From:
 Wells, Shelly, EMNRD

 To:
 Barnhill, Amy

 Cc:
 Velez, Nelson, EMNRD

Subject: [**EXTERNAL**] RE: [EXTERNAL] Sampling Notice Variances

Date: Wednesday, May 8, 2024 11:22:41 AM

Be aware this external email contains an attachment and/or link. Ensure the email and contents are expected. If there are concerns, please submit suspicious messages to the

Cyber Intelligence Center using the Report Phishing button.

Hi Amy,

For the incidents below, you will receive the following whether it is denied or approved: "Operator failed to provide proper Sampling Notification pursuant to 19.15.29.12.D.(1).(a) NMAC. Failure to provide proper sampling notice is a compliance issue and OCD may pursue compliance actions pursuant to 19.15.5 NMAC. Operator shall ensure future compliance with 19.15.29.12.D(1)(a) NMAC." Feel free to resubmit. Nelson will be reviewing nAPP2311640670 and I will be reviewing both nAPP2230526211 and nApp2303652118.

Kind regards,

Shelly

Shelly Wells * Environmental Specialist-Advanced

Environmental Bureau

EMNRD-Oil Conservation Division

1220 S. St. Francis Drive|Santa Fe, NM 87505

(505)469-7520|Shelly.Wells@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/

From: Barnhill, Amy <ABarnhill@chevron.com>

Sent: Wednesday, May 8, 2024 8:53 AM

To: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov> **Cc:** Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Subject: [EXTERNAL] Sampling Notice Variances

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hello Nelson and Shelly,

Chevron has been working on some older spills and completed all the final sampling events before the 12-1-23 changes. Therefore, we were unable to add sampling notices to the website before we completed the final sampling event. I am asking for permission to submit these reports without the final sampling

notifications. Please let me know how to proceed.

nAPP2230526211 nApp2303652118 nAPP2311640670

Thank you,
Amy Barnhill
Environmental Specialist 2
Tel +1 432 687 7108
Mobile +1 432 940 8524
ABarnhill@chevron.com

Mid-Continent Business Unit

Chevron North America Exploration and Production Company

CLOSURE REQUEST REPORT

Cotton Draw Section 3 CTB

Lea County, New Mexico
Incident Number nAPP2303652118

Prepared For: Chevron USA, Inc. 6301 Deauville Blvd. Midland, TX 79706

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc. (Chevron), presents the following Closure Request Report (CRR) detailing excavation activities and subsequent soil sampling activities for an inadvertent release of crude oil and produced water at the Cotton Draw Section 3 CTB ((Site) (**Figure 1** in **Appendix A**)). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Chevron is requesting No Further Action (NFA) at the Site.

SITE LOCATION AND BACKGROUND

On January 21, 2023, a main trunk pipeline failure caused the release of approximately 23.591 barrels (bbls) of crude oil and 52.263 bbls of produced water into the pasture along a lease road. Vacuum trucks were able to recover approximately 20.215 bbls of crude oil and 44.785 bbls of produced water. Chevron reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on February 5, 2023, and was subsequently assigned Incident Number nAPP2303652118. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC). Chevron initiated excavation activities based on visual observations in effort to remove residual soil impacts from the Site.

The initial Form C-141 reported that the Site was located in Unit J, Section 3, Township 25 South, Range 32 East, in Lea County, New Mexico (32.158292° N, 103.660364° W), however, the release area associated with the pipeline is located south of the Site, along the eastern edge of a lease road in Unit B, Section 10, Township 25 South, Range 32 East, in Eddy County, New Mexico (32.151551° N, 103.661590° W) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM). The updated legals and coordinates are provided on the Final Form C-141.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

Etech confirmed the Site was characterized according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

Depth to groundwater at the Site is estimated to be between 51 and 100 feet below ground surface (bgs), based on New Mexico Office of the State Engineer (NMOSE) permitted soil boring C-04634 (TW-10) that was drilled by Atkins Engineering Associates, Inc. for Devon Energy on June 5, 2022. The soil boring is located approximately 1.0 miles southwest of the Site and may be referenced on **Figure 1** in **Appendix A**. Using a truck mounted drill rig equipped with hollow stem auger, the soil boring was advanced to a total depth of 55 feet bgs. No fluids were observed throughout the drilling process nor after an observation period

Closure Request Report Incident Number nAPP2303652118 Cotton Draw Section 3 CTB exceeding 72 hours. Following the observed period, the boring was plugged and abandoned according to the appropriate regulations. The well record and log is provided in **Appendix B**.

Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a low potential karst area. All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details and sources used to determine the site characterization are included in **Figure 1** in **Appendix A**.

Based on the results from the desktop review for depth to groundwater, surrounding wells are greater than 0.5-mile from the Site which resulted in the application of the following Closure Criteria as per the NMOCD depth to groundwater determination requirements:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria
Chloride	(Environmental Protection Agency) EPA 300.0	600 milligrams per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	100 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

EXCAVATION SOIL SAMPLING ACTIVITIES

Following the completion of additional excavation activities conducted by Chevron, Etech was retained to conduct confirmation soil sampling activities. 5-point composite confirmation excavation soil samples were collected at a sampling frequency of 200 square feet from the excavation floor and sidewalls. The 5-point composite soil samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. Each sidewall soil sample depth represents the approximate average depth from which the five aliquots were collected. Floor soil samples were collected from approximately 5 feet bgs. The soil samples were then placed into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, for analysis of COCs. The location of confirmation excavation soil samples is shown in **Figure 3** in **Appendix A**.

Based on laboratory analytical results for soil samples Bottom Hole (BH) 7, BH10, BH13, BH21, BH32, which indicated elevated chloride concentrations ranging from 1,230 mg/kg to 8,670 mg/kg, additional remediation appeared warranted.

On July 17 and July 18, 2023, Etech resumed excavation activities based on elevated chloride concentrations identified by laboratory analytical results. Excavation activities were driven by field screening soil samples for volatile organic compounds (VOCs) using a photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips. Following additional soil removal, composite confirmation excavation soil samples were collected from the new excavation floors, handled, and analyzed for chloride as previously described.

Impacted soil was removed from the Site and transported to a licensed and approved New Mexico landfill under Chevron approved waste manifests. Upon receipt of the final confirmation excavation soil samples results, the excavation was backfilled with clean, locally sourced soil and the Site was restored to "as close to its original state" as possible. Approximately 1,554 cubic yards were excavated from within the AOC. Photographic documentation of excavation activities is included in **Appendix C**.

LABORATORY ANALYTICAL RESULTS

Closure Request Report Incident Number nAPP2303652118 Cotton Draw Section 3 CTB

pg. 3

Laboratory analytical results for all final confirmation excavation soil samples indicated all analyzed COCs were below the Site Closure Criteria. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

SITE CLOSURE REQUEST

Based on laboratory analytical results for confirmation excavation soil samples, Chevron believes residual soil impacts associated with the inadvertent release have been excavated and removed from the Site. Concentrations of COCs for all final confirmation excavation soil samples were below the Site Closure Criteria. Chevron believes the completed remedial actions have mitigated impacts at the Site and the requirements set forth in NMAC guidelines to be protective of human health, the environment, and groundwater. As such, NFA appears warranted at this time and this CRR associated with Incident Number nAPP2303652118 should be respectfully considered for Closure by the NMOCD.

If you have any questions or comments, please do not hesitate to contact Blake Estep at (432) 894-6038 or blake@etechenv.com.

Sincerely,

Etech Environmental and Safety Solutions, Inc.

Blake Estep Project Manager

cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

Bureau of Land Management

Appendices:

Appendix A: Figure 1: Site Map

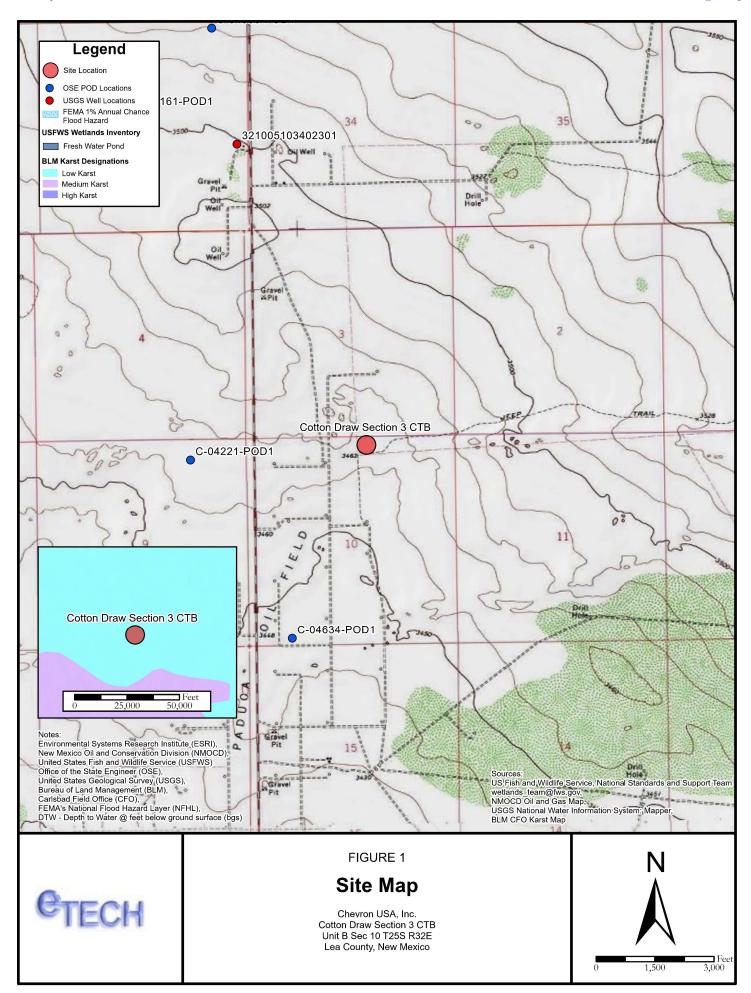
Figure 2: Area of Concern

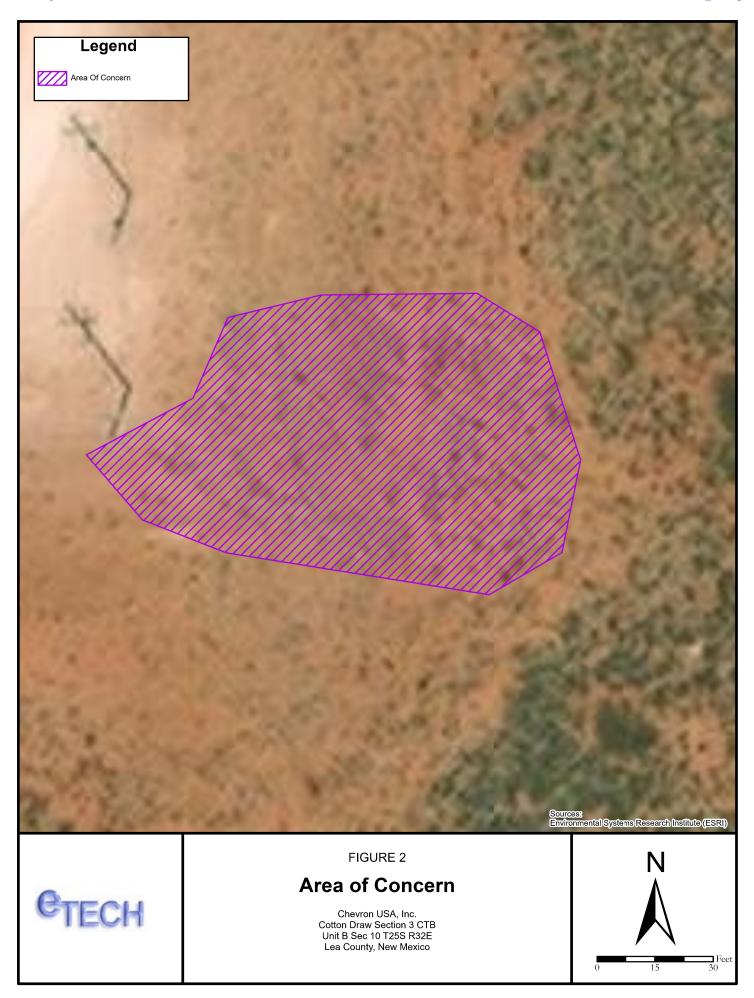
Figure 3: Excavation Soil Sample Locations

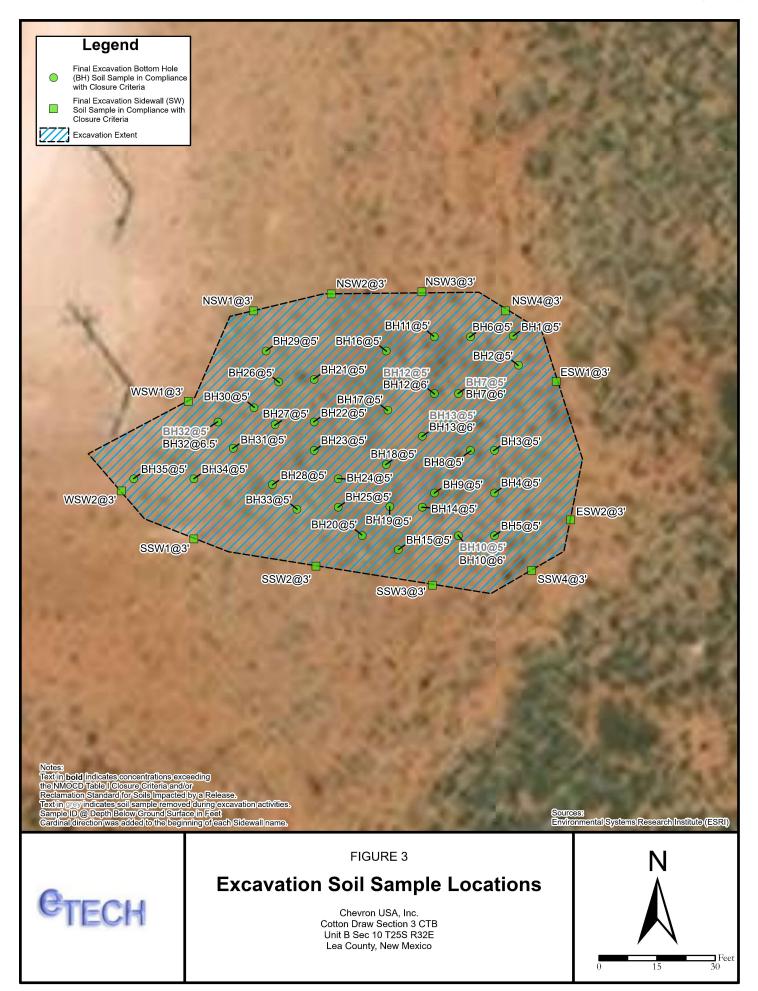
Appendix B: Referenced Well Record

Appendix C: Photographic Log

Appendix D: Tables


Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation


Closure Request Report Incident Number nAPP2303652118 Cotton Draw Section 3 CTB


APPENDIX A

Figures

APPENDIX B

Referenced Well Record

												_		
ION	OSE POD NO POD 1 (T		NO.)			WELL TAG ID NO. N/A			OSE FILE NO C-4634	(S).				
COCAT	WELL OWN Devon En		B(S)						PHONE (OPT 575-748-18					
GENERAL AND WELL LOCATION	well own 6488 7 Ri		ING ADDRESS Vy						CITY Artesia			STAT NM	88210	ZIP
L AND	WELL		LATITUDE	DE	EGREES 32	MINUTES 8	SECO 17		* ACCURAC	Y REQUIRED:	ONE TENT	H OF A	A SECOND	
VERA	(FROM G	PS)	LONGITUDE		103	40	4.	33 W	* DATUM RE	QUIRED: WG	S 84			
1. GE	1		TING WELL LOCA O T25S R32S N		STREET ADDR	RESS AND COMMON	LANDM	IARKS – PLS	S (SECTION, TO	OWNSHJIP, RA	ANGE) WHE	ERE AV	VAILABLE	
	LICENSE NO		NAME OF LI	ICENSED		Jackie D. Atkins							COMPANY ng Associates, I	nc.
	DRILLING S 6/7/2		DRILLING E 6/7/202			MPLETED WELL (FI	T)	ı	LE DEPTH (FT) ±55	DEPTH W	ATER FIRS		COUNTERED (FT)	
N	COMPLETE	D WELL IS	S: ARTESI	IAN	✓ DRY HOL	E SHALLO	W (UNC	ONFINED)		WATER LEV PLETED WEI		A	DATE STATIC: 6/13/2	
ATIC	DRILLING F	LUID:	_ AIR		☐ MUD	ADDITIV	ES – SPE	CIFY:						
ORM	DRILLING N	ÆTHOD:	ROTARY	HAMN	MER CABI	LE TOOL 🕜 OTHE	ER – SPE	CIFY: H	Iollow Stem	Auger	CHECK I	HERE I LED	IF PITLESS ADAI	TER IS
INF	DEPTH	(feet bgl)) BORE I	HOLE	CASING	MATERIAL AND GRADE	CA	ASING	CASI	NG	CAS	SING WALL	SLOT	
2. DRILLING & CASING INFORMATION	FROM	то	DIA (inch			each casing string, sections of screen)	and	CONN	NECTION YPE ling diameter)	INSIDE :		TI	HICKNESS (inches)	SIZE (inches)
& C	0	55	±6.	5		Boring-HSA		,						
ING														
RILI			_											
2. D										 				
			_											
	DEPTH	(feet bgl)) BORE H	HOLE	LIS	ST ANNULAR SE	AL MA	TERIAL A	ND	AM	OUNT	T	METHO	O OF
IAL	FROM	ТО	DIAM. (i	nches)	GRA	VEL PACK SIZE-	RANGI	BY INTE	RVAL	(cub	oic feet)		PLACEM	ENT
ANNULAR MATERIAL														
Z MA		,										_		
ITA												_		
NN										DSE DI	TUNI	157	022 PM3:13	
3. A														
	OSE INTER	NAL US							WR-2	0 WELL RE	CORD &		(Version 01/28	3/2022)
FILE		<u>C-</u>	4639	705	, , ,	POD NO.	7	JD 1	TRN		261	47		
LOC	ATION	70	- 6 1	()7	(5		<	5	WELL TACK	DAIO A	~ MA	-	DAGE	OF 2

	DEPTH (f	feet bgl)	THICKNESS	COLOR AN	ND TYPE OF MATERIAL E	NCOUNTERED -		WATER	ESTIMATED YIELD FOR
	FROM	то	(feet)		ER-BEARING CAVITIES O pplemental sheets to fully d		S	BEARING? (YES / NO)	WATER- BEARING ZONES (gpm)
	0	4	4	Sand, Fine	-grained, poorly graded, 2.5 Y	YR 3/6, Dark Red		Y ✓N	
	4	14	10	Caliche	e, with Fine-grained sand, 7.5	YR 7/4, Pink		Y ✓N	
	14	55	41	Sand, Fine-grained, p	poorly graded, with Caliche,	7.5 YR 7/6, Reddish Y	ellow	Y ✓N	
								Y N	
								Y N	
13								Y N	
4. HYDROGEOLOGIC LOG OF WELL								Y N	
OF								Y N	
07								Y N	
310	8							Y N	
TO								Y N	
GEC								Y N	
)RO								Y N	
HXI								Y N	
4	8							Y N	
								Y N	
								Y N	
								Y N	
								Y N	
								Y N	
								Y N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARIN	IG STRATA:			AL ESTIMATED	
	PUM	P A	IR LIFT	BAILER O	THER - SPECIFY:		WEI	LL YIELD (gpm):	0.00
ION	WELL TES				TA COLLECTED DURING HOWING DISCHARGE AN				
VISION	MISCELLA	NEOUS INF	FORMATION: To	emporary well mater	ial removed and soil borin	g backfilled using di	rill cut	tings from total de	enth to ten feet
PER			De	elow ground surface	bgs), then hydrated benton	ite chips ten feet bg	s to su	rface.	
GSL			32 C	2 DU 237		n	or mi	I JUN 16 2022	laumit m
TEST; RIG SUPEF						See Co	nd have look d	TO TO TOTAL	. rm3,13
res	PRINT NAM	Æ(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PRO	OVIDED ONSITE SUPERVI	SION OF WELL CON	STRU	CTION OTHER TH	IAN LICENSEE:
.3.	Shane Eldric	dge, Camer	ron Pruitt						
,.					BEST OF HIS OR HER KNO				
SIGNATURE					ND THAT HE OR SHE WIL MPLETION OF WELL DRIL		RECOL	RD WITH THE STA	ATE ENGINEER
NAT	~ /								
SIG	Jack A	Atkins		Ja	ackie D. Atkins			6/16/2022	
9	<i>V</i>	SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME			DATE	
	R OSE INTER	NAL USE	16.21		POD NO. POD V		LL RE	CORD & LOG (Ver	rsion 01/28/2022)
	E NO. CATION	261	1634	5 1.0	POD NO. 7001		+	26471	PAGE 2 OF 2
LUC	ATION	25	56	2 10	d.2.0	WELL TAG ID NO.		1011	TAGE 2 OF 2

APPENDIX C

Photographic Log

eTECH

PHOTOGRAPHIC LOG

Chevron USA, Inc.
Cotton Draw Section 3 CTB
Incident Number: nAPP2303652118

/2022

1 1232 1+06 32-161/31 N, TOC 66 U N V 206 W

Photograph 1 Date: 01/23/2023

Description: Western view of excavation activities.

Photograph 2 Date: 01/23/2023

Description: West to southwestern view of excavation activities.

4/17/ 32.151658* N, 103.66

Photograph 3 Date: 04/17/2023 Description: Northern view of excavation activities.

Photograph 4 Date: 04/17/2023

Description: Southwestern view of excavation activities.

eTECH

PHOTOGRAPHIC LOG

Chevron USA, Inc.
Cotton Draw Section 3 CTB
Incident Number: nAPP2303652118

Photograph 5 Date: 07/17/2023

Description: Northwestern view of resumed

excavation activities.

Photograph 7 Date: 08/11/2023 Description: Northwestern view of backfilling activities.

Photograph 6 Date: 07/18/2023
Description: Southern view of resumed excavation activities.

Photograph 8 Date: 08/11/2023

Description: Northern view of backfilling activities.

APPENDIX D

Tables

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Cotton Draw Section 3 CTB Lea County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closu Release (NMAC 19.15.		s Impacted by a	10	50	NE	NE	NE	100	600
			Ex	cavation Soil Samples	- Incident Number nAF	PP2303652118			
Bottom Hole 1	04/17/2023	5	<0.00100	<0.00655	<25.0	<25.0	<25.0	<25.0	20.6
Bottom Hole 2	04/17/2023	5	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	12.5
Bottom Hole 3	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	141
Bottom Hole 4	04/17/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	119
Bottom Hole 5	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	38.2
Bottom Hole 6	04/17/2023	5	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	77.9
Bottom Hole 7	04/17/2023	5	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	1,230
Bottom Hole 7	07/18/2023	6	<0.0202	<0.0404	<25.3	59.5	<25.3	59.5	61.1
Bottom Hole 8	04/17/2023	5	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	73.0
Bottom Hole 9	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	9.10
Bottom Hole 10	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	791
Bottom Hole 10	07/18/2023	6	<0.0202	<0.0404	<25.3	<25.3	<25.3	<25.3	78.8
Bottom Hole 11	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	24.8
Bottom Hole 12	04/17/2023	5	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	4,300
Bottom Hole 12	07/18/2023	6	<0.0204	<0.0408	<25.5	<25.5	<25.5	<25.5	399
Bottom Hole 13	04/17/2023	5	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	1,780
Bottom Hole 13	07/18/2023	6	<0.0202	<0.0404	<25.3	<25.3	<25.3	<25.3	73.7
Bottom Hole 14	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	29.8
Bottom Hole 15	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	11.9
Bottom Hole 16	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	14.6
Bottom Hole 17	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	468
Bottom Hole 18	04/17/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	84.6
Bottom Hole 19	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	17.5
Bottom Hole 20	04/17/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	32.9
Bottom Hole 21	04/17/2023	5	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	8,670
Bottom Hole 21	07/18/2023	6.5	<0.00222	<0.0444	<27.8	<27.8	<27.8	<27.8	78.9
Bottom Hole 22	04/17/2023	5	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	385

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Cotton Draw Section 3 CTB Lea County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closure Release (NMAC 19.15.2		s Impacted by a	10	50	NE	NE	NE	100	600
Bottom Hole 23	04/17/2023	5	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	220
Bottom Hole 24	04/17/2023	5	<0.00102	<0.00204	<25.5	34.3	26.3	60.5	89.0
Bottom Hole 25	04/17/2023	5	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	17.0
Bottom Hole 26	04/17/2023	5	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	28.6
Bottom Hole 27	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	44.4
Bottom Hole 28	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	43.7
Bottom Hole 29	04/17/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	152
Bottom Hole 30	04/17/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	234
Bottom Hole 31	04/17/2023	5	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	370
Bottom Hole 32	04/17/2023	5	<0.00100	<0.00200	<25.0	93.6	<25.0	93.6	1,650
Bottom Hole 32	07/18/2023	6.5	<0.0225	<0.0225	<28.1	<28.1	<28.1	<28.1	42.9
Bottom Hole 33	04/17/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	151
Bottom Hole 34	04/17/2023	5	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	95.6
Bottom Hole 35	04/17/2023	5	<0.00100	<0.0200	<25.0	<25.0	<25.0	<25.0	59.2
North Sidewall 1	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	196
North Sidewall 2	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	192
North Sidewall 3	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	103
North Sidewall 4	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	42.2
South Sidewall 1	04/17/2023	3	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	178
South Sidewall 2	04/17/2023	3	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	499
South Sidewall 3	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	103

Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Cotton Draw Section 3 CTB Lea County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29)		10	50	NE	NE	NE	100	600	
South Sidewall 4	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	91.4
West Sidewall 1	04/17/2023	3	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	53.5
West Sidewall 2	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	105
East Sidewall 1	04/17/2023	3	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	18.5
East Sidewall 2	04/17/2023	3	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	270

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria for Soils Impacted by a Release

Text in "grey" represents excavated soil samples

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 2

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Chevron Cotton Draw Section 3

Project Number: 17489 Location: New Mexico

Lab Order Number: 3D19002

Current Certification

Report Date: 09/12/23

13000 West County Road 100Project Number:17489Odessa TX, 79765Project Manager:Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Project: Chevron Cotton Draw Section 3

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 1 @ 5'	3D19002-01	Soil	04/17/23 09:30	04-19-2023 10:23
Bottom Hole - 2 @ 5'	3D19002-02	Soil	04/17/23 09:33	04-19-2023 10:23
Bottom Hole - 3 @ 5'	3D19002-03	Soil	04/17/23 09:36	04-19-2023 10:23
Bottom Hole - 4 @ 5'	3D19002-04	Soil	04/17/23 09:39	04-19-2023 10:23
Bottom Hole - 5 @ 5'	3D19002-05	Soil	04/17/23 09:42	04-19-2023 10:23
Bottom Hole - 6 @ 5'	3D19002-06	Soil	04/17/23 09:46	04-19-2023 10:23
Bottom Hole - 7 @ 5'	3D19002-07	Soil	04/17/23 09:49	04-19-2023 10:23
Bottom Hole - 8 @ 5'	3D19002-08	Soil	04/17/23 09:53	04-19-2023 10:23
Bottom Hole - 9 @ 5'	3D19002-09	Soil	04/17/23 09:57	04-19-2023 10:23
Bottom Hole - 10 @ 5'	3D19002-10	Soil	04/17/23 09:59	04-19-2023 10:23
Bottom Hole - 11 @ 5'	3D19002-11	Soil	04/17/23 10:02	04-19-2023 10:23
Bottom Hole - 12 @ 5'	3D19002-12	Soil	04/17/23 10:05	04-19-2023 10:23
Bottom Hole - 13 @ 5'	3D19002-13	Soil	04/17/23 10:08	04-19-2023 10:23
Bottom Hole - 14 @ 5'	3D19002-14	Soil	04/17/23 10:10	04-19-2023 10:23
Bottom Hole - 15 @ 5'	3D19002-15	Soil	04/17/23 10:13	04-19-2023 10:23
Bottom Hole - 16 @ 5'	3D19002-16	Soil	04/17/23 10:16	04-19-2023 10:23
Bottom Hole - 17 @ 5'	3D19002-17	Soil	04/17/23 10:19	04-19-2023 10:23
Bottom Hole - 18 @ 5'	3D19002-18	Soil	04/17/23 10:22	04-19-2023 10:23
Bottom Hole - 19 @ 5'	3D19002-19	Soil	04/17/23 10:25	04-19-2023 10:23
Bottom Hole - 20 @ 5'	3D19002-20	Soil	04/17/23 10:29	04-19-2023 10:23
Bottom Hole - 21 @ 5'	3D19002-21	Soil	04/17/23 10:32	04-19-2023 10:23
Bottom Hole - 22 @ 5'	3D19002-22	Soil	04/17/23 10:35	04-19-2023 10:23
Bottom Hole - 23 @ 5'	3D19002-23	Soil	04/17/23 10:39	04-19-2023 10:23
Bottom Hole - 24 @ 5'	3D19002-24	Soil	04/17/23 10:42	04-19-2023 10:23
Bottom Hole - 25 @ 5'	3D19002-25	Soil	04/17/23 10:45	04-19-2023 10:23
Bottom Hole - 26 @ 5'	3D19002-26	Soil	04/17/23 10:48	04-19-2023 10:23
Bottom Hole - 27 @ 5'	3D19002-27	Soil	04/17/23 10:51	04-19-2023 10:23
Bottom Hole - 28 @ 5'	3D19002-28	Soil	04/17/23 10:54	04-19-2023 10:23
Bottom Hole - 29 @ 5'	3D19002-29	Soil	04/17/23 10:57	04-19-2023 10:23
Bottom Hole - 30 @ 5'	3D19002-30	Soil	04/17/23 10:59	04-19-2023 10:23
Bottom Hole - 31 @ 5'	3D19002-31	Soil	04/17/23 11:02	04-19-2023 10:23
Bottom Hole - 32 @ 5'	3D19002-32	Soil	04/17/23 11:05	04-19-2023 10:23
Bottom Hole - 33 @ 5'	3D19002-33	Soil	04/17/23 11:08	04-19-2023 10:23
Bottom Hole - 34 @ 5'	3D19002-34	Soil	04/17/23 11:12	04-19-2023 10:23

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 35 @ 5'	3D19002-35	Soil	04/17/23 11:15	04-19-2023 10:23
North Sidewall - 1 @ 3'	3D19002-36	Soil	04/17/23 11:18	04-19-2023 10:23
North Sidewall - 2 @ 3'	3D19002-37	Soil	04/17/23 11:21	04-19-2023 10:23
North Sidewall - 3 @ 3'	3D19002-38	Soil	04/17/23 11:24	04-19-2023 10:23
North Sidewall - 4 @ 3'	3D19002-39	Soil	04/17/23 11:28	04-19-2023 10:23
South Sidewall - 1 @ 3'	3D19002-40	Soil	04/17/23 11:31	04-19-2023 10:23
South Sidewall - 2 @ 3'	3D19002-41	Soil	04/17/23 11:35	04-19-2023 10:23
South Sidewall - 3 @ 3'	3D19002-42	Soil	04/17/23 11:39	04-19-2023 10:23
South Sidewall - 4 @ 3'	3D19002-43	Soil	04/17/23 11:43	04-19-2023 10:23
West Sidewall - 1 @ 3'	3D19002-44	Soil	04/17/23 11:47	04-19-2023 10:23
West Sidewall - 2 @ 3'	3D19002-45	Soil	04/17/23 11:50	04-19-2023 10:23
East Sidewall - 1 @ 3'	3D19002-46	Soil	04/17/23 11:54	04-19-2023 10:23
East Sidewall - 2 @ 3'	3D19002-47	Soil	04/17/23 11:58	04-19-2023 10:23

Project Number: 17489

Project: Chevron Cotton Draw Section 3

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole - 1 @ 5' 3D19002-01 (Soil)

	Limi	t Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2004	04/20/23 13:17	04/21/23 09:55	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2004	04/20/23 13:17	04/21/23 09:55	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2004	04/20/23 13:17	04/21/23 09:55	EPA 8021B	
Xylene (p/m)	0.00468	0.00200	mg/kg dry	1	P3D2004	04/20/23 13:17	04/21/23 09:55	EPA 8021B	
Xylene (o)	0.00187	0.00100	mg/kg dry	1	P3D2004	04/20/23 13:17	04/21/23 09:55	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P3D2004	04/20/23 13:17	04/21/23 09:55	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	9.9 %	80-120		P3D2004	04/20/23 13:17	04/21/23 09:55	EPA 8021B	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 18:52	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 18:52	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 18:52	TPH 8015M	
Surrogate: 1-Chlorooctane	7	75.5 %	70-130		P3D2006	04/20/23 15:00	04/22/23 18:52	TPH 8015M	
Surrogate: o-Terphenyl	7	9.8 %	70-130		P3D2006	04/20/23 15:00	04/22/23 18:52	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 18:52	calc	
General Chemistry Parameters by	y EPA / Standa	ard Metl	ıods						
Chloride	20.6	1.00	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 02:28	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 2 @ 5' 3D19002-02 (Soil)

Analyte	Lim Result	it Repo	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Result		UIIIIS	Dilution	Datcii	rrepared	Allalyzed	Withing	11010
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:15	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:15	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:15	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:15	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/21/23 21:15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/21/23 21:15	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 19:15	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 19:15	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 19:15	TPH 8015M	
Surrogate: 1-Chlorooctane		73.6 %	70-130		P3D2006	04/20/23 15:00	04/22/23 19:15	TPH 8015M	
Surrogate: o-Terphenyl		79.9 %	70-130		P3D2006	04/20/23 15:00	04/22/23 19:15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 19:15	calc	
General Chemistry Parameters by	FPA / Stand	lard Metl	hods						
Chloride	12.5	1.02	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 02:43	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 3 @ 5' 3D19002-03 (Soil)

Australia	Lim	it Repo	~						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:36	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:36	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:36	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:36	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/21/23 21:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/21/23 21:36	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:10	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:10	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:10	TPH 8015M	
Surrogate: 1-Chlorooctane		62.3 %	70-130		P3D2006	04/20/23 15:00	04/24/23 11:10	TPH 8015M	S-GC1
Surrogate: o-Terphenyl		69.4 %	70-130		P3D2006	04/20/23 15:00	04/24/23 11:10	TPH 8015M	S-GC1
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/24/23 11:10	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	nods						
Chloride	141	1.01	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 02:57	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 4 @ 5' 3D19002-04 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:56	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:56	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:56	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:56	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 21:56	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3D2112	04/21/23 15:05	04/21/23 21:56	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		102 %	80-120		P3D2112	04/21/23 15:05	04/21/23 21:56	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 20:00	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 20:00	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 20:00	TPH 8015M	
Surrogate: 1-Chlorooctane		83.3 %	70-130		P3D2006	04/20/23 15:00	04/22/23 20:00	TPH 8015M	
Surrogate: o-Terphenyl		88.5 %	70-130		P3D2006	04/20/23 15:00	04/22/23 20:00	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 20:00	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	119	1.00	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 03:40	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 5 @ 5' 3D19002-05 (Soil)

	Lim	it Repo	•						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 22:58	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 22:58	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 22:58	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 22:58	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 22:58	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P3D2112	04/21/23 15:05	04/21/23 22:58	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/21/23 22:58	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 20:22	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 20:22	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 20:22	TPH 8015M	
Surrogate: 1-Chlorooctane		84.2 %	70-130		P3D2006	04/20/23 15:00	04/22/23 20:22	TPH 8015M	
Surrogate: o-Terphenyl		83.9 %	70-130		P3D2006	04/20/23 15:00	04/22/23 20:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 20:22	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	38.2	1.01	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 03:54	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 6 @ 5' 3D19002-06 (Soil)

Analyte	Lim Result	it Repo	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Result		UIIIIS	Dilution	Datcii	rrepared	Allalyzed	Wichiod	11010
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:18	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:18	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:18	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:18	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/21/23 23:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P3D2112	04/21/23 15:05	04/21/23 23:18	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:33	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:33	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:33	TPH 8015M	
Surrogate: 1-Chlorooctane		50.7 %	70-130		P3D2006	04/20/23 15:00	04/24/23 11:33	TPH 8015M	S-GC.
Surrogate: o-Terphenyl		57.1 %	70-130		P3D2006	04/20/23 15:00	04/24/23 11:33	TPH 8015M	S-GC.
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	04/20/23 15:00	04/24/23 11:33	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	77.9	1.04	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 04:09	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 7 @ 5' 3D19002-07 (Soil)

Analyte	Lim Result	it Repo	Units	Dilution	Batch	Dronorad	Analyzed	Method	Note
	Result		Units	Dilution	Баісп	Prepared	Analyzeu	Wictilod	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:39	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:39	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:39	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:39	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3D2112	04/21/23 15:05	04/21/23 23:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3D2112	04/21/23 15:05	04/21/23 23:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/21/23 23:39	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	\ Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 21:08	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 21:08	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 21:08	TPH 8015M	
Surrogate: 1-Chlorooctane		73.8 %	70-130		P3D2006	04/20/23 15:00	04/22/23 21:08	TPH 8015M	
Surrogate: o-Terphenyl		85.6 %	70-130		P3D2006	04/20/23 15:00	04/22/23 21:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 21:08	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	1230	1.04	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 04:23	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 8 @ 5' 3D19002-08 (Soil)

	Lim	it Repo	~						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:00	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:00	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:00	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:00	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:00	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/22/23 00:00	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3D2112	04/21/23 15:05	04/22/23 00:00	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 21:31	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 21:31	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 21:31	TPH 8015M	
Surrogate: 1-Chlorooctane	(81.2 %	70-130		P3D2006	04/20/23 15:00	04/22/23 21:31	TPH 8015M	
Surrogate: o-Terphenyl		88.3 %	70-130		P3D2006	04/20/23 15:00	04/22/23 21:31	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 21:31	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	10ds						
Chloride	73.0	1.02	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 04:37	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 9 @ 5' 3D19002-09 (Soil)

Analyte	Lim	it Repor	~					M 4 1	NT 4
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:20	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:20	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:20	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:20	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:20	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P3D2112	04/21/23 15:05	04/22/23 00:20	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/22/23 00:20	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 22:38	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 22:38	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 22:38	TPH 8015M	
Surrogate: 1-Chlorooctane		79.6 %	70-130		P3D2006	04/20/23 15:00	04/22/23 22:38	TPH 8015M	
Surrogate: o-Terphenyl		84.9 %	70-130		P3D2006	04/20/23 15:00	04/22/23 22:38	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 22:38	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	10ds						
Chloride	9.10	1.01	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 04:51	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 10 @ 5' 3D19002-10 (Soil)

Analyte	Lim	it Repo						26.4.4	3. 7 .
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:41	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:41	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:41	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:41	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 00:41	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P3D2112	04/21/23 15:05	04/22/23 00:41	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/22/23 00:41	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:56	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:56	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 11:56	TPH 8015M	
Surrogate: 1-Chlorooctane		40.5 %	70-130		P3D2006	04/20/23 15:00	04/24/23 11:56	TPH 8015M	S-GC.
Surrogate: o-Terphenyl		42.4 %	70-130		P3D2006	04/20/23 15:00	04/24/23 11:56	TPH 8015M	S-GC.
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/24/23 11:56	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	791	1.01	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 05:06	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 11 @ 5' 3D19002-11 (Soil)

A	Limi	it Repor	~						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:01	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:01	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:01	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:01	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P3D2112	04/21/23 15:05	04/22/23 01:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/22/23 01:01	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 23:24	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 23:24	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 23:24	TPH 8015M	
Surrogate: 1-Chlorooctane	;	76.9 %	70-130		P3D2006	04/20/23 15:00	04/22/23 23:24	TPH 8015M	
Surrogate: o-Terphenyl	8	81.7 %	70-130		P3D2006	04/20/23 15:00	04/22/23 23:24	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 23:24	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	nods						
Chloride	24.8	1.01	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 05:20	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 12 @ 5' 3D19002-12 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:22	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:22	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:22	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:22	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:22	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P3D2112	04/21/23 15:05	04/22/23 01:22	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P3D2112	04/21/23 15:05	04/22/23 01:22	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 23:46	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 23:46	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3D2006	04/20/23 15:00	04/22/23 23:46	TPH 8015M	
Surrogate: 1-Chlorooctane	Ċ	80.9 %	70-130		P3D2006	04/20/23 15:00	04/22/23 23:46	TPH 8015M	
Surrogate: o-Terphenyl	ě	89.9 %	70-130		P3D2006	04/20/23 15:00	04/22/23 23:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	04/20/23 15:00	04/22/23 23:46	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	4300	5.15	mg/kg dry	5	P3D2604	04/26/23 08:00	04/27/23 05:34	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 13 @ 5' 3D19002-13 (Soil)

Analyta	Lim	it Repo						36.4.4	3.7
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:43	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:43	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:43	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:43	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 01:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P3D2112	04/21/23 15:05	04/22/23 01:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P3D2112	04/21/23 15:05	04/22/23 01:43	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:09	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:09	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:09	TPH 8015M	
Surrogate: 1-Chlorooctane		74.4 %	70-130		P3D2006	04/20/23 15:00	04/23/23 00:09	TPH 8015M	
Surrogate: o-Terphenyl		81.2 %	70-130		P3D2006	04/20/23 15:00	04/23/23 00:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	04/20/23 15:00	04/23/23 00:09	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	1780	1.02	mg/kg dry	1	P3D2604	04/26/23 08:00	04/27/23 06:17	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 14 @ 5' 3D19002-14 (Soil)

Analyte	Lim	it Repo		D.1	D : 1	D 1	A1 1	M-41 1	XT /
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 02:04	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 02:04	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 02:04	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 02:04	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2112	04/21/23 15:05	04/22/23 02:04	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-120		P3D2112	04/21/23 15:05	04/22/23 02:04	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P3D2112	04/21/23 15:05	04/22/23 02:04	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:32	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:32	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:32	TPH 8015M	
Surrogate: 1-Chlorooctane		80.2 %	70-130		P3D2006	04/20/23 15:00	04/23/23 00:32	TPH 8015M	
Surrogate: o-Terphenyl		86.9 %	70-130		P3D2006	04/20/23 15:00	04/23/23 00:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/23/23 00:32	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	29.8	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 12:07	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 15 @ 5' 3D19002-15 (Soil)

	Limit	t Repo	~						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:25	EPA 8021B	
Toluene	ND (0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:25	EPA 8021B	
Ethylbenzene	ND (0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:25	EPA 8021B	
Xylene (p/m)	ND (0.00202	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:25	EPA 8021B	
Xylene (o)	ND (0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:25	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P3D2113	04/21/23 15:08	04/25/23 13:25	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	8.8 %	80-120		P3D2113	04/21/23 15:08	04/25/23 13:25	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:55	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:55	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 00:55	TPH 8015M	
Surrogate: 1-Chlorooctane	8	8.0 %	70-130		P3D2006	04/20/23 15:00	04/23/23 00:55	TPH 8015M	
Surrogate: o-Terphenyl	9	5.8 %	70-130		P3D2006	04/20/23 15:00	04/23/23 00:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/23/23 00:55	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	ıods						
Chloride	11.9	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 12:28	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 16 @ 5' 3D19002-16 (Soil)

A :: -1	Limi	t Repo	~						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:46	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:46	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:46	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:46	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 13:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P3D2113	04/21/23 15:08	04/25/23 13:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	9.2 %	80-120		P3D2113	04/21/23 15:08	04/25/23 13:46	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 01:18	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 01:18	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/23/23 01:18	TPH 8015M	
Surrogate: 1-Chlorooctane	8	32.7 %	70-130		P3D2006	04/20/23 15:00	04/23/23 01:18	TPH 8015M	
Surrogate: o-Terphenyl	8	89.4 %	70-130		P3D2006	04/20/23 15:00	04/23/23 01:18	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/23/23 01:18	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	10ds						
Chloride	14.6	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 12:48	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 17 @ 5' 3D19002-17 (Soil)

Analyte	Limi	it Repo	·					36.4.4	37.
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:07	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:07	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:07	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:07	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:07	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3D2113	04/21/23 15:08	04/25/23 14:07	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	98.8 %	80-120		P3D2113	04/21/23 15:08	04/25/23 14:07	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 12:18	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 12:18	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 12:18	TPH 8015M	
Surrogate: 1-Chlorooctane		56.0 %	70-130		P3D2006	04/20/23 15:00	04/24/23 12:18	TPH 8015M	S-GC.
Surrogate: o-Terphenyl	(53.2 %	70-130		P3D2006	04/20/23 15:00	04/24/23 12:18	TPH 8015M	S-GC.
Total Petroleum Hydrocarbon	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:00	04/24/23 12:18	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	468	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 13:09	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 18 @ 5' 3D19002-18 (Soil)

Australia	Limi	t Repo							
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:28	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:28	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:28	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:28	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:28	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3D2113	04/21/23 15:08	04/25/23 14:28	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	99.2 %	80-120		P3D2113	04/21/23 15:08	04/25/23 14:28	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 12:41	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 12:41	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2006	04/20/23 15:00	04/24/23 12:41	TPH 8015M	
Surrogate: 1-Chlorooctane	7	79.6 %	70-130		P3D2006	04/20/23 15:00	04/24/23 12:41	TPH 8015M	
Surrogate: o-Terphenyl	8	84.8 %	70-130		P3D2006	04/20/23 15:00	04/24/23 12:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:00	04/24/23 12:41	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	84.6	1.00	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 13:29	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 19 @ 5' 3D19002-19 (Soil)

	Limi	t Repo	~						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:48	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:48	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:48	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:48	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 14:48	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3D2113	04/21/23 15:08	04/25/23 14:48	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	98.7 %	80-120		P3D2113	04/21/23 15:08	04/25/23 14:48	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 12:46	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 12:46	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 12:46	TPH 8015M	
Surrogate: 1-Chlorooctane	7	6.2 %	70-130		P3D2102	04/20/23 15:50	04/22/23 12:46	TPH 8015M	
Surrogate: o-Terphenyl	8	86.7 %	70-130		P3D2102	04/20/23 15:50	04/22/23 12:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 12:46	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	ıods						
Chloride	17.5	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 13:50	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 20 @ 5' 3D19002-20 (Soil)

	Limit	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 15:14	EPA 8021B	
Toluene	ND (0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 15:14	EPA 8021B	
Ethylbenzene	ND (0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 15:14	EPA 8021B	
Xylene (p/m)	ND (0.00200	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 15:14	EPA 8021B	
Xylene (o)	ND (0.00100	mg/kg dry	1	P3D2113	04/21/23 15:08	04/25/23 15:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P3D2113	04/21/23 15:08	04/25/23 15:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	7.5 %	80-120		P3D2113	04/21/23 15:08	04/25/23 15:14	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 13:11	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 13:11	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 13:11	TPH 8015M	
Surrogate: 1-Chlorooctane	8	3.0 %	70-130		P3D2102	04/20/23 15:50	04/22/23 13:11	TPH 8015M	
Surrogate: o-Terphenyl	8	7.8 %	70-130		P3D2102	04/20/23 15:50	04/22/23 13:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 13:11	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	nods						
Chloride	32.9	1.00	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 14:10	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 21 @ 5' 3D19002-21 (Soil)

	Limi	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 20:56	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 20:56	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 20:56	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 20:56	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 20:56	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	04.6 %	80-120		P3D2608	04/26/23 15:30	04/26/23 20:56	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	08.2 %	80-120		P3D2608	04/26/23 15:30	04/26/23 20:56	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 09:34	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 09:34	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 09:34	TPH 8015M	
Surrogate: 1-Chlorooctane	6	57.9 %	70-130		P3D2102	04/20/23 15:50	04/24/23 09:34	TPH 8015M	S-GC
Surrogate: o-Terphenyl	7	79.9 %	70-130		P3D2102	04/20/23 15:50	04/24/23 09:34	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.5	mg/kg dry	1	[CALC]	04/20/23 15:50	04/24/23 09:34	calc	
C6-C35									
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	8670	10.2	mg/kg dry	10	P3D2605	04/26/23 08:00	04/26/23 14:31	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 22 @ 5' 3D19002-22 (Soil)

Analyte	Limi	t Repo						36.4.4	N.T
Anaryte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 21:17	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 21:17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 21:17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 21:17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 21:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	ģ	9.6%	80-120		P3D2608	04/26/23 15:30	04/26/23 21:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	ç	9.8 %	80-120		P3D2608	04/26/23 15:30	04/26/23 21:17	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 14:02	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 14:02	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 14:02	TPH 8015M	
Surrogate: 1-Chlorooctane	7	72.0 %	70-130		P3D2102	04/20/23 15:50	04/22/23 14:02	TPH 8015M	
Surrogate: o-Terphenyl	8	89.6 %	70-130		P3D2102	04/20/23 15:50	04/22/23 14:02	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 14:02	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	385	1.03	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 15:32	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 23 @ 5' 3D19002-23 (Soil)

Amalanta	Lim	it Repo							
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:19	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:19	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:19	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:19	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.4 %	80-120		P3D2608	04/26/23 15:30	04/26/23 22:19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	!	98.3 %	80-120		P3D2608	04/26/23 15:30	04/26/23 22:19	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 09:59	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 09:59	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 09:59	TPH 8015M	
Surrogate: 1-Chlorooctane		74.5 %	70-130		P3D2102	04/20/23 15:50	04/24/23 09:59	TPH 8015M	
Surrogate: o-Terphenyl		87.9 %	70-130		P3D2102	04/20/23 15:50	04/24/23 09:59	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.5	mg/kg dry	1	[CALC]	04/20/23 15:50	04/24/23 09:59	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	220	1.02	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 15:53	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 24 @ 5' 3D19002-24 (Soil)

	Limi	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:39	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:39	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:39	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:39	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 22:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	g	98.4 %	80-120		P3D2608	04/26/23 15:30	04/26/23 22:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	96.0 %	80-120		P3D2608	04/26/23 15:30	04/26/23 22:39	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 10:24	TPH 8015M	
>C12-C28	34.3	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 10:24	TPH 8015M	
>C28-C35	26.3	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 10:24	TPH 8015M	
Surrogate: 1-Chlorooctane	Ć	59.5 %	70-130		P3D2102	04/20/23 15:50	04/24/23 10:24	TPH 8015M	S-GC
Surrogate: o-Terphenyl	7	79.9 %	70-130		P3D2102	04/20/23 15:50	04/24/23 10:24	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	60.5	25.5	mg/kg dry	1	[CALC]	04/20/23 15:50	04/24/23 10:24	calc	
General Chemistry Parameters by 1	EPA / Stand:	ard Metl	hods						
Chloride	89.0	1.02	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 16:54	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 25 @ 5' 3D19002-25 (Soil)

Analyte	Lim	it Repo	•	D'1 -:	D 4 1	D .	A 1 J	Method	NT.
7 mary to	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:00	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:00	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:00	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:00	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:00	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	98.6 %	80-120		P3D2608	04/26/23 15:30	04/26/23 23:00	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	99.0 %	80-120		P3D2608	04/26/23 15:30	04/26/23 23:00	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 15:18	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 15:18	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 15:18	TPH 8015M	
Surrogate: 1-Chlorooctane	Ċ	80.0 %	70-130		P3D2102	04/20/23 15:50	04/22/23 15:18	TPH 8015M	
Surrogate: o-Terphenyl	d	89.3 %	70-130		P3D2102	04/20/23 15:50	04/22/23 15:18	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.5	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 15:18	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	17.0	1.02	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 17:36	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 26 @ 5' 3D19002-26 (Soil)

Analyte	Lim	it Repo	•	75.11	D		A 1	M-41 1	NT /
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:21	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:21	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:21	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:21	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:21	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	98.9 %	80-120		P3D2608	04/26/23 15:30	04/26/23 23:21	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3D2608	04/26/23 15:30	04/26/23 23:21	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 15:44	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 15:44	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 15:44	TPH 8015M	
Surrogate: 1-Chlorooctane	Ċ	81.4 %	70-130		P3D2102	04/20/23 15:50	04/22/23 15:44	TPH 8015M	
Surrogate: o-Terphenyl	9	90.7 %	70-130		P3D2102	04/20/23 15:50	04/22/23 15:44	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 15:44	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	28.6	1.02	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 17:56	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 27 @ 5' 3D19002-27 (Soil)

	Limi	t Repo	rtıng						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:41	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:41	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:41	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:41	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/26/23 23:41	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3D2608	04/26/23 15:30	04/26/23 23:41	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	8.4 %	80-120		P3D2608	04/26/23 15:30	04/26/23 23:41	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 16:10	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 16:10	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 16:10	TPH 8015M	
Surrogate: 1-Chlorooctane	7	75.8 %	70-130		P3D2102	04/20/23 15:50	04/22/23 16:10	TPH 8015M	
Surrogate: o-Terphenyl	8	5.8 %	70-130		P3D2102	04/20/23 15:50	04/22/23 16:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 16:10	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	nods						
Chloride	44.4	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 18:17	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 28 @ 5' 3D19002-28 (Soil)

Analyte	Result	Repo	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	result				Dutti	110parea	, ·		
		P	ermian B	asin Envii	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:02	EPA 8021B	
Toluene	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:02	EPA 8021B	
Ethylbenzene	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:02	EPA 8021B	
Xylene (p/m)	ND (0.00202	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:02	EPA 8021B	
Xylene (o)	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:02	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	Î	104 %	80-120		P3D2608	04/26/23 15:30	04/27/23 00:02	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	8.2 %	80-120		P3D2608	04/26/23 15:30	04/27/23 00:02	EPA 8021B	
F-4-1 D-41 H1	C25 b EDA	M - 41 J	001 <i>5</i> M						
Total Petroleum Hydrocarbons C6 C6-C12	-C35 by EFA ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 10:49	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 10:49	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 10:49	TPH 8015M	
Surrogate: 1-Chlorooctane		5.7 %	70-130		P3D2102	04/20/23 15:50	04/24/23 10:49	TPH 8015M	
Surrogate: o-Terphenyl		1.4 %	70-130		P3D2102	04/20/23 15:50	04/24/23 10:49	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:50	04/24/23 10:49	calc	
C6-C35	T.D	23.3			. ,				
General Chemistry Parameters by	EPA / Standa	rd Metl	nods						
Chloride	43.7	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 18:37	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 29 @ 5' 3D19002-29 (Soil)

	Limi	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:24	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:24	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:24	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:24	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	08.0 %	80-120		P3D2608	04/26/23 15:30	04/27/23 00:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	-	103 %	80-120		P3D2608	04/26/23 15:30	04/27/23 00:24	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 17:52	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 17:52	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 17:52	TPH 8015M	
Surrogate: 1-Chlorooctane	8	32.5 %	70-130		P3D2102	04/20/23 15:50	04/22/23 17:52	TPH 8015M	
Surrogate: o-Terphenyl	9	3.1 %	70-130		P3D2102	04/20/23 15:50	04/22/23 17:52	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 17:52	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	10ds						
Chloride	152	1.00	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 18:58	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 30 @ 5' 3D19002-30 (Soil)

	Limit	t Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:45	EPA 8021B	
Toluene	ND (0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:45	EPA 8021B	
Ethylbenzene	ND (0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:45	EPA 8021B	
Xylene (p/m)	ND (0.00200	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:45	EPA 8021B	
Xylene (o)	ND (0.00100	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 00:45	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	7.5 %	80-120		P3D2608	04/26/23 15:30	04/27/23 00:45	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	i	105 %	80-120		P3D2608	04/26/23 15:30	04/27/23 00:45	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 18:17	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 18:17	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 18:17	TPH 8015M	
Surrogate: 1-Chlorooctane	8	5.4 %	70-130		P3D2102	04/20/23 15:50	04/22/23 18:17	TPH 8015M	
Surrogate: o-Terphenyl	9	1.3 %	70-130		P3D2102	04/20/23 15:50	04/22/23 18:17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 18:17	calc	
General Chemistry Parameters by	EPA / Standa	ard Meth	nods						
Chloride	234	1.00	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 19:18	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 31 @ 5' 3D19002-31 (Soil)

Analyte	Limit	Repor	~					26.4.4	37.
Anaryte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 01:06	EPA 8021B	
Toluene	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 01:06	EPA 8021B	
Ethylbenzene	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 01:06	EPA 8021B	
Xylene (p/m)	ND (0.00202	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 01:06	EPA 8021B	
Xylene (o)	ND (0.00101	mg/kg dry	1	P3D2608	04/26/23 15:30	04/27/23 01:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	Ì	107 %	80-120		P3D2608	04/26/23 15:30	04/27/23 01:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	6.7 %	80-120		P3D2608	04/26/23 15:30	04/27/23 01:06	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 18:42	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 18:42	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 18:42	TPH 8015M	
Surrogate: 1-Chlorooctane	8	0.2 %	70-130		P3D2102	04/20/23 15:50	04/22/23 18:42	TPH 8015M	
Surrogate: o-Terphenyl	9	1.3 %	70-130		P3D2102	04/20/23 15:50	04/22/23 18:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 18:42	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	nods						
Chloride	370	1.01	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 19:39	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 32 @ 5' 3D19002-32 (Soil)

	Limi	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/28/23 09:57	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/28/23 09:57	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/28/23 09:57	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2707	04/27/23 15:09	04/28/23 09:57	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/28/23 09:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	Č	89.8 %	80-120		P3D2707	04/27/23 15:09	04/28/23 09:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	94.5 %	80-120		P3D2707	04/27/23 15:09	04/28/23 09:57	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:06	TPH 8015M	
>C12-C28	93.6	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:06	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:06	TPH 8015M	
Surrogate: 1-Chlorooctane	8	87.0 %	70-130		P3D2102	04/20/23 15:50	04/22/23 19:06	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130		P3D2102	04/20/23 15:50	04/22/23 19:06	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	93.6	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 19:06	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	10ds						
Chloride	1650	1.00	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 19:59	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 33 @ 5' 3D19002-33 (Soil)

	Limit	t Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND (0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:13	EPA 8021B	
Toluene	ND (0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:13	EPA 8021B	
Ethylbenzene	ND (0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:13	EPA 8021B	
Xylene (p/m)	ND (0.00200	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:13	EPA 8021B	
Xylene (o)	ND (0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	8.0 %	80-120		P3D2707	04/27/23 15:09	04/27/23 20:13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	6.6 %	80-120		P3D2707	04/27/23 15:09	04/27/23 20:13	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:31	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:31	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:31	TPH 8015M	
Surrogate: 1-Chlorooctane	8.	2.1 %	70-130		P3D2102	04/20/23 15:50	04/22/23 19:31	TPH 8015M	
Surrogate: o-Terphenyl	9.	2.5 %	70-130		P3D2102	04/20/23 15:50	04/22/23 19:31	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 19:31	calc	
General Chemistry Parameters by	EPA / Standa	ard Meth	ıods						
Chloride	151	1.00	mg/kg dry	1	P3D2605	04/26/23 08:00	04/26/23 20:20	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 34 @ 5' 3D19002-34 (Soil)

A	Lim	it Repo	U						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:33	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:33	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:33	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:33	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2707	04/27/23 15:09	04/27/23 20:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.2 %	80-120		P3D2707	04/27/23 15:09	04/27/23 20:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P3D2707	04/27/23 15:09	04/27/23 20:33	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:55	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:55	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 19:55	TPH 8015M	
Surrogate: 1-Chlorooctane	(81.9 %	70-130		P3D2102	04/20/23 15:50	04/22/23 19:55	TPH 8015M	
Surrogate: o-Terphenyl		92.7 %	70-130		P3D2102	04/20/23 15:50	04/22/23 19:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 19:55	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	95.6	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 17:30	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 35 @ 5' 3D19002-35 (Soil)

Analyte	Limi	t Repo						36.4.4	NT .
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/25/23 23:49	EPA 8021B	
Toluene	0.00207	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/25/23 23:49	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/25/23 23:49	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/25/23 23:49	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/25/23 23:49	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P3D2501	04/25/23 09:48	04/25/23 23:49	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	99.0 %	80-120		P3D2501	04/25/23 09:48	04/25/23 23:49	EPA 8021B	
Total Petroleum Hydrocarbons C(6_C35 by FPA	Mathad	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 20:19	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 20:19	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 20:19	TPH 8015M	
Surrogate: 1-Chlorooctane	7	79.4 %	70-130		P3D2102	04/20/23 15:50	04/22/23 20:19	TPH 8015M	
Surrogate: o-Terphenyl	g	00.8 %	70-130		P3D2102	04/20/23 15:50	04/22/23 20:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 20:19	calc	
General Chemistry Parameters by	v EPA / Standa	ard Metl	hods						
Chloride	59.2	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 17:59	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

North Sidewall - 1 @ 3' 3D19002-36 (Soil)

	Limi	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:10	EPA 8021B	
Toluene	0.00175	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:10	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:10	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:10	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	ç	98.2 %	80-120		P3D2501	04/25/23 09:48	04/26/23 00:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	Ģ	97.9 %	80-120		P3D2501	04/25/23 09:48	04/26/23 00:10	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 20:44	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 20:44	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 20:44	TPH 8015M	
Surrogate: 1-Chlorooctane	8	86.7 %	70-130		P3D2102	04/20/23 15:50	04/22/23 20:44	TPH 8015M	
Surrogate: o-Terphenyl	g	96.0 %	70-130		P3D2102	04/20/23 15:50	04/22/23 20:44	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 20:44	calc	
General Chemistry Parameters b	y EPA / Stand	ard Metl	ıods						
Chloride	196	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 18:13	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

North Sidewall - 2 @ 3' 3D19002-37 (Soil)

	Limi	t Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:31	EPA 8021B	
Toluene	0.00183	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:31	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:31	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:31	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	9.0 %	80-120		P3D2501	04/25/23 09:48	04/26/23 00:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	98.9 %	80-120		P3D2501	04/25/23 09:48	04/26/23 00:31	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 21:09	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 21:09	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/22/23 21:09	TPH 8015M	
Surrogate: 1-Chlorooctane	8	35.7 %	70-130		P3D2102	04/20/23 15:50	04/22/23 21:09	TPH 8015M	
Surrogate: o-Terphenyl	8	88.7 %	70-130		P3D2102	04/20/23 15:50	04/22/23 21:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/22/23 21:09	calc	
General Chemistry Parameters by	y EPA / Standa	ard Metl	10ds						
Chloride	192	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 18:27	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

North Sidewall - 3 @ 3' 3D19002-38 (Soil)

Amolysto	Lim	it Repo							
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:51	EPA 8021B	
Toluene	0.00155	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:51	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:51	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:51	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 00:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	99.0 %	80-120		P3D2501	04/25/23 09:48	04/26/23 00:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P3D2501	04/25/23 09:48	04/26/23 00:51	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 11:13	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 11:13	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2102	04/20/23 15:50	04/24/23 11:13	TPH 8015M	
Surrogate: 1-Chlorooctane	(68.8 %	70-130		P3D2102	04/20/23 15:50	04/24/23 11:13	TPH 8015M	S-GC
Surrogate: o-Terphenyl	(68.3 %	70-130		P3D2102	04/20/23 15:50	04/24/23 11:13	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/20/23 15:50	04/24/23 11:13	calc	
General Chemistry Parameters b	y EPA / Stand	ard Metl	hods						
Chloride	103	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 18:41	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

North Sidewall - 4 @ 3' 3D19002-39 (Soil)

	Lim	it Repo							
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:12	EPA 8021B	
Toluene	0.00163	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:12	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:12	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:12	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:12	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.1 %	80-120		P3D2501	04/25/23 09:48	04/26/23 01:12	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		100 %	80-120		P3D2501	04/25/23 09:48	04/26/23 01:12	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 14:43	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 14:43	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 14:43	TPH 8015M	
Surrogate: 1-Chlorooctane		75.0 %	70-130		P3D2507	04/25/23 08:00	04/25/23 14:43	TPH 8015M	
Surrogate: o-Terphenyl		78.9 %	70-130		P3D2507	04/25/23 08:00	04/25/23 14:43	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 14:43	calc	
General Chemistry Parameters by	y EPA / Stand	ard Metl	hods						
Chloride	42.2	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 18:56	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

South Sidewall - 1 @ 3' 3D19002-40 (Soil)

Analyte	Lim	it Repo			-			No. d1	NT 4
Anaryte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:33	EPA 8021B	
Toluene	0.00107	0.00102	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:33	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:33	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:33	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.7 %	80-120		P3D2501	04/25/23 09:48	04/26/23 01:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.2 %	80-120		P3D2501	04/25/23 09:48	04/26/23 01:33	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:06	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:06	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:06	TPH 8015M	
Surrogate: 1-Chlorooctane		71.5 %	70-130		P3D2507	04/25/23 08:00	04/25/23 15:06	TPH 8015M	
Surrogate: o-Terphenyl		80.2 %	70-130		P3D2507	04/25/23 08:00	04/25/23 15:06	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 15:06	calc	
General Chemistry Parameters by	y EPA / Stand	ard Met	hods						
Chloride	178	1.02	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 19:10	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

South Sidewall - 2 @ 3' 3D19002-41 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:53	EPA 8021B	
Toluene	0.00111	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:53	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:53	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:53	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 01:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	99.9 %	80-120		P3D2501	04/25/23 09:48	04/26/23 01:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	98.6 %	80-120		P3D2501	04/25/23 09:48	04/26/23 01:53	EPA 8021B	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:30	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:30	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:30	TPH 8015M	
Surrogate: 1-Chlorooctane		72.2 %	70-130		P3D2507	04/25/23 08:00	04/25/23 15:30	TPH 8015M	
Surrogate: o-Terphenyl	ć	82.4 %	70-130		P3D2507	04/25/23 08:00	04/25/23 15:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 15:30	calc	
General Chemistry Parameters by	y EPA / Stand	ard Metl	hods						
Chloride	499	1.01	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 19:24	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

South Sidewall - 3 @ 3' 3D19002-42 (Soil)

	Lim	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:14	EPA 8021B	
Toluene	0.00138	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:14	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:14	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	99.1 %	80-120		P3D2501	04/25/23 09:48	04/26/23 02:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3D2501	04/25/23 09:48	04/26/23 02:14	EPA 8021B	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:53	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:53	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 15:53	TPH 8015M	
Surrogate: 1-Chlorooctane	:	71.8 %	70-130		P3D2507	04/25/23 08:00	04/25/23 15:53	TPH 8015M	
Surrogate: o-Terphenyl	:	73.0 %	70-130		P3D2507	04/25/23 08:00	04/25/23 15:53	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 15:53	calc	
General Chemistry Parameters by	y EPA / Stand	ard Metl	10ds						
Chloride	103	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 19:39	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

South Sidewall - 4 @ 3' 3D19002-43 (Soil)

	Lim	it Repo							
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:35	EPA 8021B	
Toluene	0.00129	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:35	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:35	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:35	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 02:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	97.9 %	80-120		P3D2501	04/25/23 09:48	04/26/23 02:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3D2501	04/25/23 09:48	04/26/23 02:35	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 16:17	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 16:17	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 16:17	TPH 8015M	
Surrogate: 1-Chlorooctane	,	70.3 %	70-130		P3D2507	04/25/23 08:00	04/25/23 16:17	TPH 8015M	
Surrogate: o-Terphenyl		74.3 %	70-130		P3D2507	04/25/23 08:00	04/25/23 16:17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 16:17	calc	
General Chemistry Parameters by	y EPA / Stand	ard Metl	hods						
Chloride	91.4	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 19:53	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

West Sidewall - 1 @ 3' 3D19002-44 (Soil)

Analyte	Lim	it Repo	·	Dil et	D / 1	D .	A me 1 J	Method	NT.
rmaryte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:37	EPA 8021B	
Toluene	0.00114	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:37	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:37	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:37	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:37	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	80-120		P3D2501	04/25/23 09:48	04/26/23 03:37	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3D2501	04/25/23 09:48	04/26/23 03:37	EPA 8021B	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 16:40	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 16:40	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 16:40	TPH 8015M	
Surrogate: 1-Chlorooctane		74.7 %	70-130		P3D2507	04/25/23 08:00	04/25/23 16:40	TPH 8015M	
Surrogate: o-Terphenyl		80.3 %	70-130		P3D2507	04/25/23 08:00	04/25/23 16:40	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 16:40	calc	
General Chemistry Parameters by	y EPA / Stand	ard Metl	hods						
Chloride	53.5	1.01	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 20:36	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

West Sidewall - 2 @ 3' 3D19002-45 (Soil)

A ::=1=4=	Lim	it Repo	U						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:58	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:58	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:58	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:58	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 03:58	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3D2501	04/25/23 09:48	04/26/23 03:58	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	98.8 %	80-120		P3D2501	04/25/23 09:48	04/26/23 03:58	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:04	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:04	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:04	TPH 8015M	
Surrogate: 1-Chlorooctane		78.3 %	70-130		P3D2507	04/25/23 08:00	04/25/23 17:04	TPH 8015M	
Surrogate: o-Terphenyl	d	84.8 %	70-130		P3D2507	04/25/23 08:00	04/25/23 17:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 17:04	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	105	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 20:50	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

East Sidewall - 1 @ 3' 3D19002-46 (Soil)

Amalysta	Limi	t Repo	U						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:18	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:18	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:18	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:18	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	ģ	98.7 %	80-120		P3D2501	04/25/23 09:48	04/26/23 04:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3D2501	04/25/23 09:48	04/26/23 04:18	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:27	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:27	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:27	TPH 8015M	
Surrogate: 1-Chlorooctane	7	74.9 %	70-130		P3D2507	04/25/23 08:00	04/25/23 17:27	TPH 8015M	
Surrogate: o-Terphenyl	8	81.4 %	70-130		P3D2507	04/25/23 08:00	04/25/23 17:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 17:27	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	18.5	1.00	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 21:05	EPA 300.0	
% Moisture	ND	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

East Sidewall - 2 @ 3' 3D19002-47 (Soil)

Analyte	Lim	it Repo						M.d. 1	**
Anaryte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:39	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:39	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:39	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:39	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3D2501	04/25/23 09:48	04/26/23 04:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3D2501	04/25/23 09:48	04/26/23 04:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.7 %	80-120		P3D2501	04/25/23 09:48	04/26/23 04:39	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:51	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:51	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3D2507	04/25/23 08:00	04/25/23 17:51	TPH 8015M	
Surrogate: 1-Chlorooctane		76.5 %	70-130		P3D2507	04/25/23 08:00	04/25/23 17:51	TPH 8015M	
Surrogate: o-Terphenyl		78.9 %	70-130		P3D2507	04/25/23 08:00	04/25/23 17:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/25/23 08:00	04/25/23 17:51	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	270	1.01	mg/kg dry	1	P3D2708	04/26/23 14:00	04/27/23 21:19	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3D2103	04/21/23 11:05	04/21/23 11:17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3D2004 - *** DEFAULT PREP **	*									
Blank (P3D2004-BLK1)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.4	80-120			
LCS (P3D2004-BS1)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Xylene (p/m)	0.219	0.00200	"	0.200		109	80-120			
Xylene (o)	0.108	0.00100	"	0.100		108	80-120			
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.4	80-120			
LCS Dup (P3D2004-BSD1)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	0.101	0.00100	mg/kg	0.100		101	80-120	14.8	20	
Toluene	0.0991	0.00100	"	0.100		99.1	80-120	15.9	20	
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120	15.5	20	
Xylene (p/m)	0.189	0.00200	"	0.200		94.7	80-120	14.4	20	
Xylene (o)	0.0920	0.00100	"	0.100		92.0	80-120	16.3	20	
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	80-120			
Calibration Blank (P3D2004-CCB1)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.140		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3D2004 - *** DEFAULT PREP ***										
Calibration Blank (P3D2004-CCB2)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Gurrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.8	80-120			
Calibration Check (P3D2004-CCV1)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Kylene (p/m)	0.216	0.00200	"	0.200		108	80-120			
Kylene (o)	0.109	0.00100	"	0.100		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		99.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	75-125			
Calibration Check (P3D2004-CCV2)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.108	0.00100	"	0.100		108	80-120			
Kylene (p/m)	0.209	0.00200	"	0.200		104	80-120			
Kylene (o)	0.107	0.00100	"	0.100		107	80-120			
Gurrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	75-125			
Calibration Check (P3D2004-CCV3)				Prepared: (04/20/23 At	nalyzed: 04	/21/23			
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Coluene	0.111	0.00100	"	0.100		111	80-120			
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120			
Kylene (p/m)	0.200	0.00200	"	0.200		99.8	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
urrogate: 4-Bromofluorobenzene	0.115		"	0.120		95.8	75-125			
1.4 10.00	0.110		,,	0.120		00.7	75 125			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

0.120

0.118

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3D2004 - *** DEFAULT PREP ***

Matrix Spike (P3D2004-MS1)	Sou	rce: 3D19001	-03	Prepared: 0	4/20/23 A	nalyzed: 04	1/21/23	
Benzene	0.103	0.00101	mg/kg dry	0.101	ND	102	80-120	
Toluene	0.0806	0.00101	"	0.101	ND	79.8	80-120	QM-05
Ethylbenzene	0.0630	0.00101	"	0.101	ND	62.3	80-120	QM-05
Xylene (p/m)	0.114	0.00202	"	0.202	ND	56.2	80-120	QM-05
Xylene (o)	0.0580	0.00101	"	0.101	ND	57.4	80-120	QM-05
Surrogate: 1,4-Difluorobenzene	0.120		"	0.121		98.8	80-120	
Surrogate: 4-Bromofluorobenzene	0.110		"	0.121		90.6	80-120	

Matrix Spike Dup (P3D2004-MSD1)	Sour	ce: 3D19001	1-03	Prepared: 0	4/20/23 Aı	nalyzed: 04	/21/23			
Benzene	0.105	0.00101	mg/kg dry	0.101	ND	104	80-120	2.55	20	
Toluene	0.0825	0.00101	"	0.101	ND	81.7	80-120	2.37	20	
Ethylbenzene	0.0660	0.00101	"	0.101	ND	65.3	80-120	4.67	20	QM-05
Xylene (p/m)	0.120	0.00202	"	0.202	ND	59.4	80-120	5.50	20	QM-05
Xylene (o)	0.0609	0.00101	"	0.101	ND	60.3	80-120	4.83	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.119		"	0.121		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.121		89.2	80-120			

Batch P3D2112 - *** DEFAULT PREP ***

Blank (P3D2112-BLK1)		Prepared & Analyzed: 04/21/23									
Benzene	ND	0.00100	mg/kg								
Toluene	ND	0.00100	"								
Ethylbenzene	ND	0.00100	"								
Xylene (p/m)	ND	0.00200	"								
Xylene (o)	ND	0.00100	"								
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120	94.8	80-120					
Surrogate: 4-Bromofluorobenzene	0.0977		"	0.120	81.4	80-120					

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting	** .	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2112 - *** DEFAULT PREP ***										
LCS (P3D2112-BS1)				Prepared &	Analyzed:	04/21/23				
Benzene	0.102	0.00100	mg/kg	0.100		102	80-120			
Toluene	0.0894	0.00100	"	0.100		89.4	80-120			
Ethylbenzene	0.0874	0.00100	"	0.100		87.4	80-120			
Xylene (p/m)	0.168	0.00200	"	0.200		84.1	80-120			
Xylene (o)	0.0840	0.00100	"	0.100		84.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.101		"	0.120		83.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.7	80-120			
LCS Dup (P3D2112-BSD1)				Prepared &	Analyzed:	04/21/23				
Benzene	0.112	0.00100	mg/kg	0.100		112	80-120	9.57	20	
Toluene	0.0999	0.00100	"	0.100		99.9	80-120	11.1	20	
Ethylbenzene	0.0981	0.00100	"	0.100		98.1	80-120	11.5	20	
Xylene (p/m)	0.188	0.00200	"	0.200		93.8	80-120	10.9	20	
Xylene (o)	0.0932	0.00100	"	0.100		93.2	80-120	10.4	20	
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		86.0	80-120			
Calibration Blank (P3D2112-CCB1)				Prepared &	Analyzed:	04/21/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.150		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.0957		"	0.120		79.8	80-120			
Calibration Blank (P3D2112-CCB2)				Prepared &	Analyzed:	04/21/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.105		"	0.120		87.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
,	Result	Limit	Omo	Level	Result	701000	Limits	МЪ	Dillit	110103
Batch P3D2112 - *** DEFAULT PREP ***										
Calibration Blank (P3D2112-CCB3)				Prepared: (04/21/23 At	nalyzed: 04	/22/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.110		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.8	80-120			
Calibration Check (P3D2112-CCV1)				Prepared &	Analyzed:	04/21/23				
Benzene	0.118	0.00100	mg/kg	0.100		118	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.0957	0.00100	"	0.100		95.7	80-120			
Xylene (p/m)	0.192	0.00200	"	0.200		96.2	80-120			
Xylene (o)	0.100	0.00100	"	0.100		100	80-120			
Surrogate: 4-Bromofluorobenzene	0.105		"	0.120		87.6	75-125			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.4	75-125			
Calibration Check (P3D2112-CCV2)				Prepared &	Analyzed:	04/21/23				
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120			
Toluene	0.111	0.00100	"	0.100		111	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.205	0.00200	"	0.200		103	80-120			
Xylene (o)	0.105	0.00100	"	0.100		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.7	75-125			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.1	75-125			
Calibration Check (P3D2112-CCV3)				Prepared: ()4/21/23 At	nalyzed: 04	/22/23			
Benzene	0.116	0.00100	mg/kg	0.100		116	80-120			
Toluene	0.114	0.00100	"	0.100		114	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.209	0.00200	"	0.200		104	80-120			
Xylene (o)	0.105	0.00100	"	0.100		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	75-125			
- *										

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

0.120

0.128

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch P3D2112 - *** DEFAULT PREP ***

Matrix Spike (P3D2112-MS1)	Source	Source: 3D21001-01			Prepared: 04/21/23 Analyzed: 04/22/23				
Benzene	0.109	0.00100	mg/kg dry	0.100	0.00355	106	80-120		
Toluene	0.120	0.00100	"	0.100	0.00839	111	80-120		
Ethylbenzene	0.102	0.00100	"	0.100	0.00181	100	80-120		
Xylene (p/m)	0.182	0.00200	"	0.200	0.00162	90.2	80-120		
Xylene (o)	0.0899	0.00100	"	0.100	ND	89.9	80-120		
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		108	80-120		
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.2	80-120		

Matrix Spike Dup (P3D2112-MSD1)	Sour	ce: 3D21001-01	1	Prepared: (04/21/23 An					
Benzene	0.107	0.00100 mg	g/kg dry	0.100	0.00355	104	80-120	2.05	20	
Toluene	0.115	0.00100	"	0.100	0.00839	107	80-120	3.95	20	
Ethylbenzene	0.103	0.00100	"	0.100	0.00181	101	80-120	0.418	20	
Xylene (p/m)	0.184	0.00200	"	0.200	0.00162	91.1	80-120	0.993	20	
Xylene (o)	0.0899	0.00100	"	0.100	ND	89.9	80-120	0.00	20	
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			

Batch P3D2113 - *** DEFAULT PREP ***

Blank (P3D2113-BLK1)		Prepared: 04/21/23 Analyzed: 04/25/23									
Benzene	ND	0.00100	mg/kg								
Toluene	ND	0.00100	"								
Ethylbenzene	ND	0.00100	"								
Xylene (p/m)	ND	0.00200	"								
Xylene (o)	ND	0.00100	"								
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120	95.9	80-120					
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120	96.4	80-120					

Permian Basin Environmental Lab, L.P.

Project Number: 17489

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chevron Cotton Draw Section 3

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2113 - *** DEFAULT PREP ***										
LCS (P3D2113-BS1)				Prepared: 0)4/21/23 An	nalyzed: 04	/25/23			
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120			
Xylene (p/m)	0.201	0.00200	"	0.200		100	80-120			
Xylene (o)	0.100	0.00100	"	0.100		100	80-120			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
LCS Dup (P3D2113-BSD1)				Prepared: 0)4/21/23 An	nalyzed: 04	/25/23			
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120	0.116	20	
Toluene	0.103	0.00100	"	0.100		103	80-120	0.438	20	
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120	0.104	20	
Xylene (p/m)	0.201	0.00200	"	0.200		101	80-120	0.244	20	
Xylene (o)	0.100	0.00100	"	0.100		100	80-120	0.0299	20	
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		108	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.0	80-120			
Calibration Blank (P3D2113-CCB1)				Prepared: 0	04/21/23 An	nalyzed: 04	/25/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.180		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		98.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.1	80-120			
Calibration Blank (P3D2113-CCB2)				Prepared: 0	04/21/23 An	nalyzed: 04	/26/23			
Benzene	0.00		ug/kg							
Toluene	2.44		"							
Ethylbenzene	0.770		"							
Xylene (p/m)	1.60		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.102		"	0.120		85.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.6	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100
Odessa TX, 79765
P

Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2113 - *** DEFAULT PREP ***										
Calibration Check (P3D2113-CCV1)				Prepared: (04/21/23 A1	nalyzed: 04	/25/23			
Benzene	0.0968	0.00100	mg/kg	0.100		96.8	80-120			
Toluene	0.0904	0.00100	"	0.100		90.4	80-120			
Ethylbenzene	0.0851	0.00100	"	0.100		85.1	80-120			
Xylene (p/m)	0.173	0.00200	"	0.200		86.4	80-120			
Xylene (o)	0.0874	0.00100	"	0.100		87.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.5	75-125			
Calibration Check (P3D2113-CCV2)				Prepared: (04/21/23 Aı	nalyzed: 04	/26/23			
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.108	0.00100	"	0.100		108	80-120			
Ethylbenzene	0.0963	0.00100	"	0.100		96.3	80-120			
Xylene (p/m)	0.178	0.00200	"	0.200		88.8	80-120			
Xylene (o)	0.0890	0.00100	"	0.100		89.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.111		"	0.120		92.4	75-125			
Calibration Check (P3D2113-CCV3)				Prepared: ()4/21/23 Aı	nalyzed: 04	/25/23			
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Toluene	0.117	0.00100	"	0.100		117	80-120			
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120			
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		94.7	75-125			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.3	75-125			
Matrix Spike (P3D2113-MS1)	Sou	ırce: 3D19002	-19	Prepared: ()4/21/23 Aı	nalyzed: 04	/25/23			
Benzene	0.0502	0.00101	mg/kg dry	0.101	ND	49.7	80-120			QM-0
Toluene	0.0137	0.00101	"	0.101	ND	13.6	80-120			QM-0
Ethylbenzene	0.0228	0.00101	"	0.101	ND	22.6	80-120			QM-0
Xylene (p/m)	0.00172	0.00202	"	0.202	ND	0.850	80-120			QM-0
Xylene (o)	0.0640	0.00101	"	0.101	ND	63.4	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.121		"	0.121		99.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.121		101	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3D2113 - *** DEFAULT PREP ***

Matrix Spike Dup (P3D2113-MSD1)	Sou	rce: 3D19002	2-19	Prepared: 0	4/21/23 A	nalyzed: 04				
Benzene	0.0963	0.00101	mg/kg dry	0.101	ND	95.3	80-120	63.0	20	QM-05
Toluene	0.0240	0.00101	"	0.101	ND	23.8	80-120	54.7	20	QM-05
Ethylbenzene	0.0309	0.00101	"	0.101	ND	30.6	80-120	30.3	20	QM-05
Xylene (p/m)	0.00164	0.00202	"	0.202	ND	0.810	80-120	4.82	20	QM-05
Xylene (o)	0.0760	0.00101	"	0.101	ND	75.2	80-120	17.2	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.121		"	0.121		99.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.121		99.3	80-120			

Batch P3D2501 - *** DEFAULT PREP ***

Blank (P3D2501-BLK1)				Prepared & Analy	yzed: 04/25/23	
Benzene	ND	0.00100	mg/kg			
Toluene	0.00222	0.00100	"			
Ethylbenzene	ND	0.00100	"			
Xylene (p/m)	ND	0.00200	"			
Xylene (o)	ND	0.00100	"			
Surrogate: 4-Bromofluorobenzene	0.109		"	0.120	90.7	80-120
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120	95.5	80-120
LCS (P3D2501-BS1)				Prepared & Analy	yzed: 04/25/23	
Benzene	0.119	0.00100	mg/kg	0.100	119	80-120
Toluene	0.119	0.00100	"	0.100	119	80-120
Ethylbenzene	0.115	0.00100	"	0.100	115	80-120
Xylene (p/m)	0.216	0.00200	"	0.200	108	80-120
Xylene (o)	0.106	0.00100	"	0.100	106	80-120
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120	94.6	80-120

0.120

0.113

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

94.5

80-120

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2501 - *** DEFAULT PREP ***										
LCS Dup (P3D2501-BSD1)				Prepared &	Analyzed:	04/25/23				
Benzene	0.107	0.00100	mg/kg	0.100		107	80-120	10.2	20	
Toluene	0.105	0.00100	"	0.100		105	80-120	12.0	20	
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120	12.8	20	
Xylene (p/m)	0.189	0.00200	"	0.200		94.7	80-120	12.9	20	
Xylene (o)	0.0926	0.00100	"	0.100		92.6	80-120	13.6	20	
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		96.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.6	80-120			
Calibration Blank (P3D2501-CCB1)				Prepared &	Analyzed:	04/25/23				
Benzene	0.00		ug/kg							
Toluene	2.72		"							
Ethylbenzene	0.460		"							
Xylene (p/m)	1.08		"							
Xylene (o)	0.290		"							
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.107		"	0.120		89.5	80-120			
Calibration Blank (P3D2501-CCB2)				Prepared: 0	04/25/23 A	nalyzed: 04	/26/23			
Benzene	0.00		ug/kg							
Toluene	0.930		"							
Ethylbenzene	0.260		"							
Xylene (p/m)	0.400		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.4	80-120			
Calibration Check (P3D2501-CCV1)				Prepared &	: Analyzed:	04/25/23				
Benzene	0.119	0.00100	mg/kg	0.100	-	119	80-120			
Toluene	0.117	0.00100	"	0.100		117	80-120			
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120			
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		94.7	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2501 - *** DEFAULT PREP ***										
Calibration Check (P3D2501-CCV2)				Prepared: (04/25/23 At	nalyzed: 04	/26/23			
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.105	0.00100	"	0.100		105	80-120			
Xylene (p/m)	0.205	0.00200	"	0.200		102	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.5	75-125			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	75-125			
Calibration Check (P3D2501-CCV3)				Prepared: (04/25/23 At	nalyzed: 04	/26/23			
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120			
Toluene	0.120	0.00100	"	0.100		120	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.218	0.00200	"	0.200		109	80-120			
Xylene (o)	0.110	0.00100	"	0.100		110	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		104	75-125			
Matrix Spike (P3D2501-MS1)	Sou	ırce: 3D19002	-35	Prepared: (04/25/23 At	nalyzed: 04	/26/23			
Benzene	0.0885	0.00100	mg/kg dry	0.100	ND	88.5	80-120			
Toluene	0.0873	0.00100	"	0.100	0.00207	85.3	80-120			
Ethylbenzene	0.0828	0.00100	"	0.100	ND	82.8	80-120			
Xylene (p/m)	0.151	0.00200	"	0.200	0.00120	74.7	80-120			
Xylene (o)	0.0743	0.00100	"	0.100	ND	74.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Matrix Spike Dup (P3D2501-MSD1)	Sou	ırce: 3D19002	-35	Prepared: (04/25/23 At	nalyzed: 04	/26/23			
Benzene	0.0991	0.00100	mg/kg dry	0.100	ND	99.1	80-120	11.3	20	
Toluene	0.0986	0.00100	"	0.100	0.00207	96.5	80-120	12.4	20	
Ethylbenzene	0.0956	0.00100	"	0.100	ND	95.6	80-120	14.2	20	
Xylene (p/m)	0.175	0.00200	"	0.200	0.00120	87.1	80-120	15.3	20	
Xylene (o)	0.0854	0.00100	"	0.100	ND	85.4	80-120	13.9	20	
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.3	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
•										
Batch P3D2608 - *** DEFAULT PREP ***				D 10	A 1 1	04/26/22				
Blank (P3D2608-BLK1) Benzene	ND	0.00100		Prepared &	Analyzed:	04/26/23				
		0.00100	mg/kg							
Toluene	ND ND	0.00100 0.00100	,,							
Ethylbenzene Xylene (p/m)	ND ND	0.00100	,,							
Xylene (p/iii) Xylene (o)	ND ND	0.00200	,,							
• • • • • • • • • • • • • • • • • • • •		0.00100	,,	0.120		02.0	00.120			
Surrogate: 4-Bromofluorobenzene	0.101		,,	0.120		83.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.112			0.120		93.0	80-120			
LCS (P3D2608-BS1)				Prepared &	Analyzed:	04/26/23				
Benzene	0.102	0.00100	mg/kg	0.100		102	80-120			
Toluene	0.0932	0.00100	"	0.100		93.2	80-120			
Ethylbenzene	0.0924	0.00100	"	0.100		92.4	80-120			
Xylene (p/m)	0.177	0.00200	"	0.200		88.4	80-120			
Xylene (o)	0.0873	0.00100	"	0.100		87.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.110		"	0.120		91.5	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.8	80-120			
LCS Dup (P3D2608-BSD1)				Prepared: (04/26/23 A	nalyzed: 04	/27/23			
Benzene	0.114	0.00100	mg/kg	0.100		114	80-120	10.9	20	
Toluene	0.105	0.00100	"	0.100		105	80-120	12.3	20	
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120	13.7	20	
Xylene (p/m)	0.202	0.00200	"	0.200		101	80-120	13.2	20	
Xylene (o)	0.100	0.00100	"	0.100		100	80-120	13.8	20	
Surrogate: 4-Bromofluorobenzene	0.109		"	0.120		90.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.0	80-120			
Calibration Blank (P3D2608-CCB1)				Prepared &	: Analyzed:	04/26/23				
Benzene	0.00		ug/kg							
Toluene	0.480		"							
Ethylbenzene	0.230		"							
Xylene (p/m)	0.460		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.104		"	0.120		86.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		93.8	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
, ~	resuit	Lillit	Omto	Level	result	/UKEC	Limits	MD	Lillit	110168
Batch P3D2608 - *** DEFAULT PREP ***										
Calibration Blank (P3D2608-CCB2)				Prepared &	ե Analyzed:	04/26/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.150		"							
Xylene (p/m)	0.220		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.110		"	0.120		92.1	80-120			
Calibration Check (P3D2608-CCV1)				Prepared &	ն Analyzed:	04/26/23				
Benzene	0.105	0.00100	mg/kg	0.100	<u> </u>	105	80-120			
Toluene	0.0910	0.00100	"	0.100		91.0	80-120			
Ethylbenzene	0.0854	0.00100	"	0.100		85.4	80-120			
Xylene (p/m)	0.171	0.00200	"	0.200		85.6	80-120			
Xylene (o)	0.0861	0.00100	"	0.100		86.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.0991		"	0.120		82.6	75-125			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.3	75-125			
Calibration Check (P3D2608-CCV2)				Prepared &	ն Analyzed:	04/26/23				
Benzene	0.118	0.00100	mg/kg	0.100	<u> </u>	118	80-120			
Toluene	0.108	0.00100	"	0.100		108	80-120			
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120			
Xylene (p/m)	0.202	0.00200	"	0.200		101	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.1	75-125			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.9	75-125			
Calibration Check (P3D2608-CCV3)				Prepared: (04/26/23 A:	nalyzed: 04	/27/23			
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120			
Toluene	0.119	0.00100	"	0.100		119	80-120			
Ethylbenzene	0.115	0.00100	"	0.100		115	80-120			
Xylene (p/m)	0.222	0.00200	"	0.200		111	80-120			
Xylene (o)	0.111	0.00100	"	0.100		111	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.3	75-125			
G	0.127			0.140						

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

103

75-125

0.120

0.124

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3D2608 - *** DEFAULT PREP ***

Matrix Spike (P3D2608-MS1)	Sour	Source: 3D19002-21			Prepared: 04/26/23 Analyzed: 04/27/23			
Benzene	0.0899	0.00102	mg/kg dry	0.102	ND	88.1	80-120	
Toluene	0.0873	0.00102	"	0.102	ND	85.5	80-120	
Ethylbenzene	0.0888	0.00102	"	0.102	ND	87.0	80-120	
Xylene (p/m)	0.167	0.00204	"	0.204	ND	81.7	80-120	
Xylene (o)	0.0794	0.00102	"	0.102	ND	77.8	80-120	QM-05
Surrogate: 1,4-Difluorobenzene	0.122		"	0.122		99.8	80-120	
Surrogate: 4-Bromofluorobenzene	0.138		"	0.122		113	80-120	

Matrix Spike Dup (P3D2608-MSD1)	Sour	ce: 3D19002	-21	Prepared: 0	4/26/23 A	nalyzed: 04	1/27/23		
Benzene	0.0936	0.00102	mg/kg dry	0.102	ND	91.7	80-120	4.02	20
Toluene	0.0913	0.00102	"	0.102	ND	89.4	80-120	4.47	20
Ethylbenzene	0.0923	0.00102	"	0.102	ND	90.5	80-120	3.86	20
Xylene (p/m)	0.171	0.00204	"	0.204	ND	84.0	80-120	2.86	20
Xylene (o)	0.0822	0.00102	"	0.102	ND	80.5	80-120	3.42	20
Surrogate: 1,4-Difluorobenzene	0.122		"	0.122		99.9	80-120		
Surrogate: 4-Bromofluorobenzene	0.137		"	0.122		112	80-120		

Batch P3D2707 - *** DEFAULT PREP ***

Blank (P3D2707-BLK1)		Prepared & Analyzed: 04/27/23								
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120	93.0	80-120				
Surrogate: 4-Bromofluorobenzene	0.104		"	0.120	86.9	80-120				

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2707 - *** DEFAULT PREP ***										
LCS (P3D2707-BS1)				Prepared &	Analyzed:	04/27/23				
Benzene	0.118	0.00100	mg/kg	0.100		118	80-120			
Toluene	0.109	0.00100	"	0.100		109	80-120			
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120			
Xylene (p/m)	0.207	0.00200	"	0.200		103	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.107		"	0.120		88.9	80-120			
LCS Dup (P3D2707-BSD1)				Prepared &	Analyzed:	04/27/23				
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120	0.851	20	
Toluene	0.108	0.00100	"	0.100		108	80-120	0.157	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120	0.303	20	
Xylene (p/m)	0.206	0.00200	"	0.200		103	80-120	0.378	20	
Xylene (o)	0.102	0.00100	"	0.100		102	80-120	0.137	20	
Surrogate: 4-Bromofluorobenzene	0.107		"	0.120		88.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.6	80-120			
Calibration Blank (P3D2707-CCB1)				Prepared &	Analyzed:	04/27/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.130		"							
Xylene (p/m)	0.190		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.110		"	0.120		91.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.0	80-120			
Calibration Blank (P3D2707-CCB2)				Prepared &	Analyzed:	04/27/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.109		"	0.120		90.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2707 - *** DEFAULT PREP ***										
Calibration Check (P3D2707-CCV1)				Prepared &	& Analyzed:	04/27/23				
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.0966	0.00100	"	0.100		96.6	80-120			
Ethylbenzene	0.0925	0.00100	"	0.100		92.5	80-120			
Xylene (p/m)	0.186	0.00200	"	0.200		93.0	80-120			
Xylene (o)	0.0911	0.00100	"	0.100		91.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		94.8	75-125			
Calibration Check (P3D2707-CCV2)				Prepared &	& Analyzed:	04/27/23				
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.110	0.00100	"	0.100		110	80-120			
Ethylbenzene	0.105	0.00100	"	0.100		105	80-120			
Xylene (p/m)	0.207	0.00200	"	0.200		103	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.9	75-125			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		97.0	75-125			
Calibration Check (P3D2707-CCV3)				Prepared: (04/27/23 Ar	nalyzed: 04	/28/23			
Benzene	0.118	0.00100	mg/kg	0.100		118	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120			
Xylene (o)	0.106	0.00100	"	0.100		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.4	75-125			
Matrix Spike (P3D2707-MS1)	Sou	ırce: 3D27007	-01	Prepared: (04/27/23 Ar	nalyzed: 04	/28/23			
Benzene	0.0483	0.00101	mg/kg dry	0.101	ND	47.9	80-120			QM-0
Toluene	0.0234	0.00101	"	0.101	ND	23.2	80-120			QM-0
Ethylbenzene	0.0156	0.00101	"	0.101	0.000525	14.9	80-120			QM-0
Xylene (p/m)	0.0281	0.00202	"	0.202	0.00191	12.9	80-120			QM-0
Xylene (o)	0.0128	0.00101	"	0.101	0.000798	11.9	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.0815		"	0.121		67.3	80-120			S-G
Surrogate: 1,4-Difluorobenzene	0.121		"	0.121		99.8	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3D2707 - *** DEFAULT PREP ***

Matrix Spike Dup (P3D2707-MSD1)	Sour	rce: 3D27007	7-01	Prepared:	04/27/23 An	alyzed: 04	1/28/23			
Benzene	0.0363	0.00101	mg/kg dry	0.101	ND	35.9	80-120	28.5	20	QM-05
Toluene	0.0158	0.00101	"	0.101	ND	15.7	80-120	38.6	20	QM-05
Ethylbenzene	0.0111	0.00101	"	0.101	0.000525	10.5	80-120	34.6	20	QM-05
Xylene (p/m)	0.0202	0.00202	"	0.202	0.00191	9.07	80-120	35.1	20	QM-05
Xylene (o)	0.0102	0.00101	"	0.101	0.000798	9.26	80-120	24.8	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.0926		"	0.121		76.4	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.119		"	0.121		98.4	80-120			

Project: Chevron Cotton Draw Section 3

13000 West County Road 100 Odessa TX, 79765 Project Number: 17489 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3D2006 - TX 1005										
Blank (P3D2006-BLK1)				Prepared: (04/20/23 Aı	nalyzed: 04	/22/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	84.9		"	100		84.9	70-130			
Surrogate: o-Terphenyl	46.3		"	50.0		92.7	70-130			
LCS (P3D2006-BS1)				Prepared: (04/20/23 A1	nalyzed: 04	-/22/23			
C6-C12	1020	25.0	mg/kg	1000		102	75-125			
>C12-C28	893	25.0	"	1000		89.3	75-125			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	50.2		"	50.0		100	70-130			
LCS Dup (P3D2006-BSD1)				Prepared: (04/20/23 Aı	nalyzed: 04	/22/23			
C6-C12	993	25.0	mg/kg	1000		99.3	75-125	2.38	20	
>C12-C28	872	25.0	"	1000		87.2	75-125	2.43	20	
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	50.8		"	50.0		102	70-130			
Calibration Check (P3D2006-CCV1)				Prepared: (04/20/23 Aı	nalyzed: 04	-/22/23			
C6-C12	531	25.0	mg/kg	500		106	85-115			
>C12-C28	519	25.0	"	500		104	85-115			
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	50.3		"	50.0		101	70-130			
Calibration Check (P3D2006-CCV2)				Prepared: (04/20/23 Aı	nalyzed: 04	/22/23			
C6-C12	538	25.0	mg/kg	500		108	85-115			
>C12-C28	522	25.0	"	500		104	85-115			
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	50.4		"	50.0		101	70-130			

Permian Basin Environmental Lab, L.P.

Project: Chevron Cotton Draw Section 3

13000 West County Road 100 Odessa TX, 79765 Project Number: 17489 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2006 - TX 1005										
Calibration Check (P3D2006-CCV3)				Prepared: (04/20/23 At	nalyzed: 04	/23/23			
C6-C12	538	25.0	mg/kg	500		108	85-115			
>C12-C28	529	25.0	"	500		106	85-115			
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	51.4		"	50.0		103	70-130			
Matrix Spike (P3D2006-MS1)	Source	ce: 3D19002	2-18	Prepared: (04/20/23 At	nalyzed: 04	/24/23			
C6-C12	701	25.0	mg/kg dry	1000	11.8	68.9	75-125			QM-0
>C12-C28	612	25.0	"	1000	14.6	59.8	75-125			QM-0
Surrogate: 1-Chlorooctane	61.1		"	100		61.1	70-130			S-GC
Surrogate: o-Terphenyl	26.9		"	50.0		53.8	70-130			S-GC
Matrix Spike Dup (P3D2006-MSD1)	Source	ce: 3D19002	2-18	Prepared: (04/20/23 At	nalyzed: 04	/24/23			
C6-C12	707	25.0	mg/kg dry	1000	11.8	69.5	75-125	0.928	20	QM-0
>C12-C28	618	25.0	"	1000	14.6	60.3	75-125	0.881	20	QM-0
Surrogate: 1-Chlorooctane	64.0		"	100		64.0	70-130			S-GC
Surrogate: o-Terphenyl	24.4		"	50.0		48.7	70-130			S-GC
Batch P3D2102 - TX 1005										
Blank (P3D2102-BLK1)				Prepared: (04/20/23 At	nalyzed: 04	/22/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	86.3		"	100		86.3	70-130			
Surrogate: o-Terphenyl	48.9		"	50.0		97.8	70-130			
LCS (P3D2102-BS1)				Prepared: (04/20/23 A	nalyzed: 04	/22/23			
C6-C12	1020	25.0	mg/kg	1000		102	75-125			
>C12-C28	1010	25.0	"	1000		101	75-125			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	54.1		"	50.0		108	70-130			

Permian Basin Environmental Lab, L.P.

Project: Chevron Cotton Draw Section 3

13000 West County Road 100 Odessa TX, 79765 Project Number: 17489 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyta	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	70KEC	Limits	KLD	LIIIII	notes
Batch P3D2102 - TX 1005										
LCS Dup (P3D2102-BSD1)				Prepared: (04/20/23 A	nalyzed: 04	1/22/23			
C6-C12	990	25.0	mg/kg	1000		99.0	75-125	2.78	20	
>C12-C28	989	25.0	"	1000		98.9	75-125	2.50	20	
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	49.8		"	50.0		99.5	70-130			
Calibration Check (P3D2102-CCV1)				Prepared: (04/20/23 A	nalyzed: 04	1/22/23			
C6-C12	505	25.0	mg/kg	500		101	85-115			
>C12-C28	551	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	98.6		"	100		98.6	70-130			
Surrogate: o-Terphenyl	49.4		"	50.0		98.8	70-130			
Calibration Check (P3D2102-CCV2)				Prepared: (04/20/23 A	nalyzed: 04	1/22/23			
C6-C12	481	25.0	mg/kg	500		96.2	85-115			
>C12-C28	558	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	98.8		"	100		98.8	70-130			
Surrogate: o-Terphenyl	49.3		"	50.0		98.6	70-130			
Matrix Spike (P3D2102-MS1)	Sourc	e: 3D19002	2-38	Prepared: (04/20/23 A	nalyzed: 04	1/22/23			
C6-C12	856	25.0	mg/kg dry	1000	11.0	84.5	75-125			QM-0
>C12-C28	860	25.0	"	1000	17.2	84.3	75-125			QM-0
Surrogate: 1-Chlorooctane	98.8		"	100		98.8	70-130			
Surrogate: o-Terphenyl	40.0		"	50.0		80.1	70-130			
Matrix Spike Dup (P3D2102-MSD1)	Sourc	e: 3D19002	2-38	Prepared: (04/20/23 A	nalyzed: 04	1/22/23			
C6-C12	1200	25.0	mg/kg dry	1000	11.0	119	75-125	34.1	20	QM-0
>C12-C28	1220	25.0	"	1000	17.2	120	75-125	35.2	20	QM-0
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	55.8		"	50.0		112	70-130			

Project: Chevron Cotton Draw Section 3

13000 West County Road 100 Odessa TX, 79765 Project Number: 17489 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2507 - TX 1005										
Blank (P3D2507-BLK1)				Prepared &	Analyzed:	04/25/23				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	94.3		"	100		94.3	70-130			
Surrogate: o-Terphenyl	52.1		"	50.0		104	70-130			
LCS (P3D2507-BS1)				Prepared &	Analyzed:	04/25/23				
C6-C12	975	25.0	mg/kg	1000		97.5	75-125			
>C12-C28	861	25.0	"	1000		86.1	75-125			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	51.0		"	50.0		102	70-130			
LCS Dup (P3D2507-BSD1)				Prepared &	z Analyzed:	04/25/23				
C6-C12	982	25.0	mg/kg	1000		98.2	75-125	0.716	20	
>C12-C28	865	25.0	"	1000		86.5	75-125	0.498	20	
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	57.4		"	50.0		115	70-130			
Calibration Check (P3D2507-CCV1)				Prepared &	Analyzed:	04/25/23				
C6-C12	501	25.0	mg/kg	500		100	85-115			
>C12-C28	474	25.0	"	500		94.8	85-115			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	52.2		"	50.0		104	70-130			
Calibration Check (P3D2507-CCV2)				Prepared &	Analyzed:	04/25/23				
C6-C12	517	25.0	mg/kg	500		103	85-115			
>C12-C28	499	25.0	"	500		99.9	85-115			
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	53.4		"	50.0		107	70-130			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chevron Cotton Draw Section 3

Project Number: 17489 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3D2507 - TX 1005

Duplicate (P3D2507-DUP1)	Source	e: 3D24001-03	3	Prepared &	Analyzed: (04/25/23				
C6-C12	4070	278 m	ng/kg dry		4150			2.16	20	R3
>C12-C28	25000	278	"		24600			1.56	20	R3
Surrogate: 1-Chlorooctane	104		"	111		94.0	70-130			_
Surrogate: o-Terphenyl	53.6		"	55.6		96.4	70-130			

Project: Chevron Cotton Draw Section 3
Project Number: 17489

13000 West County Road 100 Odessa TX, 79765

Project Number: 17489
Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3D2103 - *** DEFAULT PREP ***										
Blank (P3D2103-BLK1)				Prepared &	Analyzed:	04/21/23				
% Moisture	ND	0.1	%							
Blank (P3D2103-BLK2)				Prepared &	Analyzed:	04/21/23				
% Moisture	16.0	0.1	%							
Blank (P3D2103-BLK3)				Prepared &	Analyzed:	04/21/23				
% Moisture	ND	0.1	%							
Blank (P3D2103-BLK4)				Prepared &	Analyzed:	04/21/23				
% Moisture	1.0	0.1	%							
Blank (P3D2103-BLK5)				Prepared &	z Analyzed:	04/21/23				
% Moisture	ND	0.1	%							
Blank (P3D2103-BLK6)				Prepared &	Analyzed:	04/21/23				
% Moisture	ND	0.1	%							
Duplicate (P3D2103-DUP1)	Sou	rce: 3D19001-	03	Prepared &	Analyzed:	04/21/23				
% Moisture	1.0	0.1	%	•	1.0			0.00	20	
Duplicate (P3D2103-DUP2)	Sou	rce: 3D19001-	13	Prepared &	Analyzed:	04/21/23				
% Moisture	5.0	0.1	%	-	4.0			22.2	20	R
Duplicate (P3D2103-DUP3)	Sou	rce: 3D19002-	07	Prepared &	z Analyzed:	04/21/23				
% Moisture	4.0	0.1	%	•	4.0			0.00	20	
Duplicate (P3D2103-DUP4)	Sou	rce: 3D19002-	17	Prepared &	z Analyzed:	04/21/23				
% Moisture	1.0	0.1	%	1	1.0			0.00	20	

Project Number: 17489

Project: Chevron Cotton Draw Section 3

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3D2103 - *** DEFAULT PREP ***										
Duplicate (P3D2103-DUP5)	Sour	rce: 3D19002-	32	Prepared &	z Analyzed:	04/21/23				
% Moisture	ND	0.1	%		ND				20	
Duplicate (P3D2103-DUP6)	Sour	ce: 3D19002-	42	Prepared &	Analyzed:	04/21/23				
% Moisture	1.0	0.1	%		ND			200	20	R
Duplicate (P3D2103-DUP7)	Soui	ce: 3D19009-	01	Prepared &	z Analyzed:	04/21/23				
% Moisture	6.0	0.1	%	*	6.0			0.00	20	
Duplicate (P3D2103-DUP8)	Soui	ce: 3D19009-	11	Prepared &	z Analyzed:	04/21/23				
% Moisture	5.0	0.1	%	•	5.0			0.00	20	
Duplicate (P3D2103-DUP9)	Sour	ce: 3D19009-	17	Prepared &	t Analyzed:	04/21/23				
% Moisture	11.0	0.1	%		14.0			24.0	20	R
Duplicate (P3D2103-DUPA)	Sour	ce: 3D19009-	36	Prepared &	Analyzed:	04/21/23				
% Moisture	12.0	0.1	%		12.0			0.00	20	
Duplicate (P3D2103-DUPB)	Sour	ce: 3D19009-	48	Prepared &	Analyzed:	04/21/23				
% Moisture	12.0	0.1	%		12.0			0.00	20	
Batch P3D2604 - *** DEFAULT PREP ***										
Blank (P3D2604-BLK1)				Prepared: (04/26/23 A	nalyzed: 04	/27/23			
Chloride	ND	1.00	mg/kg							
LCS (P3D2604-BS1)				Prepared &	z Analyzed:	04/26/23				
Chloride	18.1		mg/kg	20.0		90.7	90-110			

13000 West County Road 100 Project Number: 17489
Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chevron Cotton Draw Section 3

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2604 - *** DEFAULT PREP ***										
Calibration Check (P3D2604-CCV1)				Prepared &	k Analyzed:	04/26/23				
Chloride	18.2		mg/kg	18.0		101	90-110			
Calibration Check (P3D2604-CCV2)				Prepared: (04/26/23 A	nalyzed: 04	1/27/23			
Chloride	18.3		mg/kg	18.0		102	90-110			
Calibration Check (P3D2604-CCV3)				Prepared: (04/26/23 A	nalyzed: 04	1/27/23			
Chloride	19.6		mg/kg	18.0		109	90-110			
Matrix Spike (P3D2604-MS1)	Sour	ce: 3D19001-	-15	Prepared: (04/26/23 A	nalyzed: 04	1/27/23			
Chloride	204		mg/kg	100	115	89.2	80-120			
Matrix Spike (P3D2604-MS2)	Sour	ee: 3D19002-	-12	Prepared: (04/26/23 A	nalyzed: 04	1/27/23			
Chloride	187		mg/kg	100	83.4	104	80-120			
Matrix Spike Dup (P3D2604-MSD1)	Source	ce: 3D19001-	-15	Prepared: (04/26/23 A	nalyzed: 04	1/27/23			
Chloride	214		mg/kg	100	115	99.6	80-120	4.98	20	
Matrix Spike Dup (P3D2604-MSD2)	Sour	ce: 3D19002-	-12	Prepared: (04/26/23 A	nalyzed: 04	1/27/23			
Chloride	190		mg/kg	100	83.4	107	80-120	1.85	20	
Batch P3D2605 - *** DEFAULT PREP ***										
Blank (P3D2605-BLK1)			_	Prepared &	t Analyzed:	04/26/23	_			
	ND	1.00	mg/kg							
Chloride										
Chloride LCS (P3D2605-BS1)				Prepared &	ն Analyzed:	04/26/23				

13000 West County Road 100Project Number:17489Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chevron Cotton Draw Section 3

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2605 - *** DEFAULT PREP ***										
LCS Dup (P3D2605-BSD1)				Prepared &	Analyzed:	04/26/23				
Chloride	18.8		mg/kg	20.0		94.2	90-110	0.535	10	
Calibration Check (P3D2605-CCV1)				Prepared &	Analyzed:	04/26/23				
Chloride	18.2		mg/kg	18.0		101	90-110			
Calibration Check (P3D2605-CCV2)				Prepared &	Analyzed:	04/26/23				
Chloride	18.5		mg/kg	18.0		103	90-110			
Calibration Check (P3D2605-CCV3)				Prepared &	Analyzed:	04/26/23				
Chloride	18.6		mg/kg	18.0		103	90-110			
Duplicate (P3D2605-DUP1)	Sour	ee: 3D19002-	-24	Prepared &	Analyzed:	04/26/23				
Chloride	81.1	1.02	mg/kg dry		89.0			9.30	20	
	Cana	2010002	.21	Prepared &	Analyzed:	04/26/23				
Matrix Spike (P3D2605-MS1)	Sour	ce: 3D19002-		r repuired e	or many zea.	0 11 2 01 2 2				
Matrix Spike (P3D2605-MS1) Chloride	199	ee: 3D19002-	mg/kg	100	85.0	114	80-120			
	199	ce: 3D19002-	mg/kg	100		114	80-120			
Chloride	199		mg/kg	100	85.0	114	80-120 80-120	0.314	20	
Chloride Matrix Spike Dup (P3D2605-MSD1)	199 Sour		mg/kg	100 Prepared &	85.0 Analyzed:	114 04/26/23		0.314	20	
Chloride Matrix Spike Dup (P3D2605-MSD1) Chloride Batch P3D2708 - *** DEFAULT PREP ***	199 Sour		mg/kg	100 Prepared & 100	85.0 Analyzed:	114 04/26/23 115	80-120	0.314	20	
Chloride Matrix Spike Dup (P3D2605-MSD1) Chloride	199 Sour		mg/kg	100 Prepared & 100	85.0 z Analyzed: 85.0	114 04/26/23 115	80-120	0.314	20	
Chloride Matrix Spike Dup (P3D2605-MSD1) Chloride Batch P3D2708 - *** DEFAULT PREP *** Blank (P3D2708-BLK1)	199 Sour 200	ce: 3D19002	mg/kg -21 mg/kg	100 Prepared & 100 Prepared: 0	85.0 z Analyzed: 85.0	114 04/26/23 115 nalyzed: 04	80-120	0.314	20	

13000 West County Road 100 Odessa TX, 79765

Project Number: 17489 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chevron Cotton Draw Section 3

		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3D2708 - *** DEFAULT PREP ***									
LCS Dup (P3D2708-BSD1)			Prepared: (04/26/23	Analyzed: 04	1/27/23			
Chloride	16.7	mg/kg	18.4		90.7	90-110	3.68	10	
Calibration Check (P3D2708-CCV1)			Prepared: (04/26/23	Analyzed: 04	1/27/23			
Chloride	17.5	mg/kg	18.0		97.2	90-110			
Calibration Check (P3D2708-CCV2)			Prepared: (04/26/23	Analyzed: 04	1/27/23			
Chloride	17.3	mg/kg	18.0		96.0	90-110	·	·	·
Duplicate (P3D2708-DUP1)	Sour	ce: 3D19002-34	Prepared: (04/26/23	Analyzed: 04	1/27/23			
Chloride	91.3	1.00 mg/kg dr	y	95.6			4.65	20	
Matrix Spike (P3D2708-MS1)	Sour	ce: 3D21014-01	Prepared: (04/26/23	Analyzed: 04	1/27/23			
Chloride	132	mg/kg	100	27.6	104	80-120			
Matrix Spike Dup (P3D2708-MSD1)	Sour	ce: 3D21014-01	Prepared: (04/26/23	Analyzed: 04	1/27/23			
Chloride	133	mg/kg	100	27.6	105	80-120	0.629	20	

E Tech Environmental & Safety Solutions, Inc. [1] Project: Chevron Cotton Draw Section 3

13000 West County Road 100Project Number: 17489Odessa TX, 79765Project Manager: Blake Estep

Notes and Definitions

S-GC1 Surrogate recovery outside of control limits. A second analysis confirmed the original results..

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

R The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL Ct Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

B Analyte is found in the associated blank as well as in the sample (CLP B-flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date:

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Chevron Cotton Draw Section 3

13000 West County Road 100Project Number: 17489Odessa TX, 79765Project Manager: Blake Estep

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

DOC #: PBEL_REV_SUBMISSION

REVISION #: PBEL_2021_1

REVISION Date: 10/29/2021

EFFECTIVE DATE: 10/29/2021

REVISION/SUBMISSION FORM

Please fill in the required fields below with any requested revisions. In the event that there are multiple workorders or projects to be amended each workorder or project MUST have a separate form filled out entirely. An amended COC must be submitted in addition to the Revision/Submission Form in order for the amendments to be processed. Amended COC's do not replace the requirement of this form. If a revision is required due to errors or omissions on our part this form is still required for the necessary Non-Conformance documentation. Rerun requests will incur additional charges.

Client: Etech Environmental

Project: 3019002

Revision Request:

Amenà coc to show samples taken on 4-17-23

Amend Coc to show lab recieved samples 4-19-23

Two BH-24's on report, add BH-27 to second duplicate of 1848

Submitted by (Name and Date): Blake Ester 8-29-23

PBEL_REV_SUBMISSION_2021_1.DOC

Page 1 of 1

Permian Basin Environmental Lab. LP

1	100	112	. r. E.	***	Hwy
		48.1.7	12.1.4		1.1.2.2.2

Midland Texas 79701

Phone: 432-686-7235

Project Manager:	Blake Estep
------------------	-------------

Etech Environmental & Safety Solutions, Inc. Company Name:

Company Address: P.O. Box 62228

Midland, Texas 79711 City/State/Zip:

email: __blake@etechenv.com Sampler Signature:

1054 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	Chegron							
Project Name: Co+			•					
Project #: 17489	Project Lo	c:						

PO#:

☐Bill Etech

Area: New Mexico

	Report Format: STANDARD: TRRP: NPDES:							··········																					
		1													L					-		naly		or:		-			
(lab use o⊓ly)														Ē	F	····		TCI		믜		뷤			l	.			
ORDER#: 3D	19002			servation & # e	£ C - 4 - 1 - 2 - 2						·····			T		 	F	TOT	AL:					\dashv		_	4	2 hrs	
		1	PIE	servation & # (n Containers		I			Т	. T	1	T	Matri	<u>~</u>	9	I	اڇ		33			92					18	
LAB# (lab use only)	FIELD CODE	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	eze	HNO,	HCI	H ₂ SO ₄	NaOH	Nano	Other (Specify)	DW≃Drînking Water SL≃Studge GW ≈ Groundwater S≃Soil/Solid	ify Other		Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semi volatiles	BTEX/80210/5030 or BTEX 8260	Da	N.O.R.M,	Chiorides		RUSH TATTPIP Schedule; 24, 48, 72 his	STANDARD TAT
I	Bottomhole I	-	5'	1/17/23	9:30	1	X.				ם [ם [כ				Ø							3					ם נ	
2	Bottomhole 2				9:33	ı	K					ם נ				XI.							ф			K I			
8	BoHomhole 3				9:36	`	¥					<u>ן</u> כ				XI							ф.			loc [ם	
4	Bottomhole 4				9:39	1	¥				ם כ	ם נ				Ø		Ū					Ф			Ø I			
5	Bottomhole 5		Ш		9:42	1	Ų][[ם כ			į	Z							Ф						
Ū	Bottom hole 6				9:46	1	Ŋ.					ם [Z							ф			V I			
7	Bottom hole 7				9:49	1	Ŧ					ם כ			T i	Ø							Ф			St. [ם	
8	Bottom hole B				9:53	1	S D					ם כ			1	2							ф			K [10	
a	Bottom hole 9				9:57	1									T	4							Ф			X I		ΙÓ	
10	Bottonhole 10				9:59	•	X					1			1	4							ф			1		j	
	Bottom hole 11				10:02	ı	Ø][X.							力			F			
19	Botton hole 12				10:05	1	Ą][Į	XI.							P			R I			口
13	Bottomhole 13				10:08	ŧ	Œ][T	XI							1			S		JO	
14	Bottom Hora 14		*	4	10:10	1	3][I	Z							ф			X		ם	回
Special instru	ctions:		Banali	red by:	1-	Bi	11	4	౿	eo	~		Dat		772		Se	ibor imple DCs	Cor	ntaini of H	ers lead	intac Ispac	1? ce?		が多く	T	X	N N	
Relinquished by	Delta 3/19 10.8	3		ved by:	ر ماده در میشود کار در		1.02 Se 1.0	~		********			Dat		Tir Tir	ne ne	Se	istod istod imple ir by	y se Har San	als o nd De pler/	n co live Oliei	ooler red nt Re	r(s) p. ?					N N N N	
Relinquished by		me	7)1	Time B	ldoe			Asia Kara	(400 kg 100 kg 1			0	at	گر	18	B	10	n by mper	783	1500		UP: Rece	e	14:	4	7	I C	pine S	lar

Page 82 of 89

Permian Basin Environmental Lab. LP

Li00 Rankin Hwy

Midland Texas 79701

Phone: 432-686-7235

Project Manager:	Blake Estep
Company Name:	Etech Environmental & Safety Solutions, Inc

Company Address: P.O. Box 62228

Midland, Texas 79711 City/State/Zip:

• -	-	=	****				
Sampler	ct.		~*	email:	blak	e@etechenv.com	
Samules	2151	id tul (3.	 	***************************************	***************************************	

2054 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	Chevion							
Project Name: 646	· draw	Section	3					
Project #: 17489								
Area: New Mexico	PO#:							
☐Bill Etech								

												Rep	ort Format	<u>STAI</u>	NDAR	D:[]	1	RRP	<u>:</u>		NP	DES	<u>::D</u>			·	i
														L						naly		or:					
(lab use only)														-			-] [*****					.	I	•	
ORDER #: 3D19002													T 34.1.2.	╀-	т.	TOT	AL:	LJ		닏	Ш	-		4	4	;	
	·	Pr	eservation & # o	containers					Ī		T		Matrix a ∰	1 g	8	(EO3)		b Hg Se			X 8260					# # PG PG V	
LAB# (lab use only)	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	, eol	HNO3	на	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	None	DW=Drinking Water SL=Studge GW = Groundwater SL=Snij/Solit	12	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	BTEX/8021B/5030 or BTEX 8260	RC	N.O.R.M.	Chlorides		Bligh TATOra-Schoolin) 24.28-72 fee.	STANDARD TAT
15 Bottombole 15		5		10:13	ī	Ф			口			7 [Tp							P		口	p			
& Bottom Mole 16		1	1	10:1h	T	ф						JE	ונ	Тф							巾			ф		Πţ	
Bottomhole 17		П		10:19	1	ф][ם כ	Τþ							Þ			фT			
18 Bottom Mole 18				10:22	1	Ф]	ф							Þ			ф			ם
Bottomnole 19		П		10:25	1	ф]	ф										中			
20 Bottombole 20				10:29	1	ф][]	ф							Þ			þ			
21 Bottom note 21		П	-	10:32	-	ф] [] .	ф							Ф			D			
22 Bottomhole 22		П		10:35	_][]	ф							ф][
28 Bottonhole 23		П		10:39	-	ф							כ	Īф							ф			þ		ΠĖ	
24 Bottomhola 24		П		10:42	1	4						ם כ]	ĪΦ							山			PI		ΠĒ	
25 Bottombola 25		П		10:45	1	Φ]	ф							ф	可		ф			ם כ
26 Bottom hola 26		\prod		10:48		ф]	Iф							Ф			d]			
27 Bottornedo 27	1			10:51	1	ф							כ	d							中			中			
2 Bottomade 20		4	*	10:54	١	4							כ	ф							ф	回		d)			
Special Instructions:				•											\$	abor ample OCs	. Co	ntairi	ers	ntac	17			7	1	N N	
Remidusired by		Recei	ved by:	reference of the control of the cont	and the comm	11 Pt. 17 2		" ^ ~	34 . 414	** **	~	D	ite	Time		ustoc ustoc						s)-	19753 19753		1	N	
Detton 3/19 Dis	13										4	- 152		T	8	ampk	Ha	nd D	elive	red				1	1	N	
Relinquished by: Date Ti	me	recei	ved by:	-						*****	~ -		ite	Time	S	ar by ar by	Cou	rier?	Cael	UP	10. 7 5	DH		FedE	×	LPDS.	
Relinquished by: Date II	me	勃	the Mi	שמור			47.5				5	118	33 1	Jime) '}	3 1	empe	ratu	re U	oon f	Rece	ipt:	4	3			3	2

Received by OCD: 6/10/2024 1:43:49 PM

Page 83 of 89

Permian Basin Environmental Lab, LP

1400 Hankin Hwy

Midland Texas 79701

Phone: 432-686-7235

Project Manager: Blake Estep

Etech Environmental & Safety Solutions, Inc. Company Name:

Company Address: P.O. Box 62228

City/State/Zip:

Midland, Texas 79711

Sampler Signature:

email: __blake@etechenv.com

Project Name: Cotton & raw Section 3

Projec	#: \ 348 9	Project Loc:	
Area:	Liewmerie	PO#:	
□вііі	Etech		

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

3 0 44

												•		R	eport	Form	at: Ş	TAN	DARI	D:□	T	RP:				DES:I	<u>п</u>	<u>_</u>			
																				701	5.1			nalyz	ze Fr	or:					_
(lab use only)																				·····	LP:			片	믬						
ORDER# 5	D19002										,			/			_	-		TOT	AL:	9				_	4	4		2 hrs	
				Pri	eservatio T	n & # o	f Containers				т	-T-	-T	т-	-	Mati	×	1006	- 1	اء		S			8		- 1	١		88	
LAB# (lab use only)	FIELI	D CODE	Start Depth	End Depth		Date Sampled	Time Sampled	No. of Containers	80	HNO3	НС	H ₂ SU ₃	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Soild	NP=Non-PotableSpecify Other	TPH 418.1 (8015M) 1005	Cations (Ca, Mg, Na, K)	Anlons (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semi volatiles	BTEX(80219/5030 or BTEX 8260	RCI	NO.R.M.	Chlorides		RUSH TATIPre-Schedule) 24, 48, 72 hrs	STANDARD TAT
24	Bottonhala	29		5	3/17	123	10:67	1	4									À							F			ĮΓ		Ü	
<i>3</i> 0	Bo-How hold	20		ī	T,		10:51	١	H								'n	ф							中			p c			
81	BoHamha	_		П			11:02	,	d									ф							ф						
32	BoHamhale						11:05	1	ф									ф							4			þC		Ü	
33	Bottomkola			П			11:08	3	ф									Ш							Ф						
34	Bottomhole	34		П			11:)2	*	ф									Ф							Ф			plc			
85	Dottomkele	35		4			11:15	1	П									ф							Ф			þC			
36	Moutuside w	rall 5		3			11:18	ı	ф									ф							ф			plc			
31	Worth side			31			11:21	1	d									ф							Ф			plc			
38	North side			3`			11:24	1	d									ф							山			ple			
39	l betheide L	wall 44		3			11:28	1	ф									中							中						
40	South side c	sall 1		3			11:31	1	ф									ф							中			PC			
Ч	Southside	-all 2		3.			11:35	١	ф									ф							中	<u>DI</u>		<u> P</u> C			
42	South Side	ت لم		3.	D)		11:34	,	中									th							中			<u> </u>			
Special Instru																			S	abor ampk OCs	Co Free	ntain of I	ers lead	Intac Ispac	1? ce?			ß	3	N N	
Relinquished b		Date		Recen	ved by:	neral in the lines of		,	ye. 3000, 40 30	*2,000			-> 	ļ	Date			me		ustod ustod						s)				N N	
	Veltor	3/14 Date	10:28	Pecci	ved by:									<u> </u>	Date			ine		ample ar by									J	N N	
Relinquished b	Proposition and the contraction of the contraction	LARG			vou ny									<u> </u>					ြွန	ar by	Cou	rier?		UPS		DHL		줿	. 49	ne SI	tar
Relinquished b		Date	Time	7	があ	ah	Undage	7				3100		3/1	4/2	3	1	T.	3 7	empe	ratu	e Ur	on (Rece	ipt:	4.3	•		1	J _{°C}	100 A
<u> </u>				-2-4	5.7.7			<u> </u>	** 1 1/2	-			Criser S	1 : 5	74	19 (192 mile)		2.5	ساد والادوا	471752		*** 2 . 25*	-2.5	4 4 4	-3227					سنتفضي	اننتند

Released to Imaging: 6/10/2024 4:26:13 PM

Page 84 of 89

		-	•				7
	2	1	8	- 1		1	4
-	•	š	7	10.0		-	3
		3			 73		 3.5

Permian Basin Environmental Lab. LP

r. roo	Hankin	Harr

Midland Texas 79701

Phone: 432-686-7235

Project	Manager:
---------	----------

Blake Estep

Etech Environmental & Safety Solutions, Inc. Company Name:

Company Address: P.O. Box 62228

City/State/Zip:

Midland, Texas 79711

email.

blake@etecheny.com

4 ofu

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Cheuron

<u>Project</u>	Name:	Cotton	· draw	Section	3
	#: \74		Project Loc		·····
Area:			PO#:		

☐Bill Etech

Sampler Signal	ture:			Ati		nc <u>e cscone</u>																									
															Repo	ort Form	nat: 3	STAN	DAR	D:[]	Т	RRP	~~~~~~~~			DES:	<u>П</u>		***************************************		***************************************
																		<u> </u>	•					naly		or:	 -				
(lab use only)																		<u> </u>	·····	`	LP:			1	믜	ı		4			4.
ORDER# 3	019002					·········				-		wa						L.	,	тот	AL:			띧	미	_	_	4		_ =	
					Pre	servation & # of	Containers	<u> </u>	_					_	-	Ma	trix	1006				S.			8		ı	·		88	1
LAB#(fab ujee only)	FIELD	O CODE		Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO3	HCI	H ₂ SO ₄	NaOH	Novo	Other (cherifu)	DW=Drinking Water 51=50dge	1 🛊 🚡	1.0	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semi volatiles	BTEX 80210/5030 or BTEX 8260	RCI	N.O.R.M.	Senuoul		RUSH TATTPre-Schedule) 24, 48, 72 hrs	STANDARD TAT
43	Saure So	. dinaide	well 4		3'	W/4/23	11:43	1	P					JIC				F							Ш			P		ם נ	
Ψ 4	west side-	عجلا	2	İ	Ti	1	11:47	١	币][1		ф							Ф			D (JE] [
45	meet eigen		2		П		11:50	١	币][] [ф							ф			FI][] []	
46	East Side		<u></u>		Π		11:54	•	b					3 E] C]		4							山			1	JC	10	
V	East Side		2		1	4	11:58	T	4					JC		i T		40							巾			d (10	
][i]													JE		
								T						JE		ı][JŌ	
								Г						JE		i.													JE	ם ונ	
								Π] [ı 📉	,														
		,										口][JE		•														回
	8				1			T						JC		1															
	<u>}</u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1			Π		Ī				T C															JE	ם נ	
][可		36	טונ	回
					1			Т						II		ı													ÌΕ	ı i	
Special Instru	The state of the s								·							**	·	Time.	S	abor ampl OCs	e Co Free	ntain of t	ers lead	intac Is pac	ſ? :e?			Ā	R	N N	
Relinquished by	A contract to the contract of			March of March	recen	red by:	i aseme em acampana	~ .~.··	····	harrie archa	 (******	~~~	~	Da	K	 	Time	ĪĞ	usto: usto:	ty se	als (on c	ooler		5			1	N N	
للأل	بملا	3/		HO_	Recen	ved by:	· 		,			***************************************		╀	Da	ie	Ļ .	Time		ampk ar by	e Ha San	nd D	elive /Clie	red nt R	D 7				T	N N	33.3 23.3
Relinquished by	A CONTRACTOR OF THE PROPERTY O		. (1		***********			S	ar by	Cou	mer?		UP		DHL		FedE	x 4	2129	iet
Relinquished by	A STATE OF THE STA		ate Ti	me /	Roce	Minch (edoce	/						8	ha	13	10	17%) _T	empe	ratu	re Ur	on I	Rece	ıpt:	4	3			污	
1 .			1			74											-											-		-	

DOC #: PBEL_REV_SUBMISSION

REVISION #: PBEL_2021_1

REVISION Date: 10/29/2021

EFFECTIVE DATE: 10/29/2021

REVISION/SUBMISSION FORM

of this form. If a revision is required due to errors or omissions on our part this form is still required Form in order for the amendments to be processed. Amended COC's do not replace the requirement multiple workorders or projects to be amended each workorder or project MUST have a separate Please fill in the required fields below with any requested revisions. In the event that there are for the necessary Non-Conformance documentation. Rerun requests will incur additional charges form filled out entirely. An amended COC must be submitted in addition to the Revision/Submission

Client: Etech Environmental

Project: 3019002

Revision Request:

Amicad Coc To Show samples taken on 4:17-23

Page 3 Show lab recieved samples 4-19-23

Two RH-24's on report, add BH-27 to second duplicate of

Submitted by (Name and Date): Blake Ester 8-29-33

PBEL_REV_SUBMISSION_2021_1.DOC

Page 1 of 1

Released to Imaging: 6/10/2024 4:26:13 PM

PBBLAB Permian Basin Environmental Lab. LP

1 100 Bankin Hwy

Midland Lexus 79701

Phone: 132-686-7243

Pro	ect	Manager:	
-----	-----	----------	--

Blake Estep

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address:

P.O. Box 62228

City/State/Zip:

Midland, Texas 79711

Sampler Signature:

email:

blake@etechenv.com

CHAIN OF CUSTODY RI	ECORD AND AN	ALYSIS REQUEST
---------------------	--------------	----------------

Project	Name:	Cotton	Draw	Section	3
				neimonnem annonem kest aan Amet	bereion

Project #: 17489

Project Loc:

Area:

PO#: 17489

☑Bill Etech

(lab use only) ORDER #: 3D / 9002															-		T	LP.		y-management	SERVICE SALES	ze F	-24 ×	-			-	
ORDER #: 3D19002																		285									354	
																	TO	AL:	0	-		danie de la constante de la co						
3			Pr(eservation & # o	f Container	S						***************************************	Т	Matrix	90	T	T	T						\dashv	\dashv	+		12
FIELD	CODE	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO,	HCI H,50 ₂	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify) DW=Drinking Water St=Studes	rater	TPH: 418.1 6015 1005 1006	, Na, K)	Anions (Cl, SO4, CO3, HCD3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatifes	Semi volatiles	BTEX 6021B/5030 or BTEX 8260	RCI	N.O.R.M.	Chlorides			S STANDARD TAT
Bottom Hole 1			5'	4/17/2023	9:30	1	Х		olc					S	X		О					Х		o		ali	olc	X
2 Bottom Hole 2		-	5'	4/17/2023	9:33	1	Х		oc	lo				5	X				-			Х				-	olc	
3 Bottom Hole 3			5,	4/17/2023	9:36	1	Х		olc	nigramento.				S	X								-	******				
4 Bottom Hole 4			5'	4/17/2023	9:39	1	Х							S	Tx	10						Х						X
5 Bottom Hole 5		٠.	5'	4/17/2023	9:42	1	Х		٥c					S	X	0						χ	-	-	-	-	ole	
(p Bottom Hole 6			5'	4/17/2023	9:46	1	Х		olc	+	О			S	X	0						-		-	-			
7 Bottom Hole 7			5'	4/17/2023	9:49	1	χ							S	TX	0			0			Χ						X
g Bottom Hole 8	opportungs of the second secon		5'	4/17/2023	9:53	1	Х		ola					S	X		a					-						-
9 Bottom Hole 9			5'	4/17/2023	9:57	1	Χ		olo	10		-		S	X				o					-				X
10 Bottom Hole 10		-	5'	4/17/2023	9:59	1	Х			0	О		<u> </u>	S	Tx	o		П	П			Х) X
Bottom Hole 11			5'	4/17/2023	10:02	1	Х							S	X	6				-		-		-			5 6	
17, Bottom Hole 12		-	5'	4/17/2023	10:05	1	Х	-					5	S	X	0					0	Х						
3, Bottom Hole 13		-	5'	4/17/2023	10:08	1	Х							S	X	0	a					Х						
Bottom Hole 14			5'	4/17/2023	10:10	1	Х						1	S	X	О						-	_			-		

Released to Imaging: 6/10/2024 4:26:13 PM

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Report Format: STANDARD:CI

Project Manager:	Blake Estep	-
Company Name:	Etech Environmental & Safety Solutions, In-	C
Company Address:	P.O. Box 62228	

Company room cas.	2 1 July 1 July July 27 July die der get				
City/State/Zip:	Midland, Texas	79	7:	11	L
					ī

				1_	Indian Colombia	chen <u>v.com</u>	
amalas	Signature	•	email:		IZKOMMENDI	THE PROPERTY OF THE PARTY	
dilloca	SIKINGLUIC.	•	Per 0 5 5 6 6 5 5 5 5	9.0	354 24 Pr 620 Pr 4 Pr 4	The to all the to the different do the first	0.

Project #:	17489	Project Loc:
Area:		PO#: 17489

TRRPT

NPDES:

***************************************																		TC	1 (3)	П	NAME OF TAXABLE PARTY.	C C C C C C C C C C						
e only)	010.0															-	•••••											
1#: 3	D19002					***************************************	.,,,,,,,,,,											TOT	AL:				Ш				4	
ouly)				Pro	eservation & # of	Containers									Maturx S=508/5080 point Other	3005 1006	Na, K)), HCO3)	כבכ	r Pb Hg Se		ş	3TEX 8260					
LAB# (lab use on	FIELD) CODE	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	ice	HNO3	Đ.	AOSAN HOEN	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Driniding Water St=5 GW = Groundwater S=50 NP=Non-PotableSpecify (TPH: 418.1(8015M)	Cations (Ca, Mg, I	Anions (Cl, 504, CO3,	SAR / ESP / CI	Metals: As Ag Ba Cd Cr	Volatiles	Semi volatile	BTEX 20218/3080 or	RCI	N.O.R.M.	Chlorides		
5	Bottom Hole 15		1 .	5'	4/17/2023	10:13	1	Χ							S	Х				0			Χ) [
P	Bottom Hole 16		-	5'	4/17/2023	10:16	1	X							S	Х							X				3 [וכ
7	Bottom Hole 17			5'	4/17/2023	10:19	1	Χ							S	χ							Χ][JE
8	Bottom Hole 18			5'	4/17/2023	10:22	1	Χ							\$	Х							Х				ם כ	5 c
9	Bottom Hole 19			5'	4/17/2023	10:25	1	X							S	χ							Х][1
0	Bottom Hole 20			5'	4/17/2023	10:29	1	Χ							S	χ							Х					זוכ
	Bottom Hole 21		-	5'	4/17/2023	10:32	1	Х						О	S	Х							X					זונ
2	Bottom Hole 22			5'	4/17/2023	10:35	1	Χ							S	Χ							X					J [
3	Bottom Hole 23		-	5'	4/17/2023	10:39	1	Χ			3 0	O			S	Χ	О						Х					זוכ
4	Bottom Hole 24		-	5'	4/17/2023	10:42	1	Х			3 0				S	χ	О						X				3 C	זונ
.5	Bottom Hole 25		-	5'	4/17/2023	10:45	1	Χ	*****				decement	************	S	Х	О						Χ) [וכ
6	Bottom Hole 26		-	5'	4/17/2023	10:48	1	Х			*******		danner &	О	S	Х							X] [1
7	Bottom Hole 27		-	5'	4/17/2023	10:51	1	Χ					diameter of		5	Χ							X					3 [
1				1	<u> </u>		-	Χ			1 C	-	-		S							-				0 8	3 C	

Released to Imaging: 6/10/2024 4:26:13 PM

1 100 Bankin Hes

Midland Frence 79701

Phone 132-636-7235

Project Manager:

Blake Estep

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

City/State/Zip:

Midland, Texas 79711

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: Cotton Draw Section 3 Project Loc: Project #: 17489

Area:

PO#: 17489

Sampler Sign		em	ail: .	k	olake <u>@etec</u>	henv.co	m						ш	ומני	III Eta	CI	1													
													Re	eport	Forma	t S	(ANE	DAR	<u>):O_</u>	<u>T</u>	RRP	NAMES OF TAXABLE PARTY.	nalv	NPI ze Fr	DES: or:	<u>:D</u>	Minimum and and an artist of the latest and artist of the latest artist of the latest and artist of the latest artist of the latest and a			
lab use only)																h		*******	TC	LP:		geneeuwy			Ť	П	T	П		T
DROER #:	3D19002															I			тот	AL:									j	
				Pre	servation & # of	Containers					_	_			Matr	×	1006				Hg Se			8260					- 42	
LAB# (lab use only)	FIELD CODE		Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	Ce	HNO3	HG.	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water Si=Skudge GW = Groundwater S=Soll/Solid	NPaNon-PotableSpecify Other	TPH: 418.1 SQ153/ 1005 1	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semi volatiles		RCI	N.O.R.M.	Chlorides		BUSH TATTER Schedules 2	
29	Bottom Hole 29		-	5'	4/17/2023	10:57	1		فممنسنت		-		&		S		X			0				-						
30	Bottom Hole 30		1 -	5'	4/17/2023	10:59	1	Χ							S		X							L						X
31	Bottom Hole 31			5'	4/17/2023	11:02	1	X							S		X							Х)
32	Bottom Hole 32		-	5'	4/17/2023	11:05	1	Χ							S		X													1 >
33.	Bottom Hole 33			5'	4/17/2023	11:08	1	X							S		X							-	-	-))
34	Bottom Hole 34			5'	4/17/2023	11:12	1	X							S		X							X))
35	Bottom Hole 35			5'	4/17/2023	11:15	1	X							\$		X							Х						J X
36	North Sidewall 1		0	3'	4/17/2023	11:18	1	Χ							5		X							X						۷ (
37	North Sidewall 2		0	3'	4/17/2023	11:21	1	X							5		X							X)
38	North Sidewall 3		0	3'	4/17/2023	11:24	1	X							5		X							X])
39	North Sidewall 4		0	3'	4/17/2023	11:28	1	X) [S		Х							Х) X
40	South Sidewall 1		0	3'	4/17/2023	11:31	1	X			ם				5		X							Х)))
41	South Sidewall 2		0	3'	4/17/2023	11:35	1	X) [S		Х							Х						X
42	South Sidewall 3		0	3'	4/17/2023	11:39	1	X							S		X							Х						X
Special Instru	ictions:																	s	ampk	Col	ntain	omn ters	Intac	:17			1	Y	N	
Relinquished b	Et	419.23 10:		Receiv	JAJAJAN III AMARKAN MI						- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			Date			me me	0000	ustoc ustoc ample	ly se ly se Hai San	aals sals nd D ipler	Head on co on co letve /Clies	onta oole red	iner(r(s) ep. ?				****	N N N N Lope	
Relinquished b	y :	Date 1	me	Populary	ishibi	ldas	اررا						4	Dale	/23	10	me 12					pon f				4	3		NG	

PBELAI	Permian Basin Environmental Lab.	n re	
1 100 Rankin Hwy	Hidland Lexas 79701	Phone:	192-606 5295

Blake Estep Project Manager:

Company Name: Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

Midland, Texas 79711 City/State/Zip:

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: Cotton	Draw Section 3
Project #: 17489	Project Loc:
Area:	PO#: 17489

☑Bill Etech

													R	eport	Form	at: 5	STAN	DAR	D:□		RRF	economico concessors		NPI ze F	DES	П.	jevenovenoven			
1-L L \																			TC	LP:					<u> </u>	$\neg \tau$		Т		
lab use only) ORDER #:	3D19002																		тот	*********										2
				Pr	eservation & # of	Container									Met	rix	1006				Se			99				T		9
LAB # (lab use only)	FIELD COI	ÞE	Start Dooth	End Depth	Date Sampled	Time Sampled	No. of Containers	2	HNO3	H 50	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water %=Sludge GW = Groundwater \$=\$0il/Soild	NP=Non-PotableSpecify Other	w	Cations (Ca, Mg, Na, K)	Anions (Cl. 504, C03, HC03)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Semi volatiles	8788 80238/5030 or 8TEX 8260	RCI	N.O.R.M.	Chlorides			RUSH IA (Pre-Schedue) 24, 46, 72 hrs
43	South Sidewall 4			3'	4/17/2023	11:43	1	Χ							S		Χ							Х						5
44	West Sidewall 1		0	3'	4/17/2023	11:47	1	Χ							S		χ							Χ] 7
45	West Sidewall 2		- 0	3'	4/17/2023	11:50	1	Х							S		Х							Χ))
46	East Sidewall 1		0	3'	4/17/2023	11:54	1	χ							S		Х							Х])
47	East Sidewall 2			3'	4/17/2023	11:58	1	X							S		Х	0						Х						3)
																	0													
][
																		O												

) C
][
Special Instr	uctions:	Date 4.19.23	70:23		ved by:		DAN SHAMBAR . L			*****			*****	Date			Time	9 0 0	abor semple OCs sustoc sustoc semple	e Co Free ty so	ntain of I pals	era lead on c	Intec Ispai ontai	:t? ce? iner(s)		1	(*) (*) (*) (*)	22222	
Relinquished b	>y: 	Date Date	Time	Recei	ved by:									Date			Tirne Time	8	ar by lar by	San	noter	/Ciles			DHL	1.3	Fedi	ex ,	Lone	1

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Cotton Draw Section 3 CTB
Project Number: 17489
Location:

Lab Order Number: 3G20011

Current Certification

Report Date: 07/31/23

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 7 @ 6'	3G20011-01	Soil	07/18/23 08:00	07-20-2023 12:52
Bottom Hole - 10 @ 6'	3G20011-02	Soil	07/18/23 09:00	07-20-2023 12:52
Bottom Hole - 12 @ 6'	3G20011-03	Soil	07/18/23 09:10	07-20-2023 12:52
Bottom Hole - 13 @ 6'	3G20011-04	Soil	07/18/23 09:15	07-20-2023 12:52
Bottom Hole - 21 @ 6.5'	3G20011-05	Soil	07/18/23 09:20	07-20-2023 12:52
Bottom Hole - 32 @ 6.5'	3G20011-06	Soil	07/18/23 09:21	07-20-2023 12:52

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 7 @ 6' 3G20011-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 14:45	EPA 8021B	
Toluene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 14:45	EPA 8021B	
Ethylbenzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 14:45	EPA 8021B	
Xylene (p/m)	ND	0.0404	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 14:45	EPA 8021B	
Xylene (o)	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 14:45	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		135 %	80-120		P3G2007	07/20/23 14:15	07/21/23 14:45	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		91.8 %	80-120		P3G2007	07/20/23 14:15	07/21/23 14:45	EPA 8021B	
Organics by GC									
C6-C12	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 06:48	TX 1005	
>C12-C28	59.5	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 06:48	TX 1005	
>C28-C35	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 06:48	TX 1005	
Surrogate: 1-Chlorooctane		96.6 %	70-130		P3G2414	07/24/23 10:00	07/25/23 06:48	TX 1005	
Surrogate: o-Terphenyl		125 %	70-130		P3G2414	07/24/23 10:00	07/25/23 06:48	TX 1005	
Total Hydrocarbon nC6-nC35	59.5	25.3	mg/kg dry	1	[CALC]	07/24/23 10:00	07/25/23 06:48	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	61.1	1.01	mg/kg dry	1	P3G2516	07/25/23 12:00	07/26/23 09:20	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3G2407	07/24/23 06:33	07/24/23 06:39	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 10 @ 6' 3G20011-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:06	EPA 8021B	
Toluene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:06	EPA 8021B	
Ethylbenzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:06	EPA 8021B	
Xylene (p/m)	ND	0.0404	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:06	EPA 8021B	
Xylene (o)	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.0 %	80-120		P3G2007	07/20/23 14:15	07/21/23 15:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		143 %	80-120		P3G2007	07/20/23 14:15	07/21/23 15:06	EPA 8021B	S-GC
Organics by GC									
C6-C12	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:11	TX 1005	
>C12-C28	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:11	TX 1005	
>C28-C35	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:11	TX 1005	
Surrogate: 1-Chlorooctane		88.9 %	70-130		P3G2414	07/24/23 10:00	07/25/23 07:11	TX 1005	
Surrogate: o-Terphenyl		115 %	70-130		P3G2414	07/24/23 10:00	07/25/23 07:11	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.3	mg/kg dry	1	[CALC]	07/24/23 10:00	07/25/23 07:11	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	78.8	1.01	mg/kg dry	1	P3G2516	07/25/23 12:00	07/26/23 09:34	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3G2407	07/24/23 06:33	07/24/23 06:39	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 12 @ 6' 3G20011-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:26	EPA 8021B	
Toluene	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:26	EPA 8021B	
Ethylbenzene	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:26	EPA 8021B	
Xylene (p/m)	ND	0.0408	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:26	EPA 8021B	
Xylene (o)	ND	0.0204	mg/kg dry	20	P3G2007	07/20/23 14:15	07/21/23 15:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.5 %	80-120		P3G2007	07/20/23 14:15	07/21/23 15:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		152 %	80-120		P3G2007	07/20/23 14:15	07/21/23 15:26	EPA 8021B	S-GC
Organics by GC									
C6-C12	ND	25.5	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:34	TX 1005	
>C12-C28	ND	25.5	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:34	TX 1005	
>C28-C35	ND	25.5	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:34	TX 1005	
Surrogate: 1-Chlorooctane		95.4 %	70-130		P3G2414	07/24/23 10:00	07/25/23 07:34	TX 1005	
Surrogate: o-Terphenyl		124 %	70-130		P3G2414	07/24/23 10:00	07/25/23 07:34	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.5	mg/kg dry	1	[CALC]	07/24/23 10:00	07/25/23 07:34	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	399	1.02	mg/kg dry	1	P3G2516	07/25/23 12:00	07/26/23 09:49	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3G2407	07/24/23 06:33	07/24/23 06:39	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 13 @ 6' 3G20011-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
•	resur					•			
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 09:54	EPA 8021B	
Toluene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 09:54	EPA 8021B	
Ethylbenzene	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 09:54	EPA 8021B	
Xylene (p/m)	ND	0.0404	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 09:54	EPA 8021B	
Xylene (o)	ND	0.0202	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 09:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	92.2 %	80-120		P3G2007	07/20/23 14:15	07/24/23 09:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		130 %	80-120		P3G2007	07/20/23 14:15	07/24/23 09:54	EPA 8021B	S-GC
Organics by GC									
C6-C12	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:57	TX 1005	
>C12-C28	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:57	TX 1005	
>C28-C35	ND	25.3	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 07:57	TX 1005	
Surrogate: 1-Chlorooctane	<u>,</u>	95.8 %	70-130		P3G2414	07/24/23 10:00	07/25/23 07:57	TX 1005	
Surrogate: o-Terphenyl		125 %	70-130		P3G2414	07/24/23 10:00	07/25/23 07:57	TX 1005	
Total Hydrocarbon nC6-nC35	ND	25.3	mg/kg dry	1	[CALC]	07/24/23 10:00	07/25/23 07:57	[CALC]	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	73.7	1.01	mg/kg dry	1	P3G2516	07/25/23 12:00	07/26/23 10:32	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3G2407	07/24/23 06:33	07/24/23 06:39	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 21 @ 6.5' 3G20011-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B						,			
Benzene	ND	0.0222	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:15	EPA 8021B	
Toluene	ND	0.0222	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:15	EPA 8021B	
Ethylbenzene	ND	0.0222	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:15	EPA 8021B	
Xylene (p/m)	ND	0.0444	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:15	EPA 8021B	
Xylene (o)	ND	0.0222	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		133 %	80-120		P3G2007	07/20/23 14:15	07/24/23 10:15	EPA 8021B	S-GO
Surrogate: 1,4-Difluorobenzene		92.5 %	80-120		P3G2007	07/20/23 14:15	07/24/23 10:15	EPA 8021B	
Organics by GC									
C6-C12	ND	27.8	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 08:20	TX 1005	
>C12-C28	ND	27.8	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 08:20	TX 1005	
>C28-C35	ND	27.8	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 08:20	TX 1005	
Surrogate: 1-Chlorooctane		96.9 %	70-130		P3G2414	07/24/23 10:00	07/25/23 08:20	TX 1005	
Surrogate: o-Terphenyl		123 %	70-130		P3G2414	07/24/23 10:00	07/25/23 08:20	TX 1005	
Total Hydrocarbon nC6-nC35	ND	27.8	mg/kg dry	1	[CALC]	07/24/23 10:00	07/25/23 08:20	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	78.9	1.11	mg/kg dry	1	P3G2516	07/25/23 12:00	07/26/23 11:14	EPA 300.0	
% Moisture	10.0	0.1	%	1	P3G2407	07/24/23 06:33	07/24/23 06:39	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Bottom Hole - 32 @ 6.5' 3G20011-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.0225	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:36	EPA 8021B	
Toluene	ND	0.0225	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:36	EPA 8021B	
Ethylbenzene	ND	0.0225	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:36	EPA 8021B	
Xylene (p/m)	ND	0.0449	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:36	EPA 8021B	
Xylene (o)	ND	0.0225	mg/kg dry	20	P3G2007	07/20/23 14:15	07/24/23 10:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		91.4 %	80-120		P3G2007	07/20/23 14:15	07/24/23 10:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		130 %	80-120		P3G2007	07/20/23 14:15	07/24/23 10:36	EPA 8021B	S-GC
Organics by GC									
C6-C12	ND	28.1	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 08:43	TX 1005	
>C12-C28	ND	28.1	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 08:43	TX 1005	
>C28-C35	ND	28.1	mg/kg dry	1	P3G2414	07/24/23 10:00	07/25/23 08:43	TX 1005	
Surrogate: 1-Chlorooctane		109 %	70-130		P3G2414	07/24/23 10:00	07/25/23 08:43	TX 1005	
Surrogate: o-Terphenyl		140 %	70-130		P3G2414	07/24/23 10:00	07/25/23 08:43	TX 1005	S-GC
Total Hydrocarbon nC6-nC35	ND	28.1	mg/kg dry	1	[CALC]	07/24/23 10:00	07/25/23 08:43	[CALC]	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	42.9	1.12	mg/kg dry	1	P3G2516	07/25/23 12:00	07/26/23 11:29	EPA 300.0	
% Moisture	11.0	0.1	%	1	P3G2407	07/24/23 06:33	07/24/23 06:39	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyce	Kesuit	Liiiit	Oillts	Level	Kesun	/OKEC	Lillits	KLD	Liillit	notes
Batch P3G2007 - *** DEFAULT PREP ***										
Blank (P3G2007-BLK1)				Prepared: (07/20/23 Aı	nalyzed: 07	/21/23			
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.214		"	0.120		179	80-120			S-GC
LCS (P3G2007-BS1)				Prepared: (07/20/23 Aı	nalyzed: 07	/21/23			
Benzene	0.0852	0.00100	mg/kg	0.100		85.2	80-120			
Toluene	0.0928	0.00100	"	0.100		92.8	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.223	0.00200	"	0.200		111	80-120			
Xylene (o)	0.104	0.00100	"	0.100		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.221		"	0.120		184	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.6	80-120			
LCS Dup (P3G2007-BSD1)				Prepared: (07/20/23 Aı	nalyzed: 07	/21/23			
Benzene	0.0900	0.00100	mg/kg	0.100		90.0	80-120	5.48	20	
Toluene	0.0948	0.00100	"	0.100		94.8	80-120	2.21	20	
Ethylbenzene	0.116	0.00100	"	0.100		116	80-120	1.61	20	
Xylene (p/m)	0.227	0.00200	"	0.200		114	80-120	1.91	20	
Xylene (o)	0.104	0.00100	"	0.100		104	80-120	0.895	20	
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.213		"	0.120		177	80-120			S-GC
Calibration Blank (P3G2007-CCB1)				Prepared: ()7/20/23 Aı	nalyzed: 07	/21/23			
Benzene	0.250		ug/kg							
Toluene	0.330		"							
Ethylbenzene	0.790		"							
Xylene (p/m)	1.83		"							
Xylene (o)	1.10		"							
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.215		"	0.120		180	80-120			S-GC

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
,		Liiiit	Omo	Level	Result	/orche	Liiiits	МЪ	Dillit	110103
Batch P3G2007 - *** DEFAULT PREP ***	k									
Calibration Blank (P3G2007-CCB2)				Prepared: (07/20/23 At	nalyzed: 07	/24/23			
Benzene	0.0500		ug/kg							
Toluene	0.240		"							
Ethylbenzene	0.200		"							
Xylene (p/m)	0.790		"							
Xylene (o)	0.370		"							
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.216		"	0.120		180	80-120			S-GO
Calibration Check (P3G2007-CCV1)				Prepared: (07/20/23 Aı	nalyzed: 07	/21/23			
Benzene	0.0801	0.00100	mg/kg	0.100		80.1	80-120			
Toluene	0.0961	0.00100	"	0.100		96.1	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Xylene (p/m)	0.215	0.00200	"	0.200		107	80-120			
Xylene (o)	0.118	0.00100	"	0.100		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.207		"	0.120		172	75-125			S-GO
Calibration Check (P3G2007-CCV2)				Prepared: (07/20/23 Ai	nalyzed: 07	/21/23			
Benzene	0.0825	0.00100	mg/kg	0.100		82.5	80-120			
Toluene	0.0854	0.00100	"	0.100		85.4	80-120			
Ethylbenzene	0.0955	0.00100	"	0.100		95.5	80-120			
Xylene (p/m)	0.197	0.00200	"	0.200		98.4	80-120			
Xylene (o)	0.0924	0.00100	"	0.100		92.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.209		"	0.120		174	75-125			S-GO
Calibration Check (P3G2007-CCV3)				Prepared: (07/20/23 Aı	nalyzed: 07	/24/23			
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120			
Xylene (p/m)	0.236	0.00200	"	0.200		118	80-120			
Xylene (o)	0.117	0.00100	"	0.100		117	80-120			
Surrogate: 4-Bromofluorobenzene	0.222		"	0.120		185	75-125			S-GO
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.2	75-125			

Permian Basin Environmental Lab, L.P.

S-GC

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3G2007 - *** DEFAULT PREP ***

Surrogate: 4-Bromofluorobenzene

Matrix Spike (P3G2007-MS1)	Sou	rce: 3G07012	2-04	Prepared:	07/20/23 An	alyzed: 07	7/24/23			
Benzene	0.102	0.00102	mg/kg dry	0.102	0.00122	98.6	80-120			
Toluene	0.0901	0.00102	"	0.102	0.00224	86.1	80-120			
Ethylbenzene	0.102	0.00102	"	0.102	ND	99.8	80-120			
Xylene (p/m)	0.199	0.00204	"	0.204	0.00571	94.9	80-120			
Xylene (o)	0.0979	0.00102	"	0.102	0.00347	92.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.122		95.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.165		"	0.122		135	80-120			S-GC
Matrix Spike Dup (P3G2007-MSD1)	Sou	rce: 3G07012	2-04	Prepared:	07/20/23 An	alyzed: 07	7/24/23			
Benzene	0.0980	0.00102	mg/kg dry	0.102	0.00122	94.8	80-120	3.90	20	
Toluene	0.0861	0.00102	"	0.102	0.00224	82.2	80-120	4.68	20	
Ethylbenzene	0.0973	0.00102	"	0.102	ND	95.3	80-120	4.56	20	
Xylene (p/m)	0.190	0.00204	"	0.204	0.00571	90.3	80-120	4.95	20	
Xylene (o)	0.0939	0.00102	"	0.102	0.00347	88.6	80-120	4.33	20	
Surrogate: 1,4-Difluorobenzene	0.118		"	0.122		96.5	80-120			

0.122

143

80-120

0.175

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3G2414 - TX 1005										
Blank (P3G2414-BLK1)				Prepared: (07/24/23 At	nalyzed: 07	/25/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	75.5		"	50.0		151	70-130			S-GO
LCS (P3G2414-BS1)				Prepared: ()7/24/23 Aı	nalyzed: 07	//25/23			
C6-C12	1270	25.0	mg/kg	1100		115	75-125			
>C12-C28	1210	25.0	"	1100		110	75-125			
Surrogate: 1-Chlorooctane	130		"	100		130	70-130			
Surrogate: o-Terphenyl	77.7		"	50.0		155	70-130			S-GO
LCS Dup (P3G2414-BSD1)				Prepared: ()7/24/23 Aı	nalyzed: 07	/25/23			
C6-C12	1290	25.0	mg/kg	1100		117	75-125	1.86	20	
>C12-C28	1240	25.0	"	1100		113	75-125	2.18	20	
Surrogate: 1-Chlorooctane	130		"	100		130	70-130			
Surrogate: o-Terphenyl	75.1		"	50.0		150	70-130			S-GO
Calibration Check (P3G2414-CCV1)				Prepared: ()7/24/23 Aı	nalyzed: 07	/25/23			
C6-C12	512	25.0	mg/kg	500		102	85-115			
>C12-C28	475	25.0	"	500		95.1	85-115			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	75.2		"	50.0		150	70-130			S-GO
Calibration Check (P3G2414-CCV2)				Prepared: ()7/24/23 Aı	nalyzed: 07	/25/23			
C6-C12	496	25.0	mg/kg	500		99.1	85-115			
>C12-C28	499	25.0	"	500		99.9	85-115			
Surrogate: 1-Chlorooctane	125		"	100		125	70-130			
Surrogate: o-Terphenyl	74.6		"	50.0		149	70-130			S-GO

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Cotton Draw Section 3 CTB

Project Number: 17489 Project Manager: Blake Estep

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Calibration Check (P3G2414-CCV3)				Prepared: 07/24	1/23 Analyzed: 07	/25/23	
C6-C12	502	25.0	mg/kg	500	100	85-115	
>C12-C28	455	25.0	"	500	90.9	85-115	
Surrogate: 1-Chlorooctane	130		"	100	130	70-130	
Surrogate: o-Terphenyl	73.5		"	50.0	147	70-130	S-GC

13000 West County Road 100 Project Number: 17489

Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Cotton Draw Section 3 CTB

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3G2407 - *** DEFAULT PREP ***										
Blank (P3G2407-BLK1)				Prepared &	: Analyzed:	07/24/23				
% Moisture	ND	0.1	%							
Blank (P3G2407-BLK2)				Prepared &	: Analyzed:	07/24/23				
% Moisture	ND	0.1	%	-						
Duplicate (P3G2407-DUP1)	Sou	rce: 3G20014-	-01	Prepared &	: Analyzed:	07/24/23				
% Moisture	8.0	0.1	%	•	7.0			13.3	20	
Duplicate (P3G2407-DUP2)	Sou	rce: 3G21009-	-01	Prepared &	: Analyzed:	07/24/23				
% Moisture	11.0	0.1	%	-	10.0			9.52	20	
Duplicate (P3G2407-DUP3)	Sou	rce: 3G21005-	-02	Prepared &	: Analyzed:	07/24/23				
% Moisture	ND	0.1	%		1.0			200	20	R3
Duplicate (P3G2407-DUP4)	Sou	rce: 3G21012-	-02	Prepared &	: Analyzed:	07/24/23				
% Moisture	12.0	0.1	%		13.0			8.00	20	
Batch P3G2516 - *** DEFAULT PREP ***										
Blank (P3G2516-BLK1)				Prepared: ()7/25/23 A:	nalyzed: 07	7/26/23			
Chloride	ND	1.00	mg/kg	-						
LCS (P3G2516-BS1)				Prepared: ()7/25/23 A	nalyzed: 07	//26/23			
Chloride	18.9		mg/kg	20.0		94.3	90-110			
LCS Dup (P3G2516-BSD1)				Prepared: ()7/25/23 A	nalyzed: 07	7/26/23			
Chloride	18.9		mg/kg	20.0		94.7	90-110	0.355	10	

13000 West County Road 100 Project Number: 17489
Odessa TX, 79765 Project Manager: Blake Estep

Ceneral Chemistry Parameters by FPA / Standard Methods

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Cotton Draw Section 3 CTB

		Reporting		Spike	Source	e	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3G2516 - *** DEFAULT PREP ***										
Calibration Check (P3G2516-CCV1)				Prepared: (07/25/23	Analyzed: 0	7/26/23			
Chloride	18.9		mg/kg	20.0		94.7	90-110			
Calibration Check (P3G2516-CCV2)				Prepared: (07/25/23	Analyzed: 0	7/26/23			
Chloride	19.8		mg/kg	20.0		99.0	90-110			
Calibration Check (P3G2516-CCV3)				Prepared: (07/25/23	Analyzed: 0	7/26/23			
Chloride	19.9		mg/kg	20.0		99.3	90-110			
Matrix Spike (P3G2516-MS1)	Sour	ce: 3G20008	3-01	Prepared: (07/25/23	Analyzed: 0	7/26/23			
Chloride	6670	1.01	mg/kg dry	5050	1460	103	80-120			
Matrix Spike (P3G2516-MS2)	Sour	ce: 3G20011	-04	Prepared: (07/25/23	Analyzed: 0	7/26/23			
Chloride	1120	1.01	mg/kg dry	1010	73.7	104	80-120			
Matrix Spike Dup (P3G2516-MSD1)	Sour	ce: 3G20008	3-01	Prepared: (07/25/23	Analyzed: 0	7/26/23			
Chloride	6690	1.01	mg/kg dry	5050	1460	103	80-120	0.175	20	
Matrix Spike Dup (P3G2516-MSD2)	Sour	ce: 3G20011	-04	Prepared: (07/25/23	Analyzed: 0	7/26/23			
Chloride	1090	1.01	mg/kg dry	1010	73.7	101	80-120	2.36	20	

E Tech Environmental & Safety Solutions, Inc. [1] Project: Cotton Draw Section 3 CTB

13000 West County Road 100 Project Number: 17489
Odessa TX, 79765 Project Manager: Blake Estep

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

NPBEL Ct Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Dien	Darron			
Report Approved By:			Date:	7/31/2023	

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Cotton Draw Section 3 CTB

13000 West County Road 100Project Number: 17489Odessa TX, 79765Project Manager: Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Released to Imaging: 6/10/2024 4:26:13 PM

Permian Basin Environmental Lab. LP

1 100 Rankin Hwy

Midland Texas 79701

Project Manager:	BLAKE ESTEP	
Company Name:	Etech Environmental & Safety Solutions, Inc.	

Company Address: P.O. Box 62228

City/State/Zip: Midland, Texas 79711 Phone: 132-686-7235

Project Name: Cotton	Draw Section 3 CTI
Project #: / 7489	Project Loc:
Area:	PO#: /7489

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Sampler Signa	ture:	email:		@	eteche	1V.C	om	1					Bi	II Ete	ch													
												Re	port	Format	STA	NDAR	D:□	7	RRP		nahı	NPI	DES:					
(lab use only)	100														\vdash		TC	LP:						Т	\neg	\top		Т
ORDER#: 30	320011																TOT	TAL:						- 1		-	go	
			Pre	servation & # o	f Containers								П	Matrix	98	T		Г	+-	_	H		$\vdash \vdash$	\dashv	+	+	- 2	
LAB# (lab use only)	FIELD CODE	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO ₃	HCI H,SO.	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Soild	1005	ıs (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	PTEX 8021B 5030 or BTEX 8260	RCI	N.O.R.M.	Chlorides		 RUSH TAT(Pre-Schedule) 24, 48, 72 hrs	STANDARD TAT
	Botton Hale - 7		6	7-18-27	800	1									X							M		را ت		10		A
2	Brotton Hole-10		6		900	Ш									Þ							1				古		固
3	Detton Hole-12		6'		910										1							由	古	at i		10		뒴
4	Botton Hole-13		1		915	П									古						口	H	7			+=	+	情
5	Botton Hole-21		6%		920	i								***************************************	怙					금		\boldsymbol{H}		_	計	+=	_	閪
6	Bottom 2-166 32		6%		921	7	口		510			-+			插				급		-	\mathbf{F}	_			+	+	\mathbf{L}
			100		7.7.7			-+	-				計		情		퓜		井	吕	-	#	_	_	_	10	+=+	1
						\vdash	-	_		+-		-			+-				ᆜ		믜	뷔	_				+=+	Ò
						\vdash	뒴	-		+=			#		무		믜		븼		-		_	_	45	10	Ш	므
				7		\vdash	-	=+:		+=	\vdash		_						Ц		-	-		-] [
						_	-	_	_	+	\vdash	_	밐				믜		Ш	Ш		믜			4	10		旦
						-	-	-+		+	-		4				믜	믜	Ш	믜	믜							
			-			-	_	_		+=	\vdash		4						旦									
			-			$\overline{}$	_	-	45	+=	\vdash	-+-	ᆚ															
Special Instruc	40																											
Relinquished by:	Date 7/2/2	31252	Receive Receive										ate ate		Time Time	Si V Ci Ci Ci Ci Ci Ci Ci	ample OCs I ustod ustod ample ar by	Con Free y se y se Han Sam	of H als o als o als o d De	ers ir eads n co n co liver Clien	ntact space ontain oler(ed t Rep	? e? ner(s (s) p. ?			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		22222	
Relinquished by:	Date	Time		hable	droe						#	1/2	22	3 r	Time	_	mper				UPS eceir		Ж. 6.		edlex	N3	ne Sta	ar

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 352660

QUESTIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	352660
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites						
Incident ID (n#)	nAPP2303652118					
Incident Name	NAPP2303652118 COTTON DRAW SECTION 3 CTB @ 0					
Incident Type	Oil Release					
Incident Status	Remediation Closure Report Received					
Incident Facility	[fAPP2202544346] COTTON DRAW SECTION 3 CTB					

Location of Release Source					
Please answer all the questions in this group.					
Site Name	COTTON DRAW SECTION 3 CTB				
Date Release Discovered	01/21/2023				
Surface Owner	Federal				

Incident Details					
Please answer all the questions in this group.					
Incident Type	Oil Release				
Did this release result in a fire or is the result of a fire	No				
Did this release result in any injuries	No				
Has this release reached or does it have a reasonable probability of reaching a watercourse	No				
Has this release endangered or does it have a reasonable probability of endangering public health	No				
Has this release substantially damaged or will it substantially damage property or the environment	No				
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No				

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications for	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Crude Oil Released: 24 BBL Recovered: 20 BBL Lost: 4 BBL.
Produced Water Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Produced Water Released: 52 BBL Recovered: 45 BBL Lost: 7 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 352660

Phone:(505) 476-3470 Fax:(505) 476-3462							
QUESTI	ONS (continued)						
Operator: CHEVRON U S A INC 6301 Deauville Blvd Midland, TX 79706	OGRID: 4323 Action Number: 352660 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)						
QUESTIONS							
Nature and Volume of Release (continued)							
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.						
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes						
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.						
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.						
Initial Response The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.						
The source of the release has been stopped	True						
The impacted area has been secured to protect human health and the environment	True						
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True						
All free liquids and recoverable materials have been removed and managed appropriately	True						
If all the actions described above have not been undertaken, explain why	Not answered.						
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of led or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.						
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or						

Name: Amy Barnhill Title: Waste & Water Specialist

Date: 06/10/2024

Email: ABarnhill@chevron.com

I hereby agree and sign off to the above statement

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 352660

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	352660
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization						
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.						
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)					
What method was used to determine the depth to ground water	NM OSE iWaters Database Search					
Did this release impact groundwater or surface water	No					
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:						
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)					
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)					
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)					
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)					
Any other fresh water well or spring	Between 1 and 5 (mi.)					
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)					
A wetland	Between 1 and 5 (mi.)					
A subsurface mine	Greater than 5 (mi.)					
An (non-karst) unstable area	Greater than 5 (mi.)					
Categorize the risk of this well / site being in a karst geology	Low					
A 100-year floodplain	Greater than 5 (mi.)					
Did the release impact areas not on an exploration, development, production, or storage site	Yes					

Remediation Plan	
Please answer all the questions that apply or are indicated. This information must be p	provided to the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil cor	ntamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical extents of contamination been fully delineate	ed Yes
Was this release entirely contained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for ea	ach, in milligrams per kilograms.)
Chloride (EPA 300.0 or SM4500 Cl B)	8670
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	93.6
GRO+DRO (EPA SW-846 Method 8015M)	93.6
BTEX (EPA SW-846 Method 8021B or 8260B)	0
Benzene (EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes which includes the anticipated timelines for beginning and completing the remediation	s completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, i.
On what estimated date will the remediation commence	04/17/2023
On what date will (or did) the final sampling or liner inspection occur	11/01/2023
On what date will (or was) the remediation complete(d)	11/15/2023
What is the estimated surface area (in square feet) that will be reclaimed	6998
What is the estimated volume (in cubic yards) that will be reclaimed	1554
What is the estimated surface area (in square feet) that will be remediate	ed 6998
What is the estimated volume (in cubic yards) that will be remediated	1554
These estimated dates and measurements are recognized to be the best guess or calcu-	lation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.
The OCD recognizes that proposed remediation measures may have to be minimally ac	djusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

Phone: (575) 748-1283 Fax: (575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 **District IV** 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 4

Action 352660

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	352660
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)					
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.					
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:					
(Select all answers below that apply.)					
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes				
Which OCD approved facility will be used for off-site disposal	TARGA NORTHERN DELAWARE, LLC. [fAPP2123031392]				
OR which OCD approved well (API) will be used for off-site disposal	Not answered.				
OR is the off-site disposal site, to be used, out-of-state	Not answered.				
OR is the off-site disposal site, to be used, an NMED facility	Not answered.				
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.				
(In Situ) Soil Vapor Extraction	Not answered.				
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.				
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.				
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.				
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.				
OTHER (Non-listed remedial process)	Not answered.				

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com

Date: 06/10/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 352660

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	352660
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation. Requesting a deferral of the remediation closure due date with the approval of this No submission

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 352660

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	352660
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	293169
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	11/01/2023
What was the (estimated) number of samples that were to be gathered	20
What was the sampling surface area in square feet	1554

Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	6998	
What was the total volume (cubic yards) remediated	1554	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	6998	
What was the total volume (in cubic yards) reclaimed	1554	
Summarize any additional remediation activities not included by answers (above)	Sampling Variance Request for an inadvertent release that has been remediated and restored with clean, locally sourced soil.	

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Amy Barnhill
Title: Waste & Water Specialist
Email: ABarnhill@chevron.com
Date: 06/10/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 7

Action 352660

QUESTIONS	(continued)
QUESTIONS!	COH I III I I I I C C I I

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	352660
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 352660

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	352660
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
scwells	Remediation closure approved.	6/10/2024
scwells	Operator failed to provide proper Sampling Notification pursuant to 19.15.29.12.D.(1).(a) NMAC. Failure to provide proper sampling notice is a compliance issue and OCD may pursue compliance actions pursuant to 19.15.5 NMAC. Operator shall ensure future compliance with 19.15.29.12.D.(1).(a) NMAC	6/10/2024