

September 14, 2023

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Deferral Request

Becknell State Com 003H

Incident Number NAPP2318741823

Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared this *Deferral Request* to document assessment and soil sampling activities performed at the Becknell State Com 003H (Site). The purpose of the Site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil following a release of crude oil within a lined containment at the Site. Based on field observations, field screening activities, and soil sample laboratory analytical results, COG is submitting this *Deferral Request*, describing Site assessment and delineation activities that have occurred and requesting deferral of final remediation for Incident Number NAPP2318741823 until the Site is reconstructed, and/or the well pad is abandoned.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit K, Section 05, Township 21 South, Range 33 East, in Lea County, New Mexico (32.5073°, -103.5965°) and is associated with oil and gas exploration and production operations on State Land managed by the New Mexico State Land Office (NMSLO).

On June 25, 2023, a loose connection on a hammer union resulted in the release of approximately 138.2209 barrels (bbls) of crude oil into the lined containment. A vacuum truck was dispatched to the Site to recover free-standing fluids; approximately 116 bbls of crude oil were recovered. COG removed saturated pea gravel within the containment and backfilled with clean material. COG reported the release immediately via email to the New Mexico Oil Conservation Division (NMOCD) and submitted a *Release Notification Form C-141* (Form C-141) on July 6, 2023. The release was assigned Incident Number NAPP2318741823.

Since the release remained within a lined containment on the active well pad, an assessment of cultural properties had already been completed prior to the construction of the well pad and as such, the Cultural Properties Protection Rule (CPP) has been followed. No additional cultural resource surveys were completed in connection with this release. The release area is not expected to be reclaimed until the oil and gas well is plugged and abandoned and the well pad is reclaimed. The Reclamation Plan for this release will default to the NMSLO-approved Reclamation Plan for the well pad per 19.2.100.67 of the New Mexico Administrative Code (NMAC).

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 601 North Marienfeld Street | Midland, TX 79701 | ensolum.com COG Operating, LLC Deferral Request Becknell State Com 003H

Page 2

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized for applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the NMAC. Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be between 51 feet and 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth to groundwater data is United States Geological Survey (USGS) well 322955103342801, located approximately 1.4 miles southeast of the Site. The groundwater well has a reported depth to groundwater of 128.75 and a total depth of 147 feet bgs.

There are nine water wells located between 1.4 miles and 4 miles of the Site indicating regional depth to groundwater is greater than 55 feet bgs. There are no surface features, such as watercourses, ponds, wetlands, or vegetation indicative of shallow groundwater near the Site. Based on the number of wells surrounding the Site, a consistent pattern of depth to groundwater that corresponds to topography and, therefore, underlying geology, it is evident that groundwater is deep and a conservative estimate of between 51 and 100 feet bgs is estimated. All wells used for depth to groundwater determination are presented on Figure 1. The referenced well records and a map showing the distance to surrounding wells are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is an intermittent stream, located approximately 3,091 feet southeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization and a conservative depth to groundwater estimate, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

SITE ASSESSMENT ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

A 48-hour advance notice of the liner inspection was provided via email on July 5, 2023, to the NMOCD. A liner integrity inspection was conducted by Ensolum personnel on July 21, 2023. Upon inspection, the liner was determined to be insufficient. Four delineation soil samples (SS01 through SS04) were collected around the lined containment at a depth of 0.5 feet bgs to confirm the lateral extent of the release.

On August 3, 2023, one borehole (BH01) was advanced via hand auger at the location of the tear in the liner to assess for the presence or absence of impacted soil. Discrete delineation soil samples BH01 and BH01A were collected from the borehole at depths of 0.5 feet and 1-foot bgs. Hand auger refusal

COG Operating, LLC Deferral Request Becknell State Com 003H

Page 3

was encountered at a depth of 1-foot bgs. The delineation soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips. Field screening results and observations from the borehole were documented on a lithologic/soil sampling log, which is included as Appendix B. The borehole was backfilled with the soil removed and COG repaired the tear in the liner. The delineation soil sample locations are depicted on Figure 2. Photographic documentation was conducted at the Site. A photographic log is included in Appendix C.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analyses of the following constituents of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for delineation soil samples SS01 through SS04, collected around the lined containment, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and successfully defined the lateral extent of the release. Laboratory analytical results for delineation soil sample BH01, collected at 0.5 feet bgs beneath the tear in the liner, indicated TPH-GRO/TPH-DRO concentrations exceeded the Site Closure Criteria. Laboratory analytical results for delineation soil sample BH01A, collected at 1-foot bgs beneath the tear in the liner, indicated all COC concentrations were compliant with the Site Closure Criteria and defined the vertical extent of the release. Due to hand auger refusal at 1-foot bgs beneath the lined containment, vertical delineation to below the most stringent Table 1 Closure Criteria was not able to be achieved. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix D.

DEFERRAL REQUEST

COG is requesting a deferral of final remediation due to the presence of active production equipment and surface pipelines within the lined containment. The impacted soil is limited to the area immediately beneath the lined containment and active production equipment, where remediation would require a major facility deconstruction.

The impacted soil remaining in place beneath the liner is delineated vertically by delineation soil sample BH01A, collected at 1-foot bgs, and laterally by delineation soil samples SS01 through SS04. A maximum of 268 yards of TPH impacted soil remains in place beneath the liner assuming a maximum 1-foot depth based on the delineation soil samples listed above, that were compliant with the Site Closure Criteria.

COG does not believe deferment will result in imminent risk to human health, the environment, or groundwater. Depth to groundwater has been estimated to be between 51 feet and 100 feet bgs, the release was contained laterally by the lined containment, and the impacted soil remaining in place is limited to the area immediately beneath the liner. The liner has been repaired by COG which will restrict future vertical migration of residual impacts.

Based on the presence of active production equipment within the release area and the complete lateral and vertical delineation of impacted soil remaining in place, COG requests deferral of final remediation for Incident Number NAPP2318741823 until final reclamation of the well pad or major construction, whichever comes first.

COG Operating, LLC Deferral Request Becknell State Com 003H

Page 4

If you have any questions or comments, please contact Ms. Hadlie Green at (432) 557-8895 or hgreen@ensolum.com.

Sincerely, **Ensolum, LLC**

Hadlie Green

Project Geologist

Aimee Cole

Senior Managing Scientist

cc: Jacob Laird, COG Operating, LLC

New Mexico State Land Office

Appendices:

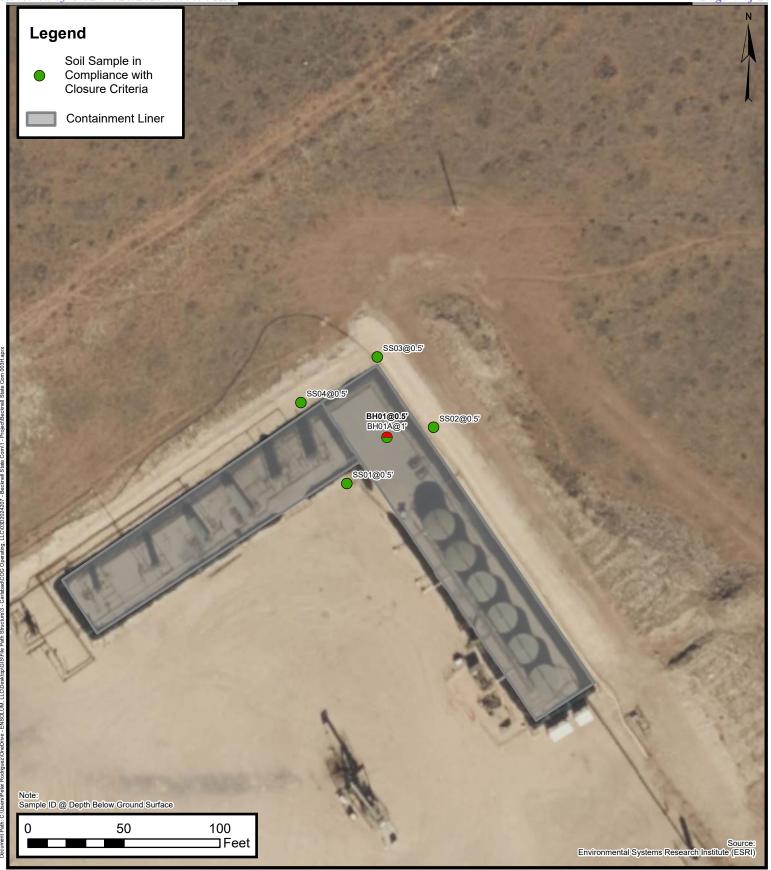
Figure 1 Site Receptor Map

Figure 2 Delineation Soil Sample Locations
Table 1 Soil Sample Analytical Results
Appendix A Referenced Well Records
Appendix B Lithologic/Soil Sampling Log

Appendix C Photographic Log

Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix E NMOCD Notifications


Appendix F Final C-141

FIGURES

Lea County, New Mexico

Released to Imaging: 12/11/2023 4:27:29 PM

Delineation Soil Sample Locations

COG Operating, LLC
Becknell State Com 003H
Incident Number: NAPP2318741823

Unit K, Section 5, T21S, R33E Lea County, New Mexico **FIGURE**

2

TABLES

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS

Becknell State Com 003H COG Operating, LLC Lea County, New Mexico

													
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)			
NMOCD Table I	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	10,000			
	Delineation Soil Samples												
SS01	07/21/2023	0.5	<0.00202	<0.00403	<49.8	<49.8	<49.8	<49.8	<49.8	282			
SS02	07/21/2023	0.5	<0.00198	<0.00397	<50.0	<50.0	<50.0	<50.0	<50.0	81.4			
SS03	07/21/2023	0.5	<0.00199	<0.00398	<50.4	<50.4	<50.4	<50.4	<50.4	103			
SS04	07/21/2023	0.5	<0.00200	<0.00399	<50.3	<50.3	<50.3	<50.3	<50.3	111			
BH01	08/03/2023	0.5	<0.00198	0.157	96.0	1,920	<50.1	2,016	2,020	337			
BH01A	08/03/2023	1	<0.00201	0.0264	<49.6	735	<49.6	735	735	406			

Notes:

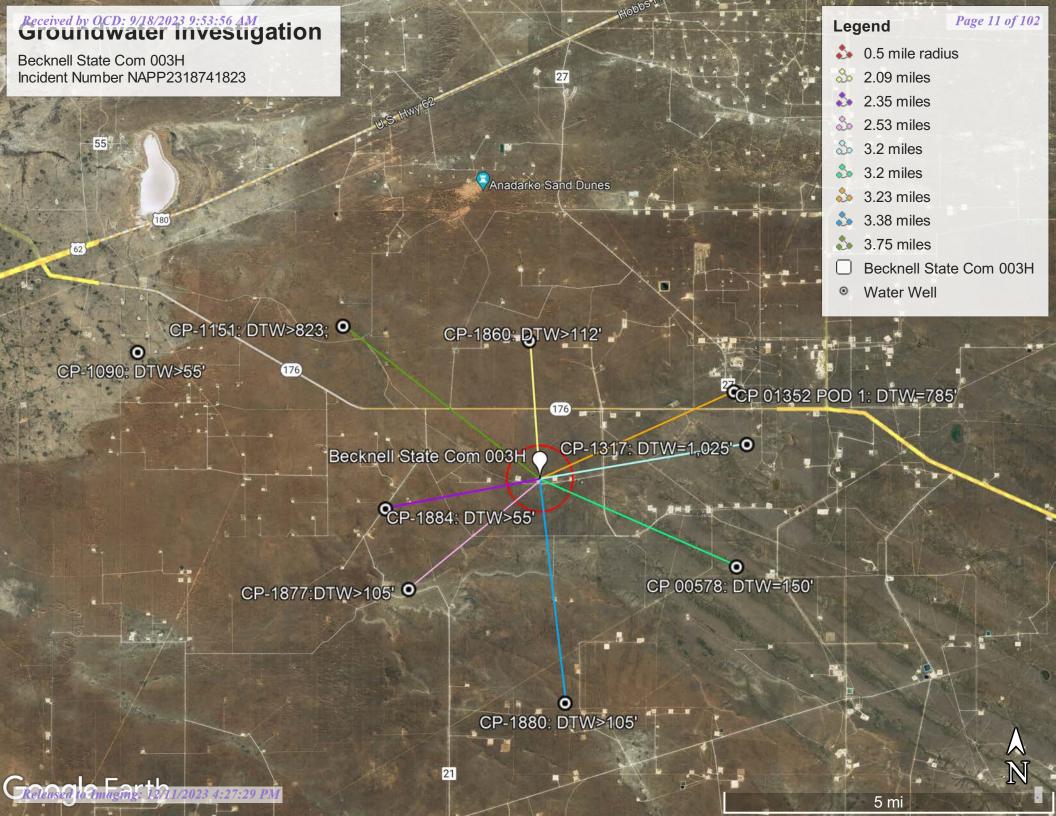
bgs: below ground surface mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division NMAC: New Mexico Administrative Code

NE: Not Established

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics


TPH: Total Petroleum Hydrocarbon

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation standard where applicable.

APPENDIX A

Referenced Well Records

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 322955103342801

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 322955103342801 21S.33E.04.43430

Lea County, New Mexico

Latitude 32°29'55", Longitude 103°34'28" NAD27

Land-surface elevation 3,837 feet above NAVD88

The depth of the well is 147 feet below land surface.

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measure
1972-10-02		D	62610		3706.21	NGVD29	1	Z		
1972-10-02		D	62611		3707.84	NAVD88	1	Z		
1972-10-02		D	72019	129.16			1	Z		
1976-12-29		D	62610		3706.62	NGVD29	1	Z		
1976-12-29		D	62611		3708.25	NAVD88	1	Z		
1976-12-29		D	72019	128.75			1	Z		

Expl	ana	tion
------	-----	------

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface

Section	Code	Description
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	Α	Approved for publication Processing and review completed.

<u>Questions or Comments</u> <u>Automated retrievals</u> <u>Help</u> <u>Data Tips</u> Explanation of terms Subscribe for system changes <u>News</u>

FOIA Accessibility Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-07-03 14:58:07 EDT

0.29 0.25 nadww02

,										
NOI	OSE POD NO POD1 (B		.)	n/a	ELL TAG ID NO.		OSE FILE NO() C-1260	"CP-186	0	
OCAT	WELL OWN			*****			PHONE (OPTIO	ONAL)		
WELLI	WELL OWN 6401 Holid						CITY Midland		STATE	ZIP
GENERAL AND WELL LOCATION	WELL	N LA	DE	EGREES 32°	MINUTES SECO	NDS 33" N	ACCURACY	REQUIRED: ONE TENT	TH OF A SECOND	
TERA	(FROM GI	PS) LO	NGITUDE	-103°	35' 56.	38" W	* DATUM REC	QUIRED: WGS 84		
1. GE	DESCRIPTION SW SE Se		NG WELL LOCATION TO S R34E	STREET ADDRESS	AND COMMON LANDS	iarks – pls	S (SECTION, TO	wnshjip, range) wh	ERE AVAILABLE	
	LICENSE NO		NAME OF LICENSED		rie D. Atkins	•		NAME OF WELL DRI Atkins Eng	LLING COMPANY ineering Associates, I	nc.
	DRILLING S 02/25/		DRILLING ENDED 02/25/2021	DEPTH OF COMPL temporary	eted well (FT) well material	1	LE DEPTH (FT) 112	DEPTH WATER FIRS	T ENCOUNTERED (FT)	
z	COMPLETE	D WELL IS:	ARTESIAN	DRY HOLE	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPLETED WE 11/a	LL (FT)
ATT0	DRILLING F	LUID:	☐ AIR	☐ MUD	ADDITIVES – SPE	CIFY:				
ORM	DRILLING M	ÆTHOD:	ROTARY	HAMMER CABLE TOOL OTHER			R – SPECIFY:	Hollow Stem Auger		
2. DRILLING & CASING INFORMATION	DEPTH FROM	(feet bgl)	BORE HOLE DIAM (inches)	(include each	TERIAL AND/OR RADE casing string, and ions of screen)	CON	ASING NECTION TYPE ling diameter)	CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)
& CA	0	112	±6.5		ing- HSA	(auu coup			-	
NG.										
RILL						<u> </u>				-
2. D				 						
						<u></u>		·		
	DEPTH	(feet bgl)	BORE HOLE	LIST	ANNULAR SEAL MA	ATERIAL A	AND	TO AMOUNE	о от метно	D OF
ITAL	FROM	то	DIAM. (inches)	GRAVEI	L PACK SIZE-RANG	E BY INTE	RVAL	(cubic feet)	PLACEN	
ANNULAR MATERIAL							· · · · · · · · · · · · · · · · · · ·			
R M			.							
ULA		. <u></u>								
ANN										
ю.										
				1					· ·	
	OSE INTER	NAL USE P - 1 86	<u>C</u>		POD NO.	1	WR-20	1	と LOG (Version 06/3	0/17)
_	ATION	32	3 T20	S R3		2	WELL TAG II	7/7	PAGE	1 OF 2
					•					

	DEPTH (f	feet bgl)		COLOR AND TYPE OF MATERIAL ENCOUNTERED -		ESTIMATED
			THICKNESS	INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES	WATER BEARING?	YIELD FOR WATER-
	FROM	TO	(feet)	(attach supplemental sheets to fully describe all units)	(YES/NO)	BEARING
					ļ	ZONES (gpm)
	0	2	2	Caliche, tan, off-white, no odor, no stain, gravel, dry	Y ✓ N	
	2	6	4	Sand, brown, no odor, no stain, m-f, well sorted, trace silt, dry	Y ✓N	
	6	15	9	Sandy clay, brown, moist, no odor, no stain, m-f, well sorted, no plasticty, no co	h y √n	
	15	21	6	Clayey sand, tan-brown, moist, no odor, no stain, m-f, well sorted, cohesive, lo	w Y ✓N	
	21			Caliche w/ sand, tan, off-white, no odor, no stain, m-f grain, well sorted, dry	Y ✓N	
]		40	19	23-gravel caliche 37-increase in sand content	Y ✓N	
WE	40	44	44	Sand w/ caliche, tan, brown, m-f grain, well sorted, no odor, no stain, dry	Y ✓N	
OF	44	58	14	Sandstone, mod. consolidation, m-f grain, increasing caliche tan/brown, dry,	Y ✓N	
90'	58	65	7	Clayey sand, brown, dry, m-f grain, well sorted, cohesive, medium plasticity	Y √N	
101	65	78	13	Claystone, no odor, no stain, high plasticity, cohesive, brown, moist	Y /N	
9	78	79	2	med-f grain sand stringer	Y √N	
EO	79	108	29	Claystone, no odor, no stain, high plasticity, cohesive, brown, moist	Y ✓N	
HYDROGEOLOGIC LOG OF WELL	108	109	1	fine grain sand stringer	Y VN	
2	109	112	3	Claystone, no odor, no stain, high plasticity, cohesive, brown, moist	Y VN	
4. F					YN	
				V	YN	
					YN	
						·
					Y N	
		_			Y N	
					Y N	
					Y N	
	METHOD U	SED TO ES	TIMATE YIELD		TAL ESTIMATED	
	PUMI	P Al	R LIFT	BAILER OTHER - SPECIFY:	ELL YIELD (gpm):	0.00
		TEST	RESULTS - ATT	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUD	TNC DISCUARCE	(ETHOD
No.	WELL TEST	STAR	TIME, END TI	ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T	HE TESTING PERIO	D.
VISION	MISCELLAI	VEOUS INF	ORMATION			
ER		· LOOD II (I	Te	emporary well materials removed and the soil boring backfilled using dreat below ground surface, then hydrated bentonite chips from ten feet below.	ill cuttings from tot	al depth to ten
SUP				ogs adapted from WSP on-site geologist.	ow ground surrace	to surface.
RIG				ngr p	II MAR 11 2021	OC: Neg
TEST; RIG SUPER						
	PRINT NAM	TE(S) OF DE	NILL RIG SUPER	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTR	JCTION OTHER TH	AN LICENSEE:
.5.	Shane Eldric	ige				
	TUE LIMBER	OCICNED U	EDEDY CERTIF	THE THAT TO THE DEST OF HIS OR HED KNOW EDGE AND DELVE	WIE FOREGODIC V	G A SERVICE AND
E	CORRECT F	RECORD OF	THE ABOVE D	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, IESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECO	RD WITH THE STA	TE ENGINEER
D.	AND THE P	ERMIT HOI	LDER WITHIN 3	0 DAYS AFTER COMPLETION OF WELL DRILLING:		
SN	Jack At	Kins		Jackie D. Atkins	03/09/2021	
6. SIGNATURE	/			Jackie D. Akilis	03/09/2021	
		SIGNAT	JRE OF DRILLE	R / PRINT SIGNEE NAME	DATE	
FOE	OSE INTERI	JAI IICE		Win AA WITTE	COND & LOC C'	
	ENO.		60	POD NO. / TRN NO. /	SCORD & LOG (Ver	
	CATION	323	720		MA	PAGE 2 OF 2
-					v . v . v . v . 1	

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

682530

File Nbr:

CP 01860

Well File Nbr: CP 01860 POD1

Apr. 08, 2021

TACOMA MORRISSEY WSP USA 3300 NORTH A STREET BLDG 1 #222 MIDLAND, TX 79705

Greetings:

The above numbered permit was issued in your name on 12/01/2020.

The Well Record was received in this office on 03/11/2021, stating that it had been completed on 02/25/2021, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 12/01/2021.

If you have any questions please feel free to contact us.

indrew Dennis (575)622-6521

drywell

WELL OWNER MARKER) ASCRIEBENTEY WELL OWNER MARKER) ASCRIEBE MINITES SECONDS LOCATION IN LICATION DECREES MINITES SECONDS LOCATION FLATTURE 32 30 3.18 N **ACCURACY REQUIRED: ONE TENTH OF A SECOND LOCATION FLATTURE 103 38 10.22 W **DATION REQUIRED: ONE TENTH OF A SECOND LOCATION FLATTURE 103 38 10.22 W **DATION REQUIRED: ONE TENTH OF A SECOND LOCATION FLATTURE 103 38 10.22 W **DATION REQUIRED: ONE TENTH OF A SECOND LOCATION FLATTURE 103 38 10.22 W **DATION REQUIRED: ONE TENTH OF A SECOND LOCATION FLATTURE FROM TO GONERATE WILL GET THE COMPANY Affairs Regimenting Associates, Inc. DESCRIPTION FLATTURE	z	OSE POD NO		NO.)			WELL TAG ID NO.			OSE FILE NO(S).			
SW SW SW Sec. 01 T21S R32E	ATI0	WELL OWN	ER NAME	(S)							ONAL)			
SW SW SW Sec. 01 T21S R32E	гос													
SW SW SW Sec. 01 T21S R32E	WELL			NG ADDR	ESS								80127	ZIP
SW SW SW Sec. 01 T21S R32E	L AND		on L	.ATITUDE					1 2	ACCURACY	REQUIRED: ONE TENT	TH OF A	SECOND	
SW SW SW Sec. 01 T21S R32E	ERA	(FROM GI	25)		•	103	38	10.	.22 W	DATUM REC	QUIRED: WGS 84			
PRILING STARTED PRILING STARTES PRILING STARTE	- 1	Ī				STREET ADD	RESS AND COMMON	LANDM	IARKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WHI	ERE AVA	ILABLE	
O9/08/2021 O9/08/2021 temporary well material 55		•		NAM	AE OF LICENSED		Jackie D. Atkins	*		·				nc.
COMPLETED WELL IS: ARTESIAN DEPTH (Feet bg) DEPTH (Feet bg) DEPTH (Feet bg) TO 55 246.5 Boring-HSA DEPTH (Feet bg) DEPH		!			1				BORE HO		DEPTH WATER FIRS			
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	N	COMPLETE	D WELL IS	s: []	ARTESIAN	DRY HO	LE SHALLOV	W (UNC	ONFINED)	-	STATIC WATER LEV			LL (FT)
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	ATIC	DRILLING F	LUID:		AIR	☐ MUD	ADDITIVI	ES – SPE	CIFY:					4
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	ORM	DRILLING N	ÆTHOD:		ROTARY	П намме	R CABLE TO	OOL	OTHE	R – SPECIFY:	Hollo	w Stem	Auger	
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	INF			— '	BORE HOLE	CASING		/OR			1			1
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	ASING	200				each casing string,	and	l 1	TYPE					
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	& C	0	55		±6.5		Boring- HSA							
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	NI			_										
DEPTH (feet bgl) FROM TO DIAM. (inches) BORE HOLE GRAVEL PACK SIZE-RANGE BY INTERVAL GRAVEL PACK SIZE-RANGE BY INTERVAL OSE DII SEP 28 (0.21 m·C)(0). FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1864 POD NO. 1 TRN NO. GQQ CF+1	RIL					 	<u></u>							
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) PLACEMENT OCCUPIED SEP 20 FOR 1 FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1884 POD NO. 1 TRN NO. GOOG ST	2. D									*				
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) PLACEMENT OCCUPIED SEP 20 FOR 1 FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1884 POD NO. 1 TRN NO. GOOG ST														
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) PLACEMENT OCCUPIED SEP 20 FOR 1 FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1884 POD NO. 1 TRN NO. GOOG ST														
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) PLACEMENT OCCUPIED SEP 20 FOR 1 FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1884 POD NO. 1 TRN NO. GOOG ST			<u> </u>								Ī			
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) PLACEMENT OCCUPIED SEP 20 FOR 1 FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1884 POD NO. 1 TRN NO. GOOG ST														·
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) PLACEMENT OCCUPIED SEP 20 FOR 1 FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP - 1884 POD NO. 1 TRN NO. GOOG ST		DEDTU	(feet hal)			T	IOT AND THAN OF	AT 344	TERMAL		ALCOUNT	<u> </u>		
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP-1884 POD NO. 1 TRN NO. 690 571	¥.		1	— n		1								
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP-1884 POD NO. 1 TRN NO. 690 571	ERL	TROM	10					·						
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP-1884 POD NO. 1 TRN NO. 690 571	MAT							-		· · · · · · · · · · · · · · · · · · ·				
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP-1884 POD NO. 1 TRN NO. 690 571	AR													
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP-1884 POD NO. 1 TRN NO. 690 571	NUL			-							DOE DIT SEP			
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/17) FILE NO. CP-1884 POD NO. 1 TRN NO. 690 571	AN.													
FILE NO. CP-1884 POD NO. 1 TRN NO. 699 871	3													
FILE NO. CP-1884 POD NO. 1 TRN NO. 699 871	EOP	OSE Dates	L	l					·	W/D 2	NELL BECORD	MI OC	Version 06/2	0/17)
LOCATION 215-32E-01 333 WELL TAG ID NO. N/A PAGE 1 OF 2														
	LOC	ATION)	15-	32 t	2-01	333)			WELL TAG I	DNO. WIF		PAGE	1 OF 2

	DEPTH (i	feet bgl) TO	THICKNESS (feet)	INCLUDE W	VATER-BEARIN	G CAVITIES C	ENCOUNTERED - OR FRACTURE ZONI (escribe all units)	ŝs	WATE BEARIN (YES/1	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)	
1	0	9	9		Sand, Medium/fir	e, with some c	aliche, Red		Y	√ N		
1	9	14	5	S	Sand, Medium/fine	, with some cal	liche, Brown		Y	✓ N		
	14	24	10		Caliche with Med	lium/fine sannd	, Off white		Y	√ N		
	24	34	10	S	Sand, Medium/fine	, with some cal	liche, Brown		Y	√ N		
	34	55	21		Caliche with Med	lium/fine sannd	, Off white		Y	√ N		
4									Y	N		
4. HYDROGEOLOGIC LOG OF WELL									Y	N		
Q.									Y	N		
8									Y	N		
5									Y	N		
Š									Y	N		
									Y	N		
Š									Y	N		
					•				Y	N		
4									Y	N		
									Y	N		
									Y	N		
									Y	N		
									Y	N		
									Y	N		
									Y	N		
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEA	ARING STRATA:			1	AL ESTIMA			
	PUM	P A	IR LIFT	BAILER	OTHER – SPE	CIFY:		WEI	LL YIELD ((gpm):	0.00	
ISION	WELL TES	T TEST STAR	RESULTS - ATT I TIME, END TI	ACH A COPY OF ME, AND A TABI	DATA COLLEC	TED DURING SCHARGE AN	WELL TESTING, IN ID DRAWDOWN OV	CLUDI ER TH	NG DISCHA E TESTING	ARGE I	METHOD, DD.	
TEST; RIG SUPERVIS												
TES	PRINT NAM	(E(S) OF D	RILL RIG SUPER	VISOR(S) THAT	PROVIDED ON	SITE SUPERVI	ISION OF WELL CO	ISTRU	CTION OTI	IER TH	IAN LICENSEE:	
s,	Shane Eldri	dge, Camei	on Pruitt and C	armelo Trevino			0	SE DI	T SEP 29	3 2021	10:Emq	
6. SIGNATURE	CORRECT I	RECORD OF ERMIT HO	F THE ABOVE I		E AND THAT HI	OR SHE WIL	OWLEDGE AND BEI L FILE THIS WELL LING:					
S. SIGN	Jack.	Atkins			Jackie D. Atk	ins			09/27/2	2021		
		SIGNAT	URE OF DRILLE	ER / PRINT SIG	NEE NAME				Е	DATE		
	FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/30/2017)											
FIL	ENO.CP	-189	54		POD NO.	1	TRN NO.	60	Q8=	17		
LO	CATION 2	15-3	52 iE-0	1 33	<u> </u>		WELL TAG ID NO	N	/ K		PAGE 2 OF 2	

		,												
	OSE POD NO.		.)	1	WELL TAG ID NO.			OSE FILE NO	• •					
Z	POD1 (TW	7-1)		r	ı∕a			C 1877	CP-1877					
Ĕ	WELL OWNER	NAME(S)		L				PHONE (OPT				·		
AND WELL LOCATION	Advanced E							832.672.47						
ן אַ	WELL OWNER	MAIL ING	ADDDESS					CITY		STATE		ZIP		
31	11490 West							Houston		TX	77077	211		
M	11170 1100						Houston			,,,,,,				
£	WELL		DE	GREES	REES MINUTES SECONDS									
Γ¥	LOCATION	TAT	TITUDE	32	28	59.€	54 N	* ACCURAC	ACCURACY REQUIRED: ONE TENTH OF A SECOND					
GENERAL	(FROM GPS		IIIODE	103	37	47.4		* DATUM RE	QUIRED: WGS 84					
E	(00000000000000000000000000000000000000	LO	NGITUDE	103		47.5	+0 W	<u> </u>	· · · · · · · · · · · · · · · · · · ·					
GE	DESCRIPTION	N RELATIN	G WELL LOCATION TO	STREET ADDRE	SS AND COMMON	LANDMA	ARKS – PLS	SS (SECTION, TO	OWNSHJIP, RANGE) WI	IERE AVAII	LABLE			
1.	SE NE NW	Sec. 13	Γ21S R32E											
				 	· · · · · · · · · · · · · · · · · · ·									
	LICENSE NO.		NAME OF LICENSED		-1-1- D A41-1				NAME OF WELL DR					
	1249	,		Ja	ckie D. Atkins	i			Atkins En	gneering A	Associates, I	nc.		
	DRILLING ST		DRILLING ENDED		PLETED WELL (F		BORE HO	LE DEPTH (FT)	DEPTH WATER FIR		NTERED (FT)			
	09/21/2	021	09/21/2021	tempora	ry well materia	al		105		n/a				
									STATIC WATER LE	VEL IN CON	IPLETED WE	LL (FT)		
₇₋	COMPLETED	WELL IS:	ARTESIAN	DRY HOLE	SHALLO	W (UNCO	NFINED)			n/a				
0	DRILLING FL	IID.	AIR	□ MUD	ADDITIV	/ES – SPEC	IFY:	······································						
DRILLING & CASING INFORMATION					CABLE T			IER – SPECIFY: Hollow Stem Auger						
8	DRILLING ME	THOD:	ROTARY	HAMMER	_ CABLE I	OOL	IN OTHE	R - SPECIF I:	HOIN	JW SIGIII	Augei	-		
Ž	DEPTH (1	eet bgl)	BORE HOLE	CASING M	IATERIAL ANI	O/OR		ASING	CASING	CASTN	G WALL	SLOT		
61	FROM	то	DIAM		GRADE			NECTION	INSIDE DIAM.		KNESS	SIZE		
SIS			(inches)					ГУРЕ	(inches)	(in	ches)	(inches)		
S	0	105	±6.5		oring- HSA	' 	(add coup	ling diameter)	 	+				
8	-	105	+0.5	Bornig- NSA						 				
Z			_						ļ	ļ				
										<u> </u>				
2.														
														
					<u>.</u>					+				
			+											
							÷		+	+		 		
				<u> </u>					<u> </u>	<u> </u>		L		
	DEPTH (feet bgl)	BORE HOLE	LIS	r annular si	EAL MA	TERIAL A	AND	AMOUNT		метно	D OF		
1	FROM	то	DIAM. (inches)	GRAV	EL PACK SIZE	-RANGE	BY INT	ERVAL	(cubic feet)		PLACEN			
Z Z	PROM	10												
E	-													
X														
A.														
þ														
ANNULAR MATERIAL														
3. A									USE DIT U	QT 2 <u> </u> 2 2	1021 PM2)	45		
							**.	<u>.</u> '						
										0.7.00.5	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0/150		
	OSE INTERN		22		BODIT	`		- I	20 WELL RECORD	& LOG (ersion 06/3	U/17)		
<u> </u>	NO.		77	70-	POD NO			TRN	NO. (44)	<u>ا بر</u>				
LOC	ATION Y	lon	215.	クムヒ・1	3.124	†		WELL TAG	ID NO.	_	PAGE	1 OF 2		

	DEPTH (i	feet bgl)	THICKNESS (feet)	INCLUDE WAT	ND TYPE OF MATER-BEARING Cupplemental shee	AVITIES O	R FRAC	TURE ZONE	s	WATI BEARII (YES / I	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	19	19		Caliche, consolida	ted with sand	l. White			Y	√ N	DOTADO (Spin)
	19	29	10		Sand, Fine-grained		<u> </u>			Y	√ N	
	29	105	76		Fine-grained, poor					Y	√N	
									1	Y	N	
								<u> </u>		Y	N	
ų										Y	N	
4. HYDROGEOLOGIC LOG OF WELL										Y	N	
OF.										Y	N	
00										Y	N	
<u> </u>										Y	N	
3										Y	N	
8										Y	N	
8										Y	N	
\(\varphi \)										Y	N	
4										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
							,			Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARI	NG STRATA:					AL ESTIM		
	PUM	P A	IR LIFT	BAILER	OTHER - SPECIF	Y:			WEL	L YIELD	(gpm):	0.00
NOISI	WELL TES			ACH A COPY OF DA								
TEST; RIG SUPERVIS	MISCELLA	NEOUS INF	fe	emporary well mate et below ground su ogs adapted from W	rface, then hydra	ted bentoni						
TES	PRINT NAN	(E(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PR	OVIDED ONSIT	E SUPERVI	SION O	F WELL CON	STRUC	CTION OT	HER TH	IAN LICENSEE:
Ş.	Shane Eldri	dge, Carme	elo Trevino, Can	neron Pruitt								
SIGNATURE	CORRECT	RECORD O	F THE ABOVE I	FIES THAT, TO THE DESCRIBED HOLE A SO DAYS AFTER CO	AND THAT HE O	R SHE WIL	L FILE	THIS WELL I	RECOR	D WITH T	THE STA	
6. SIGN	Jack K	tkins		:	Jackie D. Atkins					10-22-	2021	
ڀّ		SIGNAT	URE OF DRILLE	ER / PRINT SIGNE	E NAME		_			1	DATE	
FOI	R OSE INTER	NAL USE						WR-20 WF	LL RFO	CORD & I	OG (Ve	rsjon 06/30/2017)
	E NO.	P-19	377		POD NO.			TRN NO.	7	1990	30	/
LO	CATION /	non	21	5.32E.	13.124		WELL	TAG ID NO.				PAGE 2 OF 2

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	POD NUME	BER (WE	LL N	JMBER)					OSE FILE NUI	MBER(S)				
Z	CP - 13	17								[
Ĕ	WELL OWN	VER NAN	ИE(S)				•			PHONE (OPTI	ONAL)			·
CA				nn's Water	Well S	Service, In	c.			(575)398	-2424			
ר די	WELL OW									CITY		STATE		ZIP
GENERAL AND WELL LOCATION	P.O. Bo	x 692								Tatum		NM	88	267
N Q					DEC	REES	MINUTES	SECO	MDS	<u> </u>				
A N	WELL				DEG	32	30		3.76 N	* ACCURACY	REQUIRED: ONE TER	TH OF A SEC	COND	
AL.	LOCATI		LAT	TTUDE							QUIRED: WGS 84			
NER	(FROM G	irs)	LON	IGITUDE		103	32	3	3.60 W					
E	DESCRIPT	ION REL	ATIN	G WELL LOCAT	ION TO S	STREET ADDRI	ESS AND COM	MON LANDA	MARKS					
i i														
	(2,5 ACI	DE)		(10 ACRE)	(4	10 ACRE)	(160 A	ACRE)	SECTION		TOWNSHIP	· · · · · · · · · · · · · · · · · · ·	RANGE	
			N'		SV		NE	*	Decitor	2	21	NORTH	33	✓ EAST
NAI	ŞUBDIVISI	/4		W 1/4	٥,	N 1/4	INL	1/4	LOT NUM		BLOCK NUMBER	✓ ѕо∪тн	UNIT/TRA	CT WEST
OPTIONAL	SOBDIVISI	ON NAIV	1E				LOI NOW	IDEK	BEOCK NOWBER			C1		
	HYDROGR	APHIC S	IRVE	Y			*		<u> </u>		MAP NUMBER		TRACT NU	MBER
.2				- "					.5					
	LICENSE NUMBER NAME OF LICENSED DRILLER										NAME OF WELL D	PILLING CON	APA NV	
		юмвек 1421		Corky Gle		KILLEK			Glenn's Wate			.C.		
				_		DEBTH OF COA	BORE HO	LE DEPTH (FT)	DEPTH WATER FO		·			
	DRILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) BC 5/9/14 5/15/14 1250'									250'	DELTH WATERIE	102		
ION		,, 1-		0,10,1					<u>'</u>		STATIC WATER LE			.l. (FT)
DRILLING INFORMATION	COMPLETE	ED WELI	L IS:	✓ ARTESIA	N	DRY HOLE	: SHA	LLOW (UNC	ONFINED)			22 2		()
ORIV	-										1	·		
INF	DRILLING	FLUID:		AIR		MUD		ITTVES – SPE			· · ·			
NG	DRILLING	METHO	D;	ROTARY		HAMMER	CAB	LE TOOL	ОТНІ	ER – SPECIFY:			·	
ITI	DEPT	H (FT)		BORE HO	1		CASING		1	NECTION	INSIDE DIA.		G WALL	SLOT
DRI	FROM	TC)	DIA. (IN)	N	IATERIAL		TYPE	(CASING)	CASING (IN)		IESS (IN)	SIZE (IN)
€.	0	40		20"			16"		<u> </u>	none	15 1/2"	+	250	
	0	101	7'	14 3/4"			9 5/8"		Thread	l and collar	8.921"	.3	52	
1.												. 		
									<u> </u>			<u> </u>		
	DEPT	H (FT)		THICKNE	ss [F					ATER-BEARING			YIELD
\TA	FROM	TC		(FT)			(INCLUD				R FRACTURE ZOI	NES)	2014	(GPM)
TR	1025'	121	2'	187'				Brown	Sand Ro	ck, Santa R	osa Sand			50
G S													7	
RIN													~	
EA	FROM TO (FT) (INCLUDE WATER-BEAR 1025' 1212' 187' Brown Sand												27	
ZR E													7-	
ATE	METHOD U	JSED TO	ESTI	MATE YIELD OF	WATER	-BEARING STR	ATA				TOTAL ESTIMATE	D WELL YIEL	D (GPM)	
4. W													Ö	
4											<u> </u>		-5-	
	FOR OSE	INTE	RNA	L USE							WELL RECO	RD & LOG	(Version 6	/9/08)
	FILE NU		7	7/2	TT		PC	DD NUMBI	BR	1	TRN NUMBI		PO	
				<i>ر رو</i> ر						7 7		۱۰۰۰	PAGE 1	OF 2
	LOCATION Exp $2/5.33E.2.23/$ PAGE 1 OF 2											-		

IMP	TYPE O	F PUMP:	✓ SUBMERSIBLE ☐ TURBINE DEPTH (FT)		☐ JET ☐ CYLINDER	☐ NO PUMP – WELL NOT EQUIPPED ☐ OTHER – SPECIFY:				
SEAL AND PUMP	ANNU	ПAR	DEPTH FROM	TO	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METHO PLACE		
(AL	SEAL	AND	0	40'	20"	cemented	2 yds	Тор	Pour	
5. SI	GRAVE	L PACK	0	1017'	14 3/4"	Float and shoe cemented to surface	740 sacks	Circu	lated	
				L						
	DEPT	H (FT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUNTE	RED	WA.	ΓER	
	FROM	TO	(F7	Γ)	(INCLI	JDE WATER-BEARING CAVITIES OR FRACTU	RE ZONES)	BEAR		
	0	2	2	<u>. </u>		Soil		☐ YES	☑ NO	
	_2	29	2	7		Caleche		☐ YES	☑ NO	
	29	115	86	3		Sand		☐ YES	☑ NO	
	115	320	20	15		Red Clay with Rock Ledges		☐ YES	☑ NO	
Ţ	320	728	40	8	3	Red Clay and Brown Shale	111000	☐ YES	☑ NO	
WEI	728	760	32	2		Red Clay		☐ YES	☑ NO	
OF	760	1025	26	5		Red and Brown Shale(some Blue)		☐ YES	Ø NO	
90	1025 1048 23 Brown Sand Rock									
101	1048 1212 164 Santa Rosa Sand								□ NO	
GEOLOGIC LOG OF WELL	1212	1250	38	3		Brown Shale and Sand Rock		☐ YES	☑ NO	
EO							 	☐ YES	□ NO	
6. 6								☐ YES	□ NO	
		_						☐ YES	□NO	
,		_				, , , , , , , , , , , , , , , , , , ,		☐ YES	□ NO	
	- <u>-</u>							YES	□ NO	
į						·		YES	□NO	
	ļ			<u> </u>		- <u></u>		☐ YES	□ NO	
		<u> </u>	ATTACH	ADDITION	AL PAGES AS NE	EEDED TO FULLY DESCRIBE THE GEOLOGIC I	OG OF THE WELL	<u> </u>		
			METHOD:	BAILE	R ☑ PUMP	☐ AIR LIFT ☐ OTHER – SPECIFY:				
INFO	WELL	TEST		LTS - ATTA	CH A COPY OF D	NATA COLLECTED DURING WELL TESTING, IN		ME, END T	ME,	
NAI	4 DDITION		<u></u>		TO DISCHARGE I	THE TESTING FERO				
& ADDITIONAL			TENTS OR EXPL d with mud.		1250' drilled	with air and foam.				
ADI										
T &										
TEST										
7.		-								
-	THEUN	DERSIGNI	ED HEREBY (CERTIFIES T	THAT TO THE BE	ST OF HIS OR HER KNOWLEDGE AND BELIEF	THE FOREGOING I	S A TRUE A	ND	
SIGNATURE	CORREC	T RECOR	D OF THE AB	OVE DESCI	RIBED HOLE ANI	O THAT HE OR SHE WILL FILE THIS WELL RECON OF WELL DRILLING:				
NAT	07			//	. TER COM EST					
SIG	17	an	0 XTX	ans		5/22/2014				
86			SIGNATUR	E OF DRILI	ER	DATE				

FOR OSE INTERNAL USE		i (Version 6/9/08)	
FILE NUMBER	POD NUMBER	TRN NUMBER	_
LOCATION			PAGE 2 OF 2

Revised June 1972

" "80 HAR 15 PH 1 14

STATE ENGINEER OFFICE WELL RECORD

SANTA EE

STATE ENGINEER OFFICE Section 1. GENERAL INFORMATION Owner of well Merchant Livestock Company Owner's Well No. Street or Post Office Address Box 548 City and State ____ Carlsbad, New Mexico 88220 Well was drilled under Permit No. _____CP_578 _____ and is located in the: 21-5 ____ ¼ <u>SE</u> ¼SH ¼ ____ ¼ of Section <u>11</u> Township <u>X33 E</u> b. Tract No.____ of Map No. ____ of the ____ c. Lot No. _____ of Block No. _____ of the_ Subdivision, recorded in _____ Co feet, N.M. Coordinate System___ ___ feet, Y=__ _Zone in (B) Drilling Contractor W. L. Van Noy License No. WD-208 P.O. Box 74 Oil Center, New Mexico 88266 Drilling Began Jan 1, 1979 Completed Jan 6, 1979 Type too Spudder Size of hole 8" in. at well is _____ ft. Total depth of well _____ Elevation of land surface or _____ Completed well is shallow artesian. Depth to water upon completion of well ______150\ Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Estimated Yield Description of Water-Bearing Formation (gallons per minute) From To 165 15 Sand & gravel 150 Section 3. RECORD OF CASING Depth in Feet Perforations / Diameter Pounds Threads Length , Type of Shoe (inches) per foot per in. Тор From To Bottom 160 145 welded 150 150 none Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole. Sacks Cubic Feet Method of Placement Diameter of Cement From Section 5. PLUGGING RECORD Plugging Contractor _ Address . Depth in Feet Cubic Feet No. Plugging Method. Bottom of Cement Date Well Plugged_ Plugging approved by: 3 State Engineer Representative 4 FOR USE OF STATE ENGINEER ONLY Date Received January 10, 1979 Quad _____ FWL ____ Use STOCK Location No. 21.33.11.34000

Received by OCD: 9/18/2023 9:53:56 AM Section 6. LOG OF HOLE Depth in Feet Thickness Color and Type of Material Encountered in Feet From Tö 💉 00 top soil 5 30 25 caliche 30 45 : 15 sandy shale & calighe 45 150 105 firm KKKKX sandy shale 150 165 15 sand & gravel 165 red clay. STATE ENGINEER OFFICE ROSWELL, N. M. Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

W. L. Van Than Driller O

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and examined to the appropriate district office of the State Engineer. All sections, exceeding Section 5, shall be answered as completely accurately as possible when any well is Released to Imaging of 299192023 When this porm is used as a plugging record, only Section 1(a) and Section 5 need be completed.

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**

Q64 Q16 Q4 Sec Tws Rng

CP 01352 POD1

421

20S

636559 3599716

Driller Name: GLENN, CLARK A."CORKY"

Drill Start Date: 07/29/2016 **Drill Finish Date:**

Pipe Discharge Size:

Driller Company:

07/30/2016 **Plug Date:**

GLENN'S WATER WELL SERVICE

Log File Date:

Driller License:

08/09/2016

PCW Rcv Date:

Source: Artesian **Estimated Yield:** 42 GPM

Pump Type: Casing Size:

6.50

Depth Well:

1270 feet **Depth Water:** 785 feet

Water Bearing Stratifications: **Bottom Description** Top

> 999 Sandstone/Gravel/Conglomerate 1022 Sandstone/Gravel/Conglomerate 1085 Sandstone/Gravel/Conglomerate 1107 Sandstone/Gravel/Conglomerate Sandstone/Gravel/Conglomerate 1128

1234 1270 Shale/Mudstone/Siltstone

Casing Perforations:

Bottom Top

947 1270

SEAMETRICS

Meter Serial Number: 12 210 740

17856

Meter Multiplier:

1.0000

Number of Dials:

Meter Type:

Meter Make:

Diversion

Unit of Measure: Usage Multiplier:

Meter Number:

Barrels 42 gal.

Return Flow Percent: Reading Frequency:

Monthly

Meter Readings (in Acre-Feet)

Read Date	Year	Mtr Reading	Flag	Rdr Comment	Mtr Amount Online
12/31/2016	2016	20083	A	ap	0
01/31/2017	2017	20352	A	ap	3.467
03/01/2017	2017	24169	A	ap	49.199
04/01/2017	2017	24169	A	ap	0
05/01/2017	2017	24169	A	ap	0
06/01/2017	2017	24169	A	ap	0
06/30/2017	2017	50671	A	ap	341.593
07/31/2017	2017	73096	A	ap	289.043
10/31/2017	2017	128138	A	ap	709.454
11/30/2017	2017	138961	A	ap	139.501
12/29/2017	2017	138961	A	ap	0
01/31/2018	2018	198987	A	ap	773.695
02/28/2018	2018	219209	A	ap	260.648
03/30/2018	2018	236399	A	ap	221.568
04/30/2018	2018	254856	A	ap	237.898

2018	260493	A	ap	72.657
2018	265385	A	ap	63.055
2018	265385	A	ap	0
2018	265385	A	ap	0
2018	265385	A	ap	0
2018	265385	A	ap	0
2018	265385	A	ap	0
2019	273371	A	ap	102.934
2019	282740	A	Ap	120.760
2019	303670	A	Ap	269.774
2019	318821	A	Ap	195.286
2019	318821	A	Ap	0
2019	323078	A	RPT	0.549
2019	330695	A	RPT	0.982
2019	335482	A	RPT	0.617
2019	345706	A	RPT	1.318
2019	365264	A	RPT	2.521
2019	387964	A	RPT	2.926
2020	404703	A	RPT	2.158
2020	404703	A	RPT	0
2020	404703	A	RPT	0
2020	404703	A	RPT	0
2020	404703	A	RPT	0
2020	410299	A	RPT	0.721
2020	413825	A	RPT	0.454
2020	413825	A	WEB	0 X
2020	415371	A	WEB	0.199 X
2020	415371	A	RPT	0
2020	0	A	RPT	0
2021	0	A	ad	0
2021	0		ad	0
				0
			ad	0.114
			ad	0.005
				0.020
				0.003
				0
				0
				0.058
				0.015
				0.111
				0
				0
				0.008
				0
				0.712
				0.138
2022	15325	A	WEB	1.125 X
2022	20225	Α	WEB	0.632 X
	2018 2018 2018 2018 2018 2018 2018 2019 2019 2019 2019 2019 2019 2019 2019	2018 265385 2018 265385 2018 265385 2018 265385 2018 265385 2019 273371 2019 282740 2019 303670 2019 318821 2019 318821 2019 330695 2019 335482 2019 335482 2019 345706 2019 387964 2020 404703 2020 404703 2020 404703 2020 404703 2020 404703 2020 413825 2020 413825 2020 415371 2020 415371 2020 415371 2020 4020 2021 0 2021 0 2021 0 2021 107 2021 107 2021 1674	2018 265385 A 2019 273371 A 2019 282740 A 2019 303670 A 2019 318821 A 2019 323078 A 2019 335482 A 2019 335482 A 2019 345706 A 2019 365264 A 2019 387964 A 2020 404703 A 2020 404703 A 2020 404703 A 2020 404703 A 2020 413825 A 2020 415371 A 2020 415371 A 2021 0 A 2021 0 A 2021	2018 265385 A ap 2019 273371 A ap 2019 282740 A Ap 2019 303670 A Ap 2019 318821 A Ap 2019 323078 A RPT 2019 335482 A RPT 2019 335482 A RPT 2019 345706 A RPT 2019 345706 A RPT 2019 387964 A RPT 2020 404703 A RPT 2020 404703 A RPT 2020 404703 A RPT 2020 413825 A RPT 2020 415371

11/01/2022	2022	20286	A	WEB
12/01/2022	2022	20286	A	WEB
01/01/2023	2022	20286	A	WEB
02/01/2023	2023	20286	A	WEB
03/01/2023	2023	20286	A	WEB
04/01/2023	2023	20286	A	WEB
05/01/2023	2023	20286	A	WEB
06/01/2023	2023	20286	A	WEB
07/01/2023	2023	20286	A	WEB
08/01/2023	2023	20286	A	WEB
× **VTD Met	er Amounts:	Vear		Amount
**YTD Mete	er Amounts:			Amount
**YTD Met	er Amounts:	2016		0
**YTD Met	er Amounts:	2016 2017		0 1532.257
**YTD Met	er Amounts:	2016		0
**YTD Met	er Amounts:	2016 2017		0 1532.257
**YTD Met	er Amounts:	2016 2017 2018		0 1532.257 1629.521
**YTD Met	er Amounts:	2016 2017 2018 2019		0 1532.257 1629.521 697.667
**YTD Met	er Amounts:	2016 2017 2018 2019 2020		0 1532.257 1629.521 697.667 3.532

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/6/23 11:14 AM

POINT OF DIVERSION SUMMARY

	OSE POD NO	•	VO.)			WELL	TAG ID NO.			OSE F	ILE NO(S).				
GENERAL AND WELL LOCATION	POD1 (T					n/a				CP-1						
'AT	WELL OWNE										E (OPTI					
ğ	Advanced 1	Energy	Partn	ers						832.6	72.470	10				
1	WELL OWNE									CITY			STAT	E		ZIP
VE	11490 Wes	theime	Rd.	Stuit 950						Hous	ton		TX		77077	
Į ė		i		DE	GREES	MIN	TUTES	SECOND	s							
¥	WELL LOCATIO	N .			32	:	27	30.43	N	• ACC	URACY	REQUIRED: ONE TEN	TH OF A	A SEC	OND	
KA	(FROM GP	s)	ATITU	•	103		35	22.44		* DAT	TUM RE	QUIRED: WGS 84				
NE	· ·	1	ONGI							<u> </u>						
5					STREET ADDI	RESS AN	D COMMON	LANDMAR	KS – PLS	SS (SECT	10N, TO	WNSHJIP, RANGE) WE	ERE A	/AIL	ABLE	
1	SE SE NE	Sec. 30	T21S	S R33E												
	LICENSE NO. NAME OF LICENSED DRILLER NAME OF WELL DRILLING COMPANY															
	1249 Jackie D. Atkins										Atkins Eng				nc.	
]										LE DEPI	TI (1975)	DEPTH WATER FIR				
	10/08/		٦	10/08/2021			ell materia		OKE HU	105	H(F1)	DEPIH WATER FIR		/a	ieked (Fi)	
ļ l																
	COMPLETED WELL IS: ARTESIAN I DRY HOLE SHALLOW (UNCONFIN									STATIC WATER LEVEL IN COMPLETED WELL (FT)					LL (FI)	
ON										Ша						
ATI	DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY:															
2. DRILLING & CASING INFORMATION	DRILLING M	ETHOD:	Γ.	ROTARY	HAMME!	R ∏	CABLE T	LE TOOL OTHER - SPECIFY:			CIFY:	Hollow Stem Auger				
YFC	DEPTH	(feet bgl	<u> </u>	BORE HOLE	CASING	MATE	RIAL AND	/OR				CASING	Ta	CASING WALL		
l B	FROM	ТО	_	DIAM		GRA				ASING NECTIO	าท	INSIDE DIAM.	1		S WALL KNESS	SLOT SIZE
				(inches)	(include each casing string, and note sections of screen)					ГҮРЕ		(inches)		(inc	hes)	(inches)
CA	0	105	+	±6.5	Boring- HSA			add coup	ung cuan	neter)	-	+		<u> </u>		
8	<u> </u>				Boring- HSA										! 	
Ž						·							+			<u></u>
			\dashv										1			
I G													┼			
7					-								ļ <u> </u>			
													 			
												a dula 100 all	11111	3777	O mail 173	
			\rightarrow		ļ							USE UII NI	13 6	4.112	T 2/17)
					ļ											<u> </u>
								<u> </u>				<u> </u>	<u></u>			<u></u>
	DEPTH	(feet bgl	T	BORE HOLE	Li	ST AN	NULAR SE	AL MAT	ERIAL	AND		AMOUNT			метно	D OF
¥	FROM	ТО		DIAM. (inches)	GRA	VEL P	ACK SIZE	RANGE E	Y INT	ERVAL		(cubic feet)			PLACEN	
RE														_		
ATI																
ANNULAR MATERIAL	Z															
🛂																
			\dashv		 											
					 	-										
Б																
L			i		<u> </u>							l	i			
FOR	OSE INTER	NAL US									WR-2	0 WELL RECORD	& LO	<u> </u>	ersion 06/3	0/17)
FILE	NO.	<u> 1</u> μ-	· /&	580			POD NO		! 		TRN	NO. <i>(099)</i>	10	4		
LOC	LOCATION 215.33E, 20.443									WELL	TAG I	D NO.		,	PAGE	1 OF 2

	DEPTH (1	eet bgl)		COLOR AND	D TYPE OF MATERIAL EN	ICOI IN	TEPEN		777.47	mr.n	ESTIMATED
			THICKNESS		D I TPE OF MATERIAL EF R-BEARING CAVITIES OF			s	WA' BEAR		YIELD FOR WATER-
	FROM	TO	(feet)		plemental sheets to fully de				(YES	/NO)	BEARING ZONES (gpm)
	0	9	9	Calic	he, with fine-grained sand, V	Vhite/Ta	n		Y	√N	
	9	19	10	Sand, Fine-gra	ined, poorly graded, with Ca	liche, T	an/Brown		Y	√N	
:	19	105	86	Sand, F	ine-grained, poorly graded,	Tan/Bro	own		Y	√N	
				-					Y	N	
									Y	N	
ı,									Y	N	
WEI		•							Y	N	
OF									Y	N	
Ö									Y	N	
101									Y	N	
9									Y	N	
OH:									Y	N	
4. HYDROGEOLOGIC LOG OF WELL		 							Y	N	
QX.									Y	N	
4									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
						-			Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING	STRATA:			TOT	AL ESTIN	AATED	
	PUM	P A	IR LIFT	BAILER OT	HER – SPECIFY:			WEI	T AIETE	(gpm):	0.00
VISION	WELL TES	TEST STAR	RESULTS - ATT T TIME, END TII	ACH A COPY OF DAT ME, AND A TABLE SH	A COLLECTED DURING VIOWING DISCHARGE AN	WELL 1 D DRAV	ESTING, INC	CLUDI ER TH	NG DISC E TESTIN	HARGE I	METHOD, D.
	MISCELLA	NEOUS INF	ORMATION: Te	emnorary well materia	als removed and the soil b	oring b	ackfilled usi	ne dril	cutting	from to	tal denth to ten
TEST; RIG SUPER			fe	et below ground surfa	ce, then hydrated bentonit	te chips	from ten fee	t belo	w ground	d surface	to surface.
C SU											
; R							Ý.	39E (JUN IIC	12 202:	61:6M4
TEST	PRINT NAN	(E(S) OF DI	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERVIS	SION OI	WELL CON	STRU	CTION O	THER TH	AN LICENSEE:
5.	Shane Eldri	dge, Carme	elo Trevino, Can	neron Pruitt							
					EST OF HIS OR HER KNO						
TURE					D THAT HE OR SHE WILI PLETION OF WELL DRILI		THIS WELL I	RECOR	D WITH	THE STA	TE ENGINEER
6. SIGNATURE	Jack A	tkins		Jac	kie D. Atkins				10/29	9/2021	
6. S	<u> </u>	SIGNAT	URE OF DRILLE	R / PRINT SIGNEE I	NAME					DATE	
	R OSE INTER	NAL USE			DOD NO	1		LL RE	CORD &	LOG (Ve	rsion 06/30/2017)
—	E NO.				POD NO.		TRN NO.				PACE A OF A
LLO	CATION					WELL	TAG ID NO.				PAGE 2 OF 2

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

STATE ENGINEER OFFICE

-						.9	11 100 011	A Incra	
	OSE POD NUM	MBER (WELL	NUMBER)			OSE FILE NU	MBER(S)	7	
GENERAL AND WELL LOCATION						C	LP-115	_	
ATI	WELL OWNER	R NAME(S)	1 '	110 011 1	11	PHONE (OPTI	ONAL)		
O	Caza	2 UD	erating	inc, Kichard	Wright	•			
1	WELL OWNE	R MAILING A	DDRESS	5 ,	0	CITY	1)	STATE	ZIP
WEI	200	No	rth Lo	maine		Mlid	and. Tx	79	701
9	WELL		DEGREES	MINUTES SECON	DS		1 11	-	
[A]	LOCATION	LATIT	UDE 32	32 0.4	46N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SECOND	
RA	(FROM GPS		103	25 20	77 W	* DATUM RE	QUIRED: WGS 84		
ENE	DESCRIPTION			ADDRESS AND COMMON LANDMARKS - PL	SS (SECTION T	OWNSHIIP RANG	SE) WHERE AVAILABLE		
1. G	A 1 11	MEEN III O WEE	- 3-	ADDRESS AND COMMON EARDWAND TO	33 (32011011) 1	-	() (I	- 21 -	
	10/2		Sec, 22	C OWNS MI	D 2.	72	Kan	9036 E	
	LICENSE NUM	MBER	NAME OF LICENSED	DRILLER			NAME OF WELL DR	III COMPANY	1
	MD-13	192	B:114	L. Bertle			Bentlel	NaterWel	Ser.
	DRILLING ST	ARTED	DRILLING ENDED	DEPTH OF COMPLETED WELL (FT)	BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUNTERED (FT)	
	2-21-	13 4	-12-13		8-	13			
		- 1		<u> </u>			STATIC WATER LEV	VEL IN COMPLETED WE	LL (FT)
Z	COMPLETED	WELL IS: (ARTESIAN	M DRY HOLE C SHALLOW (UN	CONFINED)				
Į Į	DRILLING FL	UID:	AIR	MUD ADDITIVES – SI	PECIFY:				
RM	DRILLING MI	ЕТНОО: (ROTARY	C HAMMER S CABLE TOOL	Отн	ER - SPECIFY:			
FO	DEPTH (feet bgl)	BORE HOLE	CASING MATERIAL AND/OR	1 =	S. II.	CASING	CASDIC WALL	
2	FROM	TO	DIAM	GRADE		ASING NECTION	INSIDE DIAM.	CASING WALL THICKNESS	SLOT
SIN	10.300,000,000		(inches)	(include each casing string, and note sections of screen)		ГҮРЕ	(inches)	(inches)	(inches)
DRILLING & CASING INFORMATION	No.	1-	18	1,00 Sections of sereon)	T	171/4	250		
8 9		823	1,0	none any hole			10/1	10,50	
LIN		0~	9	TWINE DIVINIE					
RIL				36					
2. D									
	DEPTH (feet bgl)	BORE HOLE	LIST ANNULAR SEAL N	IATERIAL	AND	AMOUNT	метно	D OF
3	FROM	TO	DIAM. (inches)	GRAVEL PACK SIZE-RAN			(cubic feet)	PLACEN	
RIA	- C		18	AL TOTAL / 2	M M M	4	2	77000	3 -0
ATE	0	973	17	730000	men	/	2210	The mo	170
× W	0	823	0	Sement)			319	- I ren	110
LAF									
ANNULAR MATERIAL									
3.									
FOR	OOR DITTERS	LAT TIOP		L		1170 0	O WELL DECORD	Pr I OG (Varrian OG)	9/2012)
-	OSE INTERNE NUMBER	NAL USE	0-1151	POD NUMBE	R /			& LOG (Version 06/0	0/2012)
	CATION /	111	0-1151		L		222	The second secon	1 OF 2
Loc	Control Control	WD		0,00	006	- 50	dodd	11101	

_						
	DEPTH (1	feet bgl)	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONE (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES/NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
1	0	3	3	Top 50;	C Y O N	150.120 (Бриг)
	2	20	8	Caliche		
		20	7	Sandy Clay		
	20	28	8_	Dry sand	C Y Ø N	
	28	31	3	Rock	C Y M N	
7	3)	53	22	Red Sandy Clay	CYGN	
WE	53	131	78	RedBed	CYGN	
4. HYDROGEOLOGIC LOG OF WELL	131	162	3/	Limes	CYON	
500	162	193	31	sand	CYON	
CI	193	260	67	Red Bed	CYGN	
200	110	336	76	Rock	CY ® N	
EOI	33%	484	148	Red Bed W/sand stringer	T C Y O N	
502	484	219	3.5	De de Plise Class	CYON	
YDE	£ 10	Eng	10	hear blue Clay	17 17	
4. H	520	E7/12	12/	11 2 0 1 2 0 1 x 0 1 x 1	(0	
	2017	770	QZ	Hard Ked TBILL Clay	((6)	
	543	933	12	Red TBIWeclay W/tight sands	TITTOPO A REL	
	638	190	92	Red & Blue Clay	4 (0	
	730	132	2	okack,	CY QN	
	732	823	8.5	red Bex	CYGN	
			1. =		$C^{Y}C^{N}$	
					CYCN	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING STRATA: PUMP	TOTAL ESTIMATED	2
	AIR LIFT	r C	BAILER C	OTHER - SPECIFY:	WELL YIELD (gpm):	INV
		Γ				7
NO	WELL TES			ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INC ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVI		
	MISCELLAN	NEOUSINF	ORMATION:		3	12
TEST; RIG SUPERVIS					3	(<u>1)</u>
S	!!!!!!!!!!!!!					
RIG					>	-0
ST;	DOINTNIAN	IE/O OF DE	ALL DIO CURE	WILLIAM THAT PROUBLE ADOLE SUPER HEAD OF LEFT.	ACTOLICATION OF LEGITIC	
5. TE	PRINT NAM	IE(S) OF DE	KILL KIG SUPER	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CON	ISTRUCTION OTHER TH	-
4)						100
	THE LINDER	PSIGNED H	IEDERY CEDTIE	TES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELI	EE THE EODECOING IS	A TRUE AND
ш	CORRECT F	RECORD OF	THE ABOVE D	ESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL R		
Į,	AND THE P	ERMIT HOL	LDER WITHIN 2	0 DAYSAFTER COMPLETION OF WELL DRILLING:		
SIGNATURE	///	7 /	17 4	D'11 10 11.	1 -4 1-)
	75m	1/2	lu/	Billy BANTLE 5	1-21-/3)
9	1	SIGNATI	URE OF DRILLE	R / PRINT SIGNÉE NAME	DATE	
	-					
FOF	ROSE INTERN	VAL USE		WR-20 WE	LL RECORD & LOG (Ver	rsion 06/08/2012)

POD NUMBER

TRN NUMBER

PAGE 2 OF 2

FILE NUMBER

LOCATION

Locator Tool Report

General Information:

Application ID:29

Date: 02-24-2017

Time: 10:27:10

WR File Number: CP-01151

Purpose: POINT OF DIVERSION

Applicant First Name: RANDALL Applicant Last Name: HICKS

GW Basin: CAPITAN County: LEA

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE

Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

SE 1/4 of SE 1/4 of NW 1/4 of SE 1/4 of Section 27, Township 20S, Range 33E.

Coordinate System Details:

Geographic Coordinates: Well Drillers Lat and Long

Latitude:

32 Degrees 32 Minutes 26.8 Seconds N

Longitude:

103 Degrees 38 Minutes 49.6 Seconds W

Universal Transverse Mercator Zone: 13N

 NAD 1983(92) (Meters)
 N: 3,601,185
 E: 627,036

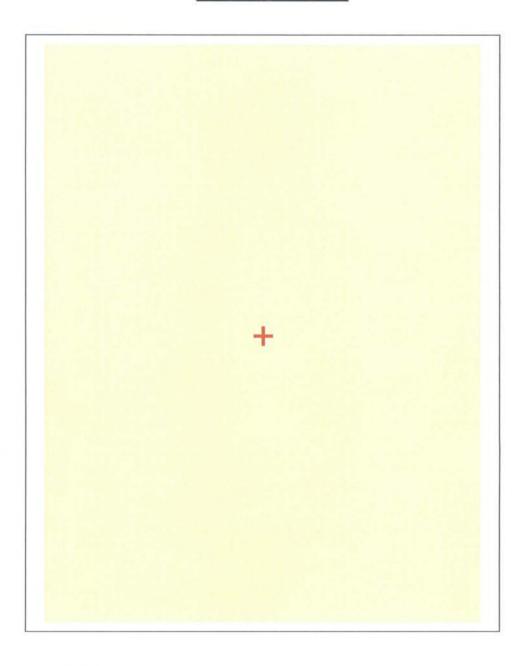
 NAD 1983(92) (Survey Feet)
 N: 11,814,888
 E: 2,057,202

 NAD 1927 (Meters)
 N: 3,600,982
 E: 627,086

 NAD 1927 (Survey Feet)
 N: 11,814,223
 E: 2,057,363

State Plane Coordinate System Zone: New Mexico East

 NAD 1983(92) (Meters)
 N: 171,037
 E: 229,454


 NAD 1983(92) (Survey Feet)
 N: 561,143
 E: 752,801

 NAD 1927 (Meters)
 N: 171,018
 E: 216,902

 NAD 1927 (Survey Feet)
 N: 561,081
 E: 711,620

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report

WR File Number: CP-01151 Scale: 1:57,473

Northing/Easting: SPCS83(92) (Feet): N: 561,143 E: 752,801

GW Basin: Capitan

Page 2 of 2 Print Date: 02/24/2017

Scott A. Verhines, P.E. State Engineer

well Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

520275

File Nbr:

CP 01151

Well File Nbr: CP 01151 POD1

Apr. 29, 2013

RANDALL T HICKS
CAZA OPERATING LLC
901 RIO GRANDE NW, F-142
ALBUQUERQUE, NM 87104

Greetings:

The above numbered permit was issued in your name on 01/22/2013.

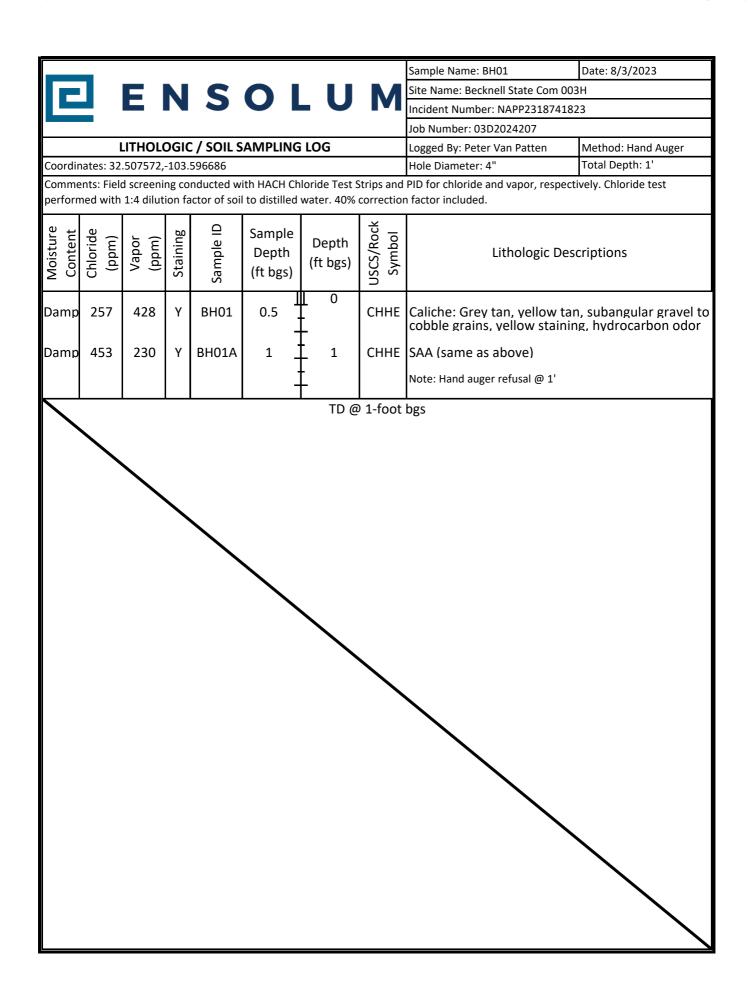
The Well Record was received in this office on 04/24/2013, stating that it had been completed on 04/12/2013, and was a dry well. The well is to be plugged or capped or otherwise maintained in a manner satisfactory to the State Engineer.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/31/2014.

If you have any questions, please feel free to contact us.

Sincerely,

Yolanda Mendiola (575)622-6521


_													
NO	OSE POD NO POD1). (WELL	NO.)			WELL TAG II	O NO.		OSE FILE NO CP-1090	(S).			
OCATI	WELL OWNI Devon Ene			ation					PHONE (OPT 405-318-46				
GENERAL AND WELL LOCATION	WELL OWN 6488 Sever								CITY Artesia		STA NM		ZIP
T AND	WELL LOCATIO	N I	LATI	DE	EGREES 32	MINUTES 36		ONDS 9.32 N	* ACCURACY	Y REQUIRED: ONE TEN	ТН ОБ	A SECOND	
VERA	(FROM GP	(S)		GITUDE	104	4	58	8.53 W	* DATUM RE	QUIRED: WGS 84			
1. GE				on 33, T19S, R29F		RESS AND COM	IMON LAND	MARKS – PLS	S (SECTION, TO	OWNSHJIP, RANGE) WI	IERE A	VAILABLE	d
	LICENSE NO			NAME OF LICENSED	DRILLER	John Norr	is			NAME OF WELL DR		G COMPANY Horse, LLC	
	DRILLING ST 7/15/2			DRILLING ENDED 7/15/2022	DEPTH OF CO	OMPLETED WEI	JL (FT)	BORE HO	LE DEPTH (FT) 55	DEPTH WATER FIR		COUNTERED (FT)	
Z	COMPLETE	WELL IS	S:	ARTESIAN	✓ DRY HO	LE SHA	ALLOW (UNC	CONFINED)		WATER LEVEL PLETED WELL	IA	DATE STATIC	MEASURED
AT10	DRILLING FI	LUID:		✓ AIR	☐ MUD	ADI	DITIVES – SP	ECIFY:					
ORM	DRILLING M	ETHOD:	✓ 1	ROTARY HAMM	MER 🗌 CAB	LE TOOL	OTHER - SP	ECIFY:		CHECK INSTAI	HERE	IF PITLESS ADAI	PTER IS
CASING INFORMATION	DEPTH (feet bgl) FROM TO DIAM (inches)			(include each casing string, and			ASING NECTION TYPE ling diameter)	CASING INSIDE DIAM. (inches)	524555	SING WALL HICKNESS (inches)	SLOT SIZE (inches)		
						No Casing							
2. DRILLING &								-	-				
ORIL										DSE for			
2.1										##3€ #\}	HUG	□ 2022 PM_	42
								-					
								-					
	DEPTH ((feet bgl))	BORE HOLE	LI	ST ANNULA	R SEAL M	ATERIAL A	AND	AMOUNT		метно	D OF
IAL	FROM	то	9	DIAM. (inches)	GRA	VEL PACK S	IZE-RANC	GE BY INTE	RVAL	(cubic feet)		PLACEM	
TER	0	55		6		В	entonite gro	out		10.8		tremi	e
ANNULAR MATERIAL													
)LA			-										
INN													
3.7													
nor	OGE DIME								00020				
FILE	NO. (?	- OL		30		POE	NO.	i	TRN I	NO. 6029	OTHER DIVINIS		3/2022)
LOC	ATION 7	205	3	3E.31.1.	1.7	4		,	WELL TAG I	000	, G 4	PAGE	1 OF 2

4. HYDROGEOLOGIC LOG OF WELL	DEPTH (f	DEPTH (feet bgl) FROM TO (feet) THICKNESS		COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZO (attach supplemental sheets to fully describe all units)			ZONES	WATER BEARING? (YES / NO)		ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)	
	0	20	20		S	and			Y	✓ N	Lorred (gpm)
	20	30	10		Ca	liche			Y	✓ N	
	30	35	5		C	lay			Y	✓ N	
	35	55	20		Gy	psum			Y	✓ N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
							AL ESTIMATED LL YIELD (gpm): 0.00				
VISION	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.									METHOD, DD.	
	MISCELLANEOUS INFORMATION: Borehole was drilled as per NMOCD. Drill a 55' borehole wait 72 hours, then gauge for presence of water										
PER	MISCELLANEOUS INFORMATION: Borehole was drilled as per NMOCD. Drill a 55' borehole, wait 72 hours, then gauge for presence of water. No water was present so borehole was plugged.										
TEST; RIG SUPER											
rest	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:										
5.	Dean Parent										
6. SIGNATURE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT, HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:										
	John Norris							7/25/2022			
	SIGNATURE OF DRILLER / PRINT SIGNEE NAME						DATE				
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 01/28/2022) FILE NO. (P-01090) POD NO. TRN NO. 607.836											
FILE NO. (P- 01090 POD NO. TRN NO. 607.836											
LOCATION 205.33E.31.1.1.2 WELL TAG ID NO. PAGE 2 OF 2											

APPENDIX B

Lithologic/Soil Sampling Log

APPENDIX C

Photographic Log

Photographic Log

COG Operating, LLC
Becknell State Com 003H
Incident Number NAPP2318741823

Photograph: 1

Description: Well location sign View: Northwest

ocation sign

Date: 7/21/2023

Photograph: 2 Date: 7/21/2023

Description: Location of tear in liner identified during liner inspection activities, southeast.

Photograph: 3 Date: 8/3/2023

Description: Delineation activities

View: South

Photograph: 4 Date: 8/4/2023

Description: Patched liner

View: South

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St.

Suite 400

Midland, Texas 79701

Generated 8/7/2023 12:31:30 PM

JOB DESCRIPTION

Becknell St Com 3H SDG NUMBER 03D2024207

JOB NUMBER

890-4981-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 8/7/2023 12:31:30 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 24

8/7

Client: Ensolum

Project/Site: Becknell St Com 3H

Laboratory Job ID: 890-4981-1

SDG: 03D2024207

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

	Ð	
	۲	

Definitions/Glossary

Job ID: 890-4981-1 Client: Ensolum Project/Site: Becknell St Com 3H SDG: 03D2024207

Qualifiers

GC VOA

Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: Becknell St Com 3H

Job ID: 890-4981-1

SDG: 03D2024207

Job ID: 890-4981-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4981-1

Receipt

The samples were received on 7/21/2023 4:26 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4° C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-4981-1), SS02 (890-4981-2), SS03 (890-4981-3) and SS04 (890-4981-4).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-58733 and analytical batch 880-58692 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-59193 and analytical batch 880-59388 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-59388/20), (CCV 880-59388/31) and (CCV 880-59388/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-58446 and analytical batch 880-58488 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

6

4

5

6

0

9

11

114

Client Sample Results

Client: Ensolum Job ID: 890-4981-1
Project/Site: Becknell St Com 3H SDG: 03D2024207

Client Sample ID: SS01 Lab Sample ID: 890-4981-1

Date Collected: 07/21/23 09:30 Matrix: Solid
Date Received: 07/21/23 16:26

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		07/28/23 13:11	07/29/23 04:13	1
Toluene	<0.00202	U	0.00202	mg/Kg		07/28/23 13:11	07/29/23 04:13	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		07/28/23 13:11	07/29/23 04:13	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		07/28/23 13:11	07/29/23 04:13	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		07/28/23 13:11	07/29/23 04:13	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		07/28/23 13:11	07/29/23 04:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130			07/28/23 13:11	07/29/23 04:13	1
1,4-Difluorobenzene (Surr)	104		70 - 130			07/28/23 13:11	07/29/23 04:13	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			07/31/23 09:55	1
Method: SW846 8015 NM - Diese	ol Pango Organ	ice (DPO) ((SC)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH -	<49.8	U	49.8	mg/Kg			08/07/23 10:37	1
Total TPH - Method: SW846 8015B NM - Dies				mg/Kg			08/07/23 10:37	1
- -	sel Range Orga			mg/Kg Unit		Prepared	08/07/23 10:37 Analyzed	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	sel Range Orga	nics (DRO) Qualifier	(GC)		<u>D</u>	Prepared 08/03/23 09:28		·
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result	nics (DRO) Qualifier	(GC)	Unit	<u>D</u>		Analyzed	Dil Fac
_ Method: SW846 8015B NM - Dies	sel Range Orga Result <49.8	nics (DRO) Qualifier U	(GC) RL 49.8	Unit mg/Kg	<u>D</u>	08/03/23 09:28	Analyzed 08/05/23 14:46	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <49.8 <49.8	nics (DRO) Qualifier U	(GC) RL 49.8	Unit mg/Kg mg/Kg	<u>D</u>	08/03/23 09:28 08/03/23 09:28	Analyzed 08/05/23 14:46 08/05/23 14:46	Dil Fac 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <49.8 <49.8	nics (DRO) Qualifier U	(GC) RL 49.8 49.8 49.8	Unit mg/Kg mg/Kg	<u>D</u>	08/03/23 09:28 08/03/23 09:28 08/03/23 09:28	Analyzed 08/05/23 14:46 08/05/23 14:46 08/05/23 14:46	Dil Fac 1 1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.8 <49.8 <49.8 <49.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80.8 <80	nics (DRO) Qualifier U	(GC) RL 49.8 49.8 49.8 Limits	Unit mg/Kg mg/Kg	<u>D</u>	08/03/23 09:28 08/03/23 09:28 08/03/23 09:28 Prepared	Analyzed 08/05/23 14:46 08/05/23 14:46 08/05/23 14:46 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	sel Range Orga Result <49.8	nics (DRO) Qualifier U U Qualifier	RL 49.8 49.8 49.8 Limits 70 - 130 70 - 130	Unit mg/Kg mg/Kg	<u>D</u>	08/03/23 09:28 08/03/23 09:28 08/03/23 09:28 Prepared 08/03/23 09:28	Analyzed 08/05/23 14:46 08/05/23 14:46 08/05/23 14:46 Analyzed 08/05/23 14:46	Dil Fac 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	sel Range Orga Result <49.8 <49.8 <49.8 **Recovery 122 101 Chromatograp	nics (DRO) Qualifier U U Qualifier	RL 49.8 49.8 49.8 Limits 70 - 130 70 - 130	Unit mg/Kg mg/Kg	<u>D</u>	08/03/23 09:28 08/03/23 09:28 08/03/23 09:28 Prepared 08/03/23 09:28	Analyzed 08/05/23 14:46 08/05/23 14:46 08/05/23 14:46 Analyzed 08/05/23 14:46	Dil Fac 1 1 1 Dil Fac 1

Client Sample ID: SS02 Lab Sample ID: 890-4981-2

Date Collected: 07/21/23 09:35 Matrix: Solid

Sample Depth: 0.5

Date Received: 07/21/23 16:26

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		07/28/23 13:11	07/29/23 04:33	1
Toluene	<0.00198	U	0.00198	mg/Kg		07/28/23 13:11	07/29/23 04:33	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		07/28/23 13:11	07/29/23 04:33	1
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		07/28/23 13:11	07/29/23 04:33	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		07/28/23 13:11	07/29/23 04:33	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		07/28/23 13:11	07/29/23 04:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			07/28/23 13:11	07/29/23 04:33	

Client: Ensolum Job ID: 890-4981-1 Project/Site: Becknell St Com 3H SDG: 03D2024207

Client Sample ID: SS02 Lab Sample ID: 890-4981-2

Date Collected: 07/21/23 09:35 Matrix: Solid Date Received: 07/21/23 16:26

Sample Depth: 0.5

inued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	107	70 - 130	07/28/23 13:11	07/29/23 04:33	1

Mothod: TAL SO	P Total RTFY - Tot	al BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00397	U	0.00397	mg/Kg			07/31/23 09:55	1

Mathada OMO40 0045 NM Disasi Danas Onnanias (DDO) (OO	Α.
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC	. 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			08/07/23 10:37	1

Method: SW846 8015B NM - Diesel Range Organics	(DRO)	(GC)	١
motified. Offerto College Ithin Biodol Rungo Organico	(5.10)	, , , , ,	,

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		08/03/23 09:28	08/05/23 15:08	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		08/03/23 09:28	08/05/23 15:08	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		08/03/23 09:28	08/05/23 15:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	128	70 - 130	08/03/23 09:28	08/05/23 15:08	1
o-Terphenyl	109	70 - 130	08/03/23 09:28	08/05/23 15:08	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte		Qualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	81.4	4.97	mg/Kg			07/26/23 00:37	1

Client Sample ID: SS03 Lab Sample ID: 890-4981-3

Date Collected: 07/21/23 09:40 Date Received: 07/21/23 16:26

Sample Depth: 0.5

ı	Method: SW846 8021B	Valatila Ossasia	O = (OO)

method. Offoro our ib - foldthe c	rigariic Comp		,					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		07/28/23 13:11	07/29/23 04:54	1
Toluene	<0.00199	U	0.00199	mg/Kg		07/28/23 13:11	07/29/23 04:54	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		07/28/23 13:11	07/29/23 04:54	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/28/23 13:11	07/29/23 04:54	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		07/28/23 13:11	07/29/23 04:54	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/28/23 13:11	07/29/23 04:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130			07/28/23 13:11	07/29/23 04:54	1

4-Bromofluorobenzene (Surr)	125	70 - 130	07/28/23 13:11	07/29/23 04:54	1
1,4-Difluorobenzene (Surr)	107	70 - 130	07/28/23 13:11	07/29/23 04:54	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			07/31/23 09:55	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4	mg/Kg			08/07/23 10:37	1

Eurofins Carlsbad

Matrix: Solid

Client: Ensolum Job ID: 890-4981-1

Project/Site: Becknell St Com 3H SDG: 03D2024207

Client Sample ID: SS03 Lab Sample ID: 890-4981-3 Date Collected: 07/21/23 09:40 Matrix: Solid Date Received: 07/21/23 16:26

Sample Depth: 0.5

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4	mg/Kg		08/03/23 09:28	08/05/23 15:53	1
Diesel Range Organics (Over C10-C28)	<50.4	U	50.4	mg/Kg		08/03/23 09:28	08/05/23 15:53	1
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		08/03/23 09:28	08/05/23 15:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130			08/03/23 09:28	08/05/23 15:53	1
o-Terphenyl	100		70 - 130			08/03/23 09:28	08/05/23 15:53	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	le					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	103		4.95	mg/Kg			07/26/23 00:43	1

Client Sample ID: SS04 Lab Sample ID: 890-4981-4 Date Collected: 07/21/23 09:45 Matrix: Solid

Date Received: 07/21/23 16:26

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/29/23 05:14	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/29/23 05:14	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/29/23 05:14	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		07/28/23 13:11	07/29/23 05:14	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/29/23 05:14	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		07/28/23 13:11	07/29/23 05:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			07/28/23 13:11	07/29/23 05:14	1
1,4-Difluorobenzene (Surr)	101		70 - 130			07/28/23 13:11	07/29/23 05:14	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			07/31/23 09:55	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3	mg/Kg			08/07/23 10:37	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	50.3	mg/Kg		08/03/23 09:28	08/05/23 16:15	1
Diesel Range Organics (Over C10-C28)	<50.3	U	50.3	mg/Kg		08/03/23 09:28	08/05/23 16:15	1
Oll Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		08/03/23 09:28	08/05/23 16:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
			70 - 130			08/03/23 09:28	08/05/23 16:15	
1-Chlorooctane	129		10 - 130			06/03/23 09.26	06/03/23 10.13	1

Client Sample Results

Client: Ensolum Job ID: 890-4981-1
Project/Site: Becknell St Com 3H SDG: 03D2024207

Client Sample ID: SS04 Lab Sample ID: 890-4981-4

Date Collected: 07/21/23 09:45
Date Received: 07/21/23 16:26
Matrix: Solid

Sample Depth: 0.5

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	111	4.98	mg/Kg			07/26/23 00:49	1

5

6

3

11

13

14

Surrogate Summary

Client: Ensolum Job ID: 890-4981-1
Project/Site: Becknell St Com 3H SDG: 03D2024207

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-31337-A-1-A MS	Matrix Spike	113	99	
880-31337-A-1-B MSD	Matrix Spike Duplicate	120	101	
890-4981-1	SS01	111	104	
390-4981-2	SS02	122	107	
390-4981-3	SS03	125	107	
390-4981-4	SS04	109	101	
_CS 880-58733/1-A	Lab Control Sample	117	100	
CSD 880-58733/2-A	Lab Control Sample Dup	118	101	
MB 880-58702/5-A	Method Blank	98	90	
MB 880-58733/5-A	Method Blank	95	88	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-4979-A-1-D MS	Matrix Spike	125	92	
890-4979-A-1-E MSD	Matrix Spike Duplicate	103	76	
890-4981-1	SS01	122	101	
890-4981-2	SS02	128	109	
890-4981-3	SS03	115	100	
890-4981-4	SS04	129	113	
LCS 880-59193/2-A	Lab Control Sample	95	95	
LCSD 880-59193/3-A	Lab Control Sample Dup	95	109	
MB 880-59193/1-A	Method Blank	132 S1+	118	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Ensolum Job ID: 890-4981-1 SDG: 03D2024207 Project/Site: Becknell St Com 3H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-58702/5-A

Matrix: Solid Analysis Batch: 58692 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 58702

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/28/23 09:41	07/28/23 11:38	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/28/23 09:41	07/28/23 11:38	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/28/23 09:41	07/28/23 11:38	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/28/23 09:41	07/28/23 11:38	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/28/23 09:41	07/28/23 11:38	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		07/28/23 09:41	07/28/23 11:38	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130	_	07/28/23 09:41	07/28/23 11:38	1
1,4-Difluorobenzene (Surr)	90		70 - 130		07/28/23 09:41	07/28/23 11:38	1

Lab Sample ID: MB 880-58733/5-A Client Sample ID: Method Blank

Matrix: Solid Analysis Batch: 58692

Prep Type: Total/NA

Prep Batch: 58733

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/28/23 22:22	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/28/23 22:22	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/28/23 22:22	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/28/23 13:11	07/28/23 22:22	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/28/23 13:11	07/28/23 22:22	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		07/28/23 13:11	07/28/23 22:22	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130	07/28/23 13:11	07/28/23 22:22	1
1,4-Difluorobenzene (Surr)	88		70 - 130	07/28/23 13:11	07/28/23 22:22	1

Lab Sample ID: LCS 880-58733/1-A

Matrix: Solid

Analysis Batch: 58692

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 58733

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1001		mg/Kg		100	70 - 130	
Toluene	0.100	0.1110		mg/Kg		111	70 - 130	
Ethylbenzene	0.100	0.1047		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.2076		mg/Kg		104	70 - 130	
o-Xylene	0.100	0.1044		mg/Kg		104	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	117	70 _ 130
1.4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: LCSD 880-58733/2-A

Matrix: Solid

Analysis Batch: 58692

Client Sample	ID: Lab Control	Sample Dup
	Danie To	T-4-1/NIA

Prep Type: Total/NA

Prep Batch: 58733

	Бріке	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09994	mg/Kg		100	70 - 130	0	35

QC Sample Results

Client: Ensolum Job ID: 890-4981-1 Project/Site: Becknell St Com 3H SDG: 03D2024207

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-58733/2-A

Matrix: Solid Analysis Batch: 58692 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 58733

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.1103		mg/Kg		110	70 - 130	1	35
Ethylbenzene	0.100	0.1031		mg/Kg		103	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.2026		mg/Kg		101	70 - 130	2	35
o-Xylene	0.100	0.1025		mg/Kg		103	70 - 130	2	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	118		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-31337-A-1-A MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 58692

Prep Type: Total/NA

Prep Batch: 58733

Sample	Sample	Spike	MS	MS				%Rec	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
<0.00199	U F1	0.0996	0.06276	F1	mg/Kg		63	70 - 130	
< 0.00199	U	0.0996	0.07130		mg/Kg		72	70 - 130	
< 0.00199	U F1	0.0996	0.06345	F1	mg/Kg		64	70 - 130	
<0.00398	U F1	0.199	0.1214	F1	mg/Kg		61	70 - 130	
< 0.00199	U F1	0.0996	0.05993	F1	mg/Kg		60	70 - 130	
	Result <0.00199 <0.00199 <0.00199 <0.00398	Sample Sample Result Qualifier	Result Qualifier Added <0.00199	Result Qualifier Added Result <0.00199	Result Qualifier Added Result Qualifier <0.00199	Result Qualifier Added Result Qualifier Unit <0.00199	Result Qualifier Added Result Qualifier Unit D <0.00199	Result Qualifier Added Result Qualifier Unit D %Rec <0.00199	Result Qualifier Added Result Qualifier Unit D %Rec Limits <0.00199

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	113	70 - 130
1,4-Difluorobenzene (Surr)	99	70 - 130

Lab Sample ID: 880-31337-A-1-B MSD

Matrix: Solid

Analysis Batch: 58692

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 58733

Spike MSD MSD RPD Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Benzene <0.00199 U F1 0.0998 0.07715 mg/Kg 77 70 - 130 21 35 Toluene <0.00199 U 0.0998 0.08259 mg/Kg 83 70 - 130 15 35 Ethylbenzene <0.00199 UF1 0.0998 0.06856 F1 mg/Kg 69 70 - 130 8 35 0.200 <0.00398 UF1 0.1316 F1 66 70 - 130 8 35 m-Xylene & p-Xylene mg/Kg 0.0998 0.06611 F1 o-Xylene <0.00199 UF1 mq/Kq 70 - 130 10 35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	120		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-59193/1-A

Matrix: Solid

Analysis Batch: 59388

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 59193

(GRO)-C6-C10

мв мв Result Qualifier RL Unit Prepared Gasoline Range Organics <50.0 U 50.0 mg/Kg 08/03/23 09:28 08/05/23 08:24

Client: Ensolum

Project/Site: Becknell St Com 3H

SDG: 03D2024207

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-59193/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 59388	Prep Batch: 59193

MB	MB						
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg		08/03/23 09:28	08/05/23 08:24	1
<50.0	U	50.0	mg/Kg		08/03/23 09:28	08/05/23 08:24	1
МВ	MB						
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
132	S1+	70 - 130			08/03/23 09:28	08/05/23 08:24	1
118		70 - 130			08/03/23 09:28	08/05/23 08:24	1
	Result	MB MB Qualifier	Result Qualifier RL	Result Qualifier RL Unit <50.0	Result Qualifier RL Unit D mg/Kg	Result Qualifier RL Unit D Prepared <50.0	Result Qualifier RL Unit D Prepared Analyzed <50.0

Lab Sample ID: LCS 880-59 Matrix: Solid	133/2-A						Cilent	Sample	ID: Lab Control San
									Prep Type: Total
Analysis Batch: 59388			Spike	LCS	LCS				Prep Batch: 59 %Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics			1000	1000		mg/Kg		100	70 - 130
(GRO)-C6-C10									
Diesel Range Organics (Over			1000	971.1		mg/Kg		97	70 - 130
C10-C28)									
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
1-Chlorooctane	95		70 - 130						
o-Terphenyl	95		70 - 130						

Lab Sample ID: LCSD 880-59193/3-A				Clie	ient Sample ID: Lab Control Sample					
Matrix: Solid							Prep 7	Type: To	tal/NA	
Analysis Batch: 59388								Prep Batch: 59193		
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	975.9		mg/Kg		98	70 - 130	2	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	979.0		mg/Kg		98	70 - 130	1	20	
C10-C28)										

C10-C28)			1000	979.0	mg/Kg	98	70 - 1
,	LCSD	LCSD					
Surrogate	%Recovery	Qualifier	Limits				
1-Chlorooctane	95		70 - 130				

70 - 130

Lab Sample ID: 890-4979-A-1-D N Matrix: Solid Analysis Batch: 59388	IS							Client	Prep T	: Matrix Spike ype: Total/NA Batch: 59193
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	992	1031		mg/Kg		101	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.3	U	992	1253		mg/Kg		124	70 - 130	
	MS	MS								
Cumanata	0/ Danassans	Overlifier	l imaita							

 Surrogate
 %Recovery
 Qualifier
 Limits

 1-Chlorooctane
 125
 70 - 130

 o-Terphenyl
 92
 70 - 130

109

Eurofins Carlsbad

o-Terphenyl

Project/Site: Becknell St Com 3H

Job ID: 890-4981-1

SDG: 03D2024207

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4979-A-1-E MSD

Matrix: Solid

Analysis Batch: 59388

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 59193

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.3	U	992	1146		mg/Kg		113	70 - 130	11	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.3	U	992	1041		mg/Kg		103	70 - 130	18	20
C10 C28)											

C10-C28)

Client: Ensolum

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	103		70 - 130
o-Terphenyl	76		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-58446/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 58488

мв мв

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00 U	5.00	mg/Kg			07/25/23 22:10	1

Lab Sample ID: LCS 880-58446/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 58488

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	231.5		mg/Kg	_	93	90 - 110	

Lab Sample ID: LCSD 880-58446/3-A

Matrix: Solid

Analysis Batch: 58488

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	232.1		ma/Ka		93	90 - 110		20	

Lab Sample ID: 890-4980-A-3-B MS

Matrix: Solid

Analysis Batch: 58488

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	81.0	F1	248	301.0	F1	ma/Ka		89	90 110	

Lab Sample ID: 890-4980-A-3-C MSD

Released to Imaging: 12/11/2023 4:27:29 PM

Matrix: Solid

Analysis Batch: 58488											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	81.0	F1	248	302.4	F1	ma/Ka		89	90 110		20

QC Association Summary

Client: Ensolum Job ID: 890-4981-1
Project/Site: Becknell St Com 3H SDG: 03D2024207

GC VOA

Analysis Batch: 58692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4981-1	SS01	Total/NA	Solid	8021B	58733
890-4981-2	SS02	Total/NA	Solid	8021B	58733
890-4981-3	SS03	Total/NA	Solid	8021B	58733
890-4981-4	SS04	Total/NA	Solid	8021B	58733
MB 880-58702/5-A	Method Blank	Total/NA	Solid	8021B	58702
MB 880-58733/5-A	Method Blank	Total/NA	Solid	8021B	58733
LCS 880-58733/1-A	Lab Control Sample	Total/NA	Solid	8021B	58733
LCSD 880-58733/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	58733
880-31337-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	58733
880-31337-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	58733

Prep Batch: 58702

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-58702/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 58733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4981-1	SS01	Total/NA	Solid	5035	
890-4981-2	SS02	Total/NA	Solid	5035	
890-4981-3	SS03	Total/NA	Solid	5035	
890-4981-4	SS04	Total/NA	Solid	5035	
MB 880-58733/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-58733/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-58733/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-31337-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-31337-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 58829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep B	3atch
890-4981-1	SS01	Total/NA	Solid	Total BTEX	
890-4981-2	SS02	Total/NA	Solid	Total BTEX	
890-4981-3	SS03	Total/NA	Solid	Total BTEX	
890-4981-4	SS04	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 59193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4981-1	SS01	Total/NA	Solid	8015NM Prep	
890-4981-2	SS02	Total/NA	Solid	8015NM Prep	
890-4981-3	SS03	Total/NA	Solid	8015NM Prep	
890-4981-4	SS04	Total/NA	Solid	8015NM Prep	
MB 880-59193/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-59193/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-59193/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4979-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4979-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 59388

\vdash					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4981-1	SS01	Total/NA	Solid	8015B NM	59193

Eurofins Carlsbad

Page 15 of 24

QC Association Summary

Client: Ensolum

Project/Site: Becknell St Com 3H

SDG: 03D2024207

GC Semi VOA (Continued)

Analysis Batch: 59388 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4981-2	SS02	Total/NA	Solid	8015B NM	59193
890-4981-3	SS03	Total/NA	Solid	8015B NM	59193
890-4981-4	SS04	Total/NA	Solid	8015B NM	59193
MB 880-59193/1-A	Method Blank	Total/NA	Solid	8015B NM	59193
LCS 880-59193/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	59193
LCSD 880-59193/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	59193
890-4979-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	59193
890-4979-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	59193

Analysis Batch: 59496

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
890-4981-1	SS01	Total/NA	Solid	8015 NM
890-4981-2	SS02	Total/NA	Solid	8015 NM
890-4981-3	SS03	Total/NA	Solid	8015 NM
890-4981-4	SS04	Total/NA	Solid	8015 NM

HPLC/IC

Leach Batch: 58446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4981-1	SS01	Soluble	Solid	DI Leach	
890-4981-2	SS02	Soluble	Solid	DI Leach	
890-4981-3	SS03	Soluble	Solid	DI Leach	
890-4981-4	SS04	Soluble	Solid	DI Leach	
MB 880-58446/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-58446/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-58446/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4980-A-3-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4980-A-3-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 58488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4981-1	SS01	Soluble	Solid	300.0	58446
890-4981-2	SS02	Soluble	Solid	300.0	58446
890-4981-3	SS03	Soluble	Solid	300.0	58446
890-4981-4	SS04	Soluble	Solid	300.0	58446
MB 880-58446/1-A	Method Blank	Soluble	Solid	300.0	58446
LCS 880-58446/2-A	Lab Control Sample	Soluble	Solid	300.0	58446
LCSD 880-58446/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	58446
890-4980-A-3-B MS	Matrix Spike	Soluble	Solid	300.0	58446
890-4980-A-3-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	58446

Eurofins Carlsbad

2

3

4

8

10

4.0

13

14

Job ID: 890-4981-1

Client: Ensolum Project/Site: Becknell St Com 3H SDG: 03D2024207

Client Sample ID: SS01 Lab Sample ID: 890-4981-1

Date Collected: 07/21/23 09:30 Matrix: Solid Date Received: 07/21/23 16:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	58733	07/28/23 13:11	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	58692	07/29/23 04:13	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			58829	07/31/23 09:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			59496	08/07/23 10:37	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	59193	08/03/23 09:28	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59388	08/05/23 14:46	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	58446	07/25/23 09:41	KS	EET MID
Soluble	Analysis	300.0		1			58488	07/26/23 00:19	CH	EET MID

Client Sample ID: SS02 Lab Sample ID: 890-4981-2

Date Collected: 07/21/23 09:35 Matrix: Solid

Date Received: 07/21/23 16:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	58733	07/28/23 13:11	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	58692	07/29/23 04:33	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			58829	07/31/23 09:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			59496	08/07/23 10:37	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	59193	08/03/23 09:28	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59388	08/05/23 15:08	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	58446	07/25/23 09:41	KS	EET MID
Soluble	Analysis	300.0		1			58488	07/26/23 00:37	CH	EET MID

Client Sample ID: SS03 Lab Sample ID: 890-4981-3 Date Collected: 07/21/23 09:40

Date Received: 07/21/23 16:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	58733	07/28/23 13:11	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	58692	07/29/23 04:54	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			58829	07/31/23 09:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			59496	08/07/23 10:37	SM	EET MID
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	59193	08/03/23 09:28	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59388	08/05/23 15:53	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	58446	07/25/23 09:41	KS	EET MID
Soluble	Analysis	300.0		1			58488	07/26/23 00:43	CH	EET MID

Client Sample ID: SS04 Lab Sample ID: 890-4981-4

Date Collected: 07/21/23 09:45 Date Received: 07/21/23 16:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	58733	07/28/23 13:11	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	58692	07/29/23 05:14	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			58829	07/31/23 09:55	AJ	EET MID

Eurofins Carlsbad

Page 17 of 24

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: Ensolum Job ID: 890-4981-1 Project/Site: Becknell St Com 3H SDG: 03D2024207

Client Sample ID: SS04

Lab Sample ID: 890-4981-4

Matrix: Solid

Date Collected: 07/21/23 09:45 Date Received: 07/21/23 16:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			59496	08/07/23 10:37	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	59193	08/03/23 09:28	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59388	08/05/23 16:15	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	58446	07/25/23 09:41	KS	EET MID
Soluble	Analysis	300.0		1			58488	07/26/23 00:49	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-4981-1 Project/Site: Becknell St Com 3H

SDG: 03D2024207

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date	
exas NEI		ELAP	T104704400-23-26	06-30-24	
The following analytes the agency does not of	• '	ut the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for	
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
	Total BTEX Solid		Total BTEX		

Method Summary

Client: Ensolum Job ID: 890-4981-1 Project/Site: Becknell St Com 3H

SDG: 03D2024207

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: Becknell St Com 3H

Job ID: 890-4981-1

SDG: 03D2024207

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4981-1	SS01	Solid	07/21/23 09:30	07/21/23 16:26	0.5
890-4981-2	SS02	Solid	07/21/23 09:35	07/21/23 16:26	0.5
890-4981-3	SS03	Solid	07/21/23 09:40	07/21/23 16:26	0.5
890-4981-4	SS04	Solid	07/21/23 09:45	07/21/23 16:26	0.5

eurofins **Environment Testing**

601 N Marienfeld St Suite 400

State of Project:

Program: UST/PST [] PRP [] Brownfields [] RRC [] Superfund [] **Work Order Comments**

Bill to: (if different) Company Name:

Ensolum, LLC

Kalei Jennings

601 N Marienfeld St Suite 400

Ensolum, LLC Hadlie Green

Project Manager: Company Name: Address:

Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

D			6			_		<				
			*	3				1				
			2000	シンシス	2)	35	1	h	BILLY
re) Date/Time	Received by: (Signature)	Relinquished by: (Signature)		Date/Time	0		ature)	Received by: (Signature)	Receive	7	(Signature)	Relinquished by: (Signature)
	standard terms and conditions cumstances beyond the control reed unless previously negotiated.	lotice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions it service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control if Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$6 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated	fins Xenco, its a enses incurred irofins Xenco, b	any to Eurol	ent comp for any ic mple sub	rder from cli sponsibility to for each say	purchase o sume any re charge of \$8	titutes a valid I shall not ass project and a o	of samples cons t of samples and applied to each	ishment cor the cos	ocument and relinqu o will be liable only f mum charge of \$85.0	otice: Signature of this d service. Eurofins Xenco Eurofins Xenco. A mini
Hg: 1631 / 245.1 / 7470 / 7471	TI U	Cr Co Cu Pb Mn Mo Ni Se Ag	S	Sb As Ba Be		TCLP / SPLP 6010: 8RCRA	SPLP 6	TCLP /	.ed	analyz	d Metal(s) to be	Sircle Method(s) and Metal(s) to be analyzed
Sr TI Sn U V Zn	Mo Ni K Se Ag SiO ₂ Na Sr	a Cr Co Cu Fe Pb Mg Mn Mo Ni	Be B Cd Ca	As Ba	Al Sb	Texas 11	13PPM T	8RCRA 13	8	020:	10 200.8 / 6020:	Total 200.7 / 6010
					-							
									-			
					L			the	1			
					· ·	3	35	1				
				1	7	1						
			1	1								
			×	×		Comp	0.5'	945	7/21/2023	Soil		SS04
			×	×	-	Comp	0.5'	940	7/21/2023	Soil	L.	SS03
			×	×	-	Comp	0.5	935	7/21/2023	Soil		\$802
			×	×	-	Comp	0.5'	930	7/21/2023	Soil		SS01
Sample Comments			BTEX (TPH (80	# of Cont	Grab/ Comp	Depth	Time Sampled	Date Sampled	Matrix	lification	Sample Identification
NaOH+Ascorbic Acid: SAPC	tody	890-4981 Chain of Custody	B021			٤		mperature:	Corrected Temperature			Total Containers:
Zn Acetate+NaOH: Zn)	S (E		5	0	Reading:	Temperature Reading:	ZA	s: Yes No	Sample Custody Seals:
Na ₂ S ₂ O ₃ : NaSO ₃				PA:		(7 2>	1	ctor:	Correction Factor:	NIA	Yes No	Cooler Custody Seals:
NaHSO₄: NABIS				300		8	VY OB	Đ.	Thermometer ID:		tact: Yes No	Samples Received Intact:
H₃PO₄: HP				.0)	nete	No O	(Yes)	Wet Ice:	No No	lank:	Temp Blank:	SAMPLE RECEIPT
H ₂ SO ₄ : H ₂ NaOH: Na					rs	4:30pm	eceived by	the lab, if received by 4:30pm)			O#:
HCL: HC HNO3: HN						ceived by	the day rec	TAT starts the day received by	ten	Peter Van Patten	Peter \	Sampler's Name:
Cool: Cool MeOH: Me								Due Date:	965	32.5073,-103.5965	32,507	Project Location:
None: NO DI Water: H ₂ O					Code		Rush	☑ Routine	7	03D2024207	03D:	Project Number:
Preservative Codes		ANALYSIS REQUEST					Turn Around	Tu	n 3H	St Cor	Becknell St Com 3H	Project Name:
T L Other:	Deliverables: EDD		Email: hgreen@ensolum.com, kjennings@ensolum.com	, kjenning	ım.com	n@ensolu	il: hgree	Ema			432-557-8895	Phone:
T/UST TRRP Level IV	Level III	Reportin	79701	Midland, TX 79701	3	City, State ZIP:	City, S			701	Midland, TX 79701	City, State ZIP:
					-							

www.xenco.com	Work Order No:
Page	
of —	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-4981-1 SDG Number: 03D2024207

Login Number: 4981 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-4981-1 SDG Number: 03D2024207

List Source: Eurofins Midland

List Number: 2 Creator: Rodriguez, Leticia

Login Number: 4981

List Creation: 07/25/23 10:57 AM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400

Midland, Texas 79701

Generated 8/16/2023 10:29:03 AM

JOB DESCRIPTION

Becknell State Com 003H SDG NUMBER 03D2024207

JOB NUMBER

890-5031-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 8/16/2023 10:29:03 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Ensolum
Project/Site: Becknell State Com 003H

Laboratory Job ID: 890-5031-1 SDG: 03D2024207

Table of Contents

1
3
4
5
6
8
9
15
17
18
19
20
21
22

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Ensolum Job ID: 890-5031-1 Project/Site: Becknell State Com 003H SDG: 03D2024207

Qualifiers

\sim	_		_	
G	U	٧	U	А

Qualifier	Qualifier Description
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

HPI C/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Ciossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDI	Method Detection Limit

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

	N. D
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

RER	Relative Error Ratio	(Radiochemistry)

RL	Reporting	Limit or	Requested	Limit	(Radioche	emistry)
----	-----------	----------	-----------	-------	-----------	----------

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: Becknell State Com 003H

Job ID: 890-5031-1

SDG: 03D2024207

Job ID: 890-5031-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5031-1

Receipt

The samples were received on 8/3/2023 4:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH01 (890-5031-1) and BH01A (890-5031-2).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (880-32031-A-21-A) and (880-32031-A-21-B MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The continuing calibration verification (CCV) associated with batch 880-60233 recovered below the lower control limit for Diesel Range Organics (Over C10-C28). An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-60233/5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-59457 and analytical batch 880-59519 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-5031-1

Client Sample Results

Client: Ensolum Job ID: 890-5031-1
Project/Site: Becknell State Com 003H SDG: 03D2024207

Client Sample ID: BH01

Date Collected: 08/03/23 09:15 Date Received: 08/03/23 16:05

Sample Depth: 0.5

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		08/10/23 11:41	08/11/23 12:07	1
Toluene	0.0171		0.00198	mg/Kg		08/10/23 11:41	08/11/23 12:07	1
Ethylbenzene	0.0281		0.00198	mg/Kg		08/10/23 11:41	08/11/23 12:07	1
m-Xylene & p-Xylene	0.0801		0.00396	mg/Kg		08/10/23 11:41	08/11/23 12:07	1
o-Xylene	0.0320		0.00198	mg/Kg		08/10/23 11:41	08/11/23 12:07	1
Xylenes, Total	0.112		0.00396	mg/Kg		08/10/23 11:41	08/11/23 12:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	171	S1+	70 - 130			08/10/23 11:41	08/11/23 12:07	1
1,4-Difluorobenzene (Surr)	118		70 - 130			08/10/23 11:41	08/11/23 12:07	1
- Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.157		0.00396	mg/Kg			08/11/23 14:31	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2020		50.1	mg/Kg			08/16/23 11:05	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	96.0		50.1	mg/Kg		08/15/23 09:19	08/15/23 19:47	1
Diesel Range Organics (Over C10-C28)	1920		50.1	mg/Kg		08/15/23 09:19	08/15/23 19:47	1
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		08/15/23 09:19	08/15/23 19:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130			08/15/23 09:19	08/15/23 19:47	1

Client Sample ID: BH01A

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

337

Date Collected: 08/03/23 09:30 Date Received: 08/03/23 16:05

Sample Depth: 1

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		08/10/23 11:41	08/11/23 12:28	1
Toluene	<0.00201	U	0.00201	mg/Kg		08/10/23 11:41	08/11/23 12:28	1
Ethylbenzene	0.00866		0.00201	mg/Kg		08/10/23 11:41	08/11/23 12:28	1
m-Xylene & p-Xylene	0.00902		0.00402	mg/Kg		08/10/23 11:41	08/11/23 12:28	1
o-Xylene	0.00868		0.00201	mg/Kg		08/10/23 11:41	08/11/23 12:28	1
Xylenes, Total	0.0177		0.00402	mg/Kg		08/10/23 11:41	08/11/23 12:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130			08/10/23 11:41	08/11/23 12:28	

RL

5.02

Unit

mg/Kg

D

Prepared

Eurofins Carlsbad

3

1

<u>ی</u>

ا

10

12

13

Dil Fac

Matrix: Solid

Analyzed

08/08/23 14:45

Lab Sample ID: 890-5031-2

Matrix: Solid

Lab Sample ID: 890-5031-2

08/08/23 14:52

Client Sample Results

Client: Ensolum Job ID: 890-5031-1
Project/Site: Becknell State Com 003H SDG: 03D2024207

Client Sample ID: BH01A

Date Collected: 08/03/23 09:30 Date Received: 08/03/23 16:05

Sample Depth: 1

Chloride

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	106		70 - 130			08/10/23 11:41	08/11/23 12:28	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0264		0.00402	mg/Kg			08/11/23 14:31	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	735		49.6	mg/Kg			08/16/23 11:05	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6	mg/Kg		08/15/23 09:19	08/15/23 20:13	1
(GRO)-C6-C10								
Diesel Range Organics (Over	735		49.6	mg/Kg		08/15/23 09:19	08/15/23 20:13	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		08/15/23 09:19	08/15/23 20:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	87		70 - 130			08/15/23 09:19	08/15/23 20:13	1
o-Terphenyl	86		70 - 130			08/15/23 09:19	08/15/23 20:13	1

4.99

mg/Kg

406

Surrogate Summary

Client: Ensolum Job ID: 890-5031-1
Project/Site: Becknell State Com 003H SDG: 03D2024207

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-31825-A-1-C MS	Matrix Spike	121	118	
880-31825-A-1-D MSD	Matrix Spike Duplicate	122	111	
880-31843-A-1-G MS	Matrix Spike	98	95	
880-31843-A-1-H MSD	Matrix Spike Duplicate	98	89	
890-5031-1	BH01	171 S1+	118	
890-5031-2	BH01A	130	106	
LCS 880-59852/1-A	Lab Control Sample	125	113	
LCS 880-59853/1-A	Lab Control Sample	103	93	
LCSD 880-59852/2-A	Lab Control Sample Dup	129	116	
LCSD 880-59853/2-A	Lab Control Sample Dup	84	90	
MB 880-59833/5-A	Method Blank	71	97	
MB 880-59852/5-A	Method Blank	69 S1-	83	
MB 880-59853/5-A	Method Blank	95	117	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

1CO = 1-Chlorooctane
OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-32031-A-21-B MS	Matrix Spike	82	64 S1-	
880-32031-A-21-C MSD	Matrix Spike Duplicate	96	79	
90-5031-1	BH01	80	77	
90-5031-2	BH01A	87	86	
.CS 880-60248/2-A	Lab Control Sample	95	87	
.CSD 880-60248/3-A	Lab Control Sample Dup	87	80	
/IB 880-60248/1-A	Method Blank	80	81	

Eurofins Carlsbad

Released to Imaging: 12/11/2023 4:27:29 PM

Λ

8

10

111

13

4

Client: Ensolum Job ID: 890-5031-1 Project/Site: Becknell State Com 003H SDG: 03D2024207

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-59833/5-A

Matrix: Solid

Analysis Batch: 59869

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59833

1

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		08/10/23 09:33	08/10/23 17:04	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/10/23 09:33	08/10/23 17:04	•
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/10/23 09:33	08/10/23 17:04	
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		08/10/23 09:33	08/10/23 17:04	
o-Xylene	<0.00200	U	0.00200	mg/Kg		08/10/23 09:33	08/10/23 17:04	
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		08/10/23 09:33	08/10/23 17:04	•

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130	08/10/23 09:33	08/10/23 17:04	1
1,4-Difluorobenzene (Surr)	97		70 - 130	08/10/23 09:33	08/10/23 17:04	1

Lab Sample ID: MB 880-59852/5-A

Client Sample ID: Method Blank

Matrix: Solid Analysis Batch: 59869			Prep Type: Total/NA Prep Batch: 59852		
-	MB MB				
	D 11 0 115		 _	_	

Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200 U	J	0.00200	mg/Kg		08/10/23 11:41	08/11/23 03:40	1
Toluene	<0.00200 U	J	0.00200	mg/Kg		08/10/23 11:41	08/11/23 03:40	1
Ethylbenzene	<0.00200 U	J	0.00200	mg/Kg		08/10/23 11:41	08/11/23 03:40	1
m-Xylene & p-Xylene	<0.00400 U	J	0.00400	mg/Kg		08/10/23 11:41	08/11/23 03:40	1
o-Xylene	<0.00200 U	J	0.00200	mg/Kg		08/10/23 11:41	08/11/23 03:40	1
Xylenes, Total	<0.00400 U	J	0.00400	mg/Kg		08/10/23 11:41	08/11/23 03:40	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130	08/10/23 11:41	08/11/23 03:40	1
1,4-Difluorobenzene (Surr)	83		70 - 130	08/10/23 11:41	08/11/23 03:40	1

Lab Sample ID: LCS 880-59852/1-A

Matrix: Solid

Analysis Batch: 59869

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 59852

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09269		mg/Kg		93	70 - 130	
Toluene	0.100	0.1027		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.1049		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.2341		mg/Kg		117	70 - 130	
o-Xylene	0.100	0.1157		mg/Kg		116	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	125	70 - 130
1.4-Difluorobenzene (Surr)	113	70 - 130

Lab Sample ID: LCSD 880-59852/2-A

Matrix: Solid

Analysis Batch: 59869

Client Sample ID	: Lab Control Sample I	Oup
	Prep Type: Total	/NA

Prep Batch: 59852

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09315		mg/Kg		93	70 - 130	0	35

QC Sample Results

Job ID: 890-5031-1 Client: Ensolum Project/Site: Becknell State Com 003H SDG: 03D2024207

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-59852/2-A

Matrix: Solid Analysis Batch: 59869 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 59852

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 0.100 Toluene 0.1021 102 70 - 130 35 mg/Kg Ethylbenzene 0.100 0.1065 mg/Kg 106 70 - 130 35 0.200 m-Xylene & p-Xylene 0.2378 mg/Kg 119 70 - 130 2 35 o-Xylene 0.100 0.1178 mg/Kg 118 70 - 130 2 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	129		70 - 130
1,4-Difluorobenzene (Surr)	116		70 - 130

Lab Sample ID: 880-31825-A-1-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 59869

Prep Type: Total/NA

Prep Batch: 59852

MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Benzene <0.00199 0.0996 0.08755 87 70 - 130 mg/Kg Toluene <0.00199 U 0.0996 0.08692 87 70 - 130 mg/Kg Ethylbenzene <0.00199 U 0.0996 0.08582 70 - 130 mg/Kg 86 m-Xylene & p-Xylene <0.00398 U 0.199 0.1787 89 70 - 130 mg/Kg o-Xylene <0.00199 U 0.0996 0.08562 mg/Kg 86 70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	121	70 - 130
1,4-Difluorobenzene (Surr)	118	70 - 130

Lab Sample ID: 880-31825-A-1-D MSD

Matrix: Solid

Analysis Batch: 59869

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 59852

_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.101	0.09473		mg/Kg		93	70 - 130	8	35
Toluene	<0.00199	U	0.101	0.09766		mg/Kg		97	70 - 130	12	35
Ethylbenzene	<0.00199	U	0.101	0.09844		mg/Kg		98	70 - 130	14	35
m-Xylene & p-Xylene	<0.00398	U	0.202	0.1972		mg/Kg		97	70 - 130	10	35
o-Xylene	<0.00199	U	0.101	0.09325		mg/Kg		92	70 - 130	9	35

MSD MSD

мв мв

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	122	70 - 130
1,4-Difluorobenzene (Surr)	111	70 - 130

Lab Sample ID: MB 880-59853/5-A

Matrix: Solid

Analysis Batch: 59911

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59853

l .								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		08/10/23 11:50	08/11/23 13:16	1
Toluene	<0.00200	U	0.00200	mg/Kg		08/10/23 11:50	08/11/23 13:16	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		08/10/23 11:50	08/11/23 13:16	1
m-Xvlene & p-Xvlene	<0.00400	U	0.00400	ma/Ka		08/10/23 11:50	08/11/23 13:16	1

Client: Ensolum

Job ID: 890-5031-1 SDG: 03D2024207 Project/Site: Becknell State Com 003H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-59853/5-A

Matrix: Solid

Analysis Batch: 59911

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59853

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200	mg/Kg	_	08/10/23 11:50	08/11/23 13:16	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		08/10/23 11:50	08/11/23 13:16	1

MR MR

мв мв

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95	70 - 130	08/10/23 11:50	08/11/23 13:16	1
1,4-Difluorobenzene (Surr)	117	70 - 130	08/10/23 11:50	08/11/23 13:16	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-59853/1-A **Matrix: Solid**

Lab Sample ID: LCSD 880-59853/2-A

Matrix: Solid

Analysis Batch: 59911

Prep Type: Total/NA

Prep Batch: 59853

	Spike	LCS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1116		mg/Kg		112	70 - 130	
Toluene	0.100	0.1097		mg/Kg		110	70 - 130	
Ethylbenzene	0.100	0.1093		mg/Kg		109	70 - 130	
m-Xylene & p-Xylene	0.200	0.2377		mg/Kg		119	70 - 130	
o-Xylene	0.100	0.1119		mg/Kg		112	70 - 130	

LCS LCS

Surrogate	%Recovery Quali	fier Limits
4-Bromofluorobenzene (Surr)	103	70 - 130
1.4-Difluorobenzene (Surr)	93	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 59911 Prep Batch: 59853

ı		Spike	LCSD	LCSD				%Rec		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Benzene	0.100	0.1061		mg/Kg		106	70 - 130	5	35
	Toluene	0.100	0.09822		mg/Kg		98	70 - 130	11	35
	Ethylbenzene	0.100	0.09026		mg/Kg		90	70 - 130	19	35
İ	m-Xylene & p-Xylene	0.200	0.1847		mg/Kg		92	70 - 130	25	35
	o-Xylene	0.100	0.08745		mg/Kg		87	70 - 130	25	35
	Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	0.100 0.100 0.100 0.200	0.1061 0.09822 0.09026 0.1847	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	106 98 90 92	70 - 130 70 - 130 70 - 130 70 - 130	5 11 19 25	35 35 35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	84	70 - 130
1.4-Difluorobenzene (Surr)	90	70 - 130

Lab Sample ID: 880-31843-A-1-G MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 59911

Prep Type: Total/NA Prep Batch: 59853

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.1080		mg/Kg		108	70 - 130	
Toluene	< 0.00199	U	0.0996	0.1013		mg/Kg		102	70 - 130	
Ethylbenzene	< 0.00199	U	0.0996	0.09650		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.199	0.2039		mg/Kg		102	70 - 130	
o-Xylene	<0.00199	U	0.0996	0.09678		mg/Kg		97	70 - 130	

Project/Site: Becknell State Com 003H

Client: Ensolum

Me Me

Job ID: 890-5031-1

SDG: 03D2024207

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-31843-A-1-G MS

Matrix: Solid

Analysis Batch: 59911

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 59853

	IVI CIVI	3	
Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: 880-31843-A-1-H MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Solid

Analysis Batch: 59911

Prep Type: Total/NA

Prep Batch: 59853

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.101	0.09540		mg/Kg		95	70 - 130	12	35
Toluene	<0.00199	U	0.101	0.09308		mg/Kg		92	70 - 130	8	35
Ethylbenzene	<0.00199	U	0.101	0.09115		mg/Kg		90	70 - 130	6	35
m-Xylene & p-Xylene	<0.00398	U	0.202	0.1948		mg/Kg		97	70 - 130	5	35
o-Xylene	<0.00199	U	0.101	0.09343		mg/Kg		93	70 - 130	4	35

MSD MSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 98 70 - 130 1,4-Difluorobenzene (Surr) 89 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-60248/1-A

Matrix: Solid

Analysis Batch: 60233

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 60248

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		08/15/23 08:00	08/15/23 08:28	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		08/15/23 08:00	08/15/23 08:28	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		08/15/23 08:00	08/15/23 08:28	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130	08/15/23 08:00	08/15/23 08:28	1
o-Terphenyl	81		70 - 130	08/15/23 08:00	08/15/23 08:28	1

Lab Sample ID: LCS 880-60248/2-A

Released to Imaging: 12/11/2023 4:27:29 PM

Matrix: Solid

Analysis Batch: 60233

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 60248

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	877.7	-	mg/Kg		88	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	833.7		mg/Kg		83	70 - 130	
C10-C28)								

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	95		70 - 130
o-Terphenyl	87		70 - 130

Client: Ensolum Job ID: 890-5031-1 Project/Site: Becknell State Com 003H

Client Sample ID: Lab Control Sample Dup

SDG: 03D2024207

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 60248

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-60248/3-A

Matrix: Solid

Analysis Batch: 60233

Analysis Batch: 60233							Prep	Batch:	60248
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	800.9		mg/Kg		80	70 - 130	9	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	800.6		mg/Kg		80	70 - 130	4	20
C10-C28)									

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
1-Chlorooctane	87		70 - 130
o-Terphenyl	80		70 - 130

Lab Sample ID: 880-32031-A-21-B MS

Matrix: Solid

Analysis Batch: 60233

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	998	766.0		mg/Kg		74	70 - 130	
Diesel Range Organics (Over	<50.2	U	998	723.2		mg/Kg		70	70 - 130	

C10-C28)

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	82		70 - 130
o-Terphenyl	64	S1-	70 - 130

Lab Sample ID: 880-32031-A-21-C MSD

Matrix: Solid

Analysis Batch: 60233									Prep	Batch:	60248
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.2		998	896.2		mg/Kg		87	70 - 130	16	20
Diesel Range Organics (Over C10-C28)	<50.2	U	998	884.2		mg/Kg		86	70 - 130	20	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 130
o-Terphenyl	79		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-59457/1-A

Matrix: Solid

Analysis Batch: 59519

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			08/08/23 13:57	1

Eurofins Carlsbad

Prep Type: Soluble

QC Sample Results

Client: Ensolum Job ID: 890-5031-1 Project/Site: Becknell State Com 003H

SDG: 03D2024207

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-59457/2-A

Client Sample ID: Lab Control Sample

mg/Kg

mg/Kg

Prep Type: Soluble

Matrix: Solid Analysis Batch: 59519

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride

250

90 - 110

Lab Sample ID: LCSD 880-59457/3-A

Client Sample ID: Lab Control Sample Dup

90 - 110

97

96

Prep Type: Soluble

Matrix: Solid Analysis Batch: 59519

Spike LCSD LCSD %Rec RPD Added Result Qualifier Analyte Unit D %Rec Limits RPD

241.5

239.9

Limit

Lab Sample ID: 880-31722-A-1-G MS

Lab Sample ID: 880-31722-A-1-H MSD

Client Sample ID: Matrix Spike

Chloride

Matrix: Solid

Prep Type: Soluble

Analysis Batch: 59519

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit Limits Chloride 232 F1 248 406.9 F1 90 - 110 mg/Kg

250

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 59519

Prep Type: Soluble

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec RPD Limit Limits 232 F1 408.3 F1 Chloride 248 90 - 110 20 mg/Kg

QC Association Summary

Client: Ensolum Job ID: 890-5031-1 Project/Site: Becknell State Com 003H SDG: 03D2024207

GC VOA

Prep Batch: 59833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-59833/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 59852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Total/NA	Solid	5035	
890-5031-2	BH01A	Total/NA	Solid	5035	
MB 880-59852/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-59852/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-59852/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-31825-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-31825-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 59853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-59853/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-59853/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-59853/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-31843-A-1-G MS	Matrix Spike	Total/NA	Solid	5035	
880-31843-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 59869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Total/NA	Solid	8021B	59852
890-5031-2	BH01A	Total/NA	Solid	8021B	59852
MB 880-59833/5-A	Method Blank	Total/NA	Solid	8021B	59833
MB 880-59852/5-A	Method Blank	Total/NA	Solid	8021B	59852
LCS 880-59852/1-A	Lab Control Sample	Total/NA	Solid	8021B	59852
LCSD 880-59852/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	59852
880-31825-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	59852
880-31825-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	59852

Analysis Batch: 59911

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-59853/5-A	Method Blank	Total/NA	Solid	8021B	59853
LCS 880-59853/1-A	Lab Control Sample	Total/NA	Solid	8021B	59853
LCSD 880-59853/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	59853
880-31843-A-1-G MS	Matrix Spike	Total/NA	Solid	8021B	59853
880-31843-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	59853

Analysis Batch: 59952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Total/NA	Solid	Total BTEX	
890-5031-2	BH01A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 60233

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Total/NA	Solid	8015B NM	60248
890-5031-2	BH01A	Total/NA	Solid	8015B NM	60248
MB 880-60248/1-A	Method Blank	Total/NA	Solid	8015B NM	60248

Eurofins Carlsbad

Page 15 of 23

Released to Imaging: 12/11/2023 4:27:29 PM

QC Association Summary

Client: Ensolum Job ID: 890-5031-1
Project/Site: Becknell State Com 003H SDG: 03D2024207

GC Semi VOA (Continued)

Analysis Batch: 60233 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-60248/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	60248
LCSD 880-60248/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	60248
880-32031-A-21-B MS	Matrix Spike	Total/NA	Solid	8015B NM	60248
880-32031-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	60248

Prep Batch: 60248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Total/NA	Solid	8015NM Prep	
890-5031-2	BH01A	Total/NA	Solid	8015NM Prep	
MB 880-60248/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-60248/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-60248/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-32031-A-21-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-32031-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 60380

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Total/NA	Solid	8015 NM	
890-5031-2	BH01A	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 59457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Soluble	Solid	DI Leach	_
890-5031-2	BH01A	Soluble	Solid	DI Leach	
MB 880-59457/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-59457/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-59457/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-31722-A-1-G MS	Matrix Spike	Soluble	Solid	DI Leach	
880-31722-A-1-H MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 59519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5031-1	BH01	Soluble	Solid	300.0	59457
890-5031-2	BH01A	Soluble	Solid	300.0	59457
MB 880-59457/1-A	Method Blank	Soluble	Solid	300.0	59457
LCS 880-59457/2-A	Lab Control Sample	Soluble	Solid	300.0	59457
LCSD 880-59457/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	59457
880-31722-A-1-G MS	Matrix Spike	Soluble	Solid	300.0	59457
880-31722-A-1-H MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	59457

Eurofins Carlsbad

2

5

1

9

4 4

М

Lab Chronicle

Client: EnsolumJob ID: 890-5031-1Project/Site: Becknell State Com 003HSDG: 03D2024207

Client Sample ID: BH01

Date Collected: 08/03/23 09:15 Date Received: 08/03/23 16:05 Lab Sample ID: 890-5031-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	59852	08/10/23 11:41	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59869	08/11/23 12:07	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59952	08/11/23 14:31	AJ	EET MID
Total/NA	Analysis	8015 NM		1			60380	08/16/23 11:05	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	60248	08/15/23 09:19	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60233	08/15/23 19:47	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	59457	08/07/23 09:42	KS	EET MID
Soluble	Analysis	300.0		1			59519	08/08/23 14:45	CH	EET MID

Client Sample ID: BH01A

Date Collected: 08/03/23 09:30 Date Received: 08/03/23 16:05 Lab Sample ID: 890-5031-2

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 Total/NA Prep 4.98 g 5 mL 59852 08/10/23 11:41 EL EET MID 8021B Total/NA 5 mL 59869 08/11/23 12:28 **EET MID** Analysis 1 5 mL SM Total/NA Total BTEX 59952 08/11/23 14:31 Analysis 1 A.I **EET MID** Total/NA Analysis 8015 NM 60380 08/16/23 11:05 SM **EET MID** Total/NA 10 mL 60248 Prep 8015NM Prep 10.08 g 08/15/23 09:19 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 60233 08/15/23 20:13 SM **EET MID** Soluble 5.01 g EET MID Leach DI Leach 50 mL 59457 08/07/23 09:42 KS Soluble Analysis 300.0 59519 08/08/23 14:52 СН **EET MID**

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

3

4

6

0

10

12

1 /

14

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-5031-1
Project/Site: Becknell State Com 003H SDG: 03D2024207

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-23-26	06-30-24
The following analytes	are included in this report, bu	it the laboratory is not certific	ed by the governing authority. This list ma	v include analytes for
the agency does not of	fer certification.	,	, g	ly molado analytoo for
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	y molado analytoo for t
0 ,		•	, , ,	y mondo unalytoo tor y

3

4

10

12

13

14

Method Summary

Client: Ensolum Job ID: 890-5031-1 Project/Site: Becknell State Com 003H SDG: 03D2024207

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: Becknell State Com 003H

Job ID: 890-5031-1

SDG: 03D2024207

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5031-1	BH01	Solid	08/03/23 09:15	08/03/23 16:05	0.5
890-5031-2	BH01A	Solid	08/03/23 09:30	08/03/23 16:05	1

3

4

O

9

10

12

13

114

Circle Method(s) and Metal(s) to be analyzed

Total 200.7 / 6010

200.8 / 6020:

8RCRA 13PPM Texas 11 Al Sb As Ba Be

TCLP / SPLP 6010: 8RCRA Sb As Ba Be

votice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xv

service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses

Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample

Rec

bived by: (Signature)

8-8-23 160 E

Date/Time

Relinquished by: (Signature)

Received by: (Signature)

Date/Time

Revised Date 08/25/2020 Rev 2020 2

Relinquished by: (Signature)

13 14

eurofins Environment Testing

Phone:

432-557-8895 Midland, TX 79701

Email: hgreen@ensolum.com

City, State ZIP:

Midland, TX 79701

601 N Marienfeld St Suite 400

City, State ZIP:

Address:

Project Manager:

Company Name:

Ensolum, LLC Hadlie Green

Company Name: Bill to: (if different)

Ensolum, LLC Hadlie Green

601 N Marienfeld St Suite 400

SAMPLE RECEIPT

Temp Blank:

Yes No

Wet ice:

Yes

8

Parameters

No

Thermometer ID:

< 700 P

Correction Factor: emperature Reading:

Samples Received Intact:

Cooler Custody Seals:

imple Custody Seals:

Yes Yes No (Yes)

ö

Corrected Temperature:

Sample Identification

Sampled

Sampled

Date

Time

Depth

Comp Cont Grab/

of

TPH (8015)

BTEX (8021)

CHLORIDES (EPA: 300.0)

0.5 Comp Comp

BH01A BH01

Soil Soil Matrix

8/3/2023 8/3/2023

930 915

A A

Sampler's Name:

roject Location:

32.5073,-103.5965 Peter Van Patten

Due Date:

✓ Routine

☐ Rush

Pres.

Turn Around

TAT starts the day received by the lab, if received by 4:30pm

Project Number:

Project Name:

Becknell State Com 003H

03D2024207

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Work Order No:

www.xenco.com	Page	_	으	_
Work Order Comments	mments			
Program: UST/PST 🗌 PRP 🗌 Brownfields 🔲 RRC 📗 Superfund 🗍	elds 🗌 R	RC 🗆	Super	fund 🗆
State of Project:				
Reporting: Level II Level III PST/UST TRRP Level IV	IST [] TI	RRP 🗌	Lev	el IV
Deliverables: EDD ☐ ADaPT ☐	0	Other:		
	-	-		

ANALYSIS REQUEST	Preserv	Preservative Codes
	None: NO	DI Water: H ₂ O
	Cool: Cool	MeOH: Me
	H ₂ SO ₄ : H ₂	NaOH: Na
	H ₃ PO ₄ : HP	
	NaHSO ₄ : NABIS	3IS
	Na ₂ S ₂ O ₃ : NaSO ₃	Ö
	Zn Acetate+NaOH: Zn	aOH: Zn
890-5031 Chain of Custody	NaOH+Ascort	NaOH+Ascorbic Acid: SAPC
	Sample	Sample Comments
Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U V Zn	a Sr Ti Sn L	J V Zn
	Hg: 1631 / 245.1 / 7470 / 7471	/7471
nco, its affiliates and subcontractors. It assigns standard terms and conditions increased by the client if such losses are due to circumstances beyond the control		
incurred by the client if such losses are due to circumstances beyond the control		

Login Sample Receipt Checklist

 Client: Ensolum
 Job Number: 890-5031-1

 SDG Number: 03D2024207

List Source: Eurofins Carlsbad

Login Number: 5031 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

3

5

7

g

11

40

14

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-5031-1

SDG Number: 03D2024207

Login Number: 5031 **List Source: Eurofins Midland** List Number: 2

List Creation: 08/07/23 09:38 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

APPENDIX E

NMOCD Notifications

From: <u>Buchanan, Michael, EMNRD</u>

To: <u>Hadlie Green; Enviro, OCD, EMNRD; Velez, Nelson, EMNRD</u>

Cc: <u>Kalei Jennings</u>; <u>Peter Van Patten</u>

Subject: RE: [EXTERNAL] COG - Containment Inspection - Becknell St Com 3H (Spill Date 6/25/2023)

Date: Wednesday, July 5, 2023 3:26:06 PM

Attachments: <u>image005.jpg</u>

image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Good afternoon,

Thank you for the notification. Please include a copy of this and all notifications in the C-141, remedial and/or closure reports to ensure the notifications are documented in the project file.

Regards,

Mike Buchanan ● Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division

8801 Horizon Blvd. NE | Albuquerque, NM 87113

| michael.buchanan@emnrd.nm.gov http://www.emnrd.nm.gov/ocd

From: Hadlie Green <hgreen@ensolum.com>

Sent: Wednesday, July 5, 2023 1:48 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom It May Concern,

Below is an email notification for liner inspection at COG Operating, LLC (COG) Becknell St Com 3H (Spill Date 6/25/2023). This is a notification that Ensolum is scheduled to inspect this lined containment on behalf of COG on Friday, July 14, 2023. Please call with any questions or concerns.

GPS: 32.5073, -103.5965

Thank you,

Project Geologist 432-557-8895 hgreen@ensolum.com Ensolum, LLC

APPENDIX F

Final C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NAPP2318741823
District RP	
Facility ID	fAPP2202658800
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137		
Contact Name	Jacob Laird	Contact Telephone	(575) 703-5482		
Contact email	Jacob.Laird@ConocoPhillips.com Incident # (assigned by OCD) NAPP2318741823				
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701				

Location of Release Source							
Latitude							
(NAD 83 in decimal degrees to 5 decimal places)							
Site Name		Becknell St	ate Com 003F	H Site	Type	Tank Battery	
Date Release	Date Release Discovered June 25, 2023 API# (if applicable) 30-025-41299						
Unit Letter	Section	Township	Range		County		
K							
Surface Owner: State Federal Tribal Private (Name:)							
			Nature and	Volum	e of Relea	se	

Mater Crude Oil	vial(s) Released (Select all that apply and attach calculations or special Volume Released (bbls) 138.2209	fic justification for the volumes provided below) Volume Recovered (bbls) 116				
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)				
Froduced water	Volume Released (bbis)	Volume Recovered (bbis)				
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?						
Condensate Volume Released (bbls) Volume Recovered (bbls)						
□ Natural Gas Volume Released (Mcf) Volume Recovered (Mcf)						
Other (describe) Volume/Weight Released (provide units) Volume/Weight Recovered (provide units)						
Cause of Release						
The release was caused by a loose hammer union.						
The release occur	red within a gravel line facility. A vacuum . Evaluation will have the spill area evalua					

Received by OCD: 9/18/2023/9:53:56 AM State of New Mexico
Page 2 Oil Conservation Division

Page 94 of 102

Incident ID	NAPP2318741823
District RP	
Facility ID	fAPP2202658800
Application ID	

Was this a major	If YES, for what reason(s) does the respor	sible party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?	The volume released was greate	er than 25 barrels.
, ,		
■ Yes □ No		
	-	om? When and by what means (phone, email, etc)?
state.nm.us.	as given by Jacqui Harris via ema	ail on June 26, 2023 at 10:59 AM to ocd.enviro@
otatoac.		
	Initial Ro	esponse
The responsible j	party must undertake the following actions immediatel	unless they could create a safety hazard that would result in injury
■ The source of the rele	ease has been stopped.	
■ The impacted area ha	s been secured to protect human health and	the environment.
	•	ikes, absorbent pads, or other containment devices.
	ecoverable materials have been removed and	
<u> </u>	d above have <u>not</u> been undertaken, explain v	
		emediation immediately after discovery of a release. If remediation
		efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
		pest of my knowledge and understand that pursuant to OCD rules and actions and perform corrective actions for releases which may endanger
public health or the environr	nent. The acceptance of a C-141 report by the C	CD does not relieve the operator of liability should their operations have
		at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
and/or regulations.	–	
Printed Name. Brittar	ny N. Esparza	Title: Environmental Technician
Signature: Paux	ny N. Esparza	Date: 7/6/2023 Telephone: (432) 221-0398
Brittanv.Espar	za@ConocoPhillips.com	(432) 221-0398
email:		Telephone: (102) 221 3333
OCD Only		
Received by: Shelly We	110	Date: 7/6/2023
received by. <u>Shelly We</u>	11.0	<u> </u>

Received by OCD: 9/18/2023 9:53:56	Spill Calculation - On-Pad Surface Pool Spill	Page 3 of 4	Total Estimated volume of Spill	(ppl.)	91.95	16.89	3.59	19.00	12.56	1.50	00'0	00'0	00'0	00'0		138.2209
	lation - On-Pad	1000 1000 1000	Penetration allowance	(ft.)	0.03	0.02	0.01	0.02	0.01	0.01	0.00	0.00	0.00	0.00		il not impacted:
	Spill Calcu	F AT LANGE TO	Estimated volume of each pool area	(ppl.)	89.71	16.61	3.56	18.69	12.46	1.48	00.0	0.00	0.00	0.00		Total Volume Release, Soil not impacted:
		_	Estimated Pool Area	(sq. ft.)	1008.00	280.00	120.00	315.00	420.00	20.00	00.00	00.00	0.00	0.00		Total V
		M	Wera		6.0	4.0	2.0	4.0	2.0	2.0					P. M.	
		0:50 A	Width	E	36	10	9	15	15	5					:37:13	
		023 11:4	Length	3	28	28	20	21	28	10					5/2023 1	
Released to Imaging: 12/11/2023 4:2	7:29	Received by OCD: 7/6/2	Sonvert Irregular shape into	d selles of recidifyies	Rectangle A	Rectangle B	Rectangle C	Rectangle D	Rectangle E	Rectangle F	Rectangle G	Rectangle H	Rectangle I	Rectangle J	Released to Imaging: 7/	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 236590

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	236590
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
scwells	None	7/6/2023

NAPP2318741823 Incident ID District RP Facility ID fAPP2202658800 Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no taler than 90 days after the release discovery date.				
What is the shallowest depth to groundwater beneath the area affected by the release?	<u>51-100</u> (ft bgs)			
Did this release impact groundwater or surface water?	☐ Yes ⊠ No			
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No			
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No			
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No			
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No			
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No			
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No			
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.				
Characterization Report Checklist: Each of the following items must be included in the report.				
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data				

Characterization Report Checklist: Each of the following items must be included in the report.
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
☐ Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
☐ Topographic/Aerial maps
☐ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/18/2023 9:53:56 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

Page 98 of 102	2
----------------	---

Incident ID	NAPP2318741823
District RP	
Facility ID	fAPP2202658800
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.					
Printed Name:Jacob Laird	Title:Environmental Engineer				
Signature: Jacob Laird	Date:9/14/2023				
email:Jacob.Laird@conocophillips.com	Telephone:575-703-5482				
OCD Only					
Received by:	Date:				

Page 99 of 102

	- "8" - " - " - " - " - " - " - " - " -
Incident ID	NAPP2318741823
District RP	
Facility ID	fAPP2202658800
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.				
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation points □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC □ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 					
Deferral Requests Only: Each of the following items must be con-	nfirmed as part of any request for deferral of remediation.				
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility				
Extents of contamination must be fully delineated.					
☐ Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.				
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of				
Printed Name:Jacob Laird	Title:Environmental Engineer				
Signature: <u>Jacob Laird</u>	Date:9/14/2023				
email:Jacob.Laird@conocophillips.com	Telephone:575-703-5482				
OCD Only					
Received by:	Date:				
Approved	Approval Denied Deferral Approved				
Signature:	Date:				

Page 100 of 102

	1 118 0 200 0 1 2
Incident ID	NAPP2318741823
District RP	
Facility ID	fAPP2202658800
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

☐ A scaled site and sampling diagram as described in 19.15	5.29.11 NMAC	
□ Photographs of the remediated site prior to backfill or plants be notified 2 days prior to liner inspection)	hotos of the liner integrity if applicable (Note: appropriate OCD District office	
☐ Laboratory analyses of final sampling (Note: appropriate	ODC District office must be notified 2 days prior to final sampling)	
□ Description of remediation activities		
and regulations all operators are required to report and/or file of may endanger public health or the environment. The acceptant should their operations have failed to adequately investigate and human health or the environment. In addition, OCD acceptant compliance with any other federal, state, or local laws and/or respectively.	Title: _Environmental Engineer	
email:Jacob.Laird@conocophillips.com	Telephone:575-703-5482	
OCD Only		
Received by:	Date:	
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.		
Closure Approved by: Scott Rodgers	Date: _12/11/2023	
Printed Name: Scott Rodgers	Title: Environmental Specialist Advanced	

Remediation has met 19.15.29 NMAC requirements. Soil impacts exceeding the reclamation standards have been left in place and are required to meet 19.15.29.13D (1) NMAC once the site is no longer reasonably needed for production or subsequent drilling operations.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 266257

COMMENTS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	266257
	Action Type:
	[C-141] Release Corrective Action (C-141)

COMMENTS

Created By	Comment	Comment Date
scott.rodge	Remediation has met 19.15.29 NMAC requirements. Soil impacts exceeding the reclamation standards have been left in place and are required to meet 19.15.29.13D (1) NMAC once the site is no longer reasonably needed for production or subsequent drilling operations.	12/11/2023

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 266257

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	266257
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
scott.rodg	rs None	12/11/2023