:39 08/24/22 16:39 08/24/22 16:39 Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 <49.9 <49.9 <80.9 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00 <80.00	U U U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared 08/22/22 16:33	08/24/22 16:39 08/24/22 16:39 08/24/22 16:39 Analyzed 08/24/22 16:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: BH-186 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Chloride

REMOVED FROM ANALYSIS TABLE

588

Lab Sample ID: 890-2784-27

08/29/22 09:42

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:07	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:07	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:07	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:16	08/31/22 20:07	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:07	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:16	08/31/22 20:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				08/30/22 12:16	08/31/22 20:07	1

5.01

mg/Kg

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-186 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Sample Depth: 4.5

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2784-27

Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	108		70 - 130				08/30/22 12:16	08/31/22 20:07	1
Method: Total BTEX - Total BTE	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	914		50.0		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 18:48	
(GRO)-C6-C10									
Diesel Range Organics (Over	914		50.0		mg/Kg		08/22/22 16:33	08/24/22 18:48	•
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 18:48	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	92		70 - 130				08/22/22 16:33	08/24/22 18:48	-
o-Terphenyl	91		70 - 130				08/22/22 16:33	08/24/22 18:48	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1050		24.8		mg/Kg			08/29/22 10:05	5

Client Sample ID: BH-187 (4.5') Lab Sample ID: 890-2784-28 **Matrix: Solid**

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Total TPH

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 20:28	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 20:28	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 20:28	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/30/22 12:16	08/31/22 20:28	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 20:28	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/30/22 12:16	08/31/22 20:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/30/22 12:16	08/31/22 20:28	1
1,4-Difluorobenzene (Surr)	107		70 - 130				08/30/22 12:16	08/31/22 20:28	1
- Method: Total BTEX - Total B1	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			09/01/22 12:44	1
- Method: 8015 NM - Diesel Rar	ige Organics (DR	O) (GC)							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

08/23/22 11:36

49.9

mg/Kg

<49.9 U

Lab Sample ID: 890-2784-28

Lab Sample ID: 890-2784-29

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2784-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-187 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 17:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 17:01	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 17:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				08/22/22 16:33	08/24/22 17:01	1
o-Terphenyl	97		70 - 130				08/22/22 16:33	08/24/22 17:01	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-188 (4.5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:48	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:48	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:48	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:16	08/31/22 20:48	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 20:48	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:16	08/31/22 20:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				08/30/22 12:16	08/31/22 20:48	1
1,4-Difluorobenzene (Surr)	106		70 - 130				08/30/22 12:16	08/31/22 20:48	1
Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 17:23	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 17:23	1
C10-C28)	450.0		50.0				00/00/00 40:00	00/04/00 47:00	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 17:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				08/22/22 16:33	08/24/22 17:23	1
o-Terphenyl	97		70 ₋ 130				08/22/22 16:33	08/24/22 17:23	1

Eurofins Carlsbad

2

3

5

8

10

10

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-2784-1 SDG: Lea County NM

Client Sample ID: BH-188 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Lab Sample ID: 890-2784-29

. Matrix: Solid

Method: 300.0 - Anions, Ion Chromatography - SolubleAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacChloride136025.0mg/Kg08/29/22 10:215

Client Sample ID: BH-189 (4.5')

Date Collected: 08/18/22 00:00

Lab Sample ID: 890-2784-30

Matrix: Solid

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 22:59	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 22:59	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 22:59	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/30/22 12:16	08/31/22 22:59	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	08/31/22 22:59	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/30/22 12:16	08/31/22 22:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				08/30/22 12:16	08/31/22 22:59	1
1,4-Difluorobenzene (Surr)	109		70 - 130				08/30/22 12:16	08/31/22 22:59	1
- Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Ran	ige Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	П	49.8		mg/Kg			08/23/22 11:36	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		08/22/22 16:33	08/24/22 17:44	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		08/22/22 16:33	08/24/22 17:44	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/22/22 16:33	08/24/22 17:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				08/22/22 16:33	08/24/22 17:44	1
o-Terphenyl	93		70 ₋ 130				08/22/22 16:33	08/24/22 17:44	1

Method: 300.0 - Anions, Ion Chromatography - Soluble								
	Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	181	5.04	mg/Kg			08/29/22 10:29	1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-38 (4.5-13')

Date Collected: 08/18/22 00:00
Date Received: 08/19/22 08:00
Sample Depth: 4.5 - 13

Lab Sample ID: 890-2784-31

Matrix: Solid

-
ю

6

8

10

12

13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0404	U	0.0404		mg/Kg		08/30/22 12:16	08/31/22 21:09	20
Toluene	<0.0404	U	0.0404		mg/Kg		08/30/22 12:16	08/31/22 21:09	20
Ethylbenzene	<0.0404	U	0.0404		mg/Kg		08/30/22 12:16	08/31/22 21:09	20
m-Xylene & p-Xylene	<0.0808	U	0.0808		mg/Kg		08/30/22 12:16	08/31/22 21:09	20
o-Xylene	<0.0404	U	0.0404		mg/Kg		08/30/22 12:16	08/31/22 21:09	20
Xylenes, Total	<0.0808	U	0.0808		mg/Kg		08/30/22 12:16	08/31/22 21:09	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				08/30/22 12:16	08/31/22 21:09	20
1,4-Difluorobenzene (Surr)	87		70 - 130				08/30/22 12:16	08/31/22 21:09	20
Method: Total BTEX - Total BTE	K Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0808	U	0.0808		mg/Kg			09/01/22 12:44	1
Analyte Total TPH		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
			40.0		11.7			00/00/00 44 00	
10(a) 17f1 - -	151		49.9		mg/Kg			08/23/22 11:36	1
		RO) (GC)	49.9		mg/Kg			08/23/22 11:36	1
	ge Organics (D	Qualifier	49.9	MDL		D	Prepared	08/23/22 11:36 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	Qualifier		MDL		<u>D</u>	Prepared 08/22/22 16:33		Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D	Qualifier	RL	MDL	Unit	<u>D</u>	<u>.</u>	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <49.9	Qualifier U	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	08/22/22 16:33	Analyzed 08/24/22 20:15	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9	Qualifier U	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33	Analyzed 08/24/22 20:15 08/24/22 20:15	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9	Qualifier U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33	Analyzed 08/24/22 20:15 08/24/22 20:15 08/24/22 20:15	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.9 151 <49.9 %Recovery	Qualifier U	RL 49.9 49.9 49.9 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared	Analyzed 08/24/22 20:15 08/24/22 20:15 08/24/22 20:15 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.9 151 <49.9 **Recovery 118 116	Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared 08/22/22 16:33	Analyzed 08/24/22 20:15 08/24/22 20:15 08/24/22 20:15 Analyzed 08/24/22 20:15	
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.9 151 <49.9 **Recovery 118 116 comatography -	Qualifier U U Qualifier	RL 49.9 49.9 49.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared 08/22/22 16:33	Analyzed 08/24/22 20:15 08/24/22 20:15 08/24/22 20:15 Analyzed 08/24/22 20:15	Dil Fac

Client Sample ID: SW-42 (4.5-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-32

Matrix: Solid

watrix. Soliu

Sample Depth: 4.5 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 23:19	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 23:19	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 23:19	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/30/22 12:16	08/31/22 23:19	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:16	08/31/22 23:19	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/30/22 12:16	08/31/22 23:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				08/30/22 12:16	08/31/22 23:19	1

Lab Sample ID: 890-2784-32

Lab Sample ID: 890-2784-33

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-42 (4.5-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5 - 8

Method: 8021B - Volatile Or	ganic Compounds	(GC) (Continued)
Michigal COLID Volume Of	gaine compounds	(GG) (GG) (GG)

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	106	70 - 130	08/30/22 12:16	08/31/22 23:19	1

Method: Tot	al BTEX - Tota	al BTEX Ca	alculation
mounou. Tot	u. D. L		aiouiutioii

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			09/01/22 12:44	1

Method: 8015 NM - Diesel	Range Organics (DRO) (GO	2)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg	 		08/23/22 11:36	1

Mothod: 904ED N	IM Discol	Dange Ore	ronico /	DBO) /	CCI
Method: 8015B N	AIM - DIESEL	Range Oil	janicə (i		GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 18:06	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 18:06	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 18:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Carrogate	7011CCCVC1 y	Qualifici	Liiiit	rrepared	Analyzea
1-Chlorooctane	119		70 - 130	08/22/22 16:33	08/24/22 18:06
o-Terphenyl	113		70 - 130	08/22/22 16:33	08/24/22 18:06

Method: 3	300.0 - Anions,	Ion Chroma	tography - S	Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	107	4.97	mg/Kg			08/29/22 10:44	1

Client Sample ID: SW-43 (6-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Method: 8021B -	Volatile	Organic (Compounds (GC)	

		()							
Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	r	mg/Kg		08/30/22 12:16	08/31/22 23:40	1
Toluene	< 0.00199	U	0.00199	r	mg/Kg		08/30/22 12:16	08/31/22 23:40	1
Ethylbenzene	< 0.00199	U	0.00199	r	mg/Kg		08/30/22 12:16	08/31/22 23:40	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	r	mg/Kg		08/30/22 12:16	08/31/22 23:40	1
o-Xylene	< 0.00199	U	0.00199	r	mg/Kg		08/30/22 12:16	08/31/22 23:40	1
Xylenes, Total	<0.00398	U	0.00398	r	mg/Kg		08/30/22 12:16	08/31/22 23:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/30/22 12:16	08/31/22 23:40	1
1,4-Difluorobenzene (Surr)	108		70 - 130				08/30/22 12:16	08/31/22 23:40	1

Mothod:	Total RTEY	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/01/22 12:44	1

н	Made al. COAF NIM Diana	D O! (DDO)	(00)
ı	Method: 8015 NM - Diese	Rande Ordanics (DRO)	1 ((=(.)
ı	Michiga. Colo IVIII Dicoc	range Organico (Bra	, , , , ,

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			08/23/22 11:36	1

Lab Sample ID: 890-2784-33

Lab Sample ID: 890-2784-34

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-43 (6-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 20:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 20:36	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 20:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				08/22/22 16:33	08/24/22 20:36	1
o-Terphenyl	100		70 - 130				08/22/22 16:33	08/24/22 20:36	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Method, 300.0 - Allions, Ion Office									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SW-44 (4.5-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 4.5 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 00:00	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 00:00	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 00:00	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/30/22 12:16	09/01/22 00:00	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 00:00	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/30/22 12:16	09/01/22 00:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/30/22 12:16	09/01/22 00:00	1
1,4-Difluorobenzene (Surr)	97		70 - 130				08/30/22 12:16	09/01/22 00:00	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 20:58	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 20:58	1
C10-C28) OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 16:33	08/24/22 20:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				08/22/22 16:33	08/24/22 20:58	1

Eurofins Carlsbad

9/1/2022

Matrix: Solid

Lab Sample ID: 890-2784-34

Lab Sample ID: 890-2784-35

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-44 (4.5-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5 - 8

— Method: 300.0 - Anions, Ion Chromatography - Soluble											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	955	F2 F1	5.04		mg/Kg			08/29/22 14:49	1		

Client Sample ID: SW-45 (0-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Method: 8021B - Volatile Organic	Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:16	09/01/22 00:20	
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:16	09/01/22 00:20	
Ethylbenzene	0.0108		0.00201		mg/Kg		08/30/22 12:16	09/01/22 00:20	
m-Xylene & p-Xylene	0.0209		0.00402		mg/Kg		08/30/22 12:16	09/01/22 00:20	
o-Xylene	0.0251		0.00201		mg/Kg		08/30/22 12:16	09/01/22 00:20	
Xylenes, Total	0.0460		0.00402		mg/Kg		08/30/22 12:16	09/01/22 00:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90		70 - 130				08/30/22 12:16	09/01/22 00:20	
1,4-Difluorobenzene (Surr)	97		70 - 130				08/30/22 12:16	09/01/22 00:20	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0568		0.00402		mg/Kg			09/01/22 12:44	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1110		50.0		mg/Kg			08/23/22 11:36	•
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	79.7		50.0		mg/Kg		08/22/22 16:33	08/24/22 19:32	
Diesel Range Organics (Over C10-C28)	1030		50.0		mg/Kg		08/22/22 16:33	08/24/22 19:32	,
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 19:32	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	105		70 - 130				08/22/22 16:33	08/24/22 19:32	
o-Terphenyl	99		70 - 130				08/22/22 16:33	08/24/22 19:32	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Method: 300.0 - Anions, Ion Chro Analyte		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-2784-36

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-46 (0-5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 00:41	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 00:41	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 00:41	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	09/01/22 00:41	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 00:41	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	09/01/22 00:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				08/30/22 12:16	09/01/22 00:41	1
1,4-Difluorobenzene (Surr)	99		70 - 130				08/30/22 12:16	09/01/22 00:41	1
Method: Total BTEX - Total BTE	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			09/01/22 12:44	1
: Method: 8015 NM - Diesel Range			RI	MDI	Unit	n	Prenared	Analyzed	Dil Fac
: Method: 8015 NM - Diesel Range			RI	MDI	Unit	n	Prenared	∆ nalvzed	Dil Fac
•		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 11:36	Dil Fac
Method: 8015 NM - Diesel Range Analyte	Result <49.9	Qualifier U		MDL		<u>D</u>	Prepared		
Method: 8015 NM - Diesel Range Analyte Total TPH	Result <49.9 ge Organics (Di	Qualifier U		MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	Result <49.9 ge Organics (Di	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg	=	· ·	08/23/22 11:36	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (Di Result	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg	=	Prepared	08/23/22 11:36 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 ge Organics (Di Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg	=	Prepared 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 21:19	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 08/22/22 16:33 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 21:19 08/24/22 21:19	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 08/22/22 16:33 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 21:19 08/24/22 21:19 08/24/22 21:19	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared	08/23/22 11:36 Analyzed 08/24/22 21:19 08/24/22 21:19 08/24/22 21:19 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 21:19 08/24/22 21:19 Analyzed 08/24/22 21:19	Dil Fac 1 1 Dil Fac Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg	=	Prepared 08/22/22 16:33 08/22/22 16:33 08/22/22 16:33 Prepared 08/22/22 16:33	08/23/22 11:36 Analyzed 08/24/22 21:19 08/24/22 21:19 Analyzed 08/24/22 21:19	1 1 1 Dil Fac 1

Client Sample ID: SW-47 (0-5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 0 - 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 01:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 01:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 01:01	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/30/22 12:16	09/01/22 01:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	09/01/22 01:01	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/30/22 12:16	09/01/22 01:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/30/22 12:16	09/01/22 01:01	1

Matrix: Solid

Lab Sample ID: 890-2784-37

Job ID: 890-2784-1

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD SDG: Lea County NM Client Sample ID: SW-47 (0-5') Lab Sample ID: 890-2784-37

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 5

Method: 8021B - Volatile Organ	nic Compounds	(GC)	(Continued)	
mothed collis	no compoundo	, – – ,	(-	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	92	70 - 130	08/30/22 12:16	09/01/22 01:01	1

Method: Total	BTEX - Total	BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg		_	09/01/22 12:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg	 		08/23/22 11:36	1

Mothod: 904ED N	IM Discol	Dange Ore	ronico /	DBO) /	CCI
Method: 8015B N	AIM - DIESEL	Range Oil	janicə (i		GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 21:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 21:41	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 21:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	Surrogate	%Recovery	Qualifier	Limits	,	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	116		70 - 130	08/	/22/22 16:33	08/24/22 21:41	1
l	o-Terphenyl	112		70 - 130	08/	/22/22 16:33	08/24/22 21:41	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifie		MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	558	4.98	mg/Kg	3		08/29/22 15:28	1

Client Sample ID: SW-48 (6-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Method: 8021B - Volatile Organic Compounds (GC)			
	Mothod: 9021D	Volatile Organie	Compounde (CC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 01:21	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 01:21	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 01:21	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:16	09/01/22 01:21	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 01:21	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:16	09/01/22 01:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				08/30/22 12:16	09/01/22 01:21	1
1,4-Difluorobenzene (Surr)	97		70 ₋ 130				08/30/22 12:16	09/01/22 01:21	1

Mathad:	Total	RTFY -	Total R	TEY C	alculation

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398		ma/Ka			09/01/22 12:44	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	117		50.0	mg/Kg			08/23/22 11:36	1

Eurofins Carlsbad

Lab Sample ID: 890-2784-38

Matrix: Solid

Lab Sample ID: 890-2784-38

Lab Sample ID: 890-2784-39

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-48 (6-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 19:53	1
Diesel Range Organics (Over C10-C28)	117		50.0		mg/Kg		08/22/22 16:33	08/24/22 19:53	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 19:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				08/22/22 16:33	08/24/22 19:53	1
o-Terphenyl	98		70 - 130				08/22/22 16:33	08/24/22 19:53	1

Method: 300.0 - Anions, Ion Chron	natography - S	oluble							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	70.5		4.99		mg/Kg			08/29/22 15:36	1

Client Sample ID: SW-49 (4.5-6')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00 Sample Depth: 4.5 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 01:42	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 01:42	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 01:42	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		08/30/22 12:16	09/01/22 01:42	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:16	09/01/22 01:42	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		08/30/22 12:16	09/01/22 01:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				08/30/22 12:16	09/01/22 01:42	1
1,4-Difluorobenzene (Surr)	104		70 - 130				08/30/22 12:16	09/01/22 01:42	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	264		50.0		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 19:10	1
Diesel Range Organics (Over	264		50.0		mg/Kg		08/22/22 16:33	08/24/22 19:10	1
C10-C28)	<50.0		50.0				08/22/22 16:33	08/24/22 19:10	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 19:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				08/22/22 16:33	08/24/22 19:10	1
o-Terphenyl	98		70 - 130				08/22/22 16:33	08/24/22 19:10	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

Client Sample ID: SW-49 (4.5-6')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-39 Matrix: Solid

Sample Depth: 4.5 - 6

١	Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	975		25.0		mg/Kg			08/29/22 15:59	5

Client Sample ID: SW-53 (0-8') Lab Sample ID: 890-2784-40 **Matrix: Solid**

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 8

C10-C28)

Oll Range Organics (Over C28-C36)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 02:02	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 02:02	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 02:02	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:16	09/01/22 02:02	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:16	09/01/22 02:02	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:16	09/01/22 02:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/30/22 12:16	09/01/22 02:02	1
4.4.0'0	100		70 ₋ 130				08/30/22 12:16	09/01/22 02:02	1
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT			70 - 130				06/30/22 12.16	09/01/22 02.02	,
	TEX Calculation	Qualifier	RL 0.00398	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 09/01/22 12:44	Dil Fac
Method: Total BTEX - Total BT Analyte	Calculation Result <0.00398	U	RL	MDL		<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX	TEX Calculation Result <0.00398 age Organics (DR	U	RL			<u>D</u>		Analyzed	Dil Fac Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar	TEX Calculation Result <0.00398 age Organics (DR	O) (GC) Qualifier	RL		mg/Kg		Prepared	Analyzed 09/01/22 12:44	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte	rex Calculation Result <0.00398 rege Organics (DR Result <49.9	O) (GC) Qualifier			mg/Kg		Prepared	Analyzed 09/01/22 12:44 Analyzed	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH	TEX Calculation Result <0.00398 age Organics (DR Result <49.9 ange Organics (D	O) (GC) Qualifier		MDL	mg/Kg		Prepared	Analyzed 09/01/22 12:44 Analyzed	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Ra	TEX Calculation Result <0.00398 age Organics (DR Result <49.9 ange Organics (D	O) (GC) Qualifier U RO) (GC) Qualifier	RL 0.00398 RL 49.9	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 09/01/22 12:44 Analyzed 08/23/22 11:36	Dil Fac

1						
	Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	109	70 - 13	08/22/22 16:33	08/24/22 22:02	1
	o-Terphenyl	106	70 - 13	0 08/22/22 16:33	08/24/22 22:02	1

49.9

mg/Kg

08/22/22 16:33

08/24/22 22:02

<49.9 U

Method: 300.0 - Anions, Ion Chrom	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2180		25.1		mg/Kg			08/29/22 16:07	5

Lab Sample ID: 890-2784-41

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-54 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 05:39	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 05:39	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 05:39	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/30/22 12:29	09/01/22 05:39	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 05:39	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/30/22 12:29	09/01/22 05:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				08/30/22 12:29	09/01/22 05:39	1
1,4-Difluorobenzene (Surr)	101		70 - 130				08/30/22 12:29	09/01/22 05:39	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			09/01/22 12:44	1
Analyta	Popult	Ouglifier	DI	MDI	Unit	n	Droporod	Analyzad	Dil Es
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result <50.0	Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 11:36	
	<50.0	U		MDL		<u>D</u>	Prepared		
Total TPH	<50.0 ge Organics (D	RO) (GC) Qualifier				<u>D</u>	Prepared Prepared		1
Total TPH Method: 8015B NM - Diesel Ran	<50.0	RO) (GC) Qualifier	50.0		mg/Kg			08/23/22 11:36	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	<50.0 ge Organics (D	RO) (GC) Qualifier	50.0		mg/Kg		Prepared	08/23/22 11:36 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0 ge Organics (Di Result <50.0	U RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/23/22 10:46	08/23/22 11:36 Analyzed 08/24/22 23:07	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 ge Organics (Di Result <50.0 <50.0	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/23/22 10:46 08/23/22 10:46	08/23/22 11:36 Analyzed 08/24/22 23:07 08/24/22 23:07	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 ge Organics (D) Result <50.0 <50.0	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/23/22 10:46 08/23/22 10:46 08/23/22 10:46	08/23/22 11:36 Analyzed 08/24/22 23:07 08/24/22 23:07	Dil Face 1 1 1 1 Dil Face
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 %Recovery	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/23/22 10:46 08/23/22 10:46 08/23/22 10:46 Prepared	08/23/22 11:36 Analyzed 08/24/22 23:07 08/24/22 23:07 08/24/22 23:07 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 ge Organics (Digital Result) <50.0 <50.0 <50.0 %Recovery 91 95	U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/23/22 10:46 08/23/22 10:46 08/23/22 10:46 Prepared 08/23/22 10:46	08/23/22 11:36 Analyzed 08/24/22 23:07 08/24/22 23:07 Analyzed 08/24/22 23:07	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 <50.0 <8ecovery 91 95 omatography -	U RO) (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/23/22 10:46 08/23/22 10:46 08/23/22 10:46 Prepared 08/23/22 10:46	08/23/22 11:36 Analyzed 08/24/22 23:07 08/24/22 23:07 Analyzed 08/24/22 23:07	Dil Fac

Client Sample ID: SW-55 (4.5-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00197	U	0.00197		mg/Kg		08/30/22 12:29	09/01/22 06:00	1
Toluene	<0.00197	U	0.00197		mg/Kg		08/30/22 12:29	09/01/22 06:00	1
Ethylbenzene	<0.00197	U	0.00197		mg/Kg		08/30/22 12:29	09/01/22 06:00	1
m-Xylene & p-Xylene	<0.00394	U	0.00394		mg/Kg		08/30/22 12:29	09/01/22 06:00	1
o-Xylene	<0.00197	U	0.00197		mg/Kg		08/30/22 12:29	09/01/22 06:00	1
Xylenes, Total	<0.00394	U	0.00394		mg/Kg		08/30/22 12:29	09/01/22 06:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/30/22 12:29	09/01/22 06:00	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2784-42

Lab Sample ID: 890-2784-42

Lab Sample ID: 890-2784-43

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-55 (4.5-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 4.5 - 8

Method: 8021B	- Volatile Organi	: Compounds	(GC) (Continued)

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100	70 - 130	08/30/22 12:29	09/01/22 06:00	1

Mathod:	Total RTFY	- Total BTEX	Calculation
mictilou.	TOTAL DIEN	- IUIUI DI LA	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00394	U	0.00394		mg/Kg		_	09/01/22 12:44	1

l .		
Mothod: 904E NM Dia	sel Range Organics (DRO) (GC)	١
INICITIOU. OUTS ININI - DIC	sei Kange Organics (DKO) (GC)	,

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/K			08/23/22 11:36	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/23/22 10:46	08/24/22 23:29	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/23/22 10:46	08/24/22 23:29	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/23/22 10:46	08/24/22 23:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130	08/23/22 10:46	08/24/22 23:29	1
o-Terphenyl	76		70 - 130	08/23/22 10:46	08/24/22 23:29	1

Method: 300.0 - Anions, lor	n Chromatography - Soluble

Analyte	Result Qual	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1730	25.2	mg/Kg			08/29/22 16:23	5

Client Sample ID: SW-56 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 4.5

Method: 8021B - Volatile Organic Compounds (GC)

mountain colling and and and and		(/							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 06:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 06:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 06:20	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 12:29	09/01/22 06:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 06:20	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 12:29	09/01/22 06:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				08/30/22 12:29	09/01/22 06:20	1
1,4-Difluorobenzene (Surr)	102		70 - 130				08/30/22 12:29	09/01/22 06:20	1

Mothod:	Total	DTEV	Total	DTEV	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/01/22 12:44	1

	Method: 8015 NM - Diesel	Range Organics (DRO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organics (Dito	, (00)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			08/23/22 11:36	1

Lab Sample ID: 890-2784-43

Lab Sample ID: 890-2784-44

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-56 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/24/22 23:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/24/22 23:51	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/24/22 23:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130				08/23/22 10:46	08/24/22 23:51	1
o-Terphenyl	88		70 - 130				08/23/22 10:46	08/24/22 23:51	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SW-57 (6-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 06:40	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 06:40	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 06:40	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:29	09/01/22 06:40	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 06:40	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:29	09/01/22 06:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				08/30/22 12:29	09/01/22 06:40	1
1,4-Difluorobenzene (Surr)	104		70 - 130				08/30/22 12:29	09/01/22 06:40	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/25/22 00:12	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/25/22 00:12	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/25/22 00:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				08/23/22 10:46	08/25/22 00:12	1
o-Terphenyl	100		70 - 130				08/23/22 10:46	08/25/22 00:12	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

Client Sample ID: SW-57 (6-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Lab Sample ID: 890-2784-44

Matrix: Solid

	Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_(Chloride	65.5		5.00		mg/Kg			08/29/22 16:39	1

Client Sample ID: SW-58 (6-8') Lab Sample ID: 890-2784-45 **Matrix: Solid**

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0100	U	0.0100		mg/Kg		08/30/22 12:29	09/01/22 09:42	5
Toluene	<0.0100	U	0.0100		mg/Kg		08/30/22 12:29	09/01/22 09:42	5
Ethylbenzene	<0.0100	U	0.0100		mg/Kg		08/30/22 12:29	09/01/22 09:42	5
m-Xylene & p-Xylene	<0.0200	U	0.0200		mg/Kg		08/30/22 12:29	09/01/22 09:42	5
o-Xylene	<0.0100	U	0.0100		mg/Kg		08/30/22 12:29	09/01/22 09:42	5
Xylenes, Total	<0.0200	U	0.0200		mg/Kg		08/30/22 12:29	09/01/22 09:42	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	45	S1-	70 - 130				08/30/22 12:29	09/01/22 09:42	5
1,4-Difluorobenzene (Surr)	127		70 - 130				08/30/22 12:29	09/01/22 09:42	5
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Iotal BTEX	<0.0200	U	0.0200		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range (Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	8970		49.8		mg/Kg			08/23/22 11:36	1
Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		08/23/22 10:46	08/25/22 00:33	1

Gasoline Range Organics	<49.8 U	49.8	mg/Kg	08/23/22 10:46	08/25/22 00:33	1
(GRO)-C6-C10			3 3			
Diesel Range Organics (Over	7350	49.8	mg/Kg	08/23/22 10:46	08/25/22 00:33	1
C10-C28)						
Oll Range Organics (Over	1620	49.8	mg/Kg	08/23/22 10:46	08/25/22 00:33	1
C28-C36)						
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	93	70 - 130		08/23/22 10:46	08/25/22 00:33	1
o-Terphenyl	96	70 - 130		08/23/22 10:46	08/25/22 00:33	1

Method: 300.0 - Anions, Ion Chrom	natography -	Soluble								
Analyte	Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fac
Chloride	202		4.99		mg/Kg				08/29/22 17:03	1

Lab Sample ID: 890-2784-46

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-59 (6-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 6 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:01	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:01	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:01	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:29	09/01/22 07:01	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:01	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:29	09/01/22 07:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				08/30/22 12:29	09/01/22 07:01	1
1,4-Difluorobenzene (Surr)	99		70 - 130				08/30/22 12:29	09/01/22 07:01	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			09/01/22 12:44	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
					-				
Total TPH	<50.0	U	50.0		mg/Kg		·	08/23/22 11:36	
Total TPH : : Method: 8015B NM - Diesel Ran			50.0		mg/Kg	_			
• •	ge Organics (D		50.0 RL	MDL		D	Prepared		1
: Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC) Qualifier		MDL		<u>D</u>	Prepared 08/23/22 10:46	08/23/22 11:36	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D Result	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	<u>.</u>	08/23/22 11:36 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	08/23/22 10:46	08/23/22 11:36 Analyzed 08/25/22 00:54	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/23/22 10:46 08/23/22 10:46	08/23/22 11:36 Analyzed 08/25/22 00:54 08/25/22 00:54	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/23/22 10:46 08/23/22 10:46 08/23/22 10:46	08/23/22 11:36 Analyzed 08/25/22 00:54 08/25/22 00:54	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/23/22 10:46 08/23/22 10:46 08/23/22 10:46 Prepared	08/23/22 11:36 Analyzed 08/25/22 00:54 08/25/22 00:54 08/25/22 00:54 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <50.0 <50.0 <50.0 <70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/23/22 10:46 08/23/22 10:46 08/23/22 10:46 Prepared 08/23/22 10:46	08/23/22 11:36 Analyzed 08/25/22 00:54 08/25/22 00:54 Analyzed 08/25/22 00:54	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <50.0 <50.0 <50.0 **Recovery 114 115 comatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	D	08/23/22 10:46 08/23/22 10:46 08/23/22 10:46 Prepared 08/23/22 10:46	08/23/22 11:36 Analyzed 08/25/22 00:54 08/25/22 00:54 Analyzed 08/25/22 00:54	Dil Fac

Client Sample ID: SW-60 (0-13')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 0 - 13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:21	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:21	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:21	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:29	09/01/22 07:21	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 07:21	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:29	09/01/22 07:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				08/30/22 12:29	09/01/22 07:21	

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2784-47

Lab Sample ID: 890-2784-47

Lab Sample ID: 890-2784-48

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-60 (0-13')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 13

Method: 8021B - Volatile Organic Compound	s (GC) (Continued)
---	--------------------

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	99	70 - 130	08/30/22 12:29	09/01/22 07:21	1

Mathod:	Total RTFY	- Total BTEX	Calculation
mictilou.	TOTAL DIEN	- IUIUI DI LA	Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402 U	0.00402	ma/Ka			09/01/22 12:44	1

Method: 8015 NM - Diesel	Range Organics (DRO) (GO	2)

Analyte	Result Qualifi	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			08/23/22 11:36	1

Method: 8015B	NM - Diesel	Range Ord	anics	(DRO)	(GC)
motilioa. oo lob	THE DIGGGE	Trainge Oit	garnos	(5.10)	100)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/25/22 01:16	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/25/22 01:16	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/23/22 10:46	08/25/22 01:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Pro	repared	Analyzed	Dil Fac
1-Chlorooctane	87		70 - 130	08/23	3/22 10:46	08/25/22 01:16	1
o-Terphenyl	91		70 - 130	08/23	3/22 10:46	08/25/22 01:16	1
_							

Method: 300.0 - Anions, Ion C	Chromatography - Soluble

Analyte		alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2390	24.9	mg/Kg			08/29/22 17:32	5

Client Sample ID: SW-61 (8-13')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00 Sample Depth: 8 - 13

Methods 9024B Voletile Organia Compounds (CC)

A I 4 -	D14	O1161	D.	MDI	1114	_	D	A II	D:: F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 07:42	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 07:42	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 07:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:29	09/01/22 07:42	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 07:42	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:29	09/01/22 07:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				08/30/22 12:29	09/01/22 07:42	1
1,4-Difluorobenzene (Surr)	100		70 - 130				08/30/22 12:29	09/01/22 07:42	1

Mothod:	Total RT	Y - Total I	RTEY Ca	lculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTFX	<0.00398	U	0.00398		ma/Ka			09/01/22 12:44	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	76.1	50.0	mg/Kg			08/23/22 11:36	1

Eurofins Carlsbad

2

3

7

_

10

12

13

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

Client Sample ID: SW-61 (8-13')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8 - 13

Lab Sample ID: 890-2784-48

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1	50.0		mg/Kg		08/22/22 16:29	08/23/22 20:43	1
Diesel Range Organics (Over C10-C28)	76.1		50.0		mg/Kg		08/22/22 16:29	08/23/22 20:43	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:29	08/23/22 20:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				08/22/22 16:29	08/23/22 20:43	1
o-Terphenyl	88		70 - 130				08/22/22 16:29	08/23/22 20:43	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3730		49.8		mg/Kg			08/29/22 17:39	10

Client Sample ID: SW-62 (8-13')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8 - 13

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2784-49

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 08/30/22 12:29 09/01/22 08:02 mg/Kg Toluene <0.00200 U 0.00200 08/30/22 12:29 09/01/22 08:02 mg/Kg Ethylbenzene <0.00200 U 0.00200 08/30/22 12:29 09/01/22 08:02 mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 08/30/22 12:29 09/01/22 08:02 mg/Kg 0.00200 08/30/22 12:29 09/01/22 08:02 o-Xylene <0.00200 U mg/Kg Xylenes, Total <0.00400 U 0.00400 mg/Kg 08/30/22 12:29 09/01/22 08:02 %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 89 70 - 130 08/30/22 12:29 09/01/22 08:02 1,4-Difluorobenzene (Surr) 103 70 - 130 08/30/22 12:29 09/01/22 08:02 **Method: Total BTEX - Total BTEX Calculation** Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00400 U 0.00400 09/01/22 12:44 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 49.9 08/23/22 11:36 **Total TPH** 1570 mg/Kg Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <49.9 U *1 49.9 mg/Kg 08/22/22 16:29 08/23/22 22:50 (GRO)-C6-C10 08/23/22 22:50 **Diesel Range Organics (Over** 1570 49.9 mg/Kg 08/22/22 16:29 C10-C28) 08/22/22 16:29 08/23/22 22:50 Oll Range Organics (Over C28-C36) <49 9 LI 49 9 mg/Kg %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 70 - 130 08/22/22 16:29 08/23/22 22:50 1-Chlorooctane 97

Eurofins Carlsbad

08/23/22 22:50

08/22/22 16:29

70 - 130

92

o-Terphenyl

Client Sample ID: SW-62 (8-13')

Client Sample ID: SW-63 (8-13')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8 - 13

Method: 300.0 - Anions, Ion Chromatography - Soluble

Method: 8021B - Volatile Organic Compounds (GC)

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

RL

RL

0.00202

5.01

MDL

Unit

MDL Unit

mg/Kg

mg/Kg

D

D

Prepared

Prepared

08/30/22 12:29

Client: Tetra Tech, Inc.

Sample Depth: 8 - 13

Analyte

Chloride

Analyte

Benzene

Analyte

Chloride

Project/Site: Kaiser SWD

REMOVED FROM ANALYSIS TABLE

Result Qualifier

Result Qualifier

Result Qualifier

561

<0.00202 U

825

Lab Sample ID: 890-2784-49

Analyzed 08/29/22 17:46

Lab Sample ID: 890-2784-50

Analyzed

09/01/22 08:22

Matrix: Solid

Matrix: Solid

Job ID: 890-2784-1

SDG: Lea County NM

Dil Fac

Dil Fac

Toluene <0.00202 U 0.00202 08/30/22 12:29 09/01/22 08:22 mg/Kg <0.00202 U Ethylbenzene 0.00202 mg/Kg 08/30/22 12:29 09/01/22 08:22 m-Xylene & p-Xylene <0.00403 0.00403 mg/Kg 08/30/22 12:29 09/01/22 08:22 o-Xylene <0.00202 U 0.00202 08/30/22 12:29 09/01/22 08:22 mg/Kg Xylenes, Total <0.00403 U 0.00403 mg/Kg 08/30/22 12:29 09/01/22 08:22 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 08/30/22 12:29 4-Bromofluorobenzene (Surr) 102 09/01/22 08:22 1,4-Difluorobenzene (Surr) 101 70 - 130 08/30/22 12:29 09/01/22 08:22 **Method: Total BTEX - Total BTEX Calculation** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00403 0.00403 09/01/22 12:44 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) MDL Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <49.9 U 49.9 08/23/22 11:36 mg/Kg Method: 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RLMDL D Unit Prepared Analyzed Dil Fac <49.9 U *1 Gasoline Range Organics 49.9 08/22/22 16:29 08/23/22 21:04 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 49.9 mg/Kg 08/22/22 16:29 08/23/22 21:04 C10-C28) OII Range Organics (Over C28-C36) <49.9 U 49 9 mg/Kg 08/22/22 16:29 08/23/22 21:04 %Recovery Qualifier Analyzed Dil Fac Surrogate Limits Prepared 1-Chlorooctane 97 70 - 130 08/22/22 16:29 08/23/22 21:04 89 08/22/22 16:29 08/23/22 21:04 o-Terphenyl 70 - 130

Analyzed

08/29/22 17:54

RL

5.00

MDL Unit

mg/Kg

D

Prepared

Dil Fac

Method: 300.0 - Anions, Ion Chromatography - Soluble

Lab Sample ID: 890-2784-51

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-64 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8 - 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 11:32	1
Toluene	< 0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 11:32	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 11:32	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 12:29	09/01/22 11:32	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		08/30/22 12:29	09/01/22 11:32	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 12:29	09/01/22 11:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				08/30/22 12:29	09/01/22 11:32	1
1,4-Difluorobenzene (Surr)	108		70 - 130				08/30/22 12:29	09/01/22 11:32	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			09/01/22 12:44	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
_			RI	MDI	Unit	n	Prepared	Analyzed	Dil Fac
_		Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 11:36	
Analyte	Result	Qualifier		MDL		<u>D</u>	Prepared		
Analyte Total TPH		Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte	Result <50.0 ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg	<u>D</u>	Prepared	08/23/22 11:36 Analyzed	1
Analyte Total TPH Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics	Result <50.0 ge Organics (Diameter)	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg			08/23/22 11:36	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 ge Organics (Dige Result	Qualifier U RO) (GC) Qualifier U *1	50.0		mg/Kg		Prepared	08/23/22 11:36 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U RO) (GC) Qualifier U *1	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 23:11	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0	Qualifier U RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 23:11 08/23/22 23:11	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 23:11 08/23/22 23:11 08/23/22 23:11	Dil Face 1 1 Dil Face
Analyte Total TPH Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0	Qualifier U RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29 08/22/22 16:29 Prepared	08/23/22 11:36 Analyzed 08/23/22 23:11 08/23/22 23:11 08/23/22 23:11 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U RO) (GC) Qualifier U*1 U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29 08/22/22 16:29 Prepared 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 23:11 08/23/22 23:11 Analyzed 08/23/22 23:11	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U RO) (GC) Qualifier U*1 U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29 08/22/22 16:29 Prepared 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 23:11 08/23/22 23:11 Analyzed 08/23/22 23:11	Dil Fac

Client Sample ID: SW-65 (8-10')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8 - 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 11:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 11:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 11:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:29	09/01/22 11:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:29	09/01/22 11:52	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:29	09/01/22 11:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				08/30/22 12:29	09/01/22 11:52	1

Eurofins Carlsbad

Lab Sample ID: 890-2784-52

Matrix: Solid

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-2784-1 SDG: Lea County NM

Lab Sample ID: 890-2784-52

Lab Sample ID: 890-2784-53

Matrix: Solid

Client Sample ID: SW-65 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8 - 10

Method: 8021B	- Volatile Organic	Compounds (GC	(Continued)

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	105	70 - 130	08/30/22 12:29	09/01/22 11:52	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Uni	t D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/	/Kg		09/01/22 12:44	1

Mothod: 8015 NM -	Diosal Panga	Organice	(DRO) (GC)

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			08/23/22 11:36	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		08/22/22 16:29	08/23/22 23:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 16:29	08/23/22 23:32	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 16:29	08/23/22 23:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surroyate	Mecovery Quantilei	Lillins	riepaieu	Allalyzeu	וווט
1-Chlorooctane	96	70 - 130	08/22/22 16:29	08/23/22 23:32	
o-Terphenyl	86	70 - 130	08/22/22 16:29	08/23/22 23:32	
_					

 $\label{eq:method:method:300.0 - Anions, lon Chromatography - Soluble} \\$

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	765	4.95	mg/Kg			08/29/22 18:08	1

Client Sample ID: SW-66 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8 - 10

Method: 8021B - Volatile Organic Co	mnolinas ((=(.)

Wethod: 8021B - Volatile Orga	inic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:13	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:13	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:13	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/30/22 12:29	09/01/22 12:13	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:13	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/30/22 12:29	09/01/22 12:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/30/22 12:29	09/01/22 12:13	1
1,4-Difluorobenzene (Surr)	107		70 - 130				08/30/22 12:29	09/01/22 12:13	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00396	U	0.00396		ng/Kg			09/01/22 12:44	1

	Method: 8015 NM - Diesel	Range Organics (DRO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organics (Dito	, (00)

Analyte	•	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Total TPH		<50.0	U	50.0	n	ng/Kg			08/23/22 11:36	1

Eurofins Carlsbad

2

3

7

9

11

13

Lab Sample ID: 890-2784-53

Lab Sample ID: 890-2784-54

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-66 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8 - 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0		mg/Kg		08/22/22 16:29	08/23/22 23:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 16:29	08/23/22 23:53	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:29	08/23/22 23:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				08/22/22 16:29	08/23/22 23:53	1
o-Terphenyl	96		70 - 130				08/22/22 16:29	08/23/22 23:53	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
	Popult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier			•	_		,u.,u	

Client Sample ID: SW-67 (8-10')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Sample Depth: 8 - 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 12:33	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 12:33	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 12:33	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		08/30/22 12:29	09/01/22 12:33	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 12:33	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		08/30/22 12:29	09/01/22 12:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				08/30/22 12:29	09/01/22 12:33	1
1,4-Difluorobenzene (Surr)	105		70 - 130				08/30/22 12:29	09/01/22 12:33	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			09/01/22 12:44	1
-									
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Method: 8015 NM - Diesel Range Analyte		O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed 08/23/22 11:36	Dil Fac
Analyte	Result < 50.0	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH	Result <50.0	Qualifier U		MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <50.0	Qualifier U RO) (GC) Qualifier	50.0		mg/Kg			08/23/22 11:36	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result <50.0 ge Organics (D Result	Qualifier U RO) (GC) Qualifier U *1	50.0		mg/Kg		Prepared	08/23/22 11:36 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 ge Organics (D) Result <50.0	Qualifier U RO) (GC) Qualifier U *1	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/22/22 16:29	08/23/22 11:36 Analyzed 08/24/22 00:14	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29	08/23/22 11:36 Analyzed 08/24/22 00:14 08/24/22 00:14	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29	08/23/22 11:36 Analyzed 08/24/22 00:14 08/24/22 00:14	

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

2

<u>ئ</u>

5

7

9

40

13

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

Client Sample ID: SW-67 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 8 - 10

Lab Sample ID: 890-2784-54

Matrix: Solid

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	215		5.04		mg/Kg			08/29/22 09:12	1

Client Sample ID: SW-68 (0-6') Lab Sample ID: 890-2784-55 **Matrix: Solid**

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:53	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:53	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:53	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		08/30/22 12:29	09/01/22 12:53	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/30/22 12:29	09/01/22 12:53	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		08/30/22 12:29	09/01/22 12:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/30/22 12:29	09/01/22 12:53	1
1,4-Difluorobenzene (Surr)	108		70 - 130				08/30/22 12:29	09/01/22 12:53	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Total BTEX	<0.00397	U	0.00397		mg/Kg			09/01/22 12:44	1
- Method: 8015 NM - Diesel Range (Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			08/23/22 11:36	1
– Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1	49.9		mg/Kg		08/22/22 16:29	08/24/22 00:36	
									1
(GRO)-C6-C10					0 0				1
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/22/22 16:29	08/24/22 00:36	1
` '	<49.9	U	49.9				08/22/22 16:29		1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130	08/22/22 16:29	08/24/22 00:36	1
o-Terphenyl	102		70 - 130	08/22/22 16:29	08/24/22 00:36	1

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2210		24.9		mg/Kg			08/29/22 09:40	5

Lab Sample ID: 890-2784-56

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-69 (0-6')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 13:14	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 13:14	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 13:14	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/30/22 12:29	09/01/22 13:14	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/30/22 12:29	09/01/22 13:14	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/30/22 12:29	09/01/22 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				08/30/22 12:29	09/01/22 13:14	1
1,4-Difluorobenzene (Surr)	101		70 - 130				08/30/22 12:29	09/01/22 13:14	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/01/22 12:44	1
: Method: 8015 NM - Diesel Range	•	, , ,	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
•	•	O) (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
: Method: 8015 NM - Diesel Range	•	, , ,	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 11:36	
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang	Result 1890 ge Organics (Di	Qualifier RO) (GC)	50.0		mg/Kg			08/23/22 11:36	1
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result 1890 ge Organics (Dige Result	Qualifier RO) (GC) Qualifier	50.0	MDL	mg/Kg	<u>D</u>	Prepared	08/23/22 11:36 Analyzed	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang	Result 1890 ge Organics (Di	Qualifier RO) (GC) Qualifier	50.0		mg/Kg			08/23/22 11:36	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 1890 ge Organics (Dige Result	Qualifier RO) (GC) Qualifier	50.0		mg/Kg		Prepared	08/23/22 11:36 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	Result 1890 ge Organics (Dige Result < 50.0	Qualifier RO) (GC) Qualifier U*1	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 22:07	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 1890 Ge Organics (Dige Result < 50.0 1890	Qualifier RO) (GC) Qualifier U*1	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 22:07 08/23/22 22:07	1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 1890	Qualifier RO) (GC) Qualifier U*1	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 22:07 08/23/22 22:07	Dil Fac 1 1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 1890	Qualifier RO) (GC) Qualifier U*1	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29 08/22/22 16:29 Prepared	08/23/22 11:36 Analyzed 08/23/22 22:07 08/23/22 22:07 08/23/22 22:07 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 1890	Qualifier RO) (GC) Qualifier U*1 U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29 08/22/22 16:29 Prepared 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 22:07 08/23/22 22:07 08/23/22 22:07 Analyzed 08/23/22 22:07	Dil Fac 1 1 Dil Fac 1 Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result 1890	Qualifier RO) (GC) Qualifier U*1 U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 08/22/22 16:29 08/22/22 16:29 08/22/22 16:29 Prepared 08/22/22 16:29	08/23/22 11:36 Analyzed 08/23/22 22:07 08/23/22 22:07 08/23/22 22:07 Analyzed 08/23/22 22:07	Dil Fac Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: SW-70 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0400	U	0.0400		mg/Kg		08/30/22 12:29	09/01/22 14:35	20
Toluene	<0.0400	U	0.0400		mg/Kg		08/30/22 12:29	09/01/22 14:35	20
Ethylbenzene	<0.0400	U	0.0400		mg/Kg		08/30/22 12:29	09/01/22 14:35	20
m-Xylene & p-Xylene	<0.0800	U	0.0800		mg/Kg		08/30/22 12:29	09/01/22 14:35	20
o-Xylene	<0.0400	U	0.0400		mg/Kg		08/30/22 12:29	09/01/22 14:35	20
Xylenes, Total	<0.0800	U	0.0800		mg/Kg		08/30/22 12:29	09/01/22 14:35	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2784-57

70 - 130

4-Bromofluorobenzene (Surr)

Client: Tetra Tech, Inc.

Job ID: 890-2784-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-70 (0-4.5')

Lab Sample ID: 890-2784-57

Date Collected: 08/18/22 00:00
Date Received: 08/19/22 08:00

Sample Depth: 0 - 4.5

Method: 8021B - Volatile Organic Compounds	(GC) (Continued)
--	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	92	70 - 130	08/30/22 12:29	09/01/22 14:35	20

Method:	Total B1	ΓEX - Tota	I BTEX	Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0800 U	0.0800	mg/Kg			09/01/22 12:44	1

Method: 8015 NM - Diesel Range Organics (DRO) (G	C
Method: 0013 NM - Dieser Range Organics (DIXO) (C	, ,

Analyte	Result	Qualifier	RL	MDL Unit	t D	Pre	epared	Analyzed	Dil Fac
Total TPH	1770		49.8	mg/	Kg			08/23/22 11:36	1

Method: 8015B	NM Discol	Dange Ore	aaniee (DD()) (CC)
MICHIOU. OU IOD	INIVI - DIESEI	Rallue Oli	ualiics lunc	JI (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U *1	49.8		mg/Kg		08/22/22 16:29	08/23/22 22:29	1
Diesel Range Organics (Over C10-C28)	1770		49.8		mg/Kg		08/22/22 16:29	08/23/22 22:29	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/22/22 16:29	08/23/22 22:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qua	lifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	95	70 - 130	08/22/22 16:29	08/23/22 22:29	1
o-Terphenyl	89	70 - 130	08/22/22 16:29	08/23/22 22:29	1

Method: 300	.0 - Anions, Ion	Chromatograph	y - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Chloride	352		4.97		mg/Kg			08/29/22 09:58	1

Client Sample ID: SW-71 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 4.5

Method: 8021B - Volatile Organic Compounds (GC)

Wethou. 002 ID - Volatile Orga	inc compounds	(00)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 13:34	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 13:34	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 13:34	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/30/22 12:29	09/01/22 13:34	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/30/22 12:29	09/01/22 13:34	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/30/22 12:29	09/01/22 13:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/30/22 12:29	09/01/22 13:34	1
1,4-Difluorobenzene (Surr)	110		70 - 130				08/30/22 12:29	09/01/22 13:34	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			09/01/22 12:44	1

	Method: 8015 NM - Diesel	Range Organics (DRO) (GC)
ı	Michiga. 00 to Min - Diese	i italige Organics (Dito	, (00)

Analyte	•	•	Result	Qualifier	RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
Total TPH			<49.9	U	49.9	mg	a/Ka			08/23/22 11:36	1

Eurofins Carlsbad

Lab Sample ID: 890-2784-58

Matrix: Solid

2

3

5

7

9

11

13

Lab Sample ID: 890-2784-58

Analyzed

08/29/22 10:07

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-71 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Sample Depth: 0 - 4.5

Analyte

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9		mg/Kg		08/22/22 16:29	08/24/22 00:57	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		08/22/22 16:29	08/24/22 00:57	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/22/22 16:29	08/24/22 00:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				08/22/22 16:29	08/24/22 00:57	1
o-Terphenyl	98		70 - 130				08/22/22 16:29	08/24/22 00:57	1

RL

24.9

MDL Unit

mg/Kg

D

Prepared

Result Qualifier

1460

5

7

9

10

Dil Fac

5

12

13

14

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid				Prep Type: Total/NA
•				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2784-1	BH-120 (8')	120	96	
890-2784-1 MS	BH-120 (8')	136 S1+	103	
890-2784-1 MSD	BH-120 (8')	136 S1+	106	
890-2784-2	BH-124 (8')	143 S1+	85	
890-2784-3	BH-132 (8')	115	91	
890-2784-4	BH-159 (8')	107	80	
890-2784-5	BH-162 (8')	121	89	
890-2784-6	BH-164 (8')	114	100	
890-2784-7	BH-166 (8')	115	90	
890-2784-8	BH-167 (8')	106	90	
890-2784-9	BH-168 (5')	120	94	
890-2784-10	BH-169 (5')	128	84	
890-2784-11	BH-170 (5')	130	87	
890-2784-12	BH-171 (5')	124	84	
890-2784-13	BH-172 (6')	124	80	
890-2784-14	BH-173 (6')	123	90	
390-2784-15	BH-174 (6')	130	81	
890-2784-16	BH-175 (4.5')	113	92	
390-2784-17	BH-176 (4.5')	116	91	
890-2784-18	BH-177 (4.5')	117	93	
390-2784-19	BH-178 (4.5')	117	88	
390-2784-20	BH-179 (4.5')	119	90	
390-2784-21	BH-180 (4.5')	94	106	
890-2784-21 MS	BH-180 (4.5')	97	105	
390-2784-21 MSD	BH-180 (4.5')	98	103	
390-2784-22	BH-181 (4.5')	90	105	
390-2784-23	BH-182 (4.5')	93	108	
390-2784-24	BH-183 (4.5')	91	108	
890-2784-25	BH-184 (4.5')	93	109	
890-2784-26	BH-185 (4.5')	95	110	
890-2784-27	BH-186 (4.5')	91	108	
390-2784-28	BH-187 (4.5')	93	107	
890-2784-29	BH-188 (4.5')	96	106	
390-2784-30	BH-189 (4.5')		109	
390-2784-31	SW-38 (4.5-13')	100	87	
390-2784-32	SW-42 (4.5-8')	89	106	
890-2784-33	SW-43 (6-8')	95	108	
890-2784-34	· ·	95		
	SW-44 (4.5-8')	90	97	
890-2784-35	SW-45 (0-8')		97	
390-2784-36	SW-46 (0-5')	103	99	
890-2784-37	SW-47 (0-5')	93	92	
890-2784-38	SW-48 (6-8')	99	97	
390-2784-39	SW-49 (4.5-6')	99	104	
890-2784-40	SW-53 (0-8')	95	100	
390-2784-41	SW-54 (0-4.5')	94	101	
890-2784-41 MS	SW-54 (0-4.5')	100	103	
890-2784-41 MSD	SW-54 (0-4.5')	94	98	
890-2784-42	SW-55 (4.5-8')	92	100	
890-2784-43	SW-56 (0-4.5')	91	102	

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2784-44	SW-57 (6-8')	88	104	
890-2784-45	SW-58 (6-8')	45 S1-	127	
890-2784-46	SW-59 (6-8')	91	99	
890-2784-47	SW-60 (0-13')	94	99	
890-2784-48	SW-61 (8-13')	94	100	
890-2784-49	SW-62 (8-13')	89	103	
890-2784-50	SW-63 (8-13')	102	101	
890-2784-51	SW-64 (8-10')	89	108	
890-2784-52	SW-65 (8-10')	94	105	
890-2784-53	SW-66 (8-10')	93	107	
890-2784-54	SW-67 (8-10')	91	105	
890-2784-55	SW-68 (0-6')	92	108	
890-2784-56	SW-69 (0-6')	96	101	
890-2784-57	SW-70 (0-4.5')	94	92	
890-2784-58	SW-71 (0-4.5')	93	110	
LCS 880-33358/1-A	Lab Control Sample	115	107	
LCS 880-33361/1-A	Lab Control Sample	92	103	
LCS 880-33362/1-A	Lab Control Sample	93	95	
LCSD 880-33358/2-A	Lab Control Sample Dup	111	107	
LCSD 880-33361/2-A	Lab Control Sample Dup	82	105	
LCSD 880-33362/2-A	Lab Control Sample Dup	90	98	
MB 880-33358/5-A	Method Blank	103	93	
MB 880-33361/5-A	Method Blank	79	118	
MB 880-33362/5-A	Method Blank	82	107	
MB 880-33411/8	Method Blank	96	94	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-18428-A-1-C MS	Matrix Spike	96	85	
880-18428-A-1-D MSD	Matrix Spike Duplicate	84	75	
890-2784-1	BH-120 (8')	64 S1-	76	
890-2784-1 MS	BH-120 (8')	51 S1-	55 S1-	
890-2784-1 MSD	BH-120 (8')	52 S1-	56 S1-	
890-2784-2	BH-124 (8')	58 S1-	71	
890-2784-3	BH-132 (8')	67 S1-	80	
890-2784-4	BH-159 (8')	69 S1-	82	
890-2784-5	BH-162 (8')	68 S1-	82	
890-2784-6	BH-164 (8')	62 S1-	76	
890-2784-7	BH-166 (8')	59 S1-	71	
890-2784-8	BH-167 (8')	61 S1-	70	
890-2784-9	BH-168 (5')	60 S1-	71	
890-2784-10	BH-169 (5')	56 S1-	69 S1-	
890-2784-11	BH-170 (5')	57 S1-	66 S1-	

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Prop Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	ОТРН1	referrit Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2784-12	BH-171 (5')	70	84	
890-2784-13	BH-172 (6')	70	84	
890-2784-14	BH-173 (6')	63 S1-	77	
890-2784-15	BH-174 (6')	64 S1-	76	
890-2784-16	BH-175 (4.5')	59 S1-	71	
890-2784-17	BH-176 (4.5')	58 S1-	69 S1-	
890-2784-18	BH-177 (4.5')	59 S1-	73	
890-2784-19	BH-178 (4.5')	60 S1-	72	
890-2784-20	BH-179 (4.5')	60 S1-	75	
890-2784-21	BH-180 (4.5')	117	114	
890-2784-21 MS	BH-180 (4.5')	109	89	
890-2784-21 MSD	BH-180 (4.5')	109	88	
890-2784-22	BH-181 (4.5')	114	110	
890-2784-23	BH-182 (4.5')	97	97	
890-2784-24	BH-183 (4.5')	93	92	
890-2784-25	BH-184 (4.5')	111	109	
890-2784-26	BH-185 (4.5')	116	113	
890-2784-27	BH-186 (4.5')	92	91	
890-2784-28	BH-187 (4.5')	97	97	
890-2784-29	BH-188 (4.5')	98	97	
890-2784-30	BH-189 (4.5')	96 95	93	
890-2784-31				
	SW-38 (4.5-13')	118	116	
890-2784-32	SW-42 (4.5-8')	119	113	
890-2784-33	SW-43 (6-8')	99	100	
890-2784-34	SW-44 (4.5-8')	115	113	
890-2784-35	SW-45 (0-8')	105	99	
890-2784-36	SW-46 (0-5')	115	113	
890-2784-37	SW-47 (0-5')	116	112	
890-2784-38	SW-48 (6-8')	99	98	
890-2784-39	SW-49 (4.5-6')	101	98	
890-2784-40	SW-53 (0-8')	109	106	
890-2784-41	SW-54 (0-4.5')	91	95	
890-2784-42	SW-55 (4.5-8')	74	76	
890-2784-43	SW-56 (0-4.5')	82	88	
890-2784-44	SW-57 (6-8')	93	100	
890-2784-45	SW-58 (6-8')	93	96	
890-2784-46	SW-59 (6-8')	114	115	
890-2784-47	SW-60 (0-13')	87	91	
890-2784-48	SW-61 (8-13')	97	88	
890-2784-49	SW-62 (8-13')	97	92	
890-2784-50	SW-63 (8-13')	97	89	
890-2784-51	SW-64 (8-10')	104	99	
890-2784-52	SW-65 (8-10')	96	86	
890-2784-53	SW-66 (8-10')	106	96	
890-2784-54	SW-67 (8-10')	99	89	
890-2784-55	SW-68 (0-6')	112	102	
890-2784-56	SW-69 (0-6')	104	97	
890-2784-57	SW-70 (0-4.5')	95	89	
890-2784-58	SW-71 (0-4.5')	110	98	
890-2786-A-2-C MS	Matrix Spike	96	74	

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2786-A-2-D MSD	Matrix Spike Duplicate	89	74	
LCS 880-32669/2-A	Lab Control Sample	73	84	
LCS 880-32713/2-A	Lab Control Sample	516 S1+	484 S1+	
LCS 880-32714/2-A	Lab Control Sample	521 S1+	535 S1+	
LCS 880-32774/2-A	Lab Control Sample	575 S1+	577 S1+	
LCSD 880-32669/3-A	Lab Control Sample Dup	74	86	
LCSD 880-32713/3-A	Lab Control Sample Dup	548 S1+	524 S1+	
LCSD 880-32714/3-A	Lab Control Sample Dup	568 S1+	565 S1+	
LCSD 880-32774/3-A	Lab Control Sample Dup	527 S1+	538 S1+	
MB 880-32669/1-A	Method Blank	64 S1-	79	
MB 880-32713/1-A	Method Blank	98	94	
MB 880-32714/1-A	Method Blank	96	96	
MB 880-32774/1-A	Method Blank	94	94	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Client: Tetra Tech, Inc. Job ID: 890-2784-1 SDG: Lea County NM Project/Site: Kaiser SWD

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-33358/5-A

Matrix: Solid Analysis Batch: 33411 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33358

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	08/31/22 23:38	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	08/31/22 23:38	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	08/31/22 23:38	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:01	08/31/22 23:38	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:01	08/31/22 23:38	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:01	08/31/22 23:38	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepare	ŧd	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130	08/30/22 1	2:01	08/31/22 23:38	1
1,4-Difluorobenzene (Surr)	93		70 - 130	08/30/22 1	2:01	08/31/22 23:38	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-33358/1-A

Matrix: Solid

Analysis Batch: 33411

Prep Type: Total/NA

Prep Batch: 33358

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09998	-	mg/Kg		100	70 - 130	
Toluene	0.100	0.09209		mg/Kg		92	70 - 130	
Ethylbenzene	0.100	0.09252		mg/Kg		93	70 - 130	
m-Xylene & p-Xylene	0.200	0.1909		mg/Kg		95	70 - 130	
o-Xylene	0.100	0.1112		mg/Kg		111	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	115		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: LCSD 880-33358/2-A

Matrix: Solid

Analysis Batch: 33411

Client Sample ID: Lab Control Sample Dup	Client Sam	ple ID: Lab	Control	Sample Dup
--	------------	-------------	---------	------------

Prep Type: Total/NA

Prep Batch: 33358

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.09401		mg/Kg		94	70 - 130	6	35	
Toluene	0.100	0.08558		mg/Kg		86	70 - 130	7	35	
Ethylbenzene	0.100	0.08674		mg/Kg		87	70 - 130	6	35	
m-Xylene & p-Xylene	0.200	0.1790		mg/Kg		90	70 - 130	6	35	
o-Xylene	0.100	0.1032		mg/Kg		103	70 - 130	8	35	

LCSD LCSD

Surrogate	%Recovery Qu	ualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1.4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: 890-2784-1 MS

Matrix: Solid

Analysis Batch: 33411

Client Sample ID: BH-120 (8')

Prep Type: Total/NA

Prep Batch: 33358

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.101	0.09002		mg/Kg		89	70 - 130	
Toluene	< 0.00198	U	0.101	0.08715		mg/Kg		87	70 - 130	

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2784-1 MS

Matrix: Solid

Analysis Batch: 33411

Client Sample ID: BH-120 (8')

Prep Type: Total/NA

Prep Batch: 33358

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00198	U	0.101	0.09489		mg/Kg		94	70 - 130	
m-Xylene & p-Xylene	<0.00397	U	0.201	0.1923		mg/Kg		96	70 - 130	
o-Xylene	<0.00198	U	0.101	0.1183		mg/Kg		118	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Client Sample ID: BH-120 (8')

Prep Type: Total/NA

Prep Batch: 33358

Lab Sample ID: 890-2784-1 MSD **Matrix: Solid**

Analysis Batch: 33411

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00198	U	0.100	0.08882		mg/Kg		89	70 - 130	1	35
Toluene	<0.00198	U	0.100	0.08598		mg/Kg		86	70 - 130	1	35
Ethylbenzene	<0.00198	U	0.100	0.09412		mg/Kg		94	70 - 130	1	35
m-Xylene & p-Xylene	<0.00397	U	0.200	0.1897		mg/Kg		95	70 - 130	1	35
o-Xylene	<0.00198	U	0.100	0.1170		mg/Kg		117	70 - 130	1	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: MB 880-33361/5-A

Matrix: Solid

Analysis Batch: 33465

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33361

-	MB	MB
nalyte	Result	Qua

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 17:36	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 17:36	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 17:36	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	08/31/22 17:36	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 12:16	08/31/22 17:36	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 12:16	08/31/22 17:36	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79	70 - 130	08/30/22 12:16	08/31/22 17:36	1
1,4-Difluorobenzene (Surr)	118	70 - 130	08/30/22 12:16	08/31/22 17:36	1

Lab Sample ID: LCS 880-33361/1-A

Matrix: Solid

Analysis Batch: 33465

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33361

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.1051		mg/Kg		105	70 - 130
Toluene	0.100	0.1026		mg/Kg		103	70 - 130
Ethylbenzene	0.100	0.09908		mg/Kg		99	70 - 130
m-Xylene & p-Xylene	0.200	0.1821		mg/Kg		91	70 - 130

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-33361/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 33465** Prep Batch: 33361

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	0.100	0.09507		mg/Kg	_	95	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-33361/2-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 33465

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1086		mg/Kg		109	70 - 130	3	35
Toluene	0.100	0.09563		mg/Kg		96	70 - 130	7	35
Ethylbenzene	0.100	0.08726		mg/Kg		87	70 - 130	13	35
m-Xylene & p-Xylene	0.200	0.1471		mg/Kg		74	70 - 130	21	35
o-Xylene	0.100	0.07842		mg/Kg		78	70 - 130	19	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	82		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 890-2784-21 MS **Client Sample ID: BH-180 (4.5') Matrix: Solid** Prep Type: Total/NA

Prep Batch: 33361 Analysis Batch: 33465

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.1081		mg/Kg		107	70 - 130	
Toluene	<0.00199	U	0.101	0.1066		mg/Kg		106	70 - 130	
Ethylbenzene	<0.00199	U	0.101	0.1017		mg/Kg		101	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.202	0.1863		mg/Kg		92	70 - 130	
o-Xylene	<0.00199	U	0.101	0.09769		mg/Kg		97	70 - 130	
	MS	MS								

	,,,,		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 890-2784-21 MSD Client Sample ID: BH-180 (4.5') Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 33465 Prep Batch: 33361

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.100	0.1083		mg/Kg		108	70 - 130	0	35
Toluene	<0.00199	U	0.100	0.1076		mg/Kg		107	70 - 130	1	35
Ethylbenzene	<0.00199	U	0.100	0.1023		mg/Kg		102	70 - 130	1	35
m-Xylene & p-Xylene	<0.00398	U	0.200	0.1866		mg/Kg		93	70 - 130	0	35
o-Xylene	<0.00199	U	0.100	0.09828		mg/Kg		98	70 - 130	1	35

Eurofins Carlsbad

Prep Batch: 33361

Job ID: 890-2784-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2784-21 MSD

Matrix: Solid

Analysis Batch: 33465

Client Sample ID: BH-180 (4.5')

Prep Type: Total/NA

Prep Batch: 33361

MSD MSD

%Recovery Qualifier Surrogate 4-Bromofluorobenzene (Surr) 98 70 - 130 1,4-Difluorobenzene (Surr) 103 70 - 130

Lab Sample ID: MB 880-33362/5-A

Limits

Matrix: Solid

Analysis Batch: 33465

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 33362

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <0.00200 U 0.00200 08/30/22 12:29 09/01/22 05:11 Benzene mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 08/30/22 12:29 09/01/22 05:11 <0.00200 U 0.00200 08/30/22 12:29 09/01/22 05:11 Ethylbenzene mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 08/30/22 12:29 09/01/22 05:11 o-Xylene <0.00200 U 0.00200 mg/Kg 08/30/22 12:29 09/01/22 05:11 Xylenes, Total <0.00400 U 0.00400 mg/Kg 08/30/22 12:29 09/01/22 05:11

MB MB

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82	70 - 130	08/30/22 12:29	09/01/22 05:11	1
1,4-Difluorobenzene (Surr)	107	70 - 130	08/30/22 12:29	09/01/22 05:11	1

Lab Sample ID: LCS 880-33362/1-A

Matrix: Solid

Analysis Batch: 33465

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33362

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08954	-	mg/Kg		90	70 - 130	
Toluene	0.100	0.09540		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.09384		mg/Kg		94	70 - 130	
m-Xylene & p-Xylene	0.200	0.1720		mg/Kg		86	70 - 130	
o-Xylene	0.100	0.09358		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	93	70 - 130
1,4-Difluorobenzene (Surr)	95	70 - 130

Lab Sample ID: LCSD 880-33362/2-A

Matrix: Solid

Analysis Batch: 33465

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 33362

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08443		mg/Kg		84	70 - 130	6	35
Toluene	0.100	0.08898		mg/Kg		89	70 - 130	7	35
Ethylbenzene	0.100	0.08828		mg/Kg		88	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.1627		mg/Kg		81	70 - 130	6	35
o-Xylene	0.100	0.08712		mg/Kg		87	70 - 130	7	35

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 70 - 130 90

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-33362/2-A

Matrix: Solid

Analysis Batch: 33465

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 33362

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1,4-Difluorobenzene (Surr) 98 70 - 130

Client Sample ID: SW-54 (0-4.5')

Prep Type: Total/NA

Prep Batch: 33362

Lab Sample ID: 890-2784-41 MS

Matrix: Solid

Analysis Batch: 33465

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.101	0.1030		mg/Kg		102	70 - 130	
Toluene	<0.00202	U	0.101	0.09919		mg/Kg		99	70 - 130	
Ethylbenzene	<0.00202	U	0.101	0.09015		mg/Kg		90	70 - 130	
m-Xylene & p-Xylene	<0.00403	U	0.201	0.1615		mg/Kg		80	70 - 130	
o-Xylene	<0.00202	U	0.101	0.08797		mg/Kg		87	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Client Sample ID: SW-54 (0-4.5')

Matrix: Solid

Analysis Batch: 33465

Lab Sample ID: 890-2784-41 MSD

Prep Type: Total/NA Prep Batch: 33362

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00202	U	0.0998	0.09574		mg/Kg		96	70 - 130	7	35
Toluene	<0.00202	U	0.0998	0.09569		mg/Kg		96	70 - 130	4	35
Ethylbenzene	<0.00202	U	0.0998	0.08913		mg/Kg		89	70 - 130	1	35
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1611		mg/Kg		81	70 - 130	0	35
o-Xylene	<0.00202	U	0.0998	0.08747		mg/Kg		88	70 - 130	1	35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	94	70 - 130
1.4-Difluorobenzene (Surr)	98	70 - 130

Lab Sample ID: MB 880-33411/8 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 33411

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg			08/31/22 13:02	1
Toluene	<0.00200	U	0.00200		mg/Kg			08/31/22 13:02	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg			08/31/22 13:02	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg			08/31/22 13:02	1
o-Xylene	<0.00200	U	0.00200		mg/Kg			08/31/22 13:02	1
Xvlenes, Total	< 0.00400	U	0.00400		ma/Ka			08/31/22 13:02	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130		08/31/22 13:02	1
1,4-Difluorobenzene (Surr)	94		70 - 130		08/31/22 13:02	1

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-32669/1-A

Matrix: Solid

Analysis Batch: 32586

Lab Sample ID: LCS 880-32669/2-A

Matrix: Solid

Analysis Batch: 32586

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 32669

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/22/22 21:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/22/22 21:31	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 13:43	08/22/22 21:31	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	64	S1-	70 - 130	08/22/22 13:43	08/22/22 21:31	1
o-Terphenyl	79		70 - 130	08/22/22 13:43	08/22/22 21:31	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 32669

LCS LCS Spike Added Result Qualifier Analyte Unit D %Rec Limits 1000 719.7 72 Gasoline Range Organics mg/Kg 70 - 130 (GRO)-C6-C10 1000 Diesel Range Organics (Over 892.1 mg/Kg 89 70 - 130 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	73		70 - 130
o-Terphenyl	84		70 - 130

Lab Sample ID: LCSD 880-32669/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 32586

Prep Type: Total/NA

Prep Batch: 32669

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	724.7		mg/Kg		72	70 - 130	1	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	912.3		mg/Kg		91	70 - 130	2	20	
C10 C28)										

C10-C28)

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	74	70 - 130
o-Terphenyl	86	70 - 130

Lab Sample ID: 890-2784-1 MS Client Sample ID: BH-120 (8')

Matrix: Solid

Analysis Batch: 32586

Prep Type: Total/NA

Prep Batch: 32669

, ,										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F1	999	522.3	F1	mg/Kg		50	70 - 130	
Diesel Range Organics (Over	<49.9	U F1	999	558.6	F1	mg/Kg		56	70 - 130	

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

MD MD

Lab Sample ID: 890-2784-1 MS Client Sample ID: BH-120 (8')

Matrix: Solid

Analysis Batch: 32586

Prep Type: Total/NA

Prep Batch: 32669

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 51 S1-70 - 130 o-Terphenyl 55 S1-70 - 130

Lab Sample ID: 890-2784-1 MSD Client Sample ID: BH-120 (8')

Matrix: Solid

Analysis Batch: 32586

Prep Type: Total/NA

Prep Batch: 32669

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U F1	998	552.9	F1	mg/Kg		53	70 - 130	6	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U F1	998	578.2	F1	mg/Kg		58	70 - 130	3	20
C10-C28)											

MSD MSD Surrogate %Recovery Qualifier Limits 52 S1-70 - 130 1-Chlorooctane o-Terphenyl 56 S1-70 - 130

Lab Sample ID: MB 880-32713/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 32730

Prep Type: Total/NA

Prep Batch: 32713

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 16:29	08/23/22 15:45	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 16:29	08/23/22 15:45	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:29	08/23/22 15:45	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 98 70 - 130 08/22/22 16:29 08/23/22 15:45 94 70 - 130 08/22/22 16:29 08/23/22 15:45 o-Terphenyl

Lab Sample ID: LCS 880-32713/2-A **Client Sample ID: Lab Control Sample Matrix: Solid**

Analysis Batch: 32730

Prep Type: Total/NA

Prep Batch: 32713

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	819.0		mg/Kg		82	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	925.9		mg/Kg		93	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	516	S1+	70 - 130
o-Terphenyl	484	S1+	70 - 130

Job ID: 890-2784-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-32713/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 32730 Prep Batch: 32713

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	1054	*1	mg/Kg		105	70 - 130	25	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	1016		mg/Kg		102	70 - 130	9	20	
C10 C28)										

C10-C28)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	548	S1+	70 - 130
o-Terphenyl	524	S1+	70 - 130

Lab Sample ID: 890-2786-A-2-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 32730

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U *1	999	770.6		mg/Kg	_	76	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	999	934.1		mg/Kg		91	70 - 130	
C10-C28)										

MS MS %Recovery Qualifier Limits Surrogate 1-Chlorooctane 96 70 - 130 o-Terphenyl 74 70 - 130

Lab Sample ID: 890-2786-A-2-D MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 32730

7 many old Batolii dai da										u	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U *1	998	789.4		mg/Kg		78	70 - 130	2	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	998	953.1		mg/Kg		93	70 - 130	2	20
C10-C28)											

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 89 70 - 130 74 70 - 130 o-Terphenyl

Lab Sample ID: MB 880-32714/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 32806

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 11:55	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 11:55	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/22/22 16:33	08/24/22 11:55	1

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 32713

Prep Batch: 32713

Prep Batch: 32714

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-32714/1-A

Matrix: Solid

Analysis Batch: 32806

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 32714

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	I Dil Fac
	1-Chlorooctane	96		70 - 130	08/22/22 1	6:33 08/24/22 11	:55 1
l	o-Terphenyl	96		70 - 130	08/22/22 1	6:33 08/24/22 11	:55 1

Lab Sample ID: LCS 880-32714/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Prep Type: Total/NA Analysis Batch: 32806 Prep Batch: 32714

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 1006 101 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1017 mg/Kg 102 70 - 130 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	521	S1+	70 - 130
o-Terphenyl	535	S1+	70 - 130

Lab Sample ID: LCSD 880-32714/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 32806 Prep Batch: 32714 Spike LCSD LCSD Added Result Qualifier Unit D %Rec Limits RPD

Analyte Limit Gasoline Range Organics 1000 1165 mg/Kg 116 70 - 130 15 20 (GRO)-C6-C10 1000 Diesel Range Organics (Over 1078 mg/Kg 108 70 - 130 6 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	568	S1+	70 - 130
o-Terphenvl	565	S1+	70 - 130

Lab Sample ID: 890-2784-21 MS Client Sample ID: BH-180 (4.5')

Analysis Batch: 32806

Matrix: Solid Prep Type: Total/NA Prep Batch: 32714

ı		Sample	Sample	Spike	MS	MS				%Rec	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Gasoline Range Organics	<49.9	U	999	1194		mg/Kg		117	70 - 130	
	(GRO)-C6-C10										
	Diesel Range Organics (Over	<49.9	U	999	1048		mg/Kg		105	70 - 130	
ı	040,000)										

C10-C28)

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 - 130
o-Terphenyl	89		70 - 130

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-2784-21 MSD

Matrix: Solid

Analysis Batch: 32806

Client	Sample	ID: B	H-180	(4.5'
	_	_	_	

Prep Type: Total/NA

Prep Batch: 32714

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	998	1033		mg/Kg		101	70 - 130	14	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	998	1050		mg/Kg		105	70 - 130	0	20
C10-C28)											

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 - 130
o-Terphenyl	88		70 - 130

Lab Sample ID: MB 880-32774/1-A

Matrix: Solid

Analysis Batch: 32808

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 32774

мв мв Result Qualifier MDL Unit Analyte RL

Prepared Analyzed Dil Fac <50.0 U 50.0 08/23/22 10:46 08/24/22 16:17 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 08/23/22 10:46 08/24/22 16:17 Oll Range Organics (Over C28-C36) 50.0 <50.0 U mg/Kg 08/23/22 10:46 08/24/22 16:17

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130	08/23/22 10:46	08/24/22 16:17	1
o-Terphenyl	94		70 - 130	08/23/22 10:46	08/24/22 16:17	1

Lab Sample ID: LCS 880-32774/2-A

Matrix: Solid

Analysis Batch: 32808

Client	Sample	ID:	Lab	Control	Sample
--------	--------	-----	-----	---------	--------

Prep Type: Total/NA

Prep Batch: 32774

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	1065		mg/Kg		106	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	1056		mg/Kg		106	70 - 130
C10-C28)							

C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	575	S1+	70 - 130
o-Terphenyl	577	S1+	70 - 130

Lab Sample ID: LCSD 880-32774/3-A

Matrix: Solid

Analysis Batch: 32808

Client San	iple ID: La	ab Contro	I Sample	Dup
-------------------	-------------	-----------	----------	-----

Prep Type: Total/NA

Prep Batch: 32774

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1046		mg/Kg		105	70 - 130	2	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	982.3		mg/Kg		98	70 - 130	7	20
C10-C28)									

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-2784-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-32774/3-A

Matrix: Solid

Analysis Batch: 32808

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 32774

LCSD LCSD %Recovery Qualifier

Surrogate Limits 1-Chlorooctane 527 S1+ 70 - 130 o-Terphenyl 538 S1+ 70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 32774

Lab Sample ID: 880-18428-A-1-C MS

Matrix: Solid

Analysis Batch: 32808

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	999	1043		mg/Kg		101	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	999	972.4		mg/Kg		97	70 - 130	
C10-C28)										

MS MS

Lab Sample ID: 880-18428-A-1-D MSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	96	70 _ 130
o-Terphenyl	85	70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 32774

Sample Sample Spike MSD MSD Analyte Added Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit D Gasoline Range Organics <49.9 U 998 953.0 mg/Kg 92 70 - 130 9 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 998 885.0 mg/Kg 89 70 - 130 20

C10-C28)

Matrix: Solid

Analysis Batch: 32808

MSD MSD Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 84 o-Terphenyl 75 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-32582/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 33167

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			08/29/22 02:22	1

Lab Sample ID: LCS 880-32582/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 33167

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit Limits Chloride 250 248.2 mg/Kg 90 - 110

Job ID: 890-2784-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-32582/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 33167

Spike LCSD LCSD RPD %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 249.1 mg/Kg 100 90 - 110 20

Lab Sample ID: 890-2784-4 MS Client Sample ID: BH-159 (8') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 33167

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Chloride 1010 1250 2342 mg/Kg 107 90 - 110

Lab Sample ID: 890-2784-4 MSD Client Sample ID: BH-159 (8') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 33167

MSD MSD RPD Spike %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 1250 2338 1010 mg/Kg 106 90 - 110

Lab Sample ID: MB 880-32583/1-A

Matrix: Solid

Analysis Batch: 33168

мв мв

Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac 5.00 Chloride <5.00 08/29/22 06:57 mg/Kg

Lab Sample ID: LCS 880-32583/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 33168

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 249.3 mg/Kg 100 90 - 110

Lab Sample ID: LCSD 880-32583/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 33168

Spike LCSD LCSD %Rec Added RPD Analyte Result Qualifier Unit D %Rec Limits Limit Chloride 250 249.3 mg/Kg 100 90 - 110

Lab Sample ID: 890-2784-14 MS Client Sample ID: BH-173 (6')

Matrix: Solid

Analysis Batch: 33168

MS MS %Rec Sample Sample Spike Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Chloride 329 248 557.9 mg/Kg 92 90 - 110

Lab Sample ID: 890-2784-14 MSD Client Sample ID: BH-173 (6')

Matrix: Solid

Analysis Patch: 22169

Alialysis Dalcii. 33100											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	329		248	563.7		ma/Ka		95	90 - 110	1	20

Eurofins Carlsbad

Client Sample ID: Method Blank

Prep Type: Soluble

RPD

Prep Type: Soluble

Prep Type: Soluble

Job ID: 890-2784-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-2784-24 MS Client Sample ID: BH-183 (4.5') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 33168

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 1050 249 1247 4 mg/Kg 78 90 - 110

Lab Sample ID: 890-2784-24 MSD Client Sample ID: BH-183 (4.5') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 33168

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1050		249	1247	4	mg/Kg		78	90 - 110	0	20

Lab Sample ID: MB 880-32584/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 33169

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 08/29/22 14:25 mg/Kg

Lab Sample ID: LCS 880-32584/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 33169

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	251.5		mg/Kg		101	90 - 110	

Lab Sample ID: LCSD 880-32584/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 33169

	Spike	LCSD	LUSD				/ortec		KFD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	252.0		mg/Kg		101	90 - 110	0	20	

Lab Sample ID: 890-2784-34 MS Client Sample ID: SW-44 (4.5-8') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 33169

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	955	F2 F1	252	1151	F1	mg/Kg		78	90 - 110	

Lab Sample ID: 890-2784-34 MSD Client Sample ID: SW-44 (4.5-8')

Matrix: Solid

Analysis Batch: 33169

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	955	F2 F1	252	1151	F1	mg/Kg		78	90 - 110	0	20

Lab Sample ID: 890-2784-44 MS Client Sample ID: SW-57 (6-8')

Matrix: Solid

Analysis Batch: 33169											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	65.5		250	323.5		mg/Kg		103	90 - 110		_

Eurofins Carlsbad

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: SW-57 (6-8')

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: SW-67 (8-10')

Client Sample ID: SW-67 (8-10')

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-2784-44 MSD

Matrix: Solid

Analysis Batch: 33169

•	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	65.5		250	322.5		mg/Kg		103	90 - 110	0	20

Lab Sample ID: MB 880-32585/1-A

Matrix: Solid

Analysis Batch: 33170

			MB	MB	
				_	

Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac 08/29/22 08:44 Chloride <5.00 U 5.00 mg/Kg

Lab Sample ID: LCS 880-32585/2-A Matrix: Solid

Analysis Batch: 33170

	Spike	LUS	LUS			/orec	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Chloride	250	250.5	mg/Kg		100	90 - 110	_

Lab Sample ID: LCSD 880-32585/3-A

Matrix: Solid

Analysis Batch: 33170

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	248.0		mg/Kg		99	90 - 110	1	20

Lab Sample ID: 890-2784-54 MS

Matrix: Solid

Analysis Batch: 33170

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	215		252	478.7		mg/Kg		105	90 - 110	

Lab Sample ID: 890-2784-54 MSD

Matrix: Solid

Analysis Batch: 33170

Analysis Batom sorre												
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	215		252	486.1		mg/Kg		108	90 - 110	2	20	

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

GC VOA

Prep Batch: 33358

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2784-1	BH-120 (8')	Total/NA	Solid	5035	
890-2784-2	BH-124 (8')	Total/NA	Solid	5035	
890-2784-3	BH-132 (8')	Total/NA	Solid	5035	
890-2784-4	BH-159 (8')	Total/NA	Solid	5035	
890-2784-5	BH-162 (8')	Total/NA	Solid	5035	
890-2784-6	BH-164 (8')	Total/NA	Solid	5035	
890-2784-7	BH-166 (8')	Total/NA	Solid	5035	
890-2784-8	BH-167 (8')	Total/NA	Solid	5035	
890-2784-9	BH-168 (5')	Total/NA	Solid	5035	
890-2784-10	BH-169 (5')	Total/NA	Solid	5035	
890-2784-11	BH-170 (5')	Total/NA	Solid	5035	
890-2784-12	BH-171 (5')	Total/NA	Solid	5035	
890-2784-13	BH-172 (6')	Total/NA	Solid	5035	
890-2784-14	BH-173 (6')	Total/NA	Solid	5035	
890-2784-15	BH-174 (6')	Total/NA	Solid	5035	
890-2784-16	BH-175 (4.5')	Total/NA	Solid	5035	
890-2784-17	BH-176 (4.5')	Total/NA	Solid	5035	
890-2784-18	BH-177 (4.5')	Total/NA	Solid	5035	
890-2784-19	BH-178 (4.5')	Total/NA	Solid	5035	
890-2784-20	BH-179 (4.5')	Total/NA	Solid	5035	
MB 880-33358/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-33358/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-33358/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2784-1 MS	BH-120 (8')	Total/NA	Solid	5035	
890-2784-1 MSD	BH-120 (8')	Total/NA	Solid	5035	

Prep Batch: 33361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2784-21	BH-180 (4.5')	Total/NA	Solid	5035	
890-2784-22	BH-181 (4.5')	Total/NA	Solid	5035	
890-2784-23	BH-182 (4.5')	Total/NA	Solid	5035	
890-2784-24	BH-183 (4.5')	Total/NA	Solid	5035	
390-2784-25	BH-184 (4.5')	Total/NA	Solid	5035	
890-2784-26	BH-185 (4.5')	Total/NA	Solid	5035	
890-2784-27	BH-186 (4.5')	Total/NA	Solid	5035	
890-2784-28	BH-187 (4.5')	Total/NA	Solid	5035	
890-2784-29	BH-188 (4.5')	Total/NA	Solid	5035	
390-2784-30	BH-189 (4.5')	Total/NA	Solid	5035	
390-2784-31	SW-38 (4.5-13')	Total/NA	Solid	5035	
890-2784-32	SW-42 (4.5-8')	Total/NA	Solid	5035	
390-2784-33	SW-43 (6-8')	Total/NA	Solid	5035	
390-2784-34	SW-44 (4.5-8')	Total/NA	Solid	5035	
890-2784-35	SW-45 (0-8')	Total/NA	Solid	5035	
890-2784-36	SW-46 (0-5')	Total/NA	Solid	5035	
890-2784-37	SW-47 (0-5')	Total/NA	Solid	5035	
890-2784-38	SW-48 (6-8')	Total/NA	Solid	5035	
890-2784-39	SW-49 (4.5-6')	Total/NA	Solid	5035	
390-2784-40	SW-53 (0-8')	Total/NA	Solid	5035	
MB 880-33361/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-33361/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-33361/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

GC VOA (Continued)

Prep Batch: 33361 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-21 MS	BH-180 (4.5')	Total/NA	Solid	5035	
890-2784-21 MSD	BH-180 (4.5')	Total/NA	Solid	5035	

Prep Batch: 33362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2784-41	SW-54 (0-4.5')	Total/NA	Solid	5035	
890-2784-42	SW-55 (4.5-8')	Total/NA	Solid	5035	
890-2784-43	SW-56 (0-4.5')	Total/NA	Solid	5035	
890-2784-44	SW-57 (6-8')	Total/NA	Solid	5035	
890-2784-45	SW-58 (6-8')	Total/NA	Solid	5035	
890-2784-46	SW-59 (6-8')	Total/NA	Solid	5035	
890-2784-47	SW-60 (0-13')	Total/NA	Solid	5035	
890-2784-48	SW-61 (8-13')	Total/NA	Solid	5035	
890-2784-49	SW-62 (8-13')	Total/NA	Solid	5035	
890-2784-50	SW-63 (8-13')	Total/NA	Solid	5035	
890-2784-51	SW-64 (8-10')	Total/NA	Solid	5035	
890-2784-52	SW-65 (8-10')	Total/NA	Solid	5035	
890-2784-53	SW-66 (8-10')	Total/NA	Solid	5035	
890-2784-54	SW-67 (8-10')	Total/NA	Solid	5035	
890-2784-55	SW-68 (0-6')	Total/NA	Solid	5035	
890-2784-56	SW-69 (0-6')	Total/NA	Solid	5035	
890-2784-57	SW-70 (0-4.5')	Total/NA	Solid	5035	
890-2784-58	SW-71 (0-4.5')	Total/NA	Solid	5035	
MB 880-33362/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-33362/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-33362/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2784-41 MS	SW-54 (0-4.5')	Total/NA	Solid	5035	
890-2784-41 MSD	SW-54 (0-4.5')	Total/NA	Solid	5035	

Analysis Batch: 33411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-1	BH-120 (8')	Total/NA	Solid	8021B	33358
890-2784-2	BH-124 (8')	Total/NA	Solid	8021B	33358
890-2784-3	BH-132 (8')	Total/NA	Solid	8021B	33358
890-2784-4	BH-159 (8')	Total/NA	Solid	8021B	33358
890-2784-5	BH-162 (8')	Total/NA	Solid	8021B	33358
890-2784-6	BH-164 (8')	Total/NA	Solid	8021B	33358
890-2784-7	BH-166 (8')	Total/NA	Solid	8021B	33358
890-2784-8	BH-167 (8')	Total/NA	Solid	8021B	33358
890-2784-9	BH-168 (5')	Total/NA	Solid	8021B	33358
890-2784-10	BH-169 (5')	Total/NA	Solid	8021B	33358
890-2784-11	BH-170 (5')	Total/NA	Solid	8021B	33358
890-2784-12	BH-171 (5')	Total/NA	Solid	8021B	33358
890-2784-13	BH-172 (6')	Total/NA	Solid	8021B	33358
890-2784-14	BH-173 (6')	Total/NA	Solid	8021B	33358
890-2784-15	BH-174 (6')	Total/NA	Solid	8021B	33358
890-2784-16	BH-175 (4.5')	Total/NA	Solid	8021B	33358
890-2784-17	BH-176 (4.5')	Total/NA	Solid	8021B	33358
890-2784-18	BH-177 (4.5')	Total/NA	Solid	8021B	33358
890-2784-19	BH-178 (4.5')	Total/NA	Solid	8021B	33358
890-2784-20	BH-179 (4.5')	Total/NA	Solid	8021B	33358

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

2

5

Ω

10

12

13

Н

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 33411 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-33358/5-A	Method Blank	Total/NA	Solid	8021B	33358
MB 880-33411/8	Method Blank	Total/NA	Solid	8021B	
LCS 880-33358/1-A	Lab Control Sample	Total/NA	Solid	8021B	33358
LCSD 880-33358/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	33358
890-2784-1 MS	BH-120 (8')	Total/NA	Solid	8021B	33358
890-2784-1 MSD	BH-120 (8')	Total/NA	Solid	8021B	33358

Analysis Batch: 33465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2784-21	BH-180 (4.5')	Total/NA	Solid	8021B	3336
890-2784-22	BH-181 (4.5')	Total/NA	Solid	8021B	3336
890-2784-23	BH-182 (4.5')	Total/NA	Solid	8021B	3336
890-2784-24	BH-183 (4.5')	Total/NA	Solid	8021B	3336
890-2784-25	BH-184 (4.5')	Total/NA	Solid	8021B	3336
890-2784-26	BH-185 (4.5')	Total/NA	Solid	8021B	3336
890-2784-27	BH-186 (4.5')	Total/NA	Solid	8021B	3336
890-2784-28	BH-187 (4.5')	Total/NA	Solid	8021B	3336
890-2784-29	BH-188 (4.5')	Total/NA	Solid	8021B	3336
890-2784-30	BH-189 (4.5')	Total/NA	Solid	8021B	3336
890-2784-31	SW-38 (4.5-13')	Total/NA	Solid	8021B	3336
890-2784-32	SW-42 (4.5-8')	Total/NA	Solid	8021B	3336
890-2784-33	SW-43 (6-8')	Total/NA	Solid	8021B	3336
890-2784-34	SW-44 (4.5-8')	Total/NA	Solid	8021B	3336
890-2784-35	SW-45 (0-8')	Total/NA	Solid	8021B	3336
890-2784-36	SW-46 (0-5')	Total/NA	Solid	8021B	3336
890-2784-37	SW-47 (0-5')	Total/NA	Solid	8021B	3336
890-2784-38	SW-48 (6-8')	Total/NA	Solid	8021B	3336
890-2784-39	SW-49 (4.5-6')	Total/NA	Solid	8021B	3336
890-2784-40	SW-53 (0-8')	Total/NA	Solid	8021B	3336
890-2784-41	SW-54 (0-4.5')	Total/NA	Solid	8021B	3336
890-2784-42	SW-55 (4.5-8')	Total/NA	Solid	8021B	3336
890-2784-43	SW-56 (0-4.5')	Total/NA	Solid	8021B	3336
890-2784-44	SW-57 (6-8')	Total/NA	Solid	8021B	3336
890-2784-45	SW-58 (6-8')	Total/NA	Solid	8021B	3336
890-2784-46	SW-59 (6-8')	Total/NA	Solid	8021B	3336
890-2784-47	SW-60 (0-13')	Total/NA	Solid	8021B	3336
890-2784-48	SW-61 (8-13')	Total/NA	Solid	8021B	3336
890-2784-49	SW-62 (8-13')	Total/NA	Solid	8021B	3336
890-2784-50	SW-63 (8-13')	Total/NA	Solid	8021B	3336
890-2784-51	SW-64 (8-10')	Total/NA	Solid	8021B	3336
890-2784-52	SW-65 (8-10')	Total/NA	Solid	8021B	3336
890-2784-53	SW-66 (8-10')	Total/NA	Solid	8021B	3336
890-2784-54	SW-67 (8-10')	Total/NA	Solid	8021B	3336
890-2784-55	SW-68 (0-6')	Total/NA	Solid	8021B	3336
890-2784-56	SW-69 (0-6')	Total/NA	Solid	8021B	3336
890-2784-57	SW-70 (0-4.5')	Total/NA	Solid	8021B	3336
890-2784-58	SW-71 (0-4.5')	Total/NA	Solid	8021B	3336
MB 880-33361/5-A	Method Blank	Total/NA	Solid	8021B	3336
MB 880-33362/5-A	Method Blank	Total/NA	Solid	8021B	3336
LCS 880-33361/1-A	Lab Control Sample	Total/NA	Solid	8021B	3336
LCS 880-33362/1-A	Lab Control Sample	Total/NA	Solid	8021B	3336

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 33465 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-33361/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	33361
LCSD 880-33362/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	33362
890-2784-21 MS	BH-180 (4.5')	Total/NA	Solid	8021B	33361
890-2784-21 MSD	BH-180 (4.5')	Total/NA	Solid	8021B	33361
890-2784-41 MS	SW-54 (0-4.5')	Total/NA	Solid	8021B	33362
890-2784-41 MSD	SW-54 (0-4.5')	Total/NA	Solid	8021B	33362

Analysis Batch: 33551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2784-1	BH-120 (8')	Total/NA	Solid	Total BTEX	-
890-2784-2	BH-124 (8')	Total/NA	Solid	Total BTEX	
890-2784-3	BH-132 (8')	Total/NA	Solid	Total BTEX	
890-2784-4	BH-159 (8')	Total/NA	Solid	Total BTEX	
890-2784-5	BH-162 (8')	Total/NA	Solid	Total BTEX	
890-2784-6	BH-164 (8')	Total/NA	Solid	Total BTEX	
890-2784-7	BH-166 (8')	Total/NA	Solid	Total BTEX	
890-2784-8	BH-167 (8')	Total/NA	Solid	Total BTEX	
890-2784-9	BH-168 (5')	Total/NA	Solid	Total BTEX	
890-2784-10	BH-169 (5')	Total/NA	Solid	Total BTEX	
890-2784-11	BH-170 (5')	Total/NA	Solid	Total BTEX	
890-2784-12	BH-171 (5')	Total/NA	Solid	Total BTEX	
890-2784-13	BH-172 (6')	Total/NA	Solid	Total BTEX	
890-2784-14	BH-173 (6')	Total/NA	Solid	Total BTEX	
890-2784-15	BH-174 (6')	Total/NA	Solid	Total BTEX	
890-2784-16	BH-175 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-17	BH-176 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-18	BH-177 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-19	BH-178 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-20	BH-179 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-21	BH-180 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-22	BH-181 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-23	BH-182 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-24	BH-183 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-25	BH-184 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-26	BH-185 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-27	BH-186 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-28	BH-187 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-29	BH-188 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-30	BH-189 (4.5')	Total/NA	Solid	Total BTEX	
890-2784-31	SW-38 (4.5-13')	Total/NA	Solid	Total BTEX	
890-2784-32	SW-42 (4.5-8')	Total/NA	Solid	Total BTEX	
890-2784-33	SW-43 (6-8')	Total/NA	Solid	Total BTEX	
890-2784-34	SW-44 (4.5-8')	Total/NA	Solid	Total BTEX	
890-2784-35	SW-45 (0-8')	Total/NA	Solid	Total BTEX	
890-2784-36	SW-46 (0-5')	Total/NA	Solid	Total BTEX	
890-2784-37	SW-47 (0-5')	Total/NA	Solid	Total BTEX	
890-2784-38	SW-48 (6-8')	Total/NA	Solid	Total BTEX	
890-2784-39	SW-49 (4.5-6')	Total/NA	Solid	Total BTEX	
890-2784-40	SW-53 (0-8')	Total/NA	Solid	Total BTEX	
890-2784-41	SW-54 (0-4.5')	Total/NA	Solid	Total BTEX	
890-2784-42	SW-55 (4.5-8')	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

2

3

4

6

8

9

11

13

14

Job ID: 890-2784-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 33551 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-43	SW-56 (0-4.5')	Total/NA	Solid	Total BTEX	
890-2784-44	SW-57 (6-8')	Total/NA	Solid	Total BTEX	
890-2784-45	SW-58 (6-8')	Total/NA	Solid	Total BTEX	
890-2784-46	SW-59 (6-8')	Total/NA	Solid	Total BTEX	
890-2784-47	SW-60 (0-13')	Total/NA	Solid	Total BTEX	
890-2784-48	SW-61 (8-13')	Total/NA	Solid	Total BTEX	
890-2784-49	SW-62 (8-13')	Total/NA	Solid	Total BTEX	
890-2784-50	SW-63 (8-13')	Total/NA	Solid	Total BTEX	
890-2784-51	SW-64 (8-10')	Total/NA	Solid	Total BTEX	
890-2784-52	SW-65 (8-10')	Total/NA	Solid	Total BTEX	
890-2784-53	SW-66 (8-10')	Total/NA	Solid	Total BTEX	
890-2784-54	SW-67 (8-10')	Total/NA	Solid	Total BTEX	
890-2784-55	SW-68 (0-6')	Total/NA	Solid	Total BTEX	
890-2784-56	SW-69 (0-6')	Total/NA	Solid	Total BTEX	
890-2784-57	SW-70 (0-4.5')	Total/NA	Solid	Total BTEX	
890-2784-58	SW-71 (0-4.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 32586

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-1	BH-120 (8')	Total/NA	Solid	8015B NM	32669
890-2784-2	BH-124 (8')	Total/NA	Solid	8015B NM	32669
890-2784-3	BH-132 (8')	Total/NA	Solid	8015B NM	32669
890-2784-4	BH-159 (8')	Total/NA	Solid	8015B NM	32669
890-2784-5	BH-162 (8')	Total/NA	Solid	8015B NM	32669
890-2784-6	BH-164 (8')	Total/NA	Solid	8015B NM	32669
890-2784-7	BH-166 (8')	Total/NA	Solid	8015B NM	32669
890-2784-8	BH-167 (8')	Total/NA	Solid	8015B NM	32669
890-2784-9	BH-168 (5')	Total/NA	Solid	8015B NM	32669
890-2784-10	BH-169 (5')	Total/NA	Solid	8015B NM	32669
890-2784-11	BH-170 (5')	Total/NA	Solid	8015B NM	32669
890-2784-12	BH-171 (5')	Total/NA	Solid	8015B NM	32669
890-2784-13	BH-172 (6')	Total/NA	Solid	8015B NM	32669
890-2784-14	BH-173 (6')	Total/NA	Solid	8015B NM	32669
890-2784-15	BH-174 (6')	Total/NA	Solid	8015B NM	32669
890-2784-16	BH-175 (4.5')	Total/NA	Solid	8015B NM	32669
890-2784-17	BH-176 (4.5')	Total/NA	Solid	8015B NM	32669
890-2784-18	BH-177 (4.5')	Total/NA	Solid	8015B NM	32669
890-2784-19	BH-178 (4.5')	Total/NA	Solid	8015B NM	32669
890-2784-20	BH-179 (4.5')	Total/NA	Solid	8015B NM	32669
MB 880-32669/1-A	Method Blank	Total/NA	Solid	8015B NM	32669
LCS 880-32669/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32669
LCSD 880-32669/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32669
890-2784-1 MS	BH-120 (8')	Total/NA	Solid	8015B NM	32669
890-2784-1 MSD	BH-120 (8')	Total/NA	Solid	8015B NM	32669

Prep Batch: 32669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-1	BH-120 (8')	Total/NA	Solid	8015NM Prep	
890-2784-2	BH-124 (8')	Total/NA	Solid	8015NM Prep	

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA (Continued)

Prep Batch: 32669 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2784-3	BH-132 (8')	Total/NA	Solid	8015NM Prep	
890-2784-4	BH-159 (8')	Total/NA	Solid	8015NM Prep	
890-2784-5	BH-162 (8')	Total/NA	Solid	8015NM Prep	
890-2784-6	BH-164 (8')	Total/NA	Solid	8015NM Prep	
890-2784-7	BH-166 (8')	Total/NA	Solid	8015NM Prep	
890-2784-8	BH-167 (8')	Total/NA	Solid	8015NM Prep	
890-2784-9	BH-168 (5')	Total/NA	Solid	8015NM Prep	
890-2784-10	BH-169 (5')	Total/NA	Solid	8015NM Prep	
890-2784-11	BH-170 (5')	Total/NA	Solid	8015NM Prep	
890-2784-12	BH-171 (5')	Total/NA	Solid	8015NM Prep	
890-2784-13	BH-172 (6')	Total/NA	Solid	8015NM Prep	
890-2784-14	BH-173 (6')	Total/NA	Solid	8015NM Prep	
890-2784-15	BH-174 (6')	Total/NA	Solid	8015NM Prep	
890-2784-16	BH-175 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-17	BH-176 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-18	BH-177 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-19	BH-178 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-20	BH-179 (4.5')	Total/NA	Solid	8015NM Prep	
MB 880-32669/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32669/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32669/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2784-1 MS	BH-120 (8')	Total/NA	Solid	8015NM Prep	
890-2784-1 MSD	BH-120 (8')	Total/NA	Solid	8015NM Prep	

Prep Batch: 32713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-48	SW-61 (8-13')	Total/NA	Solid	8015NM Prep	
890-2784-49	SW-62 (8-13')	Total/NA	Solid	8015NM Prep	
890-2784-50	SW-63 (8-13')	Total/NA	Solid	8015NM Prep	
890-2784-51	SW-64 (8-10')	Total/NA	Solid	8015NM Prep	
890-2784-52	SW-65 (8-10')	Total/NA	Solid	8015NM Prep	
890-2784-53	SW-66 (8-10')	Total/NA	Solid	8015NM Prep	
890-2784-54	SW-67 (8-10')	Total/NA	Solid	8015NM Prep	
890-2784-55	SW-68 (0-6')	Total/NA	Solid	8015NM Prep	
890-2784-56	SW-69 (0-6')	Total/NA	Solid	8015NM Prep	
890-2784-57	SW-70 (0-4.5')	Total/NA	Solid	8015NM Prep	
890-2784-58	SW-71 (0-4.5')	Total/NA	Solid	8015NM Prep	
MB 880-32713/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32713/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32713/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2786-A-2-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2786-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 32714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-21	BH-180 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-22	BH-181 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-23	BH-182 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-24	BH-183 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-25	BH-184 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-26	BH-185 (4.5')	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

2

3

_

7

9

11

13

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA (Continued)

Prep Batch: 32714 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-27	BH-186 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-28	BH-187 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-29	BH-188 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-30	BH-189 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-31	SW-38 (4.5-13')	Total/NA	Solid	8015NM Prep	
890-2784-32	SW-42 (4.5-8')	Total/NA	Solid	8015NM Prep	
890-2784-33	SW-43 (6-8')	Total/NA	Solid	8015NM Prep	
890-2784-34	SW-44 (4.5-8')	Total/NA	Solid	8015NM Prep	
890-2784-35	SW-45 (0-8')	Total/NA	Solid	8015NM Prep	
890-2784-36	SW-46 (0-5')	Total/NA	Solid	8015NM Prep	
890-2784-37	SW-47 (0-5')	Total/NA	Solid	8015NM Prep	
890-2784-38	SW-48 (6-8')	Total/NA	Solid	8015NM Prep	
890-2784-39	SW-49 (4.5-6')	Total/NA	Solid	8015NM Prep	
890-2784-40	SW-53 (0-8')	Total/NA	Solid	8015NM Prep	
MB 880-32714/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32714/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32714/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2784-21 MS	BH-180 (4.5')	Total/NA	Solid	8015NM Prep	
890-2784-21 MSD	BH-180 (4.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 32730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-48	SW-61 (8-13')	Total/NA	Solid	8015B NM	32713
890-2784-49	SW-62 (8-13')	Total/NA	Solid	8015B NM	32713
890-2784-50	SW-63 (8-13')	Total/NA	Solid	8015B NM	32713
890-2784-51	SW-64 (8-10')	Total/NA	Solid	8015B NM	32713
890-2784-52	SW-65 (8-10')	Total/NA	Solid	8015B NM	32713
890-2784-53	SW-66 (8-10')	Total/NA	Solid	8015B NM	32713
890-2784-54	SW-67 (8-10')	Total/NA	Solid	8015B NM	32713
890-2784-55	SW-68 (0-6')	Total/NA	Solid	8015B NM	32713
890-2784-56	SW-69 (0-6')	Total/NA	Solid	8015B NM	32713
890-2784-57	SW-70 (0-4.5')	Total/NA	Solid	8015B NM	32713
890-2784-58	SW-71 (0-4.5')	Total/NA	Solid	8015B NM	32713
MB 880-32713/1-A	Method Blank	Total/NA	Solid	8015B NM	32713
LCS 880-32713/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32713
LCSD 880-32713/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32713
890-2786-A-2-C MS	Matrix Spike	Total/NA	Solid	8015B NM	32713
890-2786-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	32713

Prep Batch: 32774

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2784-41	SW-54 (0-4.5')	Total/NA	Solid	8015NM Prep	
890-2784-42	SW-55 (4.5-8')	Total/NA	Solid	8015NM Prep	
890-2784-43	SW-56 (0-4.5')	Total/NA	Solid	8015NM Prep	
890-2784-44	SW-57 (6-8')	Total/NA	Solid	8015NM Prep	
890-2784-45	SW-58 (6-8')	Total/NA	Solid	8015NM Prep	
890-2784-46	SW-59 (6-8')	Total/NA	Solid	8015NM Prep	
890-2784-47	SW-60 (0-13')	Total/NA	Solid	8015NM Prep	
MB 880-32774/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32774/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32774/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

2

3

5

7

9

11

13

4 A

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

GC Semi VOA (Continued)

Prep Batch: 32774 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-18428-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-18428-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
890-2784-1	BH-120 (8')	Total/NA	Solid	8015 NM	
890-2784-2	BH-124 (8')	Total/NA	Solid	8015 NM	
890-2784-3	BH-132 (8')	Total/NA	Solid	8015 NM	
890-2784-4	BH-159 (8')	Total/NA	Solid	8015 NM	
890-2784-5	BH-162 (8')	Total/NA	Solid	8015 NM	
890-2784-6	BH-164 (8')	Total/NA	Solid	8015 NM	
890-2784-7	BH-166 (8')	Total/NA	Solid	8015 NM	
890-2784-8	BH-167 (8')	Total/NA	Solid	8015 NM	
890-2784-9	BH-168 (5')	Total/NA	Solid	8015 NM	
890-2784-10	BH-169 (5')	Total/NA	Solid	8015 NM	
390-2784-11	BH-170 (5')	Total/NA	Solid	8015 NM	
890-2784-12	BH-171 (5')	Total/NA	Solid	8015 NM	
890-2784-13	BH-172 (6')	Total/NA	Solid	8015 NM	
890-2784-14	BH-173 (6')	Total/NA	Solid	8015 NM	
890-2784-15	BH-174 (6')	Total/NA	Solid	8015 NM	
890-2784-16	BH-175 (4.5')	Total/NA	Solid	8015 NM	
890-2784-17	BH-176 (4.5')	Total/NA	Solid	8015 NM	
890-2784-18	BH-177 (4.5')	Total/NA	Solid	8015 NM	
890-2784-19	BH-178 (4.5')	Total/NA	Solid	8015 NM	
890-2784-20	BH-179 (4.5')	Total/NA	Solid	8015 NM	
390-2784-21	BH-180 (4.5')	Total/NA	Solid	8015 NM	
390-2784-22	BH-181 (4.5')	Total/NA	Solid	8015 NM	
890-2784-23	BH-182 (4.5')	Total/NA	Solid	8015 NM	
890-2784-24	BH-183 (4.5')	Total/NA	Solid	8015 NM	
890-2784-25	BH-184 (4.5')	Total/NA	Solid	8015 NM	
390-2784-26	BH-185 (4.5')	Total/NA	Solid	8015 NM	
890-2784-27	BH-186 (4.5')	Total/NA	Solid	8015 NM	
890-2784-28	BH-187 (4.5')	Total/NA	Solid	8015 NM	
890-2784-29	BH-188 (4.5')	Total/NA	Solid	8015 NM	
390-2784-30	BH-189 (4.5')	Total/NA	Solid	8015 NM	
390-2784-31	SW-38 (4.5-13')	Total/NA	Solid	8015 NM	
890-2784-32	SW-42 (4.5-8')	Total/NA	Solid	8015 NM	
390-2784-33	SW-43 (6-8')	Total/NA	Solid	8015 NM	
390-2784-34	SW-44 (4.5-8')	Total/NA	Solid	8015 NM	
890-2784-35	SW-45 (0-8')	Total/NA	Solid	8015 NM	
890-2784-36	SW-46 (0-5')	Total/NA	Solid	8015 NM	
890-2784-37	SW-47 (0-5')	Total/NA	Solid	8015 NM	
890-2784-38	SW-48 (6-8')	Total/NA	Solid	8015 NM	
390-2784-39	SW-49 (4.5-6')	Total/NA	Solid	8015 NM	
390-2784-40	SW-53 (0-8')	Total/NA	Solid	8015 NM	
890-2784-41	SW-54 (0-4.5')	Total/NA	Solid	8015 NM	
890-2784-42	SW-55 (4.5-8')	Total/NA	Solid	8015 NM	
890-2784-43	SW-56 (0-4.5')	Total/NA	Solid	8015 NM	
890-2784-44	SW-57 (6-8')	Total/NA	Solid	8015 NM	
890-2784-45	SW-58 (6-8')	Total/NA	Solid	8015 NM	
890-2784-46	SW-59 (6-8')	Total/NA	Solid	8015 NM	

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 32780 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-47	SW-60 (0-13')	Total/NA	Solid	8015 NM	
890-2784-48	SW-61 (8-13')	Total/NA	Solid	8015 NM	
890-2784-49	SW-62 (8-13')	Total/NA	Solid	8015 NM	
890-2784-50	SW-63 (8-13')	Total/NA	Solid	8015 NM	
890-2784-51	SW-64 (8-10')	Total/NA	Solid	8015 NM	
890-2784-52	SW-65 (8-10')	Total/NA	Solid	8015 NM	
890-2784-53	SW-66 (8-10')	Total/NA	Solid	8015 NM	
890-2784-54	SW-67 (8-10')	Total/NA	Solid	8015 NM	
890-2784-55	SW-68 (0-6')	Total/NA	Solid	8015 NM	
890-2784-56	SW-69 (0-6')	Total/NA	Solid	8015 NM	
890-2784-57	SW-70 (0-4.5')	Total/NA	Solid	8015 NM	
890-2784-58	SW-71 (0-4.5')	Total/NA	Solid	8015 NM	

Analysis Batch: 32806

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-21	BH-180 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-22	BH-181 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-23	BH-182 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-24	BH-183 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-25	BH-184 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-26	BH-185 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-27	BH-186 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-28	BH-187 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-29	BH-188 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-30	BH-189 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-31	SW-38 (4.5-13')	Total/NA	Solid	8015B NM	32714
890-2784-32	SW-42 (4.5-8')	Total/NA	Solid	8015B NM	32714
890-2784-33	SW-43 (6-8')	Total/NA	Solid	8015B NM	32714
890-2784-34	SW-44 (4.5-8')	Total/NA	Solid	8015B NM	32714
890-2784-35	SW-45 (0-8')	Total/NA	Solid	8015B NM	32714
890-2784-36	SW-46 (0-5')	Total/NA	Solid	8015B NM	32714
890-2784-37	SW-47 (0-5')	Total/NA	Solid	8015B NM	32714
890-2784-38	SW-48 (6-8')	Total/NA	Solid	8015B NM	32714
890-2784-39	SW-49 (4.5-6')	Total/NA	Solid	8015B NM	32714
890-2784-40	SW-53 (0-8')	Total/NA	Solid	8015B NM	32714
MB 880-32714/1-A	Method Blank	Total/NA	Solid	8015B NM	32714
LCS 880-32714/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32714
LCSD 880-32714/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32714
890-2784-21 MS	BH-180 (4.5')	Total/NA	Solid	8015B NM	32714
890-2784-21 MSD	BH-180 (4.5')	Total/NA	Solid	8015B NM	32714

Analysis Batch: 32808

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-41	SW-54 (0-4.5')	Total/NA	Solid	8015B NM	32774
890-2784-42	SW-55 (4.5-8')	Total/NA	Solid	8015B NM	32774
890-2784-43	SW-56 (0-4.5')	Total/NA	Solid	8015B NM	32774
890-2784-44	SW-57 (6-8')	Total/NA	Solid	8015B NM	32774
890-2784-45	SW-58 (6-8')	Total/NA	Solid	8015B NM	32774
890-2784-46	SW-59 (6-8')	Total/NA	Solid	8015B NM	32774
890-2784-47	SW-60 (0-13')	Total/NA	Solid	8015B NM	32774
MB 880-32774/1-A	Method Blank	Total/NA	Solid	8015B NM	32774

Client: Tetra Tech, Inc. Job ID: 890-2784-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 32808 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-32774/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32774
LCSD 880-32774/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32774
880-18428-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	32774
880-18428-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	32774

HPLC/IC

Leach Batch: 32582

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-1	BH-120 (8')	Soluble	Solid	DI Leach	
890-2784-2	BH-124 (8')	Soluble	Solid	DI Leach	
890-2784-3	BH-132 (8')	Soluble	Solid	DI Leach	
890-2784-4	BH-159 (8')	Soluble	Solid	DI Leach	
890-2784-5	BH-162 (8')	Soluble	Solid	DI Leach	
890-2784-6	BH-164 (8')	Soluble	Solid	DI Leach	
890-2784-7	BH-166 (8')	Soluble	Solid	DI Leach	
890-2784-8	BH-167 (8')	Soluble	Solid	DI Leach	
890-2784-9	BH-168 (5')	Soluble	Solid	DI Leach	
890-2784-10	BH-169 (5')	Soluble	Solid	DI Leach	
890-2784-11	BH-170 (5')	Soluble	Solid	DI Leach	
890-2784-12	BH-171 (5')	Soluble	Solid	DI Leach	
890-2784-13	BH-172 (6')	Soluble	Solid	DI Leach	
MB 880-32582/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32582/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32582/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2784-4 MS	BH-159 (8')	Soluble	Solid	DI Leach	
890-2784-4 MSD	BH-159 (8')	Soluble	Solid	DI Leach	

Leach Batch: 32583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2784-14	BH-173 (6')	Soluble	Solid	DI Leach	_
890-2784-15	BH-174 (6')	Soluble	Solid	DI Leach	
390-2784-16	BH-175 (4.5')	Soluble	Solid	DI Leach	
390-2784-17	BH-176 (4.5')	Soluble	Solid	DI Leach	
390-2784-18	BH-177 (4.5')	Soluble	Solid	DI Leach	
390-2784-19	BH-178 (4.5')	Soluble	Solid	DI Leach	
390-2784-20	BH-179 (4.5')	Soluble	Solid	DI Leach	
390-2784-21	BH-180 (4.5')	Soluble	Solid	DI Leach	
90-2784-22	BH-181 (4.5')	Soluble	Solid	DI Leach	
90-2784-23	BH-182 (4.5')	Soluble	Solid	DI Leach	
90-2784-24	BH-183 (4.5')	Soluble	Solid	DI Leach	
90-2784-25	BH-184 (4.5')	Soluble	Solid	DI Leach	
90-2784-26	BH-185 (4.5')	Soluble	Solid	DI Leach	
90-2784-27	BH-186 (4.5')	Soluble	Solid	DI Leach	
90-2784-28	BH-187 (4.5')	Soluble	Solid	DI Leach	
90-2784-29	BH-188 (4.5')	Soluble	Solid	DI Leach	
90-2784-30	BH-189 (4.5')	Soluble	Solid	DI Leach	
90-2784-31	SW-38 (4.5-13')	Soluble	Solid	DI Leach	
90-2784-32	SW-42 (4.5-8')	Soluble	Solid	DI Leach	
90-2784-33	SW-43 (6-8')	Soluble	Solid	DI Leach	
MB 880-32583/1-A	Method Blank	Soluble	Solid	DI Leach	

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

HPLC/IC (Continued)

Leach Batch: 32583 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-32583/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32583/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2784-14 MS	BH-173 (6')	Soluble	Solid	DI Leach	
890-2784-14 MSD	BH-173 (6')	Soluble	Solid	DI Leach	
890-2784-24 MS	BH-183 (4.5')	Soluble	Solid	DI Leach	
890-2784-24 MSD	BH-183 (4.5')	Soluble	Solid	DI Leach	

Leach Batch: 32584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-34	SW-44 (4.5-8')	Soluble	Solid	DI Leach	
890-2784-35	SW-45 (0-8')	Soluble	Solid	DI Leach	
890-2784-36	SW-46 (0-5')	Soluble	Solid	DI Leach	
890-2784-37	SW-47 (0-5')	Soluble	Solid	DI Leach	
890-2784-38	SW-48 (6-8')	Soluble	Solid	DI Leach	
890-2784-39	SW-49 (4.5-6')	Soluble	Solid	DI Leach	
890-2784-40	SW-53 (0-8')	Soluble	Solid	DI Leach	
890-2784-41	SW-54 (0-4.5')	Soluble	Solid	DI Leach	
890-2784-42	SW-55 (4.5-8')	Soluble	Solid	DI Leach	
890-2784-43	SW-56 (0-4.5')	Soluble	Solid	DI Leach	
890-2784-44	SW-57 (6-8')	Soluble	Solid	DI Leach	
890-2784-45	SW-58 (6-8')	Soluble	Solid	DI Leach	
890-2784-46	SW-59 (6-8')	Soluble	Solid	DI Leach	
890-2784-47	SW-60 (0-13')	Soluble	Solid	DI Leach	
890-2784-48	SW-61 (8-13')	Soluble	Solid	DI Leach	
890-2784-49	SW-62 (8-13')	Soluble	Solid	DI Leach	
890-2784-50	SW-63 (8-13')	Soluble	Solid	DI Leach	
890-2784-51	SW-64 (8-10')	Soluble	Solid	DI Leach	
890-2784-52	SW-65 (8-10')	Soluble	Solid	DI Leach	
890-2784-53	SW-66 (8-10')	Soluble	Solid	DI Leach	
MB 880-32584/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32584/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32584/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2784-34 MS	SW-44 (4.5-8')	Soluble	Solid	DI Leach	
890-2784-34 MSD	SW-44 (4.5-8')	Soluble	Solid	DI Leach	
890-2784-44 MS	SW-57 (6-8')	Soluble	Solid	DI Leach	
890-2784-44 MSD	SW-57 (6-8')	Soluble	Solid	DI Leach	

Leach Batch: 32585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-54	SW-67 (8-10')	Soluble	Solid	DI Leach	
890-2784-55	SW-68 (0-6')	Soluble	Solid	DI Leach	
890-2784-56	SW-69 (0-6')	Soluble	Solid	DI Leach	
890-2784-57	SW-70 (0-4.5')	Soluble	Solid	DI Leach	
890-2784-58	SW-71 (0-4.5')	Soluble	Solid	DI Leach	
MB 880-32585/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32585/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32585/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2784-54 MS	SW-67 (8-10')	Soluble	Solid	DI Leach	
890-2784-54 MSD	SW-67 (8-10')	Soluble	Solid	DI Leach	

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

HPLC/IC

Analysis Batch: 33167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-1	BH-120 (8')	Soluble	Solid	300.0	32582
890-2784-2	BH-124 (8')	Soluble	Solid	300.0	32582
890-2784-3	BH-132 (8')	Soluble	Solid	300.0	32582
890-2784-4	BH-159 (8')	Soluble	Solid	300.0	32582
890-2784-5	BH-162 (8')	Soluble	Solid	300.0	32582
890-2784-6	BH-164 (8')	Soluble	Solid	300.0	32582
890-2784-7	BH-166 (8')	Soluble	Solid	300.0	32582
890-2784-8	BH-167 (8')	Soluble	Solid	300.0	32582
890-2784-9	BH-168 (5')	Soluble	Solid	300.0	32582
890-2784-10	BH-169 (5')	Soluble	Solid	300.0	32582
890-2784-11	BH-170 (5')	Soluble	Solid	300.0	32582
890-2784-12	BH-171 (5')	Soluble	Solid	300.0	32582
890-2784-13	BH-172 (6')	Soluble	Solid	300.0	32582
MB 880-32582/1-A	Method Blank	Soluble	Solid	300.0	32582
LCS 880-32582/2-A	Lab Control Sample	Soluble	Solid	300.0	32582
LCSD 880-32582/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32582
890-2784-4 MS	BH-159 (8')	Soluble	Solid	300.0	32582
890-2784-4 MSD	BH-159 (8')	Soluble	Solid	300.0	32582

Analysis Batch: 33168

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-14	BH-173 (6')	Soluble	Solid	300.0	32583
890-2784-15	BH-174 (6')	Soluble	Solid	300.0	32583
890-2784-16	BH-175 (4.5')	Soluble	Solid	300.0	32583
890-2784-17	BH-176 (4.5')	Soluble	Solid	300.0	32583
890-2784-18	BH-177 (4.5')	Soluble	Solid	300.0	32583
890-2784-19	BH-178 (4.5')	Soluble	Solid	300.0	32583
890-2784-20	BH-179 (4.5')	Soluble	Solid	300.0	32583
890-2784-21	BH-180 (4.5')	Soluble	Solid	300.0	32583
890-2784-22	BH-181 (4.5')	Soluble	Solid	300.0	32583
890-2784-23	BH-182 (4.5')	Soluble	Solid	300.0	32583
890-2784-24	BH-183 (4.5')	Soluble	Solid	300.0	32583
890-2784-25	BH-184 (4.5')	Soluble	Solid	300.0	32583
890-2784-26	BH-185 (4.5')	Soluble	Solid	300.0	32583
890-2784-27	BH-186 (4.5')	Soluble	Solid	300.0	32583
890-2784-28	BH-187 (4.5')	Soluble	Solid	300.0	32583
890-2784-29	BH-188 (4.5')	Soluble	Solid	300.0	32583
890-2784-30	BH-189 (4.5')	Soluble	Solid	300.0	32583
890-2784-31	SW-38 (4.5-13')	Soluble	Solid	300.0	32583
890-2784-32	SW-42 (4.5-8')	Soluble	Solid	300.0	32583
890-2784-33	SW-43 (6-8')	Soluble	Solid	300.0	32583
MB 880-32583/1-A	Method Blank	Soluble	Solid	300.0	32583
LCS 880-32583/2-A	Lab Control Sample	Soluble	Solid	300.0	32583
LCSD 880-32583/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32583
890-2784-14 MS	BH-173 (6')	Soluble	Solid	300.0	32583
890-2784-14 MSD	BH-173 (6')	Soluble	Solid	300.0	32583
890-2784-24 MS	BH-183 (4.5')	Soluble	Solid	300.0	32583
890-2784-24 MSD	BH-183 (4.5')	Soluble	Solid	300.0	32583

Eurofins Carlsbad

3

3

5

7

a

10

12

13

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2784-1

SDG: Lea County NM

HPLC/IC

Analysis Batch: 33169

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-34	SW-44 (4.5-8')	Soluble	Solid	300.0	32584
890-2784-35	SW-45 (0-8')	Soluble	Solid	300.0	32584
890-2784-36	SW-46 (0-5')	Soluble	Solid	300.0	32584
890-2784-37	SW-47 (0-5')	Soluble	Solid	300.0	32584
890-2784-38	SW-48 (6-8')	Soluble	Solid	300.0	32584
890-2784-39	SW-49 (4.5-6')	Soluble	Solid	300.0	32584
890-2784-40	SW-53 (0-8')	Soluble	Solid	300.0	32584
890-2784-41	SW-54 (0-4.5')	Soluble	Solid	300.0	32584
890-2784-42	SW-55 (4.5-8')	Soluble	Solid	300.0	32584
890-2784-43	SW-56 (0-4.5')	Soluble	Solid	300.0	32584
890-2784-44	SW-57 (6-8')	Soluble	Solid	300.0	32584
890-2784-45	SW-58 (6-8')	Soluble	Solid	300.0	32584
890-2784-46	SW-59 (6-8')	Soluble	Solid	300.0	32584
890-2784-47	SW-60 (0-13')	Soluble	Solid	300.0	32584
890-2784-48	SW-61 (8-13')	Soluble	Solid	300.0	32584
890-2784-49	SW-62 (8-13')	Soluble	Solid	300.0	32584
890-2784-50	SW-63 (8-13')	Soluble	Solid	300.0	32584
890-2784-51	SW-64 (8-10')	Soluble	Solid	300.0	32584
890-2784-52	SW-65 (8-10')	Soluble	Solid	300.0	32584
890-2784-53	SW-66 (8-10')	Soluble	Solid	300.0	32584
MB 880-32584/1-A	Method Blank	Soluble	Solid	300.0	32584
LCS 880-32584/2-A	Lab Control Sample	Soluble	Solid	300.0	32584
LCSD 880-32584/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32584
890-2784-34 MS	SW-44 (4.5-8')	Soluble	Solid	300.0	32584
890-2784-34 MSD	SW-44 (4.5-8')	Soluble	Solid	300.0	32584
890-2784-44 MS	SW-57 (6-8')	Soluble	Solid	300.0	32584
890-2784-44 MSD	SW-57 (6-8')	Soluble	Solid	300.0	32584

Analysis Batch: 33170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2784-54	SW-67 (8-10')	Soluble	Solid	300.0	32585
890-2784-55	SW-68 (0-6')	Soluble	Solid	300.0	32585
890-2784-56	SW-69 (0-6')	Soluble	Solid	300.0	32585
890-2784-57	SW-70 (0-4.5')	Soluble	Solid	300.0	32585
890-2784-58	SW-71 (0-4.5')	Soluble	Solid	300.0	32585
MB 880-32585/1-A	Method Blank	Soluble	Solid	300.0	32585
LCS 880-32585/2-A	Lab Control Sample	Soluble	Solid	300.0	32585
LCSD 880-32585/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32585
890-2784-54 MS	SW-67 (8-10')	Soluble	Solid	300.0	32585
890-2784-54 MSD	SW-67 (8-10')	Soluble	Solid	300.0	32585

Eurofins Carlsbad

2

3

6

ŏ

10

12

13

Client Sample ID: BH-120 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 00:00	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/22/22 22:36	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33167	08/29/22 04:12	CH	EET MID

Client Sample ID: BH-124 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 00:20	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/22/22 23:41	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 04:20	CH	EET MID

Client Sample ID: BH-132 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample	ID: 890-2784-3
------------	----------------

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 00:41	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 00:03	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 04:28	CH	EET MID

Client Sample ID: BH-159 (8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-4
Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 01:01	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID

Eurofins Carlsbad

Page 85 of 113

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Lab Sample ID: 890-2784-4

Client Sample ID: BH-159 (8')
Date Collected: 08/18/22 00:00

Matrix: Solid

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 00:24	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33167	08/29/22 04:35	CH	EET MID

Lab Sample ID: 890-2784-5

Date Collected: 08/18/22 00:00

Client Sample ID: BH-162 (8')

Matrix: Solid

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 01:21	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 00:45	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 04:59	CH	EET MID

Client Sample ID: BH-164 (8')

Lab Sample ID: 890-2784-6

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 01:42	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 01:06	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33167	08/29/22 11:32	CH	EET MID

Client Sample ID: BH-166 (8')

Lab Sample ID: 890-2784-7

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 02:02	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	32669 32586	08/22/22 13:43 08/23/22 01:27	DM SM	EET MID EET MID

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

3

4

6

0

10

12

Client Sample ID: BH-166 (8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 05:30	CH	EET MID

Client Sample ID: BH-167 (8') Lab Sample ID: 890-2784-8

Date Collected: 08/18/22 00:00 **Matrix: Solid**

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 02:23	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 01:49	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 05:38	CH	EET MID

Client Sample ID: BH-168 (5') Lab Sample ID: 890-2784-9

Date Collected: 08/18/22 00:00 **Matrix: Solid** Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 02:43	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 02:10	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 05:46	CH	EET MID

Client Sample ID: BH-169 (5') Lab Sample ID: 890-2784-10

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 03:04	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 02:31	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 05:54	CH	EET MID

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Client Sample ID: BH-170 (5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 04:25	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	32669 32586	08/22/22 13:43 08/23/22 03:14	DM SM	EET MID EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 06:02	CH	EET MID

Client Sample ID: BH-171 (5') Lab Sample ID: 890-2784-12

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 04:46	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 03:35	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 06:10	CH	EET MID

Client Sample ID: BH-172 (6')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 05:06	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 03:56	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32582	08/21/22 19:23	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33167	08/29/22 06:17	CH	EET MID

Client Sample ID: BH-173 (6') Lab Sample ID: 890-2784-14

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 05:26	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Page 88 of 113

Lab Sample ID: 890-2784-13

Matrix: Solid

Client Sample ID: BH-173 (6')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-14

Matrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 04:17	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 07:20	CH	EET MID

Client Sample ID: BH-174 (6') Lab Sample ID: 890-2784-15 Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.09 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 05:47	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 04:38	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 07:44	CH	EET MID

Client Sample ID: BH-175 (4.5') Lab Sample ID: 890-2784-16

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 06:07	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 04:59	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 07:52	CH	EET MID

Lab Sample ID: 890-2784-17 Client Sample ID: BH-176 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 06:28	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.00 g	10 mL	32669 32586	08/22/22 13:43 08/23/22 05:21	DM SM	EET MID EET MID

Eurofins Carlsbad

Client Sample ID: BH-176 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-17

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 08:00	CH	EET MID

Client Sample ID: BH-177 (4.5') Lab Sample ID: 890-2784-18

Date Collected: 08/18/22 00:00

Matrix: Solid Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 06:48	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 05:42	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33168	08/29/22 08:07	CH	EET MID

Client Sample ID: BH-178 (4.5') Lab Sample ID: 890-2784-19

Date Collected: 08/18/22 00:00 **Matrix: Solid** Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 07:09	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 06:03	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 08:31	CH	EET MID

Client Sample ID: BH-179 (4.5') Lab Sample ID: 890-2784-20

Date Collected: 08/18/22 00:00 **Matrix: Solid** Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	33358	08/30/22 12:01	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33411	09/01/22 07:29	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32669	08/22/22 13:43	DM	EET MID
Total/NA	Analysis	8015B NM		1			32586	08/23/22 06:24	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 08:39	CH	EET MID

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: BH-180 (4.5') Lab Sample ID: 890-2784-21

Date Collected: 08/18/22 00:00 Matrix: Solid Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 18:05	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 13:21	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33168	08/29/22 08:47	CH	EET MID

Client Sample ID: BH-181 (4.5') Lab Sample ID: 890-2784-22

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.04 g 5 mL 33361 08/30/22 12:16 EL EET MID Total/NA 8021B 5 mL 33465 08/31/22 18:25 **EET MID** Analysis 1 5 mL MR Total/NA Total BTEX 33551 09/01/22 12:44 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 32780 08/23/22 11:36 SM **EET MID** Total/NA 32714 Prep 8015NM Prep 10.03 g 08/22/22 16:33 DM **EET MID** 10 mL Total/NA Analysis 8015B NM 32806 08/24/22 14:26 SM **EET MID** Soluble 08/21/22 19:29 Leach DI Leach 4.99 g 50 mL 32583 SMC **EET MID** Soluble Analysis 300.0 5 0 mL 0 mL 33168 08/29/22 08:54 СН **EET MID**

Client Sample ID: BH-182 (4.5') Lab Sample ID: 890-2784-23

Date Collected: 08/18/22 00:00 **Matrix: Solid** Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 18:46	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 14:47	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 09:02	CH	EET MID

Lab Sample ID: 890-2784-24 Client Sample ID: BH-183 (4.5')

Date Collected: 08/18/22 00:00 **Matrix: Solid** Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 19:06	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID

Eurofins Carlsbad

Page 91 of 113 Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: BH-183 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-24

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 15:17	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 09:10	CH	EET MID

Lab Sample ID: 890-2784-25 **Client Sample ID: BH-184 (4.5')**

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 19:26	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 16:17	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 09:34	CH	EET MID

Client Sample ID: BH-185 (4.5') Lab Sample ID: 890-2784-26

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 19:47	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 16:39	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 09:42	CH	EET MID

Lab Sample ID: 890-2784-27 Client Sample ID: BH-186 (4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 20:07	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	32714 32806	08/22/22 16:33 08/24/22 18:48	DM SM	EET MID EET MID

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Lab Sample ID: 890-2784-27 Matrix: Solid

Client Sample ID: BH-186 (4.5') Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33168	08/29/22 10:05	CH	EET MID

Client Sample ID: BH-187 (4.5') Lab Sample ID: 890-2784-28

Date Collected: 08/18/22 00:00 **Matrix: Solid**

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 20:28	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 17:01	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 10:13	CH	EET MID

Client Sample ID: BH-188 (4.5') Lab Sample ID: 890-2784-29

Date Collected: 08/18/22 00:00 **Matrix: Solid**

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 20:48	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 17:23	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33168	08/29/22 10:21	CH	EET MID

Client Sample ID: BH-189 (4.5') Lab Sample ID: 890-2784-30

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 22:59	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 17:44	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 10:29	CH	EET MID

Eurofins Carlsbad

Client Sample ID: SW-38 (4.5-13')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-31

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	33465	08/31/22 21:09	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 20:15	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 10:36	CH	EET MID

Client Sample ID: SW-42 (4.5-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-32

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 23:19	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 18:06	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 10:44	CH	EET MID

Client Sample ID: SW-43 (6-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample	ID: 890-2784-33
------------	-----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	08/31/22 23:40	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 20:36	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32583	08/21/22 19:29	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33168	08/29/22 10:52	CH	EET MID

Client Sample ID: SW-44 (4.5-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample II	D: 890-2784-34
	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 00:00	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID

Eurofins Carlsbad

Page 94 of 113

Client Sample ID: SW-44 (4.5-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-34

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 20:58	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 14:49	CH	EET MID

Client Sample ID: SW-45 (0-8')

Lab Sample ID: 890-2784-35

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 00:20	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 19:32	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 15:12	CH	EET MID

Client Sample ID: SW-46 (0-5')

Date Collected: 08/18/22 00:00

Lab Sample ID: 890-2784-36

Matrix: Solid

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 00:41	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 21:19	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33169	08/29/22 15:20	CH	EET MID

Client Sample ID: SW-47 (0-5')

Lab Sample ID: 890-2784-37

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 01:01	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	32714 32806	08/22/22 16:33 08/24/22 21:41	DM SM	EET MID EET MID

Eurofins Carlsbad

Matrix: Solid

2

4

5

7

9

1 1 12

Project/Site: Kaiser SWD

Client: Tetra Tech, Inc.

Client Sample ID: SW-47 (0-5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-37

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 15:28	CH	EET MID

Client Sample ID: SW-48 (6-8')

Lab Sample ID

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-38

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 01:21	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 19:53	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 15:36	CH	EET MID

Client Sample ID: SW-49 (4.5-6')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-39

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 01:42	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 19:10	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33169	08/29/22 15:59	CH	EET MID

Client Sample ID: SW-53 (0-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

SW-53 (0-8')
Lab Sample ID: 890-2784-40
/22 00:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33361	08/30/22 12:16	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 02:02	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32714	08/22/22 16:33	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/24/22 22:02	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33169	08/29/22 16:07	CH	EET MID

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: SW-54 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-41

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 05:39	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32774	08/23/22 10:46	DM	EET MID
Total/NA	Analysis	8015B NM		1			32808	08/24/22 23:07	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 16:15	CH	EET MID

Client Sample ID: SW-55 (4.5-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-42

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.08 g 5 mL 33362 08/30/22 12:29 EL EET MID Total/NA 8021B 5 mL 09/01/22 06:00 **EET MID** Analysis 1 5 mL 33465 MR Total/NA Total BTEX 33551 09/01/22 12:44 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 32780 08/23/22 11:36 SM **EET MID** Total/NA 32774 Prep 8015NM Prep 10.01 g 08/23/22 10:46 DM EET MID 10 mL Total/NA Analysis 8015B NM 32808 08/24/22 23:29 ΑJ **EET MID** Soluble 08/21/22 19:35 SMC Leach DI Leach 4.97 g 50 mL 32584 **EET MID** Soluble Analysis 300.0 5 0 mL 0 mL 33169 08/29/22 16:23 СН **EET MID**

Client Sample ID: SW-56 (0-4.5')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-43

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 06:20	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32774	08/23/22 10:46	DM	EET MID
Total/NA	Analysis	8015B NM		1			32808	08/24/22 23:51	AJ	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 16:31	CH	EET MID

Client Sample ID: SW-57 (6-8')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

Lab Sample ID:	890-2784-44
	Matrix: Solid

nalyst	Lab	
	EET MID	_
₹	EET MID	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 06:40	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID

Client Sample ID: SW-57 (6-8')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-44

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32774	08/23/22 10:46	DM	EET MID
Total/NA	Analysis	8015B NM		1			32808	08/25/22 00:12	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 16:39	CH	EET MID

Client Sample ID: SW-58 (6-8') Lab Sample ID: 890-2784-45

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		5	5 mL	5 mL	33465	09/01/22 09:42	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	32774	08/23/22 10:46	DM	EET MID
Total/NA	Analysis	8015B NM		1			32808	08/25/22 00:33	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 17:03	CH	EET MID

Client Sample ID: SW-59 (6-8') Lab Sample ID: 890-2784-46 Date Collected: 08/18/22 00:00 **Matrix: Solid**

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 07:01	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32774	08/23/22 10:46	DM	EET MID
Total/NA	Analysis	8015B NM		1			32808	08/25/22 00:54	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 17:10	CH	EET MID

Lab Sample ID: 890-2784-47 Client Sample ID: SW-60 (0-13')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 07:21	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	32774 32808	08/23/22 10:46 08/25/22 01:16	DM AJ	EET MID EET MID

Eurofins Carlsbad

Page 98 of 113

Client Sample ID: SW-60 (0-13')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-47

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33169	08/29/22 17:32	CH	EET MID

Client Sample ID: SW-61 (8-13')

Lab Sample ID: 890-2784-48

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 07:42	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/23/22 20:43	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		10	0 mL	0 mL	33169	08/29/22 17:39	CH	EET MID

Client Sample ID: SW-62 (8-13')

Lab Sample ID: 890-2784-49

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 08:02	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/23/22 22:50	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 17:46	CH	EET MID

Client Sample ID: SW-63 (8-13')

Lab Sample ID: 890-2784-50

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 08:22	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/23/22 21:04	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 17:54	CH	EET MID

Eurofins Carlsbad

Job ID: 890-2784-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-64 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Lab Sample ID: 890-2784-51

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 11:32	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	32713 32730	08/22/22 16:29 08/23/22 23:11	DM AJ	EET MID
	,			ı						
Soluble	Leach	DI Leach			4.98 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 18:01	CH	EET MID

Client Sample ID: SW-65 (8-10') Lab Sample ID: 890-2784-52

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.00 g 5 mL 33362 08/30/22 12:29 EL EET MID Total/NA 8021B 5 mL 09/01/22 11:52 **EET MID** Analysis 1 5 mL 33465 MR Total/NA Total BTEX 33551 09/01/22 12:44 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 32780 08/23/22 11:36 SM **EET MID** Total/NA 32713 Prep 8015NM Prep 10.02 g 08/22/22 16:29 DM **EET MID** 10 mL Total/NA Analysis 8015B NM 32730 08/23/22 23:32 ΑJ **EET MID** Soluble 08/21/22 19:35 Leach DI Leach 5.05 g 50 mL 32584 SMC **EET MID** Soluble Analysis 300.0 0 mL 0 mL 33169 08/29/22 18:08 СН **EET MID**

Client Sample ID: SW-66 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 12:13	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/23/22 23:53	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32584	08/21/22 19:35	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33169	08/29/22 18:15	CH	EET MID

Client Sample ID: SW-67 (8-10')

Date Collected: 08/18/22 00:00

Date Received: 08/19/22 08:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 12:33	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2784-53

Lab Sample ID: 890-2784-54

Matrix: Solid

Client Sample ID: SW-67 (8-10')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-54

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/24/22 00:14	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32585	08/21/22 19:42	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33170	08/29/22 09:12	CH	EET MID

Client Sample ID: SW-68 (0-6')

Lab Sample ID: 890-2784-55

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 12:53	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/24/22 00:36	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	32585	08/21/22 19:42	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33170	08/29/22 09:40	CH	EET MID

Client Sample ID: SW-69 (0-6')

Date Collected: 08/18/22 00:00

Lab Sample ID: 890-2784-56

Matrix: Solid

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 13:14	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/23/22 22:07	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	32585	08/21/22 19:42	SMC	EET MID
Soluble	Analysis	300.0		10	0 mL	0 mL	33170	08/29/22 09:49	CH	EET MID

Client Sample ID: SW-70 (0-4.5')

Lab Sample ID: 890-2784-57

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	33465	09/01/22 14:35	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.04 g	10 mL	32713 32730	08/22/22 16:29 08/23/22 22:29	DM AJ	EET MID EET MID

Eurofins Carlsbad

Page 101 of 113

2

Л

5

7

9

11

13

Client Sample ID: SW-70 (0-4.5')

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2784-57

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	32585	08/21/22 19:42	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33170	08/29/22 09:58	CH	EET MID

Client Sample ID: SW-71 (0-4.5')

Lab Sample ID: 890-2784-58

Date Collected: 08/18/22 00:00 Date Received: 08/19/22 08:00 Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33362	08/30/22 12:29	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33465	09/01/22 13:34	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33551	09/01/22 12:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			32780	08/23/22 11:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32713	08/22/22 16:29	DM	EET MID
Total/NA	Analysis	8015B NM		1			32730	08/24/22 00:57	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32585	08/21/22 19:42	SMC	EET MID
Soluble	Analysis	300.0		5	0 mL	0 mL	33170	08/29/22 10:07	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

1

3

5

6

0

10

12

15

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report by	it the laboratory is not cortifi	ed by the governing authority. This list ma	vinaluda analutaa fari
the agency does not of		it the laboratory is not certili	ed by the governing admonty. This list his	ay iliciude allaiytes for t
0 ,		Matrix	Analyte	ay include analytes for t
the agency does not of	fer certification.	•	, , ,	ay include analytes for v

3

4

7

A A

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2784-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

2

5

7

10

11

13

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2784-1 SDG: Lea County NM

Client Sample ID Collected Lab Sample ID Matrix Received Depth BH-120 (8') 890-2784-1 Solic 08/18/22 00:00 08/19/22 08:00 8 890-2784-2 BH-124 (8') Solid 08/18/22 00:00 08/19/22 08:00 8 890-2784-3 BH-132 (8') Solid 08/18/22 00:00 08/19/22 08:00 8 890-2784-4 BH-159 (8') Solid 08/18/22 00:00 08/19/22 08:00 8 890-2784-5 Solid 08/18/22 00:00 08/19/22 08:00 8 BH-162 (8') 890-2784-6 BH-164 (8') Solid 08/18/22 00:00 08/19/22 08:00 8 890-2784-7 BH-166 (8') Solid 08/18/22 00:00 08/19/22 08:00 8 890-2784-8 BH-167 (8') Solid 08/18/22 00:00 08/19/22 08:00 8 890-2784-9 BH-168 (5') Solid 08/18/22 00:00 08/19/22 08:00 5 890-2784-10 BH-169 (5') Solic 08/18/22 00:00 08/19/22 08:00 5 890-2784-11 BH-170 (5') Solid 08/18/22 00:00 08/19/22 08:00 5 890-2784-12 Solid 5 BH-171 (5') 08/18/22 00:00 08/19/22 08:00 Solid 6 890-2784-13 BH-172 (6') 08/18/22 00:00 08/19/22 08:00 Solid 6 890-2784-14 BH-173 (6') 08/18/22 00:00 08/19/22 08:00 890-2784-15 BH-174 (6') Solid 08/18/22 00:00 08/19/22 08:00 6 08/18/22 00:00 08/19/22 08:00 890-2784-16 BH-175 (4.5') Solid 4.5 890-2784-17 BH-176 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 890-2784-18 BH-177 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 890-2784-19 BH-178 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 890-2784-20 BH-179 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 890-2784-21 BH-180 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 890-2784-22 BH-181 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 4.5 890-2784-23 BH-182 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 890-2784-24 BH-183 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 BH-184 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 45 890-2784-25 Solid 08/19/22 08:00 890-2784-26 BH-185 (4.5') 08/18/22 00:00 4.5 Solid 08/18/22 00:00 08/19/22 08:00 4.5 890-2784-27 BH-186 (4.5') 890-2784-28 BH-187 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 Solid 08/19/22 08:00 890-2784-29 BH-188 (4.5') 08/18/22 00:00 4.5 890-2784-30 BH-189 (4.5') Solid 08/18/22 00:00 08/19/22 08:00 4.5 890-2784-31 SW-38 (4.5-13') Solid 08/18/22 00:00 08/19/22 08:00 4.5 - 13890-2784-32 SW-42 (4.5-8') Solid 08/18/22 00:00 08/19/22 08:00 45-8 890-2784-33 SW-43 (6-8') Solid 08/18/22 00:00 08/19/22 08:00 6 - 8 Solid 4.5 - 8 890-2784-34 SW-44 (4.5-8') 08/18/22 00:00 08/19/22 08:00 890-2784-35 SW-45 (0-8') Solid 08/18/22 00:00 08/19/22 08:00 0 - 8 Solid 08/19/22 08:00 0 - 5 890-2784-36 SW-46 (0-5') 08/18/22 00:00 890-2784-37 SW-47 (0-5') Solid 08/18/22 00:00 08/19/22 08:00 0 - 5 890-2784-38 SW-48 (6-8') Solid 08/18/22 00:00 08/19/22 08:00 6 - 8 890-2784-39 SW-49 (4.5-6') Solid 08/18/22 00:00 08/19/22 08:00 4.5 - 6 Solid 08/19/22 08:00 0 - 8 890-2784-40 SW-53 (0-8') 08/18/22 00:00 890-2784-41 SW-54 (0-4.5') Solid 08/18/22 00:00 08/19/22 08:00 0 - 4.5 890-2784-42 Solid 08/18/22 00:00 08/19/22 08:00 4.5 - 8 SW-55 (4.5-8') 890-2784-43 SW-56 (0-4.5') Solid 08/18/22 00:00 08/19/22 08:00 0 - 4.5890-2784-44 Solid 08/18/22 00:00 08/19/22 08:00 6 - 8 SW-57 (6-8') 890-2784-45 SW-58 (6-8') Solid 08/18/22 00:00 08/19/22 08:00 6 - 8 890-2784-46 SW-59 (6-8') Solid 08/18/22 00:00 08/19/22 08:00 6 - 8 Solid 890-2784-47 SW-60 (0-13') 08/18/22 00:00 08/19/22 08:00 0 - 13 890-2784-48 SW-61 (8-13') Solid 08/18/22 00:00 08/19/22 08:00 8 - 13 890-2784-49 Solid 08/19/22 08:00 8 - 13 SW-62 (8-13') 08/18/22 00:00 890-2784-50 SW-63 (8-13') Solid 08/18/22 00:00 08/19/22 08:00 8 - 13 SW-64 (8-10') Solid 08/19/22 08:00 890-2784-51 08/18/22 00:00 8 - 10 890-2784-52 SW-65 (8-10') Solid 08/18/22 00:00 08/19/22 08:00 8 - 10 890-2784-53 SW-66 (8-10') Solid 08/18/22 00:00 08/19/22 08:00 8 - 10 890-2784-54 SW-67 (8-10') Solid 08/18/22 00:00 08/19/22 08:00 8 - 10

2

4

6

8

9

. .

13

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-2784-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2784-55	SW-68 (0-6')	Solid	08/18/22 00:00	08/19/22 08:00	0 - 6
890-2784-56	SW-69 (0-6')	Solid	08/18/22 00:00	08/19/22 08:00	0 - 6
890-2784-57	SW-70 (0-4.5')	Solid	08/18/22 00:00	08/19/22 08:00	0 - 4.5
890-2784-58	SW-71 (0-4.5')	Solid	08/18/22 00:00	08/19/22 08:00	0 - 4.5

	Relinquished by		Relinquished by:	2	Relinguished by											(LABUSE)	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		4
				All	1	ВН-169 (5)	ВН-168 (5')	вн-167 (5')	ВН-166 (8')	ВН-164 (9')	ВН-162 (8')	ВН-159 (8')	BH-132 (8')	BH-124 (8')	вн-120 (8')		SAMPLE			tory: Eurofins Xenco	Permian Water Solutions -	Lea County, NM	Kaiser SWD	Permian Water Solutions		Tetr
	Date: Time:		Date: Time:	22/19/18	Date: Time:												SAMPLE IDENTIFICATION			0	r Solutions - Dusty McInturff	М		r Solutions		Tetra Tech, Inc.
ORIGINAL COPY	Received by:		Received by:	() (Me 04)	Received by:	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	DATE TIME	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager		
	Date: Time:		Date: Time:	6 8.4.32 .	Date: Time:	×	×	×	×	×	×	×	×	×	×	WATI SOIL HCL HNO: ICE None	3	MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Midland, Texas 79705 Tel (432) 682-4559
(Circle) HAND DELIVERED	7.000 1.000 1.000	مند	Sample Temperature	SOD LAB USE ONLY		×	×	×	×		×	×	×	×	×	PAH 8	RED (8021E X1005 8015M 3270C	Y/N) BTE (Ext to	EX 82600 0 C35) - DRO - G	DRO - M				ANALYS		
/ERED FEDEX UPS Tracking#	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH: Same Day 24 hr	STANDARD	REMARKS	×	×	×	×	×	×	×	×	×	×	TCLP TCLP RCI GC/MS GC/MS PCB'S NORM	Volatile Semi V S Vol. S Semi 8082	es /olatiles 8260B . Vol. 8 / 608			Hg			890-2784 Chain of Custody		
	TRRP Report	a.	hr 48 hr 72 hr													Chlori Gene	de s ral Wa	Sulfate ter Che n Balar	emistry (see att	ached I	ist)				

ORIGINAL COPY

	Relinquished by		Relinquished by	Ven	Relinquished by:											(LAB USE)	LAB #		Comments:	Receiving Laboratory		invoice to:	Project Location: (county, state)	Project Name:		Olient Name:	႕	Analysis Re
	Date: Time:		Date: Time:	A Got 8/19/22	Date: Time:		BH-178 (4.5')	ВН-177 (4.5')	BH-176 (4.5')	BH-175 (4.5')	BH-174 (6°)	BH-173 (6')	ВН-172 (6')	BH-171 (5')	BH-170 (5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions - Dusty McInturff		Lea County, NM	Kaiser SWD	Permian Water Solutions		Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
	Received by:		Received by:	(1000)	Received by:	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	DATE TIME	YEAR: 2020	SAMPLING			ff Sampler Signature:		Project #:	Clair.		Site Manager		
	Date: Ilme:	1	Date: Time:	PE-61.0 4	Date: Ime	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL HNO ₃ ICE None	R	MATRIX PRESERVATIVE		Peyton Oliver			212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Midland, Texas 79705 Tel (432) 682-4559	901W WAII Street, Ste 100
(Circle) HAND DELIVERED		D	Sample Temperature		A BOUND TO INCIDENT A	×		×		×	×	×	×	×	×	PAH 82 Total M	RED (18021B (1005 015M (270C etals A	ERS (/N) BTE (Ext to	EX 82600 0 C35) - DRO - 0	ORO -	e Hg))			ANALISISA			
VERED FEDEX UPS Tracking#:	Special Report Limits or TRRP Report	Rush Charges Authorized	RUST. Sallie Day 24 III		X STANDARD	X	×	×	×	×	×	×	×	×	×	TCLP V TCLP S RCI GC/MS GC/MS PCB'S NORM	Vol. 8 Semi. 8082 /	s platiles 260B Vol. 8	/ 624 3270C/62		e Hg				(Circle or Specify Method N	COLLEGE		rage
	₹P Report		12 11	7												General Anion/G			emistry (see a	ttach	ed	list)		4 0.)			2 01

Page 108 of 113

ORIGINAL COPY

	Relinquished by:		Relinquished by:	· Far	Relinquished by:	В	В	В	В	В	В	В	В	В	8	(LABUSE)	LAB#		Comments:		Receiving	(county, state)	Project Location:	Project Name:	Client Name:		T T		Analysis Req
	Date: Time:		Date: Time:	7, 6- 8/19/12	Date: Time:	П	BH-188 (4.5')	BH-187 (4.5')	BH-186 (4.5')	BH-185 (4.5')	BH-184 (4.5')	BH-183 (4.5')	BH-182 (4.5')	BH-181 (4.5')	BH-180 (4.5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions - Dusty McInturff	Lea County, NM		Kaiser SWD	Permian Water Solutions		rena rech, inc.	Total Took Inc	Analysis Request of Chain of Custody Record
	Received by:		Received by:		Received by:	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	DATE TIME	YEAR: 2020	SAMPLING			ff Sampler Signature:		Project 株	<u>Clair.</u> G	Site Manager				
	Date: Time:	Н	V Date: Time:	7 8.2.00		×	×	×	×	×	×	×	×	×	×	WATER SOIL HCL HNO ₃ ICE None		MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230		Clair.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Tel (432) 682-4559	Widtend, Texas 79705	
Circles Have		7,0	Sample Temperature		LAB USE ONLY		×	×	×	×	×	×	×	×	×	# CONT FILTER BTEX 8 TPH TX TPH 80	ED (1 021B 1005 15M ((Ext to			MRO)				ANALYSIS				
DOE WEDEN FENEY LINE	Special Re	Rush Cha	perature RUSH: Same Day	[X NARKS											PAH 82 Total Me TCLP M TCLP V TCLP Se RCI GC/MS GC/MS	etals A etals A platile: emi Vo	Ag As s platiles 2608	Ba Cd C	r Pb S					REQUEST				
Tooling #	Special Report Limits or TRRP Report	Rush Charges Authorized	24 hr 48 hr		STANDARD	×	×	×	×	×	×	×	×	×	×	PCB's 8 NORM PLM (As Chloride Chloride General Anion/C	besto s s S I Wate	ulfate	emistry (see a	ttached	l list)			is Mothed No.				aye
			72 hr													Hold							_	_					2

Page 109 of 113

ORIGINAL COPY

	Relinquished by:		Relinquished by:	Ral	Relinquished by:			2-								(LAB USE)	LAB#		Comments:	Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Clear		큐	
	Date: Time:			A/19/20	Date: Time:	SW-53 (0-8')	SW-49 (4.5-6)	SW-48 (6-8')	SW-47 (0-5')	SW-46 (0-5')	SW-45 (0-8')	SW-44 (4.5-8')	SW-43 (6-8')	SW-42 (4.5-8')	SW-38 (4.5-13')		SAMPLE IDENTIFICATION			tery: Eurofins Xenco	Permian Water Solutions - Dusty McInturff	Lea County, NM	Kaiser SWD	Permian Water Solutions		Tetra Tech, Inc.	Tatus Task Inc
	Received by:		Received by:	()(w)	Received by:	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	8/18/2022	DATE	YEAR: 2020	SAMPLING		vampier signature:		Project #		OCC ON THE PROPERTY OF THE PRO	Oh Harris	•	
	Date: Time:		Date: Time:	50.8	Date: Time:	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL HNO ₃ ICE None	R	MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Tel (432) 682-4559	SUTRY Wall Street, Se 100 Midland, Texas 79705
Control HAND DELINGER	2	た。	Sample Temperature	JA LAB USE ONLY		×	×	×	×	×	×	×	×	×	×	TPH TX TPH 80 PAH 82 Total Me TCLP M	ED (\) 6021B (1005 15M (270C etals A	ERS (/N) BTE (Ext to GRO Ag As E	EX 8260	ORO - Pb Se	Hg			ANALYSIS REQUEST			
D DEDEK LESS TRACKES *	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH: Same Day 24 hr 48 hr		쭚	×	×	×	×	×	×	×	×	×	×	PCB's I NORM PLM (A: Chloride Chlorid	Vol. 8 Semi. 8082 / sbesto	vol. 8 608 es)	7 624 3270C/62 TDS emistry (tached	list)		cle or Specify Method No.)			
	ort		72 hr			_										Hold											

Page 110 of 113

Released to Imaging: 9/1/2023 2:0

9/1/2022

Released to Imaging: 9/1/2023 2:07:08 PM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2784-1

SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 2784 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Appropriate sample containers are used.

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Sample bottles are completely filled.

Sample Preservation Verified.

MS/MSDs

<6mm (1/4").

Job Number: 890-2784-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 08/22/22 08:49 AM

Login Number: 2784 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	

True

True

N/A

True

N/A

3

4

6

8

10

12

13

Released to Imaging: 9/1/2023 2:07:08 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2785-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 9/1/2022 12:08:19 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2785-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

3

6

0

10

10

13

Definitions/Glossary

Job ID: 890-2785-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NFG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2785-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2785-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2785-1

Receipt

The samples were received on 8/19/2022 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 7.0°C

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: BH-110 (6') (890-2785-1), BH-154 (8') (890-2785-2) and SW-41 (6-13') (890-2785-3). There was no cooling media present in the cooler. The client was contacted regarding this issue, and the laboratory was instructed to <CHOOSE ONE> proceed with/cancel analysis

890-2785 Sample temp 7.2/7.0 there was no temp blank and samples were taken on the 18th- client said they just brought samples from fridge with no cooler and no temp blank- wants to processed with testing

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (890-2781-A-1-D). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike duplicate (MSD) recoveries for preparation batch 880-32668 and analytical batch 880-32588 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

__

3

5

6

o

9

11

12

Client: Tetra Tech, Inc.

Job ID: 890-2785-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-110 (6')

Date Collected: 08/18/22 12:00 Date Received: 08/19/22 08:00 Lab Sample ID: 890-2785-1

Matrix: Solid

5

7

9

10

12

14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	09/01/22 02:53	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	09/01/22 02:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	09/01/22 02:53	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/30/22 11:43	09/01/22 02:53	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	09/01/22 02:53	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/30/22 11:43	09/01/22 02:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				08/30/22 11:43	09/01/22 02:53	1
1,4-Difluorobenzene (Surr)	97		70 - 130				08/30/22 11:43	09/01/22 02:53	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/01/22 12:38	1
Method: 8015 NM - Diesel Range	•	, , ,	RI	MDI	Unit	n	Prenared	Δnalvzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	
•	•	Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/23/22 14:48	
Analyte Total TPH Method: 8015B NM - Diesel Rang	Result <49.9	Qualifier U RO) (GC)	49.9		mg/Kg			08/23/22 14:48	1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier	49.9	MDL	mg/Kg	<u>D</u>	Prepared	08/23/22 14:48 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg			08/23/22 14:48	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D) Result <49.9 49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 08/22/22 13:39	08/23/22 14:48 Analyzed 08/23/22 04:59	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg		Prepared	08/23/22 14:48 Analyzed	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D) Result <49.9 49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 08/22/22 13:39	08/23/22 14:48 Analyzed 08/23/22 04:59	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:39 08/22/22 13:39	08/23/22 14:48 Analyzed 08/23/22 04:59 08/23/22 04:59	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:39 08/22/22 13:39 08/22/22 13:39	08/23/22 14:48 Analyzed 08/23/22 04:59 08/23/22 04:59 08/23/22 04:59	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:39 08/22/22 13:39 08/22/22 13:39 Prepared	08/23/22 14:48 Analyzed 08/23/22 04:59 08/23/22 04:59 08/23/22 04:59 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/22/22 13:39 08/22/22 13:39 08/22/22 13:39 Prepared 08/22/22 13:39	08/23/22 14:48 Analyzed 08/23/22 04:59 08/23/22 04:59 08/23/22 04:59 Analyzed 08/23/22 04:59	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 08/22/22 13:39 08/22/22 13:39 08/22/22 13:39 Prepared 08/22/22 13:39	08/23/22 14:48 Analyzed 08/23/22 04:59 08/23/22 04:59 08/23/22 04:59 Analyzed 08/23/22 04:59	Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: BH-154 (8')

Date Collected: 08/18/22 12:00

Lab Sample ID: 890-2785-2

Matrix: Solid

Date Received: 08/19/22 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/30/22 11:43	09/01/22 03:19	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/30/22 11:43	09/01/22 03:19	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/30/22 11:43	09/01/22 03:19	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/30/22 11:43	09/01/22 03:19	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/30/22 11:43	09/01/22 03:19	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/30/22 11:43	09/01/22 03:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				08/30/22 11:43	09/01/22 03:19	1
1,4-Difluorobenzene (Surr)	95		70 - 130				08/30/22 11:43	09/01/22 03:19	1

Client: Tetra Tech, Inc. Job ID: 890-2785-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-154 (8')

Date Collected: 08/18/22 12:00 Date Received: 08/19/22 08:00

Lab Sample ID: 890-2785-2

Matrix: Solid

Method: Total BTEX - To	otal BTEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			09/01/22 12:38	1
Method: 8015 NM - Dies	el Range Organics (DR	O) (GC)							

Result Qualifier RLMDL Unit Analyzed Analyte D Prepared Dil Fac Total TPH <50.0 U 50.0 08/23/22 14:48 mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit Analyte D Prepared Dil Fac Analyzed <50.0 U 50.0 08/22/22 13:39 08/23/22 05:21 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 50.0 <50.0 U mg/Kg 08/22/22 13:39 08/23/22 05:21 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 08/22/22 13:39 08/23/22 05:21 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac

Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Chloride 88.9 5.03 mg/Kg 08/29/22 10:47

70 - 130

70 - 130

113

104

Client Sample ID: SW-41 (6-13')

Date Collected: 08/18/22 12:00 Date Received: 08/19/22 08:00

1-Chlorooctane

o-Terphenyl

Lab Sample ID: 890-2785-3

08/23/22 05:21

08/23/22 05:21

08/22/22 13:39

08/22/22 13:39

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.0403	U	0.0403		mg/Kg		08/30/22 11:43	09/01/22 00:23	20
Toluene	<0.0403	U	0.0403		mg/Kg		08/30/22 11:43	09/01/22 00:23	20
Ethylbenzene	< 0.0403	U	0.0403		mg/Kg		08/30/22 11:43	09/01/22 00:23	20
m-Xylene & p-Xylene	<0.0806	U	0.0806		mg/Kg		08/30/22 11:43	09/01/22 00:23	20
o-Xylene	< 0.0403	U	0.0403		mg/Kg		08/30/22 11:43	09/01/22 00:23	20
Xylenes, Total	<0.0806	U	0.0806		mg/Kg		08/30/22 11:43	09/01/22 00:23	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4 D (0)			70 - 130				08/30/22 11:43	09/01/22 00:23	20
4-Bromofluorobenzene (Surr)			70-700				00/00/220		
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT	93	Qualifier	70 - 130	MDI	l Inié	D	08/30/22 11:43	09/01/22 00:23	20
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte	93 TEX Calculation Result	Qualifier	70 ₋ 130	MDL	Unit	<u>D</u>		Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte Total BTEX	93 TEX Calculation Result <0.0806	U	70 - 130	MDL	Unit mg/Kg	<u>D</u>	08/30/22 11:43		Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar	PEX Calculation Result <0.0806 age Organics (DR	U (GC)	70 - 130 RL 0.0806		mg/Kg	=	08/30/22 11:43 Prepared	Analyzed 09/01/22 12:38	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar	PEX Calculation Result <0.0806 age Organics (DR	U	70 ₋ 130			<u>D</u>	08/30/22 11:43	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte	PEX Calculation Result <0.0806 age Organics (DR	U O) (GC) Qualifier	70 - 130 RL 0.0806		mg/Kg	=	08/30/22 11:43 Prepared	Analyzed 09/01/22 12:38	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte	75 Calculation Result <0.0806 nge Organics (DR Result <49.9	U O) (GC) Qualifier U	70 - 130 RL 0.0806		mg/Kg	=	08/30/22 11:43 Prepared	Analyzed 09/01/22 12:38 Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BTAnalyte Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH	FEX Calculation Result <0.0806 age Organics (DR/Result) <49.9 ange Organics (D	U O) (GC) Qualifier U	70 - 130 RL 0.0806	MDL	mg/Kg	=	08/30/22 11:43 Prepared	Analyzed 09/01/22 12:38 Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH Method: 8015B NM - Diesel Rar	FEX Calculation Result <0.0806 age Organics (DR/Result) <49.9 ange Organics (D	O) (GC) Qualifier U RO) (GC) Qualifier	70 - 130 RL 0.0806 RL 49.9	MDL	mg/Kg Unit mg/Kg	<u></u>	Prepared Prepared	Analyzed 09/01/22 12:38 Analyzed 08/23/22 14:48	Dil Fac

Client Sample Results

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2785-1

SDG: Lea County NM

Client Sample ID: SW-41 (6-13')

Date Collected: 08/18/22 12:00 Date Received: 08/19/22 08:00 **Lab Sample ID: 890-2785-3**

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		08/22/22 13:39	08/23/22 05:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			08/22/22 13:39	08/23/22 05:42	1
o-Terphenyl	99		70 - 130			08/22/22 13:39	08/23/22 05:42	1

	Method: 300.0 - Anions, Ion Chroma	atography - S	Soluble							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	707		4.99		mg/Kg			08/29/22 10:56	1

6

8

9

10

12

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-2785-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-18581-A-21-E MS	Matrix Spike	101	104	
880-18581-A-21-F MSD	Matrix Spike Duplicate	110	108	
890-2785-1	BH-110 (6')	115	97	
890-2785-2	BH-154 (8')	107	95	
890-2785-3	SW-41 (6-13')	113	93	
LCS 880-33353/1-A	Lab Control Sample	107	106	
LCSD 880-33353/2-A	Lab Control Sample Dup	101	101	
MB 880-33353/5-A	Method Blank	74	82	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-2781-A-1-E MS	Matrix Spike	117	90
890-2781-A-1-F MSD	Matrix Spike Duplicate	87	76
890-2785-1	BH-110 (6')	107	96
890-2785-2	BH-154 (8')	113	104
890-2785-3	SW-41 (6-13')	109	99
LCS 880-32668/2-A	Lab Control Sample	98	91
LCSD 880-32668/3-A	Lab Control Sample Dup	92	91
MB 880-32668/1-A	Method Blank	101	96

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Tetra Tech, Inc. Job ID: 890-2785-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-33353/5-A

Lab Sample ID: LCS 880-33353/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 33469

Matrix: Solid

Analysis Batch: 33469

Client	Sam	ple	ID:	Meth	bc	В	lan	ık
		_		_	_			-

Prep Type: Total/NA

Prep Batch: 33353

	IIID	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	08/31/22 20:07	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	08/31/22 20:07	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	08/31/22 20:07	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/30/22 11:43	08/31/22 20:07	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/30/22 11:43	08/31/22 20:07	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/30/22 11:43	08/31/22 20:07	1

MB MB

MR MR

Surrogate	%Recovery Qualit	ier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74	70 - 130	08/30/22 11:43	08/31/22 20:07	1
1,4-Difluorobenzene (Surr)	82	70 - 130	08/30/22 11:43	08/31/22 20:07	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33353

Analysis Batch: 33469 LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1114 mg/Kg 111 70 - 130 0.1082 Toluene 0.100 mg/Kg 108 70 - 130 0.100 0.1049 105 Ethylbenzene mg/Kg 70 - 130 0.200 0.2121 106 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.1197 70 - 130 o-Xylene mg/Kg 120

LCS LCS

Surrogate	%Recovery Qu	alifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 33353

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09634		mg/Kg		96	70 - 130	14	35
Toluene	0.100	0.09803		mg/Kg		98	70 - 130	10	35
Ethylbenzene	0.100	0.09504		mg/Kg		95	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.1926		mg/Kg		96	70 - 130	10	35
o-Xylene	0.100	0.1063		mg/Kg		106	70 - 130	12	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1.4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-18581-A-21-E MS

Lab Sample ID: LCSD 880-33353/2-A

Matrix: Solid

Analysis Batch: 33469

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 33353

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.1065		mg/Kg		105	70 - 130	
Toluene	< 0.00199	U	0.101	0.1017		mg/Kg		101	70 - 130	

Prep Batch: 33353

QC Sample Results

Job ID: 890-2785-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-18581-A-21-E MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid Analysis Batch: 33469

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ethylbenzene < 0.00199 U 0.101 0.09276 92 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00398 0.202 0.1866 mg/Kg 92 70 - 130 o-Xylene <0.00199 U 0.101 0.1040 70 - 130 mg/Kg 103

MS MS

Surrogate	%Recovery Qualifi	er Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 880-18581-A-21-F MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 33469

Prep Type: Total/NA

Prep Batch: 33353

Sample Sample Spike MSD MSD RPD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits Benzene <0.00199 U 0.100 0.1162 mg/Kg 116 70 - 130 9 35 Toluene <0.00199 0.100 0.1098 mg/Kg 110 70 - 130 8 35 Ethylbenzene <0.00199 0.100 0.1011 101 70 - 130 9 35 U mg/Kg 0.200 m-Xylene & p-Xylene <0.00398 U 0.2022 mq/Kq 101 70 - 130 8 35 <0.00199 U 0.100 70 - 130 o-Xylene 0.1134 mg/Kg 113

MSD MSD

мв мв

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-32668/1-A Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 32588

Prep Type: Total/NA Prep Batch: 32668

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 50.0 08/22/22 13:39 <50.0 U 08/22/22 21:31 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 08/22/22 13:39 08/22/22 21:31 mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 08/22/22 13:39 08/22/22 21:31 mg/Kg

MB MB %Recovery Limits Qualifier Prepared Dil Fac Surrogate Analyzed 70 - 130 08/22/22 13:39 1-Chlorooctane 101 08/22/22 21:31 96 70 - 130 08/22/22 13:39 08/22/22 21:31 o-Terphenyl

Lab Sample ID: LCS 880-32668/2-A Client Sample ID: Lab Control Sample

Snike

Matrix: Solid

Analysis Batch: 32588

Prep Type: Total/NA Prep Batch: 32668 LCS LCS

	- P						,0.100
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	962.3		mg/Kg		96	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	942.6		mg/Kg		94	70 - 130
C10-C28)							

Client: Tetra Tech, Inc. Job ID: 890-2785-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS %Recovery Qualifier

LCSD LCSD

Lab Sample ID: LCS 880-32668/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Surrogate

Analysis Batch: 32588

Prep Type: Total/NA

Prep Batch: 32668

1-Chlorooctane 98 70 - 130 o-Terphenyl 91 70 - 130

Lab Sample ID: LCSD 880-32668/3-A Client Sample ID: Lab Control Sample Dup

Limits

Matrix: Solid Prep Type: Total/NA

Prep Batch: 32668

Analysis Batch: 32588 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 887.7 89 70 - 130 8 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 941.0 mg/Kg 94 70 - 1300 20

C10-C28)

Surrogate %Recovery Qualifier Limits 92 70 - 130 1-Chlorooctane o-Terphenyl 91 70 - 130

Lab Sample ID: 890-2781-A-1-E MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 32588

Prep Type: Total/NA

Prep Batch: 32668

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U F1	999	1306		mg/Kg		127	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	999	1201		mg/Kg		120	70 - 130	
C10-C28)										

C10-C28)

	MS MS	
Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	117	70 - 130
o-Terphenyl	90	70 - 130

Lab Sample ID: 890-2781-A-1-F MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid**

Analysis Batch: 32588

Prep Type: Total/NA

Prep Batch: 32668

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U F1	998	1415	F1	mg/Kg		138	70 - 130	8	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	998	1042		mg/Kg		104	70 - 130	14	20
C10-C28)											

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	87		70 - 130
o-Terphenyl	76		70 - 130

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-2785-1 SDG: Lea County NM

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-32585/1-A

Matrix: Solid

Analysis Batch: 33170

мв мв

 Analyte
 Result Chloride
 Qualifier
 RL Unit
 MDL mg/Kg
 Unit
 D mg/Kg
 Prepared
 Analyzed Nalyzed
 Dil Fac Dil

Lab Sample ID: LCS 880-32585/2-A

Matrix: Solid

Analysis Batch: 33170

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 250.5 mg/Kg 100 90 - 110

Lab Sample ID: LCSD 880-32585/3-A

Matrix: Solid

Analysis Batch: 33170

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit Limits RPD Limit Chloride 250 248.0 mg/Kg 90 - 110

Lab Sample ID: 890-2784-A-54-B MS

Matrix: Solid

Analysis Batch: 33170

Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier %Rec Unit Limits 252 Chloride 215 478.7 105 90 - 110 mg/Kg

Lab Sample ID: 890-2784-A-54-C MSD

Matrix: Solid

Analysis Batch: 33170

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	215		252	486.1		mg/Kg		108	90 - 110	2	20

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-2785-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Prep Batch: 33353

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2785-1	BH-110 (6')	Total/NA	Solid	5035	
890-2785-2	BH-154 (8')	Total/NA	Solid	5035	
890-2785-3	SW-41 (6-13')	Total/NA	Solid	5035	
MB 880-33353/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-33353/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-33353/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-18581-A-21-E MS	Matrix Spike	Total/NA	Solid	5035	
880-18581-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 33469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2785-1	BH-110 (6')	Total/NA	Solid	8021B	33353
890-2785-2	BH-154 (8')	Total/NA	Solid	8021B	33353
890-2785-3	SW-41 (6-13')	Total/NA	Solid	8021B	33353
MB 880-33353/5-A	Method Blank	Total/NA	Solid	8021B	33353
LCS 880-33353/1-A	Lab Control Sample	Total/NA	Solid	8021B	33353
LCSD 880-33353/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	33353
880-18581-A-21-E MS	Matrix Spike	Total/NA	Solid	8021B	33353
880-18581-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	33353

Analysis Batch: 33548

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2785-1	BH-110 (6')	Total/NA	Solid	Total BTEX	
890-2785-2	BH-154 (8')	Total/NA	Solid	Total BTEX	
890-2785-3	SW-41 (6-13')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 32588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2785-1	BH-110 (6')	Total/NA	Solid	8015B NM	32668
890-2785-2	BH-154 (8')	Total/NA	Solid	8015B NM	32668
890-2785-3	SW-41 (6-13')	Total/NA	Solid	8015B NM	32668
MB 880-32668/1-A	Method Blank	Total/NA	Solid	8015B NM	32668
LCS 880-32668/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	32668
LCSD 880-32668/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	32668
890-2781-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	32668
890-2781-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	32668

Prep Batch: 32668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2785-1	BH-110 (6')	Total/NA	Solid	8015NM Prep	
890-2785-2	BH-154 (8')	Total/NA	Solid	8015NM Prep	
890-2785-3	SW-41 (6-13')	Total/NA	Solid	8015NM Prep	
MB 880-32668/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-32668/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-32668/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2781-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2781-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2785-1

SDG: Lea County NM

GC Semi VOA

Analysis Batch: 32787

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2785-1	BH-110 (6')	Total/NA	Solid	8015 NM	
890-2785-2	BH-154 (8')	Total/NA	Solid	8015 NM	
890-2785-3	SW-41 (6-13')	Total/NA	Solid	8015 NM	
_					

HPLC/IC

Leach Batch: 32585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2785-1	BH-110 (6')	Soluble	Solid	DI Leach	 .
890-2785-2	BH-154 (8')	Soluble	Solid	DI Leach	
890-2785-3	SW-41 (6-13')	Soluble	Solid	DI Leach	
MB 880-32585/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32585/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32585/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2784-A-54-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-2784-A-54-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 33170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2785-1	BH-110 (6')	Soluble	Solid	300.0	32585
890-2785-2	BH-154 (8')	Soluble	Solid	300.0	32585
890-2785-3	SW-41 (6-13')	Soluble	Solid	300.0	32585
MB 880-32585/1-A	Method Blank	Soluble	Solid	300.0	32585
LCS 880-32585/2-A	Lab Control Sample	Soluble	Solid	300.0	32585
LCSD 880-32585/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32585
890-2784-A-54-B MS	Matrix Spike	Soluble	Solid	300.0	32585
890-2784-A-54-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	32585

Job ID: 890-2785-1 SDG: Lea County NM

Client Sample ID: BH-110 (6')

Lab Sample ID: 890-2785-1

Matrix: Solid

Date Collected: 08/18/22 12:00 Date Received: 08/19/22 08:00

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33353	08/30/22 11:43	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33469	09/01/22 02:53	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33548	09/01/22 12:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			32787	08/23/22 14:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32668	08/22/22 13:39	DM	EET MID
Total/NA	Analysis	8015B NM		1			32588	08/23/22 04:59	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	32585	08/21/22 19:42	SMC	EET MIC
Soluble	Analysis	300.0		1	0 mL	0 mL	33170	08/29/22 10:38	CH	EET MID

Client Sample ID: BH-154 (8') Lab Sample ID: 890-2785-2

Date Collected: 08/18/22 12:00 Matrix: Solid

Date Received: 08/19/22 08:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 4.97 g 5 mL 33353 08/30/22 11:43 EL EET MID 8021B Total/NA 5 mL 33469 09/01/22 03:19 **EET MID** Analysis 1 5 mL MR Total/NA Total BTEX 33548 09/01/22 12:38 SM Analysis 1 **EET MID** Total/NA Analysis 8015 NM 32787 08/23/22 14:48 SM **EET MID** Total/NA 32668 Prep 8015NM Prep 10.00 g 10 mL 08/22/22 13:39 DM EET MID Total/NA Analysis 8015B NM 32588 08/23/22 05:21 SM **EET MID** Soluble 08/21/22 19:42 SMC Leach DI Leach 4.97 g 50 mL 32585 **EET MID** Soluble Analysis 300.0 0 mL 0 mL 33170 08/29/22 10:47 СН **EET MID**

Client Sample ID: SW-41 (6-13')

Lab Sample ID: 890-2785-3 Date Collected: 08/18/22 12:00 **Matrix: Solid**

Date Received: 08/19/22 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	33353	08/30/22 11:43	EL	EET MID
Total/NA	Analysis	8021B		20	5 mL	5 mL	33469	09/01/22 00:23	MR	EET MID
Total/NA	Analysis	Total BTEX		1			33548	09/01/22 12:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			32787	08/23/22 14:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	32668	08/22/22 13:39	DM	EET MID
Total/NA	Analysis	8015B NM		1			32588	08/23/22 05:42	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	32585	08/21/22 19:42	SMC	EET MID
Soluble	Analysis	300.0		1	0 mL	0 mL	33170	08/29/22 10:56	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2785-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report by		and because the analysis of the same of the same	
the agency does not of	• '	it the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for
,	• '	Matrix	ed by the governing authority. This list ma	ay include analytes for
the agency does not of	fer certification.	•	, , ,	ay include analytes for

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2785-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

_

5

6

8

11

Sample Summary

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-2785-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-2785-1	BH-110 (6')	Solid	08/18/22 12:00	08/19/22 08:00
890-2785-2	BH-154 (8')	Solid	08/18/22 12:00	08/19/22 08:00
890-2785-3	SW-41 (6-13')	Solid	08/18/22 12:00	08/19/22 08:00

2

4

5

8

9

11

40

	Relinquished by:		Relinguished by:	Relinquished by			60	Е		(NLY)	LAB#		Comments:	Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	(#	Analysis Req	
	Date: Time:		Date: Time:	Dale: Time:			SW-41 (6-13)	BH-154 (8')	BH-110 (6')		SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions - Dusty McInturff	Lea County, NM	Kaiser SWD	Permian Water Solutions		Tetra Tech, Inc.	Analysis Request of Chain of Custody Record	
	Received by:		Received by:	Received by:			8/18/2022	8/18/2022	8/18/2022	DATE	YEAR: 2020	SAMPLING		Sampier Signature:		Project #:		Site Manager:				
	Date: Time:			Date: Time:			×	×	×	WATE SOIL HCL HNO ₃ ICE None	R	MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Tel (432) 682-4559 Fax (432) 682-3946	Midland, Texas 79705		
(Circle) HA		Sample Temperature	000	E XAD LABUSE			×	×	×	# CON FILTER BTEX 1 TPH T	RED (8021B X1005	ERS Y/N) BIT	EX 8260		MRO)			ANALYSIS			890-2785 Chain of Custody	
(Circle) HAND DELIVERED FEDEX UPS] [RUSH	ONLY X						PAH 82 Total M TCLP N TCLP S RCI GC/MS	etals fetals folatile Gerni V	Ag As Ag As Ag As Ag As Ag As Ag As Ag As Ag As Ag As Ag As Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag	Ba Cd Cr Ba Cd C	Pb Se	Hg		!	REQUEST (Circle or S				
S Tracking #	Special Report Limits or TRRP Report	Rush Charges Authorized	Same Day 24 hr 48 hr	STANDARD			×	×	×	PCB's NORM PLM (A Chlorid Chlorid Genera	sbest e le S	os) Sulfate	emistry (ached	list)		pecify Method No.)			Page	
	port		r 72 hr							Anion/	Cation	n Bala	nce								1 of1	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-2785-1

SDG Number: Lea County NM

List Source: Eurofins Carlsbad Login Number: 2785 List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-2785-1

SDG Number: Lea County NM

List Source: Eurofins Midland
List Number: 2
List Creation: 08/22/22 08:49 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

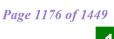
4

3

4

6

8


4.0

4.6

13

14

<6mm (1/4").

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2791-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

eurofins

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 9/2/2022 10:38:17 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

.....LINKS

Review your project results through EOL

Received by OCD: 8/28/2023 1:38:11 PM

Have a Question?

Visit us at:

www.eurofinsus.com/Env Released to Imaging: 9/1/2023 2:07:08 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-2791-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	15
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

3

4

6

8

10

1 2

13

Definitions/Glossary

Job ID: 890-2791-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC VOA

Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1-Surrogate recovery exceeds control limits, low biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-2791-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-2791-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2791-1

Receipt

The samples were received on 8/19/2022 3:48 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 26.6°C

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: SW-72 (0-4.5') (890-2791-1), BH-190 (4.5') (890-2791-2), BH-191 (4.5') (890-2791-3), BH-192 (4.5) (890-2791-4) and BH-193 (4.5') (890-2791-5). This does not meet regulatory requirements. The client was contacted regarding this issue, and the laboratory was instructed to <CHOOSE_ONE> proceed with/cancel analysis.

Samples received out of temp range 26.8/26.6 client wanted to proceed with sampling.

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-33466 and analytical batch 880-33557 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The following samples were diluted because the initial analysis produced a significant negative result - the absolute value exceeded the reporting limit (RL): SW-72 (0-4.5') (890-2791-1) and BH-193 (4.5') (890-2791-5). Reporting limits (RLs) are elevated as a result.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH-193 (4.5') (890-2791-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

_

7

_

10

1 1

13

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2791-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-72 (0-4.5')

Date Collected: 08/19/22 12:00 Date Received: 08/19/22 15:48

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2791-1

08/23/22 15:10

08/23/22 15:10

08/25/22 01:58

08/25/22 01:58

Lab Sample ID: 890-2791-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0502	U	0.0502		mg/Kg		08/31/22 14:40	09/01/22 21:12	25
Toluene	<0.0502	U	0.0502		mg/Kg		08/31/22 14:40	09/01/22 21:12	25
Ethylbenzene	<0.0502	U	0.0502		mg/Kg		08/31/22 14:40	09/01/22 21:12	25
m-Xylene & p-Xylene	<0.100	U	0.100		mg/Kg		08/31/22 14:40	09/01/22 21:12	25
o-Xylene	<0.0502	U	0.0502		mg/Kg		08/31/22 14:40	09/01/22 21:12	25
Xylenes, Total	<0.100	U	0.100		mg/Kg		08/31/22 14:40	09/01/22 21:12	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				08/31/22 14:40	09/01/22 21:12	25
1,4-Difluorobenzene (Surr)	92		70 - 130				08/31/22 14:40	09/01/22 21:12	25
- Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.100	U	0.100		mg/Kg			09/02/22 11:24	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	921		49.9		mg/Kg			08/25/22 16:03	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/23/22 15:10	08/25/22 01:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	921		49.9		mg/Kg		08/23/22 15:10	08/25/22 01:58	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/23/22 15:10	08/25/22 01:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 6.36 0.0495 08/24/22 15:18 Chloride mg/Kg

70 - 130

70 - 130

112

105

Date Collected: 08/19/22 12:00 Date Received: 08/19/22 15:48

Client Sample ID: BH-190 (4.5')

Method: 300.0 - Anions, Ion Chromatography - Soluble

1-Chlorooctane

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:29	1
Ethylbenzene	<0.00200	U F1	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:29	1
m-Xylene & p-Xylene	<0.00399	U F1	0.00399		mg/Kg		08/31/22 14:40	09/01/22 18:29	1
o-Xylene	<0.00200	U F1	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:29	1
Xylenes, Total	<0.00399	U F1	0.00399		mg/Kg		08/31/22 14:40	09/01/22 18:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/31/22 14:40	09/01/22 18:29	1
1,4-Difluorobenzene (Surr)	101		70 - 130				08/31/22 14:40	09/01/22 18:29	1

Eurofins Carlsbad

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-2791-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-190 (4.5')

Date Collected: 08/19/22 12:00

Lab Sample ID: 890-2791-2 Matrix: Solid

Date Received: 08/19/22 15:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/02/22 11:24	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	234		49.9		mg/Kg			08/25/22 16:03	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/23/22 15:10	08/25/22 08:35	1
(GRO)-C6-C10									
Diesel Range Organics (Over	234		49.9		mg/Kg		08/23/22 15:10	08/25/22 08:35	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/23/22 15:10	08/25/22 08:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				08/23/22 15:10	08/25/22 08:35	1
o-Terphenyl	113		70 - 130				08/23/22 15:10	08/25/22 08:35	1

RL

5.02

MDL Unit

mg/Kg

D

Prepared

Client Sample ID: BH-191 (4.5')

Analyte

Chloride

Date Collected: 08/19/22 12:00 Date Received: 08/19/22 15:48 **REMOVED FROM ANALYSIS TABLE**

Result Qualifier

686

Lab Sample ID: 890-2791-3

Analyzed

08/24/22 15:25

Matrix: Solid

Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/31/22 14:40	09/01/22 18:49	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/31/22 14:40	09/01/22 18:49	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/31/22 14:40	09/01/22 18:49	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/31/22 14:40	09/01/22 18:49	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/31/22 14:40	09/01/22 18:49	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/31/22 14:40	09/01/22 18:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				08/31/22 14:40	09/01/22 18:49	1
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT			70 - 130				08/31/22 14:40	09/01/22 18:49	·
-	EX Calculation	Qualifier	70 - 130 RL 0.00402	MDL	Unit mg/Kg	<u>D</u>	08/31/22 14:40 Prepared	09/01/22 18:49 Analyzed 09/02/22 11:24	Dil Fac
Method: Total BTEX - Total BT Analyte	EX Calculation Result <0.00402 ge Organics (DR0	U	RL	MDL	mg/Kg	<u>D</u>		Analyzed	·
Method: Total BTEX - Total BTI Analyte Total BTEX Method: 8015 NM - Diesel Rang	EX Calculation Result <0.00402 ge Organics (DR0	U (GC)	RL		mg/Kg		Prepared	Analyzed 09/02/22 11:24	Dil Fac
Method: Total BTEX - Total BTI Analyte Total BTEX Method: 8015 NM - Diesel Rang Analyte	EX Calculation Result <0.00402 ge Organics (DRO Result 1800	O) (GC) Qualifier	RL 0.00402		mg/Kg		Prepared	Analyzed 09/02/22 11:24 Analyzed	Dil Fac
Method: Total BTEX - Total BTI Analyte Total BTEX Method: 8015 NM - Diesel Rang Analyte Total TPH Method: 8015B NM - Diesel Ra	EX Calculation Result <0.00402 ge Organics (DRO Result 1800 nge Organics (DI	O) (GC) Qualifier	RL 0.00402		mg/Kg Unit mg/Kg		Prepared	Analyzed 09/02/22 11:24 Analyzed	Dil Fac
Method: Total BTEX - Total BTEA Analyte Total BTEX Method: 8015 NM - Diesel Rang Analyte Total TPH	EX Calculation Result <0.00402 ge Organics (DRO Result 1800 nge Organics (DI	O) (GC) Qualifier RO) (GC) Qualifier	RL 0.00402 RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 09/02/22 11:24 Analyzed 08/25/22 16:03	Dil Fac

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2791-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-191 (4.5') Date Collected: 08/19/22 12:00

Date Received: 08/19/22 15:48

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-2791-3

Matrix: Solid

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/23/22 15:10	08/25/22 02:41	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane	104		70 - 130				08/23/22 15:10	08/25/22 02:41	1	
o-Terphenyl	96		70 - 130				08/23/22 15:10	08/25/22 02:41	1	

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 25.2 08/24/22 15:49 249 mg/Kg

Client Sample ID: BH-192 (4.5)

Date Collected: 08/19/22 12:00 Date Received: 08/19/22 15:48 **REMOVED FROM ANALYSIS TABLE** Lab Sample ID: 890-2791-4

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 19:09	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 19:09	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 19:09	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/31/22 14:40	09/01/22 19:09	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 19:09	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/31/22 14:40	09/01/22 19:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				08/31/22 14:40	09/01/22 19:09	1
1,4-Difluorobenzene (Surr)	103		70 - 130				08/31/22 14:40	09/01/22 19:09	1
- Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/02/22 11:24	1
Analyte Total TPH		Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed	Dil Fac
Total TPH	2050		49.9		mg/Kg			08/25/22 16:03	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	
									Dil Fac
• •	<49.9	U	49.9	_	mg/Kg		08/23/22 15:10	08/25/22 03:02	Dil Fac
• •		U	49.9		mg/Kg		08/23/22 15:10 08/23/22 15:10	08/25/22 03:02 08/25/22 03:02	
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9								1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 2050	U	49.9		mg/Kg		08/23/22 15:10	08/25/22 03:02	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9 2050 <49.9	U	49.9 49.9		mg/Kg		08/23/22 15:10 08/23/22 15:10	08/25/22 03:02 08/25/22 03:02	1
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 2050 <49.9 %Recovery	U	49.9 49.9 <i>Limits</i>		mg/Kg		08/23/22 15:10 08/23/22 15:10 Prepared	08/25/22 03:02 08/25/22 03:02 Analyzed	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 2050 <49.9 %Recovery 101 95	U Qualifier	49.9 49.9 <u>Limits</u> 70 - 130		mg/Kg		08/23/22 15:10 08/23/22 15:10 Prepared 08/23/22 15:10	08/25/22 03:02 08/25/22 03:02 Analyzed 08/25/22 03:02	1 1 1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 2050 <49.9 **Recovery 101 95 omatography -	U Qualifier	49.9 49.9 <u>Limits</u> 70 - 130	MDL	mg/Kg	D	08/23/22 15:10 08/23/22 15:10 Prepared 08/23/22 15:10	08/25/22 03:02 08/25/22 03:02 Analyzed 08/25/22 03:02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Date Collected: 08/19/22 12:00

Date Received: 08/19/22 15:48

Job ID: 890-2791-1 SDG: Lea County NM

Project/Site: Kaiser SWD

Client Sample ID: BH-193 (4.5')

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-2791-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.0497	U	0.0497		mg/Kg		08/31/22 14:40	09/01/22 21:32	25
Toluene	< 0.0497	U	0.0497		mg/Kg		08/31/22 14:40	09/01/22 21:32	2
Ethylbenzene	< 0.0497	U	0.0497		mg/Kg		08/31/22 14:40	09/01/22 21:32	2
m-Xylene & p-Xylene	<0.0994	U	0.0994		mg/Kg		08/31/22 14:40	09/01/22 21:32	2
o-Xylene	< 0.0497	U	0.0497		mg/Kg		08/31/22 14:40	09/01/22 21:32	2
Xylenes, Total	<0.0994	U	0.0994		mg/Kg		08/31/22 14:40	09/01/22 21:32	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		70 - 130				08/31/22 14:40	09/01/22 21:32	2
1,4-Difluorobenzene (Surr)	85		70 - 130				08/31/22 14:40	09/01/22 21:32	2
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.0994	U	0.0994		mg/Kg			09/02/22 11:24	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH	16000		250		mg/Kg			08/25/22 16:03	
Method: 8015B NM - Diesel Rang									
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<250	U	250		mg/Kg		08/23/22 15:10	08/25/22 03:23	
Diesel Range Organics (Over C10-C28)	16000		250		mg/Kg		08/23/22 15:10	08/25/22 03:23	
Oll Range Organics (Over C28-C36)	<250	U	250		mg/Kg		08/23/22 15:10	08/25/22 03:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	69	S1-	70 - 130				08/23/22 15:10	08/25/22 03:23	
p-Terphenyl	101		70 - 130				08/23/22 15:10	08/25/22 03:23	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	271		24.9		mg/Kg			08/24/22 16:20	

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-2791-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2791-1	SW-72 (0-4.5')	104	92	
890-2791-2	BH-190 (4.5')	93	101	
890-2791-2 MS	BH-190 (4.5')	94	109	
890-2791-2 MSD	BH-190 (4.5')	93	108	
890-2791-3	BH-191 (4.5')	88	103	
890-2791-4	BH-192 (4.5)	91	103	
890-2791-5	BH-193 (4.5')	96	85	
LCS 880-33466/1-A	Lab Control Sample	94	99	
LCSD 880-33466/2-A	Lab Control Sample Dup	96	101	
MB 880-33466/5-A	Method Blank	78	116	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2791-1	SW-72 (0-4.5')	112	105	
890-2791-2	BH-190 (4.5')	113	113	
890-2791-3	BH-191 (4.5')	104	96	
890-2791-4	BH-192 (4.5)	101	95	
890-2791-5	BH-193 (4.5')	69 S1-	101	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Tetra Tech, Inc.

Job ID: 890-2791-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-33466/5-A

Matrix: Solid Analysis Batch: 33557 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33466

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:00	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/31/22 14:40	09/01/22 18:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/31/22 14:40	09/01/22 18:00	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/31/22 14:40	09/01/22 18:00	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130	08/31/22 14:40	09/01/22 18:00	1
1.4-Difluorobenzene (Surr)	116		70 - 130	08/31/22 14:40	09/01/22 18:00	1

Lab Sample ID: LCS 880-33466/1-A

Matrix: Solid

Analysis Batch: 33557

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 33466

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits mg/Kg Benzene 0.100 0.1098 110 70 - 130 Toluene 0.100 0.1103 mg/Kg 110 70 - 130 0.100 108 Ethylbenzene 0.1076 mg/Kg 70 - 130 0.200 99 70 - 130 m-Xylene & p-Xylene 0.1975 mg/Kg 0.100 70 - 130 o-Xylene 0.1037 mg/Kg 104

LCS LCS

Surrogate	%Recovery Qualific	er Limits
4-Bromofluorobenzene (Surr)	94	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: LCSD 880-33466/2-A

Matrix: Solid

Analysis Batch: 33557

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 33466

RPD LCSD LCSD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Limit Benzene 0.100 0.1142 mg/Kg 114 70 - 130 35 Toluene 0.100 0.1143 mg/Kg 114 70 - 130 35 Ethylbenzene 0.100 0.1120 mg/Kg 112 70 - 130 35 0.200 m-Xylene & p-Xylene 0.2059 mg/Kg 103 70 - 130 35 0.100 0.1080 108 o-Xylene mg/Kg 70 - 130 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1.4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 890-2791-2 MS

Matrix: Solid

Analysis Batch: 33557

Client Sample ID: BH-190 (4.5')

Prep Type: Total/NA

Prep Batch: 33466

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0998	0.09295		mg/Kg	_	93	70 - 130	
Toluene	<0.00200	U	0.0998	0.06941		mg/Kg		70	70 - 130	

Eurofins Carlsbad

3

4

7

9

10

12

4 4

Client Sample ID: BH-190 (4.5')

70 - 130

Client Sample ID: BH-190 (4.5')

Client Sample ID: Method Blank

Prep Type: Soluble

Prep Type: Total/NA

45

Client: Tetra Tech, Inc. Job ID: 890-2791-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2791-2 MS **Matrix: Solid**

o-Xylene

Matrix: Solid									Prep Ty	ype: Total/NA
Analysis Batch: 33557									Prep	Batch: 33466
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U F1	0.0998	0.04751	F1	mg/Kg		48	70 - 130	
m-Xylene & p-Xylene	<0.00399	U F1	0.200	0.08400	F1	mg/Kg		42	70 - 130	

0.04484 F1

mg/Kg

0.0998

MS MS

<0.00200 UF1

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 890-2791-2 MSD

Matrix: Solid

Analysis Batch: 33557									Prep	Batch:	33466
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0994	0.09702		mg/Kg		98	70 - 130	4	35
Toluene	<0.00200	U	0.0994	0.07575		mg/Kg		76	70 - 130	9	35
Ethylbenzene	<0.00200	U F1	0.0994	0.05323	F1	mg/Kg		54	70 - 130	11	35
m-Xylene & p-Xylene	<0.00399	U F1	0.199	0.09324	F1	mg/Kg		47	70 - 130	10	35
o-Xylene	<0.00200	U F1	0.0994	0.05060	F1	mg/Kg		51	70 - 130	12	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-32736/1-A

Matrix: Solid

Analysis Batch: 32797

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			08/24/22 12:02	1

Lab Sample ID: LCS 880-32736/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 32797

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	243.9		mg/Kg		98	90 - 110	

Lab Sample ID: LCSD 880-32736/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 32797

/ indigete Date in C2. C.									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	 250	243.8		mg/Kg		98	90 - 110	0	20

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-2791-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2791-2 MS **Client Sample ID: BH-190 (4.5') Matrix: Solid Prep Type: Soluble**

Analysis Batch: 32797

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	686		251	919.6		mg/Kg		93	90 - 110	

Lab Sample ID: 890-2791-2 MSD **Client Sample ID: BH-190 (4.5')**

Matrix: Solid Prep Type: Soluble

Analysis Batch: 32797 Sample Sample Spike MSD MSD %Rec RPD

RPD Analyte Result Qualifier Added Result Qualifier Limits Limit Unit %Rec Chloride 686 251 918.4 mg/Kg 93 90 - 110 0

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-2791-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Prep Batch: 33466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2791-1	SW-72 (0-4.5')	Total/NA	Solid	5035	
890-2791-2	BH-190 (4.5')	Total/NA	Solid	5035	
890-2791-3	BH-191 (4.5')	Total/NA	Solid	5035	
890-2791-4	BH-192 (4.5)	Total/NA	Solid	5035	
890-2791-5	BH-193 (4.5')	Total/NA	Solid	5035	
MB 880-33466/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-33466/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-33466/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2791-2 MS	BH-190 (4.5')	Total/NA	Solid	5035	
890-2791-2 MSD	BH-190 (4.5')	Total/NA	Solid	5035	

Analysis Batch: 33557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2791-1	SW-72 (0-4.5')	Total/NA	Solid	8021B	33466
890-2791-2	BH-190 (4.5')	Total/NA	Solid	8021B	33466
890-2791-3	BH-191 (4.5')	Total/NA	Solid	8021B	33466
890-2791-4	BH-192 (4.5)	Total/NA	Solid	8021B	33466
890-2791-5	BH-193 (4.5')	Total/NA	Solid	8021B	33466
MB 880-33466/5-A	Method Blank	Total/NA	Solid	8021B	33466
LCS 880-33466/1-A	Lab Control Sample	Total/NA	Solid	8021B	33466
LCSD 880-33466/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	33466
890-2791-2 MS	BH-190 (4.5')	Total/NA	Solid	8021B	33466
890-2791-2 MSD	BH-190 (4.5')	Total/NA	Solid	8021B	33466

Analysis Batch: 33637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2791-1	SW-72 (0-4.5')	Total/NA	Solid	Total BTEX	
890-2791-2	BH-190 (4.5')	Total/NA	Solid	Total BTEX	
890-2791-3	BH-191 (4.5')	Total/NA	Solid	Total BTEX	
890-2791-4	BH-192 (4.5)	Total/NA	Solid	Total BTEX	
890-2791-5	BH-193 (4.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 32793

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2791-1	SW-72 (0-4.5')	Total/NA	Solid	8015NM Prep	
890-2791-2	BH-190 (4.5')	Total/NA	Solid	8015NM Prep	
890-2791-3	BH-191 (4.5')	Total/NA	Solid	8015NM Prep	
890-2791-4	BH-192 (4.5)	Total/NA	Solid	8015NM Prep	
890-2791-5	BH-193 (4.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 32806

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2791-1	SW-72 (0-4.5')	Total/NA	Solid	8015B NM	32793
890-2791-2	BH-190 (4.5')	Total/NA	Solid	8015B NM	32793
890-2791-3	BH-191 (4.5')	Total/NA	Solid	8015B NM	32793
890-2791-4	BH-192 (4.5)	Total/NA	Solid	8015B NM	32793
890-2791-5	BH-193 (4.5')	Total/NA	Solid	8015B NM	32793

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-2791-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA

Analysis Batch: 32998

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2791-1	SW-72 (0-4.5')	Total/NA	Solid	8015 NM	
890-2791-2	BH-190 (4.5')	Total/NA	Solid	8015 NM	
890-2791-3	BH-191 (4.5')	Total/NA	Solid	8015 NM	
890-2791-4	BH-192 (4.5)	Total/NA	Solid	8015 NM	
890-2791-5	BH-193 (4.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 32736

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2791-1	SW-72 (0-4.5')	Soluble	Solid	DI Leach	
890-2791-2	BH-190 (4.5')	Soluble	Solid	DI Leach	
890-2791-3	BH-191 (4.5')	Soluble	Solid	DI Leach	
890-2791-4	BH-192 (4.5)	Soluble	Solid	DI Leach	
890-2791-5	BH-193 (4.5')	Soluble	Solid	DI Leach	
MB 880-32736/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-32736/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-32736/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2791-2 MS	BH-190 (4.5')	Soluble	Solid	DI Leach	
890-2791-2 MSD	BH-190 (4.5')	Soluble	Solid	DI Leach	

Analysis Batch: 32797

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2791-1	SW-72 (0-4.5')	Soluble	Solid	300.0	32736
890-2791-2	BH-190 (4.5')	Soluble	Solid	300.0	32736
890-2791-3	BH-191 (4.5')	Soluble	Solid	300.0	32736
890-2791-4	BH-192 (4.5)	Soluble	Solid	300.0	32736
890-2791-5	BH-193 (4.5')	Soluble	Solid	300.0	32736
MB 880-32736/1-A	Method Blank	Soluble	Solid	300.0	32736
LCS 880-32736/2-A	Lab Control Sample	Soluble	Solid	300.0	32736
LCSD 880-32736/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	32736
890-2791-2 MS	BH-190 (4.5')	Soluble	Solid	300.0	32736
890-2791-2 MSD	BH-190 (4.5')	Soluble	Solid	300.0	32736

Job ID: 890-2791-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-72 (0-4.5')

Date Collected: 08/19/22 12:00 Date Received: 08/19/22 15:48

Lab Sample ID: 890-2791-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	33466	08/31/22 14:40	MR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	33557	09/01/22 21:12	EL	EET MID
Total/NA	Analysis	Total BTEX		1			33637	09/02/22 11:24	AJ	EET MID
Total/NA	Analysis	8015 NM		1			32998	08/25/22 16:03	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32793	08/23/22 15:10	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/25/22 01:58	SM	EET MID
Soluble	Leach	DI Leach			5,05 g	50 mL	32736	08/23/22 09:11	KS	EET MID
Soluble	Analysis	300.0		1			32797	08/24/22 15:18	SMC	EET MID

Client Sample ID: BH-190 (4.5')

Date Collected: 08/19/22 12:00

Date Received: 08/19/22 15:48

Lab Sample ID: 890-2791-2

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 Total/NA Prep 5.01 g 5 mL 33466 08/31/22 14:40 MR EET MID 8021B Total/NA 5 mL 33557 09/01/22 18:29 **EET MID** Analysis 1 5 mL EL Total/NA Total BTEX 33637 09/02/22 11:24 EET MID Analysis 1 A.I Total/NA Analysis 8015 NM 32998 08/25/22 16:03 SM **EET MID** Total/NA 32793 EET MID Prep 8015NM Prep 10.03 g 10 mL 08/23/22 15:10 DM Total/NA Analysis 8015B NM 32806 08/25/22 08:35 SM **EET MID** Soluble KS Leach DI Leach 4.98 g 50 mL 32736 08/23/22 09:11 **EET MID** Soluble Analysis 300.0 32797 08/24/22 15:25 SMC **EET MID**

Client Sample ID: BH-191 (4.5')

Date Collected: 08/19/22 12:00

Date Received: 08/19/22 15:48

Lab Sample ID: 890-2791-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	33466	08/31/22 14:40	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33557	09/01/22 18:49	EL	EET MID
Total/NA	Analysis	Total BTEX		1			33637	09/02/22 11:24	AJ	EET MID
Total/NA	Analysis	8015 NM		1			32998	08/25/22 16:03	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32793	08/23/22 15:10	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/25/22 02:41	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	32736	08/23/22 09:11	KS	EET MID
Soluble	Analysis	300.0		5			32797	08/24/22 15:49	SMC	EET MID

Client Sample ID: BH-192 (4.5)

Date Collected: 08/19/22 12:00

Date Received: 08/19/22 15:48

Lab Sample ID: 890-2791-4 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	33466	08/31/22 14:40	MR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	33557	09/01/22 19:09	EL	EET MID
Total/NA	Analysis	Total BTEX		1			33637	09/02/22 11:24	AJ	EET MID

Client: Tetra Tech, Inc. Job ID: 890-2791-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-192 (4.5)

Date Received: 08/19/22 15:48

Lab Sample ID: 890-2791-4 Date Collected: 08/19/22 12:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			32998	08/25/22 16:03	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	32793	08/23/22 15:10	DM	EET MID
Total/NA	Analysis	8015B NM		1			32806	08/25/22 03:02	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	32736	08/23/22 09:11	KS	EET MID
Soluble	Analysis	300.0		1			32797	08/24/22 15:57	SMC	EET MID

Client Sample ID: BH-193 (4.5') Lab Sample ID: 890-2791-5

Date Collected: 08/19/22 12:00 **Matrix: Solid**

Date Received: 08/19/22 15:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	33466	08/31/22 14:40	MR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	33557	09/01/22 21:32	EL	EET MID
Total/NA	Analysis	Total BTEX		1			33637	09/02/22 11:24	AJ	EET MID
Total/NA	Analysis	8015 NM		1			32998	08/25/22 16:03	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	32793	08/23/22 15:10	DM	EET MID
Total/NA	Analysis	8015B NM		5			32806	08/25/22 03:23	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	32736	08/23/22 09:11	KS	EET MID
Soluble	Analysis	300.0		5			32797	08/24/22 16:20	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-2791-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
Texas		ELAP	T104704400-22-24	06-30-23	
The following analytes	are included in this report, bu	it the laboratory is not certifi	ed by the governing authority. This list ma	av include analytes for w	
the agency does not of	fer certification.	•	, , ,	.,	
the agency does not of Analysis Method	fer certification . Prep Method	Matrix	Analyte	-,,,	
9 ,		Matrix Solid	Analyte Total TPH		

3

4

5

9

10

12

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-2791-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM Page 18 of 22

2

4

6

9

10

12

15

Ш

Sample Summary

Client: Tetra Tech, Inc.

Job ID: 890-2791-1

Project/Site: Kaiser SWD

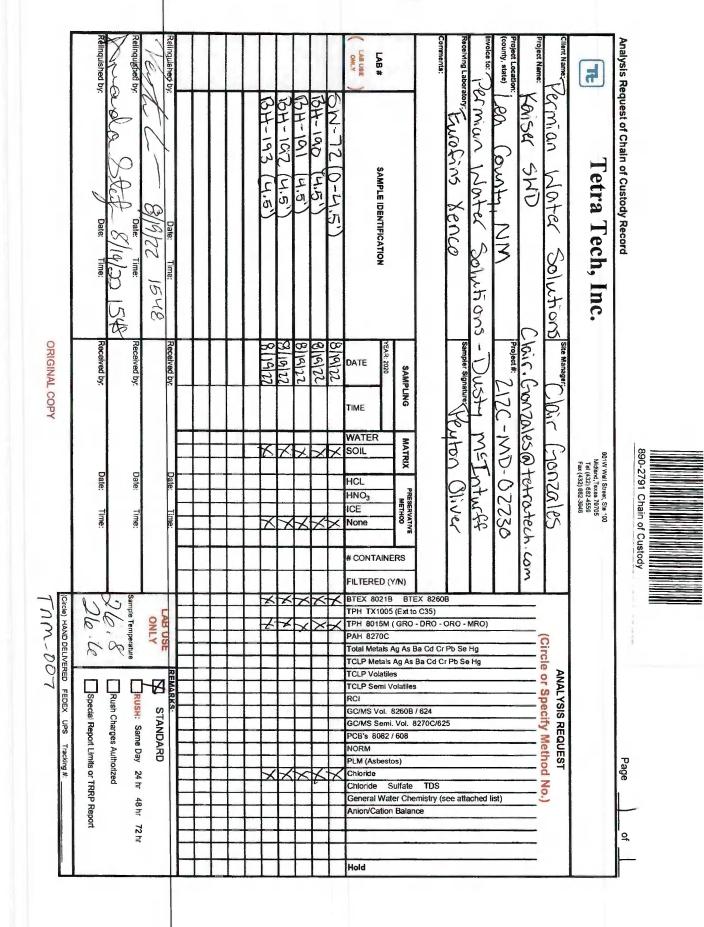
SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-2791-1	SW-72 (0-4.5')	Solid	08/19/22 12:00	08/19/22 15:48
890-2791-2	BH-190 (4.5')	Solid	08/19/22 12:00	08/19/22 15:48
890-2791-3	BH-191 (4.5')	Solid	08/19/22 12:00	08/19/22 15:48
890-2791-4	BH-192 (4.5)	Solid	08/19/22 12:00	08/19/22 15:48
890-2791-5	BH-193 (4.5')	Solid	08/19/22 12:00	08/19/22 15:48

1

3

4


6

Q

9

11

12

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-2791-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

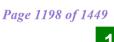
Login Number: 2791 List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.


Job Number: 890-2791-1 SDG Number: Lea County NM

List Source: Eurofins Midland

Login Number: 2791 List Number: 2 List Creation: 08/23/22 10:32 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3009-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

eurofins

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 10/1/2022 7:08:10 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Review your project results through EOL

.....LINKS

Received by OCD: 8/28/2023 1:38:11 PM

Have a Question?

Visit us at:

www.eurofinsus.com/Env Released to Imaging: 9/1/2023 2:07:08 PM

Results relate only to the items tested and the sample(s) as received by the laboratory.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3009-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

2

3

4

6

8

10

12

13

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-3009-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Qualifiers

GC VOA

Qualifier Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Description

*1 LCS/LCSD RPD exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Job ID: 890-3009-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Job ID: 890-3009-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3009-1

Receipt

The samples were received on 9/20/2022 10:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: (LCSD 880-35620/2-A) and (880-19424-A-41-E MS). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-35018 and analytical batch 880-35120 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-3009-1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3009-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-185 (13')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 13:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 13:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 13:44	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/28/22 14:52	10/01/22 13:44	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 13:44	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		09/28/22 14:52	10/01/22 13:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				09/28/22 14:52	10/01/22 13:44	1
1,4-Difluorobenzene (Surr)	91		70 - 130				09/28/22 14:52	10/01/22 13:44	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			10/01/22 19:44	1
Analyte	Result	Qualifier	RL	MDL	I Imit				
			NL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	MDL	mg/Kg	— –	Prepared	Analyzed 09/23/22 16:01	
- -				MDL			Prepared		
- -	ge Organics (D					D	Prepared Prepared		1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier	50.0		mg/Kg	=	<u> </u>	09/23/22 16:01	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D	RO) (GC) Qualifier U *1	50.0		mg/Kg	=	Prepared	09/23/22 16:01 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <50.0	RO) (GC) Qualifier U*1	50.0 RL 50.0		mg/Kg Unit mg/Kg	=	Prepared 09/21/22 08:32	09/23/22 16:01 Analyzed 09/23/22 04:27	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0	RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/21/22 08:32	09/23/22 16:01 Analyzed 09/23/22 04:27 09/23/22 04:27	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/21/22 08:32 09/21/22 08:32	09/23/22 16:01 Analyzed 09/23/22 04:27 09/23/22 04:27 09/23/22 04:27	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <50.0 <50.0 <50.0	RO) (GC) Qualifier U *1 U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/21/22 08:32 09/21/22 08:32 09/21/22 08:32 Prepared	09/23/22 16:01 Analyzed 09/23/22 04:27 09/23/22 04:27 09/23/22 04:27 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <50.0 <50.0 <50.0 <80.0 <80.0 *Recovery 121 111	RO) (GC) Qualifier U*1 U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/21/22 08:32 09/21/22 08:32 09/21/22 08:32 Prepared 09/21/22 08:32	09/23/22 16:01 Analyzed 09/23/22 04:27 09/23/22 04:27 Analyzed 09/23/22 04:27	Dil Face 1 Dil Face 1 1 Dil Face 1 1 Dil Face 1
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <50.0 <50.0 <50.0 **Recovery 121 111 romatography -	RO) (GC) Qualifier U*1 U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/21/22 08:32 09/21/22 08:32 09/21/22 08:32 Prepared 09/21/22 08:32	09/23/22 16:01 Analyzed 09/23/22 04:27 09/23/22 04:27 Analyzed 09/23/22 04:27	Dil Fac

Client Sample ID: BH-186 (13')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 14:04	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 14:04	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 14:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 14:52	10/01/22 14:04	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 14:04	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 14:52	10/01/22 14:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				09/28/22 14:52	10/01/22 14:04	

Eurofins Carlsbad

2

3

5

7

9

. .

12

14

Lab Sample ID: 890-3009-2

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3009-2

09/23/22 22:58

Client: Tetra Tech, Inc. Job ID: 890-3009-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-186 (13')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Chloride

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	90	Qualifier	70 - 130				09/28/22 14:52	10/01/22 14:04	
r, r Billadi abanzana (dari)	00		70 - 700				00/20/22 7 7.02	10/01/22 11:01	,
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			10/01/22 19:44	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Ouglifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
ranaly to	Result	Qualifier	INL	IVIDE	0		opa. oa		
Total TPH	84.3		49.9		mg/Kg	=	Торигоа	09/23/22 16:01	1
Total TPH Method: 8015B NM - Diesel Rang	84.3 e Organics (Di	RO) (GC)	49.9		mg/Kg	<u></u>	<u> </u>		1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	84.3 e Organics (Di	RO) (GC) Qualifier		MDL	mg/Kg	<u> </u>	Prepared 09/21/22 08:32	09/23/22 16:01 Analyzed 09/23/22 04:06	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	84.3 ge Organics (DI Result	RO) (GC) Qualifier	49.9		mg/Kg	<u> </u>	Prepared	Analyzed	1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte	84.3 ge Organics (DI Result <49.9	RO) (GC) Qualifier U*1	49.9 RL 49.9		mg/Kg Unit mg/Kg	<u> </u>	Prepared 09/21/22 08:32	Analyzed 09/23/22 04:06	Dil Fac 1 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	84.3 ge Organics (DI Result <49.9 84.3	RO) (GC) Qualifier U*1	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 09/21/22 08:32	Analyzed 09/23/22 04:06 09/23/22 04:06	Dil Fac 1 1 Dil Fac 1 1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	84.3 ge Organics (DI Result <49.9 84.3 <49.9	RO) (GC) Qualifier U*1	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 09/21/22 08:32 09/21/22 08:32	Analyzed 09/23/22 04:06 09/23/22 04:06 09/23/22 04:06	1 1

25.1

mg/Kg

320

Eurofins Carlsbad

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-3009-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-19424-A-41-E MS	Matrix Spike	131 S1+	108	
880-19424-A-41-F MSD	Matrix Spike Duplicate	136 S1+	109	
890-3009-1	BH-185 (13')	125	91	
890-3009-2	BH-186 (13')	117	90	
LCS 880-35620/1-A	Lab Control Sample	127	104	
LCSD 880-35620/2-A	Lab Control Sample Dup	140 S1+	106	
MB 880-35620/5-A	Method Blank	107	86	
MB 880-35630/5-A	Method Blank	101	89	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-19424-A-53-C MS	Matrix Spike	85	76	
880-19424-A-53-D MSD	Matrix Spike Duplicate	82	74	
890-3009-1	BH-185 (13')	121	111	
890-3009-2	BH-186 (13')	104	94	
LCS 880-35018/2-A	Lab Control Sample	113	105	
LCSD 880-35018/3-A	Lab Control Sample Dup	98	86	
MB 880-35018/1-A	Method Blank	105	103	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-3009-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-35620/5-A

Lab Sample ID: LCS 880-35620/1-A

Matrix: Solid

Analysis Batch: 35744

Client	Sample	ID:	Method	Blank	<

Prep Type: Total/NA

Prep Batch: 35620

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 07:33	
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 07:33	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 07:33	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 14:52	10/01/22 07:33	
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:52	10/01/22 07:33	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 14:52	10/01/22 07:33	•

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130	09	0/28/22 14:52	10/01/22 07:33	1
1,4-Difluorobenzene (Surr)	86		70 - 130	09	9/28/22 14:52	10/01/22 07:33	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35620

Prep Type: Total/NA

Prep Batch: 35620

35

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09300 mg/Kg 93 70 - 130 Toluene 0.100 0.08450 mg/Kg 85 70 - 130 Ethylbenzene 0.100 0.09159 mg/Kg 92 70 - 130 70 - 130 0.200 94 m-Xylene & p-Xylene 0.1871 mg/Kg 0.100 o-Xylene 0.1192 mg/Kg 119 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	127		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 880-35620/2-A Client Sample ID: Lab Control Sample Dup

0.1206

Matrix: Solid

Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene

o-Xylene

Matrix: Solid

Analysis Batch: 35744

Analysis Batch: 35744

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
 0.100	0.08642		mg/Kg		86	70 - 130	7	35
0.100	0.08244		mg/Kg		82	70 - 130	2	35
0.100	0.09331		mg/Kg		93	70 - 130	2	35
0.200	0.1962		mg/Kg		98	70 - 130	5	35

mg/Kg

121

70 - 130

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	140	S1+	70 - 130
1.4-Difluorobenzene (Surr)	106		70 - 130

Matrix: Solid

Analysis Batch: 35744

Lab Sample ID: 880-19424-A-41-E MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 35620

Sample Sample Spike MS MS Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits 96 <0.00201 U 0.101 Benzene 0.09638 mg/Kg 70 - 130 Toluene <0.00201 U 0.101 0.08691 mg/Kg 86 70 - 130

0.100

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3009-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Matr

Analysis Batch: 35744

Sample ID: 880-19424-A-41-E MS	Client Sample ID: Matrix Spike
trix: Solid	Prep Type: Total/NA
alveis Batch: 35744	Pren Batch: 35620

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00201	U	0.101	0.09656		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.202	0.1955		mg/Kg		97	70 - 130	
o-Xylene	<0.00201	U	0.101	0.1131		mg/Kg		112	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	131	S1+	70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 880-19424-A-41-F MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 35744									Prep	Batch:	35620
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0994	0.1013		mg/Kg		102	70 - 130	5	35
Toluene	<0.00201	U	0.0994	0.09069		mg/Kg		91	70 - 130	4	35
Ethylbenzene	<0.00201	U	0.0994	0.1024		mg/Kg		103	70 - 130	6	35
m-Xylene & p-Xylene	<0.00402	U	0.199	0.2076		mg/Kg		104	70 - 130	6	35
o-Xylene	<0.00201	U	0.0994	0.1207		mg/Kg		121	70 - 130	6	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: MB 880-35630/5-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid Analysis Batch: 35744

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:29	09/30/22 20:58	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:29	09/30/22 20:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:29	09/30/22 20:58	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 16:29	09/30/22 20:58	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:29	09/30/22 20:58	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 16:29	09/30/22 20:58	1
	МВ	MB							

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	09/28/22 16:29	09/30/22 20:58	1
1,4-Difluorobenzene (Surr)	89		70 - 130	09/28/22 16:29	09/30/22 20:58	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-35018/1-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 35120 Prep Batch: 35018 мв мв

Result Qualifier MDL Unit Prepared Gasoline Range Organics <50.0 U 50.0 mg/Kg 09/21/22 08:32 09/22/22 19:31 (GRO)-C6-C10

Eurofins Carlsbad

Prep Batch: 35630

Client: Tetra Tech, Inc. Job ID: 890-3009-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-35018/1-A **Matrix: Solid**

Analysis Batch: 35120

Prep Type: Total/NA

Prep Batch: 35018

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		09/21/22 08:32	09/22/22 19:31	1
C10-C28) OII Range Organics (Over C28-C36)	<50.0	П	50.0	mg/Kg		09/21/22 08:32	09/22/22 19:31	1
Christings Organics (Over 020-000)	100.0	Ü	00.0	mg/itg		03/21/22 00:02	03/22/22 10.01	

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130	09/21/22 08:32	09/22/22 19:31	1
o-Terphenyl	103		70 - 130	09/21/22 08:32	09/22/22 19:31	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-35018/2-A **Matrix: Solid** Prep Type: Total/NA Prep Batch: 35018

Analysis Batch: 35120

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1066		mg/Kg		107	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1068		mg/Kg		107	70 - 130	
C10 C28)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	113		70 - 130
o-Terphenyl	105		70 - 130

Lab Sample ID: LCSD 880-35018/3-A

Matrix: Solid

Analysis Batch: 35120

Client Sample ID: Lab	Control Sample Dup)
	Duny Times Tetal/NIA	

Prep Type: Total/NA

Prep Batch: 35018

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	821.3	*1	mg/Kg		82	70 - 130	26	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	889.0		mg/Kg		89	70 - 130	18	20
C10-C28)									

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 98 70 - 130 o-Terphenyl 86 70 - 130

Lab Sample ID: 880-19424-A-53-C MS

Matrix: Solid

Analysis Batch: 35120

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 35018

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <49.9 U *1 996 826.0 83 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 996 868.7 70 - 130 Diesel Range Organics (Over <49.9 U mg/Kg

C10-C28)

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	85		70 - 130
o-Terphenyl	76		70 - 130

0

Job ID: 890-3009-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MSD MSD

Lab Sample ID: 880-19424-A-53-D MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid Analysis Batch: 35120

Prep Batch: 35018 Sample Sample MSD MSD RPD Spike Analyte Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Unit D Gasoline Range Organics <49.9 U *1 999 786.3 mg/Kg 79 70 - 130 5 20

(GRO)-C6-C10 999 872.5 87 70 - 130Diesel Range Organics (Over <49.9 U mg/Kg

C10-C28)

%Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 82

o-Terphenyl 74 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-35023/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Soluble

Analysis Batch: 35314

MB MB

Result Qualifier MDL Analyte RL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 09/23/22 22:29 mg/Kg

Lab Sample ID: LCS 880-35023/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 35314

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 246.3 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-35023/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 35314

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec RPD Limits Limit Chloride 250 247.2 99 90 - 110 mg/Kg 0

Lab Sample ID: 890-3009-1 MS Client Sample ID: BH-185 (13')

Matrix: Solid

Analysis Batch: 35314

Sample Sample Spike MS MS %Rec Qualifier Added Qualifier Analyte Result Result Unit %Rec Limits Chloride 1240 90 - 110 591 1868 mg/Kg 103

Lab Sample ID: 890-3009-1 MSD Client Sample ID: BH-185 (13') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 35314

Sample Sample Spike MSD MSD %Rec RPD Qualifier Added Result Result Qualifier %Rec Limits RPD Limit Analyte Unit 1240 Chloride 1873 103 90 - 110 20 591 mg/Kg 0

Eurofins Carlsbad

Prep Type: Soluble

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-3009-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Prep Batch: 35620

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Total/NA	Solid	5035	
890-3009-2	BH-186 (13')	Total/NA	Solid	5035	
MB 880-35620/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-35620/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-35620/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-19424-A-41-E MS	Matrix Spike	Total/NA	Solid	5035	
880-19424-A-41-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 35630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-35630/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 35744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Total/NA	Solid	8021B	35620
890-3009-2	BH-186 (13')	Total/NA	Solid	8021B	35620
MB 880-35620/5-A	Method Blank	Total/NA	Solid	8021B	35620
MB 880-35630/5-A	Method Blank	Total/NA	Solid	8021B	35630
LCS 880-35620/1-A	Lab Control Sample	Total/NA	Solid	8021B	35620
LCSD 880-35620/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	35620
880-19424-A-41-E MS	Matrix Spike	Total/NA	Solid	8021B	35620
880-19424-A-41-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	35620

Analysis Batch: 35877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Total/NA	Solid	Total BTEX	
890-3009-2	BH-186 (13')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 35018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Total/NA	Solid	8015NM Prep	
890-3009-2	BH-186 (13')	Total/NA	Solid	8015NM Prep	
MB 880-35018/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-35018/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-35018/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-19424-A-53-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-19424-A-53-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 35120

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Total/NA	Solid	8015B NM	35018
890-3009-2	BH-186 (13')	Total/NA	Solid	8015B NM	35018
MB 880-35018/1-A	Method Blank	Total/NA	Solid	8015B NM	35018
LCS 880-35018/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	35018
LCSD 880-35018/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	35018
880-19424-A-53-C MS	Matrix Spike	Total/NA	Solid	8015B NM	35018
880-19424-A-53-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	35018

Eurofins Carlsbad

2

2

Л

7

0

10

13

QC Association Summary

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-3009-1

SDG: Lea County NM

GC Semi VOA

Analysis Batch: 35298

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Total/NA	Solid	8015 NM	
890-3009-2	BH-186 (13')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 35023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Soluble	Solid	DI Leach	
890-3009-2	BH-186 (13')	Soluble	Solid	DI Leach	
MB 880-35023/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-35023/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-35023/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3009-1 MS	BH-185 (13')	Soluble	Solid	DI Leach	
890-3009-1 MSD	BH-185 (13')	Soluble	Solid	DI Leach	

Analysis Batch: 35314

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3009-1	BH-185 (13')	Soluble	Solid	300.0	35023
890-3009-2	BH-186 (13')	Soluble	Solid	300.0	35023
MB 880-35023/1-A	Method Blank	Soluble	Solid	300.0	35023
LCS 880-35023/2-A	Lab Control Sample	Soluble	Solid	300.0	35023
LCSD 880-35023/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	35023
890-3009-1 MS	BH-185 (13')	Soluble	Solid	300.0	35023
890-3009-1 MSD	BH-185 (13')	Soluble	Solid	300.0	35023

Eurofins Carlsbad

2

6

9

10

12

Client: Tetra Tech, Inc. Job ID: 890-3009-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-185 (13')

Date Received: 09/20/22 10:22

Lab Sample ID: 890-3009-1 Date Collected: 09/19/22 00:00 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	35620	09/28/22 14:52	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35744	10/01/22 13:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			35877	10/01/22 19:44	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35298	09/23/22 16:01	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	35018	09/21/22 08:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35120	09/23/22 04:27	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		5			35314	09/23/22 22:44	CH	EET MID

Client Sample ID: BH-186 (13') Lab Sample ID: 890-3009-2

Date Collected: 09/19/22 00:00 Matrix: Solid

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	35620	09/28/22 14:52	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35744	10/01/22 14:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			35877	10/01/22 19:44	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35298	09/23/22 16:01	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	35018	09/21/22 08:32	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35120	09/23/22 04:06	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	35023	09/21/22 10:05	SMC	EET MIC
Soluble	Analysis	300.0		5			35314	09/23/22 22:58	CH	EET MIC

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3009-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
Texas	xas NELAP		T104704400-22-24	06-30-23	
The following analytes	are included in this report by	it the leberatory is not cortifi	ad by the gayerning outbority. This list may	arrimalizada amaliztaa farri	
the agency does not of	• •	it the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for t	
,	• •	Matrix	ed by the governing authority. This list ma	ay include analytes for t	
the agency does not of	fer certification.	•	, , ,	ay include analytes for v	

Л

__

7

0

10

12

13

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-3009-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

-

a

10

12

13

| | 4

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-3009-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Dep
890-3009-1	BH-185 (13')	Solid	09/19/22 00:00	09/20/22 10:22	13
890-3009-2	BH-186 (13')	Solid	09/19/22 00:00	09/20/22 10:22	13

	Relinguished by:	Relinquished by Relinquished by				LABUSE	- D t		Comments:	Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	[4]	Alidiyalan
	y: Date: Time:	W: Date: Time: Date: Time:		ВН-186 (13')	ВН-185 (13')		SAMPLE IDENTIFICATION			ratory: Eurofins Xenco	Permian Water Solutions - Dusty McInturff	n: Lea County, NM	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.	Allalysis request of cliait of custody record
	Received by:	Received by:		9/19/2022	9/19/2022	DATE TIME	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:	Clair.C	Site Manager:		
	Date: Time:	Date: Time: Date: Time:		×	×	WATER SOIL HCL HNO ₃ ICE None		MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	SOTAN ANSII SILBER, SIE 100
(Circle) HAND DELIVERED FEDEX UPS	Special Rep	USE ONLY X	890-3009 Chain of Cu	×		# CONT. FILTERE BTEX 80 TPH TX: TPH 801 PAH 827 Total Met TCLP Me TCLP Vo TCLP Se RCI GC/MS V	AINEFED (Y// D21B 1005 (I 1005 (I 5M (C 70C Toc Toc Toc Toc Toc Toc Toc Toc Toc Toc	BTE: Ext to GGRO - J As B g As E liatiles	DRO - (a Cd Cr Ba Cd C	Pb Se	Hg		9	ANALYSIS REQUEST		
Tracking #	Rush Charges Authorized Special Report Limits or TRRP Report	DARD meDay 24 hr 48 hr 72 hr	ustody	×	×	PCB's 88 NORM PLM (Asi Chloride Chloride General Anion/Ca	bestos Su Wate	ilfate r Che	-	see att	ached	list)		v Method No.)		

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-3009-1 SDG Number: Lea County NM

Login Number: 3009 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	

Released to Imaging: 9/1/2023 2:07:08 PM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3009-1

SDG Number: Lea County NM

List Source: Eurofins Midland List Creation: 09/21/22 11:23 AM

List Number: 2 Creator: Rodriguez, Leticia

Login Number: 3009

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

<6mm (1/4").

3

3

4

5

0

ŏ

10

12

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3010-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

eurofins

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 10/3/2022 6:53:25 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

EOL

Have a Question?

.....LINKS

Review your project results through

Received by OCD: 8/28/2023 1:38:11 PM

Visit us at:

www.eurofinsus.com/Env Released to Imaging: 9/1/2023 2:07:08 PM

Results relate only to the items tested and the sample(s) as received by the laboratory.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3010-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

2

3

4

6

8

10

40

13

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

2

Qualifiers

GC VOA Qualifier

Qualifier	Qualifier Description
*-	LCS and/or LCSD is outside acceptance limits, low biased.
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*1	LCS/LCSD RPD exceeds control limits.

S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

Ouglifier Description

GC Semi VOA

Quanner	Qualifier Description
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Ouglifier

Qualifier	Qualifier Description
П	Indicates the analyte was analyzed for but not detected

Glossary

DLC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Decision Level Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit
NC Not Calculated

110 Not Galculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)
TNTC Too Numerous To Count

Case Narrative

Job ID: 890-3010-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Job ID: 890-3010-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3010-1

Receipt

The samples were received on 9/20/2022 10:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-35625 and analytical batch 880-35815 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: Surrogate recovery for the following sample was outside control limits: Trench-1 (10') (890-3010-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-35172 and analytical batch 880-35220 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-3010-1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: Trench-1 (10')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.201	U *+ *1	0.201		mg/Kg		09/29/22 16:18	10/03/22 18:54	100
Toluene	12.5	*+ *1	0.201		mg/Kg		09/29/22 16:18	10/03/22 18:54	100
Ethylbenzene	23.9	*+ *1	0.201		mg/Kg		09/29/22 16:18	10/03/22 18:54	100
m-Xylene & p-Xylene	35.1	*+ *1	0.402		mg/Kg		09/29/22 16:18	10/03/22 18:54	100
o-Xylene	14.3	*+ *1	0.201		mg/Kg		09/29/22 16:18	10/03/22 18:54	100
Xylenes, Total	49.4	*+ *1	0.402		mg/Kg		09/29/22 16:18	10/03/22 18:54	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	196	S1+	70 - 130				09/29/22 16:18	10/03/22 18:54	100
1,4-Difluorobenzene (Surr)	82		70 - 130				09/29/22 16:18	10/03/22 18:54	100
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	85.8		0.402		mg/Kg			10/02/22 08:53	1
Method: 8015 NM - Diesel Rang	ne Organice (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	4270		49.9		mg/Kg			09/26/22 13:20	1
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	936		49.9		mg/Kg		09/22/22 11:26	09/24/22 03:48	1
Diesel Range Organics (Over C10-C28)	2930		49.9		mg/Kg		09/22/22 11:26	09/24/22 03:48	1
Oll Range Organics (Over C28-C36)	404		49.9		mg/Kg		09/22/22 11:26	09/24/22 03:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				09/22/22 11:26	09/24/22 03:48	1
o-Terphenyl	102		70 - 130				09/22/22 11:26	09/24/22 03:48	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: Trench-2 (5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *-	0.00201		mg/Kg		09/28/22 16:17	10/01/22 21:30	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/28/22 16:17	10/01/22 21:30	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/28/22 16:17	10/01/22 21:30	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/28/22 16:17	10/01/22 21:30	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/28/22 16:17	10/01/22 21:30	1
Xylenes, Total	< 0.00402	U	0.00402		mg/Kg		09/28/22 16:17	10/01/22 21:30	1

Eurofins Carlsbad

Lab Sample ID: 890-3010-2

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3010-2

09/23/22 23:08

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: Trench-2 (5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 5

Chloride

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				09/28/22 16:17	10/01/22 21:30	1
1,4-Difluorobenzene (Surr)	104		70 - 130				09/28/22 16:17	10/01/22 21:30	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/02/22 08:53	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			09/26/22 13:20	1
Method: 8015B NM - Diesel Ran	nge Organics (DI	RO) (GC)							
Made at 0045D NM Discal Daw	0	20) (00)							
Analyte	Result	Qualifier	RL	MDL		D	Prepared 14.00	Analyzed	Dil Fac
Analyte Gasoline Range Organics	• • •	Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 09/22/22 11:26	Analyzed 09/23/22 21:40	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10		Qualifier U		MDL	mg/Kg	<u>D</u>			Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	49.9	MDL		<u>D</u>	09/22/22 11:26	09/23/22 21:40	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U	49.9	MDL	mg/Kg	<u>D</u>	09/22/22 11:26	09/23/22 21:40	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9	Qualifier U U U	49.9	MDL	mg/Kg	<u>D</u>	09/22/22 11:26 09/22/22 11:26	09/23/22 21:40	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 <49.9	Qualifier U U U	49.9 49.9 49.9	MDL	mg/Kg	<u>D</u>	09/22/22 11:26 09/22/22 11:26 09/22/22 11:26	09/23/22 21:40 09/23/22 21:40 09/23/22 21:40	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9 <49.9 <49.9 <49.9 <49.9 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <800 <80	Qualifier U U U	49.9 49.9 49.9 Limits	MDL	mg/Kg	<u>D</u>	09/22/22 11:26 09/22/22 11:26 09/22/22 11:26 Prepared	09/23/22 21:40 09/23/22 21:40 09/23/22 21:40 Analyzed	1
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chi	Result <49.9 <49.9 <49.9 <49.9	Qualifier U U Qualifier	49.9 49.9 49.9 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	09/22/22 11:26 09/22/22 11:26 09/22/22 11:26 Prepared 09/22/22 11:26	09/23/22 21:40 09/23/22 21:40 09/23/22 21:40 Analyzed 09/23/22 21:40	1

50.4

mg/Kg

4770

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

2

4

6

8

10

12

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

ient Sample ID atrix Spike atrix Spike Duplicate ench-1 (10') ench-2 (5') atrix Spike	BFB1 (70-130) 109 112 196 S1+ 116	105 100 82 104	
atrix Spike atrix Spike Duplicate ench-1 (10') ench-2 (5')	109 112 196 S1+ 116	105 100 82	
atrix Spike Duplicate ench-1 (10') ench-2 (5')	112 196 S1+	100 82	
ench-1 (10') ench-2 (5')	196 S1+ 116	82	
ench-2 (5')	116		
` '		104	
atrix Spike	404		
	101	94	
atrix Spike Duplicate	108	107	
b Control Sample	109	100	
b Control Sample	76	73	
b Control Sample Dup	104	99	
b Control Sample Dup	128	123	
ethod Blank	101	114	
ethod Blank	105	105	
ethod Blank	99	83	
ethod Blank	100	76	
urr)			
9	o Control Sample Dup thod Blank thod Blank thod Blank thod Blank	thod Blank 105 thod Blank 105 thod Blank 99 thod Blank 100	o Control Sample Dup 128 123 thod Blank 101 114 thod Blank 105 105 thod Blank 99 83 thod Blank 100 76

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		1CO1	OTPH1				
Lab Sample ID	Client Sample ID	(70-130)	(70-130)				
890-3010-1	Trench-1 (10')	110	102				
890-3010-2	Trench-2 (5')	95	103				
890-3010-2 MS	Trench-2 (5')	90	88				
890-3010-2 MSD	Trench-2 (5')	103	99				
LCS 880-35172/2-A	Lab Control Sample	99	105				
LCSD 880-35172/3-A	Lab Control Sample Dup	106	108				
MB 880-35172/1-A	Method Blank	120	139 S1+				

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Tetra Tech, Inc. Job ID: 890-3010-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-35625/5-A

Analysis Batch: 35815

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35625

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 16:17	10/01/22 20:00	1

мв мв

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	09.	/28/22 16:17	10/01/22 20:00	1
1,4-Difluorobenzene (Surr)	114		70 - 130	09.	/28/22 16:17	10/01/22 20:00	1

Lab Sample ID: LCS 880-35625/1-A

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35625

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.06312	*-	mg/Kg		63	70 - 130	
Toluene	0.100	0.07231		mg/Kg		72	70 - 130	
Ethylbenzene	0.100	0.07030		mg/Kg		70	70 - 130	
m-Xylene & p-Xylene	0.200	0.1471		mg/Kg		74	70 - 130	
o-Xylene	0.100	0.07531		mg/Kg		75	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
4-Bromofluorobenzene (Surr)	109	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: LCSD 880-35625/2-A

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 35625

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.06587	*-	mg/Kg		66	70 - 130	4	35
Toluene	0.100	0.07114		mg/Kg		71	70 - 130	2	35
Ethylbenzene	0.100	0.07179		mg/Kg		72	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1452		mg/Kg		73	70 - 130	1	35
o-Xylene	0.100	0.07431		mg/Kg		74	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1.4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 880-19417-A-1-E MS

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 35625

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U *-	0.101	0.09573		mg/Kg		95	70 - 130	
Toluene	< 0.00201	U	0.101	0.09812		mg/Kg		98	70 - 130	

Eurofins Carlsbad

Page 8 of 22

Client: Tetra Tech, Inc. Job ID: 890-3010-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-19417-A-1-E MS

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 35625

	Sample	Sample	Бріке	IVIS	IVIS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	<0.00201	U	0.101	0.08958		mg/Kg		89	70 - 130
m-Xylene & p-Xylene	<0.00402	U	0.201	0.1802		mg/Kg		90	70 - 130
o-Xylene	<0.00201	U	0.101	0.09000		mg/Kg		89	70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 35625

Lab Sample ID: 880-19417-A-1-F MSD **Matrix: Solid**

Analysis Batch: 35815

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U *-	0.0990	0.09175		mg/Kg		93	70 - 130	4	35
Toluene	<0.00201	U	0.0990	0.1021		mg/Kg		103	70 - 130	4	35
Ethylbenzene	<0.00201	U	0.0990	0.1028		mg/Kg		104	70 - 130	14	35
m-Xylene & p-Xylene	<0.00402	U	0.198	0.2097		mg/Kg		106	70 - 130	15	35
o-Xylene	<0.00201	U	0.0990	0.1043		mg/Kg		105	70 - 130	15	35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: MB 880-35628/5-A

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35628

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:25	10/01/22 06:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:25	10/01/22 06:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:25	10/01/22 06:46	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 16:25	10/01/22 06:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:25	10/01/22 06:46	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 16:25	10/01/22 06:46	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130	09/28/22 16:25	10/01/22 06:46	1
1,4-Difluorobenzene (Surr)	105		70 - 130	09/28/22 16:25	10/01/22 06:46	1

Lab Sample ID: MB 880-35692/5-A

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35692

	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
m-Xvlene & p-Xvlene	<0.00400	U	0.00400		ma/Ka		09/29/22 11:56	10/02/22 22:18	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3010-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-35692/5-A

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35692

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/29/22 11:56	10/02/22 22:18	1

MP MP

мв мв

	IVID IVID				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	70 - 130	09/29/22 11:56	10/02/22 22:18	1
1,4-Difluorobenzene (Surr)	83	70 - 130	09/29/22 11:56	10/02/22 22:18	1

Lab Sample ID: MB 880-35724/5-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 35890

мв мв

Prep Type: Total/NA Prep Batch: 35724

	11110	IIID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/29/22 16:18	10/03/22 08:58	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130	09/29/22 16:18	10/03/22 08:58	1
1,4-Difluorobenzene (Surr)	76		70 - 130	09/29/22 16:18	10/03/22 08:58	1

Lab Sample ID: LCS 880-35724/1-A

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35724

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07829		mg/Kg		78	70 - 130	
Toluene	0.100	0.08089		mg/Kg		81	70 - 130	
Ethylbenzene	0.100	0.07734		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	0.200	0.1621		mg/Kg		81	70 - 130	
o-Xylene	0.100	0.08300		mg/Kg		83	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene (Surr)	76	70 - 130
1,4-Difluorobenzene (Surr)	73	70 - 130

Lab Sample ID: LCSD 880-35724/2-A

Matrix: Solid

Analysis Batch: 35890

Client Samp	le ID: Lab	Control	Sample	Dup
-------------	------------	---------	--------	-----

Prep Type: Total/NA

Prep Batch: 35724

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1318	*+ *1	mg/Kg		132	70 - 130	51	35
Toluene	0.100	0.1408	*+ *1	mg/Kg		141	70 - 130	54	35
Ethylbenzene	0.100	0.1312	*+ *1	mg/Kg		131	70 - 130	52	35
m-Xylene & p-Xylene	0.200	0.2759	*+ *1	mg/Kg		138	70 - 130	52	35
o-Xylene	0.100	0.1422	*+ *1	mg/Kg		142	70 - 130	53	35

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3010-1 SDG: Lea County NM

Prep Batch: 35724

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	128		70 - 130
1,4-Difluorobenzene (Surr)	123		70 - 130

Lab Sample ID: 890-3015-A-1-E MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 35890

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U *+ *1	0.0998	0.09073		mg/Kg		91	70 - 130	
Toluene	<0.00200	U *+ *1	0.0998	0.09593		mg/Kg		96	70 - 130	
Ethylbenzene	<0.00200	U *+ *1	0.0998	0.08487		mg/Kg		85	70 - 130	
m-Xylene & p-Xylene	<0.00401	U *+ *1	0.200	0.1756		mg/Kg		88	70 - 130	
o-Xylene	<0.00200	U *+ *1	0.0998	0.09418		mg/Kg		94	70 - 130	

MS MS Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 70 - 130 101 1,4-Difluorobenzene (Surr) 94 70 - 130

Lab Sample ID: 890-3015-A-1-F MSD

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 35724

Spike MSD MSD %Rec RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Benzene <0.00200 U *+ *1 0.0990 35 0.09916 mg/Kg 100 70 - 130 9 <0.00200 U *+ *1 Toluene 0.0990 0.1009 102 70 - 130 35 mg/Kg 5 Ethylbenzene <0.00200 U*+*1 0.0990 0.08894 90 70 - 130 35 mg/Kg m-Xylene & p-Xylene <0.00401 U*+*1 0.198 0.1820 mg/Kg 92 70 - 130 35 o-Xylene <0.00200 U *+ *1 0.0990 0.09773 mg/Kg 99 70 - 130 35

	WISD WIS	<i>D</i>
Surrogate	%Recovery Qu	alifier Limits
4-Bromofluorobenzene (Surr)	108	70 - 130
1,4-Difluorobenzene (Surr)	107	70 - 130

MSD MSD

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-35172/1-A

Matrix: Solid

Analysis Batch: 35220

Client Sample ID: Method Blank					
Prep Type: Total/NA					
Prop Ratch: 35172					

Prep Batch: 35172

Anal	yte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	oline Range Organics O)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/23/22 20:35	1
,	el Range Organics (Over	<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/23/22 20:35	1
	lange Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/23/22 20:35	1

мв мв

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	120		70 - 130	09/22/22 11:26	09/23/22 20:35	1
	o-Terphenyl	139	S1+	70 - 130	09/22/22 11:26	09/23/22 20:35	1

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3010-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-35172/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 35220 Prep Batch: 35172

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	960.3		mg/Kg	_	96	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	891.9		mg/Kg		89	70 - 130	
C10-C28)								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	99		70 - 130
o-Terphenyl	105		70 - 130

Lab Sample ID: LCSD 880-35172/3-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 35220

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	960.5		mg/Kg		96	70 - 130	0	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	951.2		mg/Kg		95	70 - 130	6	20
040,000)									

C10-C28)

	LUSD LU	,50	
Surrogate	%Recovery Qu	ualifier	Limits
1-Chlorooctane	106		70 - 130
o-Terphenyl	108		70 - 130

LCSD LCSD

Lab Sample ID: 890-3010-2 MS Client Sample ID: Trench-2 (5') **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 35220									Prep	Batch:	35172
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	996	887.9		mg/Kg		87	70 - 130		
Diesel Range Organics (Over	<49.9	U	996	998.1		mg/Kg		100	70 - 130		

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	90		70 - 130
o-Terphenyl	88		70 - 130

103

Lab Sample ID: 890-3010-2 MSD Client Sample ID: Trench-2 (5') Prep Type: Total/NA

Matrix: Solid

1-Chlorooctane

Analysis Batch: 35220									Prep	Batch:	35172
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	1050		mg/Kg		103	70 - 130	17	20
Diesel Range Organics (Over C10-C28)	<49.9	U	999	1135		mg/Kg		114	70 - 130	13	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Eurofins Carlsbad

70 - 130

Prep Batch: 35172

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3010-1

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3010-2 MSD **Matrix: Solid**

Analysis Batch: 35220

Client Sample ID: Trench-2 (5')

Prep Type: Total/NA

Prep Batch: 35172

MSD MSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-35023/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 35314

MB MB

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Chloride <5.00 5.00 09/23/22 22:29 U mg/Kg

Lab Sample ID: LCS 880-35023/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 35314

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit D %Rec Limits Chloride 250 246.3 mg/Kg 99 90 - 110

Lab Sample ID: LCSD 880-35023/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 35314

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 247.2 90 - 110 mg/Kg 20

Lab Sample ID: 890-3009-A-1-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 35314

Spike MS MS %Rec Sample Sample Analyte Qualifier Added Qualifier Unit %Rec Result Result Limits Chloride 591 1240 1868 103 90 - 110 mg/Kg

Lab Sample ID: 890-3009-A-1-D MSD

Matrix: Solid

Analysis Batch: 35314

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Qualifier Limits RPD Limit Analyte Result Unit %Rec Chloride 1240 103 591 90 - 110 20 1873 mg/Kg

Eurofins Carlsbad

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike Duplicate

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Prei	o B	atch	า: 3	5625

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-2	Trench-2 (5')	Total/NA	Solid	5035	
MB 880-35625/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-35625/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-35625/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-19417-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-19417-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 35628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-35628/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 35692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-35692/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 35724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Total/NA	Solid	5035	
MB 880-35724/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-35724/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-35724/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3015-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-3015-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 35815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-2	Trench-2 (5')	Total/NA	Solid	8021B	35625
MB 880-35625/5-A	Method Blank	Total/NA	Solid	8021B	35625
MB 880-35628/5-A	Method Blank	Total/NA	Solid	8021B	35628
LCS 880-35625/1-A	Lab Control Sample	Total/NA	Solid	8021B	35625
LCSD 880-35625/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	35625
880-19417-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	35625
880-19417-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	35625

Analysis Batch: 35881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Total/NA	Solid	Total BTEX	
890-3010-2	Trench-2 (5')	Total/NA	Solid	Total BTEX	

Analysis Batch: 35890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Total/NA	Solid	8021B	35724
MB 880-35692/5-A	Method Blank	Total/NA	Solid	8021B	35692
MB 880-35724/5-A	Method Blank	Total/NA	Solid	8021B	35724
LCS 880-35724/1-A	Lab Control Sample	Total/NA	Solid	8021B	35724
LCSD 880-35724/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	35724
890-3015-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	35724
890-3015-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	35724

Eurofins Carlsbad

5

3

Л

O —

1

0

10

12

13

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA

Prep Batch: 35172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Total/NA	Solid	8015NM Prep	
890-3010-2	Trench-2 (5')	Total/NA	Solid	8015NM Prep	
MB 880-35172/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-35172/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-35172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3010-2 MS	Trench-2 (5')	Total/NA	Solid	8015NM Prep	
890-3010-2 MSD	Trench-2 (5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 35220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Total/NA	Solid	8015B NM	35172
890-3010-2	Trench-2 (5')	Total/NA	Solid	8015B NM	35172
MB 880-35172/1-A	Method Blank	Total/NA	Solid	8015B NM	35172
LCS 880-35172/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	35172
LCSD 880-35172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	35172
890-3010-2 MS	Trench-2 (5')	Total/NA	Solid	8015B NM	35172
890-3010-2 MSD	Trench-2 (5')	Total/NA	Solid	8015B NM	35172

Analysis Batch: 35412

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Total/NA	Solid	8015 NM	
890-3010-2	Trench-2 (5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 35023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Soluble	Solid	DI Leach	
890-3010-2	Trench-2 (5')	Soluble	Solid	DI Leach	
MB 880-35023/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-35023/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-35023/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3009-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3009-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 35314

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3010-1	Trench-1 (10')	Soluble	Solid	300.0	35023
890-3010-2	Trench-2 (5')	Soluble	Solid	300.0	35023
MB 880-35023/1-A	Method Blank	Soluble	Solid	300.0	35023
LCS 880-35023/2-A	Lab Control Sample	Soluble	Solid	300.0	35023
LCSD 880-35023/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	35023
890-3009-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	35023
890-3009-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	35023

Eurofins Carlsbad

2

3

А

5

0

8

9

4 4

12

13

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-3010-1

SDG: Lea County NM

Client Sample ID: Trench-1 (10')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Lab Sample ID: 890-3010-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	35724	09/29/22 16:18	MNR	EET MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	35890	10/03/22 18:54	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35881	10/02/22 08:53	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35412	09/26/22 13:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35172	09/22/22 11:26	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35220	09/24/22 03:48	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		5			35314	09/23/22 23:03	CH	EET MID

Client Sample ID: Trench-2 (5')

Lab Sampl

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Lab Sample ID: 890-3010-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35815	10/01/22 21:30	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35881	10/02/22 08:53	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35412	09/26/22 13:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	35172	09/22/22 11:26	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35220	09/23/22 21:40	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		10			35314	09/23/22 23:08	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Released to Imaging: 9/1/2023 2:07:08 PM

3

4

6

8

9

11

13

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Р	rogram	Identification Number	Expiration Date
Texas	N	IELAP	T104704400-22-24	06-30-23
The following analytes a the agency does not offe	' '	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

3

Δ

5

7

9

10

12

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-3010-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

2

3

4

9

10

4.0

13

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-3010-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3010-1	Trench-1 (10')	Solid	09/19/22 00:00	09/20/22 10:22	10
890-3010-2	Trench-2 (5')	Solid	09/19/22 00:00	09/20/22 10:22	5

Tetra Tech, Inc. Permian Water Solutions Sta Manager Clair Gonzales@etratech.com	Relinquished by:	Relinquished by:	Relinguished by:					LAB #			Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name;	7
Stee Manager: Clair Gonzales (Date:	Date:	Date:			Trench-2 (5")	Trench-1 (10')	SAMPLE IDENTIFICATION					Permian Water Solutions - Dusty McIntu			Permian Water Solutions	Tetra Tech, Inc
# CONTAINERS # CONTAINERS FILTERED (Y/N) ** BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) ** TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles	Received by:	Received by:	Received by:			9/19/2022	9/19/2022		YEAR: 2020	SAMPLING				Project #:	<u>Clair.(</u>	Site Manager:	•
# CONTAINERS FILTERED (Y/N) ** ** ** ** ** ** ** ** ** ** ** ** *		_	.1					HCL HNO ₃ ICE				Peyton Oliver		212C-MD-02230	Sonzales@tetratech.com	Clair Gonzales	Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
I CLF Seria volatiles	ථ ට Rus	Sample Temperature	R	890-3010 Chain			×	FILTERE BTEX 80: TPH TX1 TPH 801: PAH 827 Total Meta TCLP Met	D (Y/II 21B 005 (E 5M (G 0C als Ag tals Ag	BTEX Ext to GRO -	C35) DRO - C a Cd Cr	ORO - M	Hg			REQUES	

Page 20 of 22

10/3/2022

Creator: Clifton, Cloe

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-3010-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad Login Number: 3010 List Number: 1

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

<6mm (1/4").

Containers requiring zero headspace have no headspace or bubble is

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3010-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Source: Eurotins Midland
List Creation: 09/21/22 11:23 AM

Creator: Rodriguez, Leticia

Login Number: 3010

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

3

4

6

8

10

12

14

<6mm (1/4").

Released to Imaging: 9/1/2023 2:07:08 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3011-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 10/3/2022 6:54:20 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3011-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	30
QC Sample Results	33
QC Association Summary	46
Lab Chronicle	54
Certification Summary	64
Method Summary	65
Sample Summary	66
Chain of Custody	67
Receipt Checklists	71

2

3

4

6

8

10

12

13

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC	VOA
Qual	ifier

*_	LCS and/or LCSD is outside acceptance limits, low biased.
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*1	LCS/LCSD RPD exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

Qualifier	Qualifier Description
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DI	Potostion Limit (DoD/DOE)

DL DL, RA, RE, IN

MDC

Detection Limit (DoD/DOE) Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) **EDL** Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-3011-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3011-1

Receipt

The samples were received on 9/20/2022 10:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-35621 and analytical batch 880-35814 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-195 (8') (890-3011-12), BH-200 (4.5') (890-3011-17) and BH-201 (4.5') (890-3011-18). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-35625 and analytical batch 880-35815 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH-206 (4.5') (890-3011-23). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH-205 (4.5') (890-3011-22). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-35103 and analytical batch 880-35007 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: SW-74 (8-13') (890-3011-28). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-35262 and analytical batch 880-35322 was outside the upper control limits.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-35172 and analytical batch 880-35220 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

8

10

12

13

Lab Sample ID: 890-3011-1

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: H-1 (0-2')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 06:49	1
Toluene	<0.00199	U *-	0.00199		mg/Kg		09/28/22 14:59	10/01/22 06:49	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 06:49	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 06:49	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 06:49	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 06:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				09/28/22 14:59	10/01/22 06:49	1
1,4-Difluorobenzene (Surr)	95		70 - 130				09/28/22 14:59	10/01/22 06:49	1
· Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Range			RI	MDI	Unit	n	Prenared	Analyzed	Dil Fac
_			RI	MDI	Unit	n	Prenared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 09/23/22 12:25	Dil Fac
Analyte	Result <49.9	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte Total TPH	Result <49.9 ge Organics (D	Qualifier U		MDL MDL	mg/Kg	<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: 8015B NM - Diesel Ran	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg	=		09/23/22 12:25	1 Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (D Result	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg	=	Prepared	09/23/22 12:25 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 ge Organics (D Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg	=	Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 20:34	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 20:34 09/22/22 20:34	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 20:34 09/22/22 20:34	Dil Face 1 1 1 Dil Face
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared	09/23/22 12:25 Analyzed 09/22/22 20:34 09/22/22 20:34 09/22/22 20:34 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 20:34 09/22/22 20:34 Analyzed 09/22/22 20:34	Dil Face 1 Dil Face 1
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 20:34 09/22/22 20:34 Analyzed 09/22/22 20:34	

Client Sample ID: H-2 (0-2')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 07:16	1
Toluene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 14:59	10/01/22 07:16	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 07:16	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/28/22 14:59	10/01/22 07:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 07:16	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		09/28/22 14:59	10/01/22 07:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				09/28/22 14:59	10/01/22 07:16	1

Eurofins Carlsbad

Lab Sample ID: 890-3011-2

Matrix: Solid

2

3

5

10

12

Lab Sample ID: 890-3011-2

Lab Sample ID: 890-3011-3

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: H-2 (0-2')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Method: 8021B - Volatile Organic Con	noounds (GC)	(Continued)
motifical collision of gains con	ipodiido (OO)	(Continuou,

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	99	70 - 130	09/28/22 14:59	10/01/22 07:16	1

Method: Total	BTEX - Total	BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg		•	10/01/22 19:48	1

ш				
ш	Method: 8015 NI	A - Diocol Pane	no Organice	(DPO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			09/23/22 12:25	1

Method: 8015B NM - Diese	I Range Organics	(DRO)	(GC)
moundar of ros run Sido	tungo organioo	()	1/

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/22/22 08:45	09/22/22 21:39	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		09/22/22 08:45	09/22/22 21:39	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/22/22 08:45	09/22/22 21:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				09/22/22 08:45	09/22/22 21:39	1

1-Chlorooctane	86	70 - 130	
o-Terphenyl	94	70 - 130	

o-Terphenyl	94	70 - 130			09/22/22 08:45	09/22/22 21:39	1	1
Method: 300.0 - Anions, Ion Chromatogra	phy - Soluble							
Δnalyte F	Result Qualifier	RI	MDI Unit	D	Prepared	Analyzed	Dil Fac	c

Analyte	Resuit	Qualifier	KL	MDL UIII	U	Prepareu	Allalyzeu	DII Fac
Chloride	20.1		5.00	mg/l	Kg		09/23/22 23:27	1

Client Sample ID: H-3 (0-2')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Method: 8021B -	Volatile	Organic (Compounds (GC)	

		()							
Analyte	Result	Qualifier	RL	MDL Uni	it	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/	/Kg		09/28/22 14:59	10/01/22 07:42	1
Toluene	< 0.00199	U *-	0.00199	mg/	/Kg		09/28/22 14:59	10/01/22 07:42	1
Ethylbenzene	< 0.00199	U	0.00199	mg/	/Kg		09/28/22 14:59	10/01/22 07:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/	/Kg		09/28/22 14:59	10/01/22 07:42	1
o-Xylene	< 0.00199	U	0.00199	mg/	/Kg		09/28/22 14:59	10/01/22 07:42	1
Xylenes, Total	<0.00398	U	0.00398	mg/	/Kg		09/28/22 14:59	10/01/22 07:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				09/28/22 14:59	10/01/22 07:42	1
1,4-Difluorobenzene (Surr)	96		70 - 130				09/28/22 14:59	10/01/22 07:42	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/01/22 19:48	1

Analyte	Result Qu	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			09/23/22 12:25	1

Lab Sample ID: 890-3011-3

09/23/22 23:32

Lab Sample ID: 890-3011-4

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: H-3 (0-2')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/22/22 22:00	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/22/22 22:00	1
C10-C28) OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/22/22 22:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				09/22/22 08:45	09/22/22 22:00	1
o-Terphenyl	118		70 - 130				09/22/22 08:45	09/22/22 22:00	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

5.00

mg/Kg

57.3

Client Sample ID: H-4 (0-2')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:08	1
Toluene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:08	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/28/22 14:59	10/01/22 08:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:08	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/28/22 14:59	10/01/22 08:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				09/28/22 14:59	10/01/22 08:08	1
1,4-Difluorobenzene (Surr)	91		70 - 130				09/28/22 14:59	10/01/22 08:08	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			09/23/22 12:25	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		09/22/22 08:45	09/22/22 22:22	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		09/22/22 08:45	09/22/22 22:22	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/22/22 08:45	09/22/22 22:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				09/22/22 08:45	09/22/22 22:22	1
o-Terphenyl	115		70 ₋ 130				09/22/22 08:45	09/22/22 22:22	1

Eurofins Carlsbad

2

3

5

7

9

1 1

14

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Da Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Client Sample ID: H-4 (0-2')	Lab Sample ID: 890-3011-4
Date Collected: 09/19/22 00:00	Matrix: Solid

Method: 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed 5.00 09/23/22 23:37 Chloride 27.5 mg/Kg

Client Sample ID: H-5 (0-2') Lab Sample ID: 890-3011-5 **Matrix: Solid**

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:35	
Toluene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:35	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:35	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 14:59	10/01/22 08:35	
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 08:35	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 14:59	10/01/22 08:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	116		70 - 130				09/28/22 14:59	10/01/22 08:35	
1,4-Difluorobenzene (Surr)	95		70 - 130				09/28/22 14:59	10/01/22 08:35	
Method: Total BTEX - Total BTEX	K Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Range	•	O) (GC) Qualifier	RL	MDI	Unit	D	Drawarad	Amakanad	Dil Fac
Analyte Total TPH			50.0	MDL			Prepared	Analyzed 09/23/22 12:25	
Iotal IPH	<50.0	U	50.0		mg/Kg			09/23/22 12:25	1
Method: 8015B NM - Diesel Rang	ne Organics (D	POV (GC)							
	90 O. gaoo (D.	(00)							
_		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL 50.0	MDL	Unit mg/Kg	<u>D</u>	Prepared 09/22/22 08:45	Analyzed 09/22/22 22:43	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U		MDL		<u>D</u>			
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result < 50.0	Qualifier U	50.0	MDL	mg/Kg	<u> </u>	09/22/22 08:45	09/22/22 22:43	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0	Qualifier U U U	50.0	MDL	mg/Kg	<u>D</u>	09/22/22 08:45 09/22/22 08:45	09/22/22 22:43	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0 <50.0 <50.0	Qualifier U U U	50.0 50.0 50.0	MDL	mg/Kg	<u>D</u>	09/22/22 08:45 09/22/22 08:45 09/22/22 08:45	09/22/22 22:43 09/22/22 22:43 09/22/22 22:43	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0 <50.0 <50.0 <50.0 <60.0 %Recovery	Qualifier U U U	50.0 50.0 50.0 <i>Limits</i>	MDL	mg/Kg	<u>D</u>	09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared	09/22/22 22:43 09/22/22 22:43 09/22/22 22:43 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	Result	Qualifier U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg	<u> </u>	09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/22/22 22:43 09/22/22 22:43 09/22/22 22:43 Analyzed 09/22/22 22:43	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U Qualifier	50.0 50.0 50.0 Limits 70 - 130		mg/Kg	<u>D</u>	09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/22/22 22:43 09/22/22 22:43 09/22/22 22:43 Analyzed 09/22/22 22:43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Lab Sample ID: 890-3011-6

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: H-6 (0-2')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/28/22 14:59	10/01/22 09:01	1
Toluene	<0.00201	U *-	0.00201		mg/Kg		09/28/22 14:59	10/01/22 09:01	1
Ethylbenzene	< 0.00201	U	0.00201		mg/Kg		09/28/22 14:59	10/01/22 09:01	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/28/22 14:59	10/01/22 09:01	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/28/22 14:59	10/01/22 09:01	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/28/22 14:59	10/01/22 09:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				09/28/22 14:59	10/01/22 09:01	1
1,4-Difluorobenzene (Surr)	95		70 - 130				09/28/22 14:59	10/01/22 09:01	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/01/22 19:48	1
Analyte							Duamanad	A	DUE
		Qualifier	RL	MDL		D	Prepared	Analyzed	
Total TPH	<50.0		50.0	MDL	mg/Kg	<u>D</u>	Prepared	Analyzed 09/23/22 12:25	
	<50.0	U		MDL		D	Prepared		
Total TPH	<50.0	U		MDL	mg/Kg	D	Prepared Prepared		1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	<50.0	RO) (GC) Qualifier	50.0		mg/Kg			09/23/22 12:25	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0 ge Organics (D Result	RO) (GC) Qualifier	50.0		mg/Kg		Prepared	09/23/22 12:25 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 ge Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 23:05 09/22/22 23:05	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0 ge Organics (D) Result <50.0	RO) (GC) Qualifier U	50.0 RL 50.0		mg/Kg Unit mg/Kg		Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 23:05	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 ge Organics (D Result <50.0 <50.0 <50.0 %Recovery	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 23:05 09/22/22 23:05	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 23:05 09/22/22 23:05	Dil Face 1 1 1 Dil Face
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 ge Organics (D Result <50.0 <50.0 <50.0 %Recovery	U RO) (GC) Qualifier U U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared	09/23/22 12:25 Analyzed 09/22/22 23:05 09/22/22 23:05 09/22/22 23:05 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 <50.0 <70.0 *Recovery 115 126 omatography -	COUDIE	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 23:05 09/22/22 23:05 Analyzed 09/22/22 23:05	Dil Fac
Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 ge Organics (D) Result <50.0 <50.0 <50.0 <50.0 <70.0 *Recovery 115 126 omatography -	CONTROL (GC) Qualifier U U Qualifier	50.0 RL 50.0 50.0 50.0 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/22/22 23:05 09/22/22 23:05 Analyzed 09/22/22 23:05	Dil Fac 1 Dil Fac 1 1 Dil Fac 1 Dil Fac 1 Dil Fac

Client Sample ID: H-7 (0-2')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 0 - 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 09:37	
Toluene	<0.00199	U *-	0.00199		mg/Kg		09/28/22 14:59	10/01/22 09:37	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 09:37	•
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 09:37	
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 09:37	•
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 09:37	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				09/28/22 14:59	10/01/22 09:37	

Eurofins Carlsbad

Lab Sample ID: 890-3011-7

Matrix: Solid

Client Sample ID: H-7 (0-2') Date Collected: 09/19/22 00:00

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1 SDG: Lea County NM

Lab Sample ID: 890-3011-7

Lab Sample ID: 890-3011-8

Matrix: Solid

Matrix: Solid

Date Received: 09/20/22 10:22 Sample Depth: 0 - 2

Method: 8021B -	Volatile	Organic C	ompounds	(GC)	(Continued)
-----------------	----------	-----------	----------	------	-------------

Surrogate	%Recovery	Qualifier Li	imits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	88	70	0 - 130	09/28/22 14:59	10/01/22 09:37	1

Method:	Total BTE	X - Tota	IBTEX	Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			10/01/22 19:48	1

Method: 8015 NM - Diesel Range O	rganics (DRO) (GC)

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH		<49.8	U	49.8		mg/Kg			09/23/22 12:25	1

Method: 8015B NM -	. Niosol Rango (rnanice (DRO) (GC)
Michiga, ou lob Mili	Dicaci italige	Ji gaines (bite	, (00)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/22/22 23:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/22/22 23:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/22/22 23:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

ourroguic	7011CCCVC1 y	Qualifici	Liiiit	rrepared	Analyzea
1-Chlorooctane	88		70 - 130	09/22/22 08:45	09/22/22 23:26
o-Terphenyl	93		70 - 130	09/22/22 08:45	09/22/22 23:26

Method: 300.0 - Anions, Ion	Chromatography - Soluble		
Analyte	Result Qualifier	RL	

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	26.7	5.03	1	mg/Kg	_		09/23/22 23:52	1

Client Sample ID: BH-191 (8')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8

Mathadi 0004D	Valatile Overen	ic Compounds (GC)
Memoo: Auzib	- voianie Urdan	ic Compounds (GC)

welliou. 602 1B - Volalile Orga	ilic Collipoulius (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 10:04	1
Toluene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 14:59	10/01/22 10:04	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 10:04	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/28/22 14:59	10/01/22 10:04	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 10:04	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		09/28/22 14:59	10/01/22 10:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				09/28/22 14:59	10/01/22 10:04	1
1,4-Difluorobenzene (Surr)	90		70 - 130				09/28/22 14:59	10/01/22 10:04	1

Mothod:	Total RTF	Y - Total R	TFX Calculatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg		_	10/01/22 19:48	1

Method: 8015 NM - Diesel	Range Organics	(DRO)	(GC)	١
Mictilioa. 00 10 Min - Diesei	Range Organics	(Divo)	(\mathbf{c})	ı.

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	94.3	50.0	mg/Kg			09/23/22 12:25	1

Matrix: Solid

Lab Sample ID: 890-3011-8

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-191 (8')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/23/22 02:18	1
Diesel Range Organics (Over C10-C28)	94.3		50.0		mg/Kg		09/22/22 08:45	09/23/22 02:18	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/23/22 02:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				09/22/22 08:45	09/23/22 02:18	1
o-Terphenyl	119		70 - 130				09/22/22 08:45	09/23/22 02:18	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	267		4.99		mg/Kg			09/24/22 00:07	1

Client Sample ID: BH-192 (8') Lab Sample ID: 890-3011-9

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		09/28/22 14:59	10/01/22 10:30	1
Toluene	<0.00202	U *-	0.00202		mg/Kg		09/28/22 14:59	10/01/22 10:30	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		09/28/22 14:59	10/01/22 10:30	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		09/28/22 14:59	10/01/22 10:30	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		09/28/22 14:59	10/01/22 10:30	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		09/28/22 14:59	10/01/22 10:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				09/28/22 14:59	10/01/22 10:30	1
1,4-Difluorobenzene (Surr)	99		70 - 130				09/28/22 14:59	10/01/22 10:30	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			09/23/22 12:25	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/22/22 23:47	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/22/22 23:47	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/22/22 23:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130				09/22/22 08:45	09/22/22 23:47	1
o-Terphenyl	92		70 ₋ 130				09/22/22 08:45	09/22/22 23:47	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1

SDG: Lea County NM

Lab Sample ID: 890-3011-9

Client Sample ID: BH-192 (8')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	249		4.99		mg/Kg			09/24/22 00:12	1

Client Sample ID: BH-193 (8') Lab Sample ID: 890-3011-10 Matrix: Solid

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		09/28/22 14:59	10/01/22 10:57	
Toluene	<0.00201	U *-	0.00201		mg/Kg		09/28/22 14:59	10/01/22 10:57	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/28/22 14:59	10/01/22 10:57	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/28/22 14:59	10/01/22 10:57	
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/28/22 14:59	10/01/22 10:57	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/28/22 14:59	10/01/22 10:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	123		70 - 130				09/28/22 14:59	10/01/22 10:57	
1,4-Difluorobenzene (Surr)	91		70 - 130				09/28/22 14:59	10/01/22 10:57	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/01/22 19:48	•
Method: 8015 NM - Diesel Range	•					_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	64.0		50.0		mg/Kg			09/23/22 12:25	,
Method: 8015B NM - Diesel Rang	•								
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/23/22 01:56	•
Diesel Range Organics (Over C10-C28)	64.0		50.0		mg/Kg		09/22/22 08:45	09/23/22 01:56	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/23/22 01:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	88		70 - 130				09/22/22 08:45	09/23/22 01:56	
o-Terphenyl	94		70 - 130				09/22/22 08:45	09/23/22 01:56	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			4.96		mg/Kg			09/24/22 00:26	

Lab Sample ID: 890-3011-11

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-194 (8')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 12:42	
Toluene	< 0.00199	U *-	0.00199		mg/Kg		09/28/22 14:59	10/01/22 12:42	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 12:42	,
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 12:42	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 12:42	,
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 12:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	118		70 - 130				09/28/22 14:59	10/01/22 12:42	
1,4-Difluorobenzene (Surr)	92		70 - 130				09/28/22 14:59	10/01/22 12:42	
Method: Total BTEX - Total BTE	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/01/22 19:48	
Method: 8015 NM - Diesel Ranç Analyte	Result	O) (GC) Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	
_	•		RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 09/23/22 12:25	
Analyte	Result 986	Qualifier		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rai	Result 986 nge Organics (Di	Qualifier		MDL	mg/Kg	<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics	Result 986 nge Organics (Di	Qualifier RO) (GC) Qualifier	49.9		mg/Kg			09/23/22 12:25	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 986 nge Organics (Di	Qualifier RO) (GC) Qualifier	49.9		mg/Kg		Prepared	09/23/22 12:25 Analyzed	Dil Fa
Analyte Total TPH	Result 986 nge Organics (Di Result <49.9	Qualifier RO) (GC) Qualifier	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 02:40	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Result 986	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 02:40 09/23/22 02:40	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 986 nge Organics (Di Result <49.9 817	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 02:40 09/23/22 02:40 09/23/22 02:40	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 986	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared	09/23/22 12:25 Analyzed 09/23/22 02:40 09/23/22 02:40 09/23/22 02:40 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 986	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 02:40 09/23/22 02:40 Analyzed 09/23/22 02:40	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result 986	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits 70.130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 02:40 09/23/22 02:40 Analyzed 09/23/22 02:40	Dil Fac

Client Sample ID: BH-195 (8')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 13:08	1
Toluene	<0.00198	U *-	0.00198		mg/Kg		09/28/22 14:59	10/01/22 13:08	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 13:08	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		09/28/22 14:59	10/01/22 13:08	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 13:08	1
Xylenes, Total	< 0.00397	U	0.00397		mg/Kg		09/28/22 14:59	10/01/22 13:08	1

Eurofins Carlsbad

Lab Sample ID: 890-3011-12

2

3

5

7

9

11

13

itins Carlsbac

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1

SDG: Lea County NM

Lab Sample ID: 890-3011-12

Matrix: Solid

Client Sample ID: BH-195 (8') Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 8

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				09/28/22 14:59	10/01/22 13:08	
1,4-Difluorobenzene (Surr)	9	S1-	70 - 130				09/28/22 14:59	10/01/22 13:08	
Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00397	U	0.00397		mg/Kg			10/01/22 19:48	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
								00/02/02 40:05	
Method: 8015B NM - Diesel Ranç	• • •	RO) (GC)	49.9		mg/Kg			09/23/22 12:25	
Total TPH Method: 8015B NM - Diesel Rang			49.9		mg/Kg			09/23/22 12:25	
Method: 8015B NM - Diesel Ranç Analyte	ge Organics (DI	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	ge Organics (DI	RO) (GC) Qualifier		MDL		<u>D</u>	Prepared 09/22/22 08:45		Dil Fa
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (DI Result <49.9	RO) (GC) Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	09/22/22 08:45	Analyzed 09/23/22 00:09	Dil Fa
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (DI	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>		Analyzed	Dil Fa
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result <49.9	RO) (GC) Qualifier U	RL 49.9	MDL	Unit mg/Kg	<u> </u>	09/22/22 08:45	Analyzed 09/23/22 00:09	Dil Fa
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (DI Result <49.9	RO) (GC) Qualifier U	RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	09/22/22 08:45 09/22/22 08:45	Analyzed 09/23/22 00:09 09/23/22 00:09	Dil Fa
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (DI Result <49.9 <49.9	RO) (GC) Qualifier U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	09/22/22 08:45 09/22/22 08:45 09/22/22 08:45	Analyzed 09/23/22 00:09 09/23/22 00:09 09/23/22 00:09	

Client Sample ID: BH-196 (4.5') Lab Sample ID: 890-3011-13 **Matrix: Solid**

5.05

Result Qualifier

34.5

MDL Unit

mg/Kg

D

Prepared

Analyzed

09/24/22 00:36

Dil Fac

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 4.5

Analyte

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 13:34	1
Toluene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 14:59	10/01/22 13:34	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 13:34	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 14:59	10/01/22 13:34	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 13:34	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 14:59	10/01/22 13:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				09/28/22 14:59	10/01/22 13:34	1
1,4-Difluorobenzene (Surr)	90		70 - 130				09/28/22 14:59	10/01/22 13:34	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Rar	ige Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8		49.8		mg/Kg			09/23/22 12:25	

Lab Sample ID: 890-3011-13

Lab Sample ID: 890-3011-14

Matrix: Solid

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-196 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Method: 8015B NM - Diesel Rang	, ,	, , ,							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/23/22 00:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/23/22 00:30	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/23/22 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130				09/22/22 08:45	09/23/22 00:30	1
o-Terphenyl	102		70 - 130				09/22/22 08:45	09/23/22 00:30	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1110		25.2		mg/Kg			09/24/22 00:41	5

Client Sample ID: BH-197 (4.5')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:00	1
Toluene	<0.00198	U *-	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:00	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:00	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		09/28/22 14:59	10/01/22 14:00	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:00	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		09/28/22 14:59	10/01/22 14:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				09/28/22 14:59	10/01/22 14:00	1
1,4-Difluorobenzene (Surr)	91		70 - 130				09/28/22 14:59	10/01/22 14:00	1
Method: Total BTEX - Total BTE	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	96.5		50.0		mg/Kg			09/23/22 12:25	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/23/22 03:01	1
Diesel Range Organics (Over C10-C28)	96.5		50.0		mg/Kg		09/22/22 08:45	09/23/22 03:01	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/23/22 03:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				09/22/22 08:45	09/23/22 03:01	1
								09/23/22 03:01	

Eurofins Carlsbad

-

3

6

8

10

12

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1

SDG: Lea County NM

Client Sample ID: BH-197 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Lab Sample ID: 890-3011-14

Matrix: Solid

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1710		24.9		mg/Kg			09/24/22 00:46	5

Client Sample ID: BH-198 (4.5') Lab Sample ID: 890-3011-15 Matrix: Solid

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		09/28/22 14:59	10/01/22 14:26	
Toluene	<0.00202	U *-	0.00202		mg/Kg		09/28/22 14:59	10/01/22 14:26	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		09/28/22 14:59	10/01/22 14:26	
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		09/28/22 14:59	10/01/22 14:26	
o-Xylene	<0.00202	U	0.00202		mg/Kg		09/28/22 14:59	10/01/22 14:26	
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		09/28/22 14:59	10/01/22 14:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	121		70 - 130				09/28/22 14:59	10/01/22 14:26	
1,4-Difluorobenzene (Surr)	94		70 - 130				09/28/22 14:59	10/01/22 14:26	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403		mg/Kg			10/01/22 19:48	,
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			09/23/22 12:25	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/23/22 01:13	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/23/22 01:13	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/22/22 08:45	09/23/22 01:13	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				09/22/22 08:45	09/23/22 01:13	1
o-Terphenyl	95		70 - 130				09/22/22 08:45	09/23/22 01:13	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-3011-16

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-199 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:52	1
Toluene	<0.00198	U *-	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:52	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:52	1
m-Xylene & p-Xylene	< 0.00396	U	0.00396		mg/Kg		09/28/22 14:59	10/01/22 14:52	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 14:52	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		09/28/22 14:59	10/01/22 14:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				09/28/22 14:59	10/01/22 14:52	1
1,4-Difluorobenzene (Surr)	93		70 - 130				09/28/22 14:59	10/01/22 14:52	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/01/22 19:48	1
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared		
							riepaieu	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			09/23/22 12:25	
Total TPH Method: 8015B NM - Diesel Ran					mg/Kg				
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)	49.9			=	<u> </u>	09/23/22 12:25	1
Method: 8015B NM - Diesel Ran Analyte	ge Organics (D	RO) (GC) Qualifier	49.9	MDL	Unit	<u>D</u>	Prepared	09/23/22 12:25 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D	RO) (GC) Qualifier	49.9			=	<u> </u>	09/23/22 12:25	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D	RO) (GC) Qualifier	49.9		Unit	=	Prepared	09/23/22 12:25 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <49.9	RO) (GC) Qualifier U	49.9 RL 49.9		Unit mg/Kg	=	Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 01:35	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.9	RO) (GC) Qualifier U	49.9 RL 49.9 49.9		Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 01:35 09/23/22 01:35	1 Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <49.9 <49.9	RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9		Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 01:35 09/23/22 01:35	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits		Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared	09/23/22 12:25 Analyzed 09/23/22 01:35 09/23/22 01:35 09/23/22 01:35 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 90 100	RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		Unit mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 01:35 09/23/22 01:35 Analyzed 09/23/22 01:35	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <49.9 <49.9 <49.9 **Recovery 90 100 omatography -	RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		Unit mg/Kg mg/Kg mg/Kg	=	Prepared 09/22/22 08:45 09/22/22 08:45 09/22/22 08:45 Prepared 09/22/22 08:45	09/23/22 12:25 Analyzed 09/23/22 01:35 09/23/22 01:35 Analyzed 09/23/22 01:35	Dil Fac

Client Sample ID: BH-200 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3011-17

Matrix: Solid

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0201	U	0.0201		mg/Kg		09/28/22 14:59	10/01/22 16:10	10
Toluene	<0.0201	U *-	0.0201		mg/Kg		09/28/22 14:59	10/01/22 16:10	10
Ethylbenzene	0.0529		0.0201		mg/Kg		09/28/22 14:59	10/01/22 16:10	10
m-Xylene & p-Xylene	0.116		0.0402		mg/Kg		09/28/22 14:59	10/01/22 16:10	10
o-Xylene	<0.0201	U	0.0201		mg/Kg		09/28/22 14:59	10/01/22 16:10	10
Xylenes, Total	0.116		0.0402		mg/Kg		09/28/22 14:59	10/01/22 16:10	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	135	S1+	70 - 130				09/28/22 14:59	10/01/22 16:10	10

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-200 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Sample Depth: 4.5 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3011-17

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	87	70 - 130	09/28/22 14:59	10/01/22 16:10	10

Method: Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.169	0.0402	mg/Kg			10/01/22 19:48	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Quali	ifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2290	50.0	mg/Kg			09/23/22 12:25	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 08:45	09/23/22 03:23	1
Diesel Range Organics (Over C10-C28)	2020		50.0		mg/Kg		09/22/22 08:45	09/23/22 03:23	1
Oll Range Organics (Over C28-C36)	267		50.0		mg/Kg		09/22/22 08:45	09/23/22 03:23	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130	09/22/22 08:45	09/23/22 03:23	1
o-Terphenyl	90		70 - 130	09/22/22 08:45	09/23/22 03:23	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3220		25.1		mg/Kg			09/23/22 19:57	5

Client Sample ID: BH-201 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3011-18

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0230		0.0200		mg/Kg		09/28/22 14:59	10/01/22 16:36	10
Toluene	<0.0200	U *-	0.0200		mg/Kg		09/28/22 14:59	10/01/22 16:36	10
Ethylbenzene	0.374		0.0200		mg/Kg		09/28/22 14:59	10/01/22 16:36	10
m-Xylene & p-Xylene	1.01		0.0399		mg/Kg		09/28/22 14:59	10/01/22 16:36	10
o-Xylene	0.368		0.0200		mg/Kg		09/28/22 14:59	10/01/22 16:36	10
Xylenes, Total	1.38		0.0399		mg/Kg		09/28/22 14:59	10/01/22 16:36	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	230	S1+	70 - 130				09/28/22 14:59	10/01/22 16:36	10
1,4-Difluorobenzene (Surr)	98		70 - 130				09/28/22 14:59	10/01/22 16:36	10

Method: Total BTF)	(₋ Total I	RTFY Ca	doulation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	1.78	0.0399	mg/Kg			10/01/22 19:48	1

Eurofins Carlsbad

3

4

0

10

12

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-201 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Sample Depth: 4.5

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3011-18

Matrix: Solid

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2040		49.9		mg/Kg			09/23/22 12:25	1
Method: 8015B NM - Diesel Rar	nge Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	117		49.9		mg/Kg		09/22/22 08:45	09/23/22 03:44	1
Diesel Range Organics (Over C10-C28)	1690		49.9		mg/Kg		09/22/22 08:45	09/23/22 03:44	1
Oll Range Organics (Over C28-C36)	234		49.9		mg/Kg		09/22/22 08:45	09/23/22 03:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130				09/22/22 08:45	09/23/22 03:44	1
o-Terphenyl	94		70 - 130				09/22/22 08:45	09/23/22 03:44	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3480		24.8		mg/Kg			09/23/22 20:11	5

Client Sample ID: BH-202 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 15:18	1
Toluene	<0.00199	U *-	0.00199		mg/Kg		09/28/22 14:59	10/01/22 15:18	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 15:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 15:18	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/28/22 14:59	10/01/22 15:18	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/28/22 14:59	10/01/22 15:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				09/28/22 14:59	10/01/22 15:18	1
1,4-Difluorobenzene (Surr)	94		70 - 130				09/28/22 14:59	10/01/22 15:18	1
Method: Total BTEX - Total BT Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 10/01/22 19:48	Dil Fac
Analyte	<0.00398	U		MDL		<u>D</u>	Prepared		Dil Fac
Analyte Total BTEX	Result <0.00398 ge Organics (DR	U				<u>D</u>	Prepared Prepared		Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran	Result <0.00398 ge Organics (DR	O) (GC) Qualifier	0.00398		mg/Kg		<u> </u>	10/01/22 19:48	1
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	ge Organics (DR Result <49.9	O) (GC) Qualifier U	0.00398		mg/Kg		<u> </u>	10/01/22 19:48 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH	ge Organics (DR Result <49.9	O) (GC) Qualifier U	0.00398	MDL	mg/Kg		<u> </u>	10/01/22 19:48 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte Gasoline Range Organics	ge Organics (DR Result <49.9	O) (GC) Qualifier U RO) (GC) Qualifier	0.00398 RL 49.9	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	10/01/22 19:48 Analyzed 09/23/22 12:25	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra Analyte	ge Organics (DR Result <49.9 ange Organics (D Result Result Result Result Result Result Result Result Result Result Result Result Result	O) (GC) Qualifier U RO) (GC) Qualifier U	0.00398 RL 49.9	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	10/01/22 19:48 Analyzed 09/23/22 12:25 Analyzed	Dil Fac

Matrix: Solid

Lab Sample ID: 890-3011-19

Lab Sample ID: 890-3011-20

Client: Tetra Tech, Inc.

Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-202 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130	09/23/22 11:03	09/24/22 11:43	1
o-Terphenyl	98		70 - 130	09/23/22 11:03	09/24/22 11:43	1

ı	Method: 300.0 - Anions, Ion Chrom	natography - Soluble						
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	3130	25.0	mg/Kg			09/23/22 20:16	5

Client Sample ID: BH-203 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 15:44	1
Toluene	<0.00198	U *-	0.00198		mg/Kg		09/28/22 14:59	10/01/22 15:44	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 15:44	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		09/28/22 14:59	10/01/22 15:44	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/28/22 14:59	10/01/22 15:44	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		09/28/22 14:59	10/01/22 15:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				09/28/22 14:59	10/01/22 15:44	1
1,4-Difluorobenzene (Surr)	92		70 - 130				09/28/22 14:59	10/01/22 15:44	1

Method: Total BTEX - Total BTEX Calculation									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			10/01/22 19:48	1

Method: 8015 NM - Diesel Range O	rganics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			09/23/22 12:25	1

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/23/22 11:03	09/24/22 12:48	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		09/23/22 11:03	09/24/22 12:48	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/23/22 11:03	09/24/22 12:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130				09/23/22 11:03	09/24/22 12:48	1
o-Terphenyl	110		70 - 130				09/23/22 11:03	09/24/22 12:48	1

Method: 300.0 - Anions, Ion Chrom	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	330		4.99		mg/Kg			09/23/22 20:22	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-204 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Sample Depth: 4.5

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3011-21

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0200	U *-	0.0200		mg/Kg		09/28/22 16:17	10/01/22 22:31	10
Toluene	<0.0200	U	0.0200		mg/Kg		09/28/22 16:17	10/01/22 22:31	1
Ethylbenzene	<0.0200	U	0.0200		mg/Kg		09/28/22 16:17	10/01/22 22:31	10
m-Xylene & p-Xylene	0.0689		0.0399		mg/Kg		09/28/22 16:17	10/01/22 22:31	10
o-Xylene	0.170		0.0200		mg/Kg		09/28/22 16:17	10/01/22 22:31	1
Xylenes, Total	0.239		0.0399		mg/Kg		09/28/22 16:17	10/01/22 22:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	789	S1+	70 - 130				09/28/22 16:17	10/01/22 22:31	1
1,4-Difluorobenzene (Surr)	96		70 - 130				09/28/22 16:17	10/01/22 22:31	1
Method: Total BTEX - Total BTI	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.239		0.0399		mg/Kg			10/01/22 19:48	
- Method: 8015 NM - Diesel Rang	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	857		50.0		mg/Kg			09/23/22 12:25	•
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/24/22 05:14	
Diesel Range Organics (Over C10-C28)	739		50.0		mg/Kg		09/22/22 11:26	09/24/22 05:14	
Oll Range Organics (Over C28-C36)	118		50.0		mg/Kg		09/22/22 11:26	09/24/22 05:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	91		70 - 130				09/22/22 11:26	09/24/22 05:14	
o-Terphenyl	94		70 - 130				09/22/22 11:26	09/24/22 05:14	
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-205 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Sample Depth: 4.5

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-3011-22

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC)

Welliou. 002 ID - Volalile Organ	ne compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.200	U *+ *1	0.200		mg/Kg		09/29/22 16:18	10/03/22 19:15	100
Toluene	1.92	*+ *1	0.200		mg/Kg		09/29/22 16:18	10/03/22 19:15	100
Ethylbenzene	3.18	*+ *1	0.200		mg/Kg		09/29/22 16:18	10/03/22 19:15	100
m-Xylene & p-Xylene	17.6	*+ *1	0.399		mg/Kg		09/29/22 16:18	10/03/22 19:15	100
o-Xylene	8.12	*+ *1	0.200		mg/Kg		09/29/22 16:18	10/03/22 19:15	100
Xylenes, Total	25.7	*+ *1	0.399		mg/Kg		09/29/22 16:18	10/03/22 19:15	100
	****	•							

REMOVED FROM

ANALYSIS TABLE

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1 SDG: Lea County NM

Client Sample ID: BH-205 (4.5') Date Collected: 09/19/22 00:00

Lab Sample ID: 890-3011-22

Date Received: 09/20/22 10:22

Matrix: Solid

Sample Depth: 4.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	155	S1+	70 - 130	09/29/22 16:18	10/03/22 19:15	100
1,4-Difluorobenzene (Surr)	84		70 - 130	09/29/22 16:18	10/03/22 19:15	100

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	30.8		0.399		mg/Kg			10/01/22 19:48	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)								
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	3640	49.9	mg/Kg			09/23/22 12:25	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline Range Organics (GRO)-C6-C10	582	49.9	mg/Kg		09/22/22 11:26	09/24/22 04:09	1		
Diesel Range Organics (Over C10-C28)	2690	49.9	mg/Kg		09/22/22 11:26	09/24/22 04:09	1		
Oll Range Organics (Over C28-C36)	372	49.9	mg/Kg		09/22/22 11:26	09/24/22 04:09	1		

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130	09/22/22 11:26	09/24/22 04:09	1
o-Terphenyl	115		70 - 130	09/22/22 11:26	09/24/22 04:09	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	1410		25.0		mg/Kg			09/23/22 20:41	5

Client Sample ID: BH-206 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Total BTEX

ANALYSIS TABLE

2.24

REMOVED FROM

Lab Sample ID: 890-3011-23

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0199	U *-	0.0199		mg/Kg		09/28/22 16:17	10/01/22 23:12	10
Toluene	<0.0199	U	0.0199		mg/Kg		09/28/22 16:17	10/01/22 23:12	10
Ethylbenzene	0.415		0.0199		mg/Kg		09/28/22 16:17	10/01/22 23:12	10
m-Xylene & p-Xylene	1.12		0.0398		mg/Kg		09/28/22 16:17	10/01/22 23:12	10
o-Xylene	0.709		0.0199		mg/Kg		09/28/22 16:17	10/01/22 23:12	10
Xylenes, Total	1.83		0.0398		mg/Kg		09/28/22 16:17	10/01/22 23:12	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130				09/28/22 16:17	10/01/22 23:12	10
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130				09/28/22 16:17	10/01/22 23:12	10

Eurofins Carlsbad

10/01/22 19:48

0.0398

mg/Kg

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-206 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Sample Depth: 4.5 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3011-23

Lab Sample ID: 890-3011-24

Matrix: Solid

4

5

7

9

11

13

Matrix: Solid

Method: 8015 NM - Diesel Rang Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1390	<u>Qualifier</u>	50.0	WIDE	mg/Kg	=	- riepaieu	09/23/22 12:25	1
	1550		00.0		mg/rtg			00/20/22 12:20	
Method: 8015B NM - Diesel Rar	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	169		50.0		mg/Kg		09/22/22 11:26	09/24/22 04:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	1060		50.0		mg/Kg		09/22/22 11:26	09/24/22 04:31	1
C10-C28)									
Oll Range Organics (Over	159		50.0		mg/Kg		09/22/22 11:26	09/24/22 04:31	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				09/22/22 11:26	09/24/22 04:31	1
o-Terphenyl	94		70 - 130				09/22/22 11:26	09/24/22 04:31	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1930		25.0		mg/Kg			09/23/22 20:46	

Client Sample ID: BH-207 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U *-	0.00202		mg/Kg		09/28/22 16:17	10/01/22 21:51	1
Toluene	<0.00202	U	0.00202		mg/Kg		09/28/22 16:17	10/01/22 21:51	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		09/28/22 16:17	10/01/22 21:51	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		09/28/22 16:17	10/01/22 21:51	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		09/28/22 16:17	10/01/22 21:51	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		09/28/22 16:17	10/01/22 21:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				09/28/22 16:17	10/01/22 21:51	1
1,4-Difluorobenzene (Surr)	104		70 - 130				09/28/22 16:17	10/01/22 21:51	1
Method: Total BTEX - Total BTEX Analyte Total BTEX		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 10/01/22 19:48	
Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range	Result <0.00403	U (GC)	0.00403		mg/Kg		<u> </u>	10/01/22 19:48	
Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte	Result <0.00403 Organics (DRO Result	O) (GC) Qualifier	0.00403		mg/Kg	<u>D</u>	Prepared Prepared	10/01/22 19:48 Analyzed	Dil Fa
Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range	Result <pre></pre> <pre></pre>	O) (GC) Qualifier U	0.00403 RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	10/01/22 19:48 Analyzed 09/23/22 12:25	Dil Fac
Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte	Result <pre></pre> <pre></pre>	O) (GC) Qualifier U RO) (GC) Qualifier	0.00403 RL 50.0	MDL	mg/Kg Unit mg/Kg Unit		Prepared Prepared	10/01/22 19:48 Analyzed 09/23/22 12:25 Analyzed	Dil Fac
Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	Result <pre></pre> <pre></pre>	O) (GC) Qualifier U RO) (GC) Qualifier	0.00403 RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	10/01/22 19:48 Analyzed 09/23/22 12:25	Dil Fac
Method: Total BTEX - Total BTEX Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte	Result <pre></pre> <pre></pre>	O) (GC) Qualifier U RO) (GC) Qualifier U	0.00403 RL 50.0	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	10/01/22 19:48 Analyzed 09/23/22 12:25 Analyzed	Dil Fac

Matrix: Solid

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-3011-1

Lab Sample ID: 890-3011-24

Lab Sample ID: 890-3011-25

SDG: Lea County NM

Client Sample ID: BH-207 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 4.5

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	104		70 - 130	09/22/22 11:26	09/24/22 03:26	1
l	o-Terphenyl	111		70 - 130	09/22/22 11:26	09/24/22 03:26	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 4000 49.7 mg/Kg 09/23/22 20:51

Client Sample ID: SW-62 (8-13')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8 - 13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 16:17	10/01/22 22:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 22:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 22:11	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/28/22 16:17	10/01/22 22:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 22:11	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/28/22 16:17	10/01/22 22:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				09/28/22 16:17	10/01/22 22:11	1
1,4-Difluorobenzene (Surr)	105		70 - 130				09/28/22 16:17	10/01/22 22:11	1

Method: Total BTEX - Total BTEX C	aiculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/01/22 19:48	1

Method: 8015 NM - Diesel Range O	rganics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			09/23/22 12:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/24/22 05:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/24/22 05:36	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/24/22 05:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				09/22/22 11:26	09/24/22 05:36	1
o-Terphenvl	115		70 ₋ 130				09/22/22 11:26	09/24/22 05:36	1

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	330		4.96		mg/Kg			09/23/22 20:56	1

Matrix: Solid

Lab Sample ID: 890-3011-26

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-72 (0-8')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U *-	0.00199		mg/Kg		09/28/22 16:17	10/02/22 01:22	
Toluene	< 0.00199	U	0.00199		mg/Kg		09/28/22 16:17	10/02/22 01:22	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		09/28/22 16:17	10/02/22 01:22	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/28/22 16:17	10/02/22 01:22	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		09/28/22 16:17	10/02/22 01:22	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/28/22 16:17	10/02/22 01:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	108		70 - 130				09/28/22 16:17	10/02/22 01:22	-
1,4-Difluorobenzene (Surr)	96		70 - 130				09/28/22 16:17	10/02/22 01:22	
Method: Total BTEX - Total BTI	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/01/22 19:48	
Method: 8015 NM - Diesel Ranç Analyte	Result	O) (GC) Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	
Analyte Total TPH	Result 436	Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 09/23/22 12:25	
Analyte	Result 436 nge Organics (Di	Qualifier RO) (GC)		MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte	Result 436 nge Organics (Di Result	Qualifier RO) (GC) Qualifier	49.9	MDL	mg/Kg	<u>D</u>	Prepared	09/23/22 12:25 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics	Result 436 nge Organics (Di	Qualifier RO) (GC) Qualifier	49.9		mg/Kg		· ·	09/23/22 12:25	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 436 nge Organics (Di Result	Qualifier RO) (GC) Qualifier	49.9		mg/Kg		Prepared	09/23/22 12:25 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	Result 436 nge Organics (Di Result <49.9	Qualifier RO) (GC) Qualifier	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 09/22/22 11:26	09/23/22 12:25 Analyzed 09/24/22 04:53	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 436 nge Organics (Di Result <49.9	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 11:26 09/22/22 11:26	09/23/22 12:25 Analyzed 09/24/22 04:53 09/24/22 04:53	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 436	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 11:26 09/22/22 11:26 09/22/22 11:26	09/23/22 12:25 Analyzed 09/24/22 04:53 09/24/22 04:53	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai	Result 436	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 11:26 09/22/22 11:26 09/22/22 11:26 Prepared	09/23/22 12:25 Analyzed 09/24/22 04:53 09/24/22 04:53 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 436 436 436 436 436 436	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/22/22 11:26 09/22/22 11:26 09/22/22 11:26 Prepared 09/22/22 11:26	09/23/22 12:25 Analyzed 09/24/22 04:53 09/24/22 04:53 Analyzed 09/24/22 04:53	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rai Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits 70.130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 09/22/22 11:26 09/22/22 11:26 09/22/22 11:26 Prepared 09/22/22 11:26	09/23/22 12:25 Analyzed 09/24/22 04:53 09/24/22 04:53 Analyzed 09/24/22 04:53	Dil Fac

Client Sample ID: SW-73 (6-13')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Sample Depth: 6 - 13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 16:17	10/02/22 01:42	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/02/22 01:42	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/02/22 01:42	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/28/22 16:17	10/02/22 01:42	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/02/22 01:42	1
Xylenes, Total	< 0.00401	U	0.00401		mg/Kg		09/28/22 16:17	10/02/22 01:42	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-3011-27

Job ID: 890-3011-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

SDG: Lea County NM Client Sample ID: SW-73 (6-13') Lab Sample ID: 890-3011-27

Date Collected: 09/19/22 00:00 Matrix: Solid Date Received: 09/20/22 10:22

Sample Depth: 6 - 13

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	108		70 - 130				09/28/22 16:17	10/02/22 01:42	
1,4-Difluorobenzene (Surr)	98		70 - 130				09/28/22 16:17	10/02/22 01:42	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			10/01/22 19:48	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			09/23/22 12:25	
Analyte	`								
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
•		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	Result <49.9		RL 49.9	MDL	mg/Kg	<u>D</u>	Prepared 09/21/22 15:33	Analyzed 09/22/22 03:11	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	MDL	mg/Kg	<u>D</u>	09/21/22 15:33	09/22/22 03:11	Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U		MDL		<u>D</u>			Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	<49.9	U	49.9	MDL	mg/Kg	<u>D</u>	09/21/22 15:33	09/22/22 03:11	Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 <49.9	U U	49.9	MDL	mg/Kg	<u>D</u>	09/21/22 15:33 09/21/22 15:33	09/22/22 03:11	Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	<49.9 <49.9 <49.9	U U	49.9 49.9 49.9	MDL	mg/Kg	<u>D</u>	09/21/22 15:33 09/21/22 15:33 09/21/22 15:33	09/22/22 03:11 09/22/22 03:11 09/22/22 03:11	

Client Sample ID: SW-74 (8-13') Lab Sample ID: 890-3011-28

RL

5.02

Result Qualifier

394

MDL Unit

mg/Kg

D

Prepared

Analyzed

09/23/22 21:05

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8 - 13

Analyte

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U *-	0.00199		mg/Kg		09/28/22 16:17	10/02/22 02:03	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/28/22 16:17	10/02/22 02:03	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/28/22 16:17	10/02/22 02:03	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/28/22 16:17	10/02/22 02:03	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/28/22 16:17	10/02/22 02:03	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/28/22 16:17	10/02/22 02:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				09/28/22 16:17	10/02/22 02:03	1
1,4-Difluorobenzene (Surr)	99		70 - 130				09/28/22 16:17	10/02/22 02:03	1
Method: Total BTEX - Total B1	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Rar	ge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0		mg/Kg			09/23/22 12:25	

Eurofins Carlsbad

Dil Fac

Matrix: Solid

Matrix: Solid

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-74 (8-13')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 8 - 13

Sample Beptil. 0 - 10									
- Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/21/22 15:33	09/22/22 03:32	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		09/21/22 15:33	09/22/22 03:32	1

OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	09/21/22 15:33	09/22/22 03:32	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130		09/21/22 15:33	09/22/22 03:32	1
o-Terphenyl	132	S1+	70 - 130		09/21/22 15:33	09/22/22 03:32	1

Method: 300.0 - Anions, Ion Chrom	atography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1800	25.2	mg/Kg			09/23/22 21:20	5

Client Sample ID: SW-75 (0-4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 4.5

REMOVED FROM **ANALYSIS TABLE** Lab Sample ID: 890-3011-29

Lab Sample ID: 890-3011-28

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.0199	U *-	0.0199		mg/Kg		09/28/22 16:17	10/02/22 04:26	1
Toluene	<0.0199	U	0.0199		mg/Kg		09/28/22 16:17	10/02/22 04:26	10
Ethylbenzene	0.390		0.0199		mg/Kg		09/28/22 16:17	10/02/22 04:26	10
m-Xylene & p-Xylene	2.35		0.0398		mg/Kg		09/28/22 16:17	10/02/22 04:26	10
o-Xylene	0.839		0.0199		mg/Kg		09/28/22 16:17	10/02/22 04:26	10
Xylenes, Total	3.19		0.0398		mg/Kg		09/28/22 16:17	10/02/22 04:26	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130				09/28/22 16:17	10/02/22 04:26	10
1,4-Difluorobenzene (Surr)	74		70 - 130				09/28/22 16:17	10/02/22 04:26	10
Method: Total BTEX - Total BTI	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	3.58		0.0398		mg/Kg			10/01/22 19:48	1
Method: 8015 NM - Diesel Rand	ne Organics (DR	O) (GC)							
Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1340		49.9		mg/Kg			09/23/22 12:25	1
Method: 8015B NM - Diesel Rai	nge Organics (D	RO) (GC)							
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	174		49.9		mg/Kg		09/21/22 15:33	09/22/22 03:53	1
Diesel Range Organics (Over	1020		49.9		mg/Kg		09/21/22 15:33	09/22/22 03:53	1
C10-C28)									
Oll Range Organics (Over	142		49.9		mg/Kg		09/21/22 15:33	09/22/22 03:53	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

09/22/22 03:53

09/21/22 15:33

70 - 130

110

o-Terphenyl

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

RL

MDL Unit

D

Prepared

Client Sample ID: SW-75 (0-4.5')

Method: 300.0 - Anions, Ion Chromatography - Soluble

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Sample Depth: 0 - 4.5

Analyte

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-3011-29

Matrix: Solid

Dil Fac Analyzed

4.99 Chloride 228 mg/Kg **Client Sample ID: SW-76 (0-4.5')**

Result Qualifier

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Sample Depth: 0 - 4.5

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-3011-30

09/23/22 21:25

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U *-	0.00201		mg/Kg		09/28/22 16:17	10/02/22 02:23	
Toluene	<0.00201	U	0.00201		mg/Kg		09/28/22 16:17	10/02/22 02:23	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/28/22 16:17	10/02/22 02:23	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/28/22 16:17	10/02/22 02:23	
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/28/22 16:17	10/02/22 02:23	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/28/22 16:17	10/02/22 02:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	110		70 - 130				09/28/22 16:17	10/02/22 02:23	
1,4-Difluorobenzene (Surr)	95		70 - 130				09/28/22 16:17	10/02/22 02:23	
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/01/22 19:48	
Method: 8015 NM - Diesel Range	Organice (DD	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	60.1		50.0		mg/Kg		· · · · · · · · · · · · · · · · · · ·		
								09/23/22 12:25	
Method: 8015B NM - Diesel Rand	ne Organics (D	RO) (GC)						09/23/22 12:25	
•	• • •	RO) (GC) Qualifier	RL	MDL	Unit	D	Prepared		
Analyte Gasoline Range Organics	• • •	Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 09/21/22 15:33	Analyzed 09/22/22 04:14	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier		MDL		<u>D</u>		Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U	50.0	MDL	mg/Kg	<u> </u>	09/21/22 15:33	Analyzed 09/22/22 04:14	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 60.1	Qualifier U	50.0	MDL	mg/Kg	<u>D</u>	09/21/22 15:33 09/21/22 15:33	Analyzed 09/22/22 04:14 09/22/22 04:14	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result < 50.0 60.1 < 50.0	Qualifier U	50.0 50.0 50.0	MDL	mg/Kg	<u>D</u>	09/21/22 15:33 09/21/22 15:33 09/21/22 15:33	Analyzed 09/22/22 04:14 09/22/22 04:14 09/22/22 04:14	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U	50.0 50.0 50.0 <i>Limits</i>	MDL	mg/Kg	<u>D</u>	09/21/22 15:33 09/21/22 15:33 09/21/22 15:33 Prepared	Analyzed 09/22/22 04:14 09/22/22 04:14 09/22/22 04:14 Analyzed	Dil Fa
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	Result	Qualifier U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg	<u> </u>	09/21/22 15:33 09/21/22 15:33 09/21/22 15:33 Prepared 09/21/22 15:33	Analyzed 09/22/22 04:14 09/22/22 04:14 09/22/22 04:14 Analyzed 09/22/22 04:14	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/21/22 15:33 09/21/22 15:33 09/21/22 15:33 Prepared 09/21/22 15:33	Analyzed 09/22/22 04:14 09/22/22 04:14 09/22/22 04:14 Analyzed 09/22/22 04:14	Dil Fa

Matrix: Solid

Lab Sample ID: 890-3011-31

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-77 (0-4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Sample Depth: 0 - 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U *-	0.00200		mg/Kg		09/28/22 16:17	10/02/22 02:44	
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/02/22 02:44	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/02/22 02:44	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/28/22 16:17	10/02/22 02:44	
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/02/22 02:44	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/28/22 16:17	10/02/22 02:44	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	108		70 - 130				09/28/22 16:17	10/02/22 02:44	
1,4-Difluorobenzene (Surr)	101		70 - 130				09/28/22 16:17	10/02/22 02:44	
- Method: Total BTEX - Total BTE)	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/01/22 19:48	
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH	81.7	<u>quamici</u>	49.9		mg/Kg		Теригеи	09/23/22 12:25	
Mothodi 9045P NM Diocal Bone	ro Organico (D	BOY (CC)							
Method: 8015B NM - Diesel Rang Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics			49.9	WIDE	mg/Kg		09/21/22 15:33	09/22/22 04:35	Dil Fat
(GRO)-C6-C10	\49.9	U	49.9		mg/Rg		09/21/22 13.33	09/22/22 04.33	
Diesel Range Organics (Over	81.7		49.9		mg/Kg		09/21/22 15:33	09/22/22 04:35	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/21/22 15:33	09/22/22 04:35	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	101		70 - 130				09/21/22 15:33	09/22/22 04:35	
o-Terphenyl	113		70 - 130				09/21/22 15:33	09/22/22 04:35	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
						_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

latrix: Solid				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-19417-A-1-E MS	Matrix Spike	109	105	
880-19417-A-1-F MSD	Matrix Spike Duplicate	112	100	
390-3011-1	H-1 (0-2')	110	95	
390-3011-1 MS	H-1 (0-2')	108	90	
890-3011-1 MSD	H-1 (0-2')	119	97	
890-3011-2	H-2 (0-2')	125	99	
390-3011-3	H-3 (0-2')	113	96	
390-3011-4	H-4 (0-2')	113	91	
390-3011-5	H-5 (0-2')	116	95	
390-3011-6	H-6 (0-2')	118	95	
390-3011-7	H-7 (0-2')	122	88	
390-3011-8	BH-191 (8')	113	90	
390-3011-9	BH-192 (8')	123	99	
390-3011-10	BH-193 (8')	123	91	
390-3011-11	BH-194 (8')	118	92	
390-3011-12	BH-195 (8')	120	9 S1-	
390-3011-13	BH-196 (4.5')	122	90	
390-3011-14	BH-197 (4.5')	126	91	
90-3011-15	BH-198 (4.5')	121	94	
90-3011-16	BH-199 (4.5')	126	93	
90-3011-17	BH-200 (4.5')	135 S1+	87	
90-3011-18	BH-201 (4.5')	230 S1+	98	
90-3011-19	BH-202 (4.5')	126	94	
890-3011-20	BH-203 (4.5')	120	92	
90-3011-21	BH-204 (4.5')	789 S1+	96	
90-3011-22	BH-205 (4.5')	155 S1+	84	
390-3011-23	BH-206 (4.5')	126	65 S1-	
990-3011-24	BH-207 (4.5')	117	104	
890-3011-25	SW-62 (8-13')	112	105	
390-3011-25 390-3011-26	SW-72 (0-8')	108	96	
390-3011-27	SW-73 (6-13')	108	98 99	
890-3011-28	SW-74 (8-13')	108		
390-3011-29	SW-75 (0-4.5')	137 S1+	74	
90-3011-30	SW-76 (0-4.5')	110	95	
90-3011-31	SW-77 (0-4.5')	108	101	
90-3015-A-1-E MS	Matrix Spike	101	94	
890-3015-A-1-F MSD	Matrix Spike Duplicate	108	107	
.CS 880-35621/1-A	Lab Control Sample	110	99	
CS 880-35625/1-A	Lab Control Sample	109	100	
CS 880-35724/1-A	Lab Control Sample	76	73	
.CSD 880-35621/2-A	Lab Control Sample Dup	106	90	
.CSD 880-35625/2-A	Lab Control Sample Dup	104	99	
.CSD 880-35724/2-A	Lab Control Sample Dup	128	123	
MB 880-35621/5-A	Method Blank	76	89	
MB 880-35625/5-A	Method Blank	101	114	
MB 880-35628/5-A	Method Blank	105	105	
ИВ 880-35692/5-A	Method Blank	99	83	
MB 880-35720/5-A	Method Blank	70	92	
MB 880-35724/5-A	Method Blank	100	76	

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Released to Imaging: 9/1/2023 2:07:08 PM

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

		1001	0.70114	Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-19485-A-21-F MS	Matrix Spike	97	102	
880-19485-A-21-G MSD	Matrix Spike Duplicate	97	101	
890-3010-A-2-C MS	Matrix Spike	90	88	
890-3010-A-2-D MSD	Matrix Spike Duplicate	103	99	
890-3011-1	H-1 (0-2')	88	101	
890-3011-1 MS	H-1 (0-2')	98	94	
890-3011-1 MSD	H-1 (0-2')	96	93	
890-3011-2	H-2 (0-2')	86	94	
890-3011-3	H-3 (0-2')	107	118	
890-3011-4	H-4 (0-2')	105	115	
890-3011-5	H-5 (0-2')	95	104	
890-3011-6	H-6 (0-2')	115	126	
890-3011-7	H-7 (0-2')	88	93	
890-3011-8	BH-191 (8')	110	119	
890-3011-9	BH-192 (8')	82	92	
890-3011-10	BH-193 (8')	88	94	
890-3011-11	BH-194 (8')	106	117	
890-3011-12	BH-195 (8')	87	94	
890-3011-13	BH-196 (4.5')	96	102	
890-3011-14	BH-197 (4.5')	97	111	
890-3011-15	BH-198 (4.5')	88	95	
890-3011-16	BH-199 (4.5')	90	100	
390-3011-17	BH-200 (4.5')	89	90	
890-3011-18	BH-201 (4.5')	96	94	
890-3011-19	BH-202 (4.5')	105	98	
890-3011-19 MS	BH-202 (4.5')	110	87	
390-3011-19 MSD	BH-202 (4.5')	112	89	
890-3011-20	BH-203 (4.5')	117	110	
890-3011-21	BH-204 (4.5')	91	94	
890-3011-22	BH-205 (4.5')	120	115	
890-3011-23	BH-206 (4.5')	95	94	
890-3011-24	BH-207 (4.5')	104	111	
890-3011-25	SW-62 (8-13')	110	115	
890-3011-26	SW-72 (0-8')	115	121	
890-3011-27	SW-73 (6-13')	108	123	
890-3011-28	SW-74 (8-13')	121	132 S1+	
890-3011-29	SW-75 (0-4.5')	101	110	
890-3011-30	SW-76 (0-4.5')	99	114	
390-3011-31	·	101	113	
LCS 880-35103/2-A	SW-77 (0-4.5') Lab Control Sample	91	99	
LCS 880-35103/2-A LCS 880-35130/2-A	Lab Control Sample	95	96	
	· · · · · · · · · · · · · · · · · · ·	95 99		
LCS 880-35172/2-A	Lab Control Sample		105	
LCS 880-35262/2-A	Lab Control Sample	107	96 105	
LCSD 880-35103/3-A	Lab Control Sample Dup	93	105	
LCSD 880-35130/3-A LCSD 880-35172/3-A	Lab Control Sample Dup Lab Control Sample Dup	100 106	103	

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCSD 880-35262/3-A	Lab Control Sample Dup	109	93	
MB 880-35103/1-A	Method Blank	116	134 S1+	
MB 880-35130/1-A	Method Blank	110	124	
MB 880-35172/1-A	Method Blank	120	139 S1+	
MB 880-35262/1-A	Method Blank	132 S1+	124	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

QC Sample Results

Job ID: 890-3011-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-35621/5-A

Matrix: Solid Analysis Batch: 35814 Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 35621

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 06:24	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 06:24	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 06:24	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 14:59	10/01/22 06:24	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 14:59	10/01/22 06:24	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 14:59	10/01/22 06:24	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76	70 - 130	09/28/22 14:59	10/01/22 06:24	1
1,4-Difluorobenzene (Surr)	89	70 ₋ 130	09/28/22 14:59	10/01/22 06:24	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-35621/1-A **Matrix: Solid**

Analysis Batch: 35814

Prep Type: Total/NA

Prep Batch: 35621

	Бріке	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07727		mg/Kg		77	70 - 130	
Toluene	0.100	0.06855	*-	mg/Kg		69	70 - 130	
Ethylbenzene	0.100	0.07924		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	0.200	0.1579		mg/Kg		79	70 - 130	
o-Xylene	0.100	0.08291		mg/Kg		83	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	110	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: LCSD 880-35621/2-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 35814

Prep Type: Total/NA Prep Batch: 35621

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.100	0.07697		mg/Kg		77	70 - 130	0	35
0.100	0.07904		mg/Kg		79	70 - 130	14	35
0.100	0.07910		mg/Kg		79	70 - 130	0	35
0.200	0.1571		mg/Kg		79	70 - 130	1	35
0.100	0.08282		mg/Kg		83	70 - 130	0	35
	0.100 0.100 0.100 0.100 0.200	Added Result 0.100 0.07697 0.100 0.07904 0.100 0.07910 0.200 0.1571	Added Result Qualifier 0.100 0.07697 0.100 0.07904 0.100 0.07910 0.200 0.1571	Added Result Qualifier Unit 0.100 0.07697 mg/Kg 0.100 0.07904 mg/Kg 0.100 0.07910 mg/Kg 0.200 0.1571 mg/Kg	Added Result Qualifier Unit D 0.100 0.07697 mg/Kg 0.100 0.07904 mg/Kg 0.100 0.07910 mg/Kg 0.200 0.1571 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.07697 mg/Kg 77 0.100 0.07904 mg/Kg 79 0.100 0.07910 mg/Kg 79 0.200 0.1571 mg/Kg 79	Added Result Qualifier Unit D %Rec Limits 0.100 0.07697 mg/Kg 77 70 - 130 0.100 0.07904 mg/Kg 79 70 - 130 0.100 0.07910 mg/Kg 79 70 - 130 0.200 0.1571 mg/Kg 79 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 0.100 0.07697 mg/Kg 77 70 - 130 0 0.100 0.07904 mg/Kg 79 70 - 130 14 0.100 0.07910 mg/Kg 79 70 - 130 0 0.200 0.1571 mg/Kg 79 70 - 130 1

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1.4-Difluorobenzene (Surr)	90		70 - 130

Lab Sample ID: 890-3011-1 MS Client Sample ID: H-1 (0-2')

Matrix: Solid

Analysis Batch: 35814

Prep Batch: 35621 MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <0.00199 U 0.101 93 70 - 130 Benzene 0.09391 mg/Kg Toluene <0.00199 U*-0.101 0.09305 mg/Kg 92 70 - 130

Eurofins Carlsbad

Prep Type: Total/NA

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3011-1 MS

Matrix: Solid

Analysis Batch: 35814

Client Sample ID: H-1 (0-2') Prep Type: Total/NA

Prep Batch: 35621

	Sample	Sample	Бріке	IVIO	IVIO				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00199	U	0.101	0.09436		mg/Kg		94	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.202	0.1865		mg/Kg		93	70 - 130	
o-Xylene	<0.00199	U	0.101	0.09355		mg/Kg		93	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	90		70 - 130

Client Sample ID: H-1 (0-2')

Prep Type: Total/NA

Prep Batch: 35621

Lab Sample ID: 890-3011-1 MSD **Matrix: Solid**

Analysis Batch: 35814

Sample Sample Spike MSD MSD %Rec %Rec Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit 0.0996 0.09949 100 Benzene <0.00199 U mg/Kg 70 - 130 6 35 Toluene <0.00199 U*-0.0996 0.1008 101 70 - 130 35 mg/Kg 8 Ethylbenzene <0.00199 U 0.0996 0.09957 mg/Kg 100 70 - 130 5 35 m-Xylene & p-Xylene <0.00398 U 0.199 0.1958 70 - 130 35 mg/Kg 98 5 0.0996 o-Xylene <0.00199 U 0.09977 100 70 - 130 mg/Kg

MSD MSD

Surrogate	%Recovery C	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: MB 880-35625/5-A

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35625

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/28/22 16:17	10/01/22 20:00	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/28/22 16:17	10/01/22 20:00	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	09/28/2	2 16:17	10/01/22 20:00	1
1,4-Difluorobenzene (Surr)	114		70 - 130	09/28/2	2 16:17	10/01/22 20:00	1

Lab Sample ID: LCS 880-35625/1-A

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35625

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.06312	*-	mg/Kg		63	70 - 130	
Toluene	0.100	0.07231		mg/Kg		72	70 - 130	
Ethylbenzene	0.100	0.07030		mg/Kg		70	70 - 130	
m-Xylene & p-Xylene	0.200	0.1471		mg/Kg		74	70 - 130	

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-3011-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-35625/1-A

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35625

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	0.100	0.07531		mg/Kg		75	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-35625/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 35815 Prep Batch: 35625

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.06587	*_	mg/Kg		66	70 - 130	4	35
Toluene	0.100	0.07114		mg/Kg		71	70 - 130	2	35
Ethylbenzene	0.100	0.07179		mg/Kg		72	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1452		mg/Kg		73	70 - 130	1	35
o-Xylene	0.100	0.07431		mg/Kg		74	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 880-19417-A-1-E MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 35815 Prep Batch: 35625

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U *-	0.101	0.09573		mg/Kg		95	70 - 130	
Toluene	<0.00201	U	0.101	0.09812		mg/Kg		98	70 - 130	
Ethylbenzene	<0.00201	U	0.101	0.08958		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.201	0.1802		mg/Kg		90	70 - 130	
o-Xylene	<0.00201	U	0.101	0.09000		mg/Kg		89	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 880-19417-A-1-F MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 35815 Prep Batch: 35625

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U *-	0.0990	0.09175		mg/Kg		93	70 - 130	4	35
Toluene	<0.00201	U	0.0990	0.1021		mg/Kg		103	70 - 130	4	35
Ethylbenzene	<0.00201	U	0.0990	0.1028		mg/Kg		104	70 - 130	14	35
m-Xylene & p-Xylene	<0.00402	U	0.198	0.2097		mg/Kg		106	70 - 130	15	35
o-Xylene	<0.00201	U	0.0990	0.1043		mg/Kg		105	70 - 130	15	35

Eurofins Carlsbad

2

3

4

6

0

40

11

13

Job ID: 890-3011-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-19417-A-1-F MSD

Matrix: Solid

Analysis Batch: 35815

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 35625

MSD MSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 112 70 - 130 1,4-Difluorobenzene (Surr) 100 70 - 130

Lab Sample ID: MB 880-35628/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 35815

Prep Type: Total/NA

Prep Batch: 35628

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 09/28/22 16:25 <0.00200 U 0.00200 10/01/22 06:46 Benzene mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 09/28/22 16:25 10/01/22 06:46 Ethylbenzene <0.00200 U 0.00200 09/28/22 16:25 10/01/22 06:46 mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 09/28/22 16:25 10/01/22 06:46 o-Xylene <0.00200 U 0.00200 mg/Kg 09/28/22 16:25 10/01/22 06:46 Xylenes, Total <0.00400 U 0.00400 mg/Kg 09/28/22 16:25 10/01/22 06:46

MB MB

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105	70 - 130	09/28/22 16:25	10/01/22 06:46	1
1,4-Difluorobenzene (Surr)	105	70 - 130	09/28/22 16:25	10/01/22 06:46	1

Lab Sample ID: MB 880-35692/5-A

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35692

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/29/22 11:56	10/02/22 22:18	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/29/22 11:56	10/02/22 22:18	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130	09/29/22 11:56	10/02/22 22:18	1
1.4-Difluorobenzene (Surr)	83		70 - 130	09/29/22 11:56	10/02/22 22:18	1

Lab Sample ID: MB 880-35720/5-A

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Analysis Batch: 35814

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35720

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/29/22 15:53	09/30/22 16:57	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/29/22 15:53	09/30/22 16:57	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/29/22 15:53	09/30/22 16:57	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/29/22 15:53	09/30/22 16:57	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/29/22 15:53	09/30/22 16:57	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/29/22 15:53	09/30/22 16:57	1

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-35720/5-A

Matrix: Solid

Analysis Batch: 35814

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35720

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		70 - 130	09/29/22 15:53	09/30/22 16:57	1
1,4-Difluorobenzene (Surr)	92		70 - 130	09/29/22 15:53	09/30/22 16:57	1

Lab Sample ID: MB 880-35724/5-A

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 35724

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/29/22 16:18	10/03/22 08:58	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/29/22 16:18	10/03/22 08:58	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	70 - 130	09/29/22 16:18	10/03/22 08:58	1
1,4-Difluorobenzene (Surr)	76	70 - 130	09/29/22 16:18	10/03/22 08:58	1

Lab Sample ID: LCS 880-35724/1-A

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35724

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07829		mg/Kg		78	70 - 130	
Toluene	0.100	0.08089		mg/Kg		81	70 - 130	
Ethylbenzene	0.100	0.07734		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	0.200	0.1621		mg/Kg		81	70 - 130	
o-Xylene	0.100	0.08300		mg/Kg		83	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	76	70 - 130
1,4-Difluorobenzene (Surr)	73	70 - 130

Lab Sample ID: LCSD 880-35724/2-A

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 35724

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1318	*+ *1	mg/Kg		132	70 - 130	51	35
Toluene	0.100	0.1408	*+ *1	mg/Kg		141	70 - 130	54	35
Ethylbenzene	0.100	0.1312	*+ *1	mg/Kg		131	70 - 130	52	35
m-Xylene & p-Xylene	0.200	0.2759	*+ *1	mg/Kg		138	70 - 130	52	35
o-Xylene	0.100	0.1422	*+ *1	mg/Kg		142	70 - 130	53	35

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 128 70 - 130

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-35724/2-A

Matrix: Solid

Analysis Batch: 35890

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 35724

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1,4-Difluorobenzene (Surr) 123 70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 35724

Lab Sample ID: 890-3015-A-1-E MS

Matrix: Solid

Analysis Batch: 35890

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U *+ *1	0.0998	0.09073	-	mg/Kg		91	70 - 130	
Toluene	<0.00200	U *+ *1	0.0998	0.09593		mg/Kg		96	70 - 130	
Ethylbenzene	<0.00200	U *+ *1	0.0998	0.08487		mg/Kg		85	70 - 130	
m-Xylene & p-Xylene	<0.00401	U *+ *1	0.200	0.1756		mg/Kg		88	70 - 130	
o-Xylene	<0.00200	U *+ *1	0.0998	0.09418		mg/Kg		94	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	94	70 - 130

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 35890

Lab Sample ID: 890-3015-A-1-F MSD

Prep Type: Total/NA

Prep Batch: 35724

_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U *+ *1	0.0990	0.09916		mg/Kg		100	70 - 130	9	35
Toluene	<0.00200	U *+ *1	0.0990	0.1009		mg/Kg		102	70 - 130	5	35
Ethylbenzene	<0.00200	U *+ *1	0.0990	0.08894		mg/Kg		90	70 - 130	5	35
m-Xylene & p-Xylene	<0.00401	U *+ *1	0.198	0.1820		mg/Kg		92	70 - 130	4	35
o-Xylene	<0.00200	U *+ *1	0.0990	0.09773		mg/Kg		99	70 - 130	4	35

MSD MSD

Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene (Surr)	108	70 - 130
1,4-Difluorobenzene (Surr)	107	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-35103/1-A

Matrix: Solid

Analysis Batch: 35007

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 35103

ı		IVID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/21/22 15:33	09/21/22 19:44	1
	(GRO)-C6-C10									
	Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		09/21/22 15:33	09/21/22 19:44	1
	C10-C28)									
	OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/21/22 15:33	09/21/22 19:44	1
ı										

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	116		70 - 130	09/21/22 15:33	09/21/22 19:44	1
o-Terphenyl	134	S1+	70 - 130	09/21/22 15:33	09/21/22 19:44	1

Prep Batch: 35103

Prep Type: Total/NA Prep Batch: 35103

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-35103/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 35007

	Sp	ke LCS	LCS				%Rec	
Analyte	Add	ed Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics		00 1038		mg/Kg	_	104	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	10	00 978.2		mg/Kg		98	70 - 130	
C10-C28)								

	LU3 LU3	
Surrogate	%Recovery Qualifie	er Limits
1-Chlorooctane	91	70 - 130
o-Terphenyl	99	70 - 130

Lab Sample ID: LCSD 880-35103/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 35007

Limits RPD	Limit
70 - 130 9	20
70 - 130 4	20
_	70 - 130 9

C10-C28)

	LUJD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	93		70 - 130
o-Terphenyl	105		70 - 130

LCSD LCSD

Lab Sample ID: 880-19485-A-21-F MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 35007									Prep	Batch: 35103
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	996	962.8		mg/Kg		94	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	996	1097		mg/Kg		108	70 - 130	

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	97		70 - 130
o-Terphenvl	102		70 - 130

Lab Sample ID: 880-19485-A-21-G MSD

Matrix: Solid

Analysis Batch: 35007									Prep	Batch:	35103
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	912.2		mg/Kg		89	70 - 130	5	20
Diesel Range Organics (Over C10-C28)	<49.9	U	999	1095		mg/Kg		108	70 - 130	0	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	97		70 - 130								

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-19485-A-21-G MSD

Lab Sample ID: MB 880-35130/1-A

Matrix: Solid

Surrogate

o-Terphenyl

Matrix: Solid

Analysis Batch: 35007

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 35103

MSD MSD

%Recovery Qualifier Limits 101 70 - 130

Client Sample ID: Method Blank

Analyzed

09/22/22 19:31

Prep Type: Total/NA

Prep Batch: 35130

Dil Fac

Analysis Batch: 35122 мв мв

Analyte Result Qualifier RL MDL Unit Gasoline Range Organics <50.0 U 50.0 mg/Kg (GRO)-C6-C10

Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 09/22/22 08:45 09/22/22 19:31 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 09/22/22 08:45 09/22/22 19:31

мв мв

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 110 70 - 130 09/22/22 08:45 1-Chlorooctane 09/22/22 19:31 124 70 - 130 09/22/22 08:45 09/22/22 19:31 o-Terphenyl

Lab Sample ID: LCS 880-35130/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 35122

Prep Type: Total/NA Prep Batch: 35130 Spike LCS LCS

Prepared

09/22/22 08:45

Analyte Added Result Qualifier Unit %Rec Limits D Gasoline Range Organics 1000 914.4 mg/Kg 91 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 844.8 mg/Kg 84 70 - 130

C10-C28)

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	95	70 - 130
o-Terphenyl	96	70 - 130

Lab Sample ID: LCSD 880-35130/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 35122 Prep Batch: 35130 LCSD LCSD RPD Spike %Rec

Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 1000 883.3 88 Gasoline Range Organics mg/Kg 70 - 130 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 908.3 mg/Kg 91 70 - 130 20

C10-C28)

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	100	70 - 130
o-Terphenyl	103	70 - 130

Eurofins Carlsbad

10/3/2022

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3011-1 MS

Matrix: Solid

Analysis Batch: 35122

Client Sample ID: H-1 (0-2') Prep Type: Total/NA

Prep Batch: 35130

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	996	923.1		mg/Kg		91	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	996	1069		mg/Kg		107	70 - 130	

MS MS

Surrogate	%Recovery Q	ualifier	Limits
1-Chlorooctane	98		70 - 130
o-Terphenyl	94		70 - 130

Lab Sample ID: 890-3011-1 MSD Client Sample ID: H-1 (0-2')

Analysis Batch: 35122

Matrix: Solid Prep Type: Total/NA

Prep Batch: 35130

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	927.6		mg/Kg		91	70 - 130	0	20
Diesel Range Organics (Over C10-C28)	<49.9	U	999	1052		mg/Kg		105	70 - 130	2	20

MSD MSD

Surrogate	%Recovery Q	ualifier	Limits
1-Chlorooctane	96		70 - 130
o-Terphenvl	93		70 - 130

Lab Sample ID: MB 880-35172/1-A

Matrix: Solid

Analysis Batch: 35220

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 35172

MB MB

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/23/22 20:35	1
<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/23/22 20:35	1
<50.0	U	50.0		mg/Kg		09/22/22 11:26	09/23/22 20:35	1
	<50.0 <50.0	Result Qualifier	<50.0 U 50.0 <50.0 U 50.0	<50.0 U 50.0 <50.0	<50.0 U 50.0 mg/Kg <50.0 U 50.0 mg/Kg	<50.0 U 50.0 mg/Kg <50.0 U 50.0 mg/Kg	<50.0 U	<50.0 U

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130	09/22/22 11:26	09/23/22 20:35	1
o-Terphenyl	139	S1+	70 - 130	09/22/22 11:26	09/23/22 20:35	1

Lab Sample ID: LCS 880-35172/2-A

Matrix: Solid

Analysis Batch: 35220

Client Sam	ple ID: Lab	Control Sample
------------	-------------	----------------

Prep Type: Total/NA

Prep Batch: 35172

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	960.3		mg/Kg		96	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	891.9		mg/Kg		89	70 - 130	
C10-C28)								

Job ID: 890-3011-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-35172/2-A

Matrix: Solid

o-Terphenyl

Analysis Batch: 35220

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 35172

LCS LCS Limits

Surrogate %Recovery Qualifier 1-Chlorooctane 99 70 - 130 o-Terphenyl 105 70 - 130

Lab Sample ID: LCSD 880-35172/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 35220 Prep Batch: 35172

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 960.5 96 70 - 130O 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 951.2 95 mg/Kg 70 - 1306 20 C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 106 70 - 130 1-Chlorooctane 108 70 - 130

Lab Sample ID: 890-3010-A-2-C MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 35220 Prep Batch: 35172 Sample Sample MS MS Spike

Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.9 U 996 887.9 mg/Kg 87 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 996 998.1 mg/Kg 100 70 - 130 C10-C28)

MS MS %Recovery Qualifier Surrogate Limits

70 - 130 1-Chlorooctane 90 70 - 130 o-Terphenyl 88

Lab Sample ID: 890-3010-A-2-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 35220 Prep Batch: 35172 Sample Sample Snika MeD MeD

	Sample	Sample	Spike	INIOD	MOD				70 KeC		KFD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	<49.9	U	999	1050		mg/Kg		103	70 - 130	17	20	
(GRO)-C6-C10												
Diesel Range Organics (Over	<49.9	U	999	1135		mg/Kg		114	70 - 130	13	20	
C10-C28)												

MSD MSD Qualifier %Recovery Surrogate Limits 1-Chlorooctane 103 70 - 130 99 70 - 130 o-Terphenyl

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3011-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-35262/1-A

Matrix: Solid Analysis Batch: 35322 Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 35262

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/23/22 11:03	09/24/22 10:38	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		09/23/22 11:03	09/24/22 10:38	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/23/22 11:03	09/24/22 10:38	1

MD MD

Surrogate %R	ecovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	132	S1+	70 - 130	09/23/22 11:03	09/24/22 10:38	1
o-Terphenyl	124		70 - 130	09/23/22 11:03	09/24/22 10:38	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-35262/2-A Matrix: Solid Prep Type: Total/NA Analysis Batch: 35322 Prep Batch: 35262

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	1000	887.2		mg/Kg		89	70 - 130	 -
Diesel Range Organics (Over	1000	1002		mg/Kg		100	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	107	70 - 130
o-Terphenyl	96	70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 35322

Lab Sample ID: LCSD 880-35262/3-A

Prep Batch: 35262

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	921.2		mg/Kg		92	70 - 130	4	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	973.8		mg/Kg		97	70 - 130	3	20
C10-C28)									

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 - 130
o-Terphenyl	93		70 - 130

Lab Sample ID: 890-3011-19 MS **Client Sample ID: BH-202 (4.5')**

Matrix: Solid

Analysis Batch: 35322

Prep Type: Total/NA

Prep Batch: 35262

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	996	861.2		mg/Kg		86	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	996	965.0		mg/Kg		92	70 - 130	
C10-C28)										

Job ID: 890-3011-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

%Recovery Qualifier

Lab Sample ID: 890-3011-19 MS

Matrix: Solid

Analysis Batch: 35322

Client Sample ID: BH-202 (4.5')

Prep Type: Total/NA

Prep Batch: 35262

1-Chlorooctane 110 70 - 130 o-Terphenyl 87 70 - 130

Lab Sample ID: 890-3011-19 MSD Client Sample ID: BH-202 (4.5')

Limits

Surrogate

Analysis Batch: 35322

Matrix: Solid Prep Type: Total/NA Prep Batch: 35262

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit <49.9 U 999 892.1 89 70 - 13020 Gasoline Range Organics mg/Kg 4 (GRO)-C6-C10 Diesel Range Organics (Over 999 971.0 93 <49.9 U mg/Kg 70 - 13020 C10-C28)

MSD MSD %Recovery Surrogate Qualifier Limits 70 - 130 1-Chlorooctane 112 89 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-35024/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 35313

мв мв

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Chloride 5.00 <5.00 U mg/Kg 09/23/22 19:42

Lab Sample ID: LCS 880-35024/2-A

Matrix: Solid

Analysis Batch: 35313

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 246.5 mg/Kg 99 90 - 110

Lab Sample ID: LCSD 880-35024/3-A

Matrix: Solid

Analysis Batch: 35313

Spike LCSD LCSD %Rec RPD Result Qualifier Added Analyte Unit D %Rec Limits RPD Limit Chloride 250 247.9 mg/Kg 99 90 - 110 20

Lab Sample ID: 890-3011-17 MS

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Analysis Batch: 35313

Analysis Dateil. 00010										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	3220		1260	4518		mg/Kg		104	90 - 110	

Eurofins Carlsbad

Prep Type: Soluble

Client Sample ID: Lab Control Sample

Prep Type: Soluble

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Client Sample ID: BH-200 (4.5')

Prep Type: Soluble

Job ID: 890-3011-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-3011-17 MSD Client Sample ID: BH-200 (4.5') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 35313

Sample Sample Spike MSD MSD RPD %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 3220 1260 4521 mg/Kg 104 90 - 110 20

Lab Sample ID: 890-3011-27 MS Client Sample ID: SW-73 (6-13')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 35313

Sample Sample Spike MS MS %Rec Qualifier Added Analyte Result Result Qualifier Unit D %Rec Limits Chloride 394 252 632.7 mg/Kg 95 90 - 110

Lab Sample ID: 890-3011-27 MSD Client Sample ID: SW-73 (6-13')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 35313

MSD MSD RPD Spike %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit

Chloride 394 252 632.9 mg/Kg 90 - 110

Lab Sample ID: MB 880-35023/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 35314

мв мв

Result Qualifier MDL Unit Analyte RL Prepared Analyzed

Dil Fac 5.00 09/23/22 22:29 Chloride <5.00 mg/Kg

Lab Sample ID: LCS 880-35023/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 35314

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 246.3 mg/Kg 99 90 - 110

Lab Sample ID: LCSD 880-35023/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 35314

Spike LCSD LCSD %Rec RPD Added RPD Analyte Result Qualifier Unit D %Rec Limits Limit Chloride 250 247 2 mg/Kg 90 - 110

Lab Sample ID: 890-3011-7 MS Client Sample ID: H-7 (0-2')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 35314

Released to Imaging: 9/1/2023 2:07:08 PM

MS MS Sample Sample Spike %Rec Added Result Qualifier Result Qualifier Limits Analyte Unit D %Rec Chloride 26.7 252 284.1 mg/Kg 102 90 - 110

Lab Sample ID: 890-3011-7 MSD Client Sample ID: H-7 (0-2')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 35314 Spike MSD MSD %Rec RPD Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 26.7 252 284.2 mg/Kg 102 90 - 110 20

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-3011-1

SDG: Lea County NM

GC VOA

Prep Batch: 35621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-3011-1	H-1 (0-2')	Total/NA	Solid	5035	
890-3011-2	H-2 (0-2')	Total/NA	Solid	5035	
890-3011-3	H-3 (0-2')	Total/NA	Solid	5035	
890-3011-4	H-4 (0-2')	Total/NA	Solid	5035	
890-3011-5	H-5 (0-2')	Total/NA	Solid	5035	
890-3011-6	H-6 (0-2')	Total/NA	Solid	5035	
890-3011-7	H-7 (0-2')	Total/NA	Solid	5035	
890-3011-8	BH-191 (8')	Total/NA	Solid	5035	
890-3011-9	BH-192 (8')	Total/NA	Solid	5035	
890-3011-10	BH-193 (8')	Total/NA	Solid	5035	
890-3011-11	BH-194 (8')	Total/NA	Solid	5035	
890-3011-12	BH-195 (8')	Total/NA	Solid	5035	
890-3011-13	BH-196 (4.5')	Total/NA	Solid	5035	
890-3011-14	BH-197 (4.5')	Total/NA	Solid	5035	
890-3011-15	BH-198 (4.5')	Total/NA	Solid	5035	
890-3011-16	BH-199 (4.5')	Total/NA	Solid	5035	
890-3011-17	BH-200 (4.5')	Total/NA	Solid	5035	
890-3011-18	BH-201 (4.5')	Total/NA	Solid	5035	
890-3011-19	BH-202 (4.5')	Total/NA	Solid	5035	
890-3011-20	BH-203 (4.5')	Total/NA	Solid	5035	
MB 880-35621/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-35621/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-35621/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3011-1 MS	H-1 (0-2')	Total/NA	Solid	5035	
890-3011-1 MSD	H-1 (0-2')	Total/NA	Solid	5035	

Prep Batch: 35625

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-21	BH-204 (4.5')	Total/NA	Solid	5035	
890-3011-23	BH-206 (4.5')	Total/NA	Solid	5035	
890-3011-24	BH-207 (4.5')	Total/NA	Solid	5035	
890-3011-25	SW-62 (8-13')	Total/NA	Solid	5035	
890-3011-26	SW-72 (0-8')	Total/NA	Solid	5035	
890-3011-27	SW-73 (6-13')	Total/NA	Solid	5035	
390-3011-28	SW-74 (8-13')	Total/NA	Solid	5035	
890-3011-29	SW-75 (0-4.5')	Total/NA	Solid	5035	
390-3011-30	SW-76 (0-4.5')	Total/NA	Solid	5035	
890-3011-31	SW-77 (0-4.5')	Total/NA	Solid	5035	
MB 880-35625/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-35625/1-A	Lab Control Sample	Total/NA	Solid	5035	
_CSD 880-35625/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-19417-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-19417-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 35628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-35628/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 35692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-35692/5-A	Method Blank	Total/NA	Solid	5035	

Eurofins Carlsbad

9

3

4

0

0

10

12

13

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Prep Batch: 35720

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-35720/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 35724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-22	BH-205 (4.5')	Total/NA	Solid	5035	
MB 880-35724/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-35724/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-35724/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3015-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-3015-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 35814

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-1	H-1 (0-2')	Total/NA	Solid	8021B	35621
890-3011-2	H-2 (0-2')	Total/NA	Solid	8021B	35621
890-3011-3	H-3 (0-2')	Total/NA	Solid	8021B	35621
890-3011-4	H-4 (0-2')	Total/NA	Solid	8021B	35621
890-3011-5	H-5 (0-2')	Total/NA	Solid	8021B	35621
890-3011-6	H-6 (0-2')	Total/NA	Solid	8021B	35621
890-3011-7	H-7 (0-2')	Total/NA	Solid	8021B	35621
890-3011-8	BH-191 (8')	Total/NA	Solid	8021B	35621
890-3011-9	BH-192 (8')	Total/NA	Solid	8021B	35621
890-3011-10	BH-193 (8')	Total/NA	Solid	8021B	35621
890-3011-11	BH-194 (8')	Total/NA	Solid	8021B	35621
890-3011-12	BH-195 (8')	Total/NA	Solid	8021B	35621
890-3011-13	BH-196 (4.5')	Total/NA	Solid	8021B	35621
890-3011-14	BH-197 (4.5')	Total/NA	Solid	8021B	35621
890-3011-15	BH-198 (4.5')	Total/NA	Solid	8021B	35621
890-3011-16	BH-199 (4.5')	Total/NA	Solid	8021B	35621
890-3011-17	BH-200 (4.5')	Total/NA	Solid	8021B	35621
890-3011-18	BH-201 (4.5')	Total/NA	Solid	8021B	35621
890-3011-19	BH-202 (4.5')	Total/NA	Solid	8021B	35621
890-3011-20	BH-203 (4.5')	Total/NA	Solid	8021B	35621
MB 880-35621/5-A	Method Blank	Total/NA	Solid	8021B	35621
MB 880-35720/5-A	Method Blank	Total/NA	Solid	8021B	35720
LCS 880-35621/1-A	Lab Control Sample	Total/NA	Solid	8021B	35621
LCSD 880-35621/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	35621
890-3011-1 MS	H-1 (0-2')	Total/NA	Solid	8021B	35621
890-3011-1 MSD	H-1 (0-2')	Total/NA	Solid	8021B	35621

Analysis Batch: 35815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-21	BH-204 (4.5')	Total/NA	Solid	8021B	35625
890-3011-23	BH-206 (4.5')	Total/NA	Solid	8021B	35625
890-3011-24	BH-207 (4.5')	Total/NA	Solid	8021B	35625
890-3011-25	SW-62 (8-13')	Total/NA	Solid	8021B	35625
890-3011-26	SW-72 (0-8')	Total/NA	Solid	8021B	35625
890-3011-27	SW-73 (6-13')	Total/NA	Solid	8021B	35625
890-3011-28	SW-74 (8-13')	Total/NA	Solid	8021B	35625
890-3011-29	SW-75 (0-4.5')	Total/NA	Solid	8021B	35625
890-3011-30	SW-76 (0-4.5')	Total/NA	Solid	8021B	35625

Eurofins Carlsbad

2

3

4

_

0

9

10

12

13

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 35815 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-31	SW-77 (0-4.5')	Total/NA	Solid	8021B	35625
MB 880-35625/5-A	Method Blank	Total/NA	Solid	8021B	35625
MB 880-35628/5-A	Method Blank	Total/NA	Solid	8021B	35628
LCS 880-35625/1-A	Lab Control Sample	Total/NA	Solid	8021B	35625
LCSD 880-35625/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	35625
880-19417-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	35625
880-19417-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	35625

Analysis Batch: 35879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-1	H-1 (0-2')	Total/NA	Solid	Total BTEX	
890-3011-2	H-2 (0-2')	Total/NA	Solid	Total BTEX	
890-3011-3	H-3 (0-2')	Total/NA	Solid	Total BTEX	
890-3011-4	H-4 (0-2')	Total/NA	Solid	Total BTEX	
890-3011-5	H-5 (0-2')	Total/NA	Solid	Total BTEX	
890-3011-6	H-6 (0-2')	Total/NA	Solid	Total BTEX	
890-3011-7	H-7 (0-2')	Total/NA	Solid	Total BTEX	
890-3011-8	BH-191 (8')	Total/NA	Solid	Total BTEX	
890-3011-9	BH-192 (8')	Total/NA	Solid	Total BTEX	
890-3011-10	BH-193 (8')	Total/NA	Solid	Total BTEX	
890-3011-11	BH-194 (8')	Total/NA	Solid	Total BTEX	
890-3011-12	BH-195 (8')	Total/NA	Solid	Total BTEX	
890-3011-13	BH-196 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-14	BH-197 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-15	BH-198 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-16	BH-199 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-17	BH-200 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-18	BH-201 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-19	BH-202 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-20	BH-203 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-21	BH-204 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-22	BH-205 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-23	BH-206 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-24	BH-207 (4.5')	Total/NA	Solid	Total BTEX	
890-3011-25	SW-62 (8-13')	Total/NA	Solid	Total BTEX	
890-3011-26	SW-72 (0-8')	Total/NA	Solid	Total BTEX	
890-3011-27	SW-73 (6-13')	Total/NA	Solid	Total BTEX	
890-3011-28	SW-74 (8-13')	Total/NA	Solid	Total BTEX	
890-3011-29	SW-75 (0-4.5')	Total/NA	Solid	Total BTEX	
890-3011-30	SW-76 (0-4.5')	Total/NA	Solid	Total BTEX	
890-3011-31	SW-77 (0-4.5')	Total/NA	Solid	Total BTEX	

Analysis Batch: 35890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-22	BH-205 (4.5')	Total/NA	Solid	8021B	35724
MB 880-35692/5-A	Method Blank	Total/NA	Solid	8021B	35692
MB 880-35724/5-A	Method Blank	Total/NA	Solid	8021B	35724
LCS 880-35724/1-A	Lab Control Sample	Total/NA	Solid	8021B	35724
LCSD 880-35724/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	35724
890-3015-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	35724
890-3015-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	35724

Eurofins Carlsbad

Page 48 of 72

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-3011-1

SDG: Lea County NM

GC Semi VOA

Analysis Batch: 35007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-27	SW-73 (6-13')	Total/NA	Solid	8015B NM	35103
890-3011-28	SW-74 (8-13')	Total/NA	Solid	8015B NM	35103
890-3011-29	SW-75 (0-4.5')	Total/NA	Solid	8015B NM	35103
890-3011-30	SW-76 (0-4.5')	Total/NA	Solid	8015B NM	35103
890-3011-31	SW-77 (0-4.5')	Total/NA	Solid	8015B NM	35103
MB 880-35103/1-A	Method Blank	Total/NA	Solid	8015B NM	35103
LCS 880-35103/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	35103
LCSD 880-35103/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	35103
880-19485-A-21-F MS	Matrix Spike	Total/NA	Solid	8015B NM	35103
880-19485-A-21-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	35103

Prep Batch: 35103

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-27	SW-73 (6-13')	Total/NA	Solid	8015NM Prep	
890-3011-28	SW-74 (8-13')	Total/NA	Solid	8015NM Prep	
890-3011-29	SW-75 (0-4.5')	Total/NA	Solid	8015NM Prep	
890-3011-30	SW-76 (0-4.5')	Total/NA	Solid	8015NM Prep	
890-3011-31	SW-77 (0-4.5')	Total/NA	Solid	8015NM Prep	
MB 880-35103/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-35103/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-35103/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-19485-A-21-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-19485-A-21-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 35122

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-1	H-1 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-2	H-2 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-3	H-3 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-4	H-4 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-5	H-5 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-6	H-6 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-7	H-7 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-8	BH-191 (8')	Total/NA	Solid	8015B NM	35130
890-3011-9	BH-192 (8')	Total/NA	Solid	8015B NM	35130
890-3011-10	BH-193 (8')	Total/NA	Solid	8015B NM	35130
890-3011-11	BH-194 (8')	Total/NA	Solid	8015B NM	35130
890-3011-12	BH-195 (8')	Total/NA	Solid	8015B NM	35130
890-3011-13	BH-196 (4.5')	Total/NA	Solid	8015B NM	35130
890-3011-14	BH-197 (4.5')	Total/NA	Solid	8015B NM	35130
890-3011-15	BH-198 (4.5')	Total/NA	Solid	8015B NM	35130
890-3011-16	BH-199 (4.5')	Total/NA	Solid	8015B NM	35130
890-3011-17	BH-200 (4.5')	Total/NA	Solid	8015B NM	35130
890-3011-18	BH-201 (4.5')	Total/NA	Solid	8015B NM	35130
MB 880-35130/1-A	Method Blank	Total/NA	Solid	8015B NM	35130
LCS 880-35130/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	35130
LCSD 880-35130/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	35130
890-3011-1 MS	H-1 (0-2')	Total/NA	Solid	8015B NM	35130
890-3011-1 MSD	H-1 (0-2')	Total/NA	Solid	8015B NM	35130

Eurofins Carlsbad

2

3

5

8

9

11

13

14

urofins Carisbac

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA

Prep Batch: 35130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-3011-1	H-1 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-2	H-2 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-3	H-3 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-4	H-4 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-5	H-5 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-6	H-6 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-7	H-7 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-8	BH-191 (8')	Total/NA	Solid	8015NM Prep	
890-3011-9	BH-192 (8')	Total/NA	Solid	8015NM Prep	
890-3011-10	BH-193 (8')	Total/NA	Solid	8015NM Prep	
890-3011-11	BH-194 (8')	Total/NA	Solid	8015NM Prep	
890-3011-12	BH-195 (8')	Total/NA	Solid	8015NM Prep	
890-3011-13	BH-196 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-14	BH-197 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-15	BH-198 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-16	BH-199 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-17	BH-200 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-18	BH-201 (4.5')	Total/NA	Solid	8015NM Prep	
MB 880-35130/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-35130/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-35130/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3011-1 MS	H-1 (0-2')	Total/NA	Solid	8015NM Prep	
890-3011-1 MSD	H-1 (0-2')	Total/NA	Solid	8015NM Prep	

Prep Batch: 35172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-21	BH-204 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-22	BH-205 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-23	BH-206 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-24	BH-207 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-25	SW-62 (8-13')	Total/NA	Solid	8015NM Prep	
890-3011-26	SW-72 (0-8')	Total/NA	Solid	8015NM Prep	
MB 880-35172/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-35172/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-35172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3010-A-2-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3010-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 35220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-21	BH-204 (4.5')	Total/NA	Solid	8015B NM	35172
890-3011-22	BH-205 (4.5')	Total/NA	Solid	8015B NM	35172
890-3011-23	BH-206 (4.5')	Total/NA	Solid	8015B NM	35172
890-3011-24	BH-207 (4.5')	Total/NA	Solid	8015B NM	35172
890-3011-25	SW-62 (8-13')	Total/NA	Solid	8015B NM	35172
890-3011-26	SW-72 (0-8')	Total/NA	Solid	8015B NM	35172
MB 880-35172/1-A	Method Blank	Total/NA	Solid	8015B NM	35172
LCS 880-35172/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	35172
LCSD 880-35172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	35172
890-3010-A-2-C MS	Matrix Spike	Total/NA	Solid	8015B NM	35172
890-3010-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	35172

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-3011-1

SDG: Lea County NM

GC Semi VOA

Prep Batch: 35262

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-19	BH-202 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-20	BH-203 (4.5')	Total/NA	Solid	8015NM Prep	
MB 880-35262/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-35262/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-35262/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3011-19 MS	BH-202 (4.5')	Total/NA	Solid	8015NM Prep	
890-3011-19 MSD	BH-202 (4.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 35274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-1	H-1 (0-2')	Total/NA	Solid	8015 NM	
890-3011-2	H-2 (0-2')	Total/NA	Solid	8015 NM	
890-3011-3	H-3 (0-2')	Total/NA	Solid	8015 NM	
890-3011-4	H-4 (0-2')	Total/NA	Solid	8015 NM	
890-3011-5	H-5 (0-2')	Total/NA	Solid	8015 NM	
890-3011-6	H-6 (0-2')	Total/NA	Solid	8015 NM	
890-3011-7	H-7 (0-2')	Total/NA	Solid	8015 NM	
890-3011-8	BH-191 (8')	Total/NA	Solid	8015 NM	
890-3011-9	BH-192 (8')	Total/NA	Solid	8015 NM	
890-3011-10	BH-193 (8')	Total/NA	Solid	8015 NM	
890-3011-11	BH-194 (8')	Total/NA	Solid	8015 NM	
890-3011-12	BH-195 (8')	Total/NA	Solid	8015 NM	
890-3011-13	BH-196 (4.5')	Total/NA	Solid	8015 NM	
890-3011-14	BH-197 (4.5')	Total/NA	Solid	8015 NM	
890-3011-15	BH-198 (4.5')	Total/NA	Solid	8015 NM	
890-3011-16	BH-199 (4.5')	Total/NA	Solid	8015 NM	
890-3011-17	BH-200 (4.5')	Total/NA	Solid	8015 NM	
890-3011-18	BH-201 (4.5')	Total/NA	Solid	8015 NM	
890-3011-19	BH-202 (4.5')	Total/NA	Solid	8015 NM	
890-3011-20	BH-203 (4.5')	Total/NA	Solid	8015 NM	
890-3011-21	BH-204 (4.5')	Total/NA	Solid	8015 NM	
890-3011-22	BH-205 (4.5')	Total/NA	Solid	8015 NM	
890-3011-23	BH-206 (4.5')	Total/NA	Solid	8015 NM	
890-3011-24	BH-207 (4.5')	Total/NA	Solid	8015 NM	
890-3011-25	SW-62 (8-13')	Total/NA	Solid	8015 NM	
890-3011-26	SW-72 (0-8')	Total/NA	Solid	8015 NM	
890-3011-27	SW-73 (6-13')	Total/NA	Solid	8015 NM	
890-3011-28	SW-74 (8-13')	Total/NA	Solid	8015 NM	
890-3011-29	SW-75 (0-4.5')	Total/NA	Solid	8015 NM	
890-3011-30	SW-76 (0-4.5')	Total/NA	Solid	8015 NM	
890-3011-31	SW-77 (0-4.5')	Total/NA	Solid	8015 NM	

Analysis Batch: 35322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-19	BH-202 (4.5')	Total/NA	Solid	8015B NM	35262
890-3011-20	BH-203 (4.5')	Total/NA	Solid	8015B NM	35262
MB 880-35262/1-A	Method Blank	Total/NA	Solid	8015B NM	35262
LCS 880-35262/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	35262
LCSD 880-35262/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	35262
890-3011-19 MS	BH-202 (4.5')	Total/NA	Solid	8015B NM	35262
890-3011-19 MSD	BH-202 (4.5')	Total/NA	Solid	8015B NM	35262

Eurofins Carlsbad

Page 51 of 72

2

3

4

6

8

a

10

12

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

HPLC/IC

Leach Batch: 35023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-1	H-1 (0-2')	Soluble	Solid	DI Leach	_
890-3011-2	H-2 (0-2')	Soluble	Solid	DI Leach	
890-3011-3	H-3 (0-2')	Soluble	Solid	DI Leach	
890-3011-4	H-4 (0-2')	Soluble	Solid	DI Leach	
890-3011-5	H-5 (0-2')	Soluble	Solid	DI Leach	
890-3011-6	H-6 (0-2')	Soluble	Solid	DI Leach	
890-3011-7	H-7 (0-2')	Soluble	Solid	DI Leach	
890-3011-8	BH-191 (8')	Soluble	Solid	DI Leach	
390-3011-9	BH-192 (8')	Soluble	Solid	DI Leach	
890-3011-10	BH-193 (8')	Soluble	Solid	DI Leach	
890-3011-11	BH-194 (8')	Soluble	Solid	DI Leach	
890-3011-12	BH-195 (8')	Soluble	Solid	DI Leach	
390-3011-13	BH-196 (4.5')	Soluble	Solid	DI Leach	
390-3011-14	BH-197 (4.5')	Soluble	Solid	DI Leach	
390-3011-15	BH-198 (4.5')	Soluble	Solid	DI Leach	
390-3011-16	BH-199 (4.5')	Soluble	Solid	DI Leach	
MB 880-35023/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-35023/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-35023/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-3011-7 MS	H-7 (0-2')	Soluble	Solid	DI Leach	
890-3011-7 MSD	H-7 (0-2')	Soluble	Solid	DI Leach	

Leach Batch: 35024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-3011-17	BH-200 (4.5')	Soluble	Solid	DI Leach	
890-3011-18	BH-201 (4.5')	Soluble	Solid	DI Leach	
890-3011-19	BH-202 (4.5')	Soluble	Solid	DI Leach	
890-3011-20	BH-203 (4.5')	Soluble	Solid	DI Leach	
890-3011-21	BH-204 (4.5')	Soluble	Solid	DI Leach	
890-3011-22	BH-205 (4.5')	Soluble	Solid	DI Leach	
890-3011-23	BH-206 (4.5')	Soluble	Solid	DI Leach	
890-3011-24	BH-207 (4.5')	Soluble	Solid	DI Leach	
890-3011-25	SW-62 (8-13')	Soluble	Solid	DI Leach	
890-3011-26	SW-72 (0-8')	Soluble	Solid	DI Leach	
890-3011-27	SW-73 (6-13')	Soluble	Solid	DI Leach	
890-3011-28	SW-74 (8-13')	Soluble	Solid	DI Leach	
890-3011-29	SW-75 (0-4.5')	Soluble	Solid	DI Leach	
890-3011-30	SW-76 (0-4.5')	Soluble	Solid	DI Leach	
890-3011-31	SW-77 (0-4.5')	Soluble	Solid	DI Leach	
MB 880-35024/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-35024/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-35024/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3011-17 MS	BH-200 (4.5')	Soluble	Solid	DI Leach	
890-3011-17 MSD	BH-200 (4.5')	Soluble	Solid	DI Leach	
890-3011-27 MS	SW-73 (6-13')	Soluble	Solid	DI Leach	
890-3011-27 MSD	SW-73 (6-13')	Soluble	Solid	DI Leach	

Analysis Batch: 35313

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-17	BH-200 (4.5')	Soluble	Solid	300.0	35024
890-3011-18	BH-201 (4.5')	Soluble	Solid	300.0	35024

Eurofins Carlsbad

2

2

4

6

8

10

. .

13

14

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

HPLC/IC (Continued)

Analysis Batch: 35313 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-19	BH-202 (4.5')	Soluble	Solid	300.0	35024
890-3011-20	BH-203 (4.5')	Soluble	Solid	300.0	35024
890-3011-21	BH-204 (4.5')	Soluble	Solid	300.0	35024
890-3011-22	BH-205 (4.5')	Soluble	Solid	300.0	35024
890-3011-23	BH-206 (4.5')	Soluble	Solid	300.0	35024
890-3011-24	BH-207 (4.5')	Soluble	Solid	300.0	35024
890-3011-25	SW-62 (8-13')	Soluble	Solid	300.0	35024
890-3011-26	SW-72 (0-8')	Soluble	Solid	300.0	35024
890-3011-27	SW-73 (6-13')	Soluble	Solid	300.0	35024
890-3011-28	SW-74 (8-13')	Soluble	Solid	300.0	35024
890-3011-29	SW-75 (0-4.5')	Soluble	Solid	300.0	35024
890-3011-30	SW-76 (0-4.5')	Soluble	Solid	300.0	35024
890-3011-31	SW-77 (0-4.5')	Soluble	Solid	300.0	35024
MB 880-35024/1-A	Method Blank	Soluble	Solid	300.0	35024
LCS 880-35024/2-A	Lab Control Sample	Soluble	Solid	300.0	35024
LCSD 880-35024/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	35024
890-3011-17 MS	BH-200 (4.5')	Soluble	Solid	300.0	35024
890-3011-17 MSD	BH-200 (4.5')	Soluble	Solid	300.0	35024
890-3011-27 MS	SW-73 (6-13')	Soluble	Solid	300.0	35024
890-3011-27 MSD	SW-73 (6-13')	Soluble	Solid	300.0	35024

Analysis Batch: 35314

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3011-1	H-1 (0-2')	Soluble	Solid	300.0	35023
890-3011-2	H-2 (0-2')	Soluble	Solid	300.0	35023
890-3011-3	H-3 (0-2')	Soluble	Solid	300.0	35023
890-3011-4	H-4 (0-2')	Soluble	Solid	300.0	35023
890-3011-5	H-5 (0-2')	Soluble	Solid	300.0	35023
890-3011-6	H-6 (0-2')	Soluble	Solid	300.0	35023
890-3011-7	H-7 (0-2')	Soluble	Solid	300.0	35023
890-3011-8	BH-191 (8')	Soluble	Solid	300.0	35023
890-3011-9	BH-192 (8')	Soluble	Solid	300.0	35023
890-3011-10	BH-193 (8')	Soluble	Solid	300.0	35023
890-3011-11	BH-194 (8')	Soluble	Solid	300.0	35023
890-3011-12	BH-195 (8')	Soluble	Solid	300.0	35023
890-3011-13	BH-196 (4.5')	Soluble	Solid	300.0	35023
890-3011-14	BH-197 (4.5')	Soluble	Solid	300.0	35023
890-3011-15	BH-198 (4.5')	Soluble	Solid	300.0	35023
890-3011-16	BH-199 (4.5')	Soluble	Solid	300.0	35023
MB 880-35023/1-A	Method Blank	Soluble	Solid	300.0	35023
LCS 880-35023/2-A	Lab Control Sample	Soluble	Solid	300.0	35023
LCSD 880-35023/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	35023
890-3011-7 MS	H-7 (0-2')	Soluble	Solid	300.0	35023
890-3011-7 MSD	H-7 (0-2')	Soluble	Solid	300.0	35023

Date Received: 09/20/22 10:22

Job ID: 890-3011-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Lab Sample ID: 890-3011-1 Client Sample ID: H-1 (0-2') Date Collected: 09/19/22 00:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 06:49	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/22/22 20:34	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/23/22 23:13	CH	EET MID

Client Sample ID: H-2 (0-2') Lab Sample ID: 890-3011-2

Date Collected: 09/19/22 00:00 Matrix: Solid Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 07:16	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/22/22 21:39	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/23/22 23:27	CH	EET MID

Client Sample ID: H-3 (0-2') Lab Sample ID: 890-3011-3 Date Collected: 09/19/22 00:00 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 07:42	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/22/22 22:00	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/23/22 23:32	CH	EET MID

Client Sample ID: H-4 (0-2') Lab Sample ID: 890-3011-4 Date Collected: 09/19/22 00:00 **Matrix: Solid**

Date Received: 09/20/22 10:22

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 08:08	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: H-4 (0-2') Lab Sample ID: 890-3011-4

Matrix: Solid

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/22/22 22:22	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/23/22 23:37	CH	EET MID

Lab Sample ID: 890-3011-5 Client Sample ID: H-5 (0-2')

Date Collected: 09/19/22 00:00 **Matrix: Solid**

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 08:35	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/22/22 22:43	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/23/22 23:42	CH	EET MID

Client Sample ID: H-6 (0-2') Lab Sample ID: 890-3011-6 Date Collected: 09/19/22 00:00 **Matrix: Solid**

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 09:01	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/22/22 23:05	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/23/22 23:47	CH	EET MID

Lab Sample ID: 890-3011-7 Client Sample ID: H-7 (0-2')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 09:37	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.04 g 1 uL	10 mL 1 uL	35130 35122	09/22/22 08:45 09/22/22 23:26	DM SM	EET MID EET MID

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-3011-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Lab Sample ID: 890-3011-7

Client Sample ID: H-7 (0-2') Date Collected: 09/19/22 00:00 Matrix: Solid Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/23/22 23:52	CH	EET MID

Client Sample ID: BH-191 (8') Lab Sample ID: 890-3011-8

Matrix: Solid

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 10:04	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 02:18	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/24/22 00:07	CH	EET MID

Client Sample ID: BH-192 (8') Lab Sample ID: 890-3011-9

Date Collected: 09/19/22 00:00 **Matrix: Solid**

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 10:30	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/22/22 23:47	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/24/22 00:12	CH	EET MID

Client Sample ID: BH-193 (8') Lab Sample ID: 890-3011-10

Date Collected: 09/19/22 00:00 **Matrix: Solid** Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 10:57	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 01:56	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/24/22 00:26	CH	EET MID

Job ID: 890-3011-1 SDG: Lea County NM

Client Sample ID: BH-194 (8')

Lab Sample ID: 890-3011-11

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 12:42	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MIC
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 02:40	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	35023	09/21/22 10:05	SMC	EET MIC
Soluble	Analysis	300.0		1			35314	09/24/22 00:31	CH	EET MID

Lab Sample ID: 890-3011-12

Client Sample ID: BH-195 (8') Date Collected: 09/19/22 00:00 Matrix: Solid

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 13:08	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 00:09	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/24/22 00:36	CH	EET MID

Client Sample ID: BH-196 (4.5')

Date Received: 09/20/22 10:22

Lab Sample ID: 890-3011-13 Date Collected: 09/19/22 00:00 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 13:34	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 00:30	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		5			35314	09/24/22 00:41	CH	EET MID

Client Sample ID: BH-197 (4.5')

Date Collected: 09/19/22 00:00 **Matrix: Solid**

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 14:00	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-3011-14

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-197 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Lab Sample ID: 890-3011-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 03:01	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		5			35314	09/24/22 00:46	CH	EET MID

Client Sample ID: BH-198 (4.5')

Lab Sample ID: 890-3011-15

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab Total/NA 5035 Prep 4.96 g 5 mL 35621 09/28/22 14:59 EL **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 35814 10/01/22 14:26 EET MID AJ 1 Total/NA Total BTEX 35879 **EET MID** Analysis 1 10/01/22 19:48 AJ Total/NA Analysis 8015 NM 35274 09/23/22 12:25 SM EET MID 1 Total/NA Prep 8015NM Prep 10.04 g 10 mL 35130 09/22/22 08:45 DM **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 35122 09/23/22 01:13 SM **EET MID** Soluble Leach DI Leach 5.01 g 50 mL 35023 09/21/22 10:05 SMC **EET MID** Soluble Analysis 300.0 5 35314 09/24/22 00:51 СН **EET MID**

Client Sample ID: BH-199 (4.5')

Lab Sample ID: 890-3011-16

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 14:52	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 01:35	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	35023	09/21/22 10:05	SMC	EET MID
Soluble	Analysis	300.0		1			35314	09/24/22 00:55	CH	EET MID

Client Sample ID: BH-200 (4.5')

Lab Sample ID: 890-3011-17

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	35814	10/01/22 16:10	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 03:23	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

3

4

5

7

9

11

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-200 (4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Lab Sample ID: 890-3011-17

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		5			35313	09/23/22 19:57	CH	EET MID

Client Sample ID: BH-201 (4.5')

Lab Sample ID: 890-3011-18

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	35814	10/01/22 16:36	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35130	09/22/22 08:45	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35122	09/23/22 03:44	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		5			35313	09/23/22 20:11	CH	EET MID

Client Sample ID: BH-202 (4.5')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

Lab Sample ID: 890-3011-19

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 15:18	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35262	09/23/22 11:03	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35322	09/24/22 11:43	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		5			35313	09/23/22 20:16	CH	EET MID

Client Sample ID: BH-203 (4.5')

Date Collected: 09/19/22 00:00

Date Received: 09/20/22 10:22

09/23/22 20:16	СН	EET MID
Lab Samp	ole ID:	890-3011-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	35621	09/28/22 14:59	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35814	10/01/22 15:44	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	35262	09/23/22 11:03	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35322	09/24/22 12:48	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		1			35313	09/23/22 20:22	CH	EET MID

Eurofins Carlsbad

2

4

5

7

9

12

SDG: Lea County NM

Job ID: 890-3011-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: BH-204 (4.5') Lab Sample ID: 890-3011-21

Date Collected: 09/19/22 00:00 Matrix: Solid Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	35815	10/01/22 22:31	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	35172	09/22/22 11:26	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35220	09/24/22 05:14	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		5			35313	09/23/22 20:27	CH	EET MID

Client Sample ID: BH-205 (4.5') Lab Sample ID: 890-3011-22

Date Collected: 09/19/22 00:00 Matrix: Solid Date Received: 09/20/22 10:22

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.01 g 5 mL 35724 09/29/22 16:18 MNR EET MID Total/NA 8021B 5 mL 35890 10/03/22 19:15 **EET MID** Analysis 100 5 mL ΑJ Total/NA Total BTEX 35879 10/01/22 19:48 Analysis A.I **EET MID** 1 Total/NA Analysis 8015 NM 35274 09/23/22 12:25 SM **EET MID** Total/NA 35172 Prep 8015NM Prep 10.02 g 10 mL 09/22/22 11:26 DM **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 35220 09/24/22 04:09 SM **EET MID**

Client Sample ID: BH-206 (4.5') Lab Sample ID: 890-3011-23

5 g

35024

35313

09/22/22 11:54

09/23/22 20:41

SMC

СН

EET MID

EET MID

50 mL

Date Collected: 09/19/22 00:00 **Matrix: Solid** Date Received: 09/20/22 10:22

5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	35815	10/01/22 23:12	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	35172	09/22/22 11:26	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35220	09/24/22 04:31	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		5			35313	09/23/22 20:46	CH	EET MID

Client Sample ID: BH-207 (4.5') Lab Sample ID: 890-3011-24

Date Collected: 09/19/22 00:00 **Matrix: Solid** Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35815	10/01/22 21:51	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Soluble

Soluble

Leach

Analysis

DI Leach

300.0

Job ID: 890-3011-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-207 (4.5')

Lab Sample ID: 890-3011-24 Date Collected: 09/19/22 00:00

Matrix: Solid

Matrix: Solid

EET MID

EET MID

Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	35172	09/22/22 11:26	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35220	09/24/22 03:26	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		10			35313	09/23/22 20:51	СН	EET MID

Client Sample ID: SW-62 (8-13') Lab Sample ID: 890-3011-25

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab Total/NA 5035 Prep 5.01 g 5 mL 35625 09/28/22 16:17 MNR **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 35815 10/01/22 22:11 EET MID AJ 1 Total/NA Total BTEX 35879 **EET MID** Analysis 1 10/01/22 19:48 AJ Total/NA Analysis 8015 NM 35274 09/23/22 12:25 SM EET MID Total/NA Prep 8015NM Prep 10.01 g 10 mL 35172 09/22/22 11:26 DM **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 35220 09/24/22 05:36 SM **EET MID**

Client Sample ID: SW-72 (0-8') Lab Sample ID: 890-3011-26 Date Collected: 09/19/22 00:00 **Matrix: Solid**

1

5.04 g

50 mL

35024

35313

09/22/22 11:54

09/23/22 20:56

SMC

СН

Date Received: 09/20/22 10:22

Leach

Analysis

DI Leach

300.0

Soluble

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35815	10/02/22 01:22	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35172	09/22/22 11:26	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35220	09/24/22 04:53	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		1			35313	09/23/22 21:01	CH	EET MID

Client Sample ID: SW-73 (6-13') Lab Sample ID: 890-3011-27

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35815	10/02/22 01:42	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.03 g 1 uL	10 mL 1 uL	35103 35007	09/21/22 15:33 09/22/22 03:11	DM SM	EET MID EET MID

Eurofins Carlsbad

Page 61 of 72

Matrix: Solid

Analysis

Soluble

Job ID: 890-3011-1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-73 (6-13') Lab Sample ID: 890-3011-27

Date Collected: 09/19/22 00:00 **Matrix: Solid** Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		1			35313	09/23/22 21:05	CH	EET MID

Client Sample ID: SW-74 (8-13') Lab Sample ID: 890-3011-28

Date Collected: 09/19/22 00:00 Matrix: Solid Date Received: 09/20/22 10:22

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 5035 5.02 g 35625 09/28/22 16:17 MNR EET MID Prep 5 mL Total/NA 8021B 5 mL 5 mL 35815 10/02/22 02:03 Analysis 1 AJ **EET MID** Total/NA Total BTEX 35879 10/01/22 19:48 Analysis AJ **EET MID** 1 Total/NA Analysis 8015 NM 35274 09/23/22 12:25 SM **EET MID** 35103 EET MID Total/NA Prep 8015NM Prep 10.01 g 10 mL 09/21/22 15:33 DM 8015B NM 35007 09/22/22 03:32 **EET MID** Total/NA Analysis 1 uL 1 uL SM Soluble DI Leach 4.97 g 50 mL 35024 09/22/22 11:54 SMC **EET MID** Leach 300.0

Client Sample ID: SW-75 (0-4.5') Lab Sample ID: 890-3011-29

35313

09/23/22 21:20

СН

5

Date Collected: 09/19/22 00:00 **Matrix: Solid** Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	35815	10/02/22 04:26	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	35103	09/21/22 15:33	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35007	09/22/22 03:53	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		1			35313	09/23/22 21:25	CH	EET MID

Client Sample ID: SW-76 (0-4.5') Lab Sample ID: 890-3011-30

Date Collected: 09/19/22 00:00 Matrix: Solid Date Received: 09/20/22 10:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35815	10/02/22 02:23	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	35103	09/21/22 15:33	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35007	09/22/22 04:14	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		10			35313	09/23/22 21:39	CH	EET MID

Eurofins Carlsbad

EET MID

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 890-3011-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-77 (0-4.5')

Date Collected: 09/19/22 00:00 Date Received: 09/20/22 10:22 Lab Sample ID: 890-3011-31

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	35625	09/28/22 16:17	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	35815	10/02/22 02:44	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			35879	10/01/22 19:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			35274	09/23/22 12:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	35103	09/21/22 15:33	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	35007	09/22/22 04:35	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	35024	09/22/22 11:54	SMC	EET MID
Soluble	Analysis	300.0		5			35313	09/23/22 21:44	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
xas		ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report, bu	it the laboratory is not certifi	ied by the governing authority. This list ma	av include analytes for
the agency does not of		,	ieu sy ale gerelling aanenly.	ay morado dilarytoo lor
the agency does not of Analysis Method		Matrix	Analyte	ay molado analytoo tor
0 ,	fer certification.	•	, , ,	

5

4

6

0

10

11

13

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-3011-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

6

a

10

10

13

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

890-3011-31

SW-77 (0-4.5')

Job ID: 890-3011-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3011-1	H-1 (0-2')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 2
890-3011-2	H-2 (0-2')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 2
890-3011-3	H-3 (0-2')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 2
890-3011-4	H-4 (0-2')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 2
890-3011-5	H-5 (0-2')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 2
890-3011-6	H-6 (0-2')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 2
890-3011-7	H-7 (0-2')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 2
890-3011-8	BH-191 (8')	Solid	09/19/22 00:00	09/20/22 10:22	8
890-3011-9	BH-192 (8')	Solid	09/19/22 00:00	09/20/22 10:22	8
890-3011-10	BH-193 (8')	Solid	09/19/22 00:00	09/20/22 10:22	8
890-3011-11	BH-194 (8')	Solid	09/19/22 00:00	09/20/22 10:22	8
890-3011-12	BH-195 (8')	Solid	09/19/22 00:00	09/20/22 10:22	8
890-3011-13	BH-196 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-14	BH-197 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-15	BH-198 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-16	BH-199 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-17	BH-200 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-18	BH-201 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-19	BH-202 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-20	BH-203 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-21	BH-204 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-22	BH-205 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-23	BH-206 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-24	BH-207 (4.5')	Solid	09/19/22 00:00	09/20/22 10:22	4.5
890-3011-25	SW-62 (8-13')	Solid	09/19/22 00:00	09/20/22 10:22	8 - 13
890-3011-26	SW-72 (0-8')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 8
890-3011-27	SW-73 (6-13')	Solid	09/19/22 00:00	09/20/22 10:22	6 - 13
890-3011-28	SW-74 (8-13')	Solid	09/19/22 00:00	09/20/22 10:22	8 - 13
890-3011-29	SW-75 (0-4.5')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 4.5
890-3011-30	SW-76 (0-4.5')	Solid	09/19/22 00:00	09/20/22 10:22	0 - 4.5

8

44

12

13

12

09/20/22 10:22 0 - 4.5

09/19/22 00:00

Tetra Tech, Inc.
Stee Manager: Clair Gonzales @tetratech.com
CONTAINERS # CONTAINERS
CONTAINERS FILTERED (Y/N) FILTERED (Y/N)
Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles

Page 67 of 72

Tetra Tech, Inc.	Permian Water Solutions
Clair Gonzales Clai	Stampler Signature Peyton Oliver Clair Gonzales C
# CONTAINERS # CONTAINERS	# CONTAINERS # CONT
# CONTAINERS # CONTAINERS FILTERED (Y/N) Sample Temporature W X X X X X X X X X X X X X X X BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) X X X X X X X X X X X X X TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	# CONTAINERS # CONTAINERS # C
TOLP Volatiles TOLP Semi Volatiles	ALYSIS REMARKS: North Research Nort
TCLP Volatiles	RCI
	NORM PLM (Asbestos) X X X X X X X X X X Chloride Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance

Page 68 of 72

	Relinquished by:		Relinquished by:	The	Relinquished by:	SW	.WS	SW.	SW.	SW.	.WS	вн.	Вн∹	BH.	ВН	(LABUSE)	LAB #		Comments:	Receiving Laboratory:		invoice to:	Project Location: (county, state)	Project Name:		Oliont Name	4		Analysis Reque
	Date: Time:		Date: Time:	L glader	Date: Time:	SW-76 (0-4.5)	SW-75 (0-4.5')	SW-74 (8-13')	SW-73 (6-13')	SW-72 (0-8')	SW-62 (8-13')	BH-207 (4.5')	BH-206 (4.5')	BH-205 (4.5')	BH-204 (4.5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions - Dusty McInturff		Lea County, NM	Kaiser SWD	Permian Water Solutions		ICHA ICH IIC	Totro Toch Inc	Analysis Request of Chain of Custody Record
	Received by:		Received by:	Melit	Received by:	9/19/2022	9/19/2022	9/19/2022	9/19/2022	9/19/2022	9/19/2022	9/19/2022	9/19/2022	9/19/2022	9/19/2022	DATE	YEAR: 2020	SAMPLING					Project #:	<u>Clair.C</u>		Site Manager			
	Date: Time:		Date: Time:	7 9.30.22	Date: Time:	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL HNO ₃ ICE None	R	MATRIX PRESERVATIVE		Peyton Oliver			212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Tel (432) 682-4559	Midland, Texas 79705	
(Circle) HAND DELIVERED FEDEX UPS Tracking #	Special Report Limits or TRRP Report	Rush Charges Authorized	Sample Temperature		ON A	×	×	×	×	×	×	×		×	×	PAH 8 Total M TCLP N TCLP S RCI GC/MS GC/MS PCB'S NORM PLM (A	RED (*) 8021B X1005 X100	BTI G (Ext to GRO) Ag As Ag As es colorable: 82608 Vol. 668	EX 8260 0 C35) - DRO - I Ba Cd Cr Ba Cd C	ORO - Pb Se r Pb S	Hg				(Circle or Specify Method				1 age
	r TRRP Report	8.	24 Nr 48 Nr 72 Nr	5												Chloric	de S al Wat		emistry	see a	ttache	d lis	st)		od No.)				

Page 69 of 72

	Relinquished by:	Relinguished by:	Relinguished by:					(LABUSE)	LAB#		Comments:	Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	ā	
	Date: Time:	Date: Time:	Date: Time: 7/2472				SW-77 (0-4.5')		SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions - Dusty McInturff	Lea County, NM	Kaiser SWD	Permian Water Solutions	1000 1000, 100	= Tetra Tech Inc
ORIGINAL COPY	Received by:	Received by:	Received by:				9/19/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:	Clair	Site Manager	•	
γ	Date: Time:	Date: Time:	M 9,20,38				×	WATER SOIL HCL HNO ₃ ICE None	२	MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Tel (432) 882-4559 Fax (432) 882-3946	901W Wall Street, Ste 100 Midland, Texas 79705
(Circle) HAND	9.	Sample Temperature	HAB USE ONLY				×	трн тх	ED (Y 021B (1005 (15M (RS (/N) BTE	C35)		MRO)			ANALYSIS		
HAND DELIVERED FEDEX UPS Tracking	Special Report Li	ature Rush Charges Authorized						Total Me TCLP M TCLP Se RCI GC/MS GC/MS PCB'S 8	etals A platiles emi Vo Vol. 8 Semi.	Ag As I solatiles 260B / Vol. 8	3a Cd C	Pb Se				REQUEST (Circle or Specify		
ding #:	Special Report Limits or TRRP Report	ay 24 fir 40 fir 72 fill thorized					×	PLM (As	e S I Wate	ulfate er Che		see att	lached	list)		Method No.)		
				++	-	-		Hold			-							

Page 70 of 72

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-3011-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 3011 List Number: 1 Creator: Clifton, Cloe

Question Answer Comment

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3011-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Source: Eurotins Midland
List Creation: 09/21/22 11:23 AM

List Number: 2 Creator: Rodriguez, Leticia

Login Number: 3011

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Euronnis Carisbau

2

A

6

8


10

12

10

<6mm (1/4").

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 9/1/2023 2:07:08 PM

Environment Testing

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3411-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 11/14/2022 3:38:41 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3411-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	19
QC Sample Results	21
QC Association Summary	27
Lab Chronicle	31
Certification Summary	37
Method Summary	38
Sample Summary	39
Chain of Custody	40
Receipt Chacklists	42

Definitions/Glossary

Job ID: 890-3411-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC VOA Qualifier

Qualifier Description S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** *1 LCS/LCSD RPD exceeds control limits.

F1 MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

Presumptive **PRES** QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-3411-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3411-1

Receipt

The samples were received on 11/7/2022 2:58 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 29.8°C

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH-210 (10') (890-3411-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-39172 and analytical batch 880-39269 was outside the upper control limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-39172 and analytical batch 880-39269 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-39141 and analytical batch 880-39275 was outside the upper control limits.

Method 8015MOD_NM: The matrix spike duplicate (MSD) recoveries for preparation batch 880-39141 and analytical batch 880-39275 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-39128 and 880-39128 and analytical batch 880-39334 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

7

10

12

13

Matrix: Solid

Lab Sample ID: 890-3411-1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-200 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:14	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:14	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:14	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/12/22 22:14	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:14	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/12/22 22:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				11/09/22 15:36	11/12/22 22:14	1
1,4-Difluorobenzene (Surr)	106		70 - 130				11/09/22 15:36	11/12/22 22:14	1
- Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte		ics (DRO) (Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	74.9	Quainiei	50.0	WIDE	mg/Kg			11/14/22 14:30	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 13:54	1
Diesel Range Organics (Over C10-C28)	74.9		50.0		mg/Kg		11/09/22 15:38	11/11/22 13:54	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 13:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				11/09/22 15:38	11/11/22 13:54	1
o-Terphenyl	104		70 - 130				11/09/22 15:38	11/11/22 13:54	1
-			alubla						
Method: MCAWW 300.0 - Anions	, Ion Chromato	grapny - So	oluble						
Method: MCAWW 300.0 - Anions Analyte		Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-201 (10')

Date Collected: 11/07/22 00:00

Date Received: 11/07/22 14:58

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 22:35	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 22:35	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 22:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/12/22 22:35	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 22:35	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/12/22 22:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				11/09/22 15:36	11/12/22 22:35	

Eurofins Carlsbad

Lab Sample ID: 890-3411-2

2

3

7

10

12

1 1

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3411-1

SDG: Lea County NM

Client Sample ID: BH-201 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 10

Lab Sample ID: 890-3411-2

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 11/09/22 15:36 1,4-Difluorobenzene (Surr) 114 11/12/22 22:35

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Total BTEX <0.00398 0.00398 11/14/22 16:13 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **Total TPH** 50.0 11/14/22 14:30 74.3 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Result Qualifier MDL Unit Analyte RL D Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 11/11/22 14:16 mg/Kg 11/09/22 15:38 (GRO)-C6-C10 50.0 11/09/22 15:38 11/11/22 14:16 **Diesel Range Organics (Over** 74.3 mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 11/09/22 15:38 11/11/22 14:16

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 102 70 - 130 11/09/22 15:38 11/11/22 14:16 70 - 130 o-Terphenyl 109 11/09/22 15:38 11/11/22 14:16

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 49.6 11/12/22 01:40 Chloride 1300 mg/Kg

Client Sample ID: BH-204 (10') Lab Sample ID: 890-3411-3

Date Collected: 11/07/22 00:00

Date Received: 11/07/22 14:58 Sample Depth: 10

Method: SW846 8021B - Volatile Organic Compounds (GC)

Wethou. 344040 0021B - Volatile C	Jigariic Comp	ounus (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:56	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/12/22 22:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 22:56	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/12/22 22:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

		••••			
4-Bromofluorobenzene (Surr)	99	70 - 130	11/09/22 15:36	11/12/22 22:56	1
1,4-Difluorobenzene (Surr)	116	70 - 130	11/09/22 15:36	11/12/22 22:56	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier MDL D RLUnit Prepared Analyzed Dil Fac Total BTEX <0.00401 0.00401 11/14/22 16:13 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <50.0 U 50.0 11/14/22 14:30 mg/Kg

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3411-3

11/12/22 01:47

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-204 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 14:37	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 14:37	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 14:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				11/09/22 15:38	11/11/22 14:37	1
o-Terphenyl	118		70 - 130				11/09/22 15:38	11/11/22 14:37	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-205 (10') Lab Sample ID: 890-3411-4 Date Collected: 11/07/22 00:00 **Matrix: Solid**

2010

25.0

mg/Kg

Date Received: 11/07/22 14:58

Sample Depth: 10

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 23:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 23:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 23:17	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/09/22 15:36	11/12/22 23:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 23:17	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/09/22 15:36	11/12/22 23:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				11/09/22 15:36	11/12/22 23:17	1
1,4-Difluorobenzene (Surr)	114		70 - 130				11/09/22 15:36	11/12/22 23:17	1
Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/14/22 16:13	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/14/22 14:30	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 14:59	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 14:59	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 14:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				11/09/22 15:38	11/11/22 14:59	1

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3411-1

SDG: Lea County NM

Client Sample ID: BH-205 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 10

Lab Sample ID: 890-3411-4

Matrix: Solid

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	1480		25.1		mg/Kg			11/12/22 01:54	5

Client Sample ID: BH-206 (10') Lab Sample ID: 890-3411-5 Matrix: Solid

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Method: TAL SOP Total BTEX - Total BTEX Calculation

Sample Depth: 10

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/12/22 23:37	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/12/22 23:37	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/12/22 23:37	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/09/22 15:36	11/12/22 23:37	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/12/22 23:37	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/09/22 15:36	11/12/22 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				11/09/22 15:36	11/12/22 23:37	1
1,4-Difluorobenzene (Surr)	116		70 - 130				11/09/22 15:36	11/12/22 23:37	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg	<u></u>		11/14/22 16:13	1
Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) (G	C)					

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			11/14/22 14:30	1
_ Г., ,, , , _,,,,, _,,,, _, ,,,									
Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

7						,u., _ u	
Gasoline Range Organics	<49.9	U	49.9	mg/Kg	11/09/22 15:38	11/11/22 15:21	1
(GRO)-C6-C10							
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg	11/09/22 15:38	11/11/22 15:21	1
C10-C28)							
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	11/09/22 15:38	11/11/22 15:21	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130		11/09/22 15:38	11/11/22 15:21	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	2290		25.2		mg/Kg			11/12/22 02:01	5

70 - 130

109

Eurofins Carlsbad

11/09/22 15:38 11/11/22 15:21

Matrix: Solid

Lab Sample ID: 890-3411-6

Client: Tetra Tech, Inc.

Job ID: 890-3411-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: BH-208 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 23:58	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 23:58	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 23:58	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/12/22 23:58	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/12/22 23:58	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/12/22 23:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				11/09/22 15:36	11/12/22 23:58	1
1,4-Difluorobenzene (Surr)	114		70 - 130				11/09/22 15:36	11/12/22 23:58	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/14/22 16:13	1
Mothod: SW846 8015 NM - Dioce	I Pango Organ	ice (DBO) (GC)						
Method: SW846 8015 NM - Diese Analyte	•	ics (DRO) (Qualifier	GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	•	Qualifier	•	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/14/22 14:30	Dil Fac
Analyte Total TPH		Qualifier U	RL 49.9	MDL		<u>D</u>	Prepared		
Analyte	Result <49.9	Qualifier U	RL 49.9			D_	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.9	Qualifier Unics (DRO) Qualifier	RL 49.9 (GC)		mg/Kg			11/14/22 14:30	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	RL 49.9 (GC)		mg/Kg		Prepared	11/14/22 14:30 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result 49.9 sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U	(GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 11/09/22 15:38	11/14/22 14:30 Analyzed 11/11/22 15:43	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38	Analyzed 11/11/22 15:43 11/11/22 15:43	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U nics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38	Analyzed 11/11/22 15:43 11/11/22 15:43 11/11/22 15:43	Dil Fac 1 1 Dil Fac Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U nics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9 49.9 49.9 <i>Limits</i>		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared	Analyzed 11/11/22 15:43 11/11/22 15:43 11/11/22 15:43 Analyzed	1 Dil Fac 1 1 1 1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared 11/09/22 15:38	Analyzed 11/11/22 15:43 11/11/22 15:43 11/11/22 15:43 Analyzed 11/11/22 15:43	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared 11/09/22 15:38	Analyzed 11/11/22 15:43 11/11/22 15:43 11/11/22 15:43 Analyzed 11/11/22 15:43	1 Dil Fac 1 Dil Fac 1

Client Sample ID: BH-209 (10')

Date Collected: 11/07/22 00:00

Date Received: 11/07/22 14:58

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 00:19	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 00:19	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 00:19	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 00:19	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 00:19	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 00:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/09/22 15:36	11/13/22 00:19	1

Eurofins Carlsbad

Lab Sample ID: 890-3411-7

2

<u>5</u>

_

۹ Q

10

19

13

iiilo Gallobaa

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3411-7

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-209 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 10

Method: SW846 8021B - Volatile	Organic Compoun	nds (GC) (Continued)
modification of the country	, organic compoun	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	115	70 - 130	11/09/22 15:36	11/13/22 00:19	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/14/22 16:13	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/14/22 14:30	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 16:26	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 16:26	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	117	70 - 130	11/09/22 15:38	11/11/22 16:26	1
o-Terphenyl	124	70 - 130	11/09/22 15:38	11/11/22 16:26	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	4470		49.6		mg/Kg			11/12/22 02:30	10	

Client Sample ID: BH-210 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 10

REMOVED FROM

ANALYSIS TABLE

Lab Sample ID: 890-3411-8

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 00:40	1
Toluene	0.0775		0.00200		mg/Kg		11/09/22 15:36	11/13/22 00:40	1
Ethylbenzene	0.0695		0.00200		mg/Kg		11/09/22 15:36	11/13/22 00:40	1
m-Xylene & p-Xylene	0.135		0.00399		mg/Kg		11/09/22 15:36	11/13/22 00:40	1
o-Xylene	0.0758		0.00200		mg/Kg		11/09/22 15:36	11/13/22 00:40	1
Xylenes, Total	0.211		0.00399		mg/Kg		11/09/22 15:36	11/13/22 00:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130				11/09/22 15:36	11/13/22 00:40	1

4-Bromofluorobenzene (Surr)	134 S1+	70 - 130	11/09/22 15:36	11/13/22 00:40	1
1,4-Difluorobenzene (Surr)	99	70 - 130	11/09/22 15:36	11/13/22 00:40	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.358		0.00399		mg/Kg			11/14/22 16:13	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2430		50.0	mg/Kg			11/14/22 14:30	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-210 (10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

REMOVED FROM **ANALYSIS TABLE**

Lab Sample ID: 890-3411-8

Matrix: Solid

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	61.9		50.0		mg/Kg		11/09/22 15:38	11/11/22 16:48	1
Diesel Range Organics (Over C10-C28)	2130		50.0		mg/Kg		11/09/22 15:38	11/11/22 16:48	1
OII Range Organics (Over C28-C36)	237		50.0		mg/Kg		11/09/22 15:38	11/11/22 16:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				11/09/22 15:38	11/11/22 16:48	1
o-Terphenyl	111		70 - 130				11/09/22 15:38	11/11/22 16:48	1

Method: MCAWW 300.0 - Anions, Id	on Chromato	graphy - Sol	uble					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2270		25.0	mg/Kg			11/12/22 02:37	5

Client Sample ID: BH-211 (10') Lab Sample ID: 890-3411-9 Date Collected: 11/07/22 00:00 Matrix: Solid

Date Received: 11/07/22 14:58

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:00	1
Toluene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:00	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:00	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 01:00	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:00	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 01:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				11/09/22 15:36	11/13/22 01:00	1
1,4-Difluorobenzene (Surr)	115		70 - 130				11/09/22 15:36	11/13/22 01:00	1
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/14/22 16:13	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			11/14/22 14:30	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 17:09	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 17:09	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 17:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	100		70 - 130				11/09/22 15:38	11/11/22 17:09	1
1-Chlorooctane	120		70 - 750				11/00/22 10:00	111111111111111111111111111111111111111	

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-3411-1 SDG: Lea County NM

Client Sample ID: BH-211 (10')

Lab Sample ID: 890-3411-9

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 Matrix: Solid

Sample Depth: 10

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	2230		24.9		mg/Kg			11/12/22 02:44	5	

Client Sample ID: BH-212 (10')

Lab Sample ID: 890-3411-10

Date Collected: 11/07/22 00:00 Matrix: Solid

Date Collected: 11/07/22 00:00 Matrix: Soli

Date Received: 11/07/22 14:58

Sample Depth: 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:21	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:21	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:21	1
m-Xylene & p-Xylene	0.0209		0.00398		mg/Kg		11/09/22 15:36	11/13/22 01:21	1
o-Xylene	0.0186		0.00199		mg/Kg		11/09/22 15:36	11/13/22 01:21	1
Xylenes, Total	0.0395		0.00398		mg/Kg		11/09/22 15:36	11/13/22 01:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				11/09/22 15:36	11/13/22 01:21	1
1,4-Difluorobenzene (Surr)	101		70 - 130				11/09/22 15:36	11/13/22 01:21	1
Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0395		0.00398		mg/Kg			11/14/22 16:13	1
Method: SW846 8015 NM - Diese Analyte	•	Qualifier	RL	MDI	Unit	D	Durananad		
			112	IVIDE	Oilit	U	Prepared	Analyzed	Dil Fac
Total TPH	228		50.0	- INDL	mg/Kg		Prepared	Analyzed 11/14/22 14:30	Dil Fac
		nics (DRO)	50.0	- WIDE			Prepared		
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO) Qualifier	50.0				Prepared		
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	sel Range Orga	Qualifier	50.0 (GC)		mg/Kg	=		11/14/22 14:30	1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result	Qualifier	50.0 (GC)		mg/Kg	=	Prepared	11/14/22 14:30 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.0	Qualifier U	50.0 (GC) RL 50.0		mg/Kg Unit mg/Kg	=	Prepared 11/09/22 15:38	11/14/22 14:30 Analyzed 11/11/22 17:32	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.0	Qualifier U	50.0 (GC) RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/09/22 15:38	Analyzed 11/11/22 17:32 11/11/22 17:32	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <50.0 228 <50.0	Qualifier U	50.0 (GC) RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/09/22 15:38 11/09/22 15:38	Analyzed 11/11/22 17:32 11/11/22 17:32 11/11/22 17:32	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0 228 <50.0 %Recovery	Qualifier U	50.0 (GC) RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared	Analyzed 11/11/22 17:32 11/11/22 17:32 11/11/22 17:32 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared 11/09/22 15:38	Analyzed 11/11/22 17:32 11/11/22 17:32 11/11/22 17:32 Analyzed 11/11/22 17:32	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared 11/09/22 15:38	Analyzed 11/11/22 17:32 11/11/22 17:32 11/11/22 17:32 Analyzed 11/11/22 17:32	Dil Fac

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-75 (4-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 Sample Depth: 4 - 10 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3411-11

Matrix: Solid

5

6

0

10

12

13

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 02:45	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 02:45	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 02:45	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/13/22 02:45	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 02:45	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/13/22 02:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				11/09/22 15:36	11/13/22 02:45	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/09/22 15:36	11/13/22 02:45	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/14/22 16:13	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (CC)						
motifical effect of to this Bico		ics (Dito) (GC)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	•	Qualifier	•	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/14/22 14:30	Dil Fac
Analyte	Result <50.0	Qualifier U	RL 50.0	MDL		<u>D</u>	Prepared		Dil Fac
Analyte Total TPH	Result <50.0 esel Range Orga Result	Qualifier Unics (DRO) Qualifier	RL 50.0			D	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Dic Analyte Gasoline Range Organics	Result <50.0	Qualifier Unics (DRO) Qualifier	RL 50.0		mg/Kg			11/14/22 14:30	1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 esel Range Orga Result	Qualifier U unics (DRO) Qualifier U	RL 50.0		mg/Kg		Prepared	11/14/22 14:30 Analyzed	Dil Fac Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0 esel Range Orga Result <50.0	Qualifier U unics (DRO) Qualifier U	RL 50.0		mg/Kg Unit mg/Kg		Prepared 11/09/22 15:38	11/14/22 14:30 Analyzed 11/11/22 17:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 esel Range Orga Result <50.0 <50.0	Qualifier U unics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38	Analyzed 11/11/22 17:54 11/11/22 17:54	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U unics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38	Analyzed 11/11/22 17:54 11/11/22 17:54 11/11/22 17:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0	Qualifier U unics (DRO) Qualifier U U	RL 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared	Analyzed 11/11/22 17:54 11/11/22 17:54 11/11/22 17:54 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U unics (DRO) Qualifier U U Qualifier	RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared 11/09/22 15:38	Analyzed 11/11/22 17:54 11/11/22 17:54 11/11/22 17:54 Analyzed 11/11/22 17:54	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0	Qualifier U unics (DRO) Qualifier U U Qualifier	RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/09/22 15:38 11/09/22 15:38 11/09/22 15:38 Prepared 11/09/22 15:38	Analyzed 11/11/22 17:54 11/11/22 17:54 11/11/22 17:54 Analyzed 11/11/22 17:54	Dil Fac

Client Sample ID: SW-78 (4-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3411-12

Matrix: Solid

Sample Depth: 4 - 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/13/22 03:05	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/13/22 03:05	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/13/22 03:05	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/09/22 15:36	11/13/22 03:05	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/09/22 15:36	11/13/22 03:05	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/09/22 15:36	11/13/22 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/09/22 15:36	11/13/22 03:05	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-78 (4-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 Sample Depth: 4 - 10

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3411-12

Matrix: Solid

Method: SW846 8021B	- Volatile	Organic	Compounds	(GC) ((Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	120	70 - 130	11/09/22 15:36	11/13/22 03:05	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg	/Kg		11/14/22 16:13	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Pr	repared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg				11/14/22 14:30	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 18:15	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 18:15	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1-Chlorooctane	111	70 - 130
o-Terphenyl	121	70 - 130

1-Chlorooctane o-Terphenyl	111	70 ₋ 130 70 ₋ 130	11/09/22 15:38 11/09/22 15:38	11/11/22 18:15 11/11/22 18:15	1
	121	70 - 730	11/09/22 13.36	11/11/22 16.15	,

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15800	250		mg/Kg			11/12/22 03:20	50

Client Sample ID: SW-79 (4-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 4 - 10

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3411-13 **Matrix: Solid**

Method: SW846 8021B - Volatile Organic Compounds (GC	;)
--	----

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 03:26	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 03:26	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 03:26	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 03:26	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 03:26	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 03:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				11/09/22 15:36	11/13/22 03:26	1
1,4-Difluorobenzene (Surr)	114		70 - 130				11/09/22 15:36	11/13/22 03:26	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/14/22 16:13	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/14/22 14:30	1

Project/Site: Kaiser SWD

Job ID: 890-3411-1 Client: Tetra Tech, Inc. SDG: Lea County NM

Client Sample ID: SW-79 (4-10') Date Collected: 11/07/22 00:00

Client Sample ID: SW-80 (4.5-10')

Date Collected: 11/07/22 00:00

Date Received: 11/07/22 14:58

Total TPH

Date Received: 11/07/22 14:58 Sample Depth: 4 - 10

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-3411-13

Lab Sample ID: 890-3411-14

11/14/22 14:30

Matrix: Solid

Matrix: Solid

~

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 18:37	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 18:37	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 18:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				11/09/22 15:38	11/11/22 18:37	1
o-Terphenyl	116		70 - 130				11/09/22 15:38	11/11/22 18:37	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Sample Depth: 4.5 - 10 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 11/09/22 15:36 11/13/22 03:47 mg/Kg Toluene <0.00199 U 0.00199 11/09/22 15:36 11/13/22 03:47 mg/Kg Ethylbenzene <0.00199 U 0.00199 11/09/22 15:36 11/13/22 03:47 mg/Kg m-Xylene & p-Xylene <0.00398 U 0.00398 11/09/22 15:36 11/13/22 03:47 mg/Kg 11/09/22 15:36 o-Xylene 0.00199 11/13/22 03:47 <0.00199 U mg/Kg Xylenes, Total <0.00398 U 0.00398 mg/Kg 11/09/22 15:36 11/13/22 03:47 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 70 - 130 110 11/09/22 15:36 11/13/22 03:47 1,4-Difluorobenzene (Surr) 107 70 - 130 11/09/22 15:36 11/13/22 03:47 Method: TAL SOP Total BTEX - Total BTEX Calculation Dil Fac Analyte Result Qualifier MDL Unit Prepared Analyzed Total BTEX <0.00398 U 0.00398 11/14/22 16:13 mg/Kg Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte MDL Result Qualifier RL Unit D Prepared Analyzed Dil Fac

Method: SW846 8015B NM - Dies	el Range Orga	inics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 18:59	1
Diesel Range Organics (Over C10-C28)	263		50.0		mg/Kg		11/09/22 15:38	11/11/22 18:59	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/09/22 15:38	11/11/22 18:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				11/09/22 15:38	11/11/22 18:59	1
o-Terphenyl	98		70 - 130				11/09/22 15:38	11/11/22 18:59	1

50.0

mg/Kg

263

Client: Tetra Tech, Inc.
Project/Site: Kaiser SWD

Job ID: 890-3411-1 SDG: Lea County NM

Client Sample ID: SW-80 (4.5-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 Lab Sample ID: 890-3411-14 Matrix: Solid

Sample Depth: 4.5 - 10

Method: MCAWW 300.0 - Anions, le	on Chromato	graphy - Sol	uble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8690		101		mg/Kg			11/12/22 03:48	20

Client Sample ID: SW-81 (4.5-10')

Lab Sample ID: 890-3411-15

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 Matrix: Solid

Sample Depth: 4.5 - 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 04:07	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 04:07	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 04:07	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/13/22 04:07	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 04:07	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		11/09/22 15:36	11/13/22 04:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				11/09/22 15:36	11/13/22 04:07	1
1,4-Difluorobenzene (Surr)	103		70 - 130				11/09/22 15:36	11/13/22 04:07	1

WELLIOU. TAL SOF TOTAL DILA - TO	al DILA Calc	uiation						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			11/14/22 16:13	1

Method: SW846 8015 NM - Diesel R	ange Organics (DI	RO) (GC)					
Analyte	Result Qualifi	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	192	49.9	mg/Kg			11/14/22 14:30	1

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 19:21	1
Diesel Range Organics (Over C10-C28)	192		49.9		mg/Kg		11/09/22 15:38	11/11/22 19:21	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/09/22 15:38	11/11/22 19:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				11/09/22 15:38	11/11/22 19:21	1
o-Terphenyl	101		70 - 130				11/09/22 15:38	11/11/22 19:21	1

Method: MCAWW 300.0 - Anions, I	on Chromato	graphy - So	luble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8120		100		mg/Kg			11/12/22 03:55	20

Matrix: Solid

Lab Sample ID: 890-3411-16

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-82 (4.5-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Sample Depth: 4.5 - 10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:28	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:28	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:28	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/09/22 15:36	11/13/22 04:28	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:28	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/09/22 15:36	11/13/22 04:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				11/09/22 15:36	11/13/22 04:28	1
1,4-Difluorobenzene (Surr)	111		70 - 130				11/09/22 15:36	11/13/22 04:28	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/14/22 16:13	1
Analyte Total TPH	Result 216	Qualifier	RL 49.8	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/14/22 14:30	Dil Fac
TOTAL TPH	216		49.6		mg/Kg			11/14/22 14.30	'
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		11/09/22 15:38	11/11/22 19:43	1
Diesel Range Organics (Over C10-C28)	216		49.8		mg/Kg		11/09/22 15:38	11/11/22 19:43	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		11/09/22 15:38	11/11/22 19:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				11/09/22 15:38	11/11/22 19:43	1
o-Terphenyl	95		70 - 130				11/09/22 15:38	11/11/22 19:43	1
Method: MCAWW 300.0 - Anions	s Ion Chromato	graphy - Se	nluble						
motification and an arrangement	o, ion omomute	g. up	JIUDIO						

Client Sample ID: SW-83 (4-10)

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Date Received. 11/07/22 14.

Sample Depth: 4 - 10

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:49	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:49	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:49	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/09/22 15:36	11/13/22 04:49	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/09/22 15:36	11/13/22 04:49	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/09/22 15:36	11/13/22 04:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				11/09/22 15:36	11/13/22 04:49	

99.4

9100

mg/Kg

Eurofins Carlsbad

11/12/22 04:02

Lab Sample ID: 890-3411-17

2

4

6

8

10

12

13

Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-83 (4-10)

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3411-17

Matrix: Solid

4

5

7

9

10

12

Method: SW846 8021B - Volatile	e Organic Comp	ounds (GC) (Continued)						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	110		70 - 130				11/09/22 15:36	11/13/22 04:49	1
Method: TAL SOP Total BTEX -	Total RTEY Cale	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404		0.00404		mg/Kg	— <u> </u>		11/14/22 16:13	1
 Method: SW846 8015 NM - Dies	ol Pango Organ	ice (DBO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9		mg/Kg	<u>-</u>		11/14/22 09:30	1
- -									
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	Result <49.9		RL 49.9	MDL	Mg/Kg	<u>D</u>	Prepared 11/10/22 08:48	Analyzed 11/11/22 18:00	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	49.9	MDL		D	11/10/22 08:48	11/11/22 18:00	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U *1	. 	MDL		<u>D</u>			Dil Fac 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 <49.9	U *1	49.9	MDL	mg/Kg	<u>D</u>	11/10/22 08:48	11/11/22 18:00	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U *1	49.9	MDL	mg/Kg	<u>D</u>	11/10/22 08:48	11/11/22 18:00	1 1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 <49.9	U*1 U	49.9	MDL	mg/Kg	<u>D</u>	11/10/22 08:48	11/11/22 18:00	Dil Fac 1 1 1 Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9 <49.9 <49.9	U*1 U	49.9 49.9 49.9	MDL	mg/Kg	<u>D</u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48	11/11/22 18:00 11/11/22 18:00 11/11/22 18:00	1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 <49.9 <49.9 %Recovery	U*1 U	49.9 49.9 49.9 Limits	MDL	mg/Kg	<u>D</u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared	11/11/22 18:00 11/11/22 18:00 11/11/22 18:00 Analyzed	1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 <49.9 <49.9 <49.9 %Recovery 88 87	U*1 U Qualifier	49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL	mg/Kg	<u>D</u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared 11/10/22 08:48	11/11/22 18:00 11/11/22 18:00 11/11/22 18:00 Analyzed 11/11/22 18:00	1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 <49.9 <49.9 **Recovery 88 87 as, lon Chromato	U*1 U Qualifier	49.9 49.9 49.9 Limits 70 - 130 70 - 130		mg/Kg	<u>D</u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared 11/10/22 08:48	11/11/22 18:00 11/11/22 18:00 11/11/22 18:00 Analyzed 11/11/22 18:00	1 1

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3411-1	BH-200 (10')	94	106	
890-3411-1 MS	BH-200 (10')	77	102	
890-3411-1 MSD	BH-200 (10')	95	96	
890-3411-2	BH-201 (10')	97	114	
890-3411-3	BH-204 (10')	99	116	
890-3411-4	BH-205 (10')	106	114	
890-3411-5	BH-206 (10')	102	116	
890-3411-6	BH-208 (10')	124	114	
890-3411-7	BH-209 (10')	111	115	
890-3411-8	BH-210 (10')	134 S1+	99	
890-3411-9	BH-211 (10')	123	115	
890-3411-10	BH-212 (10')	110	101	
890-3411-11	SW-75 (4-10')	104	100	
890-3411-12	SW-78 (4-10')	112	120	
890-3411-13	SW-79 (4-10')	112	114	
890-3411-14	SW-80 (4.5-10')	110	107	
890-3411-15	SW-81 (4.5-10')	114	103	
890-3411-16	SW-82 (4.5-10')	115	111	
890-3411-17	SW-83 (4-10)	108	110	
LCS 880-39140/1-A	Lab Control Sample	81	100	
LCSD 880-39140/2-A	Lab Control Sample Dup	77	104	
MB 880-39140/5-A	Method Blank	89	100	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-21336-A-28-D MS	Matrix Spike	95	92	
880-21336-A-28-E MSD	Matrix Spike Duplicate	84	80	
890-3402-A-1-G MS	Matrix Spike	86	79	
890-3402-A-1-H MSD	Matrix Spike Duplicate	82	73	
890-3411-1	BH-200 (10')	97	104	
890-3411-2	BH-201 (10')	102	109	
890-3411-3	BH-204 (10')	113	118	
890-3411-4	BH-205 (10')	88	94	
890-3411-5	BH-206 (10')	103	109	
890-3411-6	BH-208 (10')	94	102	
890-3411-7	BH-209 (10')	117	124	
890-3411-8	BH-210 (10')	108	111	
890-3411-9	BH-211 (10')	120	129	
890-3411-10	BH-212 (10')	99	102	
390-3411-11	SW-75 (4-10')	92	98	
890-3411-12	SW-78 (4-10')	111	121	
890-3411-13	SW-79 (4-10')	110	116	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3411-14	SW-80 (4.5-10')	93	98	
890-3411-15	SW-81 (4.5-10')	95	101	
890-3411-16	SW-82 (4.5-10')	90	95	
890-3411-17	SW-83 (4-10)	88	87	
LCS 880-39141/2-A	Lab Control Sample	104	116	
LCS 880-39172/2-A	Lab Control Sample	94	97	
_CSD 880-39141/3-A	Lab Control Sample Dup	104	116	
_CSD 880-39172/3-A	Lab Control Sample Dup	107	109	
MB 880-39141/1-A	Method Blank	121	136 S1+	
MB 880-39172/1-A	Method Blank	119	134 S1+	

1CO = 1-Chlorooctane
OTPH = o-Terphenyl

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-39140/5-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 39140

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	•
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/09/22 15:36	11/12/22 21:52	
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/09/22 15:36	11/12/22 21:52	

мв мв

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	70 - 130	11/09/22 15:36	11/12/22 21:52	1
1,4-Difluorobenzene (Surr)	100	70 - 130	11/09/22 15:36	11/12/22 21:52	1

Lab Sample ID: LCS 880-39140/1-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 39140

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09752		mg/Kg		98	70 - 130	
Toluene	0.100	0.09567		mg/Kg		96	70 - 130	
Ethylbenzene	0.100	0.08894		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.1685		mg/Kg		84	70 - 130	
o-Xylene	0.100	0.09351		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	81	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: LCSD 880-39140/2-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Lab Control Sample Dup	Client Sam	ple ID: Lab	Control	Sample Dup
--	------------	-------------	---------	------------

Prep Type: Total/NA

Prep Batch: 39140

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09869		mg/Kg		99	70 - 130	1	35
Toluene	0.100	0.09592		mg/Kg		96	70 - 130	0	35
Ethylbenzene	0.100	0.09030		mg/Kg		90	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1711		mg/Kg		86	70 - 130	2	35
o-Xylene	0.100	0.09589		mg/Kg		96	70 - 130	3	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	77	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 890-3411-1 MS

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: BH-200 (10')

Prep Type: Total/NA

Prep Batch: 39140

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.09300		mg/Kg	_	93	70 - 130	
Toluene	<0.00200	U	0.0996	0.08826		mg/Kg		89	70 - 130	

Eurofins Carlsbad

1,4-Difluorobenzene (Surr)

QC Sample Results

Job ID: 890-3411-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3411-1 MS Client Sample ID: BH-200 (10') **Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 39369 Prep Batch: 39140

	Sample	Sample	эріке	IVIS	IVIS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.0996	0.07882		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.199	0.1462		mg/Kg		73	70 - 130	
o-Xylene	<0.00200	U	0.0996	0.08198		mg/Kg		82	70 - 130	

MS MS %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 77

102

Lab Sample ID: 890-3411-1 MSD Client Sample ID: BH-200 (10')

70 - 130

Matrix: Solid Prep Type: Total/NA Analysis Batch: 39369 Prep Batch: 39140

Sample Sample Spike MSD MSD RPD Result Qualifier %Rec RPD Limit babbA Result Qualifier Limits Analyte Unit Benzene <0.00200 U 0.0998 0.08398 mg/Kg 84 70 - 130 10 35 Toluene <0.00200 0.0998 0.08420 mg/Kg 84 70 - 130 5 35 <0.00200 0.0998 0.08062 81 70 - 130 2 35 Ethylbenzene U mg/Kg m-Xylene & p-Xylene <0.00401 U 0.200 0.1625 mg/Kg 81 70 - 130 11 35 0.0998 0.09115 70 - 130 o-Xylene <0.00200 U mg/Kg 91 11 35

MSD MSD Qualifier Limits Surrogate %Recovery 70 - 130 4-Bromofluorobenzene (Surr) 95 1,4-Difluorobenzene (Surr) 96 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-39141/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 39275 Prep Batch: 39141 мв мв

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte <50.0 U 50.0 11/09/22 15:38 11/11/22 09:13 Gasoline Range Organics mg/Kg (GRO)-C6-C10 11/11/22 09:13 Diesel Range Organics (Over <50.0 U 50.0 11/09/22 15:38 mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 11/11/22 09:13 mg/Kg 11/09/22 15:38

MB MB %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 1-Chlorooctane 121 70 - 130 11/09/22 15:38 11/11/22 09:13

136 S1+ 70 - 130 11/09/22 15:38 11/11/22 09:13 o-Terphenyl

Lab Sample ID: LCS 880-39141/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 39141 **Analysis Batch: 39275** LCS LCS Spike %Rec

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	971.0		mg/Kg		97	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	884.0	1	mg/Kg		88	70 - 130
C10-C28)							

Job ID: 890-3411-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-39141/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 39275

Prep Type: Total/NA Prep Batch: 39141

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 104 70 - 130 o-Terphenyl 116 70 - 130

Lab Sample ID: LCSD 880-39141/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 39275

Prep Type: Total/NA Prep Batch: 39141

%Rec RPD

Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 1108 111 70 - 13013 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 910.3 91 mg/Kg 70 - 1303 20 C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 104 70 - 130 1-Chlorooctane 116 70 - 130 o-Terphenyl

Lab Sample ID: 880-21336-A-28-D MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 39275

Prep Type: Total/NA Prep Batch: 39141

Sample Sample MS MS Spike Analyte Added Result Qualifier Result Qualifier Unit D %Rec Limits Gasoline Range Organics 182 997 969.9 mg/Kg 79 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1820 F1 997 2679 mg/Kg 86 70 - 130

C10-C28)

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 95 70 - 130 o-Terphenyl 92

Lab Sample ID: 880-21336-A-28-E MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 39275

_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	182		999	1151		mg/Kg		97	70 - 130	17	20
(GRO)-C6-C10											
Diesel Range Organics (Over	1820	F1	999	2326	F1	mg/Kg		51	70 - 130	14	20

C10-C28)

	MSD MS	SD
Surrogate	%Recovery Qu	ualifier Limits
1-Chlorooctane	84	70 - 130
o-Terphenvl	80	70 - 130

Eurofins Carlsbad

Prep Batch: 39141

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MR MR

119

134 S1+

Lab Sample ID: MB 880-39172/1-A

Matrix: Solid

Analysis Batch: 39269

Client	Sample	ID:	Method	Blanl	k

Prep Type: Total/NA

Prep Batch: 39172

	IND	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

Lab Sample ID: LCS 880-39172/2-A

Matrix: Solid

1-Chlorooctane

o-Terphenyl

Analysis Batch: 39269

Client Sample ID: Lab Control Sample

11/11/22 09:30

11/11/22 09:30

11/10/22 08:48

11/10/22 08:48

Prep Type: Total/NA

Prep Batch: 39172

	Spike	LCS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	815.5		mg/Kg		82	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	846.7		mg/Kg		85	70 - 130	
C10-C28)								

Limits

Surrogate

LCS LCS %Recovery Qualifier

1-Chlorooctane 94 70 - 130 o-Terphenyl 97 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 39269

Prep Batch: 39172

	Spike	LCSD	LUSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	1003	*1	mg/Kg		100	70 - 130	21	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	950.2		mg/Kg		95	70 - 130	12	20	
C10-C28)										

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	107	70 - 130
o-Terphenyl	109	70 - 130

Lab Sample ID: 890-3402-A-1-G MS

Lab Sample ID: LCSD 880-39172/3-A

Matrix: Solid

Analysis Batch: 39269

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 39172

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	55.1	*1	997	1007		mg/Kg		95	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.0	U	997	861.7		mg/Kg		84	70 - 130	
C10-C28)										

Prep Batch: 39172

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3402-A-1-G MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 39269

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	86		70 - 130
o-Terphenyl	79		70 - 130

Lab Sample ID: 890-3402-A-1-H MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 39269									Prep Batch: 39172		
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	55.1	*1	999	978.6		mg/Kg		92	70 - 130	3	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	999	796.8		mg/Kg		77	70 - 130	8	20
C10-C28)											

MSD MSD Surrogate %Recovery Qualifier Limits 82 70 - 130 1-Chlorooctane 73 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-39128/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 39334

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		ma/Ka			11/12/22 00:57	1

Lab Sample ID: LCS 880-39128/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 39334

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	268.3	-	mg/Kg		107	90 - 110	

Lab Sample ID: LCSD 880-39128/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 39334

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	268.7		mg/Kg		107	90 - 110	0	20

Lab Sample ID: 890-3411-1 MS Client Sample ID: BH-200 (10')

Matrix: Solid

Analysis Batch: 39334

Analysis Baton: 00004	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2280	F1	1260	3520		mg/Kg		98	90 - 110	

Eurofins Carlsbad

Prep Type: Soluble

Prep Type: Soluble

Released to Imaging: 9/1/2023 2:07:08 PM

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-3411-1 MSD	Client Sample ID: BH-200 (10')
Matrix: Solid	Prep Type: Soluble
Analysis Batch: 39334	

١		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Chloride	2280	F1	1260	3707	F1	mg/Kg		113	90 - 110	5	20

Lab Sample ID: 890-3411-11 MS Matrix: Solid								Client	Sample ID: SW-75 (4-10 Prep Type: Solub	•
Analysis Batch: 39334										
-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	14500	F1	5010	21010	F1	mg/Kg		130	90 - 110	_

Lab Sample ID: 890-3411-11 MSD Matrix: Solid Analysis Batch: 39334								Client	Sample ID: Prep	: SW-75 (Type: S	,
•	•	Sample	Spike		MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	14500	F1	5010	20560	F1	mg/Kg		121	90 - 110	2	20

2

3

6

7

8

4.0

10

12

4 4

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA

Prep Batch: 39140

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-3411-1	BH-200 (10')	Total/NA	Solid	5035	_
890-3411-2	BH-201 (10')	Total/NA	Solid	5035	
890-3411-3	BH-204 (10')	Total/NA	Solid	5035	
890-3411-4	BH-205 (10')	Total/NA	Solid	5035	
890-3411-5	BH-206 (10')	Total/NA	Solid	5035	
890-3411-6	BH-208 (10')	Total/NA	Solid	5035	
890-3411-7	BH-209 (10')	Total/NA	Solid	5035	
890-3411-8	BH-210 (10')	Total/NA	Solid	5035	
890-3411-9	BH-211 (10')	Total/NA	Solid	5035	
890-3411-10	BH-212 (10')	Total/NA	Solid	5035	
890-3411-11	SW-75 (4-10')	Total/NA	Solid	5035	
890-3411-12	SW-78 (4-10')	Total/NA	Solid	5035	
890-3411-13	SW-79 (4-10')	Total/NA	Solid	5035	
890-3411-14	SW-80 (4.5-10')	Total/NA	Solid	5035	
890-3411-15	SW-81 (4.5-10')	Total/NA	Solid	5035	
890-3411-16	SW-82 (4.5-10')	Total/NA	Solid	5035	
890-3411-17	SW-83 (4-10)	Total/NA	Solid	5035	
MB 880-39140/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3411-1 MS	BH-200 (10')	Total/NA	Solid	5035	
890-3411-1 MSD	BH-200 (10')	Total/NA	Solid	5035	

Analysis Batch: 39369

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-1	BH-200 (10')	Total/NA	Solid	8021B	39140
890-3411-2	BH-201 (10')	Total/NA	Solid	8021B	39140
890-3411-3	BH-204 (10')	Total/NA	Solid	8021B	39140
890-3411-4	BH-205 (10')	Total/NA	Solid	8021B	39140
890-3411-5	BH-206 (10')	Total/NA	Solid	8021B	39140
890-3411-6	BH-208 (10')	Total/NA	Solid	8021B	39140
890-3411-7	BH-209 (10')	Total/NA	Solid	8021B	39140
890-3411-8	BH-210 (10')	Total/NA	Solid	8021B	39140
890-3411-9	BH-211 (10')	Total/NA	Solid	8021B	39140
390-3411-10	BH-212 (10')	Total/NA	Solid	8021B	39140
890-3411-11	SW-75 (4-10')	Total/NA	Solid	8021B	39140
890-3411-12	SW-78 (4-10')	Total/NA	Solid	8021B	39140
890-3411-13	SW-79 (4-10')	Total/NA	Solid	8021B	39140
890-3411-14	SW-80 (4.5-10')	Total/NA	Solid	8021B	39140
890-3411-15	SW-81 (4.5-10')	Total/NA	Solid	8021B	39140
890-3411-16	SW-82 (4.5-10')	Total/NA	Solid	8021B	39140
890-3411-17	SW-83 (4-10)	Total/NA	Solid	8021B	39140
MB 880-39140/5-A	Method Blank	Total/NA	Solid	8021B	39140
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	8021B	39140
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	39140
890-3411-1 MS	BH-200 (10')	Total/NA	Solid	8021B	39140
890-3411-1 MSD	BH-200 (10')	Total/NA	Solid	8021B	39140

Analysis Batch: 39551

_ *					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-1	BH-200 (10')	Total/NA	Solid	Total BTEX	

Job ID: 890-3411-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 39551 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-2	BH-201 (10')	Total/NA	Solid	Total BTEX	
890-3411-3	BH-204 (10')	Total/NA	Solid	Total BTEX	
890-3411-4	BH-205 (10')	Total/NA	Solid	Total BTEX	
890-3411-5	BH-206 (10')	Total/NA	Solid	Total BTEX	
890-3411-6	BH-208 (10')	Total/NA	Solid	Total BTEX	
890-3411-7	BH-209 (10')	Total/NA	Solid	Total BTEX	
890-3411-8	BH-210 (10')	Total/NA	Solid	Total BTEX	
890-3411-9	BH-211 (10')	Total/NA	Solid	Total BTEX	
890-3411-10	BH-212 (10')	Total/NA	Solid	Total BTEX	
890-3411-11	SW-75 (4-10')	Total/NA	Solid	Total BTEX	
890-3411-12	SW-78 (4-10')	Total/NA	Solid	Total BTEX	
890-3411-13	SW-79 (4-10')	Total/NA	Solid	Total BTEX	
890-3411-14	SW-80 (4.5-10')	Total/NA	Solid	Total BTEX	
890-3411-15	SW-81 (4.5-10')	Total/NA	Solid	Total BTEX	
890-3411-16	SW-82 (4.5-10')	Total/NA	Solid	Total BTEX	
890-3411-17	SW-83 (4-10)	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 39141

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-3411-1	BH-200 (10')	Total/NA	Solid	8015NM Prep	
890-3411-2	BH-201 (10')	Total/NA	Solid	8015NM Prep	
890-3411-3	BH-204 (10')	Total/NA	Solid	8015NM Prep	
890-3411-4	BH-205 (10')	Total/NA	Solid	8015NM Prep	
890-3411-5	BH-206 (10')	Total/NA	Solid	8015NM Prep	
890-3411-6	BH-208 (10')	Total/NA	Solid	8015NM Prep	
890-3411-7	BH-209 (10')	Total/NA	Solid	8015NM Prep	
890-3411-8	BH-210 (10')	Total/NA	Solid	8015NM Prep	
390-3411-9	BH-211 (10')	Total/NA	Solid	8015NM Prep	
390-3411-10	BH-212 (10')	Total/NA	Solid	8015NM Prep	
890-3411-11	SW-75 (4-10')	Total/NA	Solid	8015NM Prep	
390-3411-12	SW-78 (4-10')	Total/NA	Solid	8015NM Prep	
890-3411-13	SW-79 (4-10')	Total/NA	Solid	8015NM Prep	
890-3411-14	SW-80 (4.5-10')	Total/NA	Solid	8015NM Prep	
390-3411-15	SW-81 (4.5-10')	Total/NA	Solid	8015NM Prep	
390-3411-16	SW-82 (4.5-10')	Total/NA	Solid	8015NM Prep	
MB 880-39141/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39141/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
_CSD 880-39141/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-21336-A-28-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-21336-A-28-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 39172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-17	SW-83 (4-10)	Total/NA	Solid	8015NM Prep	
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC Semi VOA

Analysis Batch: 39269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-17	SW-83 (4-10)	Total/NA	Solid	8015B NM	39172
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015B NM	39172
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39172
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39172
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015B NM	39172
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	39172

Analysis Batch: 39275

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-1	BH-200 (10')	Total/NA	Solid	8015B NM	39141
890-3411-2	BH-201 (10')	Total/NA	Solid	8015B NM	39141
890-3411-3	BH-204 (10')	Total/NA	Solid	8015B NM	39141
890-3411-4	BH-205 (10')	Total/NA	Solid	8015B NM	39141
890-3411-5	BH-206 (10')	Total/NA	Solid	8015B NM	39141
890-3411-6	BH-208 (10')	Total/NA	Solid	8015B NM	39141
890-3411-7	BH-209 (10')	Total/NA	Solid	8015B NM	39141
890-3411-8	BH-210 (10')	Total/NA	Solid	8015B NM	39141
890-3411-9	BH-211 (10')	Total/NA	Solid	8015B NM	39141
890-3411-10	BH-212 (10')	Total/NA	Solid	8015B NM	39141
890-3411-11	SW-75 (4-10')	Total/NA	Solid	8015B NM	39141
890-3411-12	SW-78 (4-10')	Total/NA	Solid	8015B NM	39141
890-3411-13	SW-79 (4-10')	Total/NA	Solid	8015B NM	39141
890-3411-14	SW-80 (4.5-10')	Total/NA	Solid	8015B NM	39141
890-3411-15	SW-81 (4.5-10')	Total/NA	Solid	8015B NM	39141
890-3411-16	SW-82 (4.5-10')	Total/NA	Solid	8015B NM	39141
MB 880-39141/1-A	Method Blank	Total/NA	Solid	8015B NM	39141
LCS 880-39141/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39141
LCSD 880-39141/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39141
880-21336-A-28-D MS	Matrix Spike	Total/NA	Solid	8015B NM	39141
880-21336-A-28-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	39141

Analysis Batch: 39406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-3411-1	BH-200 (10')	Total/NA	Solid	8015 NM	
890-3411-2	BH-201 (10')	Total/NA	Solid	8015 NM	
390-3411-3	BH-204 (10')	Total/NA	Solid	8015 NM	
390-3411-4	BH-205 (10')	Total/NA	Solid	8015 NM	
390-3411-5	BH-206 (10')	Total/NA	Solid	8015 NM	
890-3411-6	BH-208 (10')	Total/NA	Solid	8015 NM	
390-3411-7	BH-209 (10')	Total/NA	Solid	8015 NM	
390-3411-8	BH-210 (10')	Total/NA	Solid	8015 NM	
890-3411-9	BH-211 (10')	Total/NA	Solid	8015 NM	
890-3411-10	BH-212 (10')	Total/NA	Solid	8015 NM	
390-3411-11	SW-75 (4-10')	Total/NA	Solid	8015 NM	
390-3411-12	SW-78 (4-10')	Total/NA	Solid	8015 NM	
890-3411-13	SW-79 (4-10')	Total/NA	Solid	8015 NM	
390-3411-14	SW-80 (4.5-10')	Total/NA	Solid	8015 NM	
390-3411-15	SW-81 (4.5-10')	Total/NA	Solid	8015 NM	
390-3411-16	SW-82 (4.5-10')	Total/NA	Solid	8015 NM	
390-3411-17	SW-83 (4-10)	Total/NA	Solid	8015 NM	

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

HPLC/IC

Leach Batch: 39128

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-3411-1	BH-200 (10')	Soluble	Solid	DI Leach	_
890-3411-2	BH-201 (10')	Soluble	Solid	DI Leach	
890-3411-3	BH-204 (10')	Soluble	Solid	DI Leach	
890-3411-4	BH-205 (10')	Soluble	Solid	DI Leach	
890-3411-5	BH-206 (10')	Soluble	Solid	DI Leach	
890-3411-6	BH-208 (10')	Soluble	Solid	DI Leach	
890-3411-7	BH-209 (10')	Soluble	Solid	DI Leach	
890-3411-8	BH-210 (10')	Soluble	Solid	DI Leach	
890-3411-9	BH-211 (10')	Soluble	Solid	DI Leach	
890-3411-10	BH-212 (10')	Soluble	Solid	DI Leach	
890-3411-11	SW-75 (4-10')	Soluble	Solid	DI Leach	
890-3411-12	SW-78 (4-10')	Soluble	Solid	DI Leach	
890-3411-13	SW-79 (4-10')	Soluble	Solid	DI Leach	
890-3411-14	SW-80 (4.5-10')	Soluble	Solid	DI Leach	
890-3411-15	SW-81 (4.5-10')	Soluble	Solid	DI Leach	
890-3411-16	SW-82 (4.5-10')	Soluble	Solid	DI Leach	
890-3411-17	SW-83 (4-10)	Soluble	Solid	DI Leach	
MB 880-39128/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-39128/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-39128/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3411-1 MS	BH-200 (10')	Soluble	Solid	DI Leach	
890-3411-1 MSD	BH-200 (10')	Soluble	Solid	DI Leach	
890-3411-11 MS	SW-75 (4-10')	Soluble	Solid	DI Leach	
890-3411-11 MSD	SW-75 (4-10')	Soluble	Solid	DI Leach	

Analysis Batch: 39334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-3411-1	BH-200 (10')	Soluble	Solid	300.0	3912
890-3411-2	BH-201 (10')	Soluble	Solid	300.0	3912
890-3411-3	BH-204 (10')	Soluble	Solid	300.0	3912
890-3411-4	BH-205 (10')	Soluble	Solid	300.0	3912
890-3411-5	BH-206 (10')	Soluble	Solid	300.0	3912
890-3411-6	BH-208 (10')	Soluble	Solid	300.0	3912
890-3411-7	BH-209 (10')	Soluble	Solid	300.0	3912
890-3411-8	BH-210 (10')	Soluble	Solid	300.0	3912
890-3411-9	BH-211 (10')	Soluble	Solid	300.0	3912
890-3411-10	BH-212 (10')	Soluble	Solid	300.0	3912
890-3411-11	SW-75 (4-10')	Soluble	Solid	300.0	3912
890-3411-12	SW-78 (4-10')	Soluble	Solid	300.0	3912
890-3411-13	SW-79 (4-10')	Soluble	Solid	300.0	3912
890-3411-14	SW-80 (4.5-10')	Soluble	Solid	300.0	3912
890-3411-15	SW-81 (4.5-10')	Soluble	Solid	300.0	3912
890-3411-16	SW-82 (4.5-10')	Soluble	Solid	300.0	3912
890-3411-17	SW-83 (4-10)	Soluble	Solid	300.0	3912
MB 880-39128/1-A	Method Blank	Soluble	Solid	300.0	3912
LCS 880-39128/2-A	Lab Control Sample	Soluble	Solid	300.0	3912
LCSD 880-39128/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	3912
890-3411-1 MS	BH-200 (10')	Soluble	Solid	300.0	3912
890-3411-1 MSD	BH-200 (10')	Soluble	Solid	300.0	3912
390-3411-11 MS	SW-75 (4-10')	Soluble	Solid	300.0	3912
890-3411-11 MSD	SW-75 (4-10')	Soluble	Solid	300.0	3912

Eurofins Carlsbad

2

3

4

7

0

10

12

Job ID: 890-3411-1 SDG: Lea County NM

Client Sample ID: BH-200 (10')

Lab Sample ID: 890-3411-1 Date Collected: 11/07/22 00:00

Matrix: Solid

Date Received: 11/07/22 14:58

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/12/22 22:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 13:54	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 01:19	CH	EET MID

Client Sample ID: BH-201 (10')

Date Collected: 11/07/22 00:00

Date Received: 11/07/22 14:58

Lab Sample ID: 890-3411-2

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.02 g 5 mL 39140 11/09/22 15:36 MNR EET MID Total/NA 8021B 5 mL 39369 11/12/22 22:35 **EET MID** Analysis 1 5 mL MNR Total/NA Total BTEX 39551 11/14/22 16:13 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 39406 11/14/22 14:30 SM **EET MID** Total/NA 39141 11/09/22 15:38 EET MID Prep 8015NM Prep 10.01 g 10 mL DM Total/NA Analysis 8015B NM 1 uL 1 uL 39275 11/11/22 14:16 SM **EET MID** Soluble 5.04 g 11/09/22 15:08 KS Leach DI Leach 50 mL 39128 **EET MID** Soluble Analysis 300.0 10 39334 11/12/22 01:40 СН **EET MID**

Client Sample ID: BH-204 (10')

Date Collected: 11/07/22 00:00

Date Received: 11/07/22 14:58

Lab Sample ID: 890-3411-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/12/22 22:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 14:37	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 01:47	CH	EET MID

Client Sample

Date Collected: 1

Date Received: 11/07/22 14:58

Analysis	300.0	5	39334	11/12/22 01:47	СН	EET MID
D: BH-20	5 (10')			Lab Sam	iple ID): 890-3411-4
11/07/22 00:0	0					Matrix: Solid
11/07/22 14:58	3					

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/12/22 23:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID

Job ID: 890-3411-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Date Received: 11/07/22 14:58

Lab Sample ID: 890-3411-4

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: BH-205 (10') Date Collected: 11/07/22 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 14:59	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 01:54	CH	EET MID

Client Sample ID: BH-206 (10') Lab Sample ID: 890-3411-5

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab Total/NA 5035 Prep 4.98 g 5 mL 39140 11/09/22 15:36 MNR **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 39369 11/12/22 23:37 MNR EET MID 1 Total/NA Total BTEX 39551 **EET MID** Analysis 1 11/14/22 16:13 SM Total/NA Analysis 8015 NM 39406 11/14/22 14:30 SM **EET MID** 1 11/09/22 15:38 Total/NA Prep 8015NM Prep 10.02 g 10 mL 39141 DM **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 39275 11/11/22 15:21 SM **EET MID** Soluble Leach DI Leach 4.96 g 50 mL 39128 11/09/22 15:08 KS **EET MID** EET MID Soluble Analysis 300.0 5 39334 11/12/22 02:01 СН

Client Sample ID: BH-208 (10') Lab Sample ID: 890-3411-6

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/12/22 23:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 15:43	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		10			39334	11/12/22 02:23	CH	EET MID

Client Sample ID: BH-209 (10') Lab Sample ID: 890-3411-7

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 00:19	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 16:26	SM	EET MID

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Matrix: Solid

Client Sample ID: BH-209 (10')

Date Collected: 11/07/22 00:00

Lab Sample ID: 890-3411-7

Matrix: Solid

Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		10			39334	11/12/22 02:30	CH	EET MID

Client Sample ID: BH-210 (10') Lab Sample ID: 890-3411-8

Date Collected: 11/07/22 00:00 Matrix: Solid

Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 00:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 16:48	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 02:37	CH	EET MID

Client Sample ID: BH-211 (10')

Lab Sample ID: 890-3411-9

Date Collected: 11/07/22 00:00 Matrix: Solid
Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 01:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 17:09	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 02:44	CH	EET MID

Client Sample ID: BH-212 (10')

Lab Sample ID: 890-3411-10

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 01:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 17:32	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 02:51	CH	EET MID

Eurofins Carlsbad

2

3

4

5

7

9

11

13

olilis Calisbau

Matrix: Solid

Client Sample ID: SW-75 (4-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Lab Sample ID: 890-3411-11

Matrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 02:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 17:54	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		20			39334	11/12/22 02:58	CH	EET MID

Client Sample ID: SW-78 (4-10') Lab Sample ID: 890-3411-12

Date Collected: 11/07/22 00:00

Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 03:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 18:15	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		50			39334	11/12/22 03:20	CH	EET MID

Client Sample ID: SW-79 (4-10') Lab Sample ID: 890-3411-13

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	39140	11/09/22 15:36	MNR	EET MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 03:26	MNR	EET MIC
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 18:37	SM	EET MIC
Soluble	Leach	DI Leach			5.05 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 03:27	CH	EET MID

Client Sample ID: SW-80 (4.5-10') Lab Sample ID: 890-3411-14

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 03:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID

Eurofins Carlsbad

Page 34 of 43

Matrix: Solid

Client Sample ID: SW-80 (4.5-10')

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58 Lab Sample ID: 890-3411-14

Matrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			39406	11/14/22 14:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39141	11/09/22 15:38	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39275	11/11/22 18:59	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		20			39334	11/12/22 03:48	СН	EET MID

Client Sample ID: SW-81 (4.5-10')

Lab Sample ID: 890-3411-15

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab 5035 Total/NA Prep 4.99 g 5 mL 39140 11/09/22 15:36 MNR **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 39369 11/13/22 04:07 MNR EET MID 1 Total/NA Total BTEX 39551 Analysis 1 11/14/22 16:13 SM **EET MID** Total/NA Analysis 8015 NM 39406 11/14/22 14:30 SM **EET MID** 1 Total/NA Prep 8015NM Prep 10.02 g 10 mL 39141 11/09/22 15:38 DM **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 39275 11/11/22 19:21 SM **EET MID** Soluble Leach DI Leach 4.98 g 50 mL 39128 11/09/22 15:08 KS **EET MID** Soluble Analysis 300.0 20 39334 11/12/22 03:55 СН **EET MID**

Client Sample ID: SW-82 (4.5-10')

Lab Sample ID: 890-3411-16

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

 Date Received: 11/07/22 14:58

 Batch
 Batch
 Dil
 Initial
 Final
 Batch
 Prepared

 Prep Type
 Type
 Method
 Run
 Factor
 Amount
 Number
 or Analyzed
 Analyst
 Lab

 Total/NA
 Prep
 5035
 4.96 g
 5 mL
 39140
 11/09/22 15:36
 MNR
 EET MID

ווט	Initial	Finai	Batch	Prepared		
ctor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	4.96 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
1	5 mL	5 mL	39369	11/13/22 04:28	MNR	EET MID
1			39551	11/14/22 16:13	SM	EET MID
1			39406	11/14/22 14:30	SM	EET MID
	10.04 g	10 mL	39141	11/09/22 15:38	DM	EET MID
1	1 uL	1 uL	39275	11/11/22 19:43	SM	EET MID
	5.03 g	50 mL	39128	11/09/22 15:08	KS	EET MID
20			39334	11/12/22 04:02	CH	EET MID
	1 1 1 1 1	Amount 4.96 g 1 5 mL 1 1 1 10.04 g 1 1 uL 5.03 g	Amount Amount 4.96 g 5 mL 1 5 mL 1 5 mL 1 1 mL 1 1 mL 1 1 uL 5.03 g 50 mL	Amount Amount Number 4.96 g 5 mL 39140 1 5 mL 39369 1 39551 1 39406 1 10.04 g 10 mL 39141 1 1 uL 1 uL 39275 5.03 g 50 mL 39128	Amount Amount Number or Analyzed 4.96 g 5 mL 39140 11/09/22 15:36 1 5 mL 39369 11/13/22 04:28 1 39551 11/14/22 16:13 1 39406 11/14/22 14:30 1 10.04 g 10 mL 39141 11/09/22 15:38 1 1 uL 1 uL 39275 11/11/22 19:43 5.03 g 50 mL 39128 11/09/22 15:08	Amount Amount Number or Analyzed Analyst 4.96 g 5 mL 39140 11/09/22 15:36 MNR 1 5 mL 39369 11/13/22 04:28 MNR 1 39551 11/14/22 16:13 SM 39406 11/14/22 14:30 SM 10.04 g 10 mL 39141 11/09/22 15:38 DM 1 uL 1 uL 39275 11/11/22 19:43 SM 5.03 g 50 mL 39128 11/09/22 15:08 KS

Client Sample ID: SW-83 (4-10)

Lab Sample ID: 890-3411-17

Date Collected: 11/07/22 00:00 Date Received: 11/07/22 14:58

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 04:49	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39551	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39406	11/14/22 09:30	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g 1 uL	10 mL 1 uL	39172 39269	11/10/22 08:48 11/11/22 18:00	DM SM	EET MID EET MID

Eurofins Carlsbad

Matrix: Solid

2

А

5

7

9

1 4

12

Lab Chronicle

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: SW-83 (4-10)

Lab Sample ID: 890-3411-17

Date Collected: 11/07/22 00:00 Matrix: Solid
Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		1			39334	11/12/22 04:09	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

5

6

8

3 4 0

11

13

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3411-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pı	rogram	Identification Number	Expiration Date
Texas	N	ELAP	T104704400-22-24	06-30-23
The following analytes the agency does not of	• •	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for wh
Analysis Method	Prep Method	Matrix	Analyte	
0045104		Solid	T-4-LTDU	-
8015 NM		Soliu	Total TPH	

3

4

6

0

11

13

Method Summary

Client: Tetra Tech, Inc. Job ID: 890-3411-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-3411-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3411-1	BH-200 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-2	BH-201 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-3	BH-204 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-4	BH-205 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-5	BH-206 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-6	BH-208 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-7	BH-209 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-8	BH-210 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-9	BH-211 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-10	BH-212 (10')	Solid	11/07/22 00:00	11/07/22 14:58	10
890-3411-11	SW-75 (4-10')	Solid	11/07/22 00:00	11/07/22 14:58	4 - 10
890-3411-12	SW-78 (4-10')	Solid	11/07/22 00:00	11/07/22 14:58	4 - 10
890-3411-13	SW-79 (4-10')	Solid	11/07/22 00:00	11/07/22 14:58	4 - 10
890-3411-14	SW-80 (4.5-10')	Solid	11/07/22 00:00	11/07/22 14:58	4.5 - 10
890-3411-15	SW-81 (4.5-10')	Solid	11/07/22 00:00	11/07/22 14:58	4.5 - 10
890-3411-16	SW-82 (4.5-10')	Solid	11/07/22 00:00	11/07/22 14:58	4.5 - 10
890-3411-17	SW-83 (4-10)	Solid	11/07/22 00:00	11/07/22 14:58	4 - 10

3

4

5

9

10

11

12

4 /

Tetra Tech, Inc.	Lea County, NM	And the last of th	Relinquished by:	2	Relinguished by:	her	Relinquished by:											(LAB USE)	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		#	
Cair Gonzales Cair Gonzales Cair Gonzales	Clair Gonzales@tetratech.com Clair Gonzales@tetratech.com Clair Gonzales@tetratech.com Clair Gonzales@tetratech.com Clair Gonzales@tetratech.com Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Peyton Oliver Pereservanive P		/ Date:	1958 1458	Date:	22/11/11	Date:	BH-212 (10")	ВН-211 (10')	BH-210 (10')	ВН-209 (10')	ВН-208 (10')	вн-206 (10')	ВН-205 (10')	BH-204 (10')	BH-201 (10')	BH-200 (10')		SAMPLE IDENTIFICATION							Permian Water Solutions		Tetra Tech, Inc.	
# CONTAINERS # CONTAINERS FILTERED (Y/N) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **TO TAIL Metals Ag As Ba Cd Cr Pb Se Hg **TOLP Metals Ag As Ba Cd Cr Pb Se Hg **TCLP Volatiles **TCLP Semi Volatiles	# CONTAINERS # CONTAINERS FILTERED (Y/N) Sample of emple at the case of the		Received by:		Received by:		Received by:	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022		YEAR: 2020	SAMPLING		Sampler Signature:		Project #:	<u>Clair</u>	Site Manager			
# CONTAINERS # CONTAINERS FILTERED (Y/N) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **THE TX1005 (Ext to C35) **TO TAIL Metals Ag As Ba Cd Cr Pb Se Hg **TOLP Metals Ag As Ba Cd Cr Pb Se Hg **TCLP Volatiles **TCLP Semi Volatiles	# CONTAINERS # CONTAINERS FILTERED (Y/N) Sample of emple at the case of the		Date		Date		Date	×	×	×	×	×	×	×	×	×	×	WATER SOIL HCL	2			Peyton Oli		212C-MD-	.Gonzales@tetrate	Clair Gonzale	Fax (432) 6	Tel (432) 682-4	SOLVE WELL ALL OC
FILTERED (Y/N) FILTERED (Y/N)	FILTERED (Y/N) FILTERED (Y/N)							×		×	×	×	×	×	×	×	×	ICE None	AINE			iver		-02230	ch.com	SS	87-3946	559 9705	er, ore loo
TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles		700	3.08	Sample Temperatur	LAB USE ON												FILTER BTEX 8 TPH TX TPH 80 PAH 82	ED (\) 021B .1005 15M (70C	(/N) BTE (Ext to GRO	C35) - DRO - (ORO - I			890-3411 C				
	9 PCBS 8082/608					×	REMARKS											TCLP Se TCLP Se RCI GC/MS 1 GC/MS 1	olatile emi Vo Vol. 8 Semi.	s olatiles 3260B / Vol. 8	624		Hg		hain of Custody				

ORIGINAL COPY

	Relinquished by:	Jul 6	Relinquished by:	at at	Relinguished by:									(LABUSE)	LAB#		Comments:	Receiving Laboratory.	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		ᆏ	Analysis Re
	-	wha I that 11/120 1458		11/7/22	Date: Time:		SW-83 (4-10')	SW-82 (4.5-10')	SW-81 (4.5-10')	SW-80 (4.5-10')	SW-79 (4-10')	SW-78 (4-10')	SW-75 (4-10')		SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions - Dusty McInturff	Lea County, NM	Kaiser SWD	Permian Water Solutions		Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
	Received by:		Received by:		Received by:		11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	11/7/2022	DATE	YEAR: 2020	SAMPLING			Tff Sampler Streeting.	Project #		Site Manager:		•	
	Date: Ti		Date: Ti		Date: Ti		×		×	×	×	×	×	WATE SOIL HCL HNO ₃ ICE	R	MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Widland, Texas 79705 Tel (432) 882-4559	SOLA MAIL Sueet' Ste Jon
(Circ	Time:		Time: Sam	5	Time:		×	×	×	×	×	×	×		RED (\ 8021B	RS (/N) BTI	X 82 60	В			(3	An			
(Circle) HAND DELIVERED I	1 80		Sample Temperature	CAL	-		×	×	×	×	×	×	×	TPH 8 PAH 8 Total N TCLP	270C letals A	GRO Ag As I Ag As	- DRO - Ba Cd Cl Ba Cd C	Pb Se	e Hg			ANALYSIS REQUES			
FEDEX UPS Tracking #:	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH: Same Day	N SIMONIO	Š									RCI GC/MS GC/MS PCB's NORM	Vol. 8 Semi. 8082/	3260B Vol. 8 608		25				T or Specify			
g#	its or TRRP Report	orized	24 hr 48 hr 72 hr				>	×	×	×	×	×	×	Chlori Chlori Gener	de S	Sulfate er Ch	emistry		ttached	list)		Method No.)			Page 2 of
														Hold											7

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3411-1

SDG Number: Lea County NM

SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 3411 List Number: 1 Creator: Clifton, Cloe

Containers are not broken or leaking.

Sample bottles are completely filled.

Sample Preservation Verified.

MS/MSDs

<6mm (1/4").

Sample collection date/times are provided.

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Appropriate sample containers are used.

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	

True

True

N/A

True

N/A

True

N/A

Refer to Job Narrative for details.

14

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3411-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Source: Eurotins Midland
List Creation: 11/09/22 10:47 AM

List Number: 2 Creator: Rodriguez, Leticia

Login Number: 3411

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

1

3

4

6

10

12

13

14

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3412-1

Laboratory Sample Delivery Group: Lea County NM

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 11/14/2022 3:39:39 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3412-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

2

3

4

6

8

40

11

10

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-3412-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Qualifiers

GC VOA

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

*1 LCS/LCSD RPD exceeds control limits.

S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

HPLC/IC

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit

CNF Contains No Free Liquid
DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
POI Practical Quantitation I

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Carlsbad

3

4

5

7

Ö

10

10

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-3412-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-3412-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3412-1

Receipt

The sample was received on 11/7/2022 2:58 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 29.8°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: H-9 (5') (890-3412-1).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-39172 and analytical batch 880-39269 was outside the upper control limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-39172 and analytical batch 880-39269 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-39128 and analytical batch 880-39334 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

J

4

7

10

12

13

Matrix: Solid

Lab Sample ID: 890-3412-1

Client: Tetra Tech, Inc.

Job ID: 890-3412-1
Project/Site: Kaiser SWD

SDG: Lea County NM

Client Sample ID: H-9 (5')

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

Sample Depth: 5'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 05:09	
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 05:09	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 05:09	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/09/22 15:36	11/13/22 05:09	
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/13/22 05:09	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/09/22 15:36	11/13/22 05:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	112		70 - 130				11/09/22 15:36	11/13/22 05:09	
1,4-Difluorobenzene (Surr)	111		70 - 130				11/09/22 15:36	11/13/22 05:09	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015 NM - Diese	•		•	•		_			
Analyte	Result	Qualifier			I Imié				
			RL	MDL		D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	MDL	mg/Kg	D	Prepared	Analyzed 11/14/22 09:30	
			49.9	MDL		D	Prepared		
Method: SW846 8015B NM - Die	sel Range Orga		49.9		mg/Kg	D	Prepared		Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	sel Range Orga Result	nics (DRO)	49.9 (GC)		mg/Kg	=		11/14/22 09:30	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result	nics (DRO) Qualifier U *1	49.9 (GC)		mg/Kg	=	Prepared	11/14/22 09:30 Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <49.9	nics (DRO) Qualifier U*1	49.9 (GC) RL 49.9		mg/Kg Unit mg/Kg	=	Prepared 11/10/22 08:48	11/14/22 09:30 Analyzed 11/11/22 18:21	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <49.9	nics (DRO) Qualifier U*1 U	49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/10/22 08:48 11/10/22 08:48	11/14/22 09:30 Analyzed 11/11/22 18:21 11/11/22 18:21	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	sel Range Orga Result <49.9 <49.9	nics (DRO) Qualifier U *1 U	49.9 (GC) RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/10/22 08:48 11/10/22 08:48 11/10/22 08:48	Analyzed 11/11/22 18:21 11/11/22 18:21 11/11/22 18:21	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	sel Range Orga Result <49.9 <49.9 <49.9 %Recovery	nics (DRO) Qualifier U *1 U	49.9 (GC) RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared	Analyzed 11/11/22 18:21 11/11/22 18:21 11/11/22 18:21 Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	sel Range Orga Result <49.9	nics (DRO) Qualifier U*1 U Qualifier	49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg	=	Prepared 11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared 11/10/22 08:48	Analyzed 11/11/22 18:21 11/11/22 18:21 11/11/22 18:21 Analyzed 11/11/22 18:21	Dil Fac
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Sel Range Orga Result <49.9 <49.9 <49.9 	nics (DRO) Qualifier U*1 U Qualifier	49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg	=	Prepared 11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared 11/10/22 08:48	Analyzed 11/11/22 18:21 11/11/22 18:21 11/11/22 18:21 Analyzed 11/11/22 18:21	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-3412-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surroga
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3411-A-1-D MS	Matrix Spike	77	102	
890-3411-A-1-E MSD	Matrix Spike Duplicate	95	96	
890-3412-1	H-9 (5')	112	111	
LCS 880-39140/1-A	Lab Control Sample	81	100	
LCSD 880-39140/2-A	Lab Control Sample Dup	77	104	
MB 880-39140/5-A	Method Blank	89	100	
Surrogate Legend				
BFB = 4-Bromofluorobenz	ene (Surr)			
DFBZ = 1,4-Difluorobenze	ene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-3402-A-1-G MS	Matrix Spike	86	79	
390-3402-A-1-H MSD	Matrix Spike Duplicate	82	73	
390-3412-1	H-9 (5')	93	92	
LCS 880-39172/2-A	Lab Control Sample	94	97	
LCSD 880-39172/3-A	Lab Control Sample Dup	107	109	
MB 880-39172/1-A	Method Blank	119	134 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

<u>5</u>

5

7

9

. .

12

13

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-39140/5-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 39140

MB	MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		11/09/22 15:36	11/12/22 21:52	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	70 - 130	11/09/22 15:36	11/12/22 21:52	1
1,4-Difluorobenzene (Surr)	100	70 - 130	11/09/22 15:36	11/12/22 21:52	1

Lab Sample ID: LCS 880-39140/1-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 39140

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09752		mg/Kg		98	70 - 130	
Toluene	0.100	0.09567		mg/Kg		96	70 - 130	
Ethylbenzene	0.100	0.08894		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.1685		mg/Kg		84	70 - 130	
o-Xylene	0.100	0.09351		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	81		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-39140/2-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 39140

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09869		mg/Kg		99	70 - 130	1	35
Toluene	0.100	0.09592		mg/Kg		96	70 - 130	0	35
Ethylbenzene	0.100	0.09030		mg/Kg		90	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1711		mg/Kg		86	70 - 130	2	35
o-Xylene	0.100	0.09589		mg/Kg		96	70 - 130	3	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	77	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 890-3411-A-1-D MS

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 39140

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.09300		mg/Kg		93	70 - 130	
Toluene	<0.00200	U	0.0996	0.08826		mg/Kg		89	70 - 130	

Prep Batch: 39140

Prep Type: Total/NA

Prep Batch: 39172

70 - 130

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3412-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3411-A-1-D MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid Analysis Batch: 39369

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.0996	0.07882		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.199	0.1462		mg/Kg		73	70 - 130	
o-Xylene	<0.00200	U	0.0996	0.08198		mg/Kg		82	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	77	70 - 130
1,4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: 890-3411-A-1-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

o-Xylene

Analysis Batch: 39369									Prep	Batch:	39140
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0998	0.08398		mg/Kg		84	70 - 130	10	35
Toluene	<0.00200	U	0.0998	0.08420		mg/Kg		84	70 - 130	5	35
Ethylbenzene	<0.00200	U	0.0998	0.08062		mg/Kg		81	70 - 130	2	35
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1625		mg/Kg		81	70 - 130	11	35

0.09115

mg/Kg

0.0998

MSD MSD

<0.00200 U

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-39172/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 39269

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 - 130	11/10/22 08:48	11/11/22 09:30	1
o-Terphenyl	134	S1+	70 - 130	11/10/22 08:48	11/11/22 09:30	1

Lab Sample ID: LCS 880-39172/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 39269 Prep Batch: 39172

	Бріке	LUS	LUS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	815.5		mg/Kg		82	70 - 130		
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	846.7		mg/Kg		85	70 - 130		
C10-C28)									

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 890-3412-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-39172/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 39269

Prep Type: Total/NA Prep Batch: 39172

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 94 70 - 130 o-Terphenyl 97 70 - 130

Lab Sample ID: LCSD 880-39172/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 39269							Prep	Batch:	39172
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1003	*1	mg/Kg		100	70 - 130	21	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	950.2		mg/Kg		95	70 - 130	12	20
C10-C28)									

LCSD LCSD Surrogate %Recovery Qualifier Limits 107 70 - 130 1-Chlorooctane o-Terphenyl 109 70 - 130

Lab Sample ID: 890-3402-A-1-G MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 39269									Prep	Batch: 39172
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	55.1	*1	997	1007		mg/Kg		95	70 - 130	
Diesel Range Organics (Over	<50.0	U	997	861.7		mg/Kg		84	70 - 130	

C10-C28)

	IVIS I	vi S	
Surrogate	%Recovery (Qualifier	Limits
1-Chlorooctane	86		70 - 130
o-Terphenyl	79		70 - 130

Lab Sample ID: 890-3402-A-1-H MSD Client Sample ID: Matrix Spike Duplicate

Analysis Batch: 39269

Matrix: Solid

Analysis Batch: 39269									Prep	Batch:	39172
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	55.1	*1	999	978.6		mg/Kg		92	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	<50.0	U	999	796.8		mg/Kg		77	70 - 130	8	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	82		70 - 130
o-Terphenyl	73		70 - 130

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3412-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

SDG: Lea County NM

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-39128/1-A

Matrix: Solid

Analysis Batch: 39334

мв мв

Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 11/12/22 00:57

Lab Sample ID: LCS 880-39128/2-A

Matrix: Solid

Analysis Batch: 39334

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 268.3 mg/Kg 107 90 - 110

Lab Sample ID: LCSD 880-39128/3-A

Matrix: Solid

Analysis Batch: 39334

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 268.7 mg/Kg 107 90 - 110

Lab Sample ID: 890-3411-A-1-B MS

Matrix: Solid

Analysis Batch: 39334

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added %Rec Result Qualifier Unit Limits Chloride 2280 1260 3520 90 - 110 mg/Kg

Lab Sample ID: 890-3411-A-1-C MSD

Matrix: Solid

Analysis Batch: 39334

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 2280 F1 1260 3707 F1 Chloride mg/Kg 113 90 - 110 20

Client: Tetra Tech, Inc.

Job ID: 890-3412-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC VOA

Prep Batch: 39140

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Total/NA	Solid	5035	
MB 880-39140/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3411-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3411-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 39369

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Total/NA	Solid	8021B	39140
MB 880-39140/5-A	Method Blank	Total/NA	Solid	8021B	39140
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	8021B	39140
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	39140
890-3411-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	39140
890-3411-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	39140

Analysis Batch: 39552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 39172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Total/NA	Solid	8015NM Prep	
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 39269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Total/NA	Solid	8015B NM	39172
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015B NM	39172
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39172
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39172
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015B NM	39172
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	39172

Analysis Batch: 39407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 39128

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Soluble	Solid	DI Leach	
MB 880-39128/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-39128/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-39128/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Page 11 of 19

2

3

4

6

8

10

12

13

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-3412-1

SDG: Lea County NM

HPLC/IC (Continued)

Leach Batch: 39128 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3411-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 39334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3412-1	H-9 (5')	Soluble	Solid	300.0	39128
MB 880-39128/1-A	Method Blank	Soluble	Solid	300.0	39128
LCS 880-39128/2-A	Lab Control Sample	Soluble	Solid	300.0	39128
LCSD 880-39128/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	39128
890-3411-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	39128
890-3411-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	39128

Eurofins Carlsbad

3

Λ

5

6

8

9

11

13

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 890-3412-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: H-9 (5')

Lab Sample ID: 890-3412-1 Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 05:09	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39552	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39407	11/14/22 09:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39172	11/10/22 08:48	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39269	11/11/22 18:21	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		5			39334	11/12/22 04:17	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3412-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NI	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this renert hu	it the leberatory is not contiffi	and the state of the second and the state of	
the agency does not of		it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for v
,		Matrix	led by the governing authority. This list ma	ay include analytes for v
the agency does not of	fer certification.	•	, , ,	ay include analytes for v

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-3412-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

2

4

7

9

10

13

| | 4

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-3412-1

SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3412-1	H-9 (5')	Solid	11/07/22 12:00	11/07/22 14:58	5'

	Relinquished by:	Reinquianed by:	Jen	Relinguished by:							7	(LABUSE)	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	큠	Analysis Rec	
		la Stut	1/2	11							н-9 (5')		SAMPLE			ey: Eurofins Xenco		Lea County, NM	Kaiser SWD	Permian Water Solutions	Tetra	Analysis Request of Chain of Custody Record	
	Time	11/2/22 1458	2	Date: Time:									SAMPLE IDENTIFICATION				Permian Water Solutions - Dusty McInturff	M		Solutions	Tetra Tech, Inc.	dy Record	
ORIGINAL COPY	Received by:	received by:		Received by:							11/7/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:	<u>Clair.</u>	Site Manager:			
Ye	Date:	Care		Date:							×	WATE SOIL HCL	R	MATRIX		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	SULPA ANTOE	
	: Time:	i i i		Time:							×	HNO ₃ ICE None	TAINE	PRESERVATIVE S		Ver		02230	ch.com	Š	9705 559 82.3946	0-3412 Chain	
								\dagger				FILTER	ED (Y/N)								of Custody	
(Circle	Tor	Sample		LAB	4						×	BTEX 8	_		X 8260	В			_	AN		ďy	
(Circle) HAND DELIVERED	TOM.			LAB USE							×	TPH 80	15M (ORO - I	MRO)			ANALYSIS			
D DEI		enatu Name		NLY	\vdash	_	-	+-	-	-	-	PAH 82 Total Me		Aa As F	Ba Cd Cr	Pb Se	Ha						
IVER	0	Ø.										TCLP M	letals	Ag As	Ba Cd C					REQUEST (Circle o			
		7 -	7	REMARKS:				-		+		TCLP V								Cle		1	
FEDEX	l Å	귇	P. I	LJ A				+			-	RCI	CHII V	oranica						~			
C UPS	ecial	sh C	S I	ST/								GC/MS								Spe			
	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH: Same Dav	STANDARD	\vdash	-	-	+	++	-	-	GC/MS PCB's			270C/62	5				Specify			
Tracking #:	ă. ⊑	s Au	ie Da	ARI	1			+		+		NORM	JUUZ /	550									
# gni	mits	0		U								PLM (A		os)				7		Method		Page	
	약	zed	24 hr		$\vdash \downarrow$			-			×	Chloride		115-1.	TDC					od		ge	
	₹ P		48		$\vdash \vdash$		+	+	-	-	-	Chlorid Genera		er Che	TDS emistry (see at	ached	list)		Z		1	
	epo		=					士				Anion/C								-			
	²		72 hr		Ц																	1	
			-1		H			-		+	-											읔	
					H		-	+	+	+-	-	Hold											
						1		1	1	1	1	Tiloid										11-	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-3412-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 3412 List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3412-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Source: Eurotins Midland
List Creation: 11/09/22 10:47 AM

Creator: Rodriguez, Leticia

Login Number: 3412

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

1

3

4

5

9

11

13

14

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3413-1

Laboratory Sample Delivery Group: 212C-MD-02230

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 11/14/2022 3:40:55 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3413-1 SDG: 212C-MD-02230

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Racaint Chacklists	18

4

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 890-3413-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

DLC

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC MDL Method Detection Limit

Minimum Level (Dioxin) ML Most Probable Number MPN MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit Presumptive **PRES**

QC **Quality Control** RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-3413-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Job ID: 890-3413-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3413-1

Receipt

The sample was received on 11/7/2022 2:58 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 29.8°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: H-8 (5') (890-3413-1).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-39172 and analytical batch 880-39269 was outside the upper control limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-39172 and analytical batch 880-39269 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-39128 and analytical batch 880-39334 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

6

9

12

IR

| | 4

Matrix: Solid

Lab Sample ID: 890-3413-1

Client: Tetra Tech, Inc.

Job ID: 890-3413-1
Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: H-8 (5')

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

Sample Depth: 5'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:30	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:30	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:30	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 05:30	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:30	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 05:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				11/09/22 15:36	11/13/22 05:30	1
1,4-Difluorobenzene (Surr)	109		70 - 130				11/09/22 15:36	11/13/22 05:30	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/14/22 16:13	1
Method: SW846 8015 NM - Diese	ol Banga Organ	ice (DBO) (30)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U							
			50.0		mg/Kg			11/14/22 09:30	1
Method: SW846 8015B NM - Dies	sel Range Orga				mg/Kg			11/14/22 09:30	1
- Method: SW846 8015B NM - Dies Analyte	•			MDL		D	Prepared	11/14/22 09:30 Analyzed	1 Dil Fac
	•	nics (DRO) Qualifier	(GC)	MDL		<u>D</u>	Prepared 11/10/22 08:48		·
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	nics (DRO) Qualifier U *1	(GC)	MDL	Unit	<u>D</u>	<u>.</u>	Analyzed	Dil Fac
Analyte Gasoline Range Organics	Result < 50.0	nics (DRO) Qualifier U*1	(GC) RL 50.0	MDL	Unit mg/Kg	<u>D</u>	11/10/22 08:48	Analyzed 11/11/22 18:41	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	nics (DRO) Qualifier U *1 U	(GC) RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/10/22 08:48	Analyzed 11/11/22 18:41 11/11/22 18:41	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <50.0	nics (DRO) Qualifier U *1 U	(GC) RL 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u> </u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48	Analyzed 11/11/22 18:41 11/11/22 18:41 11/11/22 18:41	Dil Fac 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	nics (DRO) Qualifier U*1 U	(GC) RL 50.0 50.0 50.0 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared	Analyzed 11/11/22 18:41 11/11/22 18:41 11/11/22 18:41 Analyzed	Dil Fac 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	nics (DRO) Qualifier U*1 U Qualifier	(GC) RL 50.0 50.0 50.0 Limits 70.130 70.130	MDL	Unit mg/Kg mg/Kg	<u> </u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared 11/10/22 08:48	Analyzed 11/11/22 18:41 11/11/22 18:41 11/11/22 18:41 Analyzed 11/11/22 18:41	1 1 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	nics (DRO) Qualifier U*1 U Qualifier	(GC) RL 50.0 50.0 50.0 Limits 70.130 70.130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	11/10/22 08:48 11/10/22 08:48 11/10/22 08:48 Prepared 11/10/22 08:48	Analyzed 11/11/22 18:41 11/11/22 18:41 11/11/22 18:41 Analyzed 11/11/22 18:41	1 1 1 Dil Fac 1

Surrogate Summary

Job ID: 890-3413-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3411-A-1-D MS	Matrix Spike	77	102	
890-3411-A-1-E MSD	Matrix Spike Duplicate	95	96	
890-3413-1	H-8 (5')	110	109	
LCS 880-39140/1-A	Lab Control Sample	81	100	
LCSD 880-39140/2-A	Lab Control Sample Dup	77	104	
MB 880-39140/5-A	Method Blank	89	100	
Surrogate Legend				
BFB = 4-Bromofluorobe	nzene (Surr)			
DFB7 = 1.4-Difluoroben	izene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-3402-A-1-G MS	Matrix Spike	86	79
890-3402-A-1-H MSD	Matrix Spike Duplicate	82	73
890-3413-1	H-8 (5')	90	87
LCS 880-39172/2-A	Lab Control Sample	94	97
LCSD 880-39172/3-A	Lab Control Sample Dup	107	109
MB 880-39172/1-A	Method Blank	119	134 S1+

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-3413-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-39140/5-A

Matrix: Solid

Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene

o-Xylene

Xylenes, Total

Analysis Batch: 39369

Client Sample ID: Method Blank

11/12/22 21:52

11/12/22 21:52

Prep Type: Total/NA

Prep Batch: 39140

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
<0.00400	U	0.00400		mg/Kg		11/09/22 15:36	11/12/22 21:52	1

mg/Kg

mg/Kg

MB MB

<0.00200 U

<0.00400 U

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	70 - 130	11/09/22 15:36	11/12/22 21:52	1
1,4-Difluorobenzene (Surr)	100	70 ₋ 130	11/09/22 15:36	11/12/22 21:52	1

0.00200

0.00400

Lab Sample ID: LCS 880-39140/1-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Lab Control Sample

11/09/22 15:36

11/09/22 15:36

Prep Type: Total/NA

Prep Batch: 39140

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09752	-	mg/Kg		98	70 - 130	
Toluene	0.100	0.09567		mg/Kg		96	70 - 130	
Ethylbenzene	0.100	0.08894		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.1685		mg/Kg		84	70 - 130	
o-Xylene	0.100	0.09351		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	81		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-39140/2-A

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Lab Control Sample Dup	Client Sam	ple ID: Lab	Control	Sample Dup
--	------------	-------------	---------	------------

Prep Type: Total/NA

Prep Batch: 39140

RPD LCSD LCSD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Limit Benzene 0.100 0.09869 mg/Kg 99 70 - 130 35 Toluene 0.100 0.09592 mg/Kg 96 70 - 130 0 35 Ethylbenzene 0.100 0.09030 mg/Kg 90 70 - 130 2 35 0.200 m-Xylene & p-Xylene 0.1711 mg/Kg 86 70 - 130 35 0.100 0.09589 70 - 130 o-Xylene mg/Kg 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	77		70 - 130
1.4-Difluorobenzene (Surr)	104		70 ₋ 130

Lab Sample ID: 890-3411-A-1-D MS

Matrix: Solid

Analysis Batch: 39369

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 39140

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.09300		mg/Kg	_	93	70 - 130	
Toluene	<0.00200	U	0.0996	0.08826		mg/Kg		89	70 - 130	

Prep Batch: 39140

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 39172

Client Sample ID: Matrix Spike Duplicate

Job ID: 890-3413-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3411-A-1-D MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid Analysis Batch: 39369

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ethylbenzene <0.00200 U 0.0996 0.07882 79 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00401 0.199 0.1462 mg/Kg 73 70 - 130 o-Xylene <0.00200 U 0.0996 0.08198 82 70 - 130 mg/Kg

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	77	70 - 130
1,4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: 890-3411-A-1-E MSD

Matrix: Solid

Prep Batch: 39140 Analysis Batch: 39369 Sample Sample Spike MSD MSD RPD Result Qualifier %Rec RPD Limit Analyte babbA Result Qualifier Limits Unit Benzene <0.00200 U 0.0998 0.08398 mg/Kg 84 70 - 130 10 35 Toluene <0.00200 0.0998 0.08420 mg/Kg 84 70 - 130 5 35 Ethylbenzene <0.00200 U 0.0998 0.08062 81 70 - 130 2 35 mg/Kg 0.200 m-Xylene & p-Xylene <0.00401 U 0.1625 mg/Kg 81 70 - 130 11 35 <0.00200 U 0.0998 0.09115 70 - 130 o-Xylene mg/Kg 91 11

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	95	70 - 130
1,4-Difluorobenzene (Surr)	96	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-39172/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 39269

MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 50.0 11/10/22 08:48 <50.0 U 11/11/22 09:30 Gasoline Range Organics mg/Kg (GRO)-C6-C10 11/11/22 09:30 Diesel Range Organics (Over <50.0 U 50.0 11/10/22 08:48 mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 11/10/22 08:48 11/11/22 09:30 mg/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 - 130	11/10/22 08:48	11/11/22 09:30	1
o-Terphenyl	134	S1+	70 - 130	11/10/22 08:48	11/11/22 09:30	1

Lab Sample ID: LCS 880-39172/2-A

Matrix: Solid

Analysis Batch: 39269						Prep Batch: 39172			
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	815.5		mg/Kg		82	70 - 130		
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	846.7		mg/Kg		85	70 - 130		
C10-C28)									

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 39172

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: Tetra Tech, Inc. Job ID: 890-3413-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-39172/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 39269

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	94		70 - 130
o-Terphenyl	97		70 - 130

Lab Sample ID: LCSD 880-39172/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 39269							Batch:	tch: 39172	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1003	*1	mg/Kg		100	70 - 130	21	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	950.2		mg/Kg		95	70 - 130	12	20
C10-C28)									

LCSD LCSD Surrogate %Recovery Qualifier Limits 107 70 - 130 1-Chlorooctane 70 - 130 o-Terphenyl 109

Lab Sample ID: 890-3402-A-1-G MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 39269									Prep	Batch: 39172
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	55.1	*1	997	1007		mg/Kg		95	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.0	U	997	861.7		mg/Kg		84	70 - 130	
C10-C28)										

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	86		70 - 130
o-Terphenyl	79		70 - 130

Lab Sample ID: 890-3402-A-1-H MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 39269									Prep	Batch:	39172
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	55.1	*1	999	978.6		mg/Kg		92	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	<50.0	U	999	796.8		mg/Kg		77	70 - 130	8	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	82		70 - 130
o-Terphenyl	73		70 - 130

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

QC Sample Results

Job ID: 890-3413-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-39128/1-A

Matrix: Solid

Analysis Batch: 39334

MB MB

Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 11/12/22 00:57

Lab Sample ID: LCS 880-39128/2-A

Matrix: Solid

Analysis Batch: 39334

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 268.3 mg/Kg 107 90 - 110

Lab Sample ID: LCSD 880-39128/3-A

Matrix: Solid

Analysis Batch: 39334

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 268.7 mg/Kg 107 90 - 110

Lab Sample ID: 890-3411-A-11-B MS

Matrix: Solid

Analysis Batch: 39334

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier %Rec Unit Limits Chloride 14500 5010 21010 F1 130 90 - 110 mg/Kg

Lab Sample ID: 890-3411-A-11-C MSD

Matrix: Solid

Analysis Batch: 39334

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 14500 F1 5010 20560 F1 Chloride mg/Kg 121 90 - 110 20

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-3413-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC VOA

Prep Batch: 39140

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Total/NA	Solid	5035	
MB 880-39140/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3411-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3411-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 39369

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Total/NA	Solid	8021B	39140
MB 880-39140/5-A	Method Blank	Total/NA	Solid	8021B	39140
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	8021B	39140
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	39140
890-3411-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	39140
890-3411-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	39140

Analysis Batch: 39553

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 39172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Total/NA	Solid	8015NM Prep	
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 39269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Total/NA	Solid	8015B NM	39172
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015B NM	39172
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39172
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39172
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015B NM	39172
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	39172

Analysis Batch: 39408

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 39128

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Soluble	Solid	DI Leach	
MB 880-39128/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-39128/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-39128/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Page 11 of 19

QC Association Summary

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Job ID: 890-3413-1

SDG: 212C-MD-02230

HPLC/IC (Continued)

Leach Batch: 39128 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3411-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3411-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 39334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3413-1	H-8 (5')	Soluble	Solid	300.0	39128
MB 880-39128/1-A	Method Blank	Soluble	Solid	300.0	39128
LCS 880-39128/2-A	Lab Control Sample	Soluble	Solid	300.0	39128
LCSD 880-39128/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	39128
890-3411-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	39128
890-3411-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	39128

Eurofins Carlsbad

-

3

4

6

R

9

10

12

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 890-3413-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: H-8 (5')

Date Received: 11/07/22 14:58

Lab Sample ID: 890-3413-1 Date Collected: 11/07/22 12:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 05:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39553	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39408	11/14/22 09:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	39172	11/10/22 08:48	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39269	11/11/22 18:41	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	39128	11/09/22 15:08	KS	EET MID
Soluble	Analysis	300.0		1			39334	11/12/22 04:24	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3413-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date	
Texas	NE	ELAP	T104704400-22-24	06-30-23	
The following analytes	are included in this report by		and because the analysis of the same of the same		
the agency does not of	• '	it the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for	
,	• '	Matrix	ed by the governing authority. This list ma	ay include analytes for	
the agency does not of	fer certification.	•	, , ,	ay include analytes for	

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-3413-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method **Method Description** Protocol Laboratory 8021B Volatile Organic Compounds (GC) SW846 EET MID **Total BTEX Calculation** Total BTEX TAL SOP EET MID 8015 NM Diesel Range Organics (DRO) (GC) SW846 **EET MID** 8015B NM Diesel Range Organics (DRO) (GC) SW846 **EET MID** 300.0 Anions, Ion Chromatography MCAWW **EET MID** 5035 SW846 **EET MID** Closed System Purge and Trap 8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM **EET MID**

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

7

9

10

4.0

13

14

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-3413-1

SDG: 212C-MD-02230

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3413-1	H-8 (5')	Solid	11/07/22 12:00	11/07/22 14:58	5'

	Relinquished by:	Aux al	Relinquished by:	Will	Relinquished by:						H-8 (5')		(LABUSE)	D t		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		4		Analysis Requesi
	Date: Time:	8241 CEN/11 - JULES	Date: Time:	117122	Date: Time:						5)			SAMPLE IDENTIFICATION			Eurofins Xenco	Permian Water Solutions - Dusty McInturff	Lea County, NM	Kaiser SWD	Permian Water Solutions		Tetra Tech, Inc.		Analysis Request of Chain of Custody Record
	Received by:		Received by:		Received by:						11/7/2022	+	ATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager				
	Date:		Date: T		Date: T						×	V 9/	WATER SOIL HCL HNO ₃ CE		MATRIX PRESERVATIVE		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	Fax (432) 682-3946	Widland, lexas 79705 Tel (432) 682-4559	BUTAN ANAIL STEEL	8 =====
	Time:		Time:		Time:							1	CONTA		RS				0	3					890-3413 Chain of Cus
(Circle) HAND DELIVERED	TOM-007 [30.00	Sample Temperature	LAB USE ONLY							×	T	PAH 827 Total Met TCLP Me TCLP Vo	5M (70C tals A tals /	(Ext to GRO Ag As I Ag As	- DRO - (Ba Cd Cr Ba Cd Cl	ORO - I	Hg			ANALYSIS REQUEST				Custody
FEDEX UPS Tracking #:	Special Report Limits or TRRP Report	Rush Charges Authorized	RUSH: Same Day 2	X STANDARD	옰							F	PCB's 80 NORM PLM (Asi	ol. 8 Semi. 082/	Vol. 6		5				ST or Specify Method				Page
	r TRRP Report	ed	24 hr 48 hr 72 hr								×	-0	Chloride Chloride General Anion/Ca	Wat		mistry (see at	tached	list)		od No.)				ge <u>1</u> of _
						_		+	+	+	+	-	Hold						a-4						_

Login Sample Receipt Checklist

Client: Tetra Tech, Inc. Job Number: 890-3413-1 SDG Number: 212C-MD-02230

Login Number: 3413 List Source: Eurofins Carlsbad List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3413-1

SDG Number: 212C-MD-02230

List Source: Eurofins Midland

List Creation: 11/09/22 10:47 AM

Creator: Rodriguez, Leticia

Login Number: 3413

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Released to Imaging: 9/1/2023 2:07:08 PM

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-3414-1

Laboratory Sample Delivery Group: 212C-MD-02230

Client Project/Site: Kaiser SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

RAMER

Authorized for release by: 11/14/2022 3:40:57 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3414-1 SDG: 212C-MD-02230

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

2

3

-

6

8

10

11

13

14

Definitions/Glossary

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

2

Qualifiers

GC VOA

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recovery exceeds control limits.

 U
 Indicates the analyte was analyzed for but not detected.

Qualifier Description

-

GC Semi VOA

*1 LCS/LCSD RPD exceeds control limits.

S1+ Surrogate recovery exceeds control limits, high biased.

U Indicates the analyte was analyzed for but not detected.

0

HPLC/IC

Qualifier

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recove

U

MS and/or MSD recovery exceeds control limits.

Indicates the analyte was analyzed for but not detected.

O

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

12

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Job ID: 890-3414-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3414-1

Receipt

The samples were received on 11/7/2022 2:58 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 29.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SW-75 (0-4') (890-3414-1), SW-78 (0-4') (890-3414-2), SW-79 (0-4') (890-3414-3) and SW-83 (0-4') (890-3414-4).

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-39148 and analytical batch 880-39393 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-39172 and analytical batch 880-39269 was outside the upper control limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-39172 and analytical batch 880-39269 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-39126 and analytical batch 880-39335 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

3

4

5

6

o

9

4 4

12

-

| | 4

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-75 (0-4')
Date Collected: 11/07/22 12:00

Date Received: 11/07/22 14:58 Sample Depth: 0-4' REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3414-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:51	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:51	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 05:51	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/09/22 15:36	11/13/22 05:51	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 15:36	11/13/22 05:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				11/09/22 15:36	11/13/22 05:51	1
1,4-Difluorobenzene (Surr)	114		70 - 130				11/09/22 15:36	11/13/22 05:51	1

 Method: TAL SOP Total BTEX - Total BTEX Calculation

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total BTEX
 <0.00398</td>
 U
 0.00398
 mg/Kg
 11/14/22 16:13
 1

 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total TPH
 <49.9</td>
 U
 49.9
 mg/Kg
 11/14/22 09:30
 1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL MDI Dil Fac Unit D Prepared Analyzed <49.9 U *1 Gasoline Range Organics 49.9 mg/Kg 11/10/22 08:48 11/11/22 14:04 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 49.9 mg/Kg 11/10/22 08:48 11/11/22 14:04 C10-C28) OII Range Organics (Over C28-C36) <49.9 U 49 9 11/10/22 08:48 11/11/22 14:04 mg/Kg Limits Prepared Dil Fac Surrogate %Recovery Qualifier Analyzed 70 - 130 11/10/22 08:48 1-Chlorooctane 90 11/11/22 14:04

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Chloride 2370 25.1 mg/Kg 11/12/22 04:10 5

70 - 130

Client Sample ID: SW-78 (0-4')

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

Sample Depth: 0-4'

o-Terphenyl

REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3414-2

11/11/22 14:04

11/10/22 08:48

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/09/22 16:01	11/14/22 13:48	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/09/22 16:01	11/14/22 13:48	1
Ethylbenzene	<0.00201	U F1	0.00201		mg/Kg		11/09/22 16:01	11/14/22 13:48	1
m-Xylene & p-Xylene	<0.00402	U F1	0.00402		mg/Kg		11/09/22 16:01	11/14/22 13:48	1
o-Xylene	<0.00201	U F1	0.00201		mg/Kg		11/09/22 16:01	11/14/22 13:48	1
Xylenes, Total	<0.00402	U F1	0.00402		mg/Kg		11/09/22 16:01	11/14/22 13:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				11/09/22 16:01	11/14/22 13:48	1

Job ID: 890-3414-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-78 (0-4')

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58 Sample Depth: 0-4'

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-3414-2

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 11/09/22 16:01 1,4-Difluorobenzene (Surr) 106 11/14/22 13:48

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00402 0.00402 11/14/22 16:19 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **Total TPH** 50.0 11/14/22 09:30 161 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U *1 50.0 11/11/22 13:43 mg/Kg 11/10/22 08:48 (GRO)-C6-C10 50.0 11/10/22 08:48 11/11/22 13:43 **Diesel Range Organics (Over** 54.3 mg/Kg C10-C28) **Oll Range Organics (Over** 107 50.0 mg/Kg 11/10/22 08:48 11/11/22 13:43 C28-C36)

Qualifier Limits Prepared Analyzed Dil Fac Surrogate %Recovery 1-Chlorooctane 92 70 - 130 11/10/22 08:48 11/11/22 13:43 o-Terphenyl 94 70 - 130 11/10/22 08:48 11/11/22 13:43

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 24.9 3500 11/12/22 04:15 mg/Kg

Client Sample ID: SW-79 (0-4')

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

Sample Depth: 0-4'

REMOVED FROM ANALYSIS TABLE Lab Sample ID: 890-3414-3

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:09	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:09	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:09	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 16:01	11/14/22 14:09	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:09	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 16:01	11/14/22 14:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene (Surr) 106 70 - 130 11/09/22 16:01 11/14/22 14:09 100 70 - 130 11/14/22 14:09 1,4-Difluorobenzene (Surr) 11/09/22 16:01

Method: TAL SOP Total BTEX - Total BTEX Calculation

Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00398 U 0.00398 11/14/22 16:19 mg/Kg

Job ID: 890-3414-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

RL

49.9

RL

49.9

49.9

49.9

RL

25.2

Limits

70 - 130

70 - 130

MDL

MDL

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

MDL Unit

mg/Kg

mg/Kg

D

D

Prepared

Prepared

11/10/22 08:48

11/10/22 08:48

11/10/22 08:48

Prepared

11/10/22 08:48

11/10/22 08:48

Prepared

Client Sample ID: SW-79 (0-4')

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

Analyte

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

(GRO)-C6-C10

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Total TPH

Sample Depth: 0-4'

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

REMOVED FROM ANALYSIS TABLE

Result Qualifier

Result Qualifier

<49.9 U *1

<49.9 U

<49.9 U

%Recovery Qualifier

100

107

Result Qualifier

1520 F1

<49.9 U

Lab Sample ID: 890-3414-3

Analyzed

11/14/22 09:30

Analyzed

11/11/22 14:26

11/11/22 14:26

11/11/22 14:26

Analyzed

11/11/22 14:26

11/11/22 14:26

Analyzed

11/12/22 04:20

Matrix: Solid

	J
Dil Fac	
1	
Dil Fac	

Dil Fac

Dil Fac

Matrix: Solid

Lab Sample ID: 890-3414-4

REMOVED FROM ANALYSIS TABLE

Client Sample ID: SW-83 (0-4') Date Collected: 11/07/22 12:00

Date Received: 11/07/22 14:58 Sample Depth: 0-4'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:29	1
Toluene	< 0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:29	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/09/22 16:01	11/14/22 14:29	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/09/22 16:01	11/14/22 14:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/09/22 16:01	11/14/22 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				11/09/22 16:01	11/14/22 14:29	1
1,4-Difluorobenzene (Surr)	100		70 ₋ 130				11/09/22 16:01	11/14/22 14:29	1

Method: TAL SOP Total BTEX - To	tal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/14/22 16:19	1

Method: SW846 8015 NM - Diesel I	Range Organ	ics (DRO) (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	1	Prepared	Analyzed	Dil Fac	
Total TPH	<50.0	U	50.0		mg/Kg		_		11/14/22 09:30	1	

Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO) ((GC)						
Analyte	Result	Qualifier	RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1	50.0	m	g/Kg		11/10/22 08:48	11/11/22 14:47	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mę	g/Kg		11/10/22 08:48	11/11/22 14:47	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	m	g/Kg		11/10/22 08:48	11/11/22 14:47	1

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Client Sample ID: SW-83 (0-4')

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58 REMOVED FROM ANALYSIS TABLE

Lab Sample ID: 890-3414-4

Matrix: Solid

Sample Depth: 0-4'

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	86	70 - 130	11/10/22 08:48	11/11/22 14:47	1
o-Terphenyl	88	70 - 130	11/10/22 08:48	11/11/22 14:47	1

 Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Chloride
 2340
 25.1
 mg/Kg
 11/12/22 04:35
 5

5

7

8

10

12

13

14

Surrogate Summary

Job ID: 890-3414-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-3411-A-1-D MS	Matrix Spike	77	102	
90-3411-A-1-E MSD	Matrix Spike Duplicate	95	96	
90-3414-1	SW-75 (0-4')	118	114	
90-3414-2	SW-78 (0-4')	97	106	
90-3414-2 MS	SW-78 (0-4')	111	97	
90-3414-2 MSD	SW-78 (0-4')	105	106	
90-3414-3	SW-79 (0-4')	106	100	
90-3414-4	SW-83 (0-4')	99	100	
.CS 880-39140/1-A	Lab Control Sample	81	100	
.CS 880-39148/1-A	Lab Control Sample	97	103	
.CSD 880-39140/2-A	Lab Control Sample Dup	77	104	
.CSD 880-39148/2-A	Lab Control Sample Dup	105	110	
/IB 880-39140/5-A	Method Blank	89	100	
//B 880-39148/5-A	Method Blank	81	106	
Surrogate Legend				
BFB = 4-Bromofluorober	nzene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3402-A-1-G MS	Matrix Spike	86	79	
890-3402-A-1-H MSD	Matrix Spike Duplicate	82	73	
890-3414-1	SW-75 (0-4')	90	96	
890-3414-2	SW-78 (0-4')	92	94	
890-3414-3	SW-79 (0-4')	100	107	
890-3414-4	SW-83 (0-4')	86	88	
LCS 880-39172/2-A	Lab Control Sample	94	97	
LCSD 880-39172/3-A	Lab Control Sample Dup	107	109	
MB 880-39172/1-A	Method Blank	119	134 S1+	

1CO = 1-Chlorooctane OTPH = o-Terphenyl

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3414-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-39140/5-A

Lab Sample ID: LCS 880-39140/1-A

Lab Sample ID: LCSD 880-39140/2-A

Matrix: Solid

Analysis Batch: 39369

Matrix: Solid Analysis Batch: 39369 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 39140

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/09/22 15:36	11/12/22 21:52	1
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		11/09/22 15:36	11/12/22 21:52	1

MB MB

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	70 - 130	11/09/22 15:36	11/12/22 21:52	1
1,4-Difluorobenzene (Surr)	100	70 - 130	11/09/22 15:36	11/12/22 21:52	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 39140

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09752		mg/Kg		98	70 - 130	
Toluene	0.100	0.09567		mg/Kg		96	70 - 130	
Ethylbenzene	0.100	0.08894		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.1685		mg/Kg		84	70 - 130	
o-Xylene	0.100	0.09351		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	81	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Client Sample ID: Lab Control Sample Dup

86

96

Matrix: Solid Analysis Batch: 39369

Prep Batch: 39140 RPD LCSD LCSD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Limit Benzene 0.100 0.09869 mg/Kg 99 70 - 130 35 Toluene 0.100 0.09592 mg/Kg 96 70 - 130 0 35 Ethylbenzene 0.100 0.09030 mg/Kg 90 70 - 130 2 35

0.1711

0.09589

mg/Kg

mg/Kg

0.200

0.100

o-Xylene

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	77		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 890-3411-A-1-D MS

Matrix: Solid

m-Xylene & p-Xylene

Analysis Batch: 39369

Client Sample ID: Matrix Spike Prep Type: Total/NA

70 - 130

70 - 130

35

35

Prep Batch: 39140

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.09300		mg/Kg	_	93	70 - 130	
Toluene	<0.00200	U	0.0996	0.08826		mg/Kg		89	70 - 130	

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 39140

QC Sample Results

Job ID: 890-3414-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3411-A-1-D MS

Matrix: Solid

Analysis Batch: 39369

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.0996	0.07882		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.199	0.1462		mg/Kg		73	70 - 130	
o-Xylene	<0.00200	U	0.0996	0.08198		mg/Kg		82	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	77	70 - 130
1.4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: 890-3411-A-1-E MSD

Analysis Batch: 39369

Client Sample ID: Matrix Spike Duplicate **Matrix: Solid** Prep Type: Total/NA Prep Batch: 39140

Sample Sample Spike MSD MSD RPD Result Qualifier Result Qualifier RPD Limit Analyte babbA Unit %Rec Limits 0.0998 Benzene <0.00200 U 0.08398 mg/Kg 84 70 - 130 10 35 <0.00200 0.0998 0.08420 84 70 - 130 5 35

Toluene mg/Kg Ethylbenzene <0.00200 U 0.0998 0.08062 mg/Kg 81 70 - 130 2 35 0.200 70 - 130 35 m-Xylene & p-Xylene <0.00401 U 0.1625 mg/Kg 81 11 0.0998 <0.00200 U 0.09115 70 - 130 o-Xylene mg/Kg 11

MSD MSD

Surrogate	%Recovery Qualific	er Limits
4-Bromofluorobenzene (Surr)	95	70 - 130
1,4-Difluorobenzene (Surr)	96	70 - 130

Lab Sample ID: MB 880-39148/5-A

Matrix: Solid

Analysis Batch: 39393

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 39148

Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac RL Benzene <0.00200 U 0.00200 mg/Kg 11/09/22 16:01 11/14/22 13:20 Toluene <0.00200 U 0.00200 mg/Kg 11/09/22 16:01 11/14/22 13:20 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/09/22 16:01 11/14/22 13:20 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/09/22 16:01 11/14/22 13:20 <0.00200 U 0.00200 11/09/22 16:01 11/14/22 13:20 o-Xylene mg/Kg

0.00400

mg/Kg

MB MB

<0.00400 U

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130	11/	/09/22 16:01	11/14/22 13:20	1
1,4-Difluorobenzene (Surr)	106		70 - 130	11/	/09/22 16:01	11/14/22 13:20	1

Lab Sample ID: LCS 880-39148/1-A

Matrix: Solid

Xylenes, Total

Analysis Batch: 39393

Client	Sample	ID: Lab	Cont	rol Sample	
		_	_		

11/14/22 13:20

11/09/22 16:01

Prep Type: Total/NA

Prep Batch: 39148

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09113		mg/Kg		91	70 - 130	
Toluene	0.100	0.09738		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.09503		mg/Kg		95	70 - 130	
m-Xylene & p-Xylene	0.200	0.1754		mg/Kg		88	70 - 130	

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-39148/1-A

Matrix: Solid

Analysis Batch: 39393

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 39148

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	0.100	0.08684		mg/Kg		87	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-39148/2-A

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 39393

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.100	0.1053		mg/Kg		105	70 - 130	14	35
0.100	0.1145		mg/Kg		115	70 - 130	16	35
0.100	0.1151		mg/Kg		115	70 - 130	19	35
0.200	0.2129		mg/Kg		106	70 - 130	19	35
0.100	0.1033		mg/Kg		103	70 - 130	17	35
	Added 0.100 0.100 0.100 0.200	Added Result 0.100 0.1053 0.100 0.1145 0.100 0.1151 0.200 0.2129	Added Result Qualifier 0.100 0.1053 0.100 0.1145 0.100 0.1151 0.200 0.2129	Added Result Qualifier Unit 0.100 0.1053 mg/Kg 0.100 0.1145 mg/Kg 0.100 0.1151 mg/Kg 0.200 0.2129 mg/Kg	Added Result Qualifier Unit D 0.100 0.1053 mg/Kg 0.100 0.1145 mg/Kg 0.100 0.1151 mg/Kg 0.200 0.2129 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.1053 mg/Kg 105 0.100 0.1145 mg/Kg 115 0.100 0.1151 mg/Kg 115 0.200 0.2129 mg/Kg 106	Added Result Qualifier Unit D %Rec Limits 0.100 0.1053 mg/Kg 105 70 - 130 0.100 0.1145 mg/Kg 115 70 - 130 0.100 0.1151 mg/Kg 115 70 - 130 0.200 0.2129 mg/Kg 106 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 0.100 0.1053 mg/Kg 105 70 - 130 14 0.100 0.1145 mg/Kg 115 70 - 130 16 0.100 0.1151 mg/Kg 115 70 - 130 19 0.200 0.2129 mg/Kg 106 70 - 130 19

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Lab Sample ID: 890-3414-2 MS

Client Sample ID: SW-78 (0-4')

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 39393

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte %Rec Unit Limits <0.00201 U Benzene 0.100 0.08043 mg/Kg 80 70 - 130 <0.00201 U 0.100 0.08943 Toluene mg/Kg 89 70 - 130 Ethylbenzene <0.00201 UF1 0.100 0.08382 mg/Kg 84 70 - 130 m-Xylene & p-Xylene <0.00402 UF1 0.200 0.1547 mg/Kg 77 70 - 130 o-Xylene <0.00201 UF1 0.100 0.07599 mg/Kg 75 70 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1.4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: 890-3414-2 MSD

Matrix: Solid

Client Sample ID: SW-78 (0-4')

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 39393

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00201	U	0.0990	0.09009		mg/Kg		91	70 - 130	11	35	
Toluene	<0.00201	U	0.0990	0.08614		mg/Kg		87	70 - 130	4	35	
Ethylbenzene	<0.00201	U F1	0.0990	0.06835	F1	mg/Kg		69	70 - 130	20	35	
m-Xylene & p-Xylene	<0.00402	U F1	0.198	0.1239	F1	mg/Kg		63	70 - 130	22	35	
o-Xylene	< 0.00201	U F1	0.0990	0.06260	F1	mg/Kg		63	70 - 130	19	35	

Eurofins Carlsbad

Prep Batch: 39148

2

3

3

5

7

8

10

Prep Batch: 39148

Prep Batch: 39148

11

13

14

otins Carisbac

Client: Tetra Tech, Inc. Job ID: 890-3414-1 SDG: 212C-MD-02230 Project/Site: Kaiser SWD

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3414-2 MSD

Matrix: Solid

Analysis Batch: 39393

Client Sample ID: SW-78 (0-4')

Prep Type: Total/NA

Prep Batch: 39148

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-39172/1-A

Matrix: Solid

Analysis Batch: 39269

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 39172

	IND	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/10/22 08:48	11/11/22 09:30	1
	MB	MB							

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	119	70 - 130	11/10/22 08:48	11/11/22 09:30	1
o-Terphenyl	134 S1+	70 - 130	11/10/22 08:48	11/11/22 09:30	1

Lab Sample ID: LCS 880-39172/2-A

Matrix: Solid

Analysis Batch: 39269

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 39172

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	815.5		mg/Kg		82	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	846.7		mg/Kg		85	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	94	70 - 130
o-Terphenyl	97	70 - 130

Lab Sample ID: LCSD 880-39172/3-A

Matrix: Solid

Analysis Batch: 39269

Client Sample	ID: Lah Contr	ol Sample Dun

Prep Type: Total/NA

Prep Batch: 39172

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1003	*1	mg/Kg		100	70 - 130	21	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	950.2		mg/Kg		95	70 - 130	12	20
C10-C28)									

LCSD LCSD

Surrogate	%Recovery Qu	ualifier	Limits
1-Chlorooctane	107		70 - 130
o-Terphenyl	109		70 - 130

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD Job ID: 890-3414-1

SDG: 212C-MD-02230

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3402-A-1-G MS Client Sample ID: Matrix Spike **Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 39269 Prep Batch: 39172

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	55.1	*1	997	1007		mg/Kg		95	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.0	U	997	861.7		mg/Kg		84	70 - 130	
040,000)										

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	86		70 - 130
o-Terphenyl	79		70 - 130

Lab Sample ID: 890-3402-A-1-H MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 39269 Prep Batch: 39172

Spike MSD MSD %Rec RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 999 978.6 3 Gasoline Range Organics 55.1 mg/Kg 92 70 - 130 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 999 796.8 mg/Kg 77 70 - 130 8 20 C10-C28)

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 82 70 - 130 73 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-39126/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 39335

MB MB Analyte Result Qualifier MDL Unit RL Prepared Analyzed Dil Fac Chloride <5.00 5.00 11/12/22 02:56 mg/Kg

Lab Sample ID: LCS 880-39126/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 39335

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 266.1 106 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-39126/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 39335

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 258.9 104 mg/Kg 90 _ 110 20

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-3414-3 MS

Matrix: Solid

Analysis Batch: 20235

Analysis Batch: 39335

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	1520	F1	1260	2880		mg/Kg		109	90 - 110	

Lab Sample ID: 890-3414-3 MSD

Matrix: Solid

Client Sample ID: SW-79 (0-4')

Prep Type: Soluble

Analysis Batch: 39335

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1520	F1	1260	3027	F1	mg/Kg		120	90 - 110	5	20

140 / OJ 1449

Eurofins Carlsbad

11/14/2022

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC VOA

Prep Batch: 39140

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Total/NA	Solid	5035	
MB 880-39140/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3411-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3411-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 39148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-3414-2	SW-78 (0-4')	Total/NA	Solid	5035	
890-3414-3	SW-79 (0-4')	Total/NA	Solid	5035	
890-3414-4	SW-83 (0-4')	Total/NA	Solid	5035	
MB 880-39148/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-39148/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-39148/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3414-2 MS	SW-78 (0-4')	Total/NA	Solid	5035	
890-3414-2 MSD	SW-78 (0-4')	Total/NA	Solid	5035	

Analysis Batch: 39369

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Total/NA	Solid	8021B	39140
MB 880-39140/5-A	Method Blank	Total/NA	Solid	8021B	39140
LCS 880-39140/1-A	Lab Control Sample	Total/NA	Solid	8021B	39140
LCSD 880-39140/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	39140
890-3411-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	39140
890-3411-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	39140

Analysis Batch: 39393

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-2	SW-78 (0-4')	Total/NA	Solid	8021B	39148
890-3414-3	SW-79 (0-4')	Total/NA	Solid	8021B	39148
890-3414-4	SW-83 (0-4')	Total/NA	Solid	8021B	39148
MB 880-39148/5-A	Method Blank	Total/NA	Solid	8021B	39148
LCS 880-39148/1-A	Lab Control Sample	Total/NA	Solid	8021B	39148
LCSD 880-39148/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	39148
890-3414-2 MS	SW-78 (0-4')	Total/NA	Solid	8021B	39148
890-3414-2 MSD	SW-78 (0-4')	Total/NA	Solid	8021B	39148

Analysis Batch: 39554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Total/NA	Solid	Total BTEX	
890-3414-2	SW-78 (0-4')	Total/NA	Solid	Total BTEX	
890-3414-3	SW-79 (0-4')	Total/NA	Solid	Total BTEX	
890-3414-4	SW-83 (0-4')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 39172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Total/NA	Solid	8015NM Prep	
890-3414-2	SW-78 (0-4')	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 16 of 26

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

GC Semi VOA (Continued)

Prep Batch: 39172 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-3	SW-79 (0-4')	Total/NA	Solid	8015NM Prep	
890-3414-4	SW-83 (0-4')	Total/NA	Solid	8015NM Prep	
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 39269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Total/NA	Solid	8015B NM	39172
890-3414-2	SW-78 (0-4')	Total/NA	Solid	8015B NM	39172
890-3414-3	SW-79 (0-4')	Total/NA	Solid	8015B NM	39172
890-3414-4	SW-83 (0-4')	Total/NA	Solid	8015B NM	39172
MB 880-39172/1-A	Method Blank	Total/NA	Solid	8015B NM	39172
LCS 880-39172/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	39172
LCSD 880-39172/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	39172
890-3402-A-1-G MS	Matrix Spike	Total/NA	Solid	8015B NM	39172
890-3402-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	39172

Analysis Batch: 39398

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Total/NA	Solid	8015 NM	
890-3414-2	SW-78 (0-4')	Total/NA	Solid	8015 NM	
890-3414-3	SW-79 (0-4')	Total/NA	Solid	8015 NM	
890-3414-4	SW-83 (0-4')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 39126

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Soluble	Solid	DI Leach	
890-3414-2	SW-78 (0-4')	Soluble	Solid	DI Leach	
890-3414-3	SW-79 (0-4')	Soluble	Solid	DI Leach	
890-3414-4	SW-83 (0-4')	Soluble	Solid	DI Leach	
MB 880-39126/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-39126/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-39126/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3414-3 MS	SW-79 (0-4')	Soluble	Solid	DI Leach	
890-3414-3 MSD	SW-79 (0-4')	Soluble	Solid	DI Leach	

Analysis Batch: 39335

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-1	SW-75 (0-4')	Soluble	Solid	300.0	39126
890-3414-2	SW-78 (0-4')	Soluble	Solid	300.0	39126
890-3414-3	SW-79 (0-4')	Soluble	Solid	300.0	39126
890-3414-4	SW-83 (0-4')	Soluble	Solid	300.0	39126
MB 880-39126/1-A	Method Blank	Soluble	Solid	300.0	39126
LCS 880-39126/2-A	Lab Control Sample	Soluble	Solid	300.0	39126
LCSD 880-39126/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	39126
890-3414-3 MS	SW-79 (0-4')	Soluble	Solid	300.0	39126

Eurofins Carlsbad

-

4

6

8

4.6

11

12

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

HPLC/IC (Continued)

Analysis Batch: 39335 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3414-3 MSD	SW-79 (0-4')	Soluble	Solid	300.0	39126

3

4

5

<u>____</u>

9

11

13

Client: Tetra Tech, Inc. Job ID: 890-3414-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-75 (0-4')

Lab Sample ID: 890-3414-1 Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	39140	11/09/22 15:36	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39369	11/13/22 05:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39554	11/14/22 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			39398	11/14/22 09:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	39172	11/10/22 08:48	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39269	11/11/22 14:04	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	39126	11/09/22 15:04	KS	EET MID
Soluble	Analysis	300.0		5	0 mL	1.0 mL	39335	11/12/22 04:10	CH	EET MID

Client Sample ID: SW-78 (0-4') Lab Sample ID: 890-3414-2

Date Collected: 11/07/22 12:00 Matrix: Solid

Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	39148	11/09/22 16:01	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39393	11/14/22 13:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39554	11/14/22 16:19	SM	EET MID
Total/NA	Analysis	8015 NM		1			39398	11/14/22 09:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39172	11/10/22 08:48	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39269	11/11/22 13:43	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	39126	11/09/22 15:04	KS	EET MID
Soluble	Analysis	300.0		5	0 mL	1.0 mL	39335	11/12/22 04:15	CH	EET MID

Client Sample ID: SW-79 (0-4') Lab Sample ID: 890-3414-3

Date Collected: 11/07/22 12:00 **Matrix: Solid** Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	39148	11/09/22 16:01	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39393	11/14/22 14:09	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39554	11/14/22 16:19	SM	EET MID
Total/NA	Analysis	8015 NM		1			39398	11/14/22 09:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	39172	11/10/22 08:48	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39269	11/11/22 14:26	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	39126	11/09/22 15:04	KS	EET MID
Soluble	Analysis	300.0		5	0 mL	1.0 mL	39335	11/12/22 04:20	CH	EET MID

Client Sample ID: SW-83 (0-4') Lab Sample ID: 890-3414-4

Date Collected: 11/07/22 12:00 Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	39148	11/09/22 16:01	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	39393	11/14/22 14:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			39554	11/14/22 16:19	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 890-3414-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Client Sample ID: SW-83 (0-4')

Lab Sample ID: 890-3414-4 Date Collected: 11/07/22 12:00

Matrix: Solid

Date Received: 11/07/22 14:58

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			39398	11/14/22 09:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	39172	11/10/22 08:48	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	39269	11/11/22 14:47	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	39126	11/09/22 15:04	KS	EET MID
Soluble	Analysis	300.0		5	0 mL	1.0 mL	39335	11/12/22 04:35	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3414-1

Project/Site: Kaiser SWD

SDG: 212C-MD-02230

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report, bu	it the laboratory is not certifi	ed by the governing authority. This list ma	av include analytes for w
the agency does not of	fer certification.	•	, , ,	.,
the agency does not of Analysis Method	fer certification . Prep Method	Matrix	Analyte	-,,,
9 ,		Matrix Solid	Analyte Total TPH	

3

4

6

0

10

12

13

Method Summary

Client: Tetra Tech, Inc. Job ID: 890-3414-1 Project/Site: Kaiser SWD SDG: 212C-MD-02230

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Job ID: 890-3414-1 SDG: 212C-MD-02230

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-3414-1	SW-75 (0-4')	Solid	11/07/22 12:00	11/07/22 14:58	0-4'
890-3414-2	SW-78 (0-4')	Solid	11/07/22 12:00	11/07/22 14:58	0-4'
890-3414-3	SW-79 (0-4')	Solid	11/07/22 12:00	11/07/22 14:58	0-4'
890-3414-4	SW-83 (0-4')	Solid	11/07/22 12:00	11/07/22 14:58	0-4'

	Relinquished by:	Relinquished by:	Relinquished by:							(ONLY	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	급	Analysis R
	y: / Date: Time:	y: Date: Time:	Date:			SW-83 (0-4')	SW-79 (0-4')	SW-78 (0-4')	SW-75 (0-4')		SAMPLE IDENTIFICATION				Permian Water Solutions - Dusty McInturff	1: Lea County, NM	Kaiser SWD	Permian Water Solutions	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:	Received by:	Received by:			11/7/2022	11/7/2022	11/7/2022	11/7/2022	DATE	YEAR: 2020	SAMPLING		Sampier Signature:		Project #:		Site Manager		
PΥ	Date:	Date:	Date:			×	×	×	×	WATE SOIL HCL HNO ₃	R	MATRIX		Peyton Oliver		212C-MD-02230	Clair.Gonzales@tetratech.com	Clair Gonzales	901W Walf C. Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	890-
	Time:	lime:	I Ime:							None # CON						30	om		50	890-3414 Chain of Custody
(Circle) HAND DELIVERED	177 007	Sample Temperature	LAB USE ONLY			×	×	×		PAH 8 Total M	X1005 015M (270C letals A	(Ext to GRO Mg As I	EX 8260 0 C35) - DRO - 0 Ba Cd Cr Ba Cd C	ORO - I	Hg			ANALYSIS REQ		dy
FEDEX UPS	Special Report	Rush Charges Authorized	X STANDARD							PCB's	Semi Ve S Vol. 8 S Semi. 8082/	olatiles 260B Vol. 8		5				REQUEST (Circle or Specify I		
Tracking #	Special Report Limits or TRRP Report	á	24 hr 48 hr			×	×	×	×	Chlorie Gener	Asbesto le de S	ulfate er Che	emistry (see at	tached	list)		Method No.)		Page
		Ē	73							Hold										-1 약 -

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3414-1

SDG Number: 212C-MD-02230

Login Number: 3414
List Source: Eurofins Carlsbad
List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

1

2

4

6

_

11

12

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3414-1 SDG Number: 212C-MD-02230

List Source: Eurofins Midland

List Creation: 11/09/22 10:47 AM

Creator: Rodriguez, Leticia

Login Number: 3414

List Number: 2

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

1

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Clair Gonzales Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Generated 12/27/2022 9:17:54 AM

JOB DESCRIPTION

Kaiser SWD SDG NUMBER Lea County NM

JOB NUMBER

890-3652-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/27/2022 9:17:54 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies Page 2 of 30

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Laboratory Job ID: 890-3652-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	21
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	29

2

3

4

6

8

10

40

13

Definitions/Glossary

Job ID: 890-3652-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Qualifiers

GC VOA Qualifier

Qualifier Description MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description** Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery %R CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** DL Detection Limit (DoD/DOE) DL, RA, RE, IN

DLC

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **PQL Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 890-3652-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Job ID: 890-3652-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3652-1

Receipt

The samples were received on 12/14/2022 12:37 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 10.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH-210 (11') (890-3652-1), SW-75 (0-4') (890-3652-2), SW-75 (4-10') (890-3652-3), SW-76 (0-4.5') (890-3652-4), SW-79 (0-4') (890-3652-5) and SW-83 (0-4') (890-3652-6).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-42002 and analytical batch 880-42108 was outside the upper control limits.

Method 8015MOD_NM: The method blank for preparation batch 880-42002 and analytical batch 880-42108 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-41942 and analytical batch 880-42078 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (890-3644-A-1-D). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

3

4

5

6

1

9

10

12

13

_ _ _ _

Client: Tetra Tech, Inc. Job ID: 890-3652-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: BH-210 (11')

Date Collected: 12/14/22 12:00 Date Received: 12/14/22 12:37

Lab Sample ID: 890-3652-1 **Matrix: Solid**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:15	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:15	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/22/22 12:14	12/27/22 02:15	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:15	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/22/22 12:14	12/27/22 02:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				12/22/22 12:14	12/27/22 02:15	1
1,4-Difluorobenzene (Surr)	102		70 - 130				12/22/22 12:14	12/27/22 02:15	1

Total BTEX <0.00398 U 0.00398 mg/Kg 12/27/22 09:32

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Total TPH <50.0 U 50.0 12/19/22 15:23 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/16/22 09:37	12/18/22 19:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/16/22 09:37	12/18/22 19:01	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/16/22 09:37	12/18/22 19:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130	12/16/22 09:37	12/18/22 19:01	1
o-Terphenyl	80		70 - 130	12/16/22 09:37	12/18/22 19:01	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 5.00 Chloride 699 mg/Kg 12/23/22 21:57

Client Sample ID: SW-75 (0-4')

Date Collected: 12/14/22 12:00 Date Received: 12/14/22 12:37

Lab Sample ID: 890-3652-2

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:36	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:36	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:36	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/22/22 12:14	12/27/22 02:36	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 02:36	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/22/22 12:14	12/27/22 02:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				12/22/22 12:14	12/27/22 02:36	1
1,4-Difluorobenzene (Surr)	103		70 - 130				12/22/22 12:14	12/27/22 02:36	1

Job ID: 890-3652-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-75 (0-4')

Date Collected: 12/14/22 12:00 Date Received: 12/14/22 12:37

Lab Sample ID: 890-3652-2

Matrix: Solid

Method: TAL SOP Total BTEX - To	tal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/27/22 09:32	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier MDL Unit Analyte RLD Prepared Analyzed Dil Fac Total TPH <50.0 U 50.0 12/19/22 15:23 mg/Kg

Method: SW846 8015B NM -	Diesel Range Orga	nics (DRO) (GC)
Analyte	Result	Qualifier

MDL Unit RL D Prepared Dil Fac Analyzed <50.0 U 50.0 12/16/22 09:37 12/18/22 19:23 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 12/16/22 09:37 12/18/22 19:23 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 12/16/22 09:37 12/18/22 19:23 mg/Kg

%Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 110 1-Chlorooctane 70 - 130 12/16/22 09:37 12/18/22 19:23 97 70 - 130 12/16/22 09:37 12/18/22 19:23 o-Terphenyl

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier MDL Unit Analyte RL D Prepared Analyzed Dil Fac Chloride 1020 5.04 mg/Kg 12/23/22 22:24

Client Sample ID: SW-75 (4-10')

Date Collected: 12/14/22 12:00

Date Received: 12/14/22 12:37

Lab Sample ID: 890-3652-3

Matrix: Solid

ı	Method: SW846 8021B -	Volatile Organic Compounds (GC)
ı	Analyta	Popult Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 02:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 02:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 02:56	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/22/22 12:14	12/27/22 02:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 02:56	1
Xylenes, Total	< 0.00399	U	0.00399		mg/Kg		12/22/22 12:14	12/27/22 02:56	1

%Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 12/22/22 12:14 12/27/22 02:56 4-Bromofluorobenzene (Surr) 95 99 70 - 130 1,4-Difluorobenzene (Surr) 12/22/22 12:14 12/27/22 02:56

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier MDL Unit RLD Dil Fac Prepared Analyzed Total BTEX < 0.00399 U 0.00399 mg/Kg 12/27/22 09:32

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Dil Fac Unit D Prepared Analyzed Total TPH <49.9 U 49.9 12/19/22 15:23 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/16/22 09:37	12/18/22 19:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/16/22 09:37	12/18/22 19:46	1
040 000)									

C10-C28)

Released to Imaging: 9/1/2023 2:07:08 PM

Client: Tetra Tech, Inc.

Job ID: 890-3652-1 SDG: Lea County NM

Project/Site: Kaiser SWD

Client Sample ID: SW-75 (4-10')

Lab Sample ID: 890-3652-3

Date Collected: 12/14/22 12:00

Date Received: 12/14/22 12:37

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/16/22 09:37	12/18/22 19:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				12/16/22 09:37	12/18/22 19:46	1
o-Terphenyl	94		70 - 130				12/16/22 09:37	12/18/22 19:46	1

Method: MCAWW 300.0 - Anions, I	on Chromato	graphy - Solι	ıble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1390		25.2		mg/Kg			12/23/22 22:32	5

Client Sample ID: SW-76 (0-4.5')

Date Collected: 12/14/22 12:00

Lab Sample ID: 890-3652-4

Matrix: Solid

Date Received: 12/14/22 12:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:00	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/22/22 12:14	12/27/22 04:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:00	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/22/22 12:14	12/27/22 04:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130				12/22/22 12:14	12/27/22 04:00	1
1,4-Difluorobenzene (Surr)	93		70 - 130				12/22/22 12:14	12/27/22 04:00	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/27/22 09:32	1
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Total TDH		Qualifier	RL	MDL		D	Prepared	Analyzed	
Total TPH	<49.9	U	49.9	MDL	mg/Kg	<u>D</u>	Prepared	Analyzed 12/19/22 15:35	
Total TPH Method: SW846 8015B NM - Dies	<49.9	U nics (DRO)	49.9 (GC)		mg/Kg			12/19/22 15:35	
Total TPH Method: SW846 8015B NM - Dies Analyte	<49.9 sel Range Orga Result	nics (DRO) Qualifier	49.9 (GC)		mg/Kg	D	Prepared	12/19/22 15:35 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<49.9	nics (DRO) Qualifier	49.9 (GC)		mg/Kg			12/19/22 15:35	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.9 sel Range Orga Result	Unics (DRO) Qualifier	49.9 (GC)		mg/Kg		Prepared	12/19/22 15:35 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies	<49.9 sel Range Orga Result <49.9	nics (DRO) Qualifier U	(GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 12/15/22 15:21	12/19/22 15:35 Analyzed 12/18/22 07:12	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 sel Range Orga Result <49.9 <49.9	Dics (DRO) Qualifier U U	49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/15/22 15:21 12/15/22 15:21	12/19/22 15:35 Analyzed 12/18/22 07:12 12/18/22 07:12	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9 sel Range Orga Result <49.9 <49.9 <49.9	Dics (DRO) Qualifier U U	49.9 (GC) RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/15/22 15:21 12/15/22 15:21 12/15/22 15:21	12/19/22 15:35 Analyzed 12/18/22 07:12 12/18/22 07:12 12/18/22 07:12	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 %Recovery	Dics (DRO) Qualifier U U	49.9 (GC) RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/15/22 15:21 12/15/22 15:21 12/15/22 15:21 Prepared	12/19/22 15:35 Analyzed 12/18/22 07:12 12/18/22 07:12 12/18/22 07:12 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 *Recovery 110 <126	Unics (DRO) Qualifier U U Qualifier	49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/15/22 15:21 12/15/22 15:21 12/15/22 15:21 Prepared 12/15/22 15:21	12/19/22 15:35 Analyzed 12/18/22 07:12 12/18/22 07:12 12/18/22 07:12 Analyzed 12/18/22 07:12	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	sel Range Orga Result <49.9 <49.9 <49.9 **Recovery 110 126 5, Ion Chromato	Unics (DRO) Qualifier U U Qualifier	49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/15/22 15:21 12/15/22 15:21 12/15/22 15:21 Prepared 12/15/22 15:21	12/19/22 15:35 Analyzed 12/18/22 07:12 12/18/22 07:12 12/18/22 07:12 Analyzed 12/18/22 07:12	Dil Fac

Eurofins Carlsbad

2

3

8

1.0

12

1 /

Job ID: 890-3652-1 SDG: Lea County NM

Client Sample ID: SW-79 (0-4')

Client: Tetra Tech, Inc.

Project/Site: Kaiser SWD

Lab Sample ID: 890-3652-5 Date Collected: 12/14/22 12:00

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:20	
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:20	•
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:20	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/22/22 12:14	12/27/22 04:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/27/22 04:20	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/22/22 12:14	12/27/22 04:20	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	120		70 - 130				12/22/22 12:14	12/27/22 04:20	
1,4-Difluorobenzene (Surr)	102		70 - 130				12/22/22 12:14	12/27/22 04:20	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/27/22 09:32	•
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
					mg/Kg			12/19/22 15:35	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/15/22 15:21	12/18/22 07:34	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/15/22 15:21	12/18/22 07:34	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/15/22 15:21	12/18/22 07:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				12/15/22 15:21	12/18/22 07:34	1
o-Terphenyl	122		70 - 130				12/15/22 15:21	12/18/22 07:34	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	613		4.95		mg/Kg			12/23/22 22:50	1	

Client Sample ID: SW-83 (0-4') Lab Sample ID: 890-3652-6 Matrix: Solid Date Collected: 12/14/22 12:00

Date Received: 12/14/22 12:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 04:41	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 04:41	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 04:41	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/22/22 12:14	12/27/22 04:41	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/22/22 12:14	12/27/22 04:41	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/22/22 12:14	12/27/22 04:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				12/22/22 12:14	12/27/22 04:41	1
1,4-Difluorobenzene (Surr)	102		70 - 130				12/22/22 12:14	12/27/22 04:41	1

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3652-1 Project/Site: Kaiser SWD SDG: Lea County NM

Client Sample ID: SW-83 (0-4')

Lab Sample ID: 890-3652-6 Date Collected: 12/14/22 12:00

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398		0.00398		mg/Kg			12/27/22 09:32	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/19/22 15:35	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/15/22 15:21	12/18/22 07:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/15/22 15:21	12/18/22 07:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/15/22 15:21	12/18/22 07:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				12/15/22 15:21	12/18/22 07:56	1
o-Terphenyl	125		70 - 130				12/15/22 15:21	12/18/22 07:56	1
Method: MCAWW 300.0 - Anions	Ion Chromato	aranhy - Sc	aluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1070		5.03		mg/Kg	— –		12/23/22 23:16	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 890-3652-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3652-1	BH-210 (11')	115	102	
890-3652-2	SW-75 (0-4')	116	103	
890-3652-3	SW-75 (4-10')	95	99	
890-3652-4	SW-76 (0-4.5')	111	93	
890-3652-5	SW-79 (0-4')	120	102	
890-3652-6	SW-83 (0-4')	128	102	
890-3662-A-1-H MS	Matrix Spike	114	101	
890-3662-A-1-I MSD	Matrix Spike Duplicate	99	94	
LCS 880-42514/1-A	Lab Control Sample	96	93	
LCSD 880-42514/2-A	Lab Control Sample Dup	98	93	
MB 880-42487/5-A	Method Blank	97	92	
	Method Blank	107	97	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance
		1CO1	OTPH1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
0-3638-A-1-D MS	Matrix Spike	92	72	
0-3638-A-1-E MSD	Matrix Spike Duplicate	106	81	
0-3644-A-1-E MS	Matrix Spike	104	104	
0-3644-A-1-F MSD	Matrix Spike Duplicate	104	103	
0-3652-1	BH-210 (11')	86	80	
0-3652-2	SW-75 (0-4')	110	97	
0-3652-3	SW-75 (4-10')	103	94	
0-3652-4	SW-76 (0-4.5')	110	126	
-3652-5	SW-79 (0-4')	109	122	
-3652-6	SW-83 (0-4')	113	125	
S 880-41942/2-A	Lab Control Sample	109	118	
S 880-42002/2-A	Lab Control Sample	82	91	
SD 880-41942/3-A	Lab Control Sample Dup	108	118	
SD 880-42002/3-A	Lab Control Sample Dup	108	99	
B 880-41942/1-A	Method Blank	126	142 S1+	
3 880-42002/1-A	Method Blank	139 S1+	131 S1+	

Surrogate Legent

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Tetra Tech, Inc. Job ID: 890-3652-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-42487/5-A

Matrix: Solid

Analysis Batch: 42596

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 42487

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/22 10:36	12/26/22 13:51	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/22 10:36	12/26/22 13:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/22 10:36	12/26/22 13:51	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/22/22 10:36	12/26/22 13:51	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/22 10:36	12/26/22 13:51	1
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		12/22/22 10:36	12/26/22 13:51	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130	12/22/2	2 10:36	12/26/22 13:51	1
1,4-Difluorobenzene (Surr)	92		70 - 130	12/22/2	2 10:36	12/26/22 13:51	1

Lab Sample ID: MB 880-42514/5-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 42514

Analysis Batch: 42596

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/26/22 23:30	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/26/22 23:30	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/26/22 23:30	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/22/22 12:14	12/26/22 23:30	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/22/22 12:14	12/26/22 23:30	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/22/22 12:14	12/26/22 23:30	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130	12/22/22 12:14	12/26/22 23:30	1
1,4-Difluorobenzene (Surr)	97		70 - 130	12/22/22 12:14	12/26/22 23:30	1

Lab Sample ID: LCS 880-42514/1-A

Matrix: Solid

Analysis Batch: 42596

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 42514

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Benzene	 0.100	0.09444	mg/k		94	70 - 130	
Toluene	0.100	0.09109	mg/K	(g	91	70 - 130	
Ethylbenzene	0.100	0.08635	mg/K	(g	86	70 - 130	
m-Xylene & p-Xylene	0.200	0.1924	mg/k	ίg	96	70 - 130	
o-Xylene	0.100	0.09703	mg/K	.g	97	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	96	70 - 130
1,4-Difluorobenzene (Surr)	93	70 - 130

Lab Sample ID: LCSD 880-42514/2-A

Matrix: Solid

Analysis Batch: 42596

Client Sample ID: Lab	Control	Sample Dup

Prep Type: Total/NA

Prep Batch: 42514

	Spike		LCSD				%Rec		KPD
Analyte	Added	Result C	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09605		mg/Kg		96	70 - 130	2	35

Job ID: 890-3652-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-42514/2-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Prep Batch: 42514

Analysis Batch: 42596

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09288		mg/Kg		93	70 - 130	2	35
Ethylbenzene	0.100	0.08850		mg/Kg		89	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1984		mg/Kg		99	70 - 130	3	35
o-Xylene	0.100	0.1003		mg/Kg		100	70 - 130	3	35

LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 98 1,4-Difluorobenzene (Surr) 93 70 - 130

Lab Sample ID: 890-3662-A-1-H MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 42596

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00201	U	0.100	0.08976		mg/Kg		90	70 - 130
Toluene	<0.00201	U F1	0.100	0.07517		mg/Kg		75	70 - 130
Ethylbenzene	<0.00201	U F1	0.100	0.05923	F1	mg/Kg		59	70 - 130
m-Xylene & p-Xylene	<0.00402	U F1	0.200	0.1329	F1	mg/Kg		66	70 - 130
o-Xylene	<0.00201	U F1	0.100	0.06702	F1	mg/Kg		67	70 - 130

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 4-Bromofluorobenzene (Surr) 114 1,4-Difluorobenzene (Surr) 101 70 - 130

Lab Sample ID: 890-3662-A-1-I MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 42596									Prep	Batch:	42514
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0996	0.07551		mg/Kg		76	70 - 130	17	35
Toluene	<0.00201	U F1	0.0996	0.06302	F1	mg/Kg		63	70 - 130	18	35
Ethylbenzene	<0.00201	U F1	0.0996	0.04699	F1	mg/Kg		47	70 - 130	23	35
m-Xylene & p-Xylene	<0.00402	U F1	0.199	0.1036	F1	mg/Kg		52	70 - 130	25	35
o-Xylene	<0.00201	U F1	0.0996	0.05231	F1	mg/Kg		53	70 - 130	25	35

	พรบ	INISD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

MSD MSD

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-41942/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 42078

мв мв Result Qualifier MDL Unit Prepared Gasoline Range Organics <50.0 U 50.0 12/15/22 15:21 12/17/22 22:54 mg/Kg

(GRO)-C6-C10

Eurofins Carlsbad

Prep Batch: 41942

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 42514

Client: Tetra Tech, Inc. Job ID: 890-3652-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-41942/1-A

Lab Sample ID: LCS 880-41942/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 42078

Analysis Batch: 42078

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 41942

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		12/15/22 15:21	12/17/22 22:54	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		12/15/22 15:21	12/17/22 22:54	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	126		70 - 130		12/15/22 15:21	12/17/22 22:54	1
o-Terphenyl	142	S1+	70 - 130	1	12/15/22 15:21	12/17/22 22:54	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 41942

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	848.4		mg/Kg		85	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1024		mg/Kg		102	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 - 130
o-Terphenyl	118		70 - 130

Lab Sample ID: LCSD 880-41942/3-A

Matrix: Solid

Analysis Batch: 42078

Prep Type: Total/NA

Prep Batch: 41942

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	831.8		mg/Kg		83	70 - 130	2	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1011		mg/Kg		101	70 - 130	1	20
C10-C28)									

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 108 70 - 130 o-Terphenyl 118 70 - 130

Lab Sample ID: 890-3644-A-1-E MS

Matrix: Solid

Analysis Batch: 42078

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 41942

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<50.0	U	999	954.0		mg/Kg		93	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.0	U	999	1159		mg/Kg		114	70 - 130	

C10-C28)

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	104		70 - 130
o-Terphenyl	104		70 - 130

Job ID: 890-3652-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3644-A-1-F MSD

Matrix: Solid

Analysis Batch: 42078

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 41942

Prep Type: Total/NA

Prep Batch: 42002

Sample Sample Spike MSD MSD RPD Result Qualifier RPD Limit Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <50.0 U 997 1038 mg/Kg 102 70 - 130 8 20 (GRO)-C6-C10 997 Diesel Range Organics (Over <50.0 U mg/Kg 70 - 130 1144 113

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	104		70 - 130
o-Terphenyl	103		70 - 130

Lab Sample ID: MB 880-42002/1-A Client Sample ID: Method Blank

Matrix: Solid

(GRO)-C6-C10

Analyte

Analysis Batch: 42108

Gasoline Range Organics

Diesel Range Organics (Over

OII Range Organics (Over C28-C36)

мв мв MDL Unit Result Qualifier RL Prepared Analyzed Dil Fac 50.0 12/16/22 09:37 12/18/22 09:55 <50.0 U mg/Kg <50.0 U 50.0 mg/Kg 12/16/22 09:37 12/18/22 09:55 <50.0 U 50.0 mg/Kg 12/16/22 09:37 12/18/22 09:55

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	139	S1+	70 - 130	12/16/22 09:37	12/18/22 09:55	1
o-Terphenyl	131	S1+	70 - 130	12/16/22 09:37	12/18/22 09:55	1

Lab Sample ID: LCS 880-42002/2-A

Matrix: Solid

Analysis Batch: 42108

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 42002

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 843.1 mg/Kg 84 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 745.4 mg/Kg 75 70 - 130

C10-C28)

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	82	70 - 130
o-Terphenyl	91	70 - 130

Lab Sample ID: LCSD 880-42002/3-A

Matrix: Solid

Analysis Batch: 42108

Client Sample ID	: Lab Control	Sample	Dup
-------------------------	---------------	--------	-----

Prep Type: Total/NA Prep Batch: 42002

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	871.7		mg/Kg		87	70 - 130	3	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	818.2		mg/Kg		82	70 - 130	9	20	
C10-C28)										

Job ID: 890-3652-1 Client: Tetra Tech, Inc. Project/Site: Kaiser SWD SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-42002/3-A

Matrix: Solid Analysis Batch: 42108 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 42002

LCSD LCSD %Recovery Qualifier Limits 108 70 - 130

99

Lab Sample ID: 890-3638-A-1-D MS

Lab Sample ID: 890-3638-A-1-E MSD

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Analysis Batch: 42108

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 42002

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits <50.0 U 999 774 5 74 70 - 130Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 999 908.6 mg/Kg 91 70 - 130

70 - 130

C10-C28)

Matrix: Solid

Analysis Batch: 42108

MS MS

%Recovery Surrogate Qualifier Limits 92 70 - 130 1-Chlorooctane 72 70 - 130 o-Terphenyl

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 42002

Sample Sample MSD MSD RPD Spike Result Qualifier Analyte Result Qualifier hahhA Unit %Rec Limits RPD Limit D Gasoline Range Organics <50.0 U 997 885.1 mg/Kg 86 70 - 130 13 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 997 1027 mg/Kg 103 70 - 130 12 20 C10-C28)

MSD MSD %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 106 70 - 130 o-Terphenyl 81

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-41931/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 42334

мв мв MDL Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 12/23/22 21:31

Lab Sample ID: LCS 880-41931/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 42334

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	268.3		mg/Kg		107	90 - 110	

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 890-3652-1 Project/Site: Kaiser SWD SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-41931/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 42334

	Бріке	LC2D	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	264.7		mg/Kg		106	90 - 110	1	20	

Lab Sample ID: 890-3652-1 MS Client Sample ID: BH-210 (11') **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 42334

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	699		250	928.1		mg/Kg		92	90 - 110	

Lab Sample ID: 890-3652-1 MSD Client Sample ID: BH-210 (11')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 42334

MSD MSD

%Rec RPD Sample Sample Spike Result Qualifier Limit Analyte Added Result Qualifier Unit Limits **RPD** Chloride 699 250 961.0 105 90 - 110 mg/Kg

Client: Tetra Tech, Inc. Job ID: 890-3652-1 Project/Site: Kaiser SWD SDG: Lea County NM

GC VOA

Prep Batch: 42487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-42487/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 42514

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-1	BH-210 (11')	Total/NA	Solid	5035	
890-3652-2	SW-75 (0-4')	Total/NA	Solid	5035	
890-3652-3	SW-75 (4-10')	Total/NA	Solid	5035	
890-3652-4	SW-76 (0-4.5')	Total/NA	Solid	5035	
890-3652-5	SW-79 (0-4')	Total/NA	Solid	5035	
890-3652-6	SW-83 (0-4')	Total/NA	Solid	5035	
MB 880-42514/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-42514/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-42514/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3662-A-1-H MS	Matrix Spike	Total/NA	Solid	5035	
890-3662-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 42596

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-1	BH-210 (11')	Total/NA	Solid	8021B	42514
890-3652-2	SW-75 (0-4')	Total/NA	Solid	8021B	42514
890-3652-3	SW-75 (4-10')	Total/NA	Solid	8021B	42514
890-3652-4	SW-76 (0-4.5')	Total/NA	Solid	8021B	42514
890-3652-5	SW-79 (0-4')	Total/NA	Solid	8021B	42514
890-3652-6	SW-83 (0-4')	Total/NA	Solid	8021B	42514
MB 880-42487/5-A	Method Blank	Total/NA	Solid	8021B	42487
MB 880-42514/5-A	Method Blank	Total/NA	Solid	8021B	42514
LCS 880-42514/1-A	Lab Control Sample	Total/NA	Solid	8021B	42514
LCSD 880-42514/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	42514
890-3662-A-1-H MS	Matrix Spike	Total/NA	Solid	8021B	42514
890-3662-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	42514

Analysis Batch: 42651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-1	BH-210 (11')	Total/NA	Solid	Total BTEX	
890-3652-2	SW-75 (0-4')	Total/NA	Solid	Total BTEX	
890-3652-3	SW-75 (4-10')	Total/NA	Solid	Total BTEX	
890-3652-4	SW-76 (0-4.5')	Total/NA	Solid	Total BTEX	
890-3652-5	SW-79 (0-4')	Total/NA	Solid	Total BTEX	
890-3652-6	SW-83 (0-4')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 41942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-4	SW-76 (0-4.5')	Total/NA	Solid	8015NM Prep	
890-3652-5	SW-79 (0-4')	Total/NA	Solid	8015NM Prep	
890-3652-6	SW-83 (0-4')	Total/NA	Solid	8015NM Prep	
MB 880-41942/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-41942/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-41942/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3644-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	

Client: Tetra Tech, Inc.

Job ID: 890-3652-1

Project/Site: Kaiser SWD

SDG: Lea County NM

GC Semi VOA (Continued)

Prep Batch: 41942 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3644-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 42002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-1	BH-210 (11')	Total/NA	Solid	8015NM Prep	
890-3652-2	SW-75 (0-4')	Total/NA	Solid	8015NM Prep	
890-3652-3	SW-75 (4-10')	Total/NA	Solid	8015NM Prep	
MB 880-42002/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-42002/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-42002/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3638-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3638-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 42078

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-4	SW-76 (0-4.5')	Total/NA	Solid	8015B NM	41942
890-3652-5	SW-79 (0-4')	Total/NA	Solid	8015B NM	41942
890-3652-6	SW-83 (0-4')	Total/NA	Solid	8015B NM	41942
MB 880-41942/1-A	Method Blank	Total/NA	Solid	8015B NM	41942
LCS 880-41942/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	41942
LCSD 880-41942/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	41942
890-3644-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	41942
890-3644-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	41942

Analysis Batch: 42108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-1	BH-210 (11')	Total/NA	Solid	8015B NM	42002
890-3652-2	SW-75 (0-4')	Total/NA	Solid	8015B NM	42002
890-3652-3	SW-75 (4-10')	Total/NA	Solid	8015B NM	42002
MB 880-42002/1-A	Method Blank	Total/NA	Solid	8015B NM	42002
LCS 880-42002/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	42002
LCSD 880-42002/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	42002
890-3638-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	42002
890-3638-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	42002

Analysis Batch: 42208

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-1	BH-210 (11')	Total/NA	Solid	8015 NM	
890-3652-2	SW-75 (0-4')	Total/NA	Solid	8015 NM	
890-3652-3	SW-75 (4-10')	Total/NA	Solid	8015 NM	
890-3652-4	SW-76 (0-4.5')	Total/NA	Solid	8015 NM	
890-3652-5	SW-79 (0-4')	Total/NA	Solid	8015 NM	
890-3652-6	SW-83 (0-4')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 41931

Lab Sample ID 890-3652-1	Client Sample ID BH-210 (11')	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
890-3652-2	SW-75 (0-4')	Soluble	Solid	DI Leach	
890-3652-3	SW-75 (4-10')	Soluble	Solid	DI Leach	

Eurofins Carlsbad

2

3

4

6

_

9

11

Client: Tetra Tech, Inc.

Job ID: 890-3652-1

Project/Site: Kaiser SWD

SDG: Lea County NM

HPLC/IC (Continued)

Leach Batch: 41931 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-4	SW-76 (0-4.5')	Soluble	Solid	DI Leach	
890-3652-5	SW-79 (0-4')	Soluble	Solid	DI Leach	
890-3652-6	SW-83 (0-4')	Soluble	Solid	DI Leach	
MB 880-41931/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-41931/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-41931/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3652-1 MS	BH-210 (11')	Soluble	Solid	DI Leach	
890-3652-1 MSD	BH-210 (11')	Soluble	Solid	DI Leach	

Analysis Batch: 42334

Released to Imaging: 9/1/2023 2:07:08 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3652-1	BH-210 (11')	Soluble	Solid	300.0	41931
890-3652-2	SW-75 (0-4')	Soluble	Solid	300.0	41931
890-3652-3	SW-75 (4-10')	Soluble	Solid	300.0	41931
890-3652-4	SW-76 (0-4.5')	Soluble	Solid	300.0	41931
890-3652-5	SW-79 (0-4')	Soluble	Solid	300.0	41931
890-3652-6	SW-83 (0-4')	Soluble	Solid	300.0	41931
MB 880-41931/1-A	Method Blank	Soluble	Solid	300.0	41931
LCS 880-41931/2-A	Lab Control Sample	Soluble	Solid	300.0	41931
LCSD 880-41931/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	41931
890-3652-1 MS	BH-210 (11')	Soluble	Solid	300.0	41931
890-3652-1 MSD	BH-210 (11')	Soluble	Solid	300.0	41931

Eurofins Carlsbad

9

3

4

6

8

9

11

4.0

Job ID: 890-3652-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Lab Sample ID: 890-3652-1

Matrix: Solid

Client Sample ID: BH-210 (11')

Date Collected: 12/14/22 12:00 Date Received: 12/14/22 12:37

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	42514	12/22/22 12:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42596	12/27/22 02:15	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42651	12/27/22 09:32	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42208	12/19/22 15:23	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	42002	12/16/22 09:37	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42108	12/18/22 19:01	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	41931	12/15/22 14:24	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42334	12/23/22 21:57	CH	EET MID

Client Sample ID: SW-75 (0-4')

Date Collected: 12/14/22 12:00

Date Received: 12/14/22 12:37

Lab Sample	ID: 890-3652-2
------------	----------------

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.03 g 5 mL 42514 12/22/22 12:14 MNR EET MID Total/NA 8021B **EET MID** Analysis 1 5 mL 5 mL 42596 12/27/22 02:36 ΑJ Total/NA Total BTEX 42651 12/27/22 09:32 Analysis A.I **EET MID** 1 Total/NA Analysis 8015 NM 42208 12/19/22 15:23 SM **EET MID** Total/NA 8015NM Prep 42002 12/16/22 09:37 Prep 10.01 g 10 mL DM **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 42108 12/18/22 19:23 SM **EET MID** Soluble 12/15/22 14:24 Leach DI Leach 4.96 g 50 mL 41931 KS **EET MID** Soluble Analysis 300.0 50 mL 50 mL 42334 12/23/22 22:24 СН **EET MID**

Client Sample ID: SW-75 (4-10')

Date Collected: 12/14/22 12:00

Date Received: 12/14/22 12:37

Lab Sample	ID: 890-3652-3
------------	----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	42514	12/22/22 12:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42596	12/27/22 02:56	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42651	12/27/22 09:32	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42208	12/19/22 15:23	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	42002	12/16/22 09:37	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42108	12/18/22 19:46	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	41931	12/15/22 14:24	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	42334	12/23/22 22:32	CH	EET MID

Client Sample ID: SW-76 (0-4.5')

Date Collected: 12/14/22 12:00

Date Received: 12/14/22 12:37

Lab San	iple ID	: 890-3652-4
		Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	42514	12/22/22 12:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42596	12/27/22 04:00	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42651	12/27/22 09:32	AJ	EET MID

Eurofins Carlsbad

Released to Imaging: 9/1/2023 2:07:08 PM

Job ID: 890-3652-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Kaiser SWD

Client Sample ID: SW-76 (0-4.5')

Date Collected: 12/14/22 12:00 Date Received: 12/14/22 12:37

Lab Sample ID: 890-3652-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			42208	12/19/22 15:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	41942	12/15/22 15:21	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42078	12/18/22 07:12	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	41931	12/15/22 14:24	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42334	12/23/22 22:41	CH	EET MID

Client Sample ID: SW-79 (0-4') Lab Sample ID: 890-3652-5

Date Collected: 12/14/22 12:00 Date Received: 12/14/22 12:37

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	42514	12/22/22 12:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42596	12/27/22 04:20	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42651	12/27/22 09:32	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42208	12/19/22 15:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	41942	12/15/22 15:21	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42078	12/18/22 07:34	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	41931	12/15/22 14:24	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42334	12/23/22 22:50	CH	EET MID

Client Sample ID: SW-83 (0-4') Lab Sample ID: 890-3652-6 Date Collected: 12/14/22 12:00 **Matrix: Solid**

Date Received: 12/14/22 12:37

Batch	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	42514	12/22/22 12:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	42596	12/27/22 04:41	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42651	12/27/22 09:32	AJ	EET MID
Total/NA	Analysis	8015 NM		1			42208	12/19/22 15:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	41942	12/15/22 15:21	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	42078	12/18/22 07:56	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	41931	12/15/22 14:24	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	42334	12/23/22 23:16	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-3652-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		Program	Identification Number	Expiration Date
		NELAP	T104704400-22-25	06-30-23
The following analytes the agency does not of	• •	but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for whic
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

Λ

5

8

10

12

13

Method Summary

Client: Tetra Tech, Inc.

Job ID: 890-3652-1

Project/Site: Kaiser SWD

SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

6

9

10

12

Ш

Sample Summary

Client: Tetra Tech, Inc.

Job ID: 890-3652-1

Project/Site: Kaiser SWD

SDG: Lea County NM

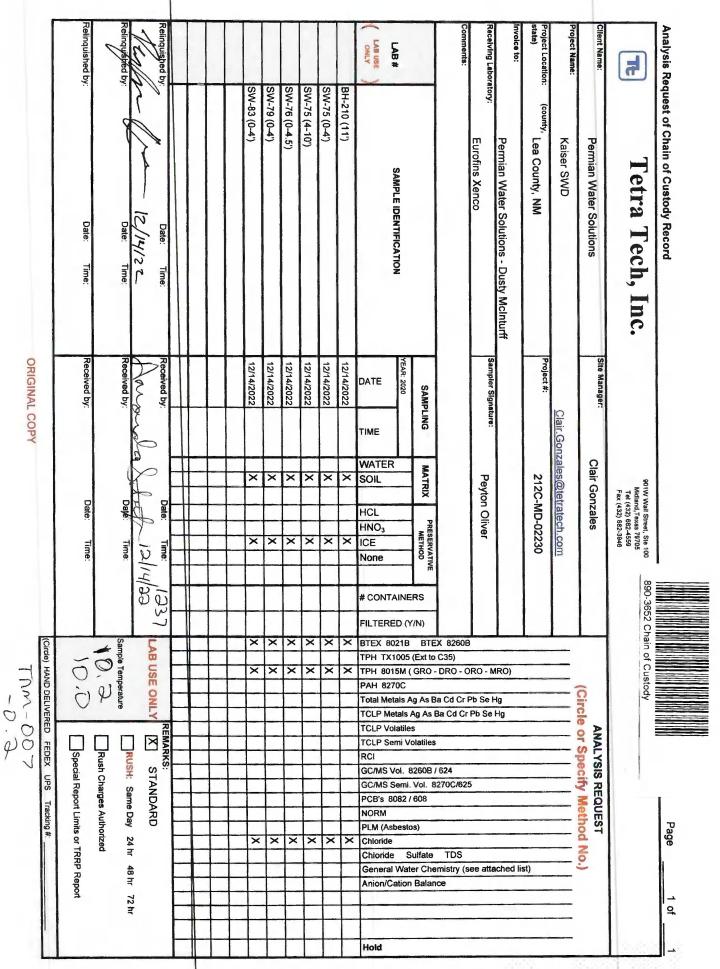
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-3652-1	BH-210 (11')	Solid	12/14/22 12:00	12/14/22 12:37
890-3652-2	SW-75 (0-4')	Solid	12/14/22 12:00	12/14/22 12:37
890-3652-3	SW-75 (4-10')	Solid	12/14/22 12:00	12/14/22 12:37
890-3652-4	SW-76 (0-4.5')	Solid	12/14/22 12:00	12/14/22 12:37
890-3652-5	SW-79 (0-4')	Solid	12/14/22 12:00	12/14/22 12:37
890-3652-6	SW-83 (0-4')	Solid	12/14/22 12:00	12/14/22 12:37

4

3

4

6



9

10

12

13

Phone. 575-988-3199 Fax: 575-988-3199

Carlsbad, NM 88220

1089 N Canal St

Eurofins Carlsbad

13 14

Chain of Custody Record

💸 eurofins

Environment Testing

Project Name Kaiser SWD State, Zip: TX, 79701 SW-79 (0-4") (890-3652-5) BH-210 (11') (890-3652-1) Empty Kit Relinquished by Deliverable Requested I, II III IV, Other (specify) Possible Hazard Identification Note Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Environment Testing South Central LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central LLC. SW-83 (0-4') (890-3652-6) SW-76 (0-4 5') (890-3652-4) SW-75 (4-10') (890-3652-3) SW-75 (0-4') (890-3652-2) Sample Identification - Client ID (Lab ID) Eurofins Environment Testing South Centr 432-704-5440(Tel) Shipping/Receiving Aidland 211 W Florida Ave. Client Information elinquished by: elinquished by: ient Contact: Custody Seals Intact. inquished by Yes 8 F (Sub Contract Lab) Custody Seal 8 Project #: 88001259 Primary Deliverable Rank 2 PO#: Due Date Requested Phone Sampler SSOW# TAT Requested (days): Date/Time Sample Date 12/14/22 12/14/22 12/14/22 12/14/22 12/14/22 2/14/22 Date Mountain 12 00 Mountain 12 00 Mountain Mountain 12 00 Mountain 12 00 Mountain 12 00 12 00 G=grab) (C=comp, Sample Preservation Code: Type BT=Tissue, A#A Company Company Matrix Solid Solid Solid Solid Solid Solid E-Mail Kramer, Jessica Lab PM Jessica Kramer@et.eurofinsus com Ime: Accreditations Required (See note):
NELAP - Texas Perform MS/MSD (Yes or No) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Special Instructions/QC Requirements Cooler Temperature(s) °C and Other Remarks Received by 8021B/5035FP_Calc BTEX × × × × × × Return To Client × × × × × × Total_BTEX_GCV × 8015MOD_Calc × × × × × × × × × × × 8015MOD_NM/8015NM_S_Prep Full TPH Analysis Requested × × 300_ORGFM_28D/DI_LEACH Chloride × × × × Disposal By Lab New Mexico Carrier Tracking No(s): State of Origin: Method of Shipment: Date/Ime Date/Time Archive For No. 20-7 24 4 Total Number of containers B NaOH
C Zn Acetate
D Nitric Acid
E NaHSO4
F MeOH
G Amchlor
H Ascorbic Acid
I Ice
J- DI Water
K EDTA
L EDA Page Page 1 of 1 COC No⁻ 890-1064 1 A-HCL Preservation Codes 390-3652-1 Special Instructions/Note: M Hexane
N None
N None
O AsNaO2
P-Na2O4S
Q-Na2SO3
R Na2SO3
R Na2SO3
S-H2SO4
T TSP Dodecahydrate
U-Acetone
V MCAA
W pH 4-5
Y Tizma
Z other (specify) Company Company Ver: 06/08/2021

1089 N Canal St

Eurofins Carlsbad

13

Chain of Custody Record

💸 eurofins

Environment Testing

State Zip. TX, 79701 Kaiser SWD SW-79 (0-4') (890-3652-5) Note. Since laboratory accreditations are subject to change Eurofins Environment Testing South Central, LLC places the ownership of method analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the aboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central. LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central. LLC SW-83 (0-4') (890-3652-6) SW-76 (0-4 5') (890-3652-4) SW-75 (4-10') (890-3652-3) SW-75 (0-4') (890-3652-2) BH-210 (11') (890-3652-1) Sample Identification - Client ID (Lab ID) Midland Carlsbad, NM 88220 Phone. 575-988-3199 Fax: 575-988-3199 mpty Kit Relinquished by Deliverable Requested | II, III, IV Other (specify) 132-704-5440(Tel) 1211 W Florida Ave ossible Hazard Identification elinquished by roject Name: linquished by: Custody Seals Intact. linquished by: urofins Environment Testing South Centr lient Information (Sub Contract Lab) confirmed hipping/Receiving Custody Seal No Project #: 88001259 Sampler Date/Time Primary Deliverable Rank ₩ # PO# Due Date Requested 12/20/2022 Phone: TAT Requested (days): Sample Date 12/14/22 12/14/22 12/14/22 12/14/22 12/14/22 2/14/22 Date Mountain 12 00 Mountain 12 00 Mountain 12 00 Mountain 12 00 Mountain 12 00 Mountain Sample 1200 (C=comp, G=grab) Sample Type Preservation Code: Company Company Company Matrix Solid Solid Solid Solid Solid Solid Lab PM Jessica Kramer@et.eurofinsus.com E-Mail Kramer, Jessica Field Filtered Sample (Yes or No) NELAP - Texas Accreditations Required (See note): Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Perform MS/MSD (Yes or No) Special Instructions/QC Requirements Cooler Temperature(s) °C and Other Remarks Received by 8021B/6035FP_Calc BTEX × × × × × × × × × × × × Total_BTEX_GCV × × 8015MOD Cald × × × × × × × × × × 8016MOD_NM/8015NM_S_Prep Full TPH Analysis Requested × × × × × 300_ORGFM_28D/DI_LEACH Chloride × State of Origin: New Mexico Method of Shipment Tracking No(s) Date/Time Date/Time Date/Time 4 Total Number of containers A HCL
B NaOH
C Zn Acetate
D-Nitric Acid
E NaHSOA
F NaCHOH
G Amchor
H Ascorbic Acid
I Ice
J DI Water
K EDTA
L EDA COC No: 890-1064 1 Preservation Codes 890-3652-1 Page 1 of 1 age M Hexane
N None
O AsNaO2
P Na2O4S
Q Na2SC3
R Na2S2O3
R Na2S2O3
S H2SO4
T TSP Dodecahydrate
J Acetone Q Na2SO3
R Na2S2O3
S H2SO4
T TSP Dodecahy
U Acetone
V MCAA
W pH 4-5
Y Trizma
Z - other (specify) Ver 06/08/202 Company Company Company Months

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3652-1

SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Number: 3652 List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

2

1

3

А

5

7

9

11

14

7

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-3652-1

SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 12/15/22 11:29 AM

Login Number: 3652 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 258256

CONDITIONS

Operator:	OGRID:
Permian Water Solutions, LLC	373626
PO Box 2106	Action Number:
Midland, TX 79702	258256
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	None	9/1/2023