ew Mexico Page 1 of 76

Incident ID	napp2325556213
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC				
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)				
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)			
Description of remediation activities				
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rehuman health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in			
	Title: Env. Professional			
Signature: Dale Woodall	Date:			
email:dale.woodall@dvn.com	Telephone:575-748-1838			
OCD Only				
Received by:	Date:			
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.			
Closure Approved by: Ashley Maxwell	Date: 11/28/2023			
Closure Approved by: Ashley Maxwell Printed Name:	Title: Environmental Specialist			

Incident Number: nAPP2325556213

Release Assessment and Closure

Bindel 4 Fee #001

Section 04, Township 23 South, Range 27 East

API: 30-015-45042

County: Eddy

Vertex File Number: 23E-05497

Prepared for:

Devon Energy Production Company

Prepared by:

Vertex Resource Services Inc.

Date:

October 31, 2023

Devon Energy Production Company

Bindel 4 Fee #001

Release Assessment and Closure October 2023

Release Assessment and Closure Bindel 4 Fee #001 Section 04, Township 23 South, Range 27 East API: 30-015-45042

Prepared for:

County: Eddy

Devon Energy Production Company

205 E. Bender Road. #150 Hobbs, New Mexico 88240

New Mexico Oil Conservation Division - District II

811 S. 1st Street Artesia, New Mexico 88210

Prepared by:

Vertex Resource Services Inc.

3101 Boyd Drive

Carlsbad, New Mexico 88220

Hunter Klein, B.Sc.

Hunter Klein, B. Sc.

Environmental Technician, REPORTING

October 31, 2023

Date

kent stallings P.G.

Kent Stallings, P.G.

Senior Geologist, REPORT REVIEW

October 31, 2023

Date

îi Versatility. Expertise.

Release Assessment and Closure October 2023

Table of Contents

1.0	Introduction	1
	Incident Description	
	Site Characteristics	
	Closure Criteria Determination	
	Remedial Actions Taken	
	Closure Request	
	References	
	Limitations	

Devon Energy Production Company

Release Assessment and Closure Bindel 4 Fee #001 October 2023

In-text Tables

Table 1. Closure Criteria Determination

Table 2. Closure Criteria for Soils Impacted by a Release

List of Tables

Table 3. Initial Characterization Sample Field Screen and Laboratory Results – Depth to Groundwater <50 feet bgs

List of Appendices

Appendix A. NMOCD C 141 Report(s)

Appendix B. Closure Criteria Research Documentation

Appendix C. Daily Field and Sampling Report(s)

Appendix D. Notification(s)

Release Assessment and Closure October 2023

1.0 Introduction

Devon Energy Production Company (Devon) retained Vertex Resource Services Inc. (Vertex) to conduct a Release Assessment and Closure for a produced water and crude oil release that occurred on September 12, 2023, at Bindel 4 Fee #001 API 30-015-45042 (hereafter referred to as the "site"). Devon submitted an initial C-141 Release Notification (Appendix A) to New Mexico Oil Conservation Division (NMOCD) District 2 on September 14, 2023. Incident ID number nAPP2325556213 was assigned to this incident.

This report provides a description of the release assessment and remediation activities associated with the site. The information presented demonstrates that closure criteria established in Table I of 19.15.29.12 of the *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) related to NMOCD has been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NMOCD for closure of this release as per NMAC 19.15.29.13.

2.0 Incident Description

The release occurred on September 12, 2023, due to a nipple break in the oil outlet piping. The incident was reported on September 14, 2023, and involved the release of approximately 20 barrels (bbl.) of produced water and 10 barrels (bbl.) of crude oil into lined containment. Approximately 30 bbl. of free fluid was removed during initial clean-up. Additional details relevant to the release are presented in the C-141 Report. Daily Field Report (DFRs) and site photographs are included in Appendix C.

3.0 Site Characteristics

The site is located approximately 1.96 miles South of Carlsbad, New Mexico. The legal location for the site is Section 04, Township 23 South and Range 27 East in Eddy County, New Mexico. The release area is located on private property. An aerial photograph and site schematic are presented on Figure 1.

The location is typical of oil and gas exploration and production sites in the Permian Basin and is currently used for oil and gas production and storage. The following sections specifically describe the release area Bindel 4 Fee #001 on the constructed pad (Figure 1).

The Geological Map of New Mexico (New Mexico Bureau of Geology and Mineral Resources, 2023) indicates the site's surface geology primarily Qp – Piedmont alluvial deposits. Predominant soil texture on the site is Rc – Reagan loam, 0 to 1 percent slopes. Additional soil characteristics include a drainage class of well drained with a runoff class of low. The karst geology potential for the site is Medium (Geomatics) (United States Department of the Interior, Bureau of Land Management, 2018).

The surrounding landscape is associated with fan remnants and alluvial fans with elevations ranging between 1100 and 5300 feet. The climate is semiarid with average annual precipitation ranging between 7 and 15 inches. Grasses with shrubs and half-shrubs dominate the historic plant community (United States Department of Agriculture, Natural Resources Conservation Service, 2023). Limited to no vegetation is allowed to grow on the compacted production pad, right-of-way and access road.

Release Assessment and Closure October 2023

4.0 Closure Criteria Determination

The nearest active well to the site is a New Mexico Office of the State Engineer (NMOSE) well located approximately 0.4 miles east of the location (United States Geological Survey, 2023). Data from 2023 shows the NMOSE borehole recorded a depth to groundwater of less than 50 feet below ground surface (bgs). Information pertaining to the depth to ground water determination is included in Appendix B

There is no surface water present at the site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 NMAC, is the Nearest Watercourse (National Wetlands Inventory) located approximately 1108 ft east of the site (United States Fish and Wildlife Service, 2023).

At the site, there are no continuously flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Release Assessment and Closure October 2023

Table 1. Closure Criteria Worksheet					
Site Nam	e: BINDEL 4 FEE 1 BATTERY				
Spill Coo	rdinates: 32.336466, -104.188824				
Site Spec	ific Conditions	Value	Unit	Reference	
1	Depth to Groundwater	<50	feet	1	
	Within 300 feet of any continuously flowing				
2	watercourse or any other significant	1,108	feet	2	
	watercourse				
	Within 200 feet of any lakebed, sinkhole or				
3	playa lake (measured from the ordinary high-	49,474	feet	3	
	water mark)				
	Within 300 feet from an occupied residence,	705			
4	school, hospital, institution or church	705	feet	4	
	·				
	i) Within 500 feet of a spring or a private, don	2 126	feet	5	
5	Within 500 feet of a spring of a private, doi!	2,136	reet	5	
3	ii) Within 1000 feet of any fresh water well				
or spring		998	feet	5	
	Within incorporated municipal boundaries				
	or within a defined municipal fresh water	No	(Y/N)		
	field covered under a municipal ordinance				
6	adopted pursuant to Section 3-27-3 NMSA			6	
	1978 as amended, unless the municipality				
	specifically approves				
7	Within 300 feet of a wetland	20,909	feet	7	
8	Within the area overlying a subsurface mine	No	(Y/N)	8	
			Critical		
9	Within an unstable area (Karst Map)	Medium	High	9	
9	Within an unstable area (Karst Map)	Medium	Medium	9	
			Low		
10	Within a 100-year Floodplain	500	vear	10	
10	Within a 100-year i looupram	300	year	10	
11	Soil Type	Reaga	n Loam	11	
	··				
12	Ecological Classification	Loamy		12	
			Piedmont alluvial		
13	Geology	Qp	deposits	13	
			αεροσιισ		

The closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 2.

Table 2. Closure Criteria for Soils Impacted by a Release				
Minimum depth below any point within the horizontal boundary of the release to groundwater				
less than 10,000 mg/l TDS	Constituent	Limit		
	Chloride	600 mg/kg		
< 50 feet	TPH (GRO+DRO+MRO)	100 mg/kg		
< 50 feet	BTEX	50 mg/kg		
	Benzene	10 mg/kg		

TDS - total dissolved solides

TPH – total petroleum hydrocarbons, GRO – gas range organics, DRO – diesel range organics, MRO – motor oil range organics

BTEX – benzene, toluene, ethylbenzene and xylenes

5.0 Remedial Actions Taken

An initial site inspection of the release area was completed on October 12, 2023, which identified the area of the release specified in the initial C-141 Report, estimated the approximate volume of the release and white lined the area required for the One Call request. No impacts outside the lined containment were observed.

Notification that a liner inspection was scheduled to be completed was provided to the NMOCD on October 17, 2023. Visual observation of the liner was completed on all sides and the base of the containment, around equipment, and of all seams in the liner. No evidence of tears, punctures, holes, or breaches was observed in the liner upon inspection. As evidenced in the DFR (Appendix C), it was verified that the liner was intact and had the ability to contain the release. The Liner Inspection Notification email is presented in Appendix D.

6.0 Closure Request

Vertex recommends no remediation action to address the release at the site. The secondary containment was intact and contained the release. There are no anticipated risks to human, ecological, or hydrological receptors associated with the release site.

Vertex requests that this incident (nAPP2325556213) be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. BTA certifies that all information in this report and the appendices are correct and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NMOCD requirements to obtain closure on the release at the site.

Should you have any questions or concerns, please do not hesitate to contact Kent Stallings at 346.814.1413 or kstallings@vertex.ca.

7.0 References

- Google Inc. (2022). Google Earth Pro (Version 7.3.3) [Software]. Retrieved from https://earth.google.com
- New Mexico Bureau of Geology and Mineral Resources. (2023). *Interactive Geologic Map.* Retrieved from https://maps.nmt.edu/
- New Mexico Department of Surface Water Quality Bureau. (2023). *Assessed and Impaired Waters of New Mexico*. Retrieved from https://gis.web.env.nm.gov/oem/?map=swqb
- New Mexico Energy, Minerals and Natural Resources Department. (2023). *OCD Permitting Spill Search*. Retrieved from https://wwwapps.emnrd.nm.gov/ocd/ocdpermitting/Data/Spills/Spills.aspx
- New Mexico Mining and Minerals Division. (2023). *Coal Mine Resources in New Mexico*. Retrieved from https://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=5f80f3b0faa545e58fe747cc7b037a93
- New Mexico Office of the State Engineer. (2023a). *Point of Diversion Location Report New Mexico Water Rights Reporting System*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/wellSurfaceDiversion.html
- New Mexico Office of the State Engineer. (2023b). Water Column/Average Depth to Water Report New Mexico Water Rights Reporting System. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html
- New Mexico Office of the State Engineer. (2023c). Well Log/Meter Information Report New Mexico Water Rights Reporting System. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/meterReport.html
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service. (2023). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
- United States Department of Homeland Security, Federal Emergency Management Agency. (2023). *FEMA Flood Map Service: Search by Address*. Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga% 20new%20mexico#searchresultsanchor
- United States Department of the Interior, Bureau of Land Management. (2018). *New Mexico Cave/Karst*. Retrieved from https://www.nm.blm.gov/shapeFiles/cfo/carlsbad_spatial_data.html
- United States Geological Survey. (2023). *National Water Information System: Web Interface*. Retrieved from https://waterdata.usgs.gov/nwis
- United States Fish and Wildlife Service. (2023). *National Wetland Inventory Surface Waters and Wetlands*. Retrieved from https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/

Release Assessment and Closure October 2023

8.0 Limitations

This report has been prepared for the sole benefit of Devon Energy Production Company. This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and Devon Energy Production Company. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

APPENDIX A - NMOCD C-141 Report(s)

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party			OGRID	OGRID		
Contact Name Conta			Contact Te	t Telephone		
Contact email Incident			Incident #	(assigned by OCD)	
Contact mail	ing address			1		
			Location	of Release So	ource	
Latitude				Longitude _		
			(NAD 83 in dec	cimal degrees to 5 decin	nal places)	
Site Name				Site Type		
Date Release	Discovered	9/12/2023		API# (if app	olicable)	
Unit Letter	Section	Township	Range	Coun	nty	
Surface Owner	r: State	☐ Federal ☐ Tr	ribal Private (A	Name: I Volume of I	Release)
		`		calculations or specific	*	e volumes provided below)
Crude Oil		Volume Release	,		Volume Reco	, ,
Produced	Water	Volume Release			Volume Reco	, ,
			tion of total dissolv water >10,000 mg		☐ Yes ☐ N	No
Condensa	te	Volume Release		/1:	Volume Recovered (bbls)	
☐ Natural Gas Volume Released (Mcf)				Volume Recovered (Mcf)		
Other (describe) Volume/Weight Released (provide units)			e units)	Volume/Wei	ght Recovered (provide units)	
Cause of Release						

Received by OCD: 11/27/2023/6:12:08 AM
State of New Mexico
Page 2
Oil Conservation Division

P	ağ	e	14	201	60	6
-	~~	-		\sim_J	1	_

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the respon	nsible party consider this a major release?
19.15.29.7(A) NMAC?		
☐ Yes ☐ No		
If YES, was immediate no	tice given to the OCD? By whom? To wh	nom? When and by what means (phone, email, etc)?
,	,	j u , , , ,
	Initial R	esponse
The responsible p	party must undertake the following actions immediatel	y unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
	s been secured to protect human health and	the environment.
Released materials ha	we been contained via the use of berms or c	likes, absorbent pads, or other containment devices.
☐ All free liquids and re	ecoverable materials have been removed an	d managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain	why:
has begun, please attach a	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred elease attach all information needed for closure evaluation.
regulations all operators are public health or the environm failed to adequately investigations.	required to report and/or file certain release notinent. The acceptance of a C-141 report by the Cate and remediate contamination that pose a three	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name: Dale W	oodall	Title: Env. Professional
Signature: Dale U	Doodall	Date:
email:dale.woodall@d	vn.com	Telephone: 575-748-1838
OCD Only		
Received by: Shelly We	lls	Date: 9/15/2023

Bindel 4 Fee 1H

nAPP2325556213

9/12/2023

Spills In Lined	Containment
Measurements O	f Standing Fluid
Length(Ft)	215
Width(Ft)	24
Depth(in.)	0.4
Total Capacity without tank displacements (bbls)	30.63
No. of 500 bbl Tanks In Standing Fluid	0
No. of Other Tanks In Standing Fluid	0
OD Of Other Tanks In Standing Fluid(feet)	
Total Volume of standing fluid accounting for tank displacement.	30.63

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 265326

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	265326
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Creat	ted By	Condition	Condition Date	
scw	vells	None	9/15/2023	

APPENDIX B – Closure Criteria Research Documentation

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

		POD		0	0	^								_	
POD Number	Code	Sub- basin	County		Q 16		Sec	Tws	Rng	X	Y	DistanceDep	thWellD		Vater olumn
<u>C 00281</u>		C	ED		4		04	23S	27E	576459	3577846*	211	150		
<u>C 00400</u>		C	ED	4	4	2	04	23S	27E	576459	3577846*	211	145		
<u>C 00546</u>		C	ED	1	3	1	03	23S	27E	576663	3578051*	325		123	
C 03476 POD1		C	ED	2	2	2	04	23S	27E	576488	3578407	414	200		
<u>C 01971</u>		C	ED		1	1	03	23S	27E	576762	3578354*	538	164	145	19
<u>C 01989</u>		C	ED		1	1	03	23S	27E	576762	3578354*	538	168	88	80
<u>C 02146</u>		C	ED		1	1	03	23S	27E	576762	3578354*	538	125	125	0
<u>C 02148</u>		C	ED		1	1	03	23S	27E	576762	3578354*	538	125	70	55
<u>C 02150</u>		C	ED		1	1	03	23S	27E	576762	3578354*	538	125	70	55
<u>C 02154</u>		C	ED		1	1	03	23S	27E	576762	3578354*	538	125	70	55
<u>C 02166</u>		C	ED		1	1	03	23S	27E	576762	3578354*	538	140	75	65
<u>C 01973</u>		C	ED	1	1	1	03	23S	27E	576661	3578453*	539	127	90	37
<u>C 00515</u>		CUB	ED	3	4	4	33	22S	27E	576254	3578650*	635	180	80	100
C 00515 CLW197977	О	CUB	ED	3	4	4	33	22S	27E	576254	3578650*	635	180		
<u>C 00071</u>		CUB	ED	2	1	3	03	23S	27E	576865	3577649*	643	205		
<u>C 01203</u>		C	ED		4	1	03	23S	27E	577168	3577958*	831	100	35	65
<u>C 03290</u>		C	ED	1	3	3	34	22S	27E	576715	3578778	846	127	72	55
<u>C 01700</u>		C	ED		3	3	34	22S	27E	576760	3578756*	847	205	118	87

<u>C 01801</u>		C	ED	3 3	34	22S	27E	576760	3578756*	847	220		
<u>C 03274</u>		C	ED	4 4 3	33	22S	27E	575643	3578641*	932	130	81	49
C 03000 POD2		C	ED	2 3 3	03	23S	27E	576866	3577246	936	150	80	70
<u>C 03000</u>	R	C	ED	2 3 3	03	23S	27E	576866	3577246*	936	52	19	33
<u>C 01172</u>		CUB	ED	3 4 3	34	22S	27E	577064	3578661*	967	220		
<u>C 03043</u>		C	ED	2 3 3	34	22S	27E	576859	3578855*	983	118	68	50
<u>C 00644</u>		CUB	ED	3 2 4	33	22S	27E	576251	3579056*	1039	190		
C 00644 CLW198574	О	CUB	ED	3 2 4	33	22S	27E	576251	3579056*	1039	100		
<u>C 00743</u>		C	ED		03	23S	27E	577370	3577750*	1065	125	60	65
<u>C 00287</u>		CUB	ED	3 1 3	34	22S	27E	576657	3579061*	1088			
C 04480 POD1		C	ED	4 1 4	33	22S	27E	576065	3579083	1098	140	89	51
<u>C 02977</u>		C	ED	1 1 2	03	23S	27E	577470	3578466*	1215	179	125	54
<u>C 02433</u>		C	ED	4 3 3	33	22S	27E	575238	3578636*	1261	96	64	32
<u>C 02324</u>		C	ED	1 2	03	23S	27E	577571	3578367*	1279	125	75	50
<u>C 02412</u>		C	ED	2 3 3	33	22S	27E	575238	3578836*	1370	251	65	186
C 03738 POD1		C	ED	1 1 3	34	22S	27E	576785	3579382	1433	137	68	69
C 04492 POD1		C	ED	2 4 2	05	23S	27E	574903	3578050	1436			
<u>C 00030</u>		CUB	ED	1 2 3	34	22S	27E	577062	3579267*	1441	205	50	155
C 00030 CLW193032	О	CUB	ED	1 2 3	34	22S	27E	577062	3579267*	1441	205		
<u>C 02230</u>		C	ED		33	22S	27E	575742	3579340*	1448	260	90	170
<u>C 02449</u>		C	ED		33	22S	27E	575742	3579340*	1448	300	70	230
<u>C 00215</u>		CUB	ED	4 3 2	33	22S	27E	576044	3579458*	1467	180	150	30
<u>C 03013</u>		C	ED	4 1 3	33	22S	27E	575237	3579043*	1503	118	63	55
<u>C 01670</u>		C	ED	4 4 2	05	23S	27E	574842	3577826*	1509	385		
C 00109 CLW203096	О	CUB	ED	1 3 3	04	23S	27E	575051	3577226*	1513	260		
<u>C 00191</u>		CUB	ED	3 3 2	33	22S	27E	575844	3579458*	1520	200		

<u>C 02696</u>	C	ED	1 3	3 33	22S	27E	575038	3578836*	1535	124	71	53
<u>C 03072</u>	C	ED	3 4	2 03	23S	27E	577873	3577869*	1541	119	72	47
<u>C 02392</u>	C	ED	4	2 33	22S	27E	576350	3579564*	1544	150	48	102
C 03799 POD1	C	ED	1 3	3 04	23S	27E	574981	3577170	1602	200	51	149

Average Depth to Water:

79 feet

Minimum Depth:

19 feet 150 feet

Maximum Depth:

Record Count: 48

UTMNAD83 Radius Search (in meters):

Easting (X): 576339

Northing (Y): 3578020

Radius: 1610

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/13/23 4:35 PM

WATER COLUMN/ AVERAGE DEPTH TO

WATER

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec

Q64 Q16 Q4 Sec Tws Rng

X Y

C 00281 4 4 2 04 23S 27F

576459 3577846*

Driller License: Driller Company:

Driller Name: HOWARD HEMLER

Drill Start Date:

Log File Date:

PCW Rcv Date:

Plug Date:

Source:

Pump Type:Pipe Discharge Size:Estimated Yield:Casing Size:7.00Depth Well:150 feetDepth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

3/29/23 11:21 AM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Site Information	~	United States	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access realtime water <u>data</u> from over 13,500 stations nationwide.
- Full News

USGS 322008104105701 23S.27E.03.13433

Available data for this site SUMMARY OF ALL AVAILABLE DATA V GO

Well Site

DESCRIPTION:

Latitude 32°20'08", Longitude 104°10'57" NAD27 Eddy County, New Mexico , Hydrologic Unit 13060011

Well depth: 205 feet

Land surface altitude: 3,115 feet above NAVD88.

Well completed in "Other aquifers" (N9999OTHER) national aquifer.

Well completed in "Alluvium, Bolson Deposits and Other Surface Deposits"

(110AVMB) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1978-01-12	1998-01-07	7
Revisions	Unavailable (site:0) (timese	eries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to New Mexico Water Science Center Water-Data Inquiries

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms

<u>Subscribe for system changes</u> <u>News</u>

Accessibility FOIA Privacy Policies and Notices

<u>U.S. Department of the Interior</u> | <u>U.S. Geological Survey</u>

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=322008104105701

Page Contact Information: New Mexico Water Data Support Team

Page Last Modified: 2023-03-29 16:30:35 EDT

0.27 0.26 caww01

Bindel 4 Fee 1H Irrigation Canal 0.21 Miles

March 29, 2023

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Pond

Freshwater Forested/Shrub Wetland

Lake

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Bindel 4 Fee 1H Lake 9.37 Miles

March 29, 2023

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Pond

Freshwater Emergent Wetland
Freshwater Forested/Shrub Wetland

d 🔲 Other

Riverine

Lake

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

C 00098 A-S-2 04 23S 27E

Acre-Feet

576459 3577846*

Driller License:

Driller Company:

Driller Name:

Log File Date:

Casing Size:

Drill Start Date: Drill Finish Date:

Plug Date: PCW Rcv Date: Source:

Pump Type: Pipe Discharge Size: Shallow

Estimated Yield: Depth Well: **Depth Water:**

Meter Number: 477 Meter Make: WATER SPEC

Meter Serial Number: 940101

Meter Multiplier: 1.0000 **Meter Type:**

Number of Dials:

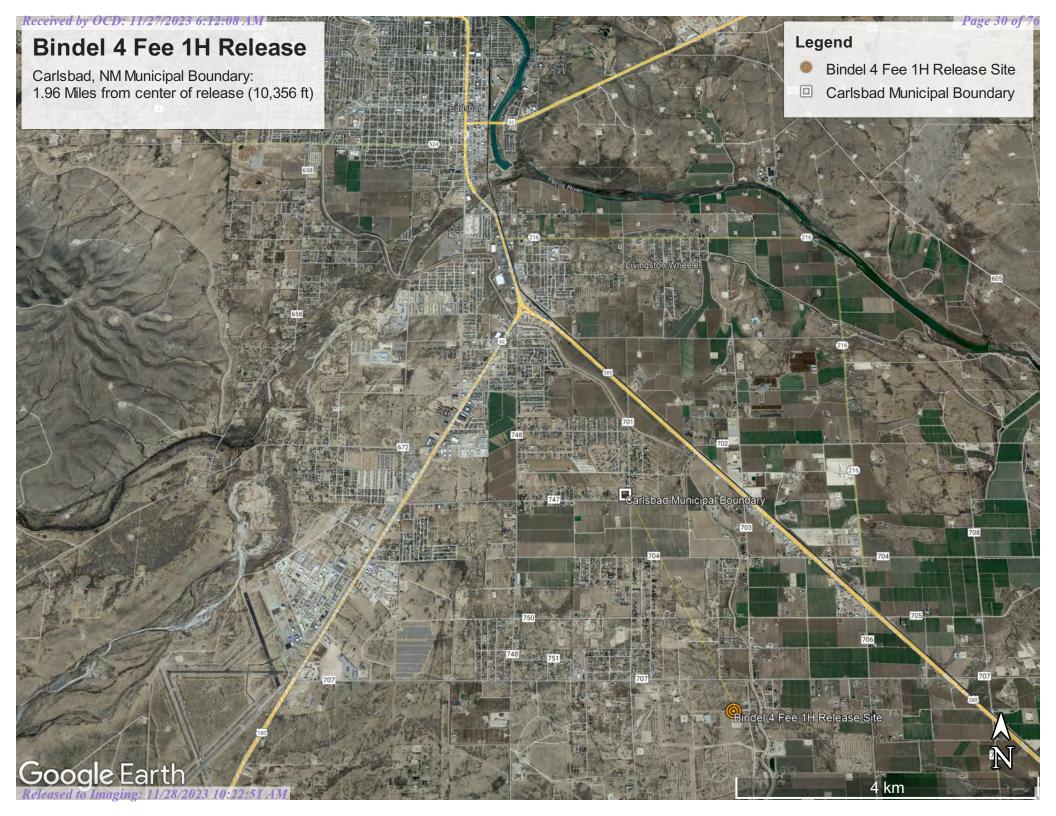
Diversion

Unit of Measure: Usage Multiplier: **Return Flow Percent:**

Reading Frequency:

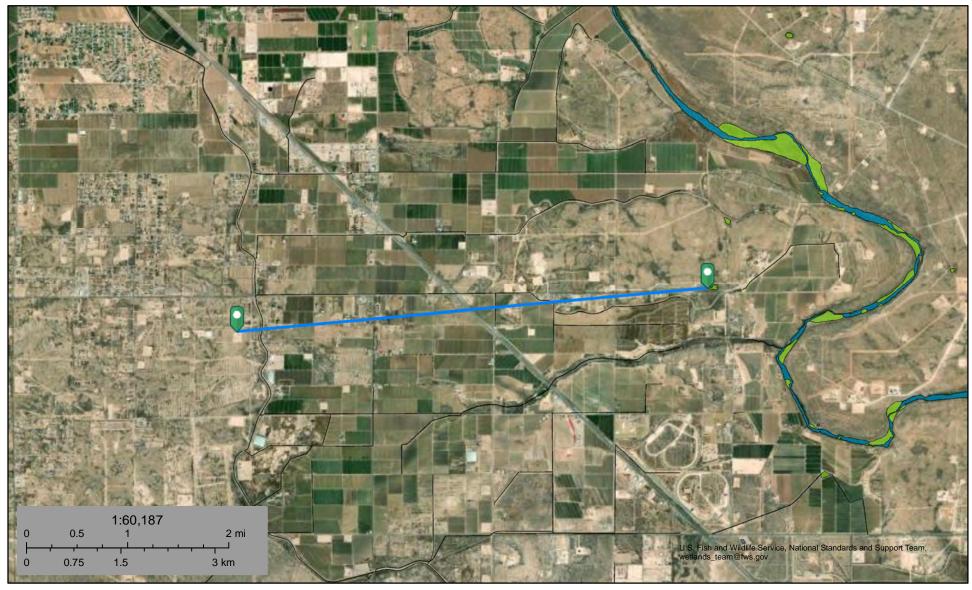
Meter Readings (in Acre-Feet)

Read Date	Year	Mtr Reading	Flag	Rdr Comment	Mtr Amount On
12/30/1998	1999	216	A	ms	0
07/20/1999	1999	216	A	ms	0
10/05/1999	1999	216	A	ms	0
12/27/1999	1999	216	A	ms	0
04/05/2000	2000	216	A	mb	0
11/12/2001	2000	216	A	tg	0
01/02/2003	2002	216	A	MB	0
05/16/2003	2003	216	A	ab	0


**YTD Meter Amounts:	Year	Amount
	1999	0
	2000	0
	2002	0
	2003	0

^{*}UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


4/3/23 9:51 AM

POINT OF DIVERSION SUMMARY

Bindel 4 Fee 1 Wetland 3.96 Mi

June 20, 2023

Wetlands_Alaska

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Pond

Freshwater Forested/Shrub Wetland

Lake

Other

Riverine

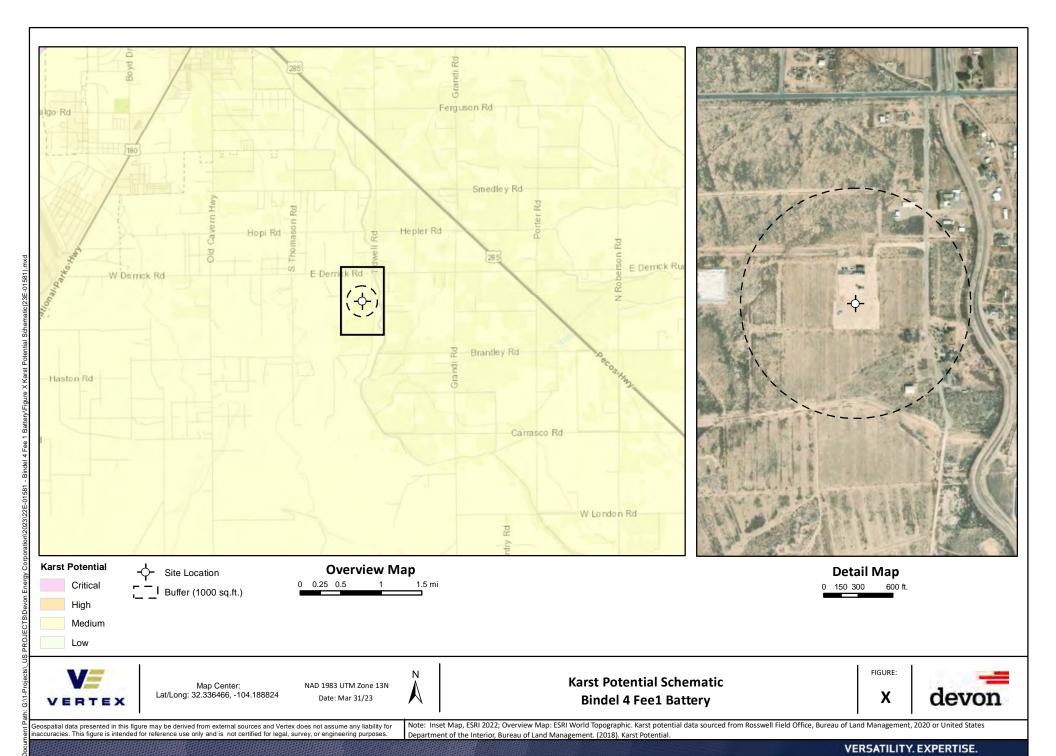
This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Bindel4 Fee 1H Mines

3/29/2023, 2:20:21 PM

Registered Mines

Aggregate, Stone etc.


1:144,448 0 1 2 4 mi 0 1.5 3 6 km

* Aggregate, Stone etc.

📤 Salt

Aggregate, Stone etc.

U.S. BLM, Esri, NASA, NGA, USGS, New Mexico State University, Texas Parks & Wildlife, CONANP, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, USDA

OReleasea to Imaging: 11/28/2023 OPO: 22:51 AM 1,500

Received by OCD: 11/27/2023 6:12:08 AM National Flood Hazard Layer FIRMette

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS Regulatory Floodway

0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X

Area with Flood Risk due to Levee Zone D

Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X

OTHER AREAS OF FLOOD HAZARD

OTHER AREAS

MAP PANELS

NO SCREEN Area of Minimal Flood Hazard Zone X

Effective LOMRs

Area of Undetermined Flood Hazard Zone D

- - - Channel, Culvert, or Storm Sewer **GENERAL** STRUCTURES | LILLI Levee, Dike, or Floodwall

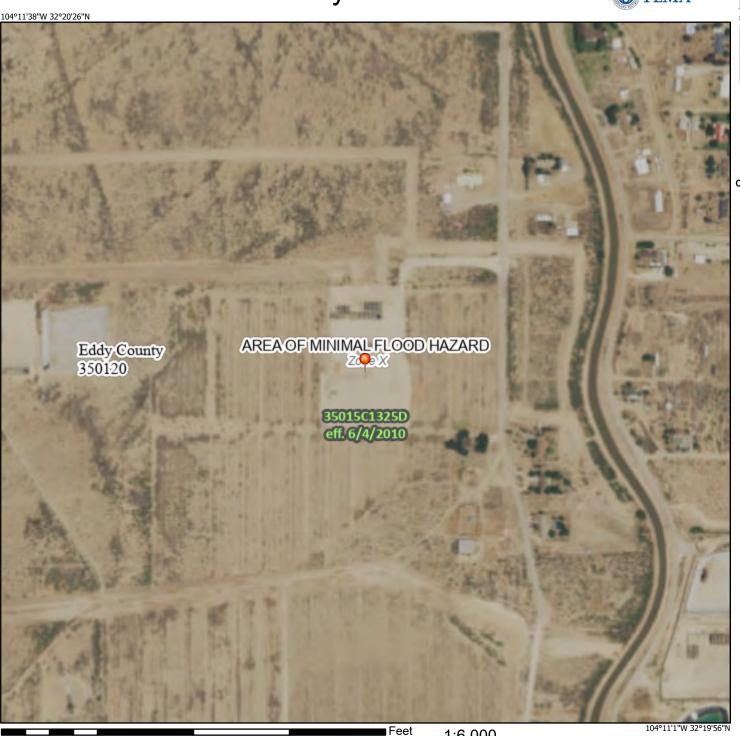
> 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Base Flood Elevation Line (BFE)

Limit of Study Jurisdiction Boundary

Coastal Transect Baseline OTHER **Profile Baseline FEATURES** Hydrographic Feature

Digital Data Available

No Digital Data Available


Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/29/2023 at 3:40 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

1:6.000

2.000

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Eddy Area, New Mexico	
Rc—Reagan loam, 0 to 1 percent slopes	
Uo—Upton gravelly loam, 0 to 9 percent slopes	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Sodic Spot

Slide or Slip

å

Spoil Area Stony Spot

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

00

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 18, Sep 8, 2022

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Nov 12, 2022—Dec 2. 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Rc	Reagan loam, 0 to 1 percent slopes	6.8	98.2%
Upton gravelly loam, 0 to 9 percent slopes		0.1	1.8%
Totals for Area of Interest		6.9	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

Rc—Reagan loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 1w5l Elevation: 1,100 to 5,300 feet

Mean annual precipitation: 7 to 15 inches

Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 200 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Reagan and similar soils: 97 percent Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reagan

Setting

Landform: Fan remnants, alluvial fans Landform position (three-dimensional): Rise

Down-slope shape: Convex, linear

Across-slope shape: Linear

Parent material: Alluvium and/or eolian deposits

Typical profile

H1 - 0 to 8 inches: loam H2 - 8 to 82 inches: loam

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 6c

Hydrologic Soil Group: B

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Minor Components

Reagan

Percent of map unit: 1 percent

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Upton

Percent of map unit: 1 percent

Ecological site: R070BC025NM - Shallow

Hydric soil rating: No

Reeves

Percent of map unit: 1 percent

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Uo—Upton gravelly loam, 0 to 9 percent slopes

Map Unit Setting

National map unit symbol: 1w67 Elevation: 1,100 to 4,400 feet

Mean annual precipitation: 7 to 15 inches

Mean annual air temperature: 60 to 70 degrees F

Frost-free period: 200 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Upton and similar soils: 96 percent *Minor components:* 4 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Upton

Setting

Landform: Ridges, fans

Landform position (three-dimensional): Side slope, rise

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from limestone

Typical profile

H1 - 0 to 9 inches: gravelly loam H2 - 9 to 13 inches: gravelly loam H3 - 13 to 21 inches: cemented

H4 - 21 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 9 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 75 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R070BC025NM - Shallow

Hydric soil rating: No

Minor Components

Atoka

Percent of map unit: 1 percent

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Atoka

Percent of map unit: 1 percent

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Upton

Percent of map unit: 1 percent

Ecological site: R070BC025NM - Shallow

Hydric soil rating: No

Reagan

Percent of map unit: 1 percent

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Ecological site R070BC007NM Loamy

Accessed: 03/29/2023

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occurs on uplands landforms, mainly on hill slopes, ridges, plains, terraces and some fan remnants. Slopes range from 1 to 5 percent and average about 3 percent. Average annual precipitation is about 8 to 14 inches. Elevations range from 2,842 to 5,000 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Terrace(3) Fan piedmont
Flooding frequency	None
Ponding frequency	None
Elevation	2,842–5,000 ft
Slope	0–5%
Aspect	E, S, W

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. Strong winds blow from the southwest in January through June rapidly drying out the soil during a critical time for cool season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced by wetland or streams.

Soil features

The soils of this site are deep to moderately deep. The moderately deep soils have either a petrocalcic, petrogypsic or gypsum horizon between 30 and 40 inches.

Surface textures are loam, silt loam, very fine sandy loam, or clay loam. Substratum textures are loam, silty clay loam, or silt loams. Subsoil textures are silt loam, clay loam silty clay loam, gravelly loam, gravelly clay loam or very gravelly loam. Permeability is moderate to slow and the available water holding capacity is high to moderate. The Atoka, Reeves, Russler, Milner soils may have highr amounts of CaC03, ranging as high as 40 percent in the subsoil. Rock fragments range fro 5 to 50 percent in the subsoil. Reeves, Rusler, Milner, Holloman soils will have 40 to 80 percent gypsum in the underlying material.

Maximum and minimum values listed below represent the characteristic soils for this site.

Characteristic Soils:

Atoka (petrocalcic)

Bigetty

Reagan

Reakor

Reeves (gypsum)

Russler (gypsum)

Largo

Russler (gypsum)

Largo

Berino

Tinney

Midessa

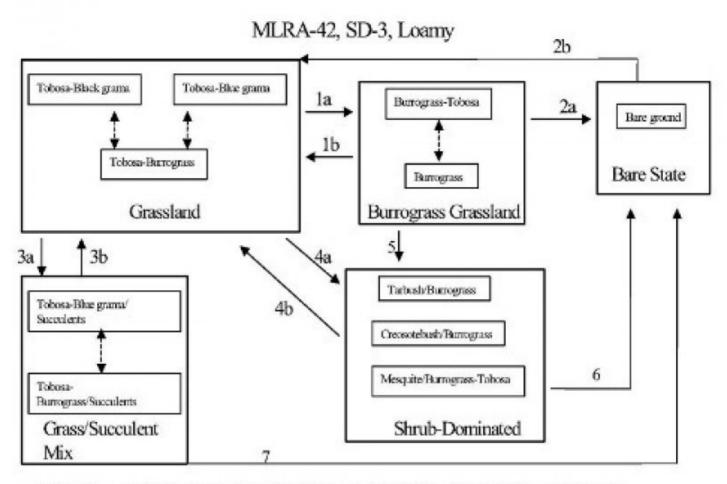
Ratliff

Holloman (gypsum)

Milner (gypsum)

Table 4. Representative soil features

Surface texture	(1) Loam (2) Very fine sandy loam (3) Silt loam
Family particle size	(1) Loamy
Drainage class	Well drained to somewhat excessively drained
Permeability class	Moderate to slow
Soil depth	30–72 in


Surface fragment cover <=3"	0–5%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	5–12 in
Calcium carbonate equivalent (0-40in)	0–10%
Electrical conductivity (0-40in)	0–8 mmhos/cm
Sodium adsorption ratio (0-40in)	0–6
Soil reaction (1:1 water) (0-40in)	6.6–8.4
Subsurface fragment volume <=3" (Depth not specified)	0–5%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

Overview: The Loamy site is associated with the Gyp Upland ecological site with which it intergrades. There is a pronounced increase in alkali sacaton along this interface. The loamy site is also associated with the Gravelly and Shallow ecological sites from which it receives run-on water. The Draw site often dissects Loamy sites and is distinguished from the Loamy site by increased production or greater densities of woody species. The historic plant community has a grassland aspect, dominated by grasses with shrubs and half-shrubs sparse and evenly distributed. Tobosa, black grama and blue grama are the dominant species. Retrogression within this state is characterized by a decrease in black and blue grama and an increase in burrograss. Continuous overgrazing and drought can initiate a transition to a Burrograss- Grassland state. Continued reduction in grass cover and resulting infiltration problems may eventually effect a change to a Bare State, with very little or no remaining grass cover. Alternatively, creosotebush, tarbush or mesquite may expand or invade. Transitions back to a Grassland State from a Bare or Shrub-Dominated state are costly and may not be economically feasible. Decreased fire frequency may play a part in the transition to the Grass/Succulent Mix state with increased amounts of cholla and prickly pear.

State and transition model

Plant Communities and Transitional Pathways (diagram)

- Ia. Soil drying, overgrazing, drought, soil surface sealing. Ib. Restore natural overland flow, increase infiltration, prescribed grazing.
- Severe reduction in cover, soil surface sealing, decreased infiltration, erosion. 2b. Restore hydrology, break up physical crust, range seeding, prescribed grazing.
- 3a. Lack of fire, overgrazing, hall storms or other physical disturbance, drought, 3b. Prescribed fire, brush control, prescribed grazing.
- 4a. Seed dispersal of shrubs, persistent loss of grass cover, competition by shrubs, lack of fire. 4b. Brush control, range seeding -dependent on amount of grass (seed bank) remaining.
- 5. Loss of grass cover, seed dispersal of shrubs, competition by shrubs.
- 6. & 7. Brush control with continued loss of grass cover, soil sealing, erosion.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

State Containing Historic Climax Plant Community Grassland: The historic plant community has a grassland aspect, dominated by grasses with shrubs and half-shrubs sparse and evenly distributed. Black grama, blue grama, and tobosa are the dominant grass species. There are a variety of perennial forbs and their production varies widely by season and year. Globemallow, verbena, groundsels, croton and filaree are forbs commonly found on this site. Fourwing saltbush and winterfat are two of the more palatable shrubs. The Loamy ecological site encompasses a

wide variety of soils, with surface textures ranging from sandy loams to clay loams. Soil depths range from shallow to very deep and can include sub surface features such as calcic, petrocalcic, and gypsic horizons. These variations cause differences in plant community composition and dynamics. Black grama is found at highest densities on coarser textured sandy loams, with blue grama preferring finer textured loam and silt loam, and tobosa favoring lower landscape positions and loam to clay loam surface textures. Burrograss may often be the dominant grass species on silty soils, perhaps in part due to the seedlings ability to auger into and establish on physically crusted soils. Gypsum influenced soils typically have greater amounts of tobosa, burrograss, and ephedra. There is greater representation of sideoats and vine mesquite within the tobosa-blue grama community. Retrogression under continuous heavy grazing results in a decrease of black grama, blue grama, sideoats grama, plains bristlegrass, bush muhly, cane bluestem, vine mesquite, winterfat, and fourwing saltbush. Species such as burrograss, threeawns, sand dropseed, sand muhly, and broom snakeweed increase under continuous heavy grazing or prolonged periods of drought. Under continued retrogression burrograss can completely dominate the site. Creosotebush, tarbush, and mesquite, can also dominate. Cholla and prickly pear can increase on areas that are disturbed or overgrazed. Diagnosis: Tobosa, black grama, and blue grama are the dominant species. Grass cover is uniformly distributed with few large bare areas. Shrubs are sparse and evenly distributed. Slopes range from level to gently sloping and usually display limited evidence of active rills and gully formation if plant cover remains intact. Litter movement associated with overland flow is limited to smaller size class litter and short distances. Other shrubs include: yucca, mesquite, tarbush, cholla and creosote bush. Other forbs include: desert holly, scorpionweed, bladderpod, flax, nama, fleabane, Indianwheat, Indian blanket flower, groundcherry, deerstongue, and rayless goldenrod.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	585	833	1080
Forb	39	55	72
Shrub/Vine	26	37	48
Total	650	925	1200

Table 6. Ground cover

Tree foliar cover	0%	
Shrub/vine/liana foliar cover	0%	
Grass/grasslike foliar cover	15-30%	
Forb foliar cover	0%	
Non-vascular plants	0%	
Biological crusts	0%	
Litter	25-30%	
Surface fragments >0.25" and <=3"	0%	
Surface fragments >3"	0%	
Bedrock	0%	
Water	0%	
Bare ground	40-50%	

Figure 5. Plant community growth curve (percent production by month). NM2807, R042XC007NM Loamy HCPC. R042XC007NM Loamy HCPC Warm Season Plant Community..

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	5	10	10	25	30	15	5	0	0

Burrograss-Grassland

Community 2.1 Burrograss-Grassland

Burrograss-Grassland: Changes in hydrology resulting in decreased available soil moisture, reduces grass cover and increases bare ground. Burrograss is the dominant grass. Tobosa cover is variable and can range from sizeable areas to small patches occupying only depressions or the lowest and wettest positions within the site. Threeawns, ear muhly, sand muhly, and fluffgrass occur at increased densities compared to the grassland state. Shrub densities may increase especially mesquite, creosotebush or tarbush. Retrogression within this state is characterized by a further decrease in grass cover and increased bare ground. Further deterioration of this site can result in the transition to a bare state or becoming shrub dominated. Diagnosis: Burrograss is the dominant species. Grass cover is no longer uniformly distributed, instead tending to be patchy with large areas of bare ground present. Physical crusts are present in bare areas reducing infiltration and suppressing seedling establishment by any grass species other than burrograss. Transition to Burrograss-Grassland (1a): Transitions from grassland to a burrograssgrassland state may occur due to changes in hydrology. Gullies, roads or obstructions that alter natural water flow patterns may cause this transition. Changes in surface hydrology may also occur due to overgrazing or drought. The reduction in grass cover promotes increased soil physical crusts and reduces infiltration. 5 Key indicators of approach to transition: ? Diversion of overland flow resulting in decreased soil moisture. ? Increase in amount of burrograss cover ? Reduction in grass cover and increase in size and frequency of bare patches. ? Formation of physical crusts—indicating reduced infiltration. ? Evidence of litter movement—indicating loss or redistribution of organic matter. Transition back to Grassland (1b) The natural hydrology of the site must be returned. Culverts, turnouts, or rerouting roads may help re-establish natural overland flow, if roads or trails have altered the hydrology. Erosion control structures or shaping and filling gullies may help regain natural flow patterns and establish vegetation if the flow has been channeled. Breaking up physical crusts by soil disturbance may promote infiltration and seedling emergence. Allow natural revegetation to take place. Prescribed grazing will help ensure proper forage utilization and reduce grass loss due to grazing.

State 3 Bare State

Community 3.1 Bare State

Bare State: Extremely low ground cover, soil degradation and erosion characterize this state. Very little vegetation remains. Burrograss is the dominant grass and cover is extremely patchy. Physical soil crusts are extensive. Erosion and resource depletion increase as site degrades. Diagnosis: Very little cover remains. Erosion is evident by soil sealing, water flow patterns, pedestals or terracettes. Rills and gullies may be present and active. Transition to Bare State (2a): Extended drought, continuous heavy grazing, or other disturbance that severely depletes grass cover can effect this transition. As grass cover decreases, sheet flow and erosion increase, and physical soil crusts form, thereby further reducing infiltration. Key indicators of approach to transition: ? Continued reduction in grass cover. ? Increased soil surface sealing. ? Increased erosion. ? Reduced aggregate stability in bare areas.

Transition back to Grassland (2b) Restore the hydrology, see (1a). With the extent of grass loss range seeding may be necessary. Utilizing livestock or mechanical means to break up the physical crusts may increase infiltration and aid seedling establishment. Prescribed grazing will help ensure adequate deferment period following seeding, and proper forage utilization once the grass stand is well established. The degree to which this site is capable of recovery depends on the restoration of hydrology, extent of degradation to soil resources, and adequate rainfall necessary to establish grasses.

State 4 Grass/Succulent Mix

Community 4.1 Grass/Succulent Mix

Grass / Succulent Mix: Increased representations of succulents characterize this site. Increased densities of cholla or pricklypear is recognized as a management concern, but their impact on grass production is unclear. Light to

medium cholla or prickly pear infestation doesn't seem to greatly reduce grass production, however it limits access to palatable grasses and interferes with livestock movement and handling. Tobosa and blue grama are the dominant species on this site. Retrogression within this site is characterized by a decrease in blue grama and an increase in succulents, tobosa and burrograss. Diagnosis: Cholla or prickly pear is found at increased densities. Grass cover is variable ranging from uniformly distributed to patchy with frequent areas of bare ground present. Tobosa or blue grama is the dominant grass species. Transition to Grass/Succulent Mix (3a): If fire was historically a part of desert grassland ecosystem and played a role in suppressing seedlings of shrubs and succulents, then fire suppression may favor the increase of succulents.1 Heavy grazing by livestock or other physical disturbances may help disseminate seed and increase the establishment of succulents. Areas historically overgrazed by sheep are sometimes associated with higher densities of Succulents. Intense hailstorms can spread pricklypear by breaking off joints causing new plants to take root.3 During severe drought perennial grass cover can decline significantly, leaving resources available for use by more drought tolerant succulents. Cholla and pricklypear are both adapted to and favored by drought due to the ability of their shallow, wide spreading root systems to absorb and store water.4 Key indicators of approach to transition: ? Decrease or change in distribution of grass cover. ? Increase in amount of succulent seedlings. ? Increased cover of succulents. Transition back to Grassland (3b) Fire is an effective means of controlling cholla and prickly pear if adequate grass cover remains to carry fire.2 Cholla greater than two feet tall or pricklypear with a large amount of pads (>15-20) are harder to kill. Chemical control is effective in controlling prickly pear and cholla; apply when growth starts in May. Hand grubbing is also effective if cholla or pricklypear is severed 2-4 inches below ground and care is taken not to let broken joints or pads take root. Stacking and burning piles and grubbing during winter or drought help keeps broken joints and pads from rooting. Prescribed grazing will help ensure proper forage utilization and sustain grass cover.

State 5 Shrub Dominated

Community 5.1 Shrub Dominated

Shrub Dominated: Increased shrub cover characterizes this state. Mesquite, creosotebush, and/or tarbush are the dominant shrub species. Burrograss or tobosa is the dominant grass species. Grass cover is decreased, typically patchy with large bare areas present; however, sometimes grass cover can remain relatively high for extended periods when associated with light to moderate infestations of mesquite. Variations in soil characteristics play a part in determining which shrub species increase. Mesquite is well adapted to a wide range of soil types, but increases more often on deep soils low in carbonates, that have a sandy surface overlying finer textured soils. Tarbush prefers finer textured, calcareous soils, usually in lower positions that receive some extra water. Creosotebush is less tolerant of fine textured soils, preferring sandy, calcareous soils that have some gravel. Creosotebush also does well on soils that are shallow over caliche. Retrogression within this state is characterized by a decrease in tobosa, and an increase in burrograss. As the site continues to degrade shrub cover continues to increase and grass cover is severely reduced. Diagnosis: Mesquite, Creosotebush, and/or tarbush are the dominant shrubs. Blue grama and black grama cover is low or absent. Burrograss or tobosa are the dominant grasses. Typically grass cover is patchy with large interconnected bare areas present. Physical soil crusts are present, especially on silt loam surface soils. Transition to Shrub Dominated (4a): Wildlife and livestock consume and disperse mesquite seeds. Flood events may wash creosote or tarbush seeds off adjacent gravelly sites onto the loamy site and supply adequate moisture for germination. Persistent loss of grass cover due to overgrazing or drought can cause large bare patches, providing competition free areas for shrub seedling establishment. As shrub cover increases, competition for soil resources, especially water, becomes a major factor in further reducing grass cover. Reduction of fire, due to either fire suppression policy or loss of adequate fine fuels may increase the probability of shrub encroachment. Increased soil surface physical crusts and associated decreased infiltration, may prevent the establishment of grass seedlings. Transition to Shrub Dominated (5): The dispersal of creosotebush, tarbush or mesquite seed, combined with loss of grass cover and resource competition by shrubs may cause this transition. Key indicators of approach to transition: ? Decreased grass and litter cover. ? Increased bare patch size. ? Increased physical soil crusts. ? Increased amount of mesquite, creosotebush, or tarbush seedlings. ? Increased shrub cover. Transition back to Grassland (4b) Brush control will be necessary to remove shrubs and eliminate competition for resources necessary for grass establishment or reproduction. Seeding may be necessary on those sites where desired grass species are absent or very limited. Pitting and seeding may increase the chances of successful grass establishment. Prescribed grazing will help ensure adequate time is elapsed before grazing seeded area is allowed and proper forage utilization following seeding establishment. Transition to Bare State (6): If grass cover on the shrub-dominated state is

severely limited and shrubs are removed a bare state may result. This transition will depend on amount of grasses or seed remaining, whether site is seeded, or if seeding is successful. Transition to Bare State (7): Removal of succulents and continued overgrazing or drought may cause loss of remaining grasses and erosion. Soil surface physical crusting may also be an important factor in inhibiting grass seedling establishment

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliai Cover (%)
Grass	/Grasslike				
1	Warm Season			278–324	
	tobosagrass	PLMU3	Pleuraphis mutica	278–324	
2	Warm Season	•		9–46	
	burrograss	SCBR2	Scleropogon brevifolius	9–46	_
3	Warm Season			231–278	
	black grama	BOER4	Bouteloua eriopoda	231–278	_
	blue grama	BOGR2	Bouteloua gracilis	231–278	
4	Warm Season			28–46	
	sideoats grama	BOCU	Bouteloua curtipendula	28–46	
5	Warm Season			46–93	
	bush muhly	MUPO2	Muhlenbergia porteri	46–93	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	46–93	_
6	Warm Season			9–28	
	Arizona cottontop	DICA8	Digitaria californica	9–28	_
7	Warm Season		-	46–93	
	threeawn	ARIST	Aristida	46–93	
	muhly	MUHLE	Muhlenbergia	46–93	
	sand dropseed	SPCR	Sporobolus cryptandrus	46–93	
8	Warm Season	<u> </u>	1	28–46	
	Graminoid (grass or grass-like)	2GRAM	Graminoid (grass or grass-like)	28–46	
Shrub	/Vine	<u> </u>	<u> </u>		
9	Shrub			9–28	
	fourwing saltbush	ATCA2	Atriplex canescens	9–28	
	jointfir	EPHED	Ephedra	9–28	
	winterfat	KRLA2	Krascheninnikovia lanata	9–28	
	cane bluestem	BOBA3	Bothriochloa barbinodis	5–24	
	Arizona cottontop	DICA8	Digitaria californica	5–24	
	plains bristlegrass	SEVU2	Setaria vulpiseta	5–24	
10	Shrub	l	,	9–28	
	javelina bush	COER5	Condalia ericoides	9–28	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	9–28	
	Grass, annual	2GA	Grass, annual	5–15	
11	Shrubs		.,	9–28	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	9–28	
Forb	,	1	1	0 20	

12	Forb			9–46	
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	9–46	_
	globemallow	SPHAE	Sphaeralcea	9–46	_
	verbena	VEPO4	Verbena polystachya	9–46	_
	broom snakeweed	GUSA2	Gutierrezia sarothrae	5–15	_
	pricklypear	OPUNT	Opuntia	5–15	_
13	Forb			9–28	
	croton	CROTO	Croton	9–28	_
	woolly groundsel	PACA15	Packera cana	9–28	_
14	Forb	9–28			
	Goodding's tansyaster	MAPIG2	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	9–28	_
	woolly paperflower	PSTA	Psilostrophe tagetina	9–28	_
15	Forb			9–28	
	redstem stork's bill	ERCI6	Erodium cicutarium	9–28	_
	Texas stork's bill	ERTE13	Erodium texanum	9–28	_
16	Forb	9–28			
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass- like)	9–28	_

Animal community

This site provides habitats which support a resident animal community that is characterized by pronghorn antelope, black-tailed jackrabbit, black tailed prairie dog, yellow-faced pocket gopher, banner-tailed kangaroo rat, hispid cotton rat, swift fox, burrowing owl, horned lark, mockingbird, meadowlark, mourning dove, scaled quail, Great Plains toad, plains spadefoot toad, prairie rattlesnake and western coachwhip shake.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations

Soil Series Hydrologic Group

Atoka C

Bigetty B

Ratliff B

Reyab B

Holloman B

Largo B

Holloman B

Bigetty B

Berino B

Reagan B

Reakor B

Reeves B

Russler C

Recreational uses

This site offers limited potential for hiking, horseback riding, nature observation and photography. Game bird, antelope and predator hunting are also limited.

Wood products

This site has no potential for wood products

Other products

This site is suitable for grazing by all kinds and classes of livestock, during all seasons of the year. Under retrogression, such plants as black grama, blue grama, sideoats grama, bush muhly, plains bristlegrass, Arizona cottontop, fourwing saltbush and winterfat decrease and there is an increase in burrograss, threeawns, sand dropseed, muhlys, broom snakeweed and javilinabush. Under continued retrogression, burrograss can completely dominate the site. Creosotebush, mesquite, and tarbush can also dominate. Grazing management alone will not improve the site in the above situation. This site is well suited to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month

Similarity Index Ac/AUM 100 - 76 3.0 - 4.2 75 - 51 4.1 - 5.5 50 - 26 5.3 - 7.0 25 - 0 7.1 +

Inventory data references

Other References:

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County Lea County and Chavez County.

Other references

Literature References:

- 1. Brooks, M.L., AND D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America. Pages 1–14 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species.
- 2. Bunting, S.C., H.A. Wright, and L.F. Neuenschwander. 1980. Long-term effects of fire on cactus in the Southern Mixed Prairie of Texas. J. Range. Manage. 33: 85-88.
- 3. Laycock, W.A. 1982. Hail as an ecological factor in the increase of prickly pear cactus. p. 359-361. In: J.A. Smith and V.W. Hays (eds.) Proc. XIV Int. Grassland Congr. Westview Press, Boulder, Colo.
- 4. Vallentine, J.F. 1989. Range Developments and Improvements. 3rd Edition. Academic Press. San Diego, California.
- 5. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheet. Rangeland Soil Quality—Physical and Biological Soil Crusts. Rangeland Sheet 6, [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

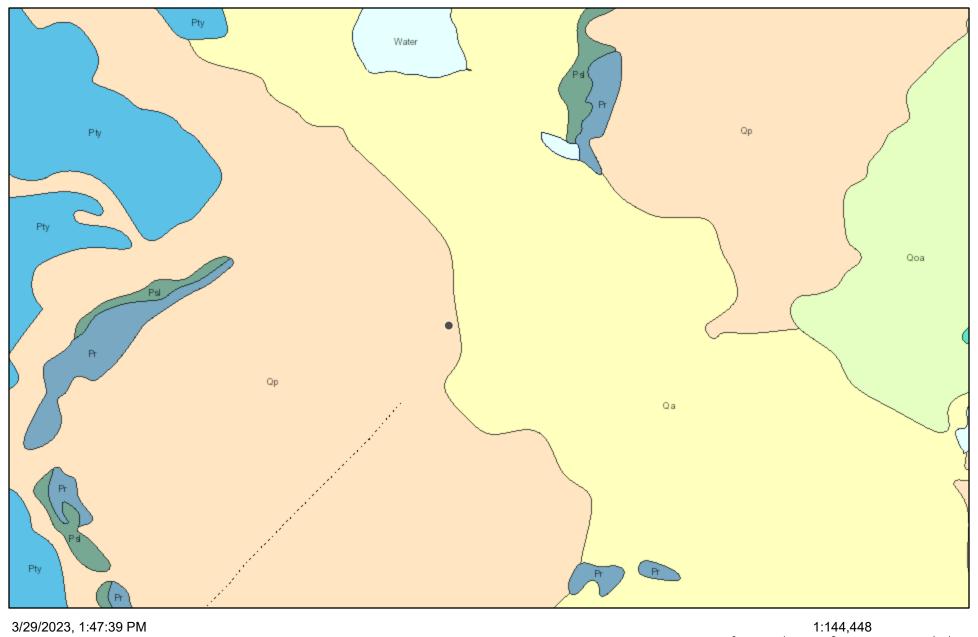
Contributors

David Trujillo Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production


Inc	ndicators		
1.	Number and extent of rills:		
2.	Presence of water flow patterns:		
3.	Number and height of erosional pedestals or terracettes:		
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):		
5.	Number of gullies and erosion associated with gullies:		
6.	Extent of wind scoured, blowouts and/or depositional areas:		
7.	Amount of litter movement (describe size and distance expected to travel):		
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):		
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):		

10. Effect of community phase composition (relative proportion of different functional groups) and spatial

ecei	Page 63 of
	distribution on infiltration and runoff:
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant:
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
14.	Average percent litter cover (%) and depth (in):
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:

17. Perennial plant reproductive capability:

Bindel 4 Fee 1H Qp

Lithologic Units

Playa—Alluvium and evaporite deposits (Holocene)

Water—Perenial standing water

Qa—Alluvium (Holocene to upper Pleistocene)

1:144,448 0 1 2 4 mi 0 1.5 3 6 km

Esri, NASA, NGA, USGS, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System,

ArcGIS Web AppBuilde

Table 1. Closure Criteria Worksheet			
Site Name: BINDEL 4 FEE 1 BATTERY			
Spill Coordinates: 32.336466, -104.188824	_		
Site Specific Conditions	Value	Unit	
1 Depth to Groundwater	<50	feet	
Within 300 feet of any continuously flowing			
2 watercourse or any other significant	1,108	feet	
watercourse			
Within 200 feet of any lakebed, sinkhole or playa			
3 lake (measured from the ordinary high-water	49,474	feet	
mark)			
Within 300 feet from an occupied residence,	705	feet	
school, hospital, institution or church	703	reet	
i) Within 500 feet of a spring or a private, domest	2,136	feet	
5			
ii) Within 1000 feet of any fresh water well or	998	feet	
spring	336	leet	
Within incorporated municipal boundaries or			
within a defined municipal fresh water field		(Y/N)	
covered under a municipal ordinance adopted	No		
pursuant to Section 3-27-3 NMSA 1978 as	No		
amended, unless the municipality specifically			
approves			
7 Within 300 feet of a wetland	20,909	feet	
8 Within the area overlying a subsurface mine	No	(Y/N)	
		Critical	
O Mühi a a a a dahla a a a (Masal Masa)	na di di	High	
9 Within an unstable area (Karst Map)	Medium	Medium	
		Low	
40 William 400 mm 51 m 1 m 1 m	500		
10 Within a 100-year Floodplain	500	year	
11 Soil Type	Reagan Loam		
11 Зоп турс			
12 Ecological Classification	Loamy		
13 Geology	Qp	Piedmont alluvial deposits	
NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'		

APPENDIX C – Daily Field and Sampling Report(s)

Client:	Devon Energy Corporation	Inspection Date:	10/17/2023
Site Location Name:	Bindel 4 Fee Battery	Report Run Date:	10/17/2023 3:38 PM
Client Contact Name:	Jim Raley	API #:	30-015-45042
Client Contact Phone #:	575-748-0176	_	
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
Summary of Times			
Arrived at Site	10/17/2023 9:22 AM		

Field Notes

- **9:22** Arrived on site and filled out safety paperwork.
- **9:31** Conducted liner and containment inspection and assessment.

10/17/2023 9:40 AM

- **9:32** All areas of lined containment were walked and inspected for holes, tears, punctures, failures, and breaches from both the inside and outside of the containment.
- **9:34** No holes, punctures, tears, or breaches were found either inside or outside the lined containment area. Both the containment walls and the internal containment liner were found to be in good condition and were determined to meet standards set by the state.
- **9:35** No maintenance or repair tasks are recommended for this liner.

Next Steps & Recommendations

1

Departed Site

Site Photos

Viewing Direction: South

Liner in northwestern part of containment.

Liner in northeastern part of containment.

Viewing Direction: South

Liner in central part of containment.

Viewing Direction: South

Western Lined containment area.

Eastern lined containment area.

Liner in northwestern part of containment.

Liner in southwestern part of containment.

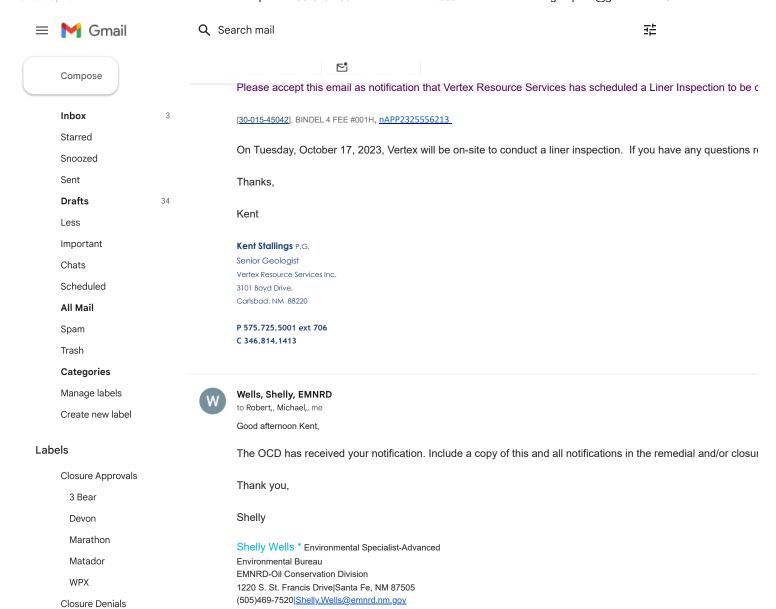
Liner in southern portion of containment.

Liner in southern portion of containment.

Liner in southeastern part of containment.

Liner in eastern part of containment.

Liner in central part of eastern area of containment between battery tanks.



Daily Site Visit Signature

Inspector: Hunter Klein

Signature:

APPENDIX D – Notification(s)

http://www.emnrd.state.nm.us/OCD/

Devon Marathon Page 75 of 76

Incident ID	napp2325556213
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC		
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	s of the liner integrity if applicable (Note: appropriate OCD District office	
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)	
Description of remediation activities		
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rehuman health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in	
Printed Name: Dale Woodall Title: Env. Professional		
Signature: Dale Woodall	Date:	
email:dale.woodall@dvn.com	Telephone: 575-748-1838	
OCD Only		
Received by:	Date:	
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.	
Closure Approved by:	Date:	
Printed Name:	Title:	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 288167

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	288167
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
amaxwell	None	11/28/2023