ENSOLUM

January 8, 2024

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Remediation Work Plan Jalmat Yates Unit #188 Incident Number NAPP2235373931 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum) on behalf of Maverick Permian, LLC (Maverick), has prepared the following *Remediation Work Plan* (*Work Plan*) to document site assessment and delineation activities completed to date and to propose a work plan to address the impacted soil identified at the Jalmat Yates Unit #188 (Site). The following *Work Plan* proposes excavation of chloride impacted soil from the top four feet of the release area and area surrounding the release, which is associated with a historical pit identified at the Site.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit C, Section 13, Township 22 South, Range 35 East, in Lea County, New Mexico (32.395541° N, -103.32178° W) and is associated with oil and gas exploration and production operations on land owned partially by the New Mexico State Land Office (NMSLO) and partially owned by Merchant Livestock Company.

On December 2, 2022, corrosion of a flow line resulted in the release of approximately 1 barrel (bbl) of crude oil and 5 bbls of produced water into the reclaimed well pad area east of the wellhead/pumpjack. No fluids were recovered. The release occurred on the surface of a historical/reclaimed pit. Maverick reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on December 19, 2022. The release was assigned Incident Number NAPP2235373931.

Since the release occurred on a previously disturbed area of the well pad, an assessment of cultural properties had already been completed prior to the construction of the well pad and as such, the Cultural Properties Protection Rule (CPP) has been followed. No additional cultural resource surveys were completed in connection with this release.

SITE CHARATERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess applicability of Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC).

Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be greater than 105 feet below ground surface (bgs) based on the nearest groundwater well data. The closest groundwater well/soil boring with depth to groundwater data is soil boring DTW-01, located at the Site. The soil boring was drilled at the Site during December 2023 to a depth of 105 feet bgs. A field geologist logged and described soil continuously. The borehole lithologic log is included in Appendix A. No groundwater was encountered in the borehole to a depth of 105 feet bgs. The borehole was left open for over 72 hours to allow for potential infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater beneath the Site is greater than 105 feet bgs. The borehole was properly abandoned using hydrated bentonite chips. All wells used for depth to groundwater determination are presented on Figure 1.

The closest continuously flowing or significant watercourse is greater than 300 feet from the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH applies to the top 4 feet of the pasture area that was impacted by the release, per 19.15.29.13.D (1) NMAC for the top 4 feet of areas that will be reclaimed following remediation.

SITE ASSESSMENT AND INITIAL DELINEATION ACTIVITIES

During January and February 2023, Ensolum personnel were at the Site to delineate the release extent based on information provided on the Form C-141, the documented release extent, and visible observations. Potholes PH01 through PH10 were advanced via trackhoe within and around the release area to assess the extent of impacted soil. Soil from the potholes was field screened at 1-foot intervals for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The potholes were advanced to depths ranging from 4 feet to 8 feet bgs. Indications of a historical pit, including increasing field screening results with depth and pieces of liner, were encountered in the potholes at depths ranging from 4 feet to 6 feet bgs. Field screening results and observations for the potholes were logged on lithologic soil sampling logs, which are included in Appendix C. Based on field screening results, discrete delineation samples were collected from the potholes at depths ranging from 1-foot to 8 feet bgs. The release extent and delineation soil sample locations were mapped utilizing a handheld Global Positioning System (GPS)

unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included in Appendix C.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody procedures to Eurofins Laboratories in Carlsbad, New Mexico, for analysis of the following contaminants of concern (COC): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for the delineation soil samples collected from potholes PH01 through PH10 indicated all COC concentrations were compliant with the Site Closure Criteria. However, chloride concentrations in potholes PH01 through PH05 and PH08 through PH10 exceeded the reclamation requirement for chloride in the top four feet and exceeded the most stringent Table I Closure Criteria at depths greater than 8 feet bgs where the historical pit was encountered. The laboratory analytical results are summarized on the attached Table 1.

The lateral and vertical extent of the December 2022 surface release was not able to be delineated to the most stringent Table I Closure Criteria due to a historical pit encountered beneath the release area. Based on the laboratory analytical results and presence of a historical pit beneath the release area, additional delineation activities were warranted.

ADDITIONAL DELINEATION ACTIVITIES

On December 7 and 8, 2023, Ensolum personnel returned to the Site to delineate the lateral and vertical extent of the historical pit to below the most stringent Table I Closure Criteria.

An air rotary drilling rig was used to advance boreholes at the locations of potholes PH01, PH02, PH03, and PH09, located within the historical pit. The boreholes were advanced to depths ranging from 24 feet to 46 feet bgs, to delineate the vertical extent of the historical pit. Soil from the potholes was field screened as described above. Final depth of the boreholes was determined by field screening results indicating compliance with the most stringent Table I Closure Criteria.

Boreholes BH01 through BH03 were advanced via drilling rig to the south, east, and west of the historical pit and potholes PH06 and PH07, located north and west of the historical pit, were deepened with the drilling rig to delineate the lateral extent of the pit. Boreholes BH01 through BH03 and potholes PH06 and PH07 were advanced to a depth of 30 feet bgs. Soil from the potholes and boreholes was field screened as described above. Field screening results and observations from the potholes and boreholes were documented on lithologic/soil sampling logs, which are included in Appendix C.

Delineation soil samples were collected from the potholes and boreholes at depths ranging from the ground surface to 46 feet bgs. The soil samples were collected, handled, and analyzed as described above at Cardinal Laboratories in Hobbs, New Mexico. The delineation soil sample locations are presented on Figure 2. Photographic documentation was completed during the delineation activities. A photographic log is included in Appendix B.

Laboratory analytical results for the delineation samples from potholes PH01, PH02, PH03, and PH09, advanced within the historical pit, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria at depths ranging from 24 feet to 46 feet bgs, and provided vertical delineation of impacted soil within the historical pit. Laboratory analytical results for the delineation

samples from potholes PH06 and PH07 and boreholes BH01 through BH03, advanced around the historical pit, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria at depths ranging from the ground surface to 30 feet bgs, and provided lateral delineation of the historical pit. The laboratory analytical results are summarized on the attached Table 1 and the complete laboratory analytical reports are included in Appendix D.

PROPOSED REMEDIATION WORK PLAN

The delineation soil sample results indicate soil containing chloride concentrations exceeding the reclamation requirement is present across an approximate 20,000 square foot area and extends to a depth of 4 feet bgs. The impacted soil is associated with the December 2022 surface release as well as a historical pit located within/beneath the release area. The delineation soil sample results indicate all COC concentrations within the release area and historical pit are compliant with the Site Closure Criteria at depths below 4 feet bgs. Additionally, the historical pit was laterally and vertically delineated to below the most stringent Table I Closure Criteria. Based on the delineation soil sample analytical results, Maverick proposes to complete the following remediation activities:

- Excavation of chloride-impacted soil to a depth of 4 feet bgs within the release area and historical pit. Excavation will proceed laterally until sidewall samples confirm chloride concentrations are compliant with the reclamation requirement in the top four feet. Confirmation samples will be collected from the sidewalls and floor of the final excavation extent.
 - The sidewall samples will be collected at a frequency of every 200 square feet.
 - Due to the estimated size of the excavation, Maverick requests a variance for frequency of excavation floor samples. Maverick proposes collecting floor samples at a frequency of every 500 square feet from the excavation floor.
 - Soil remaining in-place below 4 feet bgs is compliant with the Site Closure Criteria. Depth to groundwater was confirmed to be greater than 105 feet bgs at the Site and the historical pit was vertically delineated to below the most stringent Table I Closure Criteria in potholes PH01, PH02, PH03, and PH09 at depths ranging from 24 feet to 46 feet bgs.
- The excavation samples will be handled as described above and analyzed for chloride only. The soil samples will be analyzed for chloride only since benzene, BTEX, and TPH concentrations were compliant with the Site Closure Criteria in the delineation soil samples.
- An estimated 3,000 cubic yards of chloride impacted soil will be excavated. The excavated soil will be transferred to an approved landfill facility for disposal.
- The excavation will be backfilled and recontoured to match pre-existing conditions. The disturbed area will be seeded with a landowner approved seed mixture. A Reclamation Plan for the disturbed area is included in Appendix E.

Maverick will complete the excavation activities within 90 days of the date of approval of this *Work Plan* by the NMOCD. NMOCD Notifications are included in Appendix F and the Form C-141 is included in Appendix G.

If you have any questions or comments, please contact Ms. Aimee Cole at (720) 384-7365 or <u>acole@ensolum.com</u>.

Sincerely, Ensolum, LLC

Aimee Cole Senior Managing Scientist

cc: Bryce Wagoner, Maverick Permian, LLC New Mexico State Land Office Merchant Livestock Company

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Lithologic Soil Sampling Logs
- Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix E NMSLO Reclamation Plan
- Appendix F NMOCD Notifications
- Appendix G Final C-141

FIGURES

.

Received by OCD: 1/11/2024 3:04:14 PM

Released to Imaging: 3/13/2024 9:45:08 AM

TABLES

.

.

ENSOLUM

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Jalmat Yates Unit #188 Maverick Permian, LLC Lea County, New Mexico												
Sample Designation	Sample Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)			
NMOCD Tab	ble I Closure Crite 19.15.29)	ria (NMAC	10	50	NE	NE	NE	1,000	2,500	20,000			
	Delineation Soil Samples												
PH01*	1/9/2023	2	<0.00202	<0.00404	<49.9	<49.9	<49.9	<49.9	<49.9	2,870			
PH01*	1/9/2023	3	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	<49.8	1,830			
PH01	1/9/2023	4	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	2,530			
PH01	12/7/2023	8-10	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	6,900			
PH01	12/7/2023	22-24	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	528			
PH02*	1/9/2023	1	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	1,970			
PH02	1/9/2023	4	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	3,160			
PH02	1/9/2023	8	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	11,800			
PH02	12/7/2023	10-12	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	4,000			
PH02	12/7/2023	22-24	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	512			
PH03*	1/9/2023	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	2,110			
PH03	1/9/2023	4	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	2,530			
PH03	1/9/2023	8	<0.00200	<0.00401	<49.9	<49.9	<49.9	<49.9	<49.9	2,840			
PH03	12/7/2023	12-14	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	2,240			
PH03	12/7/2023	26-28	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	4,240			
PH03	12/7/2023	44-46	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	368			
PH04*	1/9/2023	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	1,210			
PH04	1/9/2023	4	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	10,100			
PH04	1/9/2023	8	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	11,400			
PH05*	1/9/2023	1	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	1,930			
PH05	1/9/2023	4	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	2,610			
PH05	1/9/2023	8	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	2,180			

.

ENSOLUM

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Jalmat Yates Unit #188 Maverick Permian, LLC Lea County, New Mexico												
Sample Designation	Sample Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)		
NMOCD Tab	le I Closure Crite 19.15.29)	ria (NMAC	10	50	NE	NE	NE	1,000	2,500	20,000		
Delineation Soil Samples												
PH06*	2/23/2023	1	<0.00200	<0.00399	<50.4	<50.3	<50.2	<50.1	<50.0	11.9		
PH06	2/23/2023	4	<0.00200	<0.00401	<49.9	<49.9	<49.9	<49.9	<49.9	19.4		
PH06	2/23/2023	6	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	27.8		
PH06	12/8/2023	11-16	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80.0		
PH06	12/8/2023	26-30	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80.0		
PH07*	2/23/2023	1	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	<5.00		
PH07	2/23/2023	4	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	14.0		
PH07	2/23/2023	6	<0.00199	<0.00398	<49.5	<49.6	<49.7	<49.8	<49.9	14.4		
PH07	12/8/2023	11-16	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	112		
PH07	12/8/2023	26-30	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	112		
PH08*	2/24/2023	1	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	600		
PH08	2/24/2023	4	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	4,810		
PH09*	2/24/2023	1	<0.00202	<0.00404	<49.9	<49.9	<49.9	<49.9	<49.9	3,870		
PH09	2/24/2023	4	<0.00199	0.0558	54.2	518	<50.0	572	572	18,400		
PH09	12/7/2023	8-10	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	7,200		
PH09	12/7/2023	24-26	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	3,600		
PH09	12/7/2023	38-40	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	272		
PH10*	2/24/2023	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	618		
PH10	2/24/2023	4	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	2,660		
PH10	2/24/2023	6	<0.00200	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	4,180		

ENSOLUM

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Jalmat Yates Unit #188 Maverick Permian, LLC Lea County, New Mexico												
Sample DesignationSample DateDepth (feet bgs)Benzene (mg/kg)Total BTEX (mg/kg)TPH GRO (mg/kg)TPH DRO (mg/kg)TPH ORO (mg/kg)GRO+DRO (mg/kg)Total TPH (mg/kg)Ch (mg/kg)													
NMOCD Tab	le I Closure Crite 19.15.29)	ria (NMAC	10	50	NE	NE	NE	1,000	2,500	20,000			
	Delineation Soil Samples												
BH01*	12/8/2023	2-4	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	144			
BH01	12/8/2023	14-16	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64.0			
BH01	12/8/2023	28-30	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64.0			
BH02*	12/8/2023	0-2	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	176			
BH02	12/8/2023	11-16	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	112			
BH02	12/8/2023	28-30	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	96.0			
BH03*	12/8/2023	0-2	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64.0			
BH03	12/8/2023	11-16	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80.0			
BH03	12/8/2023	28-30	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	80.0			

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division NMAC: New Mexico Administrative Code

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in **bold** exceed the NMOCD Table 1 Closure Criteria or reclamation standard where applicable. GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Grey text represents samples that have been excavated

* indicates sample was collected in area to be reclaimed after remediation is complete; reclamation requirement in the top 4 feet is 600 mg/kg for chloride and 100 mg/kg for TPH.

APPENDIX A

Referenced Well Records

								Sample Name: DTW-01 Date: 12/7/23
				C	ΟΙ		N	Site Name: Jalmat 188
				3				Incident Number: NAPP2235373931
								Job Number: 03D2057055
	L	ITHOLO	GIC	/ SOIL	SAMPLING	GLOG		Logged By: Ronni Hayes Method: Air rotary
Coord	inates: 32	2.395757	', -1 03	3.321849				Hole Diameter: 6" Total Depth: 105'
		-					-	water was observed within the soil boring after at least 24 hours. ted bentonite chips.
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions
Dry	-	-	N	-	- [] -	0	SP-SM	(0-10'), SAND, dry, fine to very fine grain, no stain, no odor, some subround small gravel, reddish tan, poorly graded with silt.
Dry	-	-	N	-	- [-	10	SP-SM	(10-30'), SAND, dry, fine to very fine grain, no stain, no odor, some subround small gravel, tan, poorly graded with silt.
Dry	-	-	N	-	- Ľ	20		
Dry	-	-	N	-	- L	30	SP-SM	(30-40') Color change to white tan.
Dry	-	-	N	-	- [-	40	SP-SM	(40-50'), SAND, dry, fine grain, no stain, no odor, some subround small gravel, reddish brown, poorly graded with silt.
Dry	-	-	N	-	- [-	50 	SP-SM	(50-70'), SAND, dry, very fine to fine grain, no stain, no odor, little subround small gravel, white tan, poorly graded with silt.
Dry	-	-	N	-	- Ľ	60		
Dry	-	-	N	-	- Ľ	70	SP-SM	(70-80') Color change to reddish tan.
Dry	-	-	N	-	- L -	80	SP-SM	(80-105') SAND, very fine grain, no stain, no odor, some small gravel, reddish brown, poorly graded with silt, noncohesive
Dry	-	-	N	-	- L -	90	SP-SM	(90-105') Color change to reddish tan.
Dry	-	-	N	-	- [-	100		
Dry	-	-	N	-	- - .	105		

Received by	ogn): 1/1	1/2024	3:04:14	PM
	۲⁄.	<u>`с</u> и	- 7		

STATE ENGINEER OFFICE

WELL RECORD

A) Owner o Street or	f well	Merchant	Livestoel	k Company		Owne	r's Well No	
City and	State	Euni	1115	88231				
					and is locate			
							35	
a	1/41/2	<u>NE</u> ¼	14 of Se	ction	Township _	Rar	nge	N.M.P.I
b. Tract	No	of Map No		of th	ne		. · · .	
c. Lot N	lo	of Block No.		of th	1e		· .	
Subdi	vision, recorded	d in	<u>re</u>	8	County.			
								Gran
B) Drilling (Contractor	W. L. Van	Noy			License No	#J_200	
ddress		P.O. Box	7.0110	enter, NM	88266			
Drilling Began	7-11-90	Com	pleted7-	18-90	Type tools	Cable	Size of hole	10 i
							of well215	
Completed we	ll.is XXXX sl	hallow 🗆	artesian.		Depth to wate	r upon completion	of well 185	' f
		Sec	ction 2. PRIN	CIPAL WATE	ER-BEARING S	TRATA		
Depth From	in Feet To	Thickness in Feet		Description of	f Water-Bearing	Formation	Estimated Y (gallons per m	
		·4.5		ter bearin	ng sand		23	
195	210	15	. 14661					
								-
					D OF CASING			
Diameter (inches)	Pounds per foot	Threads per in.		on 3. RECORI in Feet Bottom	D OF CASING Length (feet)	Type of Sho	De Perfor From	ations To
(inches)	per foot	per in.	Depth	in Feet	Length	Type of Sho	be	
		per in.	Depth Top	in Feet Bottom	Length	Type of Sho	Pe From 201	То
(inches)	per foot	per in.	Depth Top	in Feet Bottom	Length	Type of Sho	From	То
(inches)	per foot	per in.	Depth Top	in Feet Bottom	Length	Type of Sho	From 201	То
(inches) 5"	per foot PV	per in.	Depth Top 0	in Feet Bottom 215	Length		From 201	То
(inches) 5"	per foot	per in.	Depth Top 0	in Feet Bottom 215 RD OF MUDE ks (0)	Length (feet)		From 201	То
(inches) 5" . Depth	per foot PV	per in.	Depth Top 0 ion 4. RECO Sacl	in Feet Bottom 215 RD OF MUDE ks (0)	Length (feet)	MENTING S	S C C C C C C C C C C C C C C C C C C C	То
(inches) 5" . Depth	per foot PV	per in.	Depth Top 0 ion 4. RECO Sacl	in Feet Bottom 215 RD OF MUDE ks (0)	Length (feet)	MENTING Menting	ST of Placement	То
(inches) 5" . Depth	per foot PV	per in.	Depth Top 0 ion 4. RECO Sacl	in Feet Bottom 215 RD OF MUDE ks (0)	Length (feet)	MENTING Menting	S C Placement	To 211
(inches) 5" . Depth	per foot PV	per in.	Depth Top 0 ion 4. RECO Sacl	in Feet Bottom 215 RD OF MUDE ks (0)	Length (feet)	MENTING MENTING MENTING MENTING MENTING MENTING	S C Placement	To 211
(inches) 5" . Depth	per foot PV	per in.	Depth Top 0	in Feet Bottom 215 RD OF MUDI ks (ud (Length (feet)	MENTING MENTING MENTING MENTING MENTING MENTING	S C Placement	To 211
(inches) 5" Depth From	per foot PV in Feet To	per in. C Sect Hole Diameter	Depth Top 0 ion 4. RECO Sacl of M Sacl	in Feet Bottom 215 RD OF MUDI ks (ud (Length (feet)	MENTING MENTING MENTING MENTING MENTING MENTING	S C Placement	To 211
(inches) 5" Depth From Plugging Contr Address	per foot PV in Feet To ractor	per in.	Depth Top 0	in Feet Bottom 215 RD OF MUDI ks (ud (Length (feet)	MENTING MENTING MENTING MENTING MENTING MENTING	Standard Provide Action of Placement Provide Action of Pla	To 211
(inches) 5" 5" Depth From Plugging Contr Address Plugging Metho	per foot PV in Feet To and and a set of the	per in.	Depth Top 0	in Feet Bottom 215 RD OF MUDI ks (ud (Length (feet)	MENTING MATA FE NEW MEXICO	Standard Provide Action of Placement Provide Action of Pla	To 211
(inches) 5" Depth From Plugging Contr Address	per foot PV in Feet To and and a set of the	per in.	Depth Top 0	in Feet Bottom 215 RD OF MUDI ks (ud (Length (feet)	MENTING MATA FEINER OFFICE NEW MEXICO Depth in	ST of Placement Freet Cu Feet Cu	To 211

Revised June 1972

475984

,

File No. CP-753 Released to Imaging: 3/13/2024 9:45:08 AM

5 5

Use STOCK

____ Location No.____22.35.14.22131

2

Received by OCD: 1/11/2024 3:04:14 PM

Section 6. LOG OF HOLE

Page 16 of 182

•	40		
0	10	10	Top Soil
10	100	90	Caliche
100	195	95	Sandy caliche
195	210	15	Water bearing sand
210	215	5	Red Bed
_			RIN 10 02 RING
		+	u o D
			110 JP.
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
		1 1	
			······
			·

90 JUL 23 AM 8 31 STATE ENGINEER OFFICE ROSWELL, NEW MEXICO

The undersigned hereby certifies that, to the best of h is knowledge and belief, the foregoing is a true and correct record of the above described hole.

ÛJI Driller

• INSTRUCTIONS: This form should be expred in triplicate, preferably typewritten, and whitted to the appropriate district office **Released to Imaging** the State Expression, except section 5, shall be answered as completely and eccurately as possible when any well is arrived, repared or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

APPENDIX B

Photographic Log

Released to Imaging: 3/13/2024 9:45:08 AM

APPENDIX C

Lithologic Soil Sampling Logs

								Sample Name: PH01	Date: 12-7-23
				C				Site Name: Jalmat 188	
				2	ΟΙ			Incident Number: NAPP223537	73931
								Job Number: 03D2057055	
	L	ITHOLO	GIC	/ SOIL S	AMPLING	LOG		Logged By: Ronni Hayes	Method: Air Rotary
Coordi	nates: 32.3							Hole Diameter: 6"	Total Depth: 24' bgs
					h HACH Chlo	oride Test Sti	rips and Pl	D for chloride and vapor, respe	ctively. Chloride test performed
with 1	:4 dilution f	factor of	soil to	o distilled v	vater. 40% c	orrection fac		led.	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic I	Descriptions
					1	0			
Dry	1,092	0.2	-		-	_ 1	SM	SAND, silty sand, fine gra to dark brown	ined, no odor, dry, med
Dry	1,377	0.6	-	PH01	2	2	SM		vel, fine grained, no odor,
Dry	1,831	1.0	-	PH01	3	3	SAA	SAA	
Dry	1,831	1.0	-	PH01	4	4	CCHE	CALICHE, sandy caliche, fi brown, dry, no odor	ine to coarse grained, med
Dry	3,757.6	-	-		-	6-8 	CCHE	•	
Dry	9,206.4	-	-	PH01	8-10	- 8-10	SAA	SAA, color change to redo	dish brown
Dry	4,832.8	-	N		-	10-12	SM	SAND, silty sand with gra- grained, reddish tan, no c	
Dry	6,160	-	N			12-14	SAA	SAA	
Dry	5,241.6	-	N		-	14-16	SAA	SAA	
Dry	3,035.2	-	N		-	- 16-18 -	SM	SAND, silty sand, very find tan, no odor, dry	e to fine grained, reddish
Dry	1,299.2	-	N		-	18-20	SAA	SAA	
Dry	862.4	-	N		-	20-22	SAA	SAA	
Dry	470.4	-	N	PH01	22-24	22-24	SP-SM	SAND, silty sand with gra grained, reddish brown, r	
					- _	ŀ		TD at 24' bgs	

-	_	_	_	-		_ =		Sample Name: PH02	Date: 12-7-23
	<u> </u>			S	OL		Μ	Site Name: Jalmat 188	
								Incident Number: NAPP223537	3931
								Job Number: 03D2057055	
					AMPLING	LOG		Logged By: Ronni Hayes	Method: Air Rotary
	nates: 32.39							Hole Diameter: 6"	Total Depth: 24' bgs
	ents: Field so :4 dilution fa							for chloride and vapor, respecti d.	vely. Chloride test performe
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic [Descriptions
					_	0			
Dry	1,590	1.4	-	PH02	1	1	SM	SAND, silty sand, fine grai to dark brown	ned, no odor, dry, med
Dry	2,576	1.7	-		-	2	SAA		
Dry	3,188	0.7	-		-	3	SM	SAND, silty sand with grav medium to light brown, d	
Dry	2,245	0.9	-	PH02	4	4	CCHE	CALICHE, sandy caliche, fi medium brown, dry, no o	ne to coarse grained,
Dry	5,364	2.1	-		-	5	SAA	SAA	
Dry	13,232	1.5	-			6	SAA	SAA	
Dry	12,129	1.3	-		-	7	CCHE	CALICHE, sandy caliche, fi medium brown, dry, no o	
Dry	14,476	1.3	-	PH02	8	8	SAA	SAA, color change to redo	lish brown
Dry	4,093.60	-	N	PH02	10-12	10-12	SM	SAND, silty sand with grav grained, dry, no odor, red	
Dry	2,828	-	N		-	12-14	SAA	SAA	
Dry	1,820.40	-	N		-	14-16	SAA	SAA	
Dry	2,144.80	-	Ν		-	16-18	SAA	SAA, color change to mee	lium brown
Dry	1,204	-	N		- - -	18-20	SAA	SAA, color change to redo	lish brown
Dry	1,108.80	-	N		-	20-22	SAA	SAA	
Dry	526.4	-	N	PH02	22-24	22-24	SP-SM	SAND, silty sand with grav grained, reddish tan, no c TD at 24' bgs	

	LI nates: 32.395			S				Sample Name: PH03 Date: 12-7-23 Site Name: Jalmat 188
	LI nates: 32.395			2				
	nates: 32.395							Incident Number: NAPP2235373931
	nates: 32.395							Job Number: 03D2057055
	nates: 32.395	TIOLOC	GIC /	SOIL SA	MPLING L	OG		Logged By: Ronni Hayes Method: Air Rotary
Comme		745, -103	.3215	64				Hole Diameter: 6" Total Depth: 46' bgs
								or chloride and vapor, respectively. Chloride test performed
with 1:4	4 dilution fact	or of soil	to di	stilled wate	er. 40% corre	r included		
Moisture Content							USCS/Rock Symbol	Lithologic Descriptions
					L	0		
Dry	1,422	1.3	-	PH03	1	1	SM	SAND, silty sand, fine grained, no odor, dry, med to dark brown
Dry	1,892	1.5	-	PH03	4	4	CCHE	CALICHE, sandy caliche, fine to coarse grained, medium brown, dry, no odor
Dry	1,892	1.0	-	PH03	8	8	SM	SAND, silty sand with gravel, very fine to coarse grained, dry, no odor, reddish brown
Dry	2,828	-	Ν			10-12	SAA	
Dry	3259.2	-	Ν	PH03	12-14	12-14	SAA	SAA
Dry	2,144.8	-	Ν			14-16	SM	SAND, silty sand with gravel, fine to medium
Dry	4,452	-	N		-	16-18	SM	grained, reddish tan, no odor, dry SAND, silty sand, very fine to medium grained, no
Dry	3,259.2	-	N		-	18-20	SAA	odor, dry, reddish brown SAA
Dry	3,511.2	-	Ν		-	20-22	SAA	SAA
Dry	3,511.20	-	Ν		-	22-24	SAA	SAA
Dry	3,035.20	-	Ν		-	24-26	SM	SAND, silty sand, very fine, no odor, dry, medium grained
Dry	6,160	-	Ν	PH03	26-28	26-28	SAA	SAA
Dry	5,241.60	-	Ν		_	28-30	SM	SAND, silty sand, very fine to medium grained, no odor, dry, tan
Dry	4,093.6	-	Ν		-	30-32	SAA	SAA
Dry	3,449.60	-	Ν			32-34	SAA	SAA
Dry	1,741.6	-	N		-	34-36	SAA	SAA
Dry	1,108.80	-	N		-	36-38	SAA	SAA
Dry	912.8	-	N		-	38-40	SM	SAND, silty sand, very fine to fine grained, no odor
Dry	649.6	-	N			40-42	SAA	dry, light brown
Dry	588	-	N		-	42-44	SAA	
Dry	414.6	-	N	PH03	44-46	44-46	SAA	SAA, color change to tan TD at 46' bgs

	_							Sample Name: PH04	Date: 1/9/23
	E	N		C /				Site Name: Jalmat 188	-
				5 (D L	U		Incident Number: NAPP223537	3931
								Job Number: 03D2057055	
	LIT	HOLOG	IC / S	SOIL SAN	APLING LC)G		Logged By: Peter Van Patten	Method: Backhoe
Coordina	tes: 32.39555							Hole Diameter: 3'	Total Depth: 8' bgs
	ts: Field scree dilution factor							r chloride and vapor, respectivel	y. Chloride test performed
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Lithologic D	escriptions		
						0			
Dry	868	1.6	N	PH04	1	- - - - -	SP-SM	SAND, poorly graded sand to fine grained, medium t	· ·
Dry			Ν		- -	2	SAA	SAA, slight odor	
Dry			N		-	- 3	SAA	SAA	
Dry	8,685	1.9	N	PH04	4 _	- - 4	SP-SM	SAND, poorly graded sand medium brown, slight odd	-
Dry			N		-	- 5 -	SAA	SAA	
Dry			N		-	- 6	ССНЕ	CALICHE, sandy gravel, lig fine to medium grained	ht brown, dry, no odoi
Dry			Ν		-	- 7	SAA	SAA	
Dry	11,132	0.9	N	PH04	8	8	SAA	SAA	
					Ι	L		TD at 8 ft bgs	
			_						

								Sample Namo: PHOS	Date: 1/0/22			
								Sample Name: PH05 Site Name: Jalmat 188	Date: 1/9/23			
	1 E	: N		5 (D L	. U	M		21			
			-		_			Incident Number: NAPP22353739	70			
					MPLING L	06		Job Number: 03D2057055	Mathady Air Datary			
Coordi	nates: 32.395		-			.00		Logged By: Ronni Hayes Hole Diameter: 3'	Method: Air Rotary Total Depth: 8' bgs			
					ACH Chloride	e Test Strins	and PID f	or chloride and vapor, respectively.				
	ution factor of								chionae test performed with			
Moisture Content	Noisture ContentContentChloride <td colspan="3">Lithologic Descriptions</td>							Lithologic Descriptions				
Dry	2,497	1.3	Ζ	PH05	1 - - - -	SM	SAND, poorly sorted sand w odor, dry, med to dark brov	_				
					- - -	2	SAA	SAA				
Dry	1,764	1.2	N	PH05	4	4	ССНЕ	CALICHE, sandy caliche, fine medium brown, dry, no odo	-			
					- - -	5	SAA	SAA, light brown				
					- - -	6	SAA	SAA				
					- - -	- 7 -	SP-SM	SAND, poorly sorted sand w coarse grained, reddish bro				
Dry	2,872.00	0.6	Ν	PH05	8	8	SM	SAND, silty sand with gravel grained, dry, no odor, reddi				
						t		TD at 8 ft bgs				
			_	_								

								Sample Name: PH06	Date: 12-8-23	
				C				Site Name: Jalmat 188		
			IN	3	ΟΙ			Incident Number: NAPP2235373931		
								Job Number: 03D2057055		
		LITHOL	OGI		SAMPLING	i log		Logged By: Ronni Hayes	Method: Air Rotary	
Coordi	inates: 32	2.3239584	42, -1	03.321561		Hole Diameter: 6"	Total Depth: 30' bgs			
								PID for chloride and vapor, resp	ectively. Chloride test	
perfor	med with	n 1:4 dilut	tion fa	actor of so	il to distilled	water. 40%	correction	n factor included.		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic D	escriptions	
					L	0				
Dry	<168	0.0	Ν	PH06	- - 1 -	- - - - -	SM	SAND, silty sand, medium- no odor, dry	dark brown, fine grained,	
Dry	<168	0.0	Ν		2	2	SM	SAND, silty sand with grav no odor, medium-dark bro		
Dry	<168	0.0	N		3	- - 3 -	SM	SAA		
Dry	<168	0.0	N	PH06	4	4	CCHE	CALICHE, sandy caliche, fir tan-light brown, dry, no oc		
Dry	<168	0.0	N		- 5 - -	- - 5 -	CCHE	CALICHE, sandy caliche, fir tan-light brown, dry, no oc	-	
Dry	<168	0.0	N	PH06	6	6-11 	CCHE	SAA		
Dry	<156	-	Ν	PH06	11-16	11-16	SP-SM	SAND, silty sand with grav reddish brown, dry	el, fine grained, no odor	
Dry	<156	-	N		-	16-21 	SAA	SAA		
Dry	<156	-	N		-	21-26	SAA	SAA		
Dry	<156	-	N	PH06	26-30	26-30	SP-SM	SAND, silty sand with grav grained, tan color, dry, no	-	
								TD at 30' bgs		

[Sample Name: PH07	Date: 12-8-23		
				C	ΟΙ			Site Name: Jalmat 188			
				3				Incident Number: NAPP223537	3931		
								Job Number: 03D2057055			
		LITHOL	OGI	C / SOIL S	SAMPLING	i LOG		Logged By: Ronni Hayes	Method: Air Rotary		
Coordi	inates: 32	2.395692,	-103	.321297		Hole Diameter: 6"	Total Depth: 30' bgs				
								PID for chloride and vapor, resp	pectively. Chloride test		
perfor	med with	n 1:4 dilut	ion fa	actor of soi	l to distilled	water. 40%	correctio	n factor included.			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic [Descriptions		
					1 - -	 					
Dry	<168	0.0	N	PH07	1	1 -	SM	SAND, silty sand with grav grained, medium-dark bro	vel, very fine-fine-medium own, no odor, dry		
Dry	<168	0.0	N		2	2	SM	SAND, silty sand, very fine-fine grained, medium brown-tan, no odor, dry			
Dry	<168	0.0	N		3	3	SM	SAND, silty sand with grav medium brown-tan, poor	-		
Dry	<168	0.0	N	PH07	4	4	CCHE	CALICHE, sandy caliche, fi tan-light brown, dry, no c	=		
Dry	<168	0.0	N		- 5 -	- - - -	CCHE	CALICHE, sandy caliche, fi tan, dry, no odor	ne-med coarse grained,		
Dry	<168	0.0	N	PH07	6	6-11	CCHE	SAA			
Dry	<156	-	N	PH07	11-16	11-16	SM	SAND, silty sand mix, very no odor, dry, tan to light	-		
Dry	<156	-	N			16-21	SM	SAA			
Dry	<156	-	N		-	21-26	SM	SAND, silty sand mix, som grained, no odor, dry, tar			
Dry	<156	-	N	PH07	26-30	26-30	SM	SAND, silty sand mix, very no odor, dry, tan to light	-		
								TD at 30' bgs			

								Sample Name: PH08	Date: 2-4-23			
				C				Site Name: Jalmat 188				
			N	2	ΟΙ			Incident Number: NAPP2235373931				
								Job Number: 03D2057055				
		LITHOL	OGIO		SAMPLING	LOG		Logged By: Julianna Falcomata	Method: Backhoe			
Coordi	inates: 32							Hole Diameter: 3'	Total Depth: 5' bgs			
Comm	ents: Fiel	d screen	ing co	onducted w				PID for chloride and vapor, respec n factor included.	tively. Chloride test			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions			
Dry	649	0.3	N	PH08	1 1		SP-SM	SAND, poorly graded sand v grained, medium to dark br				
Dry	2676	0.2	N		-	2	SAA	SAA				
Dry	3852	0.2	N		-	3	SP-SM	SAND, poorly graded sand with silt and gravel, very fine to fine grained, medium to dark brown, dry, no odor				
Dry	4552	0.2	N	PH08	4	4	SAA	SAA				
Dry	4188	3.2	N		-	- 5 -	SP-SC	SAND, poorly graded sand v fine to fine grained, dark bro odor				
					_	-		TD at 5' bgs due to visible in pit.	dications of a historical			

	_							Sample Name: PH09	Date: 12-7-23
								Site Name: Jalmat 188	
				5 () L	U		Incident Number: NAPP2235373933	1
								Job Number: 03D2057055	
	LITI	HOLOG	IC / S	SOIL SAN	/IPLING LO	G		Logged By: Ronni Hayes	Method: Air Rotary
Coordinat	tes: 32.395449), -103.32	1565				Hole Diameter: 6"	Total Depth: 42' bgs	
	s: Field screer on factor of so	-						chloride and vapor, respectively. Chl	loride test performed with
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Desc	criptions
Dry Dry Dry	2872 3,533 8013	0.3 0.3 4.9	N N N	PH09	1 _	0 1 2 3		(1-4') SAND, poorly graded sa to fine grained, medium to d odor 2-4' bgs	
Damp	15,876	415	N	PH09	4 _	4	SAA	Visible indication of a histor	
Dry	7,829	-	Ν		_	6-8	CCHE	CALICHE, sandy gravel, light l fine to medium grained	prown, dry, no odor,
Dry	9,206	-	Ν	PH09	8-10	8-10	SAA	SAA	
Dry	6,670	-	Ν			10-12	SAA	SAA	
Dry	6160	-	Ν		_	12-14	SAA	SAA	
Dry	7,229.6	-	Ν		-	14-16	SM	SAND, silty sand with gravel, grained, reddish tan, no odol	
Dry	5,684	-	Ν		-	16-18	SM	SAND, silty sand, very fine to odor, dry, reddish brown	
Dry	5,684.0	-	Ν		-	18-20	SAA	SAA	
Dry	8,489.6	-	Ν		_	20-22	SAA	SAA	
Dry	7,229.60	-	Ν		-	22-24	SAA	SAA	
Dry	3,511.20	-	Ν	PH09	24-26	24-26	SM	SAND, silty sand, very fine, ne grained	o odor, dry, medium
Dry	2,828	-	Ν		-	26-28	SAA	SAA	
Dry	2,637.60	-	Ν		-	28-30	SM	SAND, silty sand, very fine to odor, dry, tan	medium grained, no
Dry	1,204.0	-	N			30-32	SAA	SAA	
Dry	2,144.80	-	Ν		-	32-34	SAA	SAA	
Dry	1,299.2	-	Ν			34-36	SAA	SAA	
Dry	862.40	-	Ν		-	36-38	SAA	SAA	
Dry	319.2	-	Ν	PH09	38-40	38-40	SM	SAND, silty sand, very fine to dry, light brown	fine grained, no odor,
Dry	470.4	-	N			40-42	SAA	TD at 42' bgs	
			. 1				•		
			_						

								Sample Name: PH10	Date: 2-24-23
		. N		C			R A	Site Name: Jalmat 188	
				3	OL			Incident Number: NAPP22353739	931
								Job Number: 03D2057055	
	LIT	HOLOG	SIC /	SOIL S	AMPLING	LOG		Logged By: Julianna Falcomata	Method: Backhoe
Coordina	tes: 32.39	5355, -10	3.321	602				Hole Diameter: 3'	Total Depth: 6' bgs
		-			n HACH Chlor vater. 40% co			D for chloride and vapor, respectived.	ely. Chloride test performed
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions
Dry	414	0.6	N	PH10	1 1		SM	SAND, silty sand with grave medium grained, medium l	l, very fine to fine to prown, no odor
Dry	3,651	0.7	N		-	2	SAA	SAA except tan to medium	
Dry	2,329	0.7	N		-	3	SAA	SAA except tan to reddish b	prown color
Dry	2,676	0.6	N	PH10	4	4	SAA	SAA, except reddish color	
Dry	1036	0.6	N		-	- 5 -	SAA	SAA	
Dry	470	0.5	N	PH10	6 _	6	SAA	SAA	
						L		TD at 6' bgs	

State Name: Jaimat 188 Incident Number: NAPP22337331 Job Number: O3D205705 LITHOLOGIC / SOIL SAMPLING LOG Logged By: Ronni Hayes Method: Air Rotary Coordinates: 32.395223. 103.321510 Logged By: Ronni Hayes Method: Air Rotary Coordinates: 32.395223. 103.321510 Lithologic / Soil to distilled water. 40% correction factor included. Omments: Field Screening Conducted with HACH Chloride Test Strips and D for forlode and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. United Screening Conducted with HACH Chloride Test Strips and D for forlode and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. United Screening Conducted with HACH Chloride Test Strips and D for forlode and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. United Screening Conducted with HACH Chloride Test Strips and With gravel, fine grained, medium test and the proven, no odor, dry Dry Close 1:56 N BHO1 2:4 2:4 SAA Dry Close 1:56 N BHO1 2:4 2:4 SAA SAA Dry Close 1:56 N BHO1 1:4-16 SAM SAA SAA <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Sample Name: BH01</th><th>Date: 12-8-23</th></t<>									Sample Name: BH01	Date: 12-8-23	
Introduction of the second system Coordinates: 32.39223.103.221510 Hole Diameter: 6" Total Depth: 30 bgs Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Optimize the second system Optimize the seco				NI	C			NЛ	Site Name: Jalmat 188		
LITHOLOGIC / SOIL SAMPLING LOGLogged By: Ronni HayesMethod: Air RotaryCoordinates: 32.395223103.321510Hole Diameter: 6"Total Depth: 30" bgsComments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride testPerformed with 1:4 dilution factor of soil to distilled water. 40% correction factor included.Understand </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="3">Incident Number: NAPP2235373931</td>							Incident Number: NAPP2235373931				
Coordinates: 32.395223, -103.321510 Total Depth: 30' bgs Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. and PID G G									Job Number: 03D2057055		
Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. and test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Sample Depth (ft bgs) D			lithol	OGI	C / SOIL S	SAMPLING	Logged By: Ronni Hayes				
performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included.understandunders											
Dry<156NBH012-4SANSAND, silty sand with gravel, fine grained, medium brown, no odor, dryDry156NBH012-42-4SAASAADry<156				-						ively. Chloride test	
Dry156NBH012-42-4SAASAADry<156			Vapor (ppm)	Staining	Sample ID	Depth	(ft bgs)	_			
Dry156NBH012-42-4SAASAADry<156	Dry	<156		Ν		Ţ	0-2	SM	SAND, silty sand with gravel	, fine grained, medium	
Drv<156NNDrv<156	Dry	156		Ν	BH01	2-4	2-4	SAA			
Dry<156NDry<156	Dry	<156		Ν		-	4-6	CCHE		to coarse grained, med	
Dry<156NDry<156	Dry	<156		Ν		-	6-8	SAA			
Dry<156NDry<156	Dry	<156		Ν		-	8-10	SM	SAND, silty sand, very fine to	o medium grained, med	
Dry<156NBH0114-1614-16SMSAND, silty sand with gravel, fine to medium grained, reddish tan, no odor, dry SAND, silty sand, very fine to medium grained, no odor, dry, reddish brownDry<156	Dry	<156		Ν		-	10-12	SAA			
Dry<156NImage: Normal systemImage: Norma	Dry	<156		Ν		-	12-14	SAA	SAA		
Dry<156NImage: Noise of the systemImage: Noise of the systemSAND, silty sand, very fine to medium grained, no odor, dry, reddish brownDry<156	Dry	<156		Ν	BH01	14-16	14-16	SM			
Dry<156NImage: NImage: NImage: NImage: NDry<156	Dry	<156		Ν		-	16-18	SM	SAND, silty sand, very fine to		
Dry<156N22-24SAASAADry<156	Dry	<156		Ν		-	18-20	SAA			
Dry<156NZ4-26SMSAND, silty sand, very fine, no odor, dry, medium grained SAADry<156	Dry	<156		Ν		-	20-22	SAA	SAA		
Dry<156NZ6-28SAAgrained SAADry<156	Dry	<156		Ν		-	22-24	SAA	SAA		
Dry<156NI26-28SAASAADry<156	Dry	<156		Ν		-	24-26	SM		no odor, dry, medium	
odor, dry, tan	Dry	<156		Ν		-	26-28	SAA			
TD at 30' bgs	Dry	<156		Ν	BH01	28-30	28-30	SM		o medium grained, no	
							-		TD at 30' bgs		

	_							Sample Name: BH02	Date: 12-8-23		
				C				Site Name: Jalmat 188			
				3	ΟΙ			Incident Number: NAPP2235373931			
								Job Number: 03D2057055			
		LITHOL	OGI		SAMPLING	LOG		Logged By: Ronni Hayes	Method: Air Rotary		
Coordi	nates: 32							Hole Diameter: 6"	Total Depth: 30' bgs		
					ith HACH Ch	trips and	PID for chloride and vapor, res	pectively. Chloride test			
perfor	med with	1:4 dilut	ion fa	actor of soi	to distilled	water. 40% (correction	factor included.			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic	Descriptions		
Dry	352.8		Ν	BH02	0-2	0-2	SM	SAND, silty sand with gra	•		
					-	-		grained, medium to dark	k brown, no odor, dry		
	. – –				-	-					
Dry	<156		Ν		-	2-4	SAA	SAA			
					-	-					
Dry	<156		Ν		-	4-6	CCHE	CALICHE, sandy caliche, s grained, med brown, dry			
Dry	<156		N			- 6-11	SAA	SAA			
Dry	<156		N	BH02	11-16	11-16	SM	SAND, silty sand, very fir grained, reddish brown,			
Dry	<156		N			- 16-21	SAA	SAA			
Dry	<156		N		-	21-26	SAA	SAA			
Dry	<156		N	BH02	28-30	28-30	SM	SAND, silty sand, very fir grained, tan to light brov			
					_	L		TD at 30' bgs			
			. 1		-	-					
			_								
					_						
						_					
				<u></u>	<u></u>				<u> </u>		

-								Sample Name: BH03	Date: 12-8-23		
				C				Site Name: Jalmat 188			
				3		_ U		Incident Number: NAPP2235373931			
								Job Number: 03D2057055			
		LITHOL	OGI		SAMPLING	G LOG		Logged By: Ronni Hayes	Method: Air Rotary		
Coordi	nates: 32					Hole Diameter: 6"	Total Depth: 30' bgs				
					ith HACH Cl	Strips and	PID for chloride and vapor, resp				
								n factor included.			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions			
Dry	<156		Ν	BH03	0-2	0-2	SM	SAND, silty sand with grav	vel, very fine to fine		
						[grained, medium to dark	brown, no odor, dry		
					_	F					
Dry	<156		Ν		-	2-4	SAA	SAA			
Dry	<156		Ν		-	4-6	CCHE	CALICHE, sandy caliche, fine to medium coarse grained, med brown, dry, no odor			
Dry	<156		N		-	- _ 6-11 -	SAA	SAA			
Dry	<156		N	BH03	11-16	11-16	SM	SAND, silty sand with gravel, very fine to medium grained, medium brown, no odor, dry			
Dry	<156		N		-	16-21	SAA	SAA			
Dry	<156		N		-	21-26	SAA	SAA			
Dry	<156		N	BH03	28-30	28-30	SM	SAND, silty sand with grav grained, tan, no odor, dry			
					_	┝		TD at 30' bgs			
\square	<u> </u>		•		-	-	-				
									_		

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 1/11/2024 3:04:14 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/16/2023 6:28:29 PM

JOB DESCRIPTION

JALMAT YATES UNIT #188 SDG NUMBER Lea

JOB NUMBER

890-3814-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Received by OCD: 1/11/2024 3:04:14 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 1/16/2023 6:28:29 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

1

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3814-1 SDG: Lea

Table of Contents

Cover Page	1		
Table of Contents	3		
Definitions/Glossary	4		
Case Narrative	5		
Client Sample Results	6		
Surrogate Summary	18		
QC Sample Results	20		
	25		
Lab Chronicle	29		
Certification Summary	34		
Method Summary	35		
Sample Summary	36		
Chain of Custody	37		
	39		
Client: Ensolum Project/Site: JA	m ALMAT YATES UNIT #188	Job ID: 890-3814-1 SDG: Lea	2
-------------------------------------	---	--------------------------------	----
Qualifiers			3
GC VOA Qualifier	Qualifier Description		
S1-			
S1+	Surrogate recovery exceeds control limits, high biased.		E
U	Indicates the analyte was analyzed for but not detected.		3
GC Semi VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			8
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		9
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		13
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

Method Detection Limit Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

LOD

LOQ MCL

MDA

MDC

MDL

ML MPN

MQL

NC

ND

NEG

POS

PQL

PRES

QC RER

RL

RPD

TEF TEQ

TNTC

Job ID: 890-3814-1 SDG: Lea

Job ID: 890-3814-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3814-1

Receipt

The samples were received on 1/10/2023 9:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: PH01 (890-3814-1), PH01 (890-3814-2), PH01 (890-3814-3), PH02 (890-3814-3), PH02 (890-3814-5), PH02 (890-3814-6), PH03 (890-3814-7), PH03 (890-3814-8), PH03 (890-3814-9), PH04 (890-3814-10), PH04 (890-3814-11), PH04 (890-3814-12), PH05 (890-3814-13), PH05 (890-3814-14) and PH05 (890-3814-15).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: PH03 (890-3814-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: PH01 (890-3814-1), PH02 (890-3814-4), PH02 (890-3814-6), PH03 (890-3814-8), PH03 (890-3814-9), PH05 (890-3814-15) and (MB 880-43836/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43786 and analytical batch 880-43927 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-1

Client Sample ID: PH01

Date Collected: 01/09/23 11:00 Date Received: 01/10/23 09:05

Client: Ensolum

Sample Depth: 2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		01/11/23 13:33	01/13/23 16:52	1
Toluene	<0.00202	U	0.00202	mg/Kg		01/11/23 13:33	01/13/23 16:52	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		01/11/23 13:33	01/13/23 16:52	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		01/11/23 13:33	01/13/23 16:52	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		01/11/23 13:33	01/13/23 16:52	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		01/11/23 13:33	01/13/23 16:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130			01/11/23 13:33	01/13/23 16:52	1
1,4-Difluorobenzene (Surr)	99		70 - 130			01/11/23 13:33	01/13/23 16:52	1
Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation						
Analyta	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Rooun	quanner		•			· · · · · · · · · · · · · · · · · · ·	
•	<0.00404		0.00404	mg/Kg			01/16/23 17:06	1
Total BTEX	<0.00404	U	0.00404					1
Total BTEX Method: SW846 8015 NM - Diese	<0.00404	U	0.00404			Prepared		1 Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	<0.00404	U ics (DRO) (Qualifier	0.00404 GC)	mg/Kg		<u>`</u>	01/16/23 17:06	1 Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	<0.00404 el Range Organ Result <49.9	U ics (DRO) (Qualifier U	0.00404 GC) RL 49.9	mg/Kg Unit		<u>`</u>	01/16/23 17:06 Analyzed	
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	<0.00404 el Range Organ Result <49.9 sel Range Orga	U ics (DRO) (Qualifier U	0.00404 GC) RL 49.9	mg/Kg Unit		<u>`</u>	01/16/23 17:06 Analyzed	
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	<0.00404 el Range Organ Result <49.9 sel Range Orga	U ics (DRO) (Qualifier U nics (DRO) Qualifier	0.00404 GC) <u>RL</u> 49.9 (GC)	mg/Kg Unit mg/Kg	D	Prepared	01/16/23 17:06 Analyzed 01/16/23 16:35	1
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<0.00404 el Range Organ Result <49.9 sel Range Orga Result	U ics (DRO) (Qualifier U nics (DRO) Qualifier U	0.00404 GC) RL 49.9 (GC) RL	mg/Kg Unit mg/Kg Unit	D	Prepared	01/16/23 17:06 Analyzed 01/16/23 16:35 Analyzed	1 Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<pre><0.00404 el Range Organ Result </pre>							
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	c0.00404 el Range Organ Result c49.9 sel Range Orga Result c49.9 c49.9 c49.9	U ics (DRO) (r Qualifier U nics (DRO) Qualifier U U U	0.00404 GC) RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared Prepared 01/12/23 15:08 01/12/23 15:08	O1/16/23 17:06 Analyzed 01/16/23 16:35 Analyzed 01/13/23 11:01 01/13/23 11:01	1 Dil Fac 1 1
Total BTEX Method: SW846 8015 NM - Diese Analyte	<0.00404 el Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <49.9 <49.9	U ics (DRO) (r Qualifier U nics (DRO) Qualifier U U U	0.00404 GC) <u>RL</u> 49.9 (GC) <u>RL</u> 49.9 49.9 49.9	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared Prepared 01/12/23 15:08 01/12/23 15:08 01/12/23 15:08	01/16/23 17:06 Analyzed 01/16/23 16:35 Analyzed 01/13/23 11:01 01/13/23 11:01 01/13/23 11:01	1 Dil Fac 1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble								
	Analyte	Result Qualifier	r RL	Unit	D	Prepared	Analyzed	Dil Fac
L	Chloride	2870	24.8	mg/Kg			01/14/23 02:06	5

Client Sample ID: PH01 Date Collected: 01/09/23 11:05 Date Received: 01/10/23 09:05

Sample Depth: 3

Г

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:13	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:13	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 17:13	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:13	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 17:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130			01/11/23 13:33	01/13/23 17:13	1

Eurofins Carlsbad

Lab Sample ID: 890-3814-2

Matrix: Solid

Page 39 of 182

Matrix: Solid

5

Client Sample Results

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-2

01/12/23 15:08

01/12/23 15:08

01/13/23 12:07

01/13/23 12:07

Lab Sample ID: 890-3814-3

1

1

Matrix: Solid

Client Sample ID: PH01

Date Collected: 01/09/23 11:05

Date Received: 01/10/23 09:05 Sample Depth: 3

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98		70 - 130			01/11/23 13:33	01/13/23 17:13	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/16/23 17:06	1
Method: SW846 8015 NM - Diese Analyte Total TPH	• •	Qualifier	GC) 	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015B NM - Dies				mgntg			01/10/20 10:00	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		01/12/23 15:08	01/13/23 12:07	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		01/12/23 15:08	01/13/23 12:07	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		01/12/23 15:08	01/13/23 12:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

122

111

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1830	25.0	mg/Kg			01/14/23 02:11	5

70 - 130

70 - 130

Client Sample ID: PH01

Date Collected: 01/09/23 11:10 Date Received: 01/10/23 09:05

Sample Depth: 4

1-Chlorooctane

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:33	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:33	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:33	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 17:33	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 17:33	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 17:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130			01/11/23 13:33	01/13/23 17:33	1
1,4-Difluorobenzene (Surr)	103		70 - 130			01/11/23 13:33	01/13/23 17:33	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398	mg/Kg			01/16/23 17:06	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Total TPH	<49.9 U	49.9	mg/Kg			01/16/23 16:35	1		

Eurofins Carlsbad

Matrix: Solid

5

Job ID: 890-3814-1 SDG: Lea

Matrix: Solid

Lab Sample ID: 890-3814-3

Client Sample ID: PH01

Date Collected: 01/09/23 11:10 Date Received: 01/10/23 09:05

Date			
Samp	le Dept	h: 4	

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 12:29	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 12:29	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 12:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	127		70 - 130			01/12/23 15:08	01/13/23 12:29	1
o-Terphenyl	123		70 - 130			01/12/23 15:08	01/13/23 12:29	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2530		25.0	mg/Kg			01/14/23 02:17	5

Client Sample ID: PH02

Date Collected: 01/09/23 12:30

Date Received: 01/10/23 09:05 Sample Depth: 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 17:54	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 17:54	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 17:54	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/11/23 13:33	01/13/23 17:54	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 17:54	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/11/23 13:33	01/13/23 17:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			01/11/23 13:33	01/13/23 17:54	1
1,4-Difluorobenzene (Surr)	101		70 - 130			01/11/23 13:33	01/13/23 17:54	1

Method: TAL SOP Total BTEX	- Total BTEX Calculation
Analuta	Beault Qualifier

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			01/16/23 17:06	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			01/16/23 16:35	1
_								

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		01/12/23 15:08	01/13/23 12:51	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		01/12/23 15:08	01/13/23 12:51	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		01/12/23 15:08	01/13/23 12:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	141	S1+	70 - 130			01/12/23 15:08	01/13/23 12:51	1
o-Terphenyl	131	S1+	70 - 130			01/12/23 15:08	01/13/23 12:51	1

		Clier	nt Sample Res	sults				
Client: Ensolum			•				Job ID: 890	-3814-1
Project/Site: JALMAT YATES UNIT	#188						SI	DG: Lea
Client Sample ID: PH02						Lab Sar	nple ID: 890-	3814-4
Date Collected: 01/09/23 12:30						Lub Our	•	x: Solid
Date Received: 01/10/23 09:05							matri	
Sample Depth: 1								
-								
Method: MCAWW 300.0 - Anions		• • •		11-14		Dremered	Analyzad	
Analyte Chloride		Qualifier		Unit mg/Kg	D	Prepared	Analyzed 01/14/23 02:22	Dil Fac
	1970		23.1	ilig/Kg			01/14/23 02.22	5
Client Sample ID: PH02						Lab San	nple ID: 890-	3814-5
Date Collected: 01/09/23 12:35							Matri	x: Solid
Date Received: 01/10/23 09:05								
Sample Depth: 4								
_ Method: SW846 8021B - Volatile	Organia Com-	ounde (CC	`					
Analyte		Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201		0.00201	mg/Kg		01/11/23 13:33	01/13/23 18:15	1
Toluene	<0.00201		0.00201	mg/Kg		01/11/23 13:33	01/13/23 18:15	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/11/23 13:33	01/13/23 18:15	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/11/23 13:33	01/13/23 18:15	
o-Xylene		U	0.00201	mg/Kg		01/11/23 13:33	01/13/23 18:15	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/11/23 13:33	01/13/23 18:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	131	S1+	70 - 130			01/11/23 13:33	01/13/23 18:15	1
1,4-Difluorobenzene (Surr)	100		70 - 130			01/11/23 13:33	01/13/23 18:15	1
- Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/16/23 17:06	1
_ Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/16/23 16:35	1
_ Method: SW846 8015B NM - Dies	ol Pango Orga	nice (DPO)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9		49.9	mg/Kg		01/12/23 15:08	01/13/23 13:13	1
(GRO)-C6-C10			40.0			04/40/00 45 00	04/40/00 10 10	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 13:13	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 13:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130			01/12/23 15:08	01/13/23 13:13	1
o-Terphenyl	109		70 - 130			01/12/23 15:08	01/13/23 13:13	1
_ Method: MCAWW 300.0 - Anions	Ion Chromato	ography - S	oluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							01/14/23 02:28	

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-6

Client Sample ID: PH02

Date Collected: 01/09/23 12:40 Date Received: 01/10/23 09:05

Sample Depth: 8

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:35	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:35	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 18:35	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:35	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 18:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130			01/11/23 13:33	01/13/23 18:35	1
1,4-Difluorobenzene (Surr)	101		70 - 130			01/11/23 13:33	01/13/23 18:35	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/16/23 17:06	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0	mg/Kg			01/16/23 16:35	1

Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 13:35	1
<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 13:35	1
<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 13:35	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
137	S1+	70 - 130			01/12/23 15:08	01/13/23 13:35	1
127		70 - 130			01/12/23 15:08	01/13/23 13:35	1
	<50.0 <50.0 <50.0 %Recovery 137	Result Qualifier <50.0	<50.0	<50.0 U 50.0 mg/Kg <50.0	<50.0 U 50.0 mg/Kg <50.0	<50.0 U 50.0 mg/Kg 01/12/23 15:08 <50.0	<50.0 U 50.0 mg/Kg 01/12/23 15:08 01/13/23 13:35 <50.0

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	11800		99.6	mg/Kg			01/14/23 02:33	20

Client Sample ID: PH03 Date Collected: 01/09/23 13:35 Date Received: 01/10/23 09:05

Sample Depth: 1

Г

Method: SW846 8021B - Volatile Organic Compounds (GC)									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:56	1	
Toluene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:56	1	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:56	1	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 18:56	1	
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 18:56	1	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 18:56	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	121		70 - 130			01/11/23 13:33	01/13/23 18:56	1	

Eurofins Carlsbad

Lab Sample ID: 890-3814-7

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Limits

70 - 130

RL

RL

RL

50.0

0.00398

Unit

Unit

Unit

mg/Kg

mg/Kg

Job ID: 890-3814-1 SDG: Lea

Analyzed

01/13/23 18:56

Analyzed

01/16/23 17:06

Analyzed

01/16/23 16:35

Analyzed

01/13/23 13:57

01/13/23 13:57

Lab Sample ID: 890-3814-8

Client Sample ID: PH03

Date Collected: 01/09/23 13:35 Date Received: 01/10/23 09:05

Sample Depth: 1

1,4-Difluorobenzene (Surr)

Surrogate

Analyte

Analyte

Analyte

Total TPH

Total BTEX

Client: Ensolum

Lab Sample ID: 890-3814-7

D

D

D

Prepared

01/11/23 13:33

Prepared

Prepared

Prepared

01/12/23 15:08

01/12/23 15:08

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

1

5

	2

Gasoline Range Organics	<50.0 U	50.0	mg/Kg	
(GRO)-C6-C10				
Diesel Range Organics (Over	<50.0 U	50.0	mg/Kg	
C10-C28)				

Result Qualifier

%Recovery Qualifier

Result Qualifier

Result Qualifier

<50.0 U

80

<0.00398 U

Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	01/12/23 15:08	01/13/23 13:57	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	118		70 - 130		01/12/23 15:08	01/13/23 13:57	1
o-Terphenyl	116		70 - 130		01/12/23 15:08	01/13/23 13:57	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2110	25.0	mg/Kg			01/13/23 21:43	5

Client Sample ID: PH03

Date Collected: 01/09/23 13:40 Date Received: 01/10/23 09:05

Matrix: Solid

Sample Depth: 4

Method: SW846 8021B - Volatile	e Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:17	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:17	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:17	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/11/23 13:33	01/13/23 19:17	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:17	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/11/23 13:33	01/13/23 19:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130			01/11/23 13:33	01/13/23 19:17	1
1,4-Difluorobenzene (Surr)	105		70 - 130			01/11/23 13:33	01/13/23 19:17	1
- Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			01/16/23 17:06	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:35	1

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-9

Analyzed

01/16/23 17:06

Dil Fac

1

Matrix: Solid

Client Sample ID: PH03

Date Collected: 01/09/23 13:40 Date Received: 01/10/23 09:05

Sample Depth: 4

Client: Ensolum

_	
Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 14:19	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 14:19	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 14:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	140	S1+	70 - 130			01/12/23 15:08	01/13/23 14:19	1
o-Terphenyl	130		70 - 130			01/12/23 15:08	01/13/23 14:19	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2530		24.9	mg/Kg			01/13/23 21:49	5

Client Sample ID: PH03

Date Collected: 01/09/23 13:45

Date Received: 01/10/23 09:05 Sample Depth: 8

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:37	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:37	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:37	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		01/11/23 13:33	01/13/23 19:37	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 19:37	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		01/11/23 13:33	01/13/23 19:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	55	S1-	70 - 130			01/11/23 13:33	01/13/23 19:37	1
1,4-Difluorobenzene (Surr)	71		70 - 130			01/11/23 13:33	01/13/23 19:37	1

Method: TAL SOP Total BTEX - To	tal BTEX Calc	culation				
Analyte	Result	Qualifier	RL	Unit	D	Prepared
Total BTEX	<0 00401	U	0.00401	ma/Ka		

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/16/23 16:35	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 14:42	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 14:42	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 14:42	1
Surrogata	%Recovery	Qualifier	Limits			Branarad	Analyzad	Dil Fac
Surrogate	%Recovery	Quaimer				Prepared	Analyzed	DIIFac
1-Chlorooctane	140	S1+	70 - 130			01/12/23 15:08	01/13/23 14:42	1
o-Terphenyl	130		70 - 130			01/12/23 15:08	01/13/23 14:42	1

Lab Sample ID: 890-3814-8 Matrix: Solid 5

		Clier	it Sample Res	sults				
Client: Ensolum			•				Job ID: 890	-3814-1
Project/Site: JALMAT YATES UNIT	#188						SI	DG: Lea
Client Sample ID: PH03						Lab Sar	nple ID: 890-	3814-9
Date Collected: 01/09/23 13:45								x: Solic
Date Received: 01/10/23 09:05							inderi	x. 00110
Sample Depth: 8								
-								
Method: MCAWW 300.0 - Anions				11-14		Drenewood	Analyzad	
Analyte Chloride		Qualifier		Unit mg/Kg	D	Prepared	Analyzed 01/13/23 22:08	Dil Fa
Chioride	2040		23.0	ilig/Rg			01/13/23 22:00	`
Client Sample ID: PH04						Lab Sam	ple ID: 890-3	814-10
Date Collected: 01/09/23 13:50							Matri	x: Solid
Date Received: 01/10/23 09:05								
Sample Depth: 1								
_ Method: SW846 8021B - Volatile (Organia Comp	ounde (CC	`					
Analyte		Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199			01/11/23 13:33	01/13/23 19:58	
Toluene	< 0.00199		0.00199	mg/Kg		01/11/23 13:33	01/13/23 19:58	
Ethylbenzene	< 0.00199		0.00199	mg/Kg		01/11/23 13:33	01/13/23 19:58	
m-Xylene & p-Xylene	< 0.00398		0.00398	mg/Kg		01/11/23 13:33	01/13/23 19:58	
o-Xylene		U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 19:58	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 19:58	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	123	quamer	70 - 130			01/11/23 13:33	01/13/23 19:58	
1,4-Difluorobenzene (Surr)	77		70 - 130			01/11/23 13:33	01/13/23 19:58	
-								
Method: TAL SOP Total BTEX - To					_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	0	0.00398	mg/Kg			01/16/23 17:06	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:35	
- Method: SW846 8015B NM - Dies	ol Pango Orga	nice (DPO)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0		50.0			01/12/23 15:08	01/13/23 15:04	
(GRO)-C6-C10	20.0			-33				
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 15:04	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 15:04	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	113		70 - 130			01/12/23 15:08	01/13/23 15:04	
o-Terphenyl	104		70 - 130			01/12/23 15:08	01/13/23 15:04	
_ Method: MCAWW 300.0 - Anions	Ion Chromete	aranhy - S	oluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Job ID: 890-3814-1 SDG: Lea

Matrix: Solid

5

Matrix: Solid

Lab Sample ID: 890-3814-11

Client Sample ID: PH04

Date Collected: 01/09/23 13:55 Date Received: 01/10/23 09:05

Sample Depth: 4

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 21:22	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 21:22	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 21:22	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 21:22	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 21:22	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 21:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130			01/11/23 13:33	01/13/23 21:22	1
1,4-Difluorobenzene (Surr)	106		70 - 130			01/11/23 13:33	01/13/23 21:22	1
Method: TAL SOP Total BTEX	C - Total BTEX Calc	ulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/16/23 17:06	1
Method: SW846 8015 NM - Di	asel Range Organ		30)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ indigito								
Total TPH	<49.9	U	49.9	mg/Kg			01/16/23 16:35	1
Total TPH				mg/Kg			01/16/23 16:35	1
	Diesel Range Orga			mg/Kg Unit	D	Prepared	01/16/23 16:35 Analyzed	1 Dil Fac

Oll Range Organics (Over C28-C36)	<49.9	-	49.9	mg/Kg	01/12/23 15:08		
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	129		70 - 130		01/12/23 15:08	01/13/23 15:48	1
o-Terphenyl	116		70 - 130		01/12/23 15:08	01/13/23 15:48	1

Method: MCAWW 300.0 - Anions, Ic	on Chromatography - Solu	ıble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10100	100	mg/Kg			01/13/23 22:20	20

Client Sample ID: PH04 Date Collected: 01/09/23 14:00

Date Received: 01/10/23 09:05

Sample Depth: 8

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 21:43	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 21:43	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 21:43	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/11/23 13:33	01/13/23 21:43	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 21:43	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/11/23 13:33	01/13/23 21:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130			01/11/23 13:33	01/13/23 21:43	1

Eurofins Carlsbad

Lab Sample ID: 890-3814-12

Client Sample Results

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-12

Client Sample ID: PH04

Date Collected: 01/09/23 14:00

Date Received: 01/10/23 09:05 Sample Depth: 8

Client: Ensolum

Method: SW846 8021B - Volatile	Organic Compounds	(GC)	(Continued)

<49.8 U

<49.8 U

%Recovery Qualifier

112

110

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	110		70 - 130			01/11/23 13:33	01/13/23 21:43	1
Method: TAL SOP Total BTE	K - Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	mg/Kg			01/16/23 17:06	1
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Eac
			RL	Unit	D	Prepared	Analyzed	Dil Fac
							0 4 14 0 10 0 A 0 0 F	
Total TPH	<49.8	U	49.8	mg/Kg			01/16/23 16:35	1
				mg/Kg			01/16/23 16:35	1
Method: SW846 8015B NM - I	Diesel Range Orga			mg/Kg Unit	D	Prepared	01/16/23 16:35 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Analyte Gasoline Range Organics	Diesel Range Orga	nics (DRO) Qualifier	(GC)		D	Prepared 01/12/23 15:08		1

49.8

49.8

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

01/12/23 15:08

01/12/23 15:08

Prepared

01/12/23 15:08

01/12/23 15:08

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11400	99.4	mg/Kg			01/13/23 22:26	20

Client Sample ID: PH05

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Date Collected: 01/09/23 14:30 Date Received: 01/10/23 09:05 Sample Depth: 1

Lab Sample ID: 890-3814-13 Matrix: Solid

01/13/23 16:10

01/13/23 16:10

Analyzed

01/13/23 16:10

01/13/23 16:10

Dil Fac

1

1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/11/23 13:33	01/13/23 22:04	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/11/23 13:33	01/13/23 22:04	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/11/23 13:33	01/13/23 22:04	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/11/23 13:33	01/13/23 22:04	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/11/23 13:33	01/13/23 22:04	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/11/23 13:33	01/13/23 22:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130			01/11/23 13:33	01/13/23 22:04	1
1,4-Difluorobenzene (Surr)	107		70 - 130			01/11/23 13:33	01/13/23 22:04	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/16/23 17:06	1
- Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (GC)					
Analyte	Posult	Qualifier	, DI	Unit	п	Propared	Analyzod	Dil Eac

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:35	1

Eurofins Carlsbad

Page 48 of 182

Matrix: Solid

5

Job ID: 890-3814-1 SDG: Lea

Matrix: Solid

Lab Sample ID: 890-3814-13

Client Sample ID: PH05

Date Collected: 01/09/23 14:30 Date Received: 01/10/23 09:05

Sample Depth: 1

Client: Ensolum

_	
Method: SW846 8015B NM - Diesel Range Or	ganics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 16:32	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 16:32	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 16:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	126		70 - 130			01/12/23 15:08	01/13/23 16:32	1
o-Terphenyl	117		70 - 130			01/12/23 15:08	01/13/23 16:32	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1930	25.0	mg/Kg			01/13/23 22:32	5

Client Sample ID: PH05

Date Collected: 01/09/23 14:35

Date Received: 01/10/23 09:05

Sample Depth: 4	
-----------------	--

	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:25	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:25	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:25	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 22:25	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:25	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 22:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130			01/11/23 13:33	01/13/23 22:25	1
1,4-Difluorobenzene (Surr)	97		70 - 130			01/11/23 13:33	01/13/23 22:25	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Result <0.00398		RL 0.00398	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 01/16/23 17:06	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Dies	<0.00398	U	0.00398		<u>D</u>	Prepared		Dil Fac
Total BTEX Method: SW846 8015 NM - Dies	<0.00398 el Range Organ	U	0.00398		<u>D</u> 	Prepared		Dil Fac 1 Dil Fac
Total BTEX Method: SW846 8015 NM - Dies Analyte	<0.00398 el Range Organ	U ics (DRO) (Qualifier	0.00398	mg/Kg		<u>·</u>	01/16/23 17:06	1
Total BTEX	el Range Organ Result <50.0	U ics (DRO) (Qualifier U	0.00398 GC) RL 50.0	mg/Kg Unit		<u>·</u>	01/16/23 17:06	1
Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	el Range Organ Result <50.0 sel Range Orga	U ics (DRO) (Qualifier U	0.00398 GC) RL 50.0	mg/Kg Unit		<u>·</u>	01/16/23 17:06	1

<50.0	U	50.0	mg/Kg	01/12/23 15:08	01/13/23 16:55	1
<50.0	U	50.0	mg/Kg	01/12/23 15:08	01/13/23 16:55	1
			0.0			
%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
111		70 - 130		01/12/23 15:08	01/13/23 16:55	1
109		70 - 130		01/12/23 15:08	01/13/23 16:55	1
	<50.0 %Recovery 111		<50.0 U 50.0 <u>%Recovery</u> <u>Qualifier</u> <u>Limits</u> 70 - 130	<50.0 U 50.0 mg/Kg <u>%Recovery</u> <u>Qualifier</u> <u>Limits</u> 70 - 130	<50.0 U 50.0 mg/Kg 01/12/23 15:08 %Recovery Qualifier Limits Prepared 111 70 - 130 01/12/23 15:08	<50.0 U 50.0 mg/Kg 01/12/23 15:08 01/13/23 16:55 %Recovery Qualifier Limits Prepared Analyzed 111 70 - 130 01/12/23 15:08 01/13/23 16:55

Eurofins Carlsbad

		Clier	it Sample Re	sults				
Client: Ensolum			-				Job ID: 890	-3814-1
Project/Site: JALMAT YATES UNIT	#188						S	DG: Lea
Client Sample ID: PH05						Lab Sam	ple ID: 890-3	814-14
Date Collected: 01/09/23 14:35							-	x: Solic
Date Received: 01/10/23 09:05								
Sample Depth: 4								
_ Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2610		24.8	mg/Kg			01/13/23 22:38	Ę
Client Sample ID: PH05						Lab Sam	ple ID: 890-3	814-15
Date Collected: 01/09/23 14:40							-	x: Solic
Date Received: 01/10/23 09:05								
Sample Depth: 8								
_ Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:45	
Toluene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:45	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:45	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 22:45	
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/11/23 13:33	01/13/23 22:45	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/11/23 13:33	01/13/23 22:45	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	125		70 - 130			01/11/23 13:33	01/13/23 22:45	
1,4-Difluorobenzene (Surr) -	109		70 - 130			01/11/23 13:33	01/13/23 22:45	
- Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg		·	01/16/23 17:06	,
_ Method: SW846 8015 NM - Diese	Banga Organ							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/16/23 16:35	
-								
Method: SW846 8015B NM - Dies					_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 17:17	,
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 17:17	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/12/23 15:08	01/13/23 17:17	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	148	S1+	70 - 130			01/12/23 15:08	01/13/23 17:17	
o-Terphenyl	135	S1+	70 - 130			01/12/23 15:08	01/13/23 17:17	1
- Method: MCAWW 300.0 - Anions	Ion Chromato	ography - S	oluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			24.8					

Client: Ensolum Project/Site: JALMAT YATES UNIT #188

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-3814-1	PH01	117	99		
890-3814-1 MS	PH01	101	102		6
890-3814-1 MSD	PH01	103	100		
890-3814-2	PH01	129	98		
890-3814-3	PH01	127	103		
890-3814-4	PH02	126	101		8
890-3814-5	PH02	131 S1+	100		
890-3814-6	PH02	121	101		9
890-3814-7	PH03	121	80		9
890-3814-8	PH03	127	105		
890-3814-9	PH03	55 S1-	71		
890-3814-10	PH04	123	77		
890-3814-11	PH04	112	106		
890-3814-12	PH04	121	110		
890-3814-13	PH05	127	107		
890-3814-14	PH05	130	97		
890-3814-15	PH05	125	109		13
LCS 880-43747/1-A	Lab Control Sample	94	98		
LCSD 880-43747/2-A	Lab Control Sample Dup	99	98		
MB 880-43747/5-A	Method Blank	99	86		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

_			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-3814-1	PH01	137 S1+	134 S1+
890-3814-1 MS	PH01	116	102
890-3814-1 MSD	PH01	103	96
890-3814-2	PH01	122	111
890-3814-3	PH01	127	123
890-3814-4	PH02	141 S1+	131 S1+
890-3814-5	PH02	110	109
890-3814-6	PH02	137 S1+	127
890-3814-7	PH03	118	116
890-3814-8	PH03	140 S1+	130
890-3814-9	PH03	140 S1+	130
890-3814-10	PH04	113	104
890-3814-11	PH04	129	116
890-3814-12	PH04	112	110
890-3814-13	PH05	126	117
890-3814-14	PH05	111	109
890-3814-15	PH05	148 S1+	135 S1+
LCS 880-43836/2-A	Lab Control Sample	110	103
LCSD 880-43836/3-A	Lab Control Sample Dup	126	115

SDG: Lea

Job ID: 890-3814-1

Prep Type: Total/NA

Prep Type: Total/NA

Surrogate Summary

Client: Ensolum Project/Site: JALMAT ነ	YATES UNIT #188			Job ID: 890-3814-1 SDG: Lea	2
	M - Diesel Range Organ	ics (DRO) (GC	i) (Contii		
		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
MB 880-43836/1-A	Method Blank	176 S1+	160 S1+		
Surrogate Legend					6
1CO = 1-Chlorooctane OTPH = o-Terphenyl	•				7
					8
					9
					13

Lab Sample ID: MB 880-43747/5-A Matrix: Solid Analysis Batch: 43877	МВ	МВ				Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	otal/NA	4 5
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 16:30	1	6
Toluene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 16:30	1	_
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 16:30	1	7
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/11/23 13:33	01/13/23 16:30	1	
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/11/23 13:33	01/13/23 16:30	1	8
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/11/23 13:33	01/13/23 16:30	1	
	МВ	МВ							9
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	99		70 - 130			01/11/23 13:33	01/13/23 16:30	1	10
1,4-Difluorobenzene (Surr)	86		70 - 130			01/11/23 13:33	01/13/23 16:30	1	

Lab Sample ID: LCS 880-43747/1-A Matrix: Solid

Analysis Batch: 43877

	Spike	LCS LCS				%Rec	
Analyte	Added	Result Qualifi	ier Unit	D	%Rec	Limits	
Benzene	0.100	0.1093	mg/Kg		109	70 - 130	
Toluene	0.100	0.1016	mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.1124	mg/Kg		112	70 - 130	
m-Xylene & p-Xylene	0.200	0.2022	mg/Kg		101	70 - 130	
o-Xylene	0.100	0.1032	mg/Kg		103	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: LCSD 880-43747/2-A

Matrix: Solid

Analysis Batch: 43877							Prep	Batch:	43747
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1056		mg/Kg		106	70 - 130	3	35
Toluene	0.100	0.09865		mg/Kg		99	70 - 130	3	35
Ethylbenzene	0.100	0.1114		mg/Kg		111	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.2049		mg/Kg		102	70 - 130	1	35
o-Xylene	0.100	0.1048		mg/Kg		105	70 - 130	2	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 _ 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: 890-3814-1 MS Matrix: Solid

Analysis Batch: 43877

Analysis Batch: 43877									Prep	Batch: 43747
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0998	0.09921		mg/Kg		99	70 - 130	
Toluene	<0.00202	U	0.0998	0.09304		mg/Kg		93	70 - 130	

Client Sample ID: PH01

Prep Type: Total/NA

Job ID: 890-3814-1 SDG: Lea

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 43747

MS MS

0.1028

0.1889

0.09590

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0998

0.200

0.0998

Limits

70 - 130

70 - 130

Spike

Added

0.100

0.100

0.100

0.200

Client: Ensolum Project/Site: JALMAT YATES UNIT #188

Lab Sample ID: 890-3814-1 MS

Analysis Batch: 43877

4-Bromofluorobenzene (Surr)

Analysis Batch: 43877

Lab Sample ID: 890-3814-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Analyte

Benzene

Toluene

Ethylbenzene

m-Xylene & p-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Sample Sample

<0.00202

< 0.00404

%Recovery

<0.00202 U

101

102

Result Qualifier

U

U

MS MS

Sample Sample

<0.00202 U

<0.00202 U

<0.00202 U

<0.00404 U

Result Qualifier

Qualifier

Job ID: 890-3814-1 SDG: Lea

Client Sample ID: PH01

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

103

95

96

D

Prep Type: Total/NA

Prep Batch: 43747

Client Sample ID: PH01
Prep Type: Total/NA
Prep Batch: 43747

onent Gample ID. 1 110
Prep Type: Total/NA
Prep Batch: 43747

						Batom		
MSD	MSD				%Rec		RPD	
Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
0.09991		mg/Kg		99	70 - 130	1	35	
0.09481		mg/Kg		95	70 - 130	2	35	
0.1062		mg/Kg		106	70 - 130	3	35	
0.1967		mg/Kg		98	70 - 130	4	35	
0.09996		mg/Kg		100	70 - 130	4	35	

o-Xylene	<0.00202	U	0.100
	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-43836/1- Matrix: Solid	Α					Client Sa	mple ID: Metho Prep Type: 1	
Analysis Batch: 43854							Prep Batch	
· · · · · · · · · · · · · · · · · · ·	мв	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 08:27	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 08:27	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/12/23 15:08	01/13/23 08:27	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	176	S1+	70 - 130			01/12/23 15:08	01/13/23 08:27	1
o-Terphenyl	160	S1+	70 - 130			01/12/23 15:08	01/13/23 08:27	1
_ Lab Sample ID: LCS 880-43836/2	2-A				c	Client Sample I	D: Lab Control	Sample
Matrix: Solid							Prep Type: 1	

Matrix: Solid Analysis Batch: 43854

Analysis Batch: 43854							Prep	Batch: 43836
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	967.7		mg/Kg		97	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	919.0		mg/Kg		92	70 - 130	
C10-C28)								

Client: Ensolum Project/Site: JALMAT YATES UNIT #188

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-43836	/2-A						Client	Sample	e ID: Lab Co	ontrol S	ample
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 43854									Prep	Batch:	43836
	105	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	110		70 - 130								
o-Terphenyl	103		70 - 130								
Lab Sample ID: LCSD 880-4383	6/3-A					Clier	nt San	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 43854									Prep	Batch:	43836
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	1093		mg/Kg		109	70 - 130	12	20
Diesel Range Organics (Over C10-C28)			1000	1022		mg/Kg		102	70 - 130	11	20
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane	126		70 - 130								
o-Terphenyl	115		70 - 130								
Lab Sample ID: 890-3814-1 MS									Client Sa	nple ID:	PH01
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 43854									Prep	Batch:	43836
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	998	1041		mg/Kg		102	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.9	U	998	1012		mg/Kg		101	70 - 130		
,											
Surrogate	MS %Recovery	MS Qualifier	Limits								
1-Chlorooctane	116	Quaimer	70 - 130								
o-Terphenyl	102		70 - 130								
	102		10 - 100								
Lab Sample ID: 890-3814-1 MSI	C								Client Sa	nple ID:	PH01
Matrix: Solid										ype: To	
Analysis Batch: 43854										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	-	Qualifier	Added	Result		Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9		997	1007		mg/Kg		99	70 - 130	3	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	997	940.5		mg/Kg		94	70 - 130	7	20
C10-C28)											
	MSD	MSD									

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	103		70 - 130
o-Terphenyl	96		70 - 130

Eurofins Carlsbad

Page 55 of 182

SDG: Lea

Job ID: 890-3814-1

1/16/2023

Client: Ensolum

QC Sample Results

Job ID: 890-3814-1
SDG: Lea

Project/Site: JALMAT YATES UNIT #188
Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-43792/	/1 -A										Client S	ample ID: I	Nethod	Blank
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 43924														
		MB M	в											
Analyte	Re	esult Qu	ualifier		RL		Unit		D	Pr	epared	Analyz	əd	Dil Fac
Chloride	<	5.00 U			5.00		mg/Kg	3				01/13/23 2	23:50	1
Lab Sample ID: LCS 880-43792	2/2-A								CI	ient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 43924														
				Spike		LCS						%Rec		
Analyte				Added			Qualifier	Unit		D	%Rec	Limits		
Chloride				250		255.0		mg/Kg			102	90 - 110		
Lab Sample ID: LCSD 880-4379	92/3-A							Cli	ent	Sam	ple ID: I	_ab Contro	l Samp	le Dur
Matrix: Solid													Type: S	
Analysis Batch: 43924														
				Spike		LCSD	LCSD					%Rec		RPD
Analyte				Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride				250		251.6		mg/Kg			101	90 _ 110	1	20
Lab Sample ID: 890-3810-A-1-0	CMS										Client	Sample ID:		
Matrix: Solid												Prep '	Type: S	olubl
Analysis Batch: 43924														
	Sample			Spike		MS						%Rec		
						Docult	Qualifier	Unit		D	%Rec	Limits		
-	Result	Qualifie	r	Added										
	Result 428	Qualifie	r	Added 250		673.4		mg/Kg		<u> </u>	98	90 - 110		
Chloride	428	Qualifie	r					mg/Kg	Clier		98		ike Du	olicate
Chloride Lab Sample ID: 890-3810-A-1-E	428	Qualifie	<u>r</u>					mg/Kg	Clier		98	: Matrix Sp		
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid	428	Qualifie	<u>r</u>					mg/Kg	Clier		98	: Matrix Sp	ike Du Type: S	
Analyte Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924	428	<u>.</u>						mg/Kg	Clier		98	: Matrix Sp		oluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924	428 D MSD Sample	<u>.</u>		250		673.4 MSD		mg/Kg	Clier		98	: Matrix Sp Prep		oluble RPC
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte	428 D MSD Sample	Sample		250 Spike		673.4 MSD	MSD	mg/Kg	Clier	nt Sa	98 mple ID	9: Matrix Sp Prep ⁻ %Rec	Гуре: S	RPE Limi
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride	428 D MSD Sample Result 428	Sample		250 Spike Added		673.4 MSD Result	MSD	mg/Kg Unit	Clier	D	98 - 98 - 98 - 98 - 98 - 98 - 98 - 98 -	9: Matrix Sp Prep %Rec Limits 90 - 110	Type: S	RPD Limit
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/	428 D MSD Sample Result 428	Sample		250 Spike Added		673.4 MSD Result	MSD	mg/Kg Unit	Clier	D	98 - 98 - 98 - 98 - 98 - 98 - 98 - 98 -	9: Matrix Sp Prep %Rec Limits 90 - 110	Type: S RPD 0 Method	RPE Limi 20 Blank
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid	428 D MSD Sample Result 428	Sample		250 Spike Added		673.4 MSD Result	MSD	mg/Kg Unit	Clier	D	98 - 98 - 98 - 98 - 98 - 98 - 98 - 98 -	9: Matrix Sp Prep %Rec Limits 90 - 110	Type: S	RPE Limi 20 Blank
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid	428 D MSD Sample Result 428	Sample Qualifie	r	250 Spike Added		673.4 MSD Result	MSD	mg/Kg Unit	Clier	D	98 - 98 - 98 - 98 - 98 - 98 - 98 - 98 -	9: Matrix Sp Prep %Rec Limits 90 - 110	Type: S RPD 0 Method	RPE Limi 20 Blank
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927	428 D MSD Sample Result 428 /1-A	Sample Qualifie MB MI	r	250 Spike Added		673.4 MSD Result	MSD Qualifier	mg/Kg Unit		D	98 - mple ID <u>%Rec</u> 97 - Client S	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep	Type: S RPD 0 Method Type: S	RPD Limit 20 Blank Goluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927	428 D MSD Sample Result 428 /1-A Re	Sample Qualifie MB Mi esult Qu	r	250 Spike Added		673.4 MSD Result	MSD Qualifier	mg/Kg Unit mg/Kg	D	D	98 - 98 - 98 - 98 - 98 - 98 - 98 - 98 -	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep Analyz	Type: S RPD 0 Method Type: S	Blank Dil Fac
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte	428 D MSD Sample Result 428 /1-A Re	Sample Qualifie MB MI	r	250 Spike Added		673.4 MSD Result	MSD Qualifier	mg/Kg Unit mg/Kg		D	98 - mple ID <u>%Rec</u> 97 - Client S	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep	Type: S RPD 0 Method Type: S	Blank Dil Fac
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride	428 D MSD Sample Result 428 /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added		673.4 MSD Result	MSD Qualifier	mg/Kg Unit mg/Kg	<u>D</u>	D Pr	98 mple ID %Rec 97 - Client S epared	9: Matrix Sp Prep %Rec Limits 90 - 110 Gample ID: I Prep Analyz	RPD 0 Method Type: S ed 9:39	RPE Limi 20 Blank Goluble Dil Fac
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786	428 D MSD Sample Result 428 /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added		673.4 MSD Result	MSD Qualifier	mg/Kg Unit mg/Kg	<u>D</u>	D Pr	98 mple ID %Rec 97 - Client S epared	2: Matrix Sp Prep %Rec Limits 90 - 110 ample ID: I Prep 	RPD 0 Method Type: S ed 9:39	Blank Blank Soluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid	428 D MSD Sample Result 428 /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added		673.4 MSD Result	MSD Qualifier	mg/Kg Unit mg/Kg	<u>D</u>	D Pr	98 mple ID %Rec 97 - Client S epared	2: Matrix Sp Prep %Rec Limits 90 - 110 ample ID: I Prep 	RPD 0 Method Type: S ed 9:39	Blank Blank Soluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid	428 D MSD Sample Result 428 /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added		673.4 MSD Result 670.2	MSD Qualifier	mg/Kg Unit mg/Kg	<u>D</u>	D Pr	98 mple ID %Rec 97 - Client S epared	2: Matrix Sp Prep %Rec Limits 90 - 110 ample ID: I Prep 	RPD 0 Method Type: S ed 9:39	Blank Blank Soluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid Analysis Batch: 43927	428 D MSD Sample Result 428 /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added 250		673.4 MSD Result 670.2	MSD Qualifier Unit mg/Kg	mg/Kg Unit mg/Kg	<u>D</u>	D Pr	98 mple ID %Rec 97 - Client S epared	2: Matrix Sp Prep %Rec Limits 90 - 110 ample ID: I Prep Analyza 01/13/23 1 1D: Lab Co Prep	RPD 0 Method Type: S ed 9:39	Blank Coluble Dil Fac
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid Analysis Batch: 43927 Analyte	428 D MSD Sample Result 428 /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added 250		673.4 MSD Result 670.2	MSD Qualifier Unit mg/Kg	Unit mg/Kg	<u>D</u>	 D Pr ient	98 - mple ID <u>%Rec</u> 97 - Client S epared Sample	2: Matrix Sp Prep 7 %Rec Limits 90 - 110 ample ID: I Prep 7 01/13/23 1 FID: Lab Co Prep 7 %Rec	RPD 0 Method Type: S ed 9:39	Blank Blank Soluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid Analysis Batch: 43927 Analyte Chloride Chloride Chloride	428 D MSD Sample Result 428 /1-A /1-A /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added 250 Spike Added		673.4 MSD Result 670.2 LCS Result	MSD Qualifier Unit mg/Kg	Unit mg/Kg	D CI	 Pr ient	98 mple ID %Rec 97 Client S epared Sample %Rec 108	2: Matrix Sp Prep 7 %Rec Limits 90 - 110 3 3 90 - 110 3 4 10: Lab Cc Prep 7 %Rec Limits 90 - 110	RPD 0 Method Type: S 9:39 ontrol S Type: S	Blank Blank Oluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786	428 D MSD Sample Result 428 /1-A /1-A /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added 250 Spike Added		673.4 MSD Result 670.2 LCS Result	MSD Qualifier Unit mg/Kg	Unit mg/Kg	D CI	 Pr ient	98 mple ID %Rec 97 Client S epared Sample %Rec 108	2: Matrix Sp Prep 7 %Rec Limits 90 - 110 3 3 4 90 - 110 4 4 10: Lab Co Prep 7 %Rec Limits 90 - 110 - 3 %Rec Limits 90 - 110	RPD 0 Method Type: S 9:39 Ontrol S Type: S I Samp	Blank coluble Limit 20 Blank coluble Dil Fac 1 cample coluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCSD 880-4378 Matrix: Solid	428 D MSD Sample Result 428 /1-A /1-A /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added 250 Spike Added		673.4 MSD Result 670.2 LCS Result	MSD Qualifier Unit mg/Kg	Unit mg/Kg	D CI	 Pr ient	98 mple ID %Rec 97 Client S epared Sample %Rec 108	2: Matrix Sp Prep 7 %Rec Limits 90 - 110 3 3 4 90 - 110 4 4 10: Lab Co Prep 7 %Rec Limits 90 - 110 - 3 %Rec Limits 90 - 110	RPD 0 Method Type: S 9:39 ontrol S Type: S	Blank Coluble Limit 20 Blank Coluble Dil Fac 1 Sample Soluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid Analysis Batch: 43924 Analyte Chloride Lab Sample ID: MB 880-43786/ Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCS 880-43786 Matrix: Solid Analysis Batch: 43927 Analyte Chloride Lab Sample ID: LCSD 880-4378 Matrix: Solid	428 D MSD Sample Result 428 /1-A /1-A /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added 250 Spike Added 250		673.4 MSD Result 670.2 LCS Result 269.2	MSD Qualifier Unit mg/Kg LCS Qualifier	Unit mg/Kg	D CI	 Pr ient	98 mple ID %Rec 97 Client S epared Sample %Rec 108	2: Matrix Sp Prep %Rec Limits 90 - 110 ample ID: I Prep Analyze 01/13/23 1 FID: Lab Co Prep %Rec Limits 90 - 110 -ab Contro Prep	RPD 0 Method Type: S 9:39 Ontrol S Type: S I Samp	Blank coluble Limit 20 Blank coluble Dil Fac 1 Sample coluble
Chloride Lab Sample ID: 890-3810-A-1-E Matrix: Solid	428 D MSD Sample Result 428 /1-A /1-A /1-A /1-A	Sample Qualifie MB Mi esult Qu	r	250 Spike Added 250 Spike Added		673.4 MSD Result 670.2 LCS Result 269.2	MSD Qualifier Unit mg/Kg LCS Qualifier	Unit mg/Kg	D CI	 Pr ient	98 mple ID %Rec 97 Client S epared Sample %Rec 108	2: Matrix Sp Prep 7 %Rec Limits 90 - 110 3 3 4 90 - 110 4 4 10: Lab Co Prep 7 %Rec Limits 90 - 110 - 3 %Rec Limits 90 - 110	RPD 0 Method Type: S 9:39 Ontrol S Type: S I Samp	Blank Coluble Limit 20 Blank Coluble Dil Fac 1 Sample Soluble

Client: Ensolum	
Project/Site: JALMAT YATES UNIT #188	

Job ID: 890-3814-1 SDG: Lea

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-3786-A Matrix: Solid	A-3-C MS							Client	Sample ID	: Matrix Type: So	- C
Analysis Batch: 43927									гтер	Type. St	oluble
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	63.8	F1	252	356.8	F1	mg/Kg		116	90 - 110		
•											
Lab Sample ID: 890-3786-A	A-3-D MSD					Cli	ent S	ample ID): Matrix Sr	oike Dup	olicate
	A-3-D MSD					Cli	ent S	ample ID): Matrix Sp Prep	oike Dup Type: So	
Matrix: Solid	A-3-D MSD					Cli	ent S	ample ID			
Matrix: Solid		Sample	Spike	MSD	MSD	Cli	ent S	ample ID			
Lab Sample ID: 890-3786-A Matrix: Solid Analysis Batch: 43927 Analyte	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Cli Unit	ient Sa D	ample ID %Rec	Prep		oluble

Client: Ensolum Project/Site: JALMAT YATES UNIT #188

Prep Batch: 43747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3814-1	PH01	Total/NA	Solid	5035	
890-3814-2	PH01	Total/NA	Solid	5035	5
890-3814-3	PH01	Total/NA	Solid	5035	
890-3814-4	PH02	Total/NA	Solid	5035	
890-3814-5	PH02	Total/NA	Solid	5035	
890-3814-6	PH02	Total/NA	Solid	5035	
890-3814-7	PH03	Total/NA	Solid	5035	
890-3814-8	PH03	Total/NA	Solid	5035	8
890-3814-9	PH03	Total/NA	Solid	5035	_
890-3814-10	PH04	Total/NA	Solid	5035	9
890-3814-11	PH04	Total/NA	Solid	5035	
890-3814-12	PH04	Total/NA	Solid	5035	
890-3814-13	PH05	Total/NA	Solid	5035	
890-3814-14	PH05	Total/NA	Solid	5035	
890-3814-15	PH05	Total/NA	Solid	5035	
MB 880-43747/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43747/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43747/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3814-1 MS	PH01	Total/NA	Solid	5035	
890-3814-1 MSD	PH01	Total/NA	Solid	5035	

Analysis Batch: 43877

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3814-1	PH01	Total/NA	Solid	8021B	43747
890-3814-2	PH01	Total/NA	Solid	8021B	43747
890-3814-3	PH01	Total/NA	Solid	8021B	43747
890-3814-4	PH02	Total/NA	Solid	8021B	43747
890-3814-5	PH02	Total/NA	Solid	8021B	43747
890-3814-6	PH02	Total/NA	Solid	8021B	43747
890-3814-7	PH03	Total/NA	Solid	8021B	43747
890-3814-8	PH03	Total/NA	Solid	8021B	43747
890-3814-9	PH03	Total/NA	Solid	8021B	43747
890-3814-10	PH04	Total/NA	Solid	8021B	43747
890-3814-11	PH04	Total/NA	Solid	8021B	43747
890-3814-12	PH04	Total/NA	Solid	8021B	43747
890-3814-13	PH05	Total/NA	Solid	8021B	43747
890-3814-14	PH05	Total/NA	Solid	8021B	43747
890-3814-15	PH05	Total/NA	Solid	8021B	43747
MB 880-43747/5-A	Method Blank	Total/NA	Solid	8021B	43747
LCS 880-43747/1-A	Lab Control Sample	Total/NA	Solid	8021B	43747
LCSD 880-43747/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43747
890-3814-1 MS	PH01	Total/NA	Solid	8021B	43747
890-3814-1 MSD	PH01	Total/NA	Solid	8021B	43747

Analysis Batch: 44107

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3814-1	PH01	Total/NA	Solid	Total BTEX	
890-3814-2	PH01	Total/NA	Solid	Total BTEX	
890-3814-3	PH01	Total/NA	Solid	Total BTEX	
890-3814-4	PH02	Total/NA	Solid	Total BTEX	
890-3814-5	PH02	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

Page 58 of 182

Job ID: 890-3814-1 SDG: Lea

а - З

GC VOA (Continued)

Analysis Batch: 44107 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3814-6	PH02	Total/NA	Solid	Total BTEX	
390-3814-7	PH03	Total/NA	Solid	Total BTEX	
890-3814-8	PH03	Total/NA	Solid	Total BTEX	
890-3814-9	PH03	Total/NA	Solid	Total BTEX	
390-3814-10	PH04	Total/NA	Solid	Total BTEX	
390-3814-11	PH04	Total/NA	Solid	Total BTEX	
390-3814-12	PH04	Total/NA	Solid	Total BTEX	
390-3814-13	PH05	Total/NA	Solid	Total BTEX	
390-3814-14	PH05	Total/NA	Solid	Total BTEX	
390-3814-15	PH05	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 43836

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3814-1	PH01	Total/NA	Solid	8015NM Prep	
890-3814-2	PH01	Total/NA	Solid	8015NM Prep	
890-3814-3	PH01	Total/NA	Solid	8015NM Prep	
890-3814-4	PH02	Total/NA	Solid	8015NM Prep	
890-3814-5	PH02	Total/NA	Solid	8015NM Prep	
890-3814-6	PH02	Total/NA	Solid	8015NM Prep	
890-3814-7	PH03	Total/NA	Solid	8015NM Prep	
890-3814-8	PH03	Total/NA	Solid	8015NM Prep	
890-3814-9	PH03	Total/NA	Solid	8015NM Prep	
890-3814-10	PH04	Total/NA	Solid	8015NM Prep	
890-3814-11	PH04	Total/NA	Solid	8015NM Prep	
890-3814-12	PH04	Total/NA	Solid	8015NM Prep	
890-3814-13	PH05	Total/NA	Solid	8015NM Prep	
890-3814-14	PH05	Total/NA	Solid	8015NM Prep	
890-3814-15	PH05	Total/NA	Solid	8015NM Prep	
MB 880-43836/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43836/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43836/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3814-1 MS	PH01	Total/NA	Solid	8015NM Prep	
890-3814-1 MSD	PH01	Total/NA	Solid	8015NM Prep	

Analysis Batch: 43854

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3814-1	PH01	Total/NA	Solid	8015B NM	43836
890-3814-2	PH01	Total/NA	Solid	8015B NM	43836
890-3814-3	PH01	Total/NA	Solid	8015B NM	43836
890-3814-4	PH02	Total/NA	Solid	8015B NM	43836
890-3814-5	PH02	Total/NA	Solid	8015B NM	43836
890-3814-6	PH02	Total/NA	Solid	8015B NM	43836
890-3814-7	PH03	Total/NA	Solid	8015B NM	43836
890-3814-8	PH03	Total/NA	Solid	8015B NM	43836
890-3814-9	PH03	Total/NA	Solid	8015B NM	43836
890-3814-10	PH04	Total/NA	Solid	8015B NM	43836
890-3814-11	PH04	Total/NA	Solid	8015B NM	43836
890-3814-12	PH04	Total/NA	Solid	8015B NM	43836
890-3814-13	PH05	Total/NA	Solid	8015B NM	43836

Eurofins Carlsbad

Page 59 of 182

Job ID: 890-3814-1 SDG: Lea

5 8

Client: Ensolum Project/Site: JALMAT YATES UNIT #188

GC Semi VOA (Continued)

Analysis Batch: 43854 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3814-14	PH05	Total/NA	Solid	8015B NM	43836
890-3814-15	PH05	Total/NA	Solid	8015B NM	43836
MB 880-43836/1-A	Method Blank	Total/NA	Solid	8015B NM	43836
LCS 880-43836/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43836
LCSD 880-43836/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43836
890-3814-1 MS	PH01	Total/NA	Solid	8015B NM	43836
890-3814-1 MSD	PH01	Total/NA	Solid	8015B NM	43836

Analysis Batch: 44027

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3814-1	PH01	Total/NA	Solid	8015 NM	
890-3814-2	PH01	Total/NA	Solid	8015 NM	
890-3814-3	PH01	Total/NA	Solid	8015 NM	
890-3814-4	PH02	Total/NA	Solid	8015 NM	
890-3814-5	PH02	Total/NA	Solid	8015 NM	
890-3814-6	PH02	Total/NA	Solid	8015 NM	
890-3814-7	PH03	Total/NA	Solid	8015 NM	
890-3814-8	PH03	Total/NA	Solid	8015 NM	
890-3814-9	PH03	Total/NA	Solid	8015 NM	
890-3814-10	PH04	Total/NA	Solid	8015 NM	
890-3814-11	PH04	Total/NA	Solid	8015 NM	
890-3814-12	PH04	Total/NA	Solid	8015 NM	
890-3814-13	PH05	Total/NA	Solid	8015 NM	
890-3814-14	PH05	Total/NA	Solid	8015 NM	
890-3814-15	PH05	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 43786

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3814-7	PH03	Soluble	Solid	DI Leach	
890-3814-8	PH03	Soluble	Solid	DI Leach	
890-3814-9	PH03	Soluble	Solid	DI Leach	
890-3814-10	PH04	Soluble	Solid	DI Leach	
890-3814-11	PH04	Soluble	Solid	DI Leach	
890-3814-12	PH04	Soluble	Solid	DI Leach	
890-3814-13	PH05	Soluble	Solid	DI Leach	
890-3814-14	PH05	Soluble	Solid	DI Leach	
890-3814-15	PH05	Soluble	Solid	DI Leach	
MB 880-43786/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-43786/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-43786/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3786-A-3-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3786-A-3-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 43792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	
890-3814-1	PH01	Soluble	Solid	DI Leach	
890-3814-2	PH01	Soluble	Solid	DI Leach	
890-3814-3	PH01	Soluble	Solid	DI Leach	
890-3814-4	PH02	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Job ID: 890-3814-1 SDG: Lea

Client: Ensolum Project/Site: JALMAT YATES UNIT #188

HPLC/IC (Continued)

Leach Batch: 43792 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3814-5	PH02	Soluble	Solid	DI Leach	
890-3814-6	PH02	Soluble	Solid	DI Leach	
MB 880-43792/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-43792/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-43792/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3810-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-3810-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 43924

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	9
890-3814-1	PH01	Soluble	Solid	300.0	43792	
890-3814-2	PH01	Soluble	Solid	300.0	43792	
890-3814-3	PH01	Soluble	Solid	300.0	43792	
890-3814-4	PH02	Soluble	Solid	300.0	43792	
890-3814-5	PH02	Soluble	Solid	300.0	43792	
890-3814-6	PH02	Soluble	Solid	300.0	43792	
MB 880-43792/1-A	Method Blank	Soluble	Solid	300.0	43792	
LCS 880-43792/2-A	Lab Control Sample	Soluble	Solid	300.0	43792	
LCSD 880-43792/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	43792	
890-3810-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	43792	
890-3810-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	43792	

Analysis Batch: 43927

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3814-7	PH03	Soluble	Solid	300.0	43786
890-3814-8	PH03	Soluble	Solid	300.0	43786
890-3814-9	PH03	Soluble	Solid	300.0	43786
890-3814-10	PH04	Soluble	Solid	300.0	43786
890-3814-11	PH04	Soluble	Solid	300.0	43786
890-3814-12	PH04	Soluble	Solid	300.0	43786
890-3814-13	PH05	Soluble	Solid	300.0	43786
890-3814-14	PH05	Soluble	Solid	300.0	43786
890-3814-15	PH05	Soluble	Solid	300.0	43786
MB 880-43786/1-A	Method Blank	Soluble	Solid	300.0	43786
LCS 880-43786/2-A	Lab Control Sample	Soluble	Solid	300.0	43786
LCSD 880-43786/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	43786
890-3786-A-3-C MS	Matrix Spike	Soluble	Solid	300.0	43786
890-3786-A-3-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	43786

Page 61 of 182

4 5 6

8

Job ID: 890-3814-1

SDG: Lea

5 6

9

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-1 Matrix: Solid

Date Collected: 01/09/23 11:00 Date Received: 01/10/23 09:05

Client Sample ID: PH01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 16:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 11:01	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		5			43924	01/14/23 02:06	СН	EET MID

Client Sample ID: PH01

Date Collected: 01/09/23 11:05

Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 17:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 12:07	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		5			43924	01/14/23 02:11	СН	EET MID

Client Sample ID: PH01

Date Collected: 01/09/23 11:10

Date	Received:	01/10/23	09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 17:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 12:29	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		5			43924	01/14/23 02:17	CH	EET MID

Client Sample ID: PH02 Date Collected: 01/09/23 12:30 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 17:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3814-2

Lab Sample ID: 890-3814-3 Matrix: Solid

Lab Sample ID: 890-3814-4

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-4 Matrix: Solid

Lab Sample ID: 890-3814-5

Lab Sample ID: 890-3814-6

Lab Sample ID: 890-3814-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 01/09/23 12:30 Date Received: 01/10/23 09:05

Client Sample ID: PH02

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 12:51	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		5			43924	01/14/23 02:22	СН	EET MID

Client Sample ID: PH02

Date Collected: 01/09/23 12:35 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 18:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 13:13	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		5			43924	01/14/23 02:28	СН	EET MID

Client Sample ID: PH02

Date Collected: 01/09/23 12:40 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 18:35	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 13:35	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	43792	01/12/23 09:21	KS	EET MID
Soluble	Analysis	300.0		20			43924	01/14/23 02:33	CH	EET MID

Client Sample ID: PH03

Date Collected: 01/09/23 13:35 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 18:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 13:57	AJ	EET MID

Lab Chronicle

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-7 Matrix: Solid

Lab Sample ID: 890-3814-8

Lab Sample ID: 890-3814-9

Date Collected: 01/09/23 13:35 Date Received: 01/10/23 09:05

Client Sample ID: PH03

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	43786	01/12/23 09:15	KS	EET MID
Soluble	Analysis	300.0		5			43927	01/13/23 21:43	СН	EET MID

Client Sample ID: PH03

Date Collected: 01/09/23 13:40 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 19:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 14:19	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	43786	01/12/23 09:15	KS	EET MID
Soluble	Analysis	300.0		5			43927	01/13/23 21:49	СН	EET MID

Client Sample ID: PH03 Date Collected: 01/09/23 13:45 Date Received: 01/10/23 09:05

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.99 g 5 mL 43747 01/11/23 13:33 MNR EET MID 8021B Total/NA 5 mL 5 mL 01/13/23 19:37 MNR EET MID Analysis 1 43877 Total/NA Analysis Total BTEX 1 44107 01/16/23 17:06 AJ EET MID Total/NA Analysis 8015 NM 1 44027 01/16/23 16:35 AJ EET MID Total/NA Prep 8015NM Prep 10.02 g 10 mL 43836 01/12/23 15:08 DM EET MID Total/NA EET MID Analysis 8015B NM 1 1 uL 1 uL 43854 01/13/23 14:42 AJ Soluble Leach DI Leach 5 g 50 mL 43786 01/12/23 09:15 KS EET MID Soluble Analysis 300.0 5 43927 01/13/23 22:08 СН EET MID

Client Sample ID: PH04 Date Collected: 01/09/23 13:50

Date Received: 01/10/23 09:05

Lab Sample ID: 890-3814-10

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 19:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 15:04	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	43786	01/12/23 09:15	KS	EET MID
Soluble	Analysis	300.0		1			43927	01/13/23 22:14	CH	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

9

Client: Ensolum

Job ID: 890-3814-1 SDG: Lea

Lab Sample ID: 890-3814-11

Lab Sample ID: 890-3814-12

Lab Sample ID: 890-3814-13

Lab Sample ID: 890-3814-14

Date Collected: 01/09/23 13:55 Date Received: 01/10/23 09:05

Client Sample ID: PH04

Project/Site: JALMAT YATES UNIT #188

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 21:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 15:48	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	43786	01/12/23 09:15	KS	EET MID
Soluble	Analysis	300.0		20			43927	01/13/23 22:20	СН	EET MID

Client Sample ID: PH04

Date Collected: 01/09/23 14:00

Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 21:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 16:10	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	43786	01/12/23 09:15	KS	EET MID
Soluble	Analysis	300.0		20			43927	01/13/23 22:26	СН	EET MID

Client Sample ID: PH05

Date Collected: 01/09/23 14:30

Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 22:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 16:32	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	43786	01/12/23 09:15	KS	EET MID
Soluble	Analysis	300.0		5			43927	01/13/23 22:32	CH	EET MID

Client Sample ID: PH05 Date Collected: 01/09/23 14:35 Date Received: 01/10/23 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	43747	01/11/23 13:33	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43877	01/13/23 22:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44107	01/16/23 17:06	AJ	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

9

Matrix: Solid

Matrix: Solid

5

5

9

Job ID: 890-3814-1

Lab Sample ID: 890-3814-14

Client Sample ID: PH05 Date Collected: 01/09/23 14:35 Date Received: 01/10/23 09:05

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			44027	01/16/23 16:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43836	01/12/23 15:08	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43854	01/13/23 16:55	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	43786	01/12/23 09:15	KS	EET MID
Soluble	Analysis	300.0		5			43927	01/13/23 22:38	СН	EET MID

Client Sample ID: PH05 Date Collected: 01/09/23 14:40

Date Received: 01/10/23 09:05

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Туре Run Factor Analyst Lab Prep 5035 5.03 g Total/NA 5 mL 43747 01/11/23 13:33 MNR EET MID Total/NA Analysis 8021B 5 mL 5 mL 43877 01/13/23 22:45 MNR EET MID 1 Total/NA Total BTEX 01/16/23 17:06 EET MID Analysis 1 44107 AJ Total/NA Analysis 8015 NM 44027 01/16/23 16:35 EET MID 1 AJ Total/NA Prep 8015NM Prep 10.02 g 10 mL 43836 01/12/23 15:08 DM EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 43854 01/13/23 17:17 AJ EET MID 1 Soluble Leach **DI Leach** 5.04 g 50 mL 43786 01/12/23 09:15 KS EET MID Soluble Analysis 300.0 5 43927 01/13/23 22:44 СН EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

SDG: Lea

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3814-15

Accreditation/Certification Summary

Client: Ensolum Project/Site: JALMAT Y	ATES UNIT #188			Job ID: 890-38 ⁻ SDG:	
Laboratory: Eurofi Unless otherwise noted, all a		were covered under each acc	reditation/certification below.		3
Authority		Program	Identification Number	Expiration Date	4
Texas		NELAP	T104704400-22-25	06-30-23	5
The following analytes the agency does not of		but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which	6
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					13

Eurofins Carlsbad

.

Job ID: 890-3814-1 SDG: Lea

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

Client: Ensolum

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

$D_{1} = (0 - f_1)$	0.7
Page 69 of 18	82

Job ID: 890-3814-1
SDG: Lea

_ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
390-3814-1	PH01	Solid	01/09/23 11:00	01/10/23 09:05	2	Δ
390-3814-2	PH01	Solid	01/09/23 11:05	01/10/23 09:05	3	
390-3814-3	PH01	Solid	01/09/23 11:10	01/10/23 09:05	4	5
390-3814-4	PH02	Solid	01/09/23 12:30	01/10/23 09:05	1	·····
390-3814-5	PH02	Solid	01/09/23 12:35	01/10/23 09:05	4	
390-3814-6	PH02	Solid	01/09/23 12:40	01/10/23 09:05	8	0
390-3814-7	PH03	Solid	01/09/23 13:35	01/10/23 09:05	1	
390-3814-8	PH03	Solid	01/09/23 13:40	01/10/23 09:05	4	
390-3814-9	PH03	Solid	01/09/23 13:45	01/10/23 09:05	8	
390-3814-10	PH04	Solid	01/09/23 13:50	01/10/23 09:05	1	8
390-3814-11	PH04	Solid	01/09/23 13:55	01/10/23 09:05	4	
390-3814-12	PH04	Solid	01/09/23 14:00	01/10/23 09:05	8	9
390-3814-13	PH05	Solid	01/09/23 14:30	01/10/23 09:05	1	
390-3814-14	PH05	Solid	01/09/23 14:35	01/10/23 09:05	4	
390-3814-15	PH05	Solid	01/09/23 14:40	01/10/23 09:05	8	
						12
						11

.

Environment Testing Houston, TX (28) 704-5440. Dallas, TX (21) 902-0300 Menco EL Paso, TX (32) 704-540. Dallas, TX (210) 509-3334 EL Paso, TX (32) 704-540. Dallas, TX (210) 509-3334 EL Paso, TX (32) 704-540. Dallas, TX (210) 509-3334 EL Paso, TX (32) 704-540. Dallas, TX (210) 509-3334 EL Paso, TX (32) 704-540. Dallas, TX (210) 509-3334 EL Paso, TX (32) 704-540. Dallas, TX (210) 509-3334 Field St Suite 400 Address: Go No Thermometer ID: No Themometer ID: No Time Date Time Depth Grabl # Onthermometer ID: NA Time Depth Grabl # Of Matrix Sampled Sampled	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Bill to: (if different) Kalei Jennings Company Name: Ensolum, LLC Address: 601 N Marienfeld St Suite 400 Outine Rush Date: No Date: Code No Pres. No Code Nit Ice: Code No Parameters It Ice: Parameters No Fres. No Parameters It Ice: Parameters No Parameters BTEX (8021) 880-3814 Chain of Cum BUDIN Cont CHL ORIDES (EPA: 300.0) BTEX (8021) 880-3814 Chain of Cum	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Bill to: (if different) Kalei Jennings Company Name: Ensolum, LLC Address: 601 N Marienfeld St Suite 400 Outine Rush Date: No Date: Code No Pres. No Code Nit Ice: Code No Parameters It Ice: Parameters No Fres. No Parameters It Ice: Parameters No Parameters BTEX (8021) 880-3814 Chain of Cum BUDIN Cont CHL ORIDES (EPA: 300.0) BTEX (8021) 880-3814 Chain of Cum
op 1 x	ston, TX (281) 240-4200, Dallas, TX (214) 902-0300 id, TX (432) 704-5440, San Antonio, TX (210) 509-3334 aso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 bs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 code	ston, TX (281) 240-4200, Dallas, TX (214) 902-0300 id, TX (432) 704-5440, San Antonio, TX (210) 509-3334 asso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 bs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 code Ensolum.com, hgreen@ensolum.com No Code Code Cont Parameters Midland, TX 79701 ANALYSIS REQ
240-4200, Dallas, TX (214) 902-0300 1-5440, San Antonio, TX (210) 509-33 185-3443, Lubbock, TX (306) 794-1299 12-7550, Carlsbad, NM (575) 988-3199 12-7550, Carlsbad, NM (575) 988-3	240-4200. Dallas. TX (214) 902-0300 I-5440. San Antonio. TX (210) 509-3334 i85-343. Lubbock. TX (806) 794-1296 i2-7550. Carlsbad. NM (575) 988-3199 Imd. TX 79701 Ind. TX 79701 Ind. TX 79701 Ind. TX 79701 Marienfeld St Suite 400 MALYSIS REQ ANALYSIS REQ Second State And Antonio Culture Second State And Antonio Culture Second State Ant	240-4200. Dallas. TX (214) 902-0300 I-5440. San Antonio. TX (210) 509-3334 i85-3443. Lubbock. TX (806) 794-1296 i2-7550. Carlsbad. NM (575) 988-3199 Ima, TX 79701 hgreen@ensolum.com ANALYSIS REQ ANALYSIS REQ Sector Anton of Cu
s, TX (214) 902-0300 onio, TX (210) 509-3334 ck, TX (806) 794-1296 d, NM (575) 988-3199 ANALYSIS REC 880-3814 Chain of C		
	Work C	Work Order No: Page www.xenco.com Page Work Order Comments Program: UST/PST PRP Brownfields RRC State of Project: ADaPT Deliverables: EDD ADaPT Other: None: NO Cool: Cool H1 Preservath H2S04: H2 H3PO4: H2 H3PO4: H2 NaHSO4: NABIS Nacetate+NaOH NaOH+Ascorbic A NaOH+Ascorbic A Sample Co

t eurofins

Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

					I	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	(575) 392	2-7550, C	arlsbad, f	IX (600) VM (575) (EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199					· venco	COm	Page	N	<u>ç</u>	N
Droiant Managar	Hadlie Green				Rill to: (if different)	erent)	Kalei J	Kalei Jennings							5	Work Order	der Co	Work Order Comments	S		
Company Name:	Ensolum. LLC				Company Name:	ame:	Ensolu	Ensolum, LLC					Progra	m: UST/	PST		Brownfi	Program: UST/PST 🔲 PRP 🔤 Brownfields 🗌 RRC 🗌		Superfund	und
Address:	601 N Marienfeld St Suite 400	feld St Su	uite 400		Address:		601 N	Marienfe	601 N Marienfeld St Suite 400	ite 400			State o	State of Project:	fT]
City, State ZIP:	Midland, TX 79701	79701		- 71	City, State ZIP:	IP:	Midlan	Midland, TX 79701	701				Reporti	ng: Leve		evel III] PST/L	Reporting: Level III Level III PST/UST TRRP	TRRP		
Phone:	432-557-8895	5		Email:	Email: kjennings@ensolum.com, hgreen@ensolum.com	pensolu	n.com,	hgreen	gensoli	<u>um.com</u>			Delivera	Deliverables: EDD			ADaPT		Other:		
Project Name:	Jalmat	Jalmat Yates Unit #188	it #188	Turn	Turn Around						ANALY.	SIS REQUEST	UEST					Pres	servativ	Preservative Codes	Š
Project Number:	03	03D2057055	σ	Routine	Rush	Pres. Code								_	-		z	None: NO		DI Water: H ₂ O	r: H ₂ O
Project Location:		Lea		Due Date:													0	Cool: Cool		MeOH: Me	Me
Sampler's Name:	Pete	Peter Van Patten	tten	TAT starts the day received by	day received	d by									-		. I	HCL: HC		HINO3. HIN	
PO#:				the lab, if rec	the lab, if received by 4:30pm	<u> </u>											ī	H2204: H2		NaOH: Na	Va
SAMPLE RECEIPT	_	Temp Blank:	Yes No	Wet Ice:	Yes No	nete).0)								-		. I	H ₃ PO ₄ : HP			
Samples Received Intact:	ntact: Yes	Z	Thermometer ID:	Į.		ara	: 30										2 2	Narso : Naso	NACIO		
Cooler Custody Seals:	Yes	NA	Conection Factor:	CION		P	EPA										V ;	7n AcatatatNaOH: 7n	D-NaOF	ł	
Sample Custody Seals:	Yes	NO N/A	i emperature reasing.	Keasing.			ES	i)	21)								z	aOH+As	conthin A	NaOH+Ascorbic Acid: SAPC	റ്
Total Containers.					-		-	801	. (80												
Sample Identification	ntification	Matrix	Date Sampled	Time Sampled	Depth Co	Grab/ # of Comp Cont	CHLO	TPH (BTEX									San	nple Co	Sample Comments	5
PHO4	04	Soil	1/9/2023	1350	1' Co	Comp 1	×	×	×					+							
PHO4	4	Soil	1/9/2023	1355	4' Co	Comp 1	×	×	×	$\left \right $											
PHO4	4	Soil	1/9/2023	1400	8' Co	Comp 1	×	×	×	+			Ī	+-	+		\downarrow				
PHO5	5	Soil	1/9/2023	1430	1' Co	Comp 1	×	×	×	╞	<u> </u>	+	Ī	+	╀		-				
PHO5)5	Soil	1/9/2023	1435	4' Co	Comp 1	×	×	×	$\left \right $				╞	┢						
PHO5	5	Soil	1/9/2023	1440	8' Co	Comp 1	×	×	×	+		_		-	+		+				
								_	-	+		+-									
Total 200.7 / 6010	010 200.8 / 6020:	6020:		BRCRA 13PPM	RA 13PPM Texas 11 AI	BRCRA		Ba Be s Ba B	B Cd	sb As Ba Be B Cd Ca Cr Co Cu Sb As Ba Be Cd Cr Co Cu Pb	<u> </u>	Fe Pb Mn Mo	Mg Mn Ni Se A	Mn Mo Ni še Ag TI U	K Se	Ag SiO ₂ Hg: 163) ₂ Na : 631 / 2:	g SiO ₂ Na Sr TI Sn U V Zn Hg: 1631/245.1/7470 /7471	Sn U V 7470 / 7	Zn 471	
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service. Eurofins Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	document and reli co will be liable on	nquishment of the cos	of samples const st of samples and applied to each p	litutes a valid pu I shall not assun project and a cha	irchase order fi ne any respons arge of \$5 for e	rom client , sibility for a ach sampli	company t Iny losses e submitte	o Eurofins or expens d to Eurof	Xenco, it es incurre ins Xenco	s affiliates ed by the c but not ai	and subco lient if suc lalyzed. Th	ontractors. I h losses are lese terms v	assigns s due to cir ill be enfo	tandard t cumstance rced unlet	erms and is beyond is previou	condition: the contr sly negoti	ol ated.				
Relinquished by: (Signature)	/: (Signature)		Received	Received by: (Signature)	ure)		Date/Time	Time		Relinquished by:	shed by	r: (Signature)	ıre)	R	ceived	Received by: (Signature)	Inature		D	Date/Time	Ø
1 Tota Var	たち		low						2												
З						$\left \right $			4												
σ						\vdash			6									Re	vised Date:	Revised Date: 08/25/2020 Rev. 2020 2	lev. 2020 2

Received by OCD: 1/11/2024 3:04:14 PM

1/16/2023

Page 71 of 182

eurofins

Chain of Custody

5 12 13

14

Job Number: 890-3814-1 SDG Number: Lea

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3814 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
14

Job Number: 890-3814-1 SDG Number: Lea

List Source: Eurofins Midland

List Creation: 01/11/23 11:43 AM

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 3814 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Received by OCD: 1/11/2024 3:04:14 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joe Gable Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 3/6/2023 2:09:36 PM

JOB DESCRIPTION

Jalmat 188 - Maverick SDG NUMBER 03D2057055

JOB NUMBER

890-4182-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Received by OCD: 1/11/2024 3:04:14 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 3/6/2023 2:09:36 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4182-1 SDG: 03D2057055

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	21
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

Page 76 of 182

Definitions/Glo

Client: Ensolum
Project/Site: Jalmat 188 - Maverick

Qualifier Description

Qualifier Description

LCS/LCSD RPD exceeds control limits.

MS/MSD RPD exceeds control limits

LCS/LCSD RPD exceeds control limits.

MS and/or MSD recovery exceeds control limits.

Surrogate recovery exceeds control limits, low biased. Surrogate recovery exceeds control limits, high biased.

Indicates the analyte was analyzed for but not detected.

Surrogate recovery exceeds control limits, high biased.

LCS and/or LCSD is outside acceptance limits, low biased.

Page 77 of	182
ossary	1
Job ID: 890-4182-1 SDG: 03D2057055	2
	3
	4
	5
	6
	7
	8
	9

HPLC/IC

GC Semi VOA Qualifier

Qualifiers GC VOA Qualifier

*_

*1

F1

F2 S1-

S1+ U

*1

S1+

U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		12
Abbreviation	These commonly used abbreviations may or may not be present in this report.	4.0
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	13
%R	Percent Recovery	
	Contains Free Liquid	

used abbreviations may or may not be present in this report.
" column to designate that the result is reported on a dry weight basis
id
it
liquid
io (normalized absolute difference)
D/DOE)
, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
centration (Radiochemistry)
n Limit (Dioxin)
DoD/DOE)
n (DoD/DOE)
"Maximum Contaminant Level"
le Activity (Radiochemistry)
le Concentration (Radiochemistry)
limit
oxin)
nber
n Limit
reporting limit (or MDL or EDL if shown)
on Limit
o (Radiochemistry)
Requested Limit (Radiochemistry)
ifference, a measure of the relative difference between two points
Factor (Dioxin)
Quotient (Dioxin)
Count
F

Eurofins Carlsbad

Job ID: 890-4182-1 SDG: 03D2057055

Job ID: 890-4182-1

Client: Ensolum

Laboratory: Eurofins Carlsbad

Project/Site: Jalmat 188 - Maverick

Narrative

Job Narrative 890-4182-1

Receipt

The samples were received on 2/23/2023 2:52 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

Receipt Exceptions

The following samples analyzed for method <FRACTION_METHOD> were received and analyzed from an unpreserved bulk soil jar: PH06A (890-4182-1), PH06D (890-4182-2), PH06F (890-4182-3), PH07A (890-4182-4), PH07D (890-4182-5) and PH07F (890-4182-6).

The following samples were received and analyzed from an unpreserved bulk soil jar: PH06A (890-4182-1), PH06D (890-4182-2), PH06F (890-4182-3), PH07A (890-4182-4), PH07D (890-4182-5) and PH07F (890-4182-6),

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-47633 and analytical batch 880-47785 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8021B: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for preparation batch 880-47633 and analytical batch 880-47785. The associated laboratory control sample (LCS) met acceptance criteria.

Method 8021B: The spiking solution was inadvertently omitted during the extraction process for the laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) associated with preparation batch 880-47633; therefore, percent recoveries are unavailable. Due to only needing an LCS or LCSD for qualification, the affected samples were notre-prepared and or re-analyzed, and the results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: PH06A (890-4182-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (890-4182-A-1-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The method blank for preparation batch 880-47331 and analytical batch 880-47385 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-47356 and analytical batch 880-47599 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

5

Job ID: 890-4182-1 SDG: 03D2057055

Client Sample ID: PH06A

Project/Site: Jalmat 188 - Maverick

Date Collected: 02/23/23 12:20 Date Received: 02/23/23 14:52

Sample Depth: 1'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *- *1	0.00200	mg/Kg		03/02/23 11:45	03/05/23 03:59	1
Toluene	<0.00200	U *- *1	0.00200	mg/Kg		03/02/23 11:45	03/05/23 03:59	1
Ethylbenzene	<0.00200	U *- *1	0.00200	mg/Kg		03/02/23 11:45	03/05/23 03:59	1
m-Xylene & p-Xylene	<0.00399	U *- *1	0.00399	mg/Kg		03/02/23 11:45	03/05/23 03:59	1
o-Xylene	<0.00200	U *-	0.00200	mg/Kg		03/02/23 11:45	03/05/23 03:59	1
Xylenes, Total	<0.00399	U *-	0.00399	mg/Kg		03/02/23 11:45	03/05/23 03:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130			03/02/23 11:45	03/05/23 03:59	1
1,4-Difluorobenzene (Surr)	85		70 - 130			03/02/23 11:45	03/05/23 03:59	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/06/23 14:55	1
Analyte	Result	Qualifier		Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	Result <50.0	Qualifier U		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/01/23 14:20	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die	Result <50.0 sel Range Orga	Qualifier	(GC)	mg/Kg		<u>.</u>	03/01/23 14:20	1
Analyte ^{Total} TPH Method: SW846 8015B NM - Die Analyte	Result <50.0 sel Range Orga	Qualifier U Inics (DRO) Qualifier	(GC) RL	mg/Kg Unit	D	Prepared	03/01/23 14:20 Analyzed	Dil Fac 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	Result <50.0 sel Range Orga	Qualifier U Inics (DRO) Qualifier	(GC)	mg/Kg		<u>.</u>	03/01/23 14:20	1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 sel Range Orga	Qualifier U nics (DRO) Qualifier U	(GC) RL	mg/Kg Unit		Prepared	03/01/23 14:20 Analyzed	1
Analyte Total TPH Method: SW846 8015B NM - Die	Result <50.0 sel Range Orga Result <50.0	Qualifier U Qualifier Qualifier U U	(GC) <u>RL</u> <u>50.0</u> <u>RL</u> <u>50.0</u>	mg/Kg		Prepared 02/27/23 14:00	03/01/23 14:20 Analyzed 02/28/23 11:14	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 sel Range Orga Result <50.0 <50.0	Qualifier U Qualifier Qualifier U U U	RL 50.0 (GC) RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 14:00 02/27/23 14:00	03/01/23 14:20 Analyzed 02/28/23 11:14 02/28/23 11:14	1 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0 sel Range Orga Result <50.0 <50.0 <50.0	Qualifier U Qualifier Qualifier U U U	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 14:00 02/27/23 14:00 02/27/23 14:00	03/01/23 14:20 Analyzed 02/28/23 11:14 02/28/23 11:14 02/28/23 11:14	1 Dil Fac 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane	Result <50.0	Qualifier U Qualifier U U U Qualifier	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 14:00 02/27/23 14:00 02/27/23 14:00 Prepared	03/01/23 14:20 Analyzed 02/28/23 11:14 02/28/23 11:14 02/28/23 11:14 Analyzed	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	Result <50.0	Qualifier U Qualifier U U U U Qualifier S1+ S1+	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 14:00 02/27/23 14:00 02/27/23 14:00 Prepared 02/27/23 14:00	03/01/23 14:20 Analyzed 02/28/23 11:14 02/28/23 11:14 02/28/23 11:14 Analyzed 02/28/23 11:14	1 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U Qualifier U U U U Qualifier S1+ S1+	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 14:00 02/27/23 14:00 02/27/23 14:00 Prepared 02/27/23 14:00	03/01/23 14:20 Analyzed 02/28/23 11:14 02/28/23 11:14 02/28/23 11:14 Analyzed 02/28/23 11:14	1 Dil Fac 1 1 1

Client Sample ID: PH06D Date Collected: 02/23/23 12:35 Date Received: 02/23/23 14:52

Sample Depth: 4'

Г

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U *- *1	0.00200	mg/Kg		03/02/23 11:45	03/05/23 04:26	1
Toluene	<0.00200	U *- *1	0.00200	mg/Kg		03/02/23 11:45	03/05/23 04:26	1
Ethylbenzene	<0.00200	U *- *1	0.00200	mg/Kg		03/02/23 11:45	03/05/23 04:26	1
m-Xylene & p-Xylene	<0.00401	U *- *1	0.00401	mg/Kg		03/02/23 11:45	03/05/23 04:26	1
o-Xylene	<0.00200	U *-	0.00200	mg/Kg		03/02/23 11:45	03/05/23 04:26	1
Xylenes, Total	<0.00401	U *-	0.00401	mg/Kg		03/02/23 11:45	03/05/23 04:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	135	S1+	70 - 130			03/02/23 11:45	03/05/23 04:26	1

Eurofins Carlsbad

Lab Sample ID: 890-4182-2

Matrix: Solid

Lab Sample ID: 890-4182-1 Matrix: Solid

Client Sample Results

Job ID: 890-4182-1 SDG: 03D2057055

Matrix: Solid

Dil Fac 1

Dil Fac 1

Dil Fac 1

Dil Fac 1

Dil Fac 1 1

1

5

Lab Sample ID: 890-4182-2

Client Sample ID: PH06D

Project/Site: Jalmat 188 - Maverick

Date Collected: 02/23/23 12:35 Date Received: 02/23/23 14:52

Sample Depth: 4'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed
1,4-Difluorobenzene (Surr)	98		70 - 130			03/02/23 11:45	03/05/23 04:26
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Total BTEX	<0.00401	U	0.00401	mg/Kg			03/06/23 14:55
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Analyte	Result	Quanner		Unit	U	Fiepaieu	/
Total TPH			49.9	mg/Kg			
Total TPH Method: SW846 8015B NM - Dies	<49.9 sel Range Orga	U	49.9		<u>b</u> 	Prepared	03/01/23 14:20 Analyzed
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<49.9 sel Range Orga	U nics (DRO) Qualifier	49.9 (GC)	mg/Kg		<u>·</u>	03/01/23 14:20
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.9 sel Range Orga Result	U nics (DRO) Qualifier U	49.9 (GC) RL	mg/Kg Unit		Prepared	03/01/23 14:20 Analyzed 02/28/23 12:20
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 sel Range Orga Result <49.9	U nics (DRO) Qualifier U	49.9 (GC) RL 49.9	mg/Kg		Prepared 02/27/23 14:00	03/01/23 14:20 Analyzed 02/28/23 12:20 02/28/23 12:20
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9 sel Range Orga Result <49.9 <49.9	U nics (DRO) Qualifier U U U	49.9 (GC) RL 49.9 49.9	Unit mg/Kg mg/Kg mg/Kg		Prepared 02/27/23 14:00 02/27/23 14:00	03/01/23 14:20 Analyzed
,	49.9 Sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <49.9	U nics (DRO) Qualifier U U U	49.9 (GC) <u>RL</u> 49.9 49.9 49.9	Unit mg/Kg mg/Kg mg/Kg		Prepared 02/27/23 14:00 02/27/23 14:00 02/27/23 14:00	03/01/23 14:20 Analyzed 02/28/23 12:20 02/28/23 12:20 02/28/23 12:20

Method: EPA 300.0 - Anions, ion Chromatography - Soluble								
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	19.4	4.97	mg/Kg			02/28/23 15:10	1

Client Sample ID: PH06F

Date Collected: 02/23/23 12:45 Date Received: 02/23/23 14:52 Sample Depth: 6'

Lab Sample ID: 890-4182-3

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U *- *1	0.00199	mg/Kg		03/02/23 11:45	03/05/23 06:11	1
Toluene	<0.00199	U *- *1	0.00199	mg/Kg		03/02/23 11:45	03/05/23 06:11	1
Ethylbenzene	<0.00199	U *- *1	0.00199	mg/Kg		03/02/23 11:45	03/05/23 06:11	1
m-Xylene & p-Xylene	<0.00398	U *- *1	0.00398	mg/Kg		03/02/23 11:45	03/05/23 06:11	1
o-Xylene	<0.00199	U *-	0.00199	mg/Kg		03/02/23 11:45	03/05/23 06:11	1
Xylenes, Total	<0.00398	U *-	0.00398	mg/Kg		03/02/23 11:45	03/05/23 06:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130			03/02/23 11:45	03/05/23 06:11	1
1,4-Difluorobenzene (Surr)	90		70 - 130			03/02/23 11:45	03/05/23 06:11	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/06/23 14:55	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9	mg/Kg			03/01/23 14:20	

Eurofins Carlsbad

Released to Imaging: 3/13/2024 9:45:08 AM

Job ID: 890-4182-1 SDG: 03D2057055

Lab Sample ID: 890-4182-3

Lab Sample ID: 890-4182-4

Matrix: Solid

Client Sample ID: PH06F

Project/Site: Jalmat 188 - Maverick

Date Collected: 02/23/23 12:45 Date Received: 02/23/23 14:52

Sample Depth: 6'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/27/23 14:00	02/28/23 12:42	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/27/23 14:00	02/28/23 12:42	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/27/23 14:00	02/28/23 12:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130			02/27/23 14:00	02/28/23 12:42	1
o-Terphenyl	113		70 - 130			02/27/23 14:00	02/28/23 12:42	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	27.8	4.99	mg/Kg			02/28/23 15:17	1

Client Sample ID: PH07A

Date Collected: 02/23/23 13:00

Date Received: 02/23/23 14:52

Sample Depth: 1'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *- *1	0.00201	mg/Kg		03/02/23 11:45	03/05/23 06:36	1
Toluene	<0.00201	U *- *1	0.00201	mg/Kg		03/02/23 11:45	03/05/23 06:36	1
Ethylbenzene	<0.00201	U *- *1	0.00201	mg/Kg		03/02/23 11:45	03/05/23 06:36	1
m-Xylene & p-Xylene	<0.00402	U *- *1	0.00402	mg/Kg		03/02/23 11:45	03/05/23 06:36	1
o-Xylene	<0.00201	U *-	0.00201	mg/Kg		03/02/23 11:45	03/05/23 06:36	1
Xylenes, Total	<0.00402	U *-	0.00402	mg/Kg		03/02/23 11:45	03/05/23 06:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	150	S1+	70 - 130			03/02/23 11:45	03/05/23 06:36	1
1,4-Difluorobenzene (Surr)	93		70 - 130			03/02/23 11:45	03/05/23 06:36	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			03/06/23 14:55	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/01/23 14:20	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/27/23 14:00	02/28/23 13:04	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/27/23 14:00	02/28/23 13:04	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/27/23 14:00	02/28/23 13:04	1
Surrogate	%Recovery	Qualifian	Limits			Prepared	Analyzed	Dil Fac

Matrix: Solid

		Clien	t Sample Re	sults				
Client: Ensolum							Job ID: 890)-4182- ⁻
Project/Site: Jalmat 188 - Maverick							SDG: 03D2	205705
Client Sample ID: PH07A						Lab Sar	nple ID: 890-	4182-4
Date Collected: 02/23/23 13:00								x: Soli
Date Received: 02/23/23 14:52								
Sample Depth: 1'								
-								
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	<5.00	U	5.00	mg/Kg			02/28/23 15:23	
Client Sample ID: PH07D						Lab Sar	nple ID: 890-	4182-
Date Collected: 02/23/23 13:15								x: Soli
Date Received: 02/23/23 14:52								
Sample Depth: 4'								
_								
Method: SW846 8021B - Volatile On Analyte	•	ounds (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201		0.00201	0mt mg/Kg		03/02/23 11:45	03/05/23 07:03	
Toluene	<0.00201		0.00201	mg/Kg		03/02/23 11:45	03/05/23 07:03	
Ethylbenzene	< 0.00201		0.00201	mg/Kg		03/02/23 11:45	03/05/23 07:03	
m-Xylene & p-Xylene	< 0.00402		0.00402	mg/Kg		03/02/23 11:45	03/05/23 07:03	
o-Xylene	< 0.00201		0.00201	mg/Kg		03/02/23 11:45	03/05/23 07:03	
Xylenes, Total	< 0.00402		0.00402	mg/Kg		03/02/23 11:45	03/05/23 07:03	
-	~-	• • • •				_ /		
Surrogate	%Recovery	Qualifier S1+	Limits			Prepared 03/02/23 11:45	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		57+	70 - 130				03/05/23 07:03	
1,4-Difluorobenzene (Surr)	101		70 - 130			03/02/23 11:45	03/05/23 07:03	
Method: TAL SOP Total BTEX - Tot	al BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			03/06/23 14:55	
- Mathadi CM/84C 2045 NM Discol (
Method: SW846 8015 NM - Diesel F Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0		50.0	mg/Kg			03/01/23 14:20	
	-00.0	0	00.0	ing/itg			00/01/2011/20	
Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/27/23 14:00	02/28/23 13:26	
(GRO)-C6-C10	<50.0		50.0	malka		02/27/22 11.00	02/28/22 12.26	
Diesel Range Organics (Over C10-C28)	<0.0	0	50.0	mg/Kg		02/27/23 14:00	02/28/23 13:26	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/27/23 14:00	02/28/23 13:26	
Surrogoto	0/ De	Qualifier	Limita			Dronovod	Analyzad	
Surrogate 1-Chlorooctane	%Recovery 114					Prepared 02/27/23 14:00	Analyzed 02/28/23 13:26	Dil Fa
o-Terphenyl	114		70 - 130 70 - 130			02/27/23 14:00	02/28/23 13:26	
	109		10 - 150			52121123 14.00	02/20/23 13.20	
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
							00/00/00 45:00	_

02/28/23 15:29

Chloride

5.00

mg/Kg

14.0

Job ID: 890-4182-1 SDG: 03D2057055

Matrix: Solid

5

Lab Sample ID: 890-4182-6

Client Sample ID: PH07F

Project/Site: Jalmat 188 - Maverick

Date Collected: 02/23/23 13:25 Date Received: 02/23/23 14:52

Sample Depth: 6'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U *- *1	0.00199	mg/Kg		03/02/23 11:45	03/05/23 07:31	1
Toluene	<0.00199	U *- *1	0.00199	mg/Kg		03/02/23 11:45	03/05/23 07:31	1
Ethylbenzene	<0.00199	U *- *1	0.00199	mg/Kg		03/02/23 11:45	03/05/23 07:31	1
m-Xylene & p-Xylene	<0.00398	U *- *1	0.00398	mg/Kg		03/02/23 11:45	03/05/23 07:31	1
o-Xylene	<0.00199	U *-	0.00199	mg/Kg		03/02/23 11:45	03/05/23 07:31	1
Xylenes, Total	<0.00398	U *-	0.00398	mg/Kg		03/02/23 11:45	03/05/23 07:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130			03/02/23 11:45	03/05/23 07:31	1
1,4-Difluorobenzene (Surr)	89		70 - 130			03/02/23 11:45	03/05/23 07:31	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398	mg/Kg			03/06/23 14:55	1
Method: SW846 8015 NM - Diese								
Method: SW846 8015 NM - Diese Analyte		<mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/03/23 12:43	Dil Fac
Analyte	Result <49.9	Qualifier U	RL 49.9		D	Prepared		
Analyte Total TPH	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier	RL 49.9		D	Prepared Prepared	03/03/23 12:43 Analyzed	
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <49.9	Qualifier U nics (DRO) Qualifier	(GC)	mg/Kg			03/03/23 12:43	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC) RL	mg/Kg Unit		Prepared	03/03/23 12:43 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U U *1	RL 49.9 (GC) RL 49.9	Unit mg/Kg		Prepared 02/27/23 16:37	03/03/23 12:43 Analyzed 03/02/23 10:37	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U nics (DRO) Qualifier U U *1 U	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 16:37 02/27/23 16:37	03/03/23 12:43 Analyzed 03/02/23 10:37 03/02/23 10:37	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U nics (DRO) Qualifier U U *1 U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 16:37 02/27/23 16:37 02/27/23 16:37	O3/03/23 12:43 Analyzed 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U nics (DRO) Qualifier U U *1 U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 16:37 02/27/23 16:37 02/27/23 16:37 Prepared	03/03/23 12:43 Analyzed 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U Qualifier U U *1 U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 16:37 02/27/23 16:37 02/27/23 16:37 Prepared 02/27/23 16:37	O3/03/23 12:43 Analyzed 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37	1 Dil Fac 1 1 1 1 Dil Fac
Analyte Total TPH Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 106 104	Qualifier U Qualifier U U *1 U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/27/23 16:37 02/27/23 16:37 02/27/23 16:37 Prepared 02/27/23 16:37	O3/03/23 12:43 Analyzed 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37 03/02/23 10:37	1 Dil Fac 1 1 1 1 Dil Fac

Eurofins Carlsbad

Released to Imaging: 3/13/2024 9:45:08 AM

Client: Ensolum Project/Site: Jalmat 188 - Maverick

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-4169-A-1-C MS	Matrix Spike	109	101	
890-4169-A-1-D MSD	Matrix Spike Duplicate	17145	21742	
		S1+	S1+	
890-4182-1	PH06A	130	85	
890-4182-2	PH06D	135 S1+	98	
890-4182-3	PH06F	115	90	
890-4182-4	PH07A	150 S1+	93	
890-4182-5	PH07D	143 S1+	101	
890-4182-6	PH07F	136 S1+	89	
LCS 880-47633/1-A	Lab Control Sample	119	94	
LCSD 880-47633/2-A	Lab Control Sample Dup	119	96	
MB 880-47632/5-A	Method Blank	67 S1-	85	
MB 880-47633/5-A	Method Blank	71	82	
Surrogate Legend				
BFB = 4-Bromofluorobe	nzene (Surr)			
DFBZ = 1,4-Difluoroben	zene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-4182-1	PH06A	208 S1+	198 S1+
890-4182-1 MS	PH06A	101	97
890-4182-1 MSD	PH06A	140 S1+	113
890-4182-2	PH06D	115	108
890-4182-3	PH06F	120	113
890-4182-4	PH07A	100	101
890-4182-5	PH07D	114	109
890-4182-6	PH07F	106	104
890-4182-6 MS	PH07F	104	98
890-4182-6 MSD	PH07F	106	99
LCS 880-47331/2-A	Lab Control Sample	77	81
LCS 880-47356/2-A	Lab Control Sample	109	108
LCSD 880-47331/3-A	Lab Control Sample Dup	89	85
LCSD 880-47356/3-A	Lab Control Sample Dup	84	90
MB 880-47331/1-A	Method Blank	105	104
MB 880-47356/1-A	Method Blank	107	110

1CO = 1-Chlorooctane OTPH = o-Terphenyl Job ID: 890-4182-1 SDG: 03D2057055

Prep Type: Total/NA

Page 84 of 182

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-47632/5-A Matrix: Solid Analysis Batch: 47785											Client Sa	mple ID: Meti Prep Type Prep Bat	: To	al/NA
· · ·		ΜВ	МВ											
Analyte	Re	sult	Qualifier	RL		Ui	nit		D	P	repared	Analyzed		Dil Fac
Benzene	<0.00	200	U	0.00200		m	ig/Kg			03/0	2/23 11:31	03/04/23 10:38		1
Toluene	<0.00	200	U	0.00200		m	ig/Kg			03/0	2/23 11:31	03/04/23 10:38		1
Ethylbenzene	<0.00	200	U	0.00200		m	ig/Kg			03/0	2/23 11:31	03/04/23 10:38		1
m-Xylene & p-Xylene	<0.00	400	U	0.00400		m	ig/Kg			03/0	2/23 11:31	03/04/23 10:38		1
o-Xylene	<0.00	200	U	0.00200			ig/Kg			03/0	2/23 11:31	03/04/23 10:38		1
Xylenes, Total	<0.00	400	U	0.00400			ig/Kg			03/0	2/23 11:31	03/04/23 10:38		1
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)		67	S1-	70 - 130						03/0	2/23 11:31	03/04/23 10:38	}	1
1,4-Difluorobenzene (Surr)		85		70 - 130						03/0	2/23 11:31	03/04/23 10:38	}	1
– Lab Sample ID: MB 880-47633/5-A Matrix: Solid											Client Sa	mple ID: Metl Prep Type		
Analysis Batch: 47785														
Analysis Datch. 47705		мв	МВ									Prep Bat	cn.	47033
Analyte	Re	sult	Qualifier	RL		Ui	nit		D	P	repared	Analyzed		Dil Fac
Benzene	<0.00	200	U	0.00200		m	ıg/Kg			03/0	2/23 11:45	03/05/23 00:03		1
Toluene	<0.00	200	U	0.00200		m	ig/Kg			03/0	2/23 11:45	03/05/23 00:03		1
Ethylbenzene	<0.00	200	U	0.00200		m	ig/Kg			03/0	2/23 11:45	03/05/23 00:03		1
m-Xylene & p-Xylene	<0.00	400	U	0.00400		m	ig/Kg			03/0	2/23 11:45	03/05/23 00:03		1
o-Xylene	<0.00	200	U	0.00200		m	ig/Kg			03/0	2/23 11:45	03/05/23 00:03		1
Xylenes, Total	<0.00	400	U	0.00400		m	ig/Kg			03/0	2/23 11:45	03/05/23 00:03		1
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)		71		70 - 130						03/0	2/23 11:45	03/05/23 00:03	}	1
1,4-Difluorobenzene (Surr) —		82		70 - 130						03/0	2/23 11:45	03/05/23 00:03	}	1
 Lab Sample ID: LCS 880-47633/1-A									C	lient	Sample	D: Lab Contr	ol Sa	ample
Matrix: Solid												Prep Type	: To	al/NA
Analysis Batch: 47785												Prep Bat	ch:	47633
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qualifie	er L	Jnit		D	%Rec	Limits		
Benzene				0.100	0.09295		n	ng/Kg		_	93	70 - 130		
Toluene				0.100	0.08689		n	ng/Kg			87	70 - 130		
Ethylbenzene				0.100	0.09172		n	ng/Kg			92	70 - 130		
m-Xylene & p-Xylene				0.200	0.1968		n	ng/Kg			98	70 - 130		
o-Xylene				0.100	0.09291		n	ng/Kg			93	70 - 130		
	LCS	LCS												
Surrogate %	Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	119			70 - 130										
1,4-Difluorobenzene (Surr)	94			70 - 130										
 Lab Sample ID: LCSD 880-47633/2-	A							Clie	ent	Sam	ple ID: La	ab Control Sa	mol	e Dup
Matrix: Solid												Prep Type		
Analysis Batch: 47785												Prep Bat		
				Spike	LCSD	LCSD						%Rec		RPD
Analyte				Added		Qualifie	er I	Jnit		D	%Rec		PD	Limit
										_				

Job ID: 890-4182-1 SDG: 03D2057055

12

Eurofins Carlsbad

58

Benzene

0.100

0.05116 *- *1

mg/Kg

51

70 - 130

Client: Ensolum Project/Site: Jalmat 188 - Maverick Job ID: 890-4182-1 SDG: 03D2057055

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-47633/2-A Matrix: Solid Analysis Batch: 47785			Clie	nt Sam	ple ID:		I Sampl Type: To Batch:	tal/NA	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.03518	*- *1	mg/Kg		35	70 - 130	85	35
Ethylbenzene	0.100	0.009089	*- *1	mg/Kg		9	70 - 130	164	35
m-Xylene & p-Xylene	0.200	0.1357	*- *1	mg/Kg		68	70 - 130	37	35
o-Xylene	0.100	0.06679	*_	mg/Kg		67	70 - 130	33	35
LCSD LCSD									

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: 890-4169-A-1-C MS Matrix: Solid

Analysis Batch: 47785

Analysis Batch: 47785									Prep Bate	ch: 4763
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U *- *1 F1	0.100	0.07714		mg/Kg		77	70 - 130	
Toluene	<0.00200	U F1 *- *1	0.100	0.04719	F1	mg/Kg		47	70 - 130	
Ethylbenzene	<0.00200	U F1 *- *1	0.100	0.01702	F1	mg/Kg		17	70 - 130	
m-Xylene & p-Xylene	<0.00401	U *- *1 F1	0.200	0.1643		mg/Kg		82	70 - 130	
o-Xylene	<0.00200	U *- F1 F2	0.100	0.08334		mg/Kg		83	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 890-4169-A-1-D MSD Matrix: Solid Analysis Batch: 47785

1,4-Difluorobenzene (Surr)

Analysis Batch: 47785									Prep	Batch:	47633
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U *- *1 F1	0.0990	<0.00198	U F1	mg/Kg		0	70 - 130	NC	35
Toluene	<0.00200	U F1 *- *1	0.0990	<0.00198	U F1	mg/Kg		0	70 - 130	NC	35
Ethylbenzene	<0.00200	U F1 *- *1	0.0990	<0.00198	U F1	mg/Kg		0	70 - 130	NC	35
m-Xylene & p-Xylene	<0.00401	U *- *1 F1	0.198	<0.00396	U F1	mg/Kg		0	70 - 130	NC	35
o-Xylene	<0.00200	U *- F1 F2	0.0990	<0.00198	U F1 F2	mg/Kg		2	70 - 130	191	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	17145	S1+	70 - 130								

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

21742 S1+

Lab Sample ID: MB 880-47331/1-A Matrix: Solid Analysis Batch: 47385	МВ	МВ				Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/27/23 14:00	02/28/23 08:39	1
(GRO)-C6-C10								

Eurofins Carlsbad

Page 86 of 182

5

7

Released to Imaging: 3/13/2024 9:45:08 AM

Client: Ensolum Project/Site: Jalmat 188 - Maverick

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-47331/1-4 Matrix: Solid	A Contraction									Client S	ample ID: Prep 1	Method Type: To	
Analysis Batch: 47385											Prep	Batch:	4733
			MB										
Analyte			Qualifier	R		Unit		D		repared	Analyz		Dil Fa
Diesel Range Organics (Over C10-C28)	<	<50.0	U	50.	0	mg/K	g		02/2	7/23 14:00	02/28/23	08:39	
Oll Range Organics (Over C28-C36)	<	<50.0	U	50.	0	mg/K	g		02/2	7/23 14:00	02/28/23	08:39	
		ΜВ	МВ										
Surrogate	%Reco	overy	Qualifier	Limits					Р	repared	Analyz	ed	Dil Fa
1-Chlorooctane		105		70 - 130	_				02/2	7/23 14:00	02/28/23	08:39	
o-Terphenyl		104		70 - 130					02/2	7/23 14:00	02/28/23	08:39	
Lab Sample ID: LCS 880-47331/2-	Δ							Cli	ent	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Solid									•	Campie		Type: To	
Analysis Batch: 47385												Batch:	
				Spike	LCS	LCS					%Rec	Duton.	
Analyte				Added		Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	809.0		mg/Kg		_	81	70 - 130		
(GRO)-C6-C10					500.0					0.			
Diesel Range Organics (Over				1000	817.2		mg/Kg			82	70 - 130		
C10-C28)													
	LCS	LCS	;										
Surrogate	%Recovery			Limits									
1-Chlorooctane	77			70 - 130									
o-Terphenyl	81			70 - 130									
Lab Sample ID: LCSD 880-47331/3	2_A												
•	J-A						CI	ient S	Sam	iple ID: I	Lab Contro	I Samp	le Du
	J-A						CI	ient S	Sam	ple ID: I		ol Samp Type: To	
Matrix: Solid	5-A						CI	ient S	Sam	iple ID:	Prep 1		otal/N
Matrix: Solid	<u></u>			Spike	LCSD	LCSD	CI	ient S	Sam	iple ID:	Prep 1	Type: To	otal/N/ 4733
Matrix: Solid Analysis Batch: 47385	<u></u>			Spike Added		LCSD Qualifier	CI Unit	ient S	Sam D	vple ID: %Rec	Prep 1 Prep	Type: To	otal/N/
Matrix: Solid Analysis Batch: 47385 ^{Analyte}				-				ient S		-	Prep 1 Prep %Rec	Type: To Batch:	4733 RP
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10				Added	Result 866.0		Unit	ient S		%Rec 87	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 7	24733 4733 RPI Lim 2
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result		Unit	ient S		%Rec	Prep 1 Prep %Rec Limits	RPD	2010 101 101 101 101 101 101 101 101 101
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 7	24733 4733 RP Lim 2
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCSD	LCS	 D	Added	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 7	24733 4733 RP Lim 2
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)				Added	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 7	24733 4733 RP Lim 2
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	LCSD			Added	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 7	24733 4733 RP Lim 2
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	LCSD %Recovery			Added 1000 1000 <i>Limits</i>	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 7	24733 4733 RPI Lim 2
Matrix: Solid Analysis Batch: 47385 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	LCSD %Recovery 89			Added 1000 1000 <i>Limits</i> 70 - 130	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87 88	Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: RPD 7 7	0tal/NJ 4733 RP Lim 2 2
Matrix: Solid Analysis Batch: 47385 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	LCSD %Recovery 89			Added 1000 1000 <i>Limits</i> 70 - 130	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87 88	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: RPD 7 7 7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4182-1 MS	LCSD %Recovery 89			Added 1000 1000 <i>Limits</i> 70 - 130	Result 866.0		- <mark>Unit</mark> mg/Kg	ient \$		%Rec 87 88	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: RPD 7 7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4182-1 MS Matrix: Solid	LCSD %Recovery 89			Added 1000 1000 <i>Limits</i> 70 - 130	Result 866.0		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87 88	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: RPD 7 7 7	PH06/ Dtal/NJ
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-4182-1 MS Matrix: Solid	LCSD %Recovery 89	Qua	lifier	Added 1000 1000 <i>Limits</i> 70 - 130	Result 866.0 875.2		- <mark>Unit</mark> mg/Kg	ient S		%Rec 87 88	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: RPD 7 7 7 ple ID: 1 Type: To	2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4182-1 MS Matrix: Solid Analysis Batch: 47385	LCSD %Recovery 89 85	<u>Qua</u>	<i>lifier</i>	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 866.0 875.2 MS	Qualifier	- <mark>Unit</mark> mg/Kg			%Rec 87 88	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: RPD 7 7 7 ple ID: 1 Type: To	2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4182-1 MS Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics	LCSD %Recovery 89 85 Sample	Qua Sam Qua	<i>lifier</i>	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 866.0 875.2 MS	Qualifier	- <mark>Unit</mark> mg/Kg mg/Kg		D	%Rec 87 88	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Client Sam Prep 1 Prep 2 %Rec	Type: To Batch: RPD 7 7 7 ple ID: 1 Type: To	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Matrix: Solid Analysis Batch: 47385 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCSD %Recovery 89 85 Sample Result	Qua Sam Qua U	<i>lifier</i>	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 866.0 875.2 MS Result	Qualifier	Unit		D	%Rec 87 88 88	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: RPD 7 7 7 ple ID: 1 Type: To	2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	101		70 - 130
o-Terphenyl	97		70 - 130

Eurofins Carlsbad

Job ID: 890-4182-1

SDG: 03D2057055

Client: Ensolum Project/Site: Jalmat 188 - Maverick

C10-C28)

Method: 80

Job ID: 890-4182-1 SDG: 03D2057055

ethod: 8015B NM - Diesel I	Range Or	gar	nics (DR	20) (GC)) (Co)	ntinue	∋d)							
ab Sample ID: 890-4182-1 MSD.)										с	lient Samp	ole ID: I	PH06A
latrix: Solid												Prep Ty		
nalysis Batch: 47385													Batch:	
nalysis Baton. 47000	Sample	Sam	nla	Spike		MSD	MSD					%Rec	Batom	RPD
nalyte	Result		-	Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limit
asoline Range Organics	<50.0			997		1087	Quanner	mg/Kg		_	106	70 - 130	13	20
GRO)-C6-C10	-00.0	0		331		1001		mg/rxg			100	10 - 100	15	20
esel Range Organics (Over	<50.0	U		997		1053		mg/Kg			104	70 - 130	17	20
10-C28)	· ·	-												-
	MSD	MSD)											
urrogate	%Recovery	Qua	lifier	Limits										
Chlorooctane	140	S1+		70 - 130										
Terphenyl	113			70 - 130										
ab Sample ID: MB 880-47356/1-	- A										Client Sa	ample ID: N		
atrix: Solid												Prep Ty	ype: To	otal/NA
nalysis Batch: 47599												Prep	Batch:	47356
		МВ	MB											
nalyte	R	esult	Qualifier		RL		Unit		D	P	repared	Analyze	əd	Dil Fac
asoline Range Organics		<50.0	U		50.0		mg/Kg	g		02/2	7/23 16:37	03/02/23 0	08:06	1
GRO)-C6-C10								-						
esel Range Organics (Over	<	<50.0	U		50.0		mg/Kg	g		02/2	7/23 16:37	03/02/23 0	8:06	1
l0-C28)														
I Range Organics (Over C28-C36)	<	<50.0	U		50.0		mg/Kg	J		02/2	7/23 16:37	03/02/23 0	8:06	1
		мв	МВ											
urrogate	%Reco			Limi	its					P	repared	Analyze	ed	Dil Fac
Chlorooctane		107		70 -	130				-		7/23 16:37			1
Terphenyl		110		70 -	130					02/2	7/23 16:37	03/02/23 0)8:06	1
												00.02.200		•
ab Sample ID: LCS 880-47356/2	2-A								Cli	ient	Sample	ID: Lab Co	ontrol S	ample
latrix: Solid												Prep Ty		
nalysis Batch: 47599														47356
				Spike		LCS	LCS					%Rec	Datom	
nalyte				Added			Qualifier	Unit		D	%Rec	Limits		
asoline Range Organics				1000		1047		mg/Kg		-	105	70 - 130		
GRO)-C6-C10				1000		1047		ilig/itg			100	70 - 150		
iesel Range Organics (Over				1000		1126		mg/Kg			113	70 - 130		
10-C28)														
	105	LCS												
ırrogate	%Recovery			Limits										
Chlorooctane	109	Quu		70 - 130										
	103			70 - 130 70 - 130										
Terphenyl	108			10 - 130										
ab Sample ID: LCSD 880-47356	3/3-A							Clie	ent S	Sam	ple ID: L	ab Control	Samp	le Dup
atrix: Solid												Prep T		
nalysis Batch: 47599													Batch:	
harysis batch. 47000				Spike			LCSD					%Rec	Daten.	RPD
aluto							Qualifier	Unit		n	% Poc		BBD	
nalyte asoline Range Organics				Added 1000		912.6	quaimer			D	91 %	Limits 70 - 130	RPD 14	
				1000		912.0		mg/Kg			91	70 - 130	14	20
RO)-C6-C10 esel Range Organics (Over				1000		896.4	*1	mg/Kg			90	70 - 130	23	20
10 C28)				1000		030.4		mynty			30	10 - 130	20	20

Client: Ensolum Project/Site: Jalmat 188 - Maverick

Lab Sample ID: 890-4182-6 MS

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

Analysis Batch: 47599

Lab Sample ID: LCSD 880-47356/3-A

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCSD LCSD %Recovery Qualifier

84

90

Job ID: 890-4182-1 SDG: 03D2057055	2
	3
Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 47356	4
	5
	6
Client Sample ID: PH07F	7
Prep Type: Total/NA Prep Batch: 47356	8
%Rec	0

Analysis Batch: 47599									Prep Batc	h: 47356
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	997	1148		mg/Kg		111	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U *1	997	1025		mg/Kg		103	70 - 130	
	MS	MS								
Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 104 98	Qualifier	Limits 70 - 130 70 - 130							
Lab Sample ID: 890-4182-6	MSD								Client Sample IE): PH07F

Limits

70 - 130

70 - 130

Lab Sample ID. 090-4102-0 WSL	,								Chefit Sam	pie iD. r	'HU/F
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 47599									Prep	Batch:	47356
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	999	1193		mg/Kg		116	70 - 130	4	20
Diesel Range Organics (Over C10-C28)	<49.9	U *1	999	1031		mg/Kg		103	70 - 130	1	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1.01.1	400		70 100								

1-Chlorooctane	106	70 - 130
o-Terphenyl	99	70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-47347/1-A Matrix: Solid Analysis Batch: 47423									Client S	Sample ID: Metho Prep Type:	
-	МВ	МВ									
Analyte	Result	Qualifier		RL		Unit		D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U		5.00		mg/k	íg			02/28/23 13:50	1
_ Lab Sample ID: LCS 880-47347/2-A								Clien	t Sample	e ID: Lab Control	Sample
Matrix: Solid										Prep Type:	Soluble
Analysis Batch: 47423											
			Spike		LCS	LCS				%Rec	
Analyte			Added	I	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride			250		225.2		mg/Kg		90	90 - 110	

Eurofins Carlsbad

Released to Imaging: 3/13/2024 9:45:08 AM

Project/Site: Jalmat 188 - Maverick

Client: Ensolum

Job ID: 890-4182-1 SDG: 03D2057055

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-47347 Matrix: Solid Analysis Batch: 47423	// 3-A					Clie	ent Sam	ple ID:	Lab Contro Prep	ol Sample Type: Se	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	229.1		mg/Kg		92	90 - 110	2	20
Lab Sample ID: 890-4182-6 MS									Client Sam	nple ID: F	PH07F
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 47423											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	14.4		249	250.2		mg/Kg		95	90 - 110		
Lab Sample ID: 890-4182-6 MSD									Client Sam	nple ID: F	PH07F
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 47423											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	14.4		249	249.2		mg/Kg		94	90 - 110	0	20

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: Jalmat 188 - Maverick Job ID: 890-4182-1

SDG: 03D2057055

GC VOA

Prep Batch: 47632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-47632/5-A	Method Blank	Total/NA	Solid	5035	
rep Batch: 47633					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4182-1	PH06A	Total/NA	Solid	5035	
890-4182-2	PH06D	Total/NA	Solid	5035	
890-4182-3	PH06F	Total/NA	Solid	5035	
890-4182-4	PH07A	Total/NA	Solid	5035	
890-4182-5	PH07D	Total/NA	Solid	5035	
890-4182-6	PH07F	Total/NA	Solid	5035	
MB 880-47633/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-47633/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-47633/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Total/NA

Total/NA

Solid

Solid

5035

5035

Analysis Batch: 47785

Matrix Spike

Matrix Spike Duplicate

890-4169-A-1-C MS

890-4169-A-1-D MSD

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4182-1	PH06A	Total/NA	Solid	8021B	47633
890-4182-2	PH06D	Total/NA	Solid	8021B	47633
890-4182-3	PH06F	Total/NA	Solid	8021B	47633
890-4182-4	PH07A	Total/NA	Solid	8021B	47633
890-4182-5	PH07D	Total/NA	Solid	8021B	47633
890-4182-6	PH07F	Total/NA	Solid	8021B	47633
MB 880-47632/5-A	Method Blank	Total/NA	Solid	8021B	47632
MB 880-47633/5-A	Method Blank	Total/NA	Solid	8021B	47633
LCS 880-47633/1-A	Lab Control Sample	Total/NA	Solid	8021B	47633
LCSD 880-47633/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	47633
890-4169-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	47633
890-4169-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	47633

Analysis Batch: 47956

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
PH06A	Total/NA	Solid	Total BTEX	
PH06D	Total/NA	Solid	Total BTEX	
PH06F	Total/NA	Solid	Total BTEX	
PH07A	Total/NA	Solid	Total BTEX	
PH07D	Total/NA	Solid	Total BTEX	
PH07F	Total/NA	Solid	Total BTEX	
	PH06A PH06D PH06F PH07A PH07D	PH06A Total/NA PH06D Total/NA PH06F Total/NA PH07A Total/NA PH07D Total/NA	PH06A Total/NA Solid PH06D Total/NA Solid PH06F Total/NA Solid PH07A Total/NA Solid PH07D Total/NA Solid	PH06A Total/NA Solid Total BTEX PH06D Total/NA Solid Total BTEX PH06F Total/NA Solid Total BTEX PH07A Total/NA Solid Total BTEX PH07D Total/NA Solid Total BTEX

GC Semi VOA

Prep Batch: 47331

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4182-1	PH06A	Total/NA	Solid	8015NM Prep	
890-4182-2	PH06D	Total/NA	Solid	8015NM Prep	
890-4182-3	PH06F	Total/NA	Solid	8015NM Prep	
890-4182-4	PH07A	Total/NA	Solid	8015NM Prep	
890-4182-5	PH07D	Total/NA	Solid	8015NM Prep	
MB 880-47331/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-47331/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 91 of 182

Released to Imaging: 3/13/2024 9:45:08 AM

QC Association Summary

Client: Ensolum Project/Site: Jalmat 188 - Maverick

GC Semi VOA (Continued)

Prep Batch: 47331 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-47331/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4182-1 MS	PH06A	Total/NA	Solid	8015NM Prep	
890-4182-1 MSD	PH06A	Total/NA	Solid	8015NM Prep	

Prep Batch: 47356

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4182-6	PH07F	Total/NA	Solid	8015NM Prep	
MB 880-47356/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-47356/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-47356/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4182-6 MS	PH07F	Total/NA	Solid	8015NM Prep	
890-4182-6 MSD	PH07F	Total/NA	Solid	8015NM Prep	

Analysis Batch: 47385

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4182-1	PH06A	Total/NA	Solid	8015B NM	47331	
890-4182-2	PH06D	Total/NA	Solid	8015B NM	47331	
890-4182-3	PH06F	Total/NA	Solid	8015B NM	47331	
890-4182-4	PH07A	Total/NA	Solid	8015B NM	47331	
890-4182-5	PH07D	Total/NA	Solid	8015B NM	47331	
MB 880-47331/1-A	Method Blank	Total/NA	Solid	8015B NM	47331	
LCS 880-47331/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	47331	
LCSD 880-47331/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	47331	
890-4182-1 MS	PH06A	Total/NA	Solid	8015B NM	47331	
890-4182-1 MSD	PH06A	Total/NA	Solid	8015B NM	47331	

Analysis Batch: 47542

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4182-1	PH06A	Total/NA	Solid	8015 NM	
890-4182-2	PH06D	Total/NA	Solid	8015 NM	
890-4182-3	PH06F	Total/NA	Solid	8015 NM	
890-4182-4	PH07A	Total/NA	Solid	8015 NM	
890-4182-5	PH07D	Total/NA	Solid	8015 NM	
890-4182-6	PH07F	Total/NA	Solid	8015 NM	

Analysis Batch: 47599

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4182-6	PH07F	Total/NA	Solid	8015B NM	47356
MB 880-47356/1-A	Method Blank	Total/NA	Solid	8015B NM	47356
LCS 880-47356/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	47356
LCSD 880-47356/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	47356
890-4182-6 MS	PH07F	Total/NA	Solid	8015B NM	47356
890-4182-6 MSD	PH07F	Total/NA	Solid	8015B NM	47356

HPLC/IC

Leach Batch: 47347

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4182-1	PH06A	Soluble	Solid	DI Leach	
890-4182-2	PH06D	Soluble	Solid	DI Leach	
890-4182-3	PH06F	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Job ID: 890-4182-1 SDG: 03D2057055

QC Association Summary

Client: Ensolum Project/Site: Jalmat 188 - Maverick

HPLC/IC (Continued)

Leach Batch: 47347 (Continued)

each Batch: 47347 (C	ontinued)				
_ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
90-4182-4	PH07A	Soluble	Solid	DI Leach	
390-4182-5	PH07D	Soluble	Solid	DI Leach	
890-4182-6	PH07F	Soluble	Solid	DI Leach	
MB 880-47347/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-47347/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-47347/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4182-6 MS	PH07F	Soluble	Solid	DI Leach	
890-4182-6 MSD	PH07F	Soluble	Solid	DI Leach	

Analysis Batch: 47423

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4182-1	PH06A	Soluble	Solid	300.0	47347
890-4182-2	PH06D	Soluble	Solid	300.0	47347
890-4182-3	PH06F	Soluble	Solid	300.0	47347
890-4182-4	PH07A	Soluble	Solid	300.0	47347
890-4182-5	PH07D	Soluble	Solid	300.0	47347
890-4182-6	PH07F	Soluble	Solid	300.0	47347
MB 880-47347/1-A	Method Blank	Soluble	Solid	300.0	47347
LCS 880-47347/2-A	Lab Control Sample	Soluble	Solid	300.0	47347
LCSD 880-47347/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	47347
890-4182-6 MS	PH07F	Soluble	Solid	300.0	47347
890-4182-6 MSD	PH07F	Soluble	Solid	300.0	47347

Eurofins Carlsbad

Page 93 of 182

Job ID: 890-4182-1 SDG: 03D2057055

Project/Site: Jalmat 188 - Maverick

5

9

Job ID: 890-4182-1 SDG: 03D2057055

Lab Sample ID: 890-4182-1 Matrix: Solid

Lab Sample ID: 890-4182-2

Lab Sample ID: 890-4182-3

Lab Sample ID: 890-4182-4

Matrix: Solid

Matrix: Solid

Date Collected: 02/23/23 12:20 Date Received: 02/23/23 14:52

Client Sample ID: PH06A

Client: Ensolum

Batch	Batch Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	47633	03/02/23 11:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	47785	03/05/23 03:59	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			47956	03/06/23 14:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47542	03/01/23 14:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	47331	02/27/23 14:00	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47385	02/28/23 11:14	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	47347	02/27/23 15:44	KS	EET MID
Soluble	Analysis	300.0		1			47423	02/28/23 15:04	СН	EET MID

Client Sample ID: PH06D

Date Collected: 02/23/23 12:35

Date Received: 02/23/23 14:52

Batch	Batch Batch	Batch Batch	Batch Dil Initial	Final	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	47633	03/02/23 11:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	47785	03/05/23 04:26	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			47956	03/06/23 14:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47542	03/01/23 14:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	47331	02/27/23 14:00	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47385	02/28/23 12:20	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	47347	02/27/23 15:44	KS	EET MID
Soluble	Analysis	300.0		1			47423	02/28/23 15:10	СН	EET MID

Client Sample ID: PH06F

Date Collected: 02/23/23 12:45

Date Received: 02/23/23 14:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	47633	03/02/23 11:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	47785	03/05/23 06:11	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			47956	03/06/23 14:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47542	03/01/23 14:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	47331	02/27/23 14:00	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47385	02/28/23 12:42	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	47347	02/27/23 15:44	KS	EET MID
Soluble	Analysis	300.0		1			47423	02/28/23 15:17	СН	EET MID

Client Sample ID: PH07A Date Collected: 02/23/23 13:00 Date Received: 02/23/23 14:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	47633	03/02/23 11:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	47785	03/05/23 06:36	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			47956	03/06/23 14:55	AJ	EET MID

Eurofins Carlsbad

Matrix: Solid

Project/Site: Jalmat 188 - Maverick

Job ID: 890-4182-1 SDG: 03D2057055

Lab Sample ID: 890-4182-4 Matrix: Solid

Lab Sample ID: 890-4182-5

Date Collected: 02/23/23 13:00 Date Received: 02/23/23 14:52

Client Sample ID: PH07A

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			47542	03/01/23 14:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	47331	02/27/23 14:00	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47385	02/28/23 13:04	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	47347	02/27/23 15:44	KS	EET MID
Soluble	Analysis	300.0		1			47423	02/28/23 15:23	СН	EET MID

Client Sample ID: PH07D

Date Collected: 02/23/23 13:15 Date Received: 02/23/23 14:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	47633	03/02/23 11:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	47785	03/05/23 07:03	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			47956	03/06/23 14:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47542	03/01/23 14:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	47331	02/27/23 14:00	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47385	02/28/23 13:26	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	47347	02/27/23 15:44	KS	EET MID
Soluble	Analysis	300.0		1			47423	02/28/23 15:29	СН	EET MID

Client Sample ID: PH07F

Date Collected: 02/23/23 13:25 Date Received: 02/23/23 14:52

Lab Sample ID: 890-4182-6 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	47633	03/02/23 11:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	47785	03/05/23 07:31	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			47956	03/06/23 14:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47542	03/03/23 12:43	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	47356	02/27/23 16:37	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47599	03/02/23 10:37	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	47347	02/27/23 15:44	KS	EET MID
Soluble	Analysis	300.0		1			47423	02/28/23 15:35	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Matrix: Solid

9

Accreditation/Certification Summary

		Accreditation/C	ertification Summary		
Client: Ensolum Project/Site: Jalmat 18	8 - Maverick			Job ID: 890-4 SDG: 03D205	
Laboratory: Eurofi		ware covered under each each	reditation/certification below.		3
Authority		Program	Identification Number	Expiration Date	4
Texas		IELAP	T104704400-22-25	06-30-23	5
The following analytes the agency does not of		out the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for which	5
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					11
					13
					14

Eurofins Carlsbad

.

Project/Site: Jalmat 188 - Maverick

Client: Ensolum

Job ID: 890-4182-1 SDG: 03D2057055

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
FPA = US	Environmental Protection Agency		

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 3/13/2024 9:45:08 AM

Sample Summary

Client: Ensolum Project/Site: Jalmat 188 - Maverick Job ID: 890-4182-1 SDG: 03D2057055

Client Sample ID	Matrix	Collected	Received	Depth	
PH06A	Solid	02/23/23 12:20	02/23/23 14:52	1'	
PH06D	Solid	02/23/23 12:35	02/23/23 14:52	4'	
PH06F	Solid	02/23/23 12:45	02/23/23 14:52	6'	
PH07A	Solid	02/23/23 13:00	02/23/23 14:52	1'	
PH07D	Solid	02/23/23 13:15	02/23/23 14:52	4'	
PH07F	Solid	02/23/23 13:25	02/23/23 14:52	6'	
					•
	PH06A PH06D PH06F PH07A PH07D	PH06ASolidPH06DSolidPH06FSolidPH07ASolidPH07DSolid	PH06A Solid 02/23/23 12:20 PH06D Solid 02/23/23 12:35 PH06F Solid 02/23/23 12:45 PH07A Solid 02/23/23 13:00 PH07D Solid 02/23/23 13:15	PH06A Solid 02/23/23 12:20 02/23/23 14:52 PH06D Solid 02/23/23 12:35 02/23/23 14:52 PH06F Solid 02/23/23 12:45 02/23/23 14:52 PH07A Solid 02/23/23 13:00 02/23/23 14:52 PH07D Solid 02/23/23 13:00 02/23/23 14:52	PH06A Solid 02/23/23 12:20 02/23/23 14:52 1' PH06D Solid 02/23/23 12:35 02/23/23 14:52 4' PH06F Solid 02/23/23 12:45 02/23/23 14:52 6' PH07A Solid 02/23/23 13:00 02/23/23 14:52 1' PH07D Solid 02/23/23 13:15 02/23/23 14:52 4'

Page 98 of 182

0		Environment Testing Xenco		Midland, EL Pas Hobbs, Bill to: (if different)	Midiand, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 different)	A3, Lubbock, TX 0, Carlsbad, NM 0, Carlsbad, NM	((210) 509-3334 (806) 794-1296 (575) 988-3199		Work Order No: www.xenco.com Work Order C	P I	Page
	Joe Gable			Bill to: (if different)	Kalei Jennings Ensolum, LLC	Josh .	Holeuns	Program:	Wor	k Order Con	Work Order Comments Program: UST/PST PRP Brownfields RRC Superfund
Address: 0	601 N Marienfeld St Suite 400	St Suite 400		Address:	601 N Mari	601 N Marienfeld St Suite 400	400	State of Project:	roject:	I]
e ZIP:	Midland, TX 79701	01		City, State ZIP:	Midland, TX 79701	K 79701		Reporting:	Level II Level		
	903-386-8073		Email:	leu un participans	Contraction Comparison Comp	le@ensolum.c	iom	Deliverables: EDD		ADaPT L	J Other:
Project Name:	VAI MA+	AS MOM	awendeh/ Turn	Turn Around			ANALYSIS	S REQUEST			Preservative Codes
Project Number:	-20102A	C	Rout	_	Pres. Code					No	None: NO DI Water: H ₂ O
Project Location: Sampler's Name:	82.395341,-	103 52.175								HC Co	-
PO#:				Wet Ice: Yes No	eters))					H ₃ f	H ₃ PO ₄ ; HP
Samples Received Intact:	-	Therm	eter ID:							Na	NaHSO4: NABIS
Cooler Custody Seals:	Yes	W/A Correction Factor:	1 Factor:	20-2			890-4182 Chain o	of Custody		Zn	Na ₂ S ₂ O ₃ : NaSO3 Zn Acetate+NaOH: Zn
Total Containers:			Corrected Temperature:	20		8021	_			Na	NaOH+Ascorbic Acid: SAPC
Sample Identification		Matrix Date Sampled	Time Sampled	Depth Grab/ Comp	Cont CHLOI TPH (8	BTEX					Sample Comments
HOIDH		5 02-73-73		- B							NA MBS
OHD/ot			242								-
PHOT A			1300								
O LOHO		Ì	32	2							
4 LOHA		4	1322	6 4							
Total 200.7 / 6010	10 200.8 / 6020:	20:	BRCRA 13PPM	TCI D / SDI D 6010 ARCRA	6 A 11	Be B Cd Ca	Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn N Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Aq	Mo Ni Se Aq TI U	K Se A	SiO ₂ Na 1: 1631 / 2	Sr TI Sn U V Zr 45.1 / 7470 / 7471
Within a monitor (y) and meaning to a support of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro of service. Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiator for activity negotiators.	o will be liable only for	hment of samples c the cost of samples will be applied to ex	onstitutes a valid p and shall not assu	urchase order from me any responsibilit	client company to Eu ly for any losses or e sample submitted to	urofins Xenco, its a expenses incurred Eurofins Xenco, b	filiates and subcontr by the client if such lo ut not analyzed. These	tractors. It assigns standard terms and conditions losses are due to circumstances beyond the control se terms will be enforced unless previously negotiated	indard terms and co imstances beyond the ed unless previous	nditions re control r negotiated.	
Reimquished by:	(Signature)	Recei	Received by: (Signature)	ure)	Date/Time	e Re	Relinquished by: (S	(Signature)	Received by	Received by: (Signature)	Date/Time
A all	X	A LA M	(a Cit	1+	223:23	14522					
3 17000	()		(1		4 1					

Received by OCD: 1/11/2024 3:04:14 PM

3/6/2023

Page 99 of 182

Chain of Custody

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4182 List Number: 1 Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4182-1 SDG Number: 03D2057055

Job Number: 890-4182-1 SDG Number: 03D2057055

List Source: Eurofins Midland

List Creation: 02/27/23 08:59 AM

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 4182 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Environment Testing

Page 102 of 182

ANALYTICAL REPORT

PREPARED FOR

Attn: Josh Adams Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 3/9/2023 1:53:35 PM

JOB DESCRIPTION

Jalmat 188 SDG NUMBER 03D2057055

JOB NUMBER

890-4195-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Received by OCD: 1/11/2024 3:04:14 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 3/9/2023 1:53:35 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

2

PQL

PRES

QC

RER

RPD

TEF

RL

v	: 1/11/2024 3:04:14 PM	Page 105 of	
	Definitions/Glossary		
Client: Ensolum Project/Site: Jal		Job ID: 890-4195-1 SDG: 03D2057055	
Qualifiers			
			3
GC VOA Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
F2	MS/MSD RPD exceeds control limits		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
	······································		
GC Semi VOA	Qualifier Description		
Qualifier S1+	Qualifier Description Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD LOQ	Limit of Detection (DoD/DOE)		
	Limit of Quantitation (DoD/DOE)		
MCL MDA	EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive

Quality Control

Case Narrative

Project/Site: Jalmat 188

Job ID: 890-4195-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4195-1

Receipt

The samples were received on 2/24/2023 12:40 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-48104 and analytical batch 880-48098 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-47514 and analytical batch 880-47591 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-4195-1 SDG: 03D2057055

Job ID: 890-4195-1 SDG: 03D2057055

Client Sample ID: PH08A

Date Collected: 02/24/23 09:15 Date Received: 02/24/23 12:40

Surrogate

4-Bromofluorobenzene (Surr)

Project/Site: Jalmat 188

Client: Ensolum

Lab Sample ID: 890-4195-1

Matrix: Solid

5

Method: SW846 8021B - Volatile C								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200	mg/Kg		03/08/23 09:47	03/08/23 14:41	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 14:41	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 14:41	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/08/23 09:47	03/08/23 14:41	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 14:41	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/08/23 09:47	03/08/23 14:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	60	S1-	70 - 130			03/08/23 09:47	03/08/23 14:41	1
1,4-Difluorobenzene (Surr)	63	S1-	70 - 130			03/08/23 09:47	03/08/23 14:41	1
Method: TAL SOP Total BTEX - To	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/09/23 14:36	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/01/23 16:06	1
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 15:17	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 15:17	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 15:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	123		70 - 130			02/28/23 16:21	03/01/23 15:17	1
o-Terphenyl	118		70 - 130			02/28/23 16:21	03/01/23 15:17	1
Method: EPA 300.0 - Anions, Ion (Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	600	F1	5.05	mg/Kg			03/02/23 05:05	1
lient Sample ID: PH08D						Lab Sar	nple ID: 890-	4195-2
ate Collected: 02/24/23 09:30							Matri	ix: Solid
ate Received: 02/24/23 12:40								
ample Depth: 4								
Method: SW846 8021B - Volatile C								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201		0.00201	mg/Kg		03/08/23 09:47	03/08/23 15:01	1
Toluene	<0.00201	U	0.00201	mg/Kg		03/08/23 09:47	03/08/23 15:01	1
			0.00201	mg/Kg		03/08/23 09:47	03/08/23 15:01	1
	<0.00201	U	0.00201	iiig/itg				
Ethylbenzene	<0.00201 <0.00402		0.00201	mg/Kg		03/08/23 09:47	03/08/23 15:01	1
Ethylbenzene m-Xylene & p-Xylene o-Xylene		U						1 1

Limits

70 - 130

%Recovery Qualifier

111

Eurofins Carlsbad

Dil Fac

1

Analyzed

03/08/23 15:01

Prepared

03/08/23 09:47

Client Sample Results

Job ID: 890-4195-1 SDG: 03D2057055

Lab Sample ID: 890-4195-2

Lab Sample ID: 890-4195-3

Matrix: Solid

Fac

1

1

1

1

1

1

Fac

1

1

Client Sample ID: PH08D

Date Collected: 02/24/23 09:30 Date Received: 02/24/23 12:40

Sample Depth: 4

Project/Site: Jalmat 188

Client: Ensolum

Method: SW846 8021B -	Volatile Organic Compoun	ds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	104		70 - 130			03/08/23 09:47	03/08/23 15:01	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			03/09/23 14:36	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/02/23 09:50	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		02/28/23 16:21	03/01/23 16:01	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/28/23 16:21	03/01/23 16:01	1
C10-C28)								

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130	02/28/23 16:21	03/01/23 16:01	1
o-Terphenyl	104		70 - 130	02/28/23 16:21	03/01/23 16:01	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4810		50.0	mg/Kg			03/02/23 05:24	10

Client Sample ID: PH09A

Date Collected: 02/24/23 10:00 Date Received: 02/24/23 12:40 Sample Depth: 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Benzene	<0.00202	U	0.00202	mg/Kg		03/08/23 09:47	03/08/23 15:22	
Toluene	<0.00202	U	0.00202	mg/Kg		03/08/23 09:47	03/08/23 15:22	
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/08/23 09:47	03/08/23 15:22	
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		03/08/23 09:47	03/08/23 15:22	
o-Xylene	<0.00202	U	0.00202	mg/Kg		03/08/23 09:47	03/08/23 15:22	
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		03/08/23 09:47	03/08/23 15:22	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	104		70 - 130			03/08/23 09:47	03/08/23 15:22	
1,4-Difluorobenzene (Surr)	80		70 - 130			03/08/23 09:47	03/08/23 15:22	

Analyte Total BTEX	Result <0.00404	Qualifier U	RL	Unit mg/Kg	<u> </u>	Prepared	Analyzed 03/09/23 14:36	Dil Fac			
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Total TPH	<49.9	U	49.9	mg/Kg			03/02/23 09:50	1			

Eurofins Carlsbad

Matrix: Solid
Client Sample Results

Job ID: 890-4195-1
SDG: 03D2057055

Matrix: Solid

Lab Sample ID: 890-4195-3

Client Sample ID: PH09A

Project/Site: Jalmat 188

Date Collected: 02/24/23 10:00 Date Received: 02/24/23 12:40

Sample Depth: 1

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 16:22	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 16:22	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 16:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130			02/28/23 16:21	03/01/23 16:22	1
o-Terphenyl	110		70 - 130			02/28/23 16:21	03/01/23 16:22	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3870	25.0	mg/Kg			03/02/23 05:30	5

Client Sample ID: PH09D

Date Collected: 02/24/23 10:15 Date Received: 02/24/23 12:40

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 15:43	1
Toluene	0.00209		0.00199	mg/Kg		03/08/23 09:47	03/08/23 15:43	1
Ethylbenzene	0.00722		0.00199	mg/Kg		03/08/23 09:47	03/08/23 15:43	1
m-Xylene & p-Xylene	0.0319		0.00398	mg/Kg		03/08/23 09:47	03/08/23 15:43	1
o-Xylene	0.0146		0.00199	mg/Kg		03/08/23 09:47	03/08/23 15:43	1
Xylenes, Total	0.0465		0.00398	mg/Kg		03/08/23 09:47	03/08/23 15:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			03/08/23 09:47	03/08/23 15:43	1
1,4-Difluorobenzene (Surr)	83		70 - 130			03/08/23 09:47	03/08/23 15:43	1
Method: SW846 8015 NM - Diese				11:4	-	Duonouod	Analyzad	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	572		50.0	mg/Kg			03/02/23 09:50	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
		Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics			· · ·	Unit mg/Kg	<u>D</u>	Prepared 02/28/23 16:21	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result				<u>D</u>			
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 54.2	Qualifier	RL 50.0	mg/Kg	<u> </u>	02/28/23 16:21	03/01/23 16:43	1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result54.2	Qualifier U	RL 50.0	mg/Kg	<u> </u>	02/28/23 16:21 02/28/23 16:21	03/01/23 16:43 03/01/23 16:43	Dil Fac 1 1 1 Dil Fac

Eurofins Carlsbad

03/01/23 16:43

02/28/23 16:21

o-Terphenyl

70 - 130

103

		Clier	t Sample Res	sults				
Client: Ensolum			•				Job ID: 890	
Project/Site: Jalmat 188							SDG: 03D2	2057055
Client Sample ID: PH09D						Lab San	nple ID: 890-	4195-4
Date Collected: 02/24/23 10:15							Matri	ix: Solid
Date Received: 02/24/23 12:40								
Sample Depth: 4								
	0		-					
Method: EPA 300.0 - Anions, Ior Analyte		Qualifier	RL	Unit	D	Prepared	Applyzod	Dil Fac
Chloride		Quanner	248	0mt mg/Kg			Analyzed 03/02/23 05:36	50
_								
Client Sample ID: PH10A						Lab San	nple ID: 890-	
Date Collected: 02/24/23 10:30							Matri	ix: Solid
Date Received: 02/24/23 12:40								
Sample Depth: 1								
– Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte		Qualifier	, RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 17:49	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 17:49	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 17:49	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/08/23 09:47	03/08/23 17:49	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 17:49	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/08/23 09:47	03/08/23 17:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/08/23 09:47	03/08/23 17:49	1
1,4-Difluorobenzene (Surr)	101	01	70 - 130			03/08/23 09:47	03/08/23 17:49	1
						00,00,20,00,11	00,00,20,7770	
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/09/23 14:36	1
	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/02/23 09:50	1
_ Method: SW846 8015B NM - Die	aal Banga Orga							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics			50.0	0mt mg/Kg		02/28/23 16:21	03/01/23 17:06	1
(GRO)-C6-C10	-00.0	5	30.0			52,20,20 10.21	20/01/20 11:00	
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/28/23 16:21	03/01/23 17:06	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/28/23 16:21	03/01/23 17:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130			02/28/23 16:21	03/01/23 17:06	1
o-Terphenyl	105		70 - 130			02/28/23 16:21	03/01/23 17:06	1
_								
Method: FPA 300.0 - Anione Jor	1 Chromatogram	hy - Solub	e					
Method: EPA 300.0 - Anions, lor Analyte		Ohy - Solub Qualifier	e RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

RL

0.00200

Unit

mg/Kg

D

Prepared

03/08/23 09:47

Job ID: 890-4195-1 SDG: 03D2057055

Client Sample ID: PH10D

Date Collected: 02/24/23 10:50 Date Received: 02/24/23 12:40

Sample Depth: 4

Analyte

Benzene

Project/Site: Jalmat 188

Client: Ensolum

Lab Sample ID: 890-4195-6

Analyzed

03/08/23 18:10

Matrix: Solid

5 Dil Fac 1 1

Delizerie	~0.00200	0	0.00200	mg/ng		03/00/23 09.47	03/00/23 10.10	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 18:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 18:10	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/08/23 09:47	03/08/23 18:10	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 18:10	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/08/23 09:47	03/08/23 18:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			03/08/23 09:47	03/08/23 18:10	1
1,4-Difluorobenzene (Surr)	95		70 - 130			03/08/23 09:47	03/08/23 18:10	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/09/23 14:36	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/02/23 09:50	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 17:27	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 17:27	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 17:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			02/28/23 16:21	03/01/23 17:27	1
o-Terphenyl	100		70 - 130			02/28/23 16:21	03/01/23 17:27	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2660		25.3	mg/Kg			03/02/23 06:01	5
lient Sample ID: PH10F						Lab Sar	nple ID: 890-	4195-7
Date Collected: 02/24/23 11:00							Matri	ix: Solid
Date Received: 02/24/23 12:40								
Sample Depth: 6								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 18:31	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 18:31	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 18:31	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/08/23 09:47	03/08/23 18:31	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/08/23 09:47	03/08/23 18:31	1

	Xylenes, Total	<0.00398	U	0.00398	mg/Kg	03/08/23 09:47	03/08/23 18:31	1
	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
I	4-Bromofluorobenzene (Surr)	107		70 - 130		03/08/23 09:47	03/08/23 18:31	1

Eurofins Carlsbad

Released to Imaging: 3/13/2024 9:45:08 AM

Client Sample Results

Job ID: 890-4195-1 SDG: 03D2057055

Client Sample ID: PH10F

Date Collected: 02/24/23 11:00 Date Received: 02/24/23 12:40

Sample Depth: 6

Client: Ensolum

Project/Site: Jalmat 188

Method: SW846 8021B - Volatile Organic Compound	s (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	78		70 - 130			03/08/23 09:47	03/08/23 18:31	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/09/23 14:36	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			03/02/23 09:50	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 17:48	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 17:48	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/28/23 16:21	03/01/23 17:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130			02/28/23 16:21	03/01/23 17:48	1
o-Terphenyl	98		70 - 130			02/28/23 16:21	03/01/23 17:48	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4180		24.9	mg/Kg			03/02/23 06:07	5

Eurofins Carlsbad

Lab Sample ID: 890-4195-7 Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		_
880-25192-A-7-C MS	Matrix Spike	46 S1-	87		
880-25192-A-7-D MSD	Matrix Spike Duplicate	42 S1-	75		
890-4195-1	PH08A	60 S1-	63 S1-		
890-4195-2	PH08D	111	104		
890-4195-3	PH09A	104	80		
890-4195-4	PH09D	100	83		
890-4195-5	PH10A	47 S1-	101		
890-4195-6	PH10D	107	95		
890-4195-7	PH10F	107	78		
LCS 880-48104/1-A	Lab Control Sample	93	94		
LCSD 880-48104/2-A	Lab Control Sample Dup	95	91		
MB 880-48104/5-A	Method Blank	87	90		
Surrogate Legend					
BFB = 4-Bromofluorober	nzene (Surr)				
DFBZ = 1,4-Difluoroben:	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

-				Percent Surrogate Rec
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-25235-A-61-H MS	Matrix Spike	135 S1+	117	
880-25235-A-61-I MSD	Matrix Spike Duplicate	126	110	
890-4195-1	PH08A	123	118	
890-4195-2	PH08D	107	104	
890-4195-3	PH09A	114	110	
890-4195-4	PH09D	108	103	
890-4195-5	PH10A	107	105	
890-4195-6	PH10D	102	100	
890-4195-7	PH10F	100	98	
LCS 880-47472/2-A	Lab Control Sample	112	102	
LCSD 880-47472/3-A	Lab Control Sample Dup	123	113	
MB 880-47472/1-A	Method Blank	131 S1+	127	
Surrogate Legend		101 011	121	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Page 113 of 182

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 890-4195-1 SDG: 03D2057055

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-48104/5-A

Matrix: Solid Analysis Batch: 48098

Project/Site: Jalmat 188

Client: Ensolum

Analysis Batch: 48098							Prep Batch	n: 48104
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 12:14	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 12:14	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 12:14	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/08/23 09:47	03/08/23 12:14	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/08/23 09:47	03/08/23 12:14	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/08/23 09:47	03/08/23 12:14	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130			03/08/23 09:47	03/08/23 12:14	1
1,4-Difluorobenzene (Surr)	90		70 - 130			03/08/23 09:47	03/08/23 12:14	1

Lab Sample ID: LCS 880-48104/1-A Matrix: Solid

Analysis Batch: 48098

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09481		mg/Kg		95	70 - 130
Toluene	0.100	0.09602		mg/Kg		96	70 - 130
Ethylbenzene	0.100	0.09528		mg/Kg		95	70 - 130
m-Xylene & p-Xylene	0.200	0.1960		mg/Kg		98	70 - 130
o-Xylene	0.100	0.09761		mg/Kg		98	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: LCSD 880-48104/2-A

Matrix: Solid

Analysis Batch: 48098							Prep	Batch:	48104
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09710		mg/Kg		97	70 - 130	2	35
Toluene	0.100	0.09753		mg/Kg		98	70 - 130	2	35
Ethylbenzene	0.100	0.09558		mg/Kg		96	70 - 130	0	35
m-Xylene & p-Xylene	0.200	0.1947		mg/Kg		97	70 - 130	1	35
o-Xylene	0.100	0.09685		mg/Kg		97	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	91		70 - 130

Lab Sample ID: 880-25192-A-7-C MS

Matrix: Solid

Analysis Batch: 48098									Prep	Batch: 48104
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F2 F1	0.100	0.07627		mg/Kg		75	70 - 130	
Toluene	<0.00201	U F2 F1	0.100	0.07278		mg/Kg		72	70 - 130	

lsbad

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 48104

Eurofins	Carl
Luionna	Can

Client Sample ID: Matrix Spike

Client: Ensolum

Project/Site: Jalmat 188

QC Sample Results

Job ID: 890-4195-1 SDG: 03D2057055

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-25192-A-7	-C MS							Client	Sample ID: M		
Matrix: Solid									Prep Type		
Analysis Batch: 48098									Prep Ba	tch:	48104
		Sample	Spike		MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit		D %Rec	Limits		
Ethylbenzene	<0.00201	U F1	0.100	0.05618	F1	mg/Kg		56	70 - 130		
m-Xylene & p-Xylene	<0.00402	U F1	0.200	0.09163		mg/Kg		46	70 - 130		
o-Xylene	<0.00201	U F2 F1	0.100	0.04968	F1	mg/Kg		49	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	46	S1-	70 - 130								
1,4-Difluorobenzene (Surr)	87		70 - 130								
Lab Sample ID: 880-25192-A-7						C	lie	nt Sample IF): Matrix Spike		olicat
Matrix: Solid									Prep Type		
Analysis Batch: 48098									Prep Ba		
Analysis Baton. 40000	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	•	Qualifier	Added	Result	Qualifier	Unit		D %Rec		RPD	Lim
Benzene	<0.00201	U F2 F1	0.0996	0.04566	F2 F1	mg/Kg		45	70 - 130	50	3
Toluene	< 0.00201	U F2 F1	0.0996	0.04942		mg/Kg		49	70 - 130	38	3
Ethylbenzene	< 0.00201	U F1	0.0996	0.04194	F1	mg/Kg		42	70 - 130	29	3
m-Xylene & p-Xylene	<0.00402		0.199	0.06707		mg/Kg		34	70 - 130	31	3
o-Xylene	<0.00201		0.0996	0.03337		mg/Kg		33	70 - 130	39	3
						0 0					
	MSD		,								
Surrogate	%Recovery	Qualifier S1-	<i>Limits</i> 70 - 130								
4-Bromofluorobenzene (Surr)	42 75	51-									
1,4-Difluorobenzene (Surr)	75		70 - 130								
lethod: 8015B NM - Diese	I Range Or	ganics	(DRO) (GC)								
Lab Sample ID: MB 880-47472	/1_A							Client S	ample ID: Met	bod	Blan
Matrix: Solid								onent e	Prep Type		
Analysis Batch: 47505									Prep Ba		
Analysis Daten. 47505		МВ МВ							Перва	iten.	
Analyte	R	esult Quali	fier	RL	Unit		D	Prepared	Analyzed		Dil Fa
Gasoline Range Organics		50.0 U		50.0	mg/K	a	_	02/28/23 16:21		6	
(GRO)-C6-C10					Ū.	-					
Diesel Range Organics (Over	<	50.0 U		50.0	mg/K	g		02/28/23 16:21	03/01/23 08:4	6	
C10-C28)											
Oll Range Organics (Over C28-C36)	<	50.0 U		50.0	mg/K	g		02/28/23 16:21	03/01/23 08:4	6	
		MB MB									
											Dil Fa

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	131	S1+	70 - 130
o-Terphenyl	127		70 - 130

Lab Sample ID: LCS 880-47472/2-A Matrix: Solid

Analysis Batch: 47505 Prep Batch: 47472 %Rec Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits 1000 842.5 84 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 983.6 mg/Kg 98 70 - 130 C10-C28)

Eurofins Carlsbad

Prep Type: Total/NA

03/01/23 08:46

03/01/23 08:46

Client Sample ID: Lab Control Sample

02/28/23 16:21

02/28/23 16:21

1

1

QC Sample Results

Client: Ensolum Project/Site: Jalmat 188

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	472/2-A						Client	Sample	D: Lab C		
Matrix: Solid										Type: Tot	
Analysis Batch: 47505									Prep	Batch:	4747
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	102		70 - 130								
Lab Sample ID: LCSD 880-4	7472/3-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sample	e Duj
Matrix: Solid									Prep 1	Type: Tot	tal/N
Analysis Batch: 47505									Prep	Batch:	4747
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10			1000	915.9		mg/Kg		92	70 - 130	8	2
Diesel Range Organics (Over C10-C28)			1000	1096		mg/Kg		110	70 - 130	11	2
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		quanter	70 - 130								
o-Terphenyl	113		70 - 130								
									Prep	Type: Tot Batch:	
Analysis Batch: 47505	Sample Result	-	Spike Added		MS Qualifier	Unit	D	%Rec			
Analysis Batch: 47505 Analyte Gasoline Range Organics	-	Qualifier	•		MS Qualifier	- <mark>Unit</mark> mg/Kg	D	%Rec 110	Prep %Rec		
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	Added	Result			<u>D</u>		Prep %Rec Limits		
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U	Added	Result 1132		mg/Kg	<u> </u>	110	Prep %Rec Limits 70 - 130		
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9 MS	Qualifier U U	Added	Result 1132		mg/Kg	<u> </u>	110	Prep %Rec Limits 70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Result <49.9 <49.9 MS %Recovery	Qualifier U MS Qualifier	Added 999 999 Limits	Result 1132		mg/Kg	<u>D</u>	110	Prep %Rec Limits 70 - 130		
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130	Result 1132		mg/Kg	<u>D</u>	110	Prep %Rec Limits 70 - 130		
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	Result <49.9 <49.9 MS %Recovery	Qualifier U MS Qualifier	Added 999 999 Limits	Result 1132		mg/Kg	<u>D</u>	110	Prep %Rec Limits 70 - 130		
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 135 117	Qualifier U MS Qualifier	Added 999 999 <u>Limits</u> 70 - 130	Result 1132		mg/Kg		86	Prep %Rec Limits 70 - 130	Batch: 4	4747:
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 135 117	Qualifier U MS Qualifier	Added 999 999 <u>Limits</u> 70 - 130	Result 1132		mg/Kg		86	Prep %Rec Limits 70 - 130 70 - 130 20 - 130	Batch: 4	4747:
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A	Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 135 117	Qualifier U MS Qualifier	Added 999 999 <u>Limits</u> 70 - 130	Result 1132		mg/Kg		86	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 20: Matrix Sp Prep	Batch: 4	4747: licate
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A Matrix: Solid	Result <49.9 <49.9 MS %Recovery 135 117 A-61-I MSD	Qualifier U MS Qualifier	Added 999 999 <u>Limits</u> 70 - 130	Result 1132 879.8		mg/Kg		86	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 20: Matrix Sp Prep	Dike Dup	4747: licat(tal/N/ 4747:
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A Matrix: Solid Analysis Batch: 47505	Result <49.9 <49.9 MS %Recovery 135 117 A-61-I MSD Sample	Qualifier U MS Qualifier S1+	Added 999 999 Limits 70 - 130 70 - 130	Result 1132 879.8 MSD	Qualifier	mg/Kg		86	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7 Prep 7	Dike Dup	4747: licate
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A Matrix: Solid Analysis Batch: 47505 Analyte Gasoline Range Organics	Result <49.9 <49.9 MS %Recovery 135 117 A-61-I MSD Sample	Qualifier U MS Qualifier S1+ Sample Qualifier	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 1132 879.8 MSD	Qualifier	mg/Kg mg/Kg Cl	ient Sa	110 86 ample IC	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 100 70 -	oike Dup Type: Tot Batch: 4	licat tal/NJ 4747 RPI Lim
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A Matrix: Solid Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 <49.9 MS %Recovery 135 117 A-61-I MSD Sample Result	Qualifier U MS Qualifier S1+ Sample Qualifier U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 1132 879.8 MSD Result	Qualifier	mg/Kg mg/Kg Cl	ient Sa	110 86 ample IE	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 100 70 -	oike Dup Type: Tot Batch: 4 	4747 ilicat ial/N. 4747 RP Lim 2
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A Matrix: Solid	Result <49.9	Qualifier U MS Qualifier S1+ Sample Qualifier U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130 999	Result 1132 879.8 MSD Result 1062	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	110 86 ample IE <u>%Rec</u> 103	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 0: Matrix Sp Prep %Rec Limits 70 - 130	pike Dup Type: Tot Batch: 4 	4747 allicatu al/N/ 4747 RPI Lim 2
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A Matrix: Solid Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U MS Qualifier S1+ Sample Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130 999	Result 1132 879.8 MSD Result 1062	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	110 86 ample IE <u>%Rec</u> 103	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 0: Matrix Sp Prep %Rec Limits 70 - 130	pike Dup Type: Tot Batch: 4 	4747 allicatu al/N/ 4747 RPI Lim 2
Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-25235-A Matrix: Solid Analysis Batch: 47505 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U MS Qualifier S1+ Sample Qualifier U U	Added 999 999 <u>Limits</u> 70 - 130 70 - 130 70 - 130 999 999	Result 1132 879.8 MSD Result 1062	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	110 86 ample IE <u>%Rec</u> 103	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 0: Matrix Sp Prep %Rec Limits 70 - 130	pike Dup Type: Tot Batch: 4 	4747: 4747: tal/N/ RPI

Client: Ensolum

Project/Site: Jalmat 188

QC Sample Results

Job ID: 890-4195-1 SDG: 03D2057055

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-47514/1-A									Client S	Sample ID:		
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 47591		МВ МВ										
Analyte	В	esult Qualifier		RL	Unit		D	в.	repared	Analy	Tod	Dil Fac
Chloride				5.00	0mit mg/K		<u> </u>	FI	repareu	03/02/23		
-		0.00 0		0.00	mg/iv	9				00/02/20	04.47	
Lab Sample ID: LCS 880-47514/2-A							Cli	ent	Sample	e ID: Lab C	ontrol S	ample
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 47591												
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	252.3		mg/Kg			101	90 _ 110		
Lab Sample ID: LCSD 890 47544/2	•					0				Lab Cantu		
Lab Sample ID: LCSD 880-47514/3- Matrix: Solid	A					CI.	ient a	baili	ipie iD.	Lab Contro		
Analysis Batch: 47591										Frep	Type: S	olubi
Analysis Baten. 47001			Spike	LCSD	LCSD					%Rec		RPD
-			Spike Added		LCSD Qualifier	Unit		D	%Rec	%Rec Limits	RPD	
Analyte			•			Unit mg/Kg		<u>D</u>	%Rec		RPD	Limi
Analyte Chloride			Added	Result				<u>D</u>	100	Limits 90 - 110	1	Limi 20
Analyte Chloride Lab Sample ID: 890-4195-1 MS			Added	Result				<u>D</u>	100	Limits 90 - 110	1 nple ID: F	Limi 20 PH084
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid			Added	Result				<u>D</u>	100	Limits 90 - 110	1	Limi 20 PH084
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid	Sample	Sample	Added	Result 250.4				D	100	Limits 90 - 110	1 nple ID: F	Limi [*] 20 PH08A
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid Analysis Batch: 47591	•	Sample Qualifier	Added 250	Result 250.4	Qualifier			D	100	Limits 90 - 110 Client Sam Prep	1 nple ID: F	Limi 20 PH08A
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid Analysis Batch: 47591 Analyte	•	Qualifier	Added 250 Spike	Result 250.4	Qualifier MS Qualifier	mg/Kg			100	Limits 90 - 110 Client Sam Prep %Rec	1 nple ID: F	Limi 2 ¹ 21
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid Analysis Batch: 47591 Analyte Chloride	Result	Qualifier	Added 250 Spike Added	Result 250.4 MS Result	Qualifier MS Qualifier	mg/Kg			100 %Rec 135	Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110	nple ID: F	Limi 2 PH08# oluble
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid Analysis Batch: 47591 Analyte Chloride Lab Sample ID: 890-4195-1 MSD	Result	Qualifier	Added 250 Spike Added	Result 250.4 MS Result	Qualifier MS Qualifier	mg/Kg			100 %Rec 135	Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam	nple ID: F Type: S	Limi 20 PH08A oluble PH08A
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid Analysis Batch: 47591 Analyte Chloride Lab Sample ID: 890-4195-1 MSD Matrix: Solid	Result	Qualifier	Added 250 Spike Added	Result 250.4 MS Result	Qualifier MS Qualifier	mg/Kg			100 %Rec 135	Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam	nple ID: F	Limi 20 PH08A oluble PH08A
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid Analysis Batch: 47591 Analyte Chloride Lab Sample ID: 890-4195-1 MSD Matrix: Solid	Result	Qualifier	Added 250 Spike Added	Result 250.4 MS Result	Qualifier MS Qualifier	mg/Kg			100 %Rec 135	Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam	nple ID: F Type: S	Limi 20 PH08A oluble PH08A oluble
Analyte Chloride Lab Sample ID: 890-4195-1 MS Matrix: Solid Analysis Batch: 47591 Analyte Chloride Lab Sample ID: 890-4195-1 MSD	Result 600 Sample	Qualifier	Added 250 Spike Added 253	Result 250.4 MS Result 940.8	Qualifier MS Qualifier F1	mg/Kg			100 %Rec 135	Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam Prep	nple ID: F Type: S	oluble

Received by OCD: 1/11/2024 3:04:14 PM

QC Association Summary

Client: Ensolum Project/Site: Jalmat 188

SDG: 03D2057055

GC VOA

Analysis Batch: 48098

_ Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4195-1	PH08A	Total/NA	Solid	8021B	48104
890-4195-2	PH08D	Total/NA	Solid	8021B	48104
890-4195-3	PH09A	Total/NA	Solid	8021B	48104
890-4195-4	PH09D	Total/NA	Solid	8021B	48104
890-4195-5	PH10A	Total/NA	Solid	8021B	48104
890-4195-6	PH10D	Total/NA	Solid	8021B	48104
890-4195-7	PH10F	Total/NA	Solid	8021B	48104
MB 880-48104/5-A	Method Blank	Total/NA	Solid	8021B	48104
LCS 880-48104/1-A	Lab Control Sample	Total/NA	Solid	8021B	48104
LCSD 880-48104/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	48104
880-25192-A-7-C MS	Matrix Spike	Total/NA	Solid	8021B	48104
880-25192-A-7-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	48104
rep Batch: 48104					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4195-1	PH08A	Total/NA	Solid	5035	
890-4195-2	PH08D	Total/NA	Solid	5035	
890-4195-3	PH09A	Total/NA	Solid	5035	
890-4195-4	PH09D	Total/NA	Solid	5035	
890-4195-5	PH10A	Total/NA	Solid	5035	
890-4195-6	PH10D	Total/NA	Solid	5035	

Prep Batch: 48104

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4195-1	PH08A	Total/NA	Solid	5035	
890-4195-2	PH08D	Total/NA	Solid	5035	
890-4195-3	PH09A	Total/NA	Solid	5035	
890-4195-4	PH09D	Total/NA	Solid	5035	
890-4195-5	PH10A	Total/NA	Solid	5035	
890-4195-6	PH10D	Total/NA	Solid	5035	
890-4195-7	PH10F	Total/NA	Solid	5035	
MB 880-48104/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-48104/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-48104/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-25192-A-7-C MS	Matrix Spike	Total/NA	Solid	5035	
880-25192-A-7-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 48231

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4195-1	PH08A	Total/NA	Solid	Total BTEX	
890-4195-2	PH08D	Total/NA	Solid	Total BTEX	
890-4195-3	PH09A	Total/NA	Solid	Total BTEX	
890-4195-4	PH09D	Total/NA	Solid	Total BTEX	
890-4195-5	PH10A	Total/NA	Solid	Total BTEX	
890-4195-6	PH10D	Total/NA	Solid	Total BTEX	
890-4195-7	PH10F	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 47472

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4195-1	PH08A	Total/NA	Solid	8015NM Prep	
890-4195-2	PH08D	Total/NA	Solid	8015NM Prep	
890-4195-3	PH09A	Total/NA	Solid	8015NM Prep	
890-4195-4	PH09D	Total/NA	Solid	8015NM Prep	
890-4195-5	PH10A	Total/NA	Solid	8015NM Prep	
890-4195-6	PH10D	Total/NA	Solid	8015NM Prep	
890-4195-7	PH10F	Total/NA	Solid	8015NM Prep	
MB 880-47472/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-47472/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 118 of 182

QC Association Summary

Client: Ensolum Project/Site: Jalmat 188

GC Semi VOA (Continued)

Prep Batch: 47472 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-47472/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-25235-A-61-H MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-25235-A-61-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 47505

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
90-4195-1	PH08A	Total/NA	Solid	8015B NM	47472	-
90-4195-2	PH08D	Total/NA	Solid	8015B NM	47472	8
90-4195-3	PH09A	Total/NA	Solid	8015B NM	47472	
90-4195-4	PH09D	Total/NA	Solid	8015B NM	47472	g
90-4195-5	PH10A	Total/NA	Solid	8015B NM	47472	
90-4195-6	PH10D	Total/NA	Solid	8015B NM	47472	
90-4195-7	PH10F	Total/NA	Solid	8015B NM	47472	
B 880-47472/1-A	Method Blank	Total/NA	Solid	8015B NM	47472	
CS 880-47472/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	47472	
CSD 880-47472/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	47472	
80-25235-A-61-H MS	Matrix Spike	Total/NA	Solid	8015B NM	47472	
80-25235-A-61-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	47472	

Analysis Batch: 47573

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4195-1	PH08A	Total/NA	Solid	8015 NM	
890-4195-2	PH08D	Total/NA	Solid	8015 NM	
890-4195-3	PH09A	Total/NA	Solid	8015 NM	
890-4195-4	PH09D	Total/NA	Solid	8015 NM	
890-4195-5	PH10A	Total/NA	Solid	8015 NM	
890-4195-6	PH10D	Total/NA	Solid	8015 NM	
890-4195-7	PH10F	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 47514

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4195-1	PH08A	Soluble	Solid	DI Leach	
890-4195-2	PH08D	Soluble	Solid	DI Leach	
890-4195-3	PH09A	Soluble	Solid	DI Leach	
890-4195-4	PH09D	Soluble	Solid	DI Leach	
890-4195-5	PH10A	Soluble	Solid	DI Leach	
890-4195-6	PH10D	Soluble	Solid	DI Leach	
890-4195-7	PH10F	Soluble	Solid	DI Leach	
MB 880-47514/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-47514/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-47514/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4195-1 MS	PH08A	Soluble	Solid	DI Leach	
890-4195-1 MSD	PH08A	Soluble	Solid	DI Leach	

Analysis Batch: 47591

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4195-1	PH08A	Soluble	Solid	300.0	47514
890-4195-2	PH08D	Soluble	Solid	300.0	47514
890-4195-3	PH09A	Soluble	Solid	300.0	47514

Eurofins Carlsbad

5 6

Job ID: 890-4195-1

SDG: 03D2057055

Released to Imaging: 3/13/2024 9:45:08 AM

Client: Ensolum Project/Site: Jalmat 188 Job ID: 890-4195-1 SDG: 03D2057055

HPLC/IC (Continued)

Analysis Batch: 47591 (Continued)

ab Sample ID.	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
90-4195-4	PH09D	Soluble	Solid	300.0	47514
90-4195-5	PH10A	Soluble	Solid	300.0	47514
00-4195-6	PH10D	Soluble	Solid	300.0	47514
0-4195-7	PH10F	Soluble	Solid	300.0	47514
880-47514/1-A	Method Blank	Soluble	Solid	300.0	47514
S 880-47514/2-A	Lab Control Sample	Soluble	Solid	300.0	47514
SD 880-47514/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	47514
-4195-1 MS	PH08A	Soluble	Solid	300.0	47514
)-4195-1 MSD	PH08A	Soluble	Solid	300.0	47514

Job ID: 890-4195-1 SDG: 03D2057055

Lab Sample ID: 890-4195-1 Matrix: Solid

Date Collected: 02/24/23 09:15 Date Received: 02/24/23 12:40

Client Sample ID: PH08A

Client: Ensolum

Project/Site: Jalmat 188

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	48104	03/08/23 09:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48098	03/08/23 14:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48231	03/09/23 14:36	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47573	03/01/23 16:06	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	47472	02/28/23 16:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47505	03/01/23 15:17	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	47514	03/01/23 10:34	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	47591	03/02/23 05:05	СН	EET MID

Client Sample ID: PH08D

Date Collected: 02/24/23 09:30

Date Received: 02/24/23 12:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	48104	03/08/23 09:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48098	03/08/23 15:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48231	03/09/23 14:36	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47573	03/02/23 09:50	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	47472	02/28/23 16:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47505	03/01/23 16:01	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	47514	03/01/23 10:34	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	47591	03/02/23 05:24	CH	EET MID

Client Sample ID: PH09A

Date Collected: 02/24/23 10:00

Date Received: 02/24/23 12:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	48104	03/08/23 09:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48098	03/08/23 15:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48231	03/09/23 14:36	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47573	03/02/23 09:50	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	47472	02/28/23 16:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47505	03/01/23 16:22	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	47514	03/01/23 10:34	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	47591	03/02/23 05:30	СН	EET MID

Client Sample ID: PH09D Date Collected: 02/24/23 10:15 Date Received: 02/24/23 12:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	48104	03/08/23 09:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48098	03/08/23 15:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48231	03/09/23 14:36	AJ	EET MID

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-4195-2

Matrix: Solid

9

5

Lab Sample ID: 890-4195-3

Lab Sample ID: 890-4195-4

Matrix: Solid

Released to Imaging: 3/13/2024 9:45:08 AM

Job ID: 890-4195-1 SDG: 03D2057055

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-4195-4 Matrix: Solid

Lab Sample ID: 890-4195-6

Lab Sample ID: 890-4195-7

Date Collected: 02/24/23 10:15 Date Received: 02/24/23 12:40

Client Sample ID: PH09D

Client: Ensolum

Project/Site: Jalmat 188

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			47573	03/02/23 09:50	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	47472	02/28/23 16:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47505	03/01/23 16:43	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	47514	03/01/23 10:34	KS	EET MID
Soluble	Analysis	300.0		50	50 mL	50 mL	47591	03/02/23 05:36	СН	EET MID

Client Sample ID: PH10A

Date Collected: 02/24/23 10:30 Date Received: 02/24/23 12:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	48104	03/08/23 09:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48098	03/08/23 17:49	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48231	03/09/23 14:36	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47573	03/02/23 09:50	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	47472	02/28/23 16:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47505	03/01/23 17:06	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	47514	03/01/23 10:34	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	47591	03/02/23 05:42	СН	EET MID

Client Sample ID: PH10D

Date Collected: 02/24/23 10:50 Date Received: 02/24/23 12:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	48104	03/08/23 09:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48098	03/08/23 18:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48231	03/09/23 14:36	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47573	03/02/23 09:50	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	47472	02/28/23 16:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47505	03/01/23 17:27	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	47514	03/01/23 10:34	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	47591	03/02/23 06:01	СН	EET MID

Client Sample ID: PH10F

Date Collected: 02/24/23 11:00 Date Received: 02/24/23 12:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	48104	03/08/23 09:47	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	48098	03/08/23 18:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			48231	03/09/23 14:36	AJ	EET MID
Total/NA	Analysis	8015 NM		1			47573	03/02/23 09:50	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	47472	02/28/23 16:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	47505	03/01/23 17:48	AJ	EET MID

Eurofins Carlsbad

5 Lab Sample ID: 890-4195-5

Lab Chronicle

Client: Ensolum Project/Site: Jalmat 188 Job ID: 890-4195-1 SDG: 03D2057055

Client Sample ID: PH10F Date Collected: 02/24/23 11:00

Date Received: 02/24/23 12:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	5
Soluble	Leach	DI Leach			5.03 g	50 mL	47514	03/01/23 10:34	KS	EET MID	
Soluble	Analysis	300.0		5	50 mL	50 mL	47591	03/02/23 06:07	СН	EET MID	

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 890-4195-7 Matrix: Solid

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		Program	Identification Number	Expiration Date
as	1	NELAP	T104704400-22-25	06-30-23
The following analytes the agency does not o	•	but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
0,		Matrix	Analyte	
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH	

Job ID: 890-4195-1 SDG: 03D2057055

Page 124 of 182

Method Summary

Client: Ensolum Project/Site: Jalmat 188 Job ID: 890-4195-1 SDG: 03D2057055

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	erences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ec	lition, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Job ID: 890-4195-1
SDG: 03D2057055

		Sample Sun	nmary			
client: Ensolun Project/Site: Ja						ID: 890-4195-1 G: 03D2057055
ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
90-4195-1	PH08A	Solid	02/24/23 09:15	02/24/23 12:40	1	
0-4195-2	PH08D	Solid	02/24/23 09:30	02/24/23 12:40	4	
0-4195-3	PH09A	Solid	02/24/23 10:00	02/24/23 12:40	1	
)-4195-4	PH09D	Solid	02/24/23 10:15	02/24/23 12:40	4	
)-4195-5	PH10A	Solid	02/24/23 10:30	02/24/23 12:40	1	
)-4195-6	PH10D	Solid	02/24/23 10:50	02/24/23 12:40	4	
)-4195-7	PH10F	Solid	02/24/23 11:00	02/24/23 12:40	6	

		Environment Testing Xenco	esting	Midlanc EL Pa Hobb	ston, 1X (281) 24 3, TX (432) 704-9 350, TX (915) 58 5, NM (575) 392	10-4200, Daiias 5440, San Antor 5-3443, Lubboc -7550, Carlsbad	Houston, 1X (28 1) 240-4200, Dallas, 1X (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	×	Work Order No:	
Project Manager	loe Gahle			Rill to: (If different)		Kalai Jerminus - \	linsh Adams		Work Order Comments	k
Company Name:	Ensolum, LLC		0	Company Name:		1 1		Program: UST/PST	Program: UST/PST] PRP Brownfields RRC Superfund] RRC Superfund
Address:	601 N Marienfeld St Suite 400	St Suite 400		Address:		601 N Marienfeld St Suite 400	Suite 400	State of Project:]
City, State ZIP:	Midland, TX 79701	01	0	City, State ZIP:	Midland	Midland, TX 79701		Reporting: Level II	Reporting: Level II CLevel III PST/UST TRRP Level IV	
Phone:	903-386-8073		Ęmail:	Histonings@en	@ensolum.com, jo	jqable@ensolum.com	lum.com	Deliverables: EDD	ADaPT	Other:
Project Name:	1. bulmout 18	881	Turn /	Turn Around			ANALYSIS R	YSIS REQUEST	Pro	Preservative Codes
Project Number:	DIR	Ğ,	Routine	🗆 Rush	Pres. Code				None: NO	O DI Water: H ₂ O
Project Location:	12,39 554	-103-3502	Due Date:						Cool: Cool	
Sampler's Name:	Miennert	Federmata	TAT starts the	TAT starts the day received by					HCL: HC	C HNU3: HN
	-	4	110 mp, 11 1000		ters					
SAMPLE RECEIPT	Temp B	lank: () Yes) No W	Wet Ice:	Yes) No	ame1 00.0)					
Cooler Custody Seals:	Yes No	到	Factor:			-			Na2S20;	Na ₂ S ₂ O ₃ ; NaSO ₃
Sample Custody Seals:	als: Yes No	N/A Temperature Reading:	re Reading:	2.2	S (E	1	890-4195)-4195 Chain of Custody	Zn Aceta	Zn Acetate+NaOH: Zn
Sample Identification		Matrix Date Sampled	Date Time Sampled Sampled	Depth Grab/		TPH (801 BTEX (80			Sa	Sample Comments
PHDSA		5 62-24-30	0915	1. 6						
PHOSD		5	0930	4					INAPP	21203 1895
01104A		S	1000	H.	-					
CHOHO.		10	1015	5						
			3000	É f						
PHIOF			0011							
				-		-				
Total 200.7 / 6	6010 200.8 / 6020:		8RCRA 13PPM	^o M Texas 11	AI Sb As	Ba Be B Cd	r Co C	Pb Mg Mn Mo Ni K	Se Ag SiO ₂ Na Sr Ti	I Sn U V Zn
Circle Method(s) and Metal(s) to be analyzed	ind Metal(s) to be a	analyzed	TCLP / SPLP 6010:	LP 6010: 8R	BRCRA Sb As	Ba Be Cd Cr Co	Cu Pb	Mn Mo Ni Se Ag Ti U	Hg: 1631 / 245.1 / 7470 / 7471	/4/0 / /4/1
Notice: Signature of this of service. Eurofins Xen of Eurofins Xenco. A min	document and relinquis ico will be liable only for nimum charge of \$85.00	hment of samples cor the cost of samples a will be applied to eac	nstitutes a valid pu Ind shall not assun h project and a che	ırchase order from ne any responsibil arge of \$5 for each	i client company t ity for any losses sample submitte	o Eurofins Xenco or expenses inci d to Eurofins Xer	o, its affiliates and subcontract urred by the client if such loss nco, but not analyzed. These te	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard iterns and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated	; and conditions iyond the control eviously negotiated.	
Reindwistled by	1: (Soffeture)	A Receive	Received by: (Signature)	ure)	Date/Time	ime	Relinquished by: (Sigr	y: (Signature) Receiv	Received by: (Signature)	Date/Time
A		laet	S		204.23	3 1240				
1 1 V			7			4 0				
										Revised Date: 08/25/2020 Rev. 2020.2

3/9/2023

Page 127 of 182

Chain of Custody

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4195 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4195-1 SDG Number: 03D2057055

Job Number: 890-4195-1 SDG Number: 03D2057055

List Source: Eurofins Midland

List Creation: 02/28/23 11:19 AM

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 4195 List Number: 2 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

December 13, 2023

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: JALMAT 188

Enclosed are the results of analyses for samples received by the laboratory on 12/08/23 16:06.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

		COLE ATIONAL PARKS HWY BAD NM, 88220	
Received:	12/08/2023	Sampling Date:	12/07/2023
Reported:	12/13/2023	Sampling Type:	Soil
Project Name:	JALMAT 188	Sampling Condition:	Cool & Intact
Project Number:	03D2057055	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.395541,-103.3	21776	

Sample ID: PH 01 @ 8-10' (H236592-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6900	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	84.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: PH 01 @ 22-24' (H236592-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	83.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Ŷ	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	41,-103.321776		

Sample ID: PH 02 @ 10-12' (H236592-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4000	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	77.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS H CARLSBAD NM, 88220 Fax To:	łWY	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.3955	541,-103.321776		

Sample ID: PH 02 @ 22-24' (H236592-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	81.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.395541	l,-103.321776		

Sample ID: PH 03 @ 12-14' (H236592-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2240	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	83.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.395541	l,-103.321776		

Sample ID: PH 03 @ 26-28' (H236592-06)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4240	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	82.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.395541	.,-103.321776		

Sample ID: PH 03 @ 44-46' (H236592-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	77.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: PH 09 @ 8-10' (H236592-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7200	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	66.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	73.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Ŷ	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	41,-103.321776		

Sample ID: PH 09 @ 24-26' (H236592-09)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3600	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	83.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:	<i>′</i>	
Received:	12/08/2023		Sampling Date:	12/07/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.395541	.,-103.321776		

Sample ID: PH 09 @ 38-40' (H236592-10)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	81.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: BH 01 @ 2-4' (H236592-11)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	84.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: BH 01 @ 14-16' (H236592-12)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	78.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: BH 01 @ 28-30' (H236592-13)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	72.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: BH 02 @ 0-2' (H236592-14)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.29	114	2.00	2.19	
Toluene*	<0.050	0.050	12/11/2023	ND	2.26	113	2.00	2.38	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.23	111	2.00	1.90	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	7.04	117	6.00	1.56	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	12/11/2023	ND	432	108	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	83.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: BH 02 @ 11-16' (H236592-15)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	84.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	41,-103.321776		

Sample ID: BH 02 @ 28-30' (H236592-16)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	73.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: BH 03 @ 0-2' (H236592-17)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	83.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	41,-103.321776		

Sample ID: BH 03 @ 11-16' (H236592-18)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	202	101	200	1.43	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	209	104	200	0.577	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	76.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	41,-103.321776		

Sample ID: BH 03 @ 28-30' (H236592-19)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	190	94.9	200	3.90	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	184	92.0	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	81.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	41,-103.321776		

Sample ID: PH 07 @ 11-16' (H236592-20)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	190	94.9	200	3.90	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	184	92.0	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	81.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: PH 07 @ 26-30' (H236592-21)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	190	94.9	200	3.90	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	184	92.0	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	72.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: PH 06 @ 11-16' (H236592-22)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	190	94.9	200	3.90	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	184	92.0	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	84.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HW CARLSBAD NM, 88220 Fax To:	Y	
Received:	12/08/2023		Sampling Date:	12/08/2023
Reported:	12/13/2023		Sampling Type:	Soil
Project Name:	JALMAT 188		Sampling Condition:	Cool & Intact
Project Number:	03D2057055		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.39554	1,-103.321776		

Sample ID: PH 06 @ 26-30' (H236592-23)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2023	ND	2.19	110	2.00	7.15	
Toluene*	<0.050	0.050	12/11/2023	ND	2.09	104	2.00	12.1	
Ethylbenzene*	<0.050	0.050	12/11/2023	ND	2.18	109	2.00	12.3	
Total Xylenes*	<0.150	0.150	12/11/2023	ND	6.46	108	6.00	12.5	
Total BTEX	<0.300	0.300	12/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/11/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/11/2023	ND	190	94.9	200	3.90	
DRO >C10-C28*	<10.0	10.0	12/11/2023	ND	184	92.0	200	4.11	
EXT DRO >C28-C36	<10.0	10.0	12/11/2023	ND					
Surrogate: 1-Chlorooctane	83.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

pany Name oct Manage	101 East Marland, Hobbs, N (575) 393-2326 FAX (575): Eusodum LLC Hivel Cole Hivel Cole H	n: 88220	BILL TO P.O. #: Company: Attn:		ANALYSIS REQUEST
6	、 Stat 3ペリーフ ろんく Fax #	Zip: 88220	Attn: Address:		
6	257055	Munerick	City:		
Project Name:			State: Zip:		
Project Location:	32.3	321776	*:		
Sampler Name:	Rona Hoyes				
FOR LAB USE ONLY	1	MATRIX	PRESERV. SAM	SAMPLING	
HA3,597 Lab I.D.	Sample I.D.	(G)RAB OR (C)OMF # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER : ACID/BASE: ICE / COOL OTHER :	BTFX TPH CI-	
2	8	- ×			
,)) 9	PHONE CC-UM	•		105- 11.1	
ec				1132	
21-	0			1336	
00	0			1409	
R~				14 X.	
-00	PHNA (2 22-24 24-26)			1454	
PLEASE NOTE: Liability and Di analyses. All claims including th socials in a super shall Cardia	PH69 39 -40 mages Cardinal's liability and client's exclusions one for negligence and any other cause who as he liable for increase and any other cause who	5 -146' V V IS C.3 effs exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the cause whasoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the somewhat demanses includion without imitation business internutions, loss of use, or loss of profits incurred by client, its subsidiarities, somewhat demanses includion without imitation business internutions, loss of use, or loss of profits incurred by client, its subsidiarities,	or tort, shall be limited to the amount pa received by Cardinal within 30 days aft pas of use, or loss of profils incurred by	IS Z.3 V V V aid by the client for the ther completion of the applicable client its subsidiaries.	
Relinquished By:	ors arising out of or related to the performance of services hereunder L. Cardin Bd By: Date: Date: R. J.J. K.J.Z. R	Received By:	s based upon any of the above stated r	Verbal Result: Ves No Add'I Phone #: All Results are emailed. Ptesso provide Email address:) Add'I Phone #: ovide Email address:
Relinquished By:	M	Received By		REMARKS:	Com
Delivered By: (Circle One) Sampler - UPS - Bus - Ot	Bus - Other: Corrected Temp. °C 5.840	J. Suc Sample Condition	on CHECKED BY: (Initials)	Turnaround Time: Standard Rush Correction Factor 0°C	d M Bacteria (only) Sample Condition Cool Intact Observed Temp. °C

Received by OCD: 1/11/2024 3:04:14 PM

Page 155 of 182

Relinquished By: Relinquished By: Relinquished By: Delivered By: (Circle One) Sampler - UPS - Bus - Oth	PLEASE NOTE: Liability and Dame analyses. All claims including those service. In no event shall Cardinal t		T-	9	qè	JE VE	à	11	Hazugha Lab I.D.	FOR LAB USE ONLY	Project Location: Sampler Name:	Project Name:	Project #: 6	Phone #: 77	city: Carl	Address: 3	Project Manager:	Company Name:	
In out of or related to the performance of services becaunder to Cardinal, eggen V: Date: Receiv V: Date: Receiv V: Date: Receiv V: Date: Receiv Sincle One) Observed Temp. °C 5. 8 °C Bus - Other: Corrected Temp. °C 41/40	BHD TW 11-1 ges. Cardinal's liability and cilent's exclusive re for negligence and any other cause whatsoev to liable for incidental or consequental damage		BH63 @ 11-16	-	3-10-00-01-01-01-01-01-01-01-01-01-01-01-	4	30	BHOI @ 241 '	Sample I.D.	Contraction of the second	Asan Hands -10 3.	5	S	20 - 384. 7665 Fax #:	Ishad State: N/A	122 Nasonal Parks Huy	Anee Cole		aDOFator105 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476
	or any claim arising whether based in contract or tort, s be deemed waived unless made in writing and receive dring without limitation, business interruptions, loss of u							1 ×	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE OTHER :	MATRIX	S S / I (0 Fax #		Project Owner: Manerich City:	Add	Zip: 88220 Attn:		P.O. #		8246 2476
CHECKED BY: (Initials) CHECKED BY: CHECKED BY: Tur Checked BY: Con	tor tort, shall be imited to the amount paid by the client for the d received by Cardinal within 30 days after completion of the bos of use, or loss of profils incurred by client, its subsidiaries bos of use, or loss of profils incurred by client.		10	0	69	20		x 12/8/23		PRESERV. SAMPLING	ne#: #:	e: Zip:		Address:		Company:	*	BILL TO	
It: D Yes re emailed. Piez A CO & O A CO & Sta Time: Sta D #140 ctor 0°C	12.500 paid by the client for the after completion of the applicable by client, its subsidiaries,	1656 1 4 4	1052	0956	6953	101-00 101-00	0465 1 1. 1	SU X X X	BTEX TPH CI-	G								-	
Image: Noise Add'l Phone #: ep provide Email address: endard Endard Bacteria (only) Sample Condition Cool Intact Observed Temp. °C Pres Yes No Corrected Temp. °C							•											ANALYSIS REQUEST	d

Received by OCD: 1/11/2024 3:04:14 PM

Page 156 of 182

CHAIN-OF CUSTODY AND ANALYSIS REQUEST

		2010	A. 500
Page	28	of	28

-

ING ING ITIME Bit PH ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS ISS	State: IIII Zip: State: Project Owner: March: Address: Project Owner: March: State: -103.32172 Phone #: -103.32172 Presserv: Project Owner: March: State: Zip: -103.32172 Presserv: Par.#: Presserv: Fax.#: Presserv: G() OMP. Fax.#: D. G() OMP. G() OMP. Fax.#: III-10-000 G() IIII ONTER G() IIII ONTER Fax.#: IIII ONTER TIME July July July July July July July July		City: Cut/Shud, F Project #: 7.20, 384, 7.36 Project Name: Jul Mat, 188 Project Location: 3.2, 3954, 188 Project Location: 3.2, 3954, 188 Provenue: Num Sampler Name: Num Provenue: Num Sampler Name: Num Provenue: Num Sampler Name: Num Provenue: Num Sample: Num Provenue: Num Sample: Num Provenue: Num Sample: Num Provenue: Num Sample: Num Provenue: Num
		National Parks Hing	102
	P.O. #:	10/	T
ANALYSIS REQUEST	BILL TO	155 WM . LLC	Company Name: FMSS
1 17	Q	aboratories 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476	101 East Marlan

APPENDIX E

Reclamation Plan

Maverick Permian, LLC Remediation Work Plan Jalmat Yates Unit #188

RECLAMATION PLAN

The release occurred in a reclaimed area of the well pad and as such, a reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH was applied to the top 4 feet of the reclaimed area that was impacted by the release per 19.15.29.13.D (1)) NMAC for the top 4 feet of areas that will be reclaimed following remediation. The following Reclamation Plan addresses reclamation of the disturbed area:

- The excavation will be backfilled with locally sourced caliche and topsoil to match surrounding grade. Approximately 1 foot of topsoil will be placed on top of the caliche to support vegetative growth within the disturbed area;
- Soil in the vicinity of the release includes: fine silty sand and fine sandy loam;
- The backfilled areas will be seeded utilizing a weed-free seed mix designed by the NMSLO to meet reclamation standards for this region, which will be: Sandy Loam (SL) seed mixture as described in the NMSLO *Revegetation Guidelines Handbook for Southeastern New Mexico*, dated 2018;
- The seed mixture will be distributed with either a push broadcaster seed spreader, tractor operated broadcast seed spreader, and/or drill seeding method(s);
- Application of the seed mixutre will be at a coverage of 10 pounds of seeds per acre of reclaimed pasture with distribution by a drilling method or 20 pounds of seeds per acre of reclaimed pasture with distribution by a broadcast method;
- If necessary, erosion control management will potentially include:
 - The placement of waddles in areas with a propensity for high run off rates;
 - Straw cover if high winds are anticipated to support moisture retention and limit wind from blowing seeds away before they have had time to germinate; and/or
 - Other erosional control best management practices (BMP) as necessary to support timely and healthy regrowth of vegetation in disturbed areas;
- Seeding is anticipated to be completed in the fall when temperatures and precipitation is most conducive for vegetation growth. In general, seeding should occur approximately one month after the last frost in the spring up until approximately one month prior to the first fall frost. NMSLO has recognized the optimal time to seed is between July and early September, which will be adhered to for this Site;
- Annual inspections (at a minimum), will take place at the location until revegetation is consistent with local natural vegetation density. The Site will be inspected the following spring/fall to assess the success of regrowth. If necessary, an additional application of the NMSLO-approved pure live seed mixture will be applied as well as any needed BMPs will be installed to support growth and limit erosion.

Upon completion of revegetation, a copy of the C-103 submitted to NMOCD will also be submitted to NMSLO for final inspection and release.

APPENDIX F

NMOCD Notifications

Released to Imaging: 3/13/2024 9:45:08 AM

From:	Enviro, OCD, EMNRD		
To:	Kalei Jennings		
Cc:	Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD		
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 01/09/2023)		
Date:	Thursday, January 5, 2023 8:50:25 AM		
Attachments:	image005.jpg image006.png image007.png image008.png image009.png		

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Wednesday, January 4, 2023 5:08 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Hadlie Green <hgreen@ensolum.com>; Josh Adams <jadams@ensolum.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 01/09/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources (Maverick) plans to complete final sampling activities at the following sites the week of January 9, 2023.

- Oxy State F-1 / NAPP2235375291
- Jalmat 188 / NAPP2235373931
- Baish B Battery / NAPP2235372941

- MCA Battery #4 / NAPP2235376218
- VGEU 30-01 / NAPP2200643457
- EVGSAU Satellite 5 / NAPP2213957732

Thank you,

Kalei Jennings Senior Scientist 817-683-2503

Ensolum, LLC

From:	Enviro, OCD, EMNRD Kalei Jennings
To:	
Cc:	Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 01/16/2023)
Date:	Thursday, January 12, 2023 7:33:41 AM
Attachments:	image005.ipg image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Wednesday, January 11, 2023 5:25 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 01/16/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Natural Resources (Maverick) plans to complete final sampling activities at the following sites the week of January 16, 2023.

- Oxy State F-1 / NAPP2235375291
- Jalmat 188 / NAPP2235373931
- Jalmat 170 / NAPP2233946698
- MCA 151 / NAPP2235377174

- EVGSAU 2418-001 / NAPP2231954757
- Buckeye 43-01 / NAPP2230752440
- Leamex 018 / NAPP2234158858

٠

Thank you,

Kalei Jennings Senior Scientist 817-683-2503

Ensolum, LLC

From:	Enviro, OCD, EMNRD
To:	Kalei Jennings
Cc:	Nobui, Jennifer, EMNRD; Bratcher, Michael, EMNRD
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 02/20/2023)
Date:	Friday, February 17, 2023 7:23:46 AM
Attachments:	image005.ipg image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Thursday, February 16, 2023 11:28 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Bryce Wagoner <Bryce.Wagoner@mavresources.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 02/20/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Permian, LLC (Maverick) plans to complete final sampling activities at the following sites the week of February 20, 2023.

- Cone Jalmat South Satellite Header / NAPP2301881992
- Leamex 018/ NAPP2234158858
- MCA 351/ NAPP2302035947

- Jalmat 188 / NAPP2235373931
- Baish B Battery/ NAPP2235372941

Thank you,

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC

From:	Wells, Shelly, EMNRD
То:	Aimee Cole
Cc:	Velez, Nelson, EMNRD; Bratcher, Michael, EMNRD
Subject:	RE: [EXTERNAL] Maverick Permian, LLC - Sampling Notification (Week of 12/4/2023)
Date:	Wednesday, November 29, 2023 1:52:15 PM
Attachments:	image001.png image002.png image003.png image004.png

****EXTERNAL EMAIL****]

Good afternoon Aimee,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive | Santa Fe, NM 87505 (505)469-7520_Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Aimee Cole <acole@ensolum.com>
Sent: Wednesday, November 29, 2023 2:41 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick Permian, LLC - Sampling Notification (Week of 12/4/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Maverick Permian, LLC plans to complete sampling activities at the following sites the week of December 4th, 2023.

- Jalmat 188 / NAPP2235373931
 - Sampling Dates: 12/6/2023 12/8/2023 (between 9:00 am and 3:00 pm MT)
- Elvis Injection Line / NAPP2213642290
 - Sampling Dates: 12/4/2023 12/8/2023 (between 9:00 am and 3:00 pm MT)

Thank you,

Aimee Cole Senior Managing Scientist 720-384-7365 Ensolum, LLC

APPENDIX G Form C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 170 of 182

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2235373931
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Maverick Permian, LLC	OGRID: 331199
Contact Name: Bryce Wagoner	Contact Telephone: 928-241-1862
Contact email: <u>Bryce.Wagoner@mavresources.com</u>	Incident # (assigned by OCD)
Contact mailing address: 1410 NW County Road Hobbs, NM 88240	

Location of Release Source

Latitude 32.395541____

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Jalmat Yates Unit #188	Site Type
Date Release Discovered December 2, 2022	API# (if applicable) 30-025-37580

Unit Letter	Section	Township	Range	County
С	13	22S	35E	Lea

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 1 bbls	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls) 5 bbls	Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by flowline due to possible inner corrosion. The release occurred off pad. The source of the release has been stopped and the impacted area has been secured. Initial response and removal of saturated soil from the release area has been completed.

Page 2

Incident ID	NAPP2235373931
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
🗌 Yes 🖾 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Bryce Wagoner	Title:Permian HSE Specialist II
Signature: Rychapter 1	Date: <u>1/19/2022</u>
email:Bryce.Wagoner@mavresources.com	Telephone:928-241-1862
OCD Only	
Received by:	Date:

•

	Pooled Fluids on the Surface									
	Length (ft.)	Width (ft.)	Depth (in)	# of Boundaries *edges of pool where depth is 0 . don't count shared boundaries	Oil-Water Ratio (%)	Pooled Area (ft ²)	Estimated Average Depth (ft.)	Pooled Volume (bbl.)	Volume of Oil in Subsurface (bbl.)	Volume of Water in Subsurface (bbl.)
Rectangle A	20.0	15.0	2.0	4.0	0.30	300.0	0.0	2.2	0.67	1.56
Rectangle B	20.0	15.0	2.0	4.0	0.30	300.0	0.0	2.2	0.67	1.56
Rectangle C	10.0	6.0	2.00	4.00	0.30	60.000	0.042	0.445	0.02	0.31
Rectangle D						0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Rectangle E						0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Total Volume (bbls): 4.90 1.35 3.43									

	Subsurface Fluids									
	Length (ft.)	Width (ft.)	Depth (in.)	Saturation (%) *10% in consolidated sediments after rain to 50% in sand with no precipitation	Oil-Water Ratio (%)	Area (ft²)	Volume (bbl.)	Estimated Volume in Subsurface (bbl.)	Volume of Oil in Subsurface (bbl.)	Volume of Water in Subsurface (bbl.)
Rectangle A	15.0	10.0	2.0	0.2	0.30	150.0	4.5	0.9	0.27	0.6
Rectangle B	10.0	5.0	2.0	0.2	0.30	50.0	1.5	0.3	0.09	0.2
Rectangle C				0.2	0.30	0.0	0.0	0.0	0.00	0.0
Rectangle D						0.0	0.0	0.0	0.00	0.0
Rectangle E						0.0	0.0	0.0	0.00	0.0
Rectangle F						0.0	0.0	0.0	0.00	0.0
Rectangle G						0.0	0.0	0.0	0.00	0.0
Rectangle H						0.0	0.0	0.0	0.00	0.0
Rectangle I						0.0	0.0	0.0	0.00	0.0
Rectangle J						0.0	0.0	0.0	0.00	0.0
	Total Volume (bbls): 1.19 0.36 0.83									

TOTAL RELEASE VOLUME (bbls): 6.1

Released to Imaging: 3/13/2024 9:45:08 AM

Received by OCD: 1/11/2024 3:04:14 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 173 of 182
ncident ID	NAPP2235373931
District RP	
acility ID	

Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🔀 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🔀 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

<i>eceived by OCD: 1/11/2024</i> form C-141	3:04:14 PM State of New Mexico		Page 174 of
Page 4	Oil Conservation Division	Incident ID District RP	NAPP2235373931
		Facility ID	
		Application ID	
public health or the environmen failed to adequately investigate	Date: 1/08	relieve the operator of liability sho vater, surface water, human health 7 for compliance with any other fee ialist II	ould their operations have or the environment. In
OCD Only			
Received by:	Dat	te:	

Received by OCD: 1/11/2024 3:04:14 PM State of New Mexico

Page 5

Oil Conservation Division

Page 175 of 182

Incident ID	NAPP2235373931
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points \boxtimes Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Bryce Wagoner Title: Permian HSE Specialist II 1/08/2024 Signature: Date: email: Bryce Magor er@mavresources.com Telephone: 928-241-1862 **OCD Only** Received by: Date: Approved with Attached Conditions of Approval Approved Denied Deferral Approved Signature: Michael Buchanan Date: 03/13/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 301733

QUESTIONS		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	301733	
	Action Type:	
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2235373931
Incident Name	NAPP2235373931 JALMAT YATES UNIT #188 @ 30-025-37580
Incident Type	Other
Incident Status	Remediation Plan Received
Incident Well	[30-025-37580] JALMAT FIELD YATES SAND UNIT #188

Location of Release Source

Please answer all the questions in this group.		
Site Name	JALMAT YATES UNIT #188	
Date Release Discovered	12/02/2022	
Surface Owner	Private	

Incident Details

Please answer all the questions in this group.
Incident Type

Incident Type	Other
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Cause: Corrosion | Flow Line - Production | Crude Oil | Released: 1 BBL | Recovered: 0 BBL | Crude Oil Released (bbls) Details Lost: 1 BBL Cause: Corrosion | Flow Line - Production | Produced Water | Released: 5 BBL | Recovered: Produced Water Released (bbls) Details 0 BBL | Lost: 5 BBL Is the concentration of chloride in the produced water >10,000 mg/l No Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing Not answered. Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 177 of 182

QUESTIONS, Page 2

Action 301733

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 301733 Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Nature and Volume of Release (continued)			
No, according to supplied volumes this does not appear to be a "gas only" report.			
No			
Unavailable.			
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.			

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.	
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why Not answered.		
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.	
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	

I hereby agree and sign off to the above statement	Name: Aimee Cole
	Email: acole@ensolum.com
	Date: 01/09/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 301733

Page 178 of 182

QUESTIONS (continued)	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	301733
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release an	d the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)
Any other fresh water well or spring	Between ½ and 1 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between ½ and 1 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride Chloride (EPA 300.0 or SM4500 Cl B) 18400 TPH (GR0+DRO+MRO) (EPA SW-846 Method 8015M) 572 GR0+DRO (EPA SW-846 Method 8015M) 572 BTEX (EPA SW-846 Method 8021B or 8260B) 0 Benzene (EPA SW-846 Method 8021B or 8260B) 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed	Please answer all the questions that	apply or are indicated. This information must be provided to	the appropriate district office no later than 90 days after the release discovery date.
Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) 18400 Chloride (EPA 300.0 or SM4500 Cl B) 18400 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 572 GRO+DRO (EPA SW-846 Method 8015M) 572 BTEX (EPA SW-846 Method 8021B or 8260B) 0 Benzene (EPA SW-846 Method 8021B or 8260B) 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. 01/09/2023 On what estimated date will the remediation commence 01/09/2023 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 00 What is the estimated surface area (in square feet) that will be reclaimed 20000 3000	Requesting a remediation pla	an approval with this submission	Yes
Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 Cl B) TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) GRO+DRO (EPA SW-846 Method 8015M) BTEX (EPA SW-846 Method 8021B or 8260B) Benzene (EPA SW-846 Method 8021B or 8260B) Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12. Which includes the anticipated timelines for beginning and completing the remediation. 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	Attach a comprehensive report demo	onstrating the lateral and vertical extents of soil contamination	n associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 Cl B) TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) GRO+DRO (EPA SW-846 Method 8015M) BTEX (EPA SW-846 Method 8021B or 8260B) Benzene (EPA SW-846 Method 8021B or 8260B) Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 Which includes the anticipated timelines for beginning and completing the remediation. On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	Have the lateral and vertical e	extents of contamination been fully delineated	Yes
Chloride (EPA 300.0 or SM4500 Cl B) 18400 TPH (GR0+DR0+MRO) (EPA SW-846 Method 8015M) 572 GR0+DRO (EPA SW-846 Method 8015M) 572 BTEX (EPA SW-846 Method 8021B or 8260B) 0 Benzene (EPA SW-846 Method 8021B or 8260B) 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	Was this release entirely con	tained within a lined containment area	No
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 572 GRO+DRO (EPA SW-846 Method 8015M) 572 BTEX (EPA SW-846 Method 8021B or 8260B) 0 Benzene (EPA SW-846 Method 8021B or 8260B) 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	Soil Contamination Sampling: (Provide the highest observable value for each, in m	illigrams per kilograms.)
GRO+DRO (EPA SW-846 Method 8015M) 572 BTEX (EPA SW-846 Method 8021B or 8260B) 0 Benzene (EPA SW-846 Method 8021B or 8260B) 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	Chloride	(EPA 300.0 or SM4500 CI B)	18400
BTEX (EPA SW-846 Method 8021B or 8260B) 0 Benzene (EPA SW-846 Method 8021B or 8260B) 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	572
Benzene (EPA SW-846 Method 8021B or 8260B) 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	GRO+DRO	(EPA SW-846 Method 8015M)	572
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	BTEX	(EPA SW-846 Method 8021B or 8260B)	0
which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/09/2023 On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	Benzene	(EPA SW-846 Method 8021B or 8260B)	0
On what date will (or did) the final sampling or liner inspection occur 12/08/2023 On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000			d efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
On what date will (or was) the remediation complete(d) 12/08/2023 What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	On what estimated date will t	he remediation commence	01/09/2023
What is the estimated surface area (in square feet) that will be reclaimed 20000 What is the estimated volume (in cubic yards) that will be reclaimed 3000	On what date will (or did) the	final sampling or liner inspection occur	12/08/2023
What is the estimated volume (in cubic yards) that will be reclaimed 3000	On what date will (or was) the	e remediation complete(d)	12/08/2023
	What is the estimated surface	area (in square feet) that will be reclaimed	20000
	What is the estimated volume	(in cubic vards) that will be reclaimed	3000
What is the estimated surface area (in square feet) that will be remediated 20000	What is the estimated surface	(in ouble yards) that will be residinted	
What is the estimated volume (in cubic yards) that will be remediated 3000			20000
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.	What is the estimated volume	e area (in square feet) that will be remediated	

esponsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 301733

QUESTIONS (continued)	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	301733
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	R360 Artesia LLC LANDFARM [fEEM0112340644]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No
(In Situ) Soil Vapor Extraction	No
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No
Ground Water Abatement pursuant to 19.15.30 NMAC	No
OTHER (Non-listed remedial process)	No
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
L berefy certify that the information given above is true and complete to the best of my k	showledge and understand that pursuant to OCD rules and regulations all operators are required
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Aimee Cole

Date: 01/09/2024 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 180 of 182

Action 301733

QUESTIONS (continued)		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	301733	
	Action Type:	
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 181 of 182

QUESTIONS, Page 6

Action 301733

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	301733
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	301763
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/09/2023
What was the (estimated) number of samples that were to be gathered	50
What was the sampling surface area in square feet	20000

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed. Requesting a remediation closure approval with this submission No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 301733

CONDITIONS	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	301733
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

Created By	Condition	Condition Date
michael.buchanan	The Remediation Plan is Conditionally Approved. Boreholes drilled to determine DTW are required to be open for a minimum of 72 hours. All samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination. Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Confirmation samples should be collected every 200 ft2. All off pad areas must meet reclamation standards set forth in the OCD Spill Rule. The work will need to occur in 90 days after the work plan has been reviewed.	3/13/2024