

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

Name of well drilling company that plugged well: New Mexico Well Driller License No.: 1833 Expiration Date: 10-7-25 Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):	State	Engineer Well Number: C	-40201 00 1				
State: NM Zip code: 88220	Well	owner: XTO Energy				Phone No.:	
Name of well drilling company that plugged well: New Mexico Well Driller License No.: 1833	Maili	ng address: 3104 E. Greer	ne Street			24.51	
Name of well drilling company that plugged well: Vision Resources	City:	Carlsbad		State:		NM	Zip code: 88220
Name of well drilling company that plugged well: Vision Resources							
New Mexico Well Driller License No.: 1833 Expiration Date: 10-7-25 Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):	II. W	ELL PLUGGING INFO	RMATION:				
New Mexico Well Driller License No.: 1833 Expiration Date: 10-7-25 Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):	1)	Name of well drilling c	ompany that plug	gged well: Visi	on Resources	3	
Date well plugging began: 6-3-24 Date well plugging concluded: 6-3-24 GPS Well Location: Latitude: 32 deg, 06 min, 18.7344 sec Longitude: -103 deg, 48 min, 04.230 sec, WGS 84 Depth of well confirmed at initiation of plugging as: 55 ft below ground level (bgl), by the following manner: Tape Static water level measured at initiation of plugging: Dry ft bgl Date well plugging plan of operations was approved by the State Engineer: 03-14-2024 Were all plugging activities consistent with an approved plugging plan? Yes If not, please desc	2)						xpiration Date: 10-7-25
GPS Well Location: Latitude: 32 deg, 06 min, 18.7344 sec Longitude: -103 deg, 48 min, 04.230 sec, WGS 84 Depth of well confirmed at initiation of plugging as: 55 ft below ground level (bgl), by the following manner: Tape Static water level measured at initiation of plugging: Dry ft bgl Date well plugging plan of operations was approved by the State Engineer: 03-14-2024 Were all plugging activities consistent with an approved plugging plan? Yes If not, please desc	3)		s were supervised	l by the followi	ng well drille	r(s)/rig supervi	sor(s):
Depth of well confirmed at initiation of plugging as:55 ft below ground level (bgl), by the following manner:	4)	Date well plugging beg	an: 6-3-24		Date well p	lugging conclu	ded: 6-3-24
by the following manner: Tape Static water level measured at initiation of plugging: Dry ft bgl Date well plugging plan of operations was approved by the State Engineer: 03-14-2024 Were all plugging activities consistent with an approved plugging plan? Yes If not, please desc	5)	GPS Well Location:	Latitude: Longitude: _	32 d -103 d	eg, 06 eg, 48	min, 18.7	7344 sec 230 sec, WGS 84
Date well plugging plan of operations was approved by the State Engineer: 03-14-2024 Were all plugging activities consistent with an approved plugging plan? Yes If not, please desc	6)			plugging as: _	55 ft b	elow ground le	evel (bgl),
9) Were all plugging activities consistent with an approved plugging plan?Yes If not, please desc	7)	Static water level meas	ured at initiation	of plugging: _	Dry ft b	ogl	
	8)	Date well plugging plan	n of operations w	as approved by	the State Eng	gineer: 03-14-	2024
1 00 01	9)						

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (fl bgl)	Plugging Material Used (include any additives used)	Volume of Material Placed (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement Method (tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
(it bgt)	(include any additives used) 0 Wyoming Bentonite 55'	77.50	77.50	Tremie Pipe Open hole	annular space also plugged", etc.)
-		MULTIPLY cubic feet x cubic yards x 20	BY AND OBTAIN 7.4805 = gallons 1.97 = gallons		

III. SIGNATURE:

I, Jason Maley , say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well/Driller

Version: September 8, 2009

Date

Page 2 of 2

1. GENERAL AND WELL LOCATION	OSE POD NO. (WC-4826 WELL OWNER I XTO Energy WELL OWNER I 3104 E. Greet WELL LOCATION (FROM GPS) DESCRIPTION	MAILING MAILING ME Stree LA LO	DE ADDRESS DE TITUDE NGITUDE NG WELL LOCATION TO	EGREES 32 -103 STREET ADDRE	MINUTES 06 48 ESS AND COMMO	SECONDS 18.734 04.230	4 N W	* DATUM	POD1 DPTION ACY RI 1 REQU	EQUIRED: ONE TEN IRED: WGS 84 NSHJIP, RANGE) WI	IERE A	88220 A SECOND VAILABLE	ZIP
	1833		NAME OF LICENSED		Jason Maley				1	NAME OF WELL DR V		Resources	
	DRILLING STAF 5-29-24		DRILLING ENDED 5-29-24	DEPTH OF COM	IPLETED WELL (I	FT) B	ORE HO	DLE DEPTH (F 55'	FT) I	DEPTH WATER FIR		COUNTERED (FT)
Z	COMPLETED W	ELL IS:	ARTESIAN *add Centralizer info be		SHALLO	OW (UNCONF	INED)		COMPLE	ATER LEVEL ETED WELL	0'	DATE STATIO	MEASURED 9-24
ATIO	DRILLING FLUI	D:	✓ AIR	MUD	ADDITI	VES - SPECIF	Y;						
RM/	DRILLING MET	IOD: 🗸	ROTARY HAMM	MER CABLI	TOOL _ OTH	HER – SPECIF	/ :			CHECK INSTAL	HERE I	IF PITLESS ADA	APTER IS
SING INFO	DEPTH (fee	TO	BORE HOLE DIAM (inches)	(include ea	MATERIAL AN GRADE ach casing string actions of screen	, and	CON	ASING NECTION TYPE		CASING INSIDE DIAM. (inches)		SING WALL HICKNESS (inches)	SLOT SIZE (inches)
& CA	0	45	6"		C 2" SCH40) (a		oling diameter Thread	1)	2"		SCH40	N/A
2. DRILLING & CASING INFORMATION	45	55	6"	PV	C 2" SCH40		1	Thread		2"		SCH40	.02
3. ANNULAR MATERIAL	DEPTH (fee	et bgl)	BORE HOLE DIAM. (inches)		ralizers for Artes	Y INTERVA	cate the			AMOUNT (cubic feet)		METHO PLACE	
FOR FILE	OSE INTERNA	L USE			POD NO) .			R-20 V	WELL RECORD (& LOG	i (Version 09/2	22/2022)
LOC	CATION							WELL TAC	GIDN	10.		PAGE	1 OF 2

	DEPTH (feet bgl)		COLOR AND TYPE OF MATER	IAL ENCOUNTERE	D - WATER	ESTIMA YIELD I			
	FROM	то	THICKNESS (feet)	INCLUDE WATER-BEARING CAVIT (attach supplemental sheets to f		ZONES BEARING	WATE	ER- ING		
	0	10	10'	Brown sand with	caliche	Y /	N			
	10	30	20'	Tan fine sand with s	small rock	Y 🗸	N			
	30	55	25'	Tan fine san	nd	Y √	N			
						Y	N			
						Y	٧			
T						Y	N			
WEI						Y	V			
OF						Y	N			
COG						Y	N			
CIC						Y	1			
TOO						Y	N			
GEO						Y	٧			
4. HYDROGEOLOGIC LOG OF WELL						Y	V			
HYI						Y	N			
4						Y	V			
						Y	٧			
						Y	N			
						Y	N			
						Y	N			
						Y	N			
						Y	V			
	METHOD U			DF WATER-BEARING STRATA: BAILER OTHER – SPECIFY: Dr.	y hole	TOTAL ESTIMATE WELL YIELD (gpi				
NOIS	WELL TES	T TEST	RESULTS - ATTA	CH A COPY OF DATA COLLECTED DU E, AND A TABLE SHOWING DISCHARC	RING WELL TESTINGE AND DRAWDOV	NG, INCLUDING DISCHAR VN OVER THE TESTING PE	GE METHOD, RIOD.			
TEST; RIG SUPERVISI	MISCELLANEOUS INFORMATION:									
5. TEST	PRINT NAM Jason Maley		PRILL RIG SUPER	/ISOR(S) THAT PROVIDED ONSITE SUF	PERVISION OF WEL	L CONSTRUCTION OTHER	THAN LICEN	ISEE:		
6. SIGNATURE	CORRECT	RECORD C	F THE ABOVE D	ES THAT, TO THE BEST OF HIS OR HEI ESCRIBED HOLE AND THAT HE OR SHI DAYS AFTER COMPLETION OF WELL Jason Maley	E WILL FILE THIS V	ND BELIEF, THE FOREGOID WELL RECORD WITH THE	STATE ENGIN	AND JEER		
EO	R OSE INTER	NAT HEE			WD	20 WELL RECORD & LOG	(Version 00/22/	20221		
	E NO.	INAL USE		POD NO.	TRN	CONTRACTOR CONTRACTOR CONTRACTOR	(* CI SIOII 09/22/2	2022)		
LO	CATION				WELL TAG		PAGE 2	OF 2		

Received by OCD: 7/25/2024 5:07:10 PM

FISH A WILDLIFE SERVICE

U.S. Fish and Wildlife Service

National Wetlands Inventory

Intermittent 4,121 feet

December 9, 2023

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

U.S. Fish and Wildlife Service

National Wetlands Inventory

Pond 12,657 feet

December 9, 2023

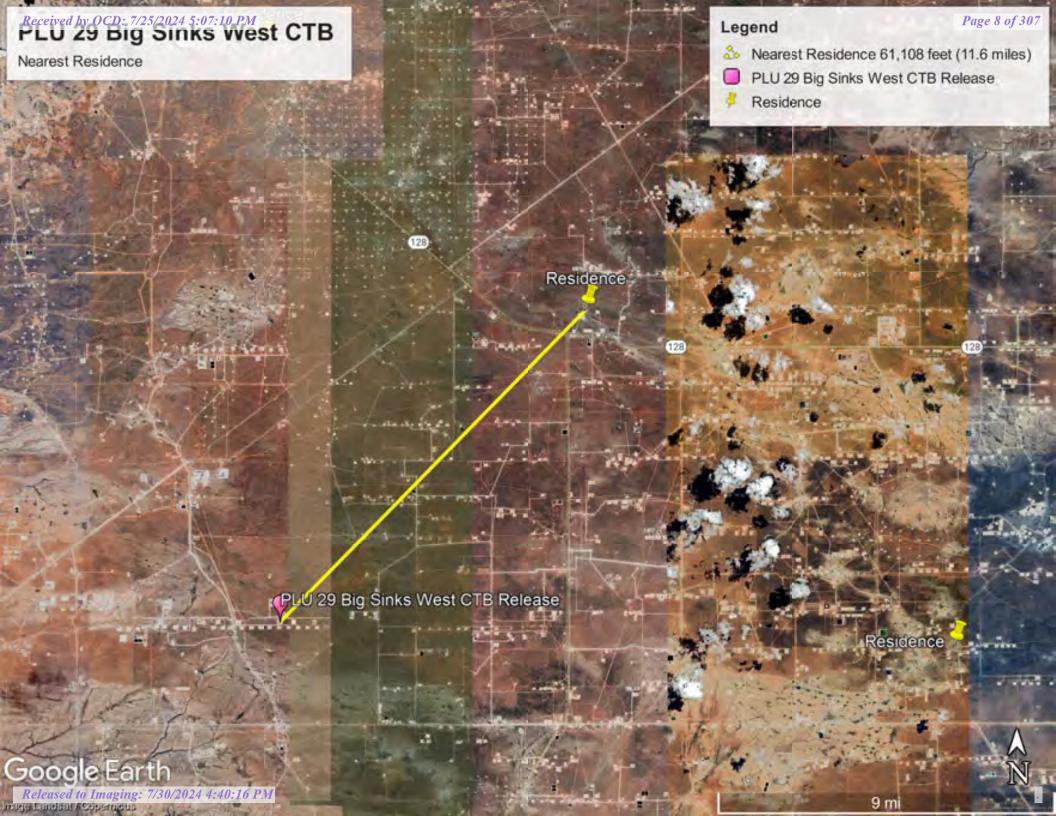
Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland


Freshwater Pond

Lake

Other

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

New Mexico Office of the State Engineer

Active & Inactive Points of Diversion

(with Ownership Information)

								(R=POD has been replaced and no longer serves this file,	(quarter	s are 1=1	NW 2=	=NE 3=	=SW 4=SE)			
		(acre ft p	er annum)				C=the file is closed)	(quarte	rs are sm	allest t	to large	est)	(NAE	83 UTM in mete	rs)
	Sub						Well			qqq						
WR File Nbr	basin			Owner		POD Number	Tag	Code Grant	Source	64164			0	X	Y	Distance
<u>C 04624</u>	CUB	MON	0	ENSOLUM LLC	ED	C 04624 POD1	NA			4 4 1	30	25S	31E	611500	3552305	1572
<u>C 04500</u>	CUB	MON	0	WSP USA	ED	<u>C 04500 POD1</u>	NA			4 4 1	28	25S	31E	614620	3552380	1606
<u>C 02250</u>	CUB	STK	3	BUCK JACKSON TRUST	ED	<u>C 02250</u>				3 1 4	21	25S	31E	614912	3553620*	2114
<u>LWD 01205</u>	CUB	PLS	52.2	BUCK & LARUE JACKSON TRUST	ED	<u>LWD 01205 POD1</u>				1 1 3	33	25S	31E	614125	3550577*	2337
<u>C 01831</u>	С	PRO	0	OXY PETROLEUM INC	ED	<u>C 01831</u>				2 1	17	25S	31E	612972	3556126*	3481
<u>C 03623</u>	С	STK	0	WORTH ROSS	ED	<u>C 03623 POD1</u>				3 3 1	04	26S	31E	614210	3549265	3578
<u>C 04498</u>	CUB	MON	0	WSP USA	ED	<u>C 04498 POD1</u>	NA			2 1 3	25	25S	30E	609394	3552168	3672
<u>C 04619</u>	CUB	MON	0	DEVON ENERGY	ED	<u>C 04619 POD1</u>	NA			2 1 2	27	25S	31E	616749	3552958	3726
<u>LWD 01188</u>	CUB	PLS	89.2	BUCK & LARUE JACKSON TRUST	ED	<u>LWD 01188 POD1</u>				1 1 3	24	25S	30E	609238	3553754*	3956
<u>LWD 01210</u>	CUB	PLS	17	BUCK & LARUE JACKSON TRUST	ED	<u>LWD 01210 POD1</u>				3 2 3	36	25S	30E	609665	3550314*	4098
<u>C 03781</u>	CUB	EXP	0	ATKINS ENGR ASSOC INC	ED	<u>C 03781 POD1</u>			Artesian	3 3 3	13	25S	30E	609305	3554761	4288
<u>LWD 01206</u>	CUB	PLS	18.2	BUCK & LARUE JACKSON TRUST	ED	<u>LWD 01206 POD1</u>				4 4 2	04	26S	31E	615553	3549169*	4291
<u>C 01839</u>	С	PRO	0	OXY PETROLEUM INC	ED	<u>C 01839</u>				3 2	08	25S	31E	613364	3557344*	4710
LWD 01186	CUB	PLS	14	BUCK & LARUE JACKSON TRUST	ED	<u>LWD 01186 POD1</u>				4 4 4	04	26S	31E	615561	3548365*	4969

Record Count: 14

UTMNAD83 Radius Search (in meters):

Easting (X): 613036 **Northing (Y):** 3552645 **Radius:** 5000

Sorted by: Distance

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/9/23 6:54 AM ACTIVE & INACTIVE POINTS OF DIVERSION

^{*}UTM location was derived from PLSS - see Help

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

X

C 02250

25S 31E

614912 3553620*

Driller License:

Driller Company:

Driller Name:

UNKNOWN

Drill Finish Date:

12/31/1941

Plug Date:

Drill Start Date: Log File Date:

PCW Rcv Date:

Source:

Pump Type:

Pipe Discharge Size:

Estimated Yield: 6 GPM

Casing Size:

8.63

Depth Well:

400 feet

Depth Water:

390 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/9/23 12:31 PM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

New Mexico Office of the State Engineer

Water Right Summary

WR File Number: C 02250 Subbasin: CUB Cross Reference: -

Primary Purpose: STK 72-12-1 LIVESTOCK WATERING

Primary Status: DCL DECLARATION

Total Acres: 0 Subfile: - Header: -

Total Diversion: 3 Cause/Case: -

Owner: BUCK JACKSON TRUST

Contact: LARUE JACKSON

Documents on File

Status From/ Trn# Doc File/Act 1 2 **Transaction Desc.** To **Diversion Consumptive** Acres 1992-03-16 DCL PRC C 02250 T 0 3

Current Points of Diversion

(NAD83 UTM in meters)

 POD Number
 Well Tag
 Source
 64 Q16 Q4 Sec Tws Rng
 X
 Y
 Other Location Desc

 C 02250
 3 1 4 21 258 31E
 614912 3553620*
 3553620*

An () after northing value indicates UTM location was derived from PLSS - see Help

Place of Use

256 64 Q16 Q4Sec Tws Rng Acres Diversion CU Use Priority Status Other Location Desc 0 3 STK DCL NO PLACE OF USE GIVEN.

Source

Acres Diversion CU Use Priority Source Description 6 STK GW

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

12/9/23 12:30 PM WATER RIGHT SUMMARY

U.S. Fish and Wildlife Service

National Wetlands Inventory

Wetland 7,255 feet

December 9, 2023

Wetlands

Estuarine and Marine Deepwater

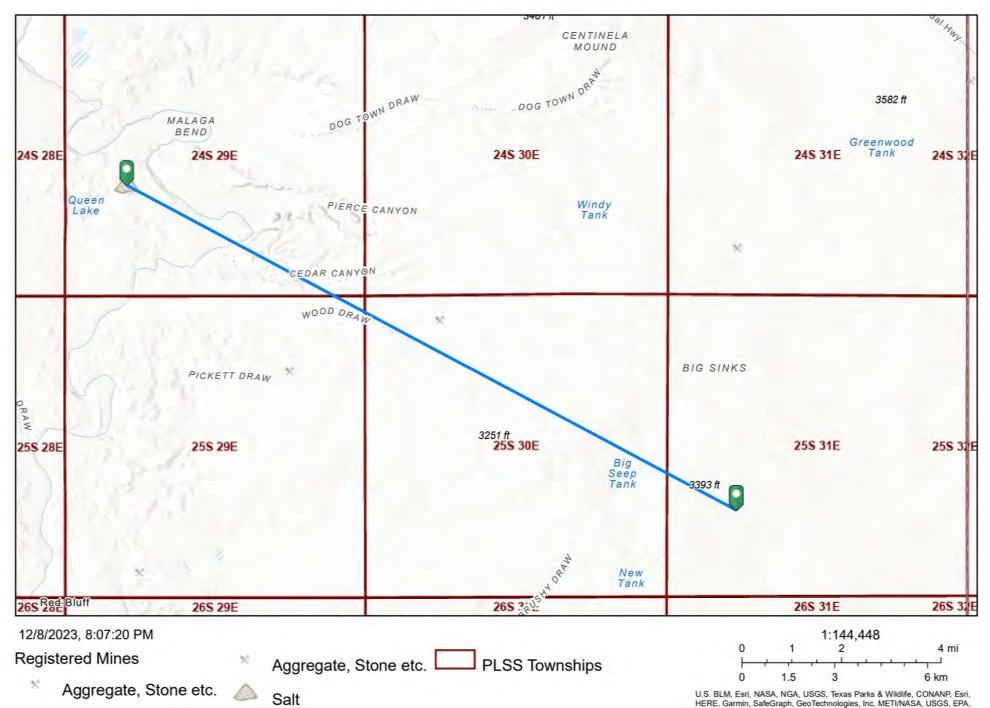
Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Pond

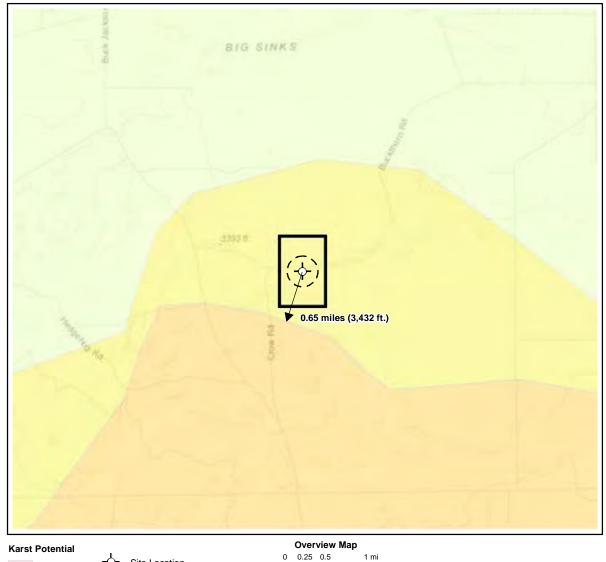
Lake

Freshwater Forested/Shrub Wetland


Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.


Received by OCD: 7/25/2024 5:07:10 PM

Subsurface Mine 73,190 feet

Received by OCD: 7/25/2024 5:07:10 PM

Page 14 of 307

0 150 300

Critical

High

Medium

Low

Map Center: 32.1049, -103.8014

Site Location

___ Site Buffer (1000 ft.)

NAD 1983 UTM Zone 13N Date: Jan 09/24


Karst Potential Map PLU 29 Big Sinks CTB Figure:

X

Geospatial data presented in this figure may be derived from external sources and Vertex does not assume any liability for inacuracies. This figure is intended for reference use only and is not certified for legal, survey, or engineering purposes.

Note: Inset Map, Esri 2022; Overview Map: Esri World Topographic. Karst potential data sources from Roswell Field Office, Bureau of Land Management, 2020 or United States Department of the Interior, Bureau of Land Management, (2018). Karst Potential.

0,3mi

-103.798 32.098 Degrees

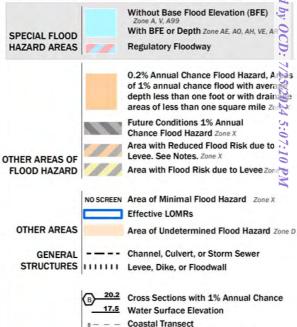
National Flood Hazard Layer FIRMette

250

500

1.000

1.500



2,000

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

--- 513---- Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary --- Coastal Transect Baseline OTHER Profile Baseline **FEATURES** Hydrographic Feature

> Digital Data Available No Digital Data Available Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 12/8/2023 at 6:47 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 🍣 unmapped and unmodernized areas cannot be used for regulatory purposes.

United States Department of Agriculture

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

This product is generated from the USDA-NRCS certified data as distance and area. A projection that preserves area, such as the contrasting soils that could have been shown at a more detailed Maps from the Web Soil Survey are based on the Web Mercator Feb 7, 2020—May Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background projection, which preserves direction and shape but distorts Soil map units are labeled (as space allows) for map scales imagery displayed on these maps. As a result, some minor Source of Map: Natural Resources Conservation Service Albers equal-area conic projection, should be used if more The soil surveys that comprise your AOI were mapped at 1:20,000. line placement. The maps do not show the small areas of Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Coordinate System: Web Mercator (EPSG:3857) MAP INFORMATION Warning: Soil Map may not be valid at this scale. shifting of map unit boundaries may be evident. Version 19, Sep 7, 2023 Soil Survey Area: Eddy Area, New Mexico Date(s) aerial images were photographed: of the version date(s) listed below. Web Soil Survey URL: Survey Area Data: 1:50,000 or larger. measurements. 12, 2020 Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot Spoil Area **US Routes** Wet Spot Other Nater Features **Transportation 3ackground** MAP LEGEND Soil Map Unit Polygons Severely Eroded Spot Area of Interest (AOI) Soil Map Unit Points Miscellaneous Water Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Special Point Features **Gravelly Spot** Rock Outcrop Saline Spot Sandy Spot Slide or Slip Sodic Spot **Borrow Pit** Lava Flow Clay Spot **Gravel Pit** Area of Interest (AOI) Sinkhole Blowout Landfill Soils

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
ВВ	Berino complex, 0 to 3 percent slopes, eroded	2.0	14.3%
SM	Simona-Bippus complex, 0 to 5 percent slopes	11.8	85.7%
Totals for Area of Interest		13.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

BB—Berino complex, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w43 Elevation: 2,000 to 5,700 feet

Mean annual precipitation: 5 to 15 inches

Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 180 to 260 days

Farmland classification: Not prime farmland

Map Unit Composition

Berino and similar soils: 60 percent Pajarito and similar soils: 25 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Berino

Setting

Landform: Plains, fan piedmonts

Landform position (three-dimensional): Riser

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 17 inches: fine sand

H2 - 17 to 58 inches: sandy clay loam H3 - 58 to 60 inches: loamy sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: R070BD003NM - Loamy Sand

Hydric soil rating: No

Description of Pajarito

Setting

Landform: Dunes, plains, interdunes

Landform position (three-dimensional): Side slope

Down-slope shape: Convex, linear Across-slope shape: Convex, linear

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 9 inches: loamy fine sand H2 - 9 to 72 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: R070BD003NM - Loamy Sand

Hydric soil rating: No

Minor Components

Wink

Percent of map unit: 4 percent

Ecological site: R070BD003NM - Loamy Sand

Hydric soil rating: No

Cacique

Percent of map unit: 4 percent

Ecological site: R070BD004NM - Sandy

Hydric soil rating: No

Pajarito

Percent of map unit: 4 percent

Ecological site: R070BD003NM - Loamy Sand

Hydric soil rating: No

Kermit

Percent of map unit: 3 percent

Ecological site: R070BD005NM - Deep Sand

Hydric soil rating: No

SM—Simona-Bippus complex, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1w5x Elevation: 1,800 to 5,000 feet

Mean annual precipitation: 8 to 24 inches

Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 180 to 230 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 55 percent Bippus and similar soils: 30 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains, alluvial fans

Landform position (three-dimensional): Rise

Down-slope shape: Convex, linear

Across-slope shape: Linear

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 19 inches: gravelly fine sandy loam

H2 - 19 to 23 inches: indurated

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R070BD002NM - Shallow Sandy

Hydric soil rating: No

Description of Bippus

Setting

Landform: Flood plains, alluvial fans

Landform position (three-dimensional): Talf, rise

Down-slope shape: Convex, linear Across-slope shape: Linear

Parent material: Mixed alluvium

Typical profile

H1 - 0 to 37 inches: silty clay loam H2 - 37 to 60 inches: clay loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Occasional Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: R070BC017NM - Bottomland

Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 8 percent

Ecological site: R070BD002NM - Shallow Sandy

Hydric soil rating: No

Bippus

Percent of map unit: 7 percent

Ecological site: R070BC017NM - Bottomland

Hydric soil rating: No

Ecological site R070BC017NM Bottomland

Accessed: 12/09/2023

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occurs on broad valleys, flood plains or basins at the lowest position in relation to adjacent landscapes. They are derived from mixed alluvium for sandstone, shale and limestone. It is found at the mouth of intermittent drainages or draws. Slopes are level to nearly level, averaging less than 3 percent. Elevations range from 2,842 to 4,000 feet.

Table 2. Representative physiographic features

Landforms	(1) Alluvial flat(2) Valley floor(3) Basin floor
Flooding duration	Very brief (4 to 48 hours) to brief (2 to 7 days)
Flooding frequency	Rare to frequent
Ponding frequency	None
Elevation	2,842-4,000 ft
Slope	1–3%
Aspect	Aspect is not a significant factor

Climatic features

The climate of the area is "semi-arid continental". The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most

of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes.
The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees

The average frost-free season is 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. This site receives overflow from heavy summer rains periodically. Occasionally water will stand on the surface for short periods. When this happens frequently, or when water stands for longer periods, only the plants that can tolerate inundation, such as giant sacaton, will survive. During drought periods or when long periods occur between overflows, a variety of plants will move in and establish on the site.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site may be associated or influenced by wetlands and/or streams but does not normally meet wetland criteria.

Soil features

The soils of this site are deep and very deep. Surface textures are loamy fine sand, very fine sandy loam, fine sandy loam, sandy loam, silty loam, clay loam or silty clay loam. The underlying layers may be loam, silt loam, clay loam, silty clay loam, sandy loam, fine sandy loam or loamy fine sand. These soils may have thin stratas of sand, silt, clay, very fine sand or very fine sandy loam. The soils have rapid to moderately slow permeability.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic Soils:

Glendale

Bippus

Bigetty

Largo

Harkey

Pecos

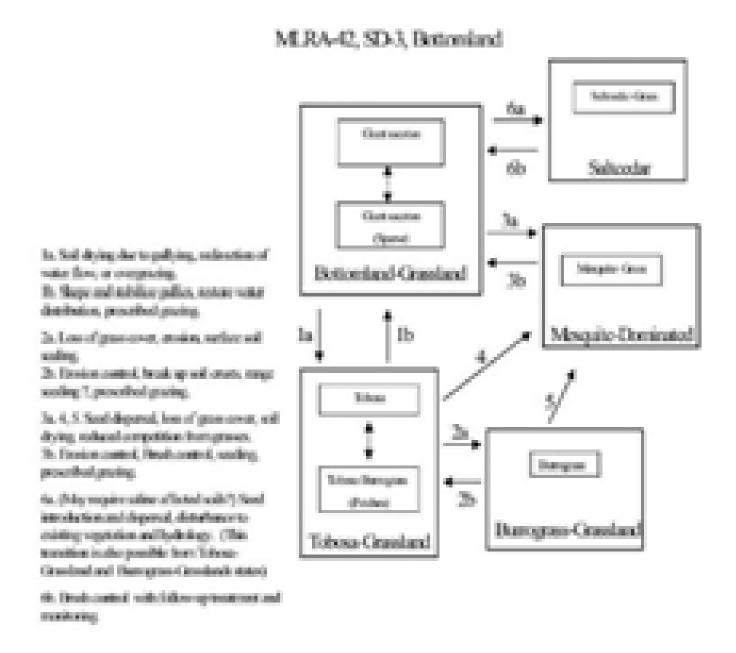
Pima

Dev

Pima Varient

Table 4. Representative soil features

	Surface texture	(1) Loamy fine sand(2) Loam(3) Fine sandy loam
	Family particle size	(1) Loamy
	Drainage class	Moderately well drained to well drained
	Permeability class	Moderately slow to rapid
	Soil depth	72 in
	Surface fragment cover <=3"	0–10%
Re	સિક્સર્વ ન જ 17 માનુકાન છું જ જ જ જ જ જ જ જ જ જ જ જ જ જ જ જ જ જ જ	9-A1%
	A 11 1 1 1 1	0.0:


Calcium carbonate equivalent (0-40in)	3–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0–5
Soil reaction (1:1 water) (0-40in)	7.4–8.4
Subsurface fragment volume <=3" (Depth not specified)	0–15%
Subsurface fragment volume >3" (Depth not specified)	0–1%

Ecological dynamics

The Bottomland site occurs on broad valleys and flood plains at the lowest positions on the landscape and is subject to periodic flooding. This periodic flooding and deep wetting essentially determine vegetation patterns on this site. The Bottomland site is associated with and often found at the mouth of Draw sites. The potential plant community exhibits a tall grass aspect largely dominated by giant sacaton. Soil drying due to overgrazing, gullying, and redirection or blockage of water flow may cause the transition to a tobosa-dominated state. A state dominated by burrograss may result due to continued loss of tobosa, erosion, and soil surface sealing—especially on silt loam and silty clay loam textured surface soils. A mesquite-dominated state may result from the loss of grass cover and dispersal of mesquite seed. Saltcedar may invade in response to changes in the historical flow regimes and the introduction of its seed—especially along stream channels or on soils adjacent to areas with a high water table.

State and transition model

Plant Communities and Transitional Pathways (diagram):

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Bottomland Grassland: The historic plant community is principally dominated by giant sacaton. Some additional grass species representative of this site include alkali sacaton, tobosa, vine mesquite, plains bristlegrass, and twoflower trichloris. Fourwing saltbush and mesquite are two of the more common shrubs associated with this site, but in the historic community they are sparsely scattered across the site. Giant sacaton has the capability to produce Relenged and but the string deferring grazing in the fall, or during increase infiltration, and protect the site from erosion. Grazing in the spring, deferring grazing in the fall, or during

quality and accessibility while minimizing negative effects on production.3 Fire has produced mixed results depending on time of year and fire intensity. Several growing seasons may be required for giant sacaton to recover pre-burn production levels. Overgrazing, drought, or fire can cause a decrease in giant sacaton, vine mesquite, alkali sacaton, plains bristlegrass, and twoflower trichloris. A sparser, less vigorous sacaton community may result. Continued loss of grass cover increases erosion, effectively drying the site causing the transition to an alternate grassland state (Tobosa Grassland). Diagnosis: Giant sacaton is the dominant grass. Grass cover is uniform. Litter cover is high, and bare patches are few and less than 2 m in length. Shrubs are sparse, averaging less than three percent canopy cover.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	2125	3188	4250
Shrub/Vine	200	300	400
Forb	175	262	350
Total	2500	3750	5000

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	35-40%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-45%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-20%

Figure 5. Plant community growth curve (percent production by month). NM2817, R042XC017NM Bottomland HCPC. R042XC017NM Bottomland HCPC Warm Season Plant Community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	5	10	10	25	30	15	5	0	0

State 2 Tobosa Grassland

Community 2.1 Tobosa Grassland

Additional States: Tobosa Grassland: This state is characterized by the predominance of tobosa. On fine-textured soils that receive surface run-in water, tobosa may attain dense almost pure stands. On drier sites that receive less water due to gullying, or due to decreased infiltration, associated with loss of grass cover, tobosa occurs in scattered patches with large areas of bare ground. Burrograss is the sub-dominant species. In the absence of Regrazing, in large in the standing dead material. Rotational grazing, or burning during years with adequate precipitation following fire may help to maximize tobosa production and forage

following fire.6 Diagnosis: Tobosa is the dominant grass species. Grass cover is variable (depending on the degree of site degradation) ranging from uniform to patchy. Transition to Tobosa Grassland (1a) The transition to a tobosa-dominated community is believed to result from decreased available soil moisture due to the redirection or blockage of run-in water, gullying, or overgrazing. Roads or other physical barriers on site or off site may cause the redirection or blockage of run-in water. Reduction of overland flow and decreased residence time of stand water may favor tobosa dominance. Tobosa is favored by sites that receive periodic flooding, but cannot withstand extended periods of inundation. Overgrazing increases runoff rates and gully formation, reduces infiltration, effectively drying the site. Sites with finer textured soils may have a greater susceptibility for dominance by tobosa. 12 Key indicators of approach to transition: Decreased vigor and cover of giant sacaton. Increase in the amount of tobosa. Reduced overland flow and residence time of standing water. Formation of gullies or deepening of existing channels. Transition back to Bottomland Grassland (1b) The natural hydrology of the site must be restored. Culverts, turnouts, or rerouting roads may help re-establish natural overland flow, if roads or trails have blocked or altered the flow of run-in water. Erosion control structures or shaping and filling gullies may help regain natural flow patterns and establish vegetation if the flow has been channeled. Prescribed grazing will help establish proper forage utilization and maintain grass cover and litter necessary to protect the site from accelerated erosion.

State 3 Burrograss Grassland

Community 3.1 Burrograss Grassland

Burrograss Grassland: Burrograss is the dominant species. Tobosa is typically present in varying amounts, usually in patches or clumps occupying the more moist depressions. Burrograss ranks poor as a forage grass, but begins growth early and is used to some extent when young and green. Burrograss is favored by calcareous fine textured soils and spreads by seed and stolons. It produces large amounts of seed with wiry awns that help in dissemination, and in augering the hardened callus (tip of the seed) into the soil. The ability of burrograss to auger into soils enables it to establish and expand on bare soils prone to crust over with physical and biological crusts. Diagnosis: Burrograss is the dominant grass species. Grass cover is variable ranging from patchy to very patchy. Large bare areas are present and interconnected. Physical crusts are present and may occupy most of the bare areas. Transition to Burrograss Grassland (2a) Loss of grass cover, decreased soil moisture, soil surface sealing, and erosion enable this transition. As grass cover declines, organic matter and infiltration decrease. Erosion increases, removing soil and nutrients from bare areas, which results in soil sealing. Burrograss produces substantial amounts of viable seed and is one of the few grasses able to maintain, and even increase, on bottomland soils that are sealed by biological and physical crusts. Key indicators of approach to transition: Decrease in cover of tobosa Increased amount of bare ground Increased evidence of physical and biological crusts. Transition back to Tobosa Grassland (2b) Erosion control structures may help regain natural overland flow and increase vegetation cover (see transition1b above). Re-establishing grass cover will further decrease erosion and increase infiltration. Breaking up physical crusts by soil disturbance may promote infiltration and seedling emergence. Seeding may be necessary if inadequate seed source remains. Prescribed grazing will help establish proper forage utilization and maintain grass cover.

State 4 Mesquite-Dominated

Community 4.1 Mesquite-Dominated

Mesquite-Dominated State: This state is characterized by the dominance of mesquite, and by accelerated erosion. Grass cover is variable, but typically patchy. Diagnosis: Mesquite is the dominant species in aspect and composition. Grass cover is typically patchy with large, interconnected bare areas present. Giant sacaton and alkali sacaton are absent or restricted to small patches. Tobosa or burrograss are the dominant grasses on this site. Rills and gullies may be common and actively eroding. Transition to Mesquite-Dominated (3a, 4, 5) The reasons for different pathways in transitions to a mesquite-dominated state versus a tobosa or burrograss grassland with few Rechtschard and grasses for resources may drive this transition. Loss of grass cover, and competition between shrubs and remaining grasses for resources may drive this transition. Loss of grass cover reduces infiltration, decreasing

establishment and survival. Accelerated erosion due to loss of grass cover can relocate organic matter and nutrients from shrub interspaces, and concentrate them around shrub bases.14 This relocation of resources further increases the shrubs competitive advantage. Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion. Transition back to Bottomland Grassland (3b) Erosion control methods such as shaping and filling gullies, net wire diversions, rock and brush dams, etc. may be needed to curtail erosion and restore site hydrology. Brush control will be necessary to overcome competition between shrubs and grass seedlings. Seeding may expedite recovery or may be necessary if an adequate seed source is no longer remaining. Prescribed grazing will help ensure adequate deferment and proper forage utilization following grass establishment. The degree to which this site is capable of recovery depends on the restoration of hydrology, the extent of degradation to soil resources, and adequate rainfall necessary to establish grasses.

State 5 Saltcedar State

Community 5.1 Saltcedar State

Saltcedar State: Saltcedar is an aggressive invader that typically invades on fine-textured soils where its roots can reach the water table, but once established it can survive without access to ground water. It reaches maximum density where the water table is from 1.5 to 6 m deep, and forms more open stands where the water table is deeper. 9,10 Saltcedar is a prolific seed producer. It is resistant to fire, periods of inundation with water, salinity, and resprouts following cutting. Saltcedar can also increase soil salinity by up-taking salts and concentrating them in its leaves and subsequent shedding of the leaves to the soil surface. Diagnosis: This state is characterized by the presence of saltcedar. Saltcedar cover is variable ranging from sparse to dense. Densities may depend on such variables as depth to ground water, timing and duration of flood events, and soil texture and salinity. Grass cover varies in response to saltcedar density. Transition to Saltcedar State (6a) It is not know if this transition occurs only on saline affected soils, or if it can occur on non-saline sites. Salty Bottomland sites typically have a higher susceptibility to the invasion of saltcedar. The invasion of saltcedar is associated with saline soils, the presence of saltcedar on adjacent sites and dispersal of its seed, and disturbance to existing vegetation or hydrology. Saltcedar propagules must be present to invade and establish on bottomland sites. Disturbance such as fire, grazing, or drought may facilitate the establishment of saltcedar by decreasing the vigor of native vegetation and providing bare areas for saltcedar seedling establishment with minimal competition. Changes in seasonal timing, rate and volume of run-in water may facilitate the establishment of saltcedar on Bottomland sites.8 Damming rivers has reduced flow volume and caused shifts in the timing of peak flow from spring to summer. The reduced flows have increased fine sediments, creating the ideal conditions for saltcedar seedling establishment. Summer water discharges provide water at times consistent with saltcedar seed production. Increases in salinity due to return of irrigation water to streams and ditches may also support the establishment of saltcedar. (This transition should also possible from the Tobosa-Grassland and Burrograss-Grassland states). Key indicators of approach to transition: Increase in size and frequency of bare patches. Changes in timing and volume of peak discharge Increased soil salinity Presence of saltcedar propagules Transition back to Bottomland Grassland (6b) Saltcedar control is costly and often labor intensive. Control programs utilizing herbicide, or herbicide in conjunction with mechanical control or prescribed fire have proven effective in some instances. 5,7,11 Without restoring historical flow regimes, extensive follow-up management may be necessary to maintain the bottomland grassland.13

Additional community tables

Table 7. Community 1.1 plant community composition

Released to Imaging: 7/30/2024 4:40:16 PM

Ecological site R070BD002NM Shallow Sandy

Accessed: 12/09/2023

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R070BD004NM	Sandy
	Sandy sites often occur in association or in a complex with Shallow Sandy Sites.

Similar sites

R070BD004NM	Sandy	
	Sandy ecological sites are similar to Shallow Sandy sites in species composition and Transition pathways.	

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Fan piedmont(3) Alluvial fan
Elevation	2,842–4,500 ft
Slope	1–9%
Aspect	Aspect is not a significant factor

Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

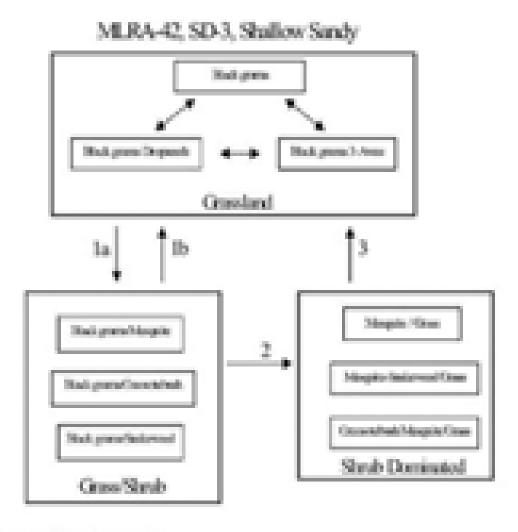
Characteristic soils are: Simona

Jerag

Table 4. Representative soil features

	Surface texture	(1) Fine sandy loam(2) Loamy fine sand(3) Gravelly fine sandy loam
	Family particle size	(1) Loamy
e	Gramage Clasing: 7/30/2024 4:40:10	Well drained to moderately well drained

Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%


Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrub-dominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

- is Soul-depend, desight, economies, the approxim.
- Posobol for, brob antest, pessabol graving.
- Periotest loss of grass arror, esseuro-competition, increased winter precipitation.
- Brosh control, mage sending, prescribed grazing.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water perched and available to shallow rooted grasses. Black grama is the

Retrospinantantantageoices 1/3 that his toric plantacommunity, averaging 50 to 60 percent of the total production for this site.

Bush multivable grama, and dropseeds are present as sub-dominants. Typically, vucca, javalinabush, range

happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrub seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state). Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m). Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass. Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite. Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 5. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub

Released to Imaging: 7/30/2024 4:40:16 PM

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom

grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs. Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed. Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment. Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8 Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands. 6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or sub-dominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state. Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common. Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition 5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4 Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7 Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	
Grass	s/Grasslike				
1	Warm Season			413–495	
	black grama	BOER4	Bouteloua eriopoda	413–495	_
el&ased t	o Var ming:a\$/30/2024 4:40:16 Pl	И		41–83	
	hush muhly	MUPO2	Muhlenhergia norteri	41_83	

Received by OCD: 7/25/2024 5:07:10 PM

ArcGIS Geology Map

Lithologic Units

Playa—Alluvium and evaporite deposits (Holocene)

Water—Perenial standing water

Qa---Alluvium (Holocene to upper Pleistocene)

1:144,448 0 1 2 4 mi 0 1.5 3 6 km

Est, NASA, NGA, USGS, NMBGMR, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names

ArcGIS Web AppBuilder

APPENDIX D – Laboratory Data Reports and Chain of Custody Forms

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 11/17/2023 1:59:38 PM

JOB DESCRIPTION

PLU 29 WEST BIG SINKS 23E-05485

JOB NUMBER

890-5610-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/17/2023 1:59:38 PM

11/17/2023

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 31

Client: Vertex
Project/Site: PLU 29 WEST BIG SINKS

Laboratory Job ID: 890-5610-1 SDG: 23E-05485

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	20
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS

SDG: 23E-05485

Qualifiers

GC VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. S1-Surrogate recovery exceeds control limits, low biased. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. U

HPLC/IC

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL. RA. RE. IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit **PQL**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex

Project/Site: PLU 29 WEST BIG SINKS

Job ID: 890-5610-1 SDG: 23E-05485

Job ID: 890-5610-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5610-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/9/2023 3:44 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH 23-03 0' (890-5610-1), BH 23-03 2' (890-5610-2), BH 23-03 4' (890-5610-3), BH 23-01 0' (890-5610-4), BH 23-01 2' (890-5610-5), BH 23-08 0' (890-5610-6), BH 23-08 2' (890-5610-7) and BH 23-08 4' (890-5610-8).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-67061 and analytical batch 880-67021 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-35797-A-81-D). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH 23-08 4' (890-5610-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (880-35343-A-1-F), (880-35343-A-1-G) MS) and (880-35343-A-1-H MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH 23-08 2' (890-5610-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for preparation batch 880-67028 and analytical batch 880-67152. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-66791 and analytical batch 880-66928 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Eurofins Carlsbad 11/17/2023

Page 5 of 31

Case Narrative

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Job ID: 890-5610-1 (Continued)

Laboratory: Eurofins Carlsbad (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-5610-1

11/16/23 15:30

11/16/23 14:55

Lab Sample ID: 890-5610-2

Matrix: Solid

11/15/23 09:52

Client Sample Results

Client: Vertex Job ID: 890-5610-1
Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Client Sample ID: BH 23-03 0'

Date Collected: 11/08/23 09:00 Date Received: 11/09/23 15:44

Sample Depth: 0'

Total BTEX

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 15:30	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 15:30	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 15:30	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		11/15/23 11:41	11/16/23 15:30	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 15:30	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		11/15/23 11:41	11/16/23 15:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			11/15/23 11:41	11/16/23 15:30	1
1,4-Difluorobenzene (Surr)	122		70 - 130			11/15/23 11:41	11/16/23 15:30	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Method: SW846 8015 NM - Diesel Ra	nge Organi	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7	mg/Kg			11/16/23 14:55	1

0.00401

mg/Kg

<0.00401 U

126

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg		11/15/23 09:52	11/16/23 14:55	1
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7	mg/Kg		11/15/23 09:52	11/16/23 14:55	1
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		11/15/23 09:52	11/16/23 14:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	114		70 - 130			11/15/23 09:52	11/16/23 14:55	1

Method: EPA 300.0 - Anions, Ion Cl	hromatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9920	100	mg/Kg			11/14/23 20:38	20

70 - 130

Client Sample ID: BH 23-03 2'

Date Collected: 11/08/23 09:05 Date Received: 11/09/23 15:44

Sample Depth: 2'

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 15:50	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 15:50	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 15:50	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/15/23 11:41	11/16/23 15:50	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 15:50	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/15/23 11:41	11/16/23 15:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			11/15/23 11:41	11/16/23 15:50	

Eurofins Carlsbad

2

3

4

7

10

11

13

Matrix: Solid

Lab Sample ID: 890-5610-2

Lab Sample ID: 890-5610-3

Matrix: Solid

Client Sample Results

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Client Sample ID: BH 23-03 2'

Date Collected: 11/08/23 09:05 Date Received: 11/09/23 15:44

Sample Depth: 2'

Mothod: SW846 8021B .	Volatile Organic	Compounds	(GC) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	121	70 - 130	11/15/23 11:41	11/16/23 15:50	

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/16/23 15:50	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6	mg/Kg			11/16/23 15:16	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

		(,	\ - - /					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6	mg/Kg		11/15/23 09:52	11/16/23 15:16	1
Diesel Range Organics (Over	<49.6	U	49.6	mg/Kg		11/15/23 09:52	11/16/23 15:16	1
C10-C28) OII Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		11/15/23 09:52	11/16/23 15:16	1
Surrogato	%Pacovary	Qualifier	l imite			Propared	Analyzad	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	109	70 - 130	11/15/23 09:52	11/16/23 15:16	1
o-Terphenyl	118	70 - 130	11/15/23 09:52	11/16/23 15:16	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	601		25.1	mg/Kg			11/14/23 20:44	5

Client Sample ID: BH 23-03

Date Collected: 11/08/23 09:10 Date Received: 11/09/23 15:44

Sample Depth: 4'

ı	Method: SW846 8021B	Valatila Ossasia	O = (OO)

			,					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		11/15/23 11:41	11/16/23 16:11	1
Toluene	<0.00198	U	0.00198	mg/Kg		11/15/23 11:41	11/16/23 16:11	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		11/15/23 11:41	11/16/23 16:11	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		11/15/23 11:41	11/16/23 16:11	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		11/15/23 11:41	11/16/23 16:11	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		11/15/23 11:41	11/16/23 16:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			11/15/23 11:41	11/16/23 16:11	1
1 4 Diffusionahan-ana (Cum)	116		70 120			11/15/00 11:41	11/16/00 16:11	4

Surrogate	%Recovery	Quaimer	Limits	Prepared	Analyzea	DII Fac
4-Bromofluorobenzene (Surr)	102		70 - 130	11/15/23 11:41	11/16/23 16:11	1
1,4-Difluorobenzene (Surr)	116		70 - 130	11/15/23 11:41	11/16/23 16:11	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396	ma/Ka			11/16/23 16:11	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1	mg/Kg			11/16/23 15:37	1

Client Sample Results

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Client Sample ID: BH 23-03

Da Date Received: 11/09/23 15:44

Sample Depth: 4'

Client Sample ID: BH 23-03	4'	Lab Sample ID: 890-5610-3
Date Collected: 11/08/23 09:10		Matrix: Solid

11/14/23 21:04

Lab Sample ID: 890-5610-4

Matrix: Solid

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL Unit Prepared Analyzed Dil Fac <50.1 U 11/15/23 09:52 50.1 11/16/23 15:37 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 50.1 11/15/23 09:52 11/16/23 15:37 <50.1 U mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.1 U 50.1 mg/Kg 11/15/23 09:52 11/16/23 15:37 %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 70 - 130 1-Chlorooctane 11/15/23 09:52 11/16/23 15:37 108 o-Terphenyl 119 70 - 130 11/15/23 09:52 11/16/23 15:37 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Dil Fac Analyzed

24.9

mg/Kg

3040

Client Sample ID: BH 23-01 0'

Date Collected: 11/09/23 09:00 Date Received: 11/09/23 15:44

Sample Depth: 0'

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 18:02	1
Toluene	< 0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 18:02	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 18:02	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/15/23 11:41	11/16/23 18:02	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 18:02	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/15/23 11:41	11/16/23 18:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130			11/15/23 11:41	11/16/23 18:02	1
1,4-Difluorobenzene (Surr)	109		70 - 130			11/15/23 11:41	11/16/23 18:02	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/16/23 18:02	1
Method: SW846 8015 NM - Diese	al Range Organ	ics (DRO) ((3C)					
Analyte	•	Qualifier	RL	Unit	_	Duranana		
				UIIIL	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4	mg/Kg	— –	Prepared	Analyzed 11/16/23 15:58	Dil Fac
- -			50.4			Prepared		
: Method: SW846 8015B NM - Dies	sel Range Orga		50.4		D	Prepared		
Method: SW846 8015B NM - Dies Analyte	sel Range Orga	nics (DRO) Qualifier	50.4 (GC)	mg/Kg		<u> </u>	11/16/23 15:58	1
: Method: SW846 8015B NM - Dies	sel Range Orga Result	nics (DRO) Qualifier	50.4 (GC)	mg/Kg		Prepared	11/16/23 15:58 Analyzed	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result	nics (DRO) Qualifier	50.4 (GC)	mg/Kg		Prepared	11/16/23 15:58 Analyzed	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.4	nics (DRO) Qualifier U	50.4 (GC) RL 50.4 50.4	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52	11/16/23 15:58 Analyzed 11/16/23 15:58 11/16/23 15:58	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Orga Result <50.4	nics (DRO) Qualifier U	50.4 (GC) RL 50.4	mg/Kg Unit mg/Kg		Prepared 11/15/23 09:52	11/16/23 15:58 Analyzed 11/16/23 15:58	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <50.4	nics (DRO) Qualifier U	50.4 (GC) RL 50.4 50.4	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52	11/16/23 15:58 Analyzed 11/16/23 15:58 11/16/23 15:58	1 Dil Fac 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.4 <50.4	nics (DRO) Qualifier U	50.4 (GC) RL 50.4 50.4 50.4	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52 11/15/23 09:52	Analyzed 11/16/23 15:58 Analyzed 11/16/23 15:58 11/16/23 15:58	1 Dil Fac 1

Client Sample Results

Client: Vertex Project/Site: PLU 29 WEST BIG SINKS Job ID: 890-5610-1

SDG: 23E-05485

Client Sample ID: BH 23-01 0'

Date Collected: 11/09/23 09:00

Date Received: 11/09/23 15:44 Sample Depth: 0'

Lab Sample ID: 890-5610-4

Matrix: Solid

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	78.9		5.05	mg/Kg			11/14/23 10:44	1

Client Sample ID: BH 23-01 Lab Sample ID: 890-5610-5

Date Collected: 11/09/23 09:05 Matrix: Solid

Date Received: 11/09/23 15:44

Sample Depth: 2'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 18:22	
Toluene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 18:22	,
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 18:22	
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/15/23 11:41	11/16/23 18:22	
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 18:22	
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/15/23 11:41	11/16/23 18:22	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90		70 - 130			11/15/23 11:41	11/16/23 18:22	1
1,4-Difluorobenzene (Surr)	105		70 - 130			11/15/23 11:41	11/16/23 18:22	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/16/23 18:22	-
Method: SW846 8015 NM - Diese	•		•	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	
	•	Qualifier	•	mg/Kg	<u>D</u>	Prepared	Analyzed 11/16/23 16:19	
Analyte	Result <50.5	Qualifier U	RL 50.5		<u>D</u>	Prepared		
Analyte Total TPH	Result <50.5 sel Range Orga	Qualifier U	RL 50.5		<u>D</u>	Prepared Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <50.5 sel Range Orga	Qualifier Unics (DRO) Qualifier	RL 50.5	mg/Kg			11/16/23 16:19	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <50.5 sel Range Orga	Qualifier U nics (DRO) Qualifier U	RL 50.5 (GC)	mg/Kg		Prepared	11/16/23 16:19 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.5 sel Range Orga Result <50.5	Qualifier U nics (DRO) Qualifier U	RL 50.5 (GC) RL 50.5	mg/Kg Unit mg/Kg		Prepared 11/15/23 09:52	11/16/23 16:19 Analyzed 11/16/23 16:19	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U nics (DRO) Qualifier U U	RL 50.5 (GC) RL 50.5 50.5	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52	Analyzed 11/16/23 16:19 Analyzed 11/16/23 16:19 11/16/23 16:19	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.5	Qualifier U nics (DRO) Qualifier U U	RL 50.5 (GC) RL 50.5 50.5	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52 11/15/23 09:52	Analyzed 11/16/23 16:19 Analyzed 11/16/23 16:19 11/16/23 16:19 11/16/23 16:19	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U nics (DRO) Qualifier U U	RL 50.5 (GC) RL 50.5 50.5 50.5 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52 11/15/23 09:52 Prepared	Analyzed 11/16/23 16:19 Analyzed 11/16/23 16:19 11/16/23 16:19 11/16/23 16:19 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.5	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 50.5 (GC) RL 50.5 50.5 50.5 <u>Limits</u> 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52 11/15/23 09:52 Prepared 11/15/23 09:52	Analyzed 11/16/23 16:19 Analyzed 11/16/23 16:19 11/16/23 16:19 Analyzed 11/16/23 16:19	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 50.5 (GC) RL 50.5 50.5 50.5 <u>Limits</u> 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/15/23 09:52 11/15/23 09:52 11/15/23 09:52 Prepared 11/15/23 09:52	Analyzed 11/16/23 16:19 Analyzed 11/16/23 16:19 11/16/23 16:19 Analyzed 11/16/23 16:19	Dil Fac

Client: Vertex Project/Site: PLU 29 WEST BIG SINKS

Job ID: 890-5610-1

SDG: 23E-05485

Matrix: Solid

Lab Sample ID: 890-5610-6

Client Sample ID: BH 23-08 0'

Date Collected: 11/09/23 09:10 Date Received: 11/09/23 15:44

Sample Depth: 0'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		11/15/23 11:41	11/16/23 18:42	1
Toluene	<0.00201	U	0.00201	mg/Kg		11/15/23 11:41	11/16/23 18:42	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		11/15/23 11:41	11/16/23 18:42	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		11/15/23 11:41	11/16/23 18:42	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		11/15/23 11:41	11/16/23 18:42	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		11/15/23 11:41	11/16/23 18:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			11/15/23 11:41	11/16/23 18:42	1
1,4-Difluorobenzene (Surr)	118		70 - 130			11/15/23 11:41	11/16/23 18:42	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			11/16/23 18:42	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7	mg/Kg			11/16/23 16:40	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg		11/15/23 09:52	11/16/23 16:40	1
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7	mg/Kg		11/15/23 09:52	11/16/23 16:40	1
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		11/15/23 09:52	11/16/23 16:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130			11/15/23 09:52	11/16/23 16:40	1
	118		70 - 130			11/15/23 09:52	11/16/23 16:40	

Client Sample ID: BH 23-08 2'

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

58.8

Date Collected: 11/09/23 09:15

Date Received: 11/09/23 15:44

Sample Depth: 2'

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		11/15/23 11:41	11/16/23 19:03	1
Toluene	<0.00202	U	0.00202	mg/Kg		11/15/23 11:41	11/16/23 19:03	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		11/15/23 11:41	11/16/23 19:03	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		11/15/23 11:41	11/16/23 19:03	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		11/15/23 11:41	11/16/23 19:03	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		11/15/23 11:41	11/16/23 19:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			11/15/23 11:41	11/16/23 19:03	

RL

4.98

Unit

mg/Kg

D

Prepared

Eurofins Carlsbad

Dil Fac

Matrix: Solid

Analyzed

11/14/23 14:23

Lab Sample ID: 890-5610-7

Client: Vertex

Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Client Sample ID: BH 23-08 2' Lab Sample ID: 890-5610-7

Date Collected: 11/09/23 09:15 Matrix: Solid Date Received: 11/09/23 15:44

Sample Depth: 2'

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1 4-Difluorobenzene (Surr)	117	70 - 130	11/15/23 11:41	11/16/23 19:03	

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404 U	0.00404	ma/Ka			11/16/23 19:03	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/16/23 17:01	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		11/15/23 09:52	11/16/23 17:01	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		11/15/23 09:52	11/16/23 17:01	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/15/23 09:52	11/16/23 17:01	1
Surrogate	%Recovery	Qualifier	l imits			Propared	Analyzod	Dil Eac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	126	70 - 130	11/15/23 09:52	11/16/23 17:01	1
o-Terphenyl	136 S1+	70 - 130	11/15/23 09:52	11/16/23 17:01	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	460	50.4	mg/Kg			11/14/23 14:29	10

Client Sample ID: BH 23-08 4'

Date Collected: 11/09/23 09:20

Date Received: 11/09/23 15:44

Sample Depth: 4'

	_ :				_			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 19:23	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 19:23	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 19:23	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/15/23 11:41	11/16/23 19:23	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/15/23 11:41	11/16/23 19:23	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/15/23 11:41	11/16/23 19:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130			11/15/23 11:41	11/16/23 19:23	1

4-Bromofluorobenzene (Surr)	129	70 - 130	11/15/23 11:41	11/16/23 19:23	1
1,4-Difluorobenzene (Surr)	164 S1+	70 - 130	11/15/23 11:41	11/16/23 19:23	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398	ma/Ka			11/16/23 19:23	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/16/23 17:22	1

Eurofins Carlsbad

Lab Sample ID: 890-5610-8

Matrix: Solid

Client Sample Results

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Sample Depth: 4'

Client Sample ID: BH 23-08 4'	Lab Sample ID: 890-5610-8
Date Collected: 11/09/23 09:20	Matrix: Solid
Date Received: 11/09/23 15:44	

Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 17:22	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 17:22	1
C10-C28) OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 17:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130			11/15/23 09:52	11/16/23 17:22	1
o-Terphenyl	119		70 - 130			11/15/23 09:52	11/16/23 17:22	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	34.7		5.05	ma/Ka			11/14/23 11:06	

Surrogate Summary

Client: Vertex Job ID: 890-5610-1
Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

-				Percent
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-35797-A-81-B MS	Matrix Spike	103	98	
880-35797-A-81-C MSD	Matrix Spike Duplicate	90	108	
890-5610-1	BH 23-03 0'	97	122	
890-5610-2	BH 23-03 2'	99	121	
890-5610-3	BH 23-03 4'	102	116	
890-5610-4	BH 23-01 0'	84	109	
890-5610-5	BH 23-01 2'	90	105	
890-5610-6	BH 23-08 0'	97	118	
890-5610-7	BH 23-08 2'	92	117	
890-5610-8	BH 23-08 4'	129	164 S1+	
LCS 880-67061/1-A	Lab Control Sample	99	116	
LCSD 880-67061/2-A	Lab Control Sample Dup	105	110	
MB 880-67061/5-A	Method Blank	117	154 S1+	
MB 880-67094/5-A	Method Blank	114	119	
Surrogate Legend				
BFB = 4-Bromofluorober	zene (Surr)			
DFBZ = 1,4-Difluorobenz	ene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-35343-A-1-G MS	Matrix Spike	2 S1-	0.2 S1-	
80-35343-A-1-H MSD	Matrix Spike Duplicate	2 S1-	0.2 S1-	
90-5610-1	BH 23-03 0'	114	126	
90-5610-2	BH 23-03 2'	109	118	
90-5610-3	BH 23-03 4'	108	119	
90-5610-4	BH 23-01 0'	106	115	
90-5610-5	BH 23-01 2'	105	120	
90-5610-6	BH 23-08 0'	107	118	
90-5610-7	BH 23-08 2'	126	136 S1+	
90-5610-8	BH 23-08 4'	110	119	
CS 880-67028/2-A	Lab Control Sample	97	112	
CSD 880-67028/3-A	Lab Control Sample Dup	92	105	
1B 880-67028/1-A	Method Blank	109	124	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

3

5

7

9

11

12

4 /

Job ID: 890-5610-1 Client: Vertex Project/Site: PLU 29 WEST BIG SINKS

SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-67061/5-A

Lab Sample ID: LCS 880-67061/1-A

Matrix: Solid

Analysis Batch: 67021

Matrix: Solid Analysis Batch: 67021 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 67061

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 12:38	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 12:38	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 12:38	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/15/23 11:41	11/16/23 12:38	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/15/23 11:41	11/16/23 12:38	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/15/23 11:41	11/16/23 12:38	1

MB MB

MD MD

Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117	70 - 130	11/15/23 11:41	11/16/23 12:38	1
1,4-Difluorobenzene (Surr)	154 S1+	70 - 130	11/15/23 11:41	11/16/23 12:38	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 67061

Prep Type: Total/NA

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1235 mg/Kg 124 70 - 130 Toluene 0.100 0.08522 mg/Kg 85 70 - 130 0.100 Ethylbenzene 0.08726 mg/Kg 87 70 - 130 0.200 0.1904 95 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.09465 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery Q	ualifier Limits
4-Bromofluorobenzene (Surr)	99	70 - 130
1,4-Difluorobenzene (Surr)	116	70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analyte

Analysis Batch: 67021

Lab Sample ID: LCSD 880-67061/2-A

Prep Batch: 67061 LCSD LCSD RPD %Rec Result Qualifier Unit %Rec Limits Limit 0.1191 mg/Kg 119 70 - 130 35

Benzene 0.100 Toluene 0.100 0.08593 mg/Kg 86 70 - 130 35 Ethylbenzene 0.100 0.08452 mg/Kg 85 70 - 130 35 3 m-Xylene & p-Xylene 0.200 0.1801 mg/Kg 90 70 - 130 35 0.100 0.09651 o-Xylene mg/Kg 70 - 130 35

Spike

Added

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Lab Sample ID: 880-35797-A-81-B MS

Matrix: Solid

Analysis Batch: 67021

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 67061

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.08388		mg/Kg	_	84	70 - 130	
Toluene	< 0.00199	U F1	0.0996	0.06167	F1	mg/Kg		62	70 - 130	

QC Sample Results

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Client Sample ID: Matrix Spike Lab Sample ID: 880-35797-A-81-B MS Prep Type: Total/NA

Matrix: Solid Analysis Batch: 67021

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D Ethylbenzene < 0.00199 U F1 0.0996 0.06371 F1 64 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00398 UF1 0.199 0.1444 mg/Kg 72 70 - 130 0.0996 o-Xylene <0.00199 UF1 0.07765 78 70 - 130 mg/Kg

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: 880-35797-A-81-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 67021

Prep Type: Total/NA

Prep Batch: 67061

Prep Batch: 67061

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier %Rec RPD Limit Analyte Unit Limits D 0.100 0.08417 Benzene <0.00199 U mg/Kg 84 70 - 130 0 35 0.06025 F1 Toluene <0.00199 U F1 0.100 mg/Kg 60 70 - 130 2 35 Ethylbenzene <0.00199 U F1 0.100 0.05329 F1 53 70 - 130 18 35 mg/Kg 0.200 70 - 130 m-Xylene & p-Xylene <0.00398 UF1 0.1270 F1 mg/Kg 63 13 35 0.100 <0.00199 U F1 0.06890 F1 69 70 - 130 o-Xylene mg/Kg 12

MSD MSD

Surrogate	%Recovery Qualifie	er Limits
4-Bromofluorobenzene (Surr)	90	70 - 130
1,4-Difluorobenzene (Surr)	108	70 - 130

Lab Sample ID: MB 880-67094/5-A Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 67021

Prep Type: Total/NA Prep Batch: 67094

Result Qualifier Unit Prepared Dil Fac Analyte RL D Analyzed Benzene <0.00200 U 0.00200 mg/Kg 11/15/23 13:29 11/16/23 00:55 Toluene <0.00200 U 0.00200 mg/Kg 11/15/23 13:29 11/16/23 00:55 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/15/23 13:29 11/16/23 00:55 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/15/23 13:29 11/16/23 00:55 0.00200 11/15/23 13:29 11/16/23 00:55 o-Xylene <0.00200 U mg/Kg Xylenes, Total <0.00400 U 0.00400 mg/Kg 11/15/23 13:29 11/16/23 00:55

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130	11/15/23 13:2	9 11/16/23 00:55	1
1,4-Difluorobenzene (Surr)	119		70 - 130	11/15/23 13:2	9 11/16/23 00:55	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-67028/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 67152

мв мв Analyte Result Qualifier RL Unit Prepared Analyzed <50.0 U 50.0 mg/Kg 11/15/23 09:52 11/16/23 07:31 Gasoline Range Organics

(GRO)-C6-C10

Eurofins Carlsbad

Prep Batch: 67028

Client: Vertex Project/Site: PLU 29 WEST BIG SINKS

Job ID: 890-5610-1

SDG: 23E-05485

Client Sample ID: Lab Control Sample Dup

Method: 8015B NM	- Diesel Range	Organics	(DRO)	(GC)	(Continued)

Client Sample ID: Method Blank Lab Sample ID: MB 880-67028/1-A **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 67152 Prep Batch: 67028

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 07:31	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 07:31	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			11/15/23 09:52	11/16/23 07:31	1
o-Terphenyl	124		70 - 130			11/15/23 09:52	11/16/23 07:31	1

Lab Sample ID: LCS 880-67028/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 67152 Prep Batch: 67028 LCS LCS Spike Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 1059 106 70 - 130 mg/Kg (GRO)-C6-C10 1000 Diesel Range Organics (Over 924.3 mg/Kg 92 70 - 130C10-C28) LCS LCS Qualifier Limits Surrogate %Recovery 1-Chlorooctane 70 - 130 97 o-Terphenyl 112 70 - 130

Matrix: Solid Prep Type: Total/NA Analysis Batch: 67152 Prep Batch: 67028 Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier %Rec Limits RPD Limit Unit D Gasoline Range Organics 1000 1090 mg/Kg 109 70 - 130 3 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 952.9 mg/Kg 95 70 - 130 3 20

	LCSD		
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	105		70 - 130

Lab Sample ID: 880-35343-A-1-G MS Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 67152 Prep Batch: 67028 Spike MS MS %Rec Sample Sample Limits Result Qualifier Added Result Qualifier Unit %Rec Analyte <50.0 U F1 1010 <50.5 U F1 70 - 130 Gasoline Range Organics 2 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1010 <50.0 UF1 <50.5 U F1 mg/Kg 0.3 70 - 130 C10-C28) MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 2 S1-70 - 130 0.2 S1-70 - 130 o-Terphenyl

Eurofins Carlsbad

Lab Sample ID: LCSD 880-67028/3-A

C10-C28)

Prep Batch: 67028

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-35343-A-1-H MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 67152

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0	U F1	1010	<50.5	U F1	mg/Kg		2	70 - 130	10	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U F1	1010	<50.5	U F1	mg/Kg		-0.2	70 - 130	12	20

C10-C28)

MSD MSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 2 S1-70 - 130 o-Terphenyl 0.2 S1-70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-66791/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 66928

мв мв Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 11/14/23 08:12

Lab Sample ID: LCS 880-66791/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 66928

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	256.5	-	mg/Kg		103	90 - 110	

Lab Sample ID: LCSD 880-66791/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 66928

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	257.8		mg/Kg		103	90 - 110	1	20	

Lab Sample ID: 880-35571-A-8-D MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 66928

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	51.3		251	302.3		mg/Kg		100	90 - 110	

Lab Sample ID: 880-35571-A-8-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Soluble

Analysis Batch: 66928

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	51.3		251	303.3		mg/Kg		100	90 - 110	0	20

Job ID: 890-5610-1

Client: Vertex Project/Site: PLU 29 WEST BIG SINKS

SDG: 23E-05485

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-35649-A-4-B MS

Analysis Batch: 66928

Matrix: Solid

Client Sample ID: Matrix Spike **Prep Type: Soluble**

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier %Rec Limits Unit D Chloride 7720 F1 2530 10720 F1 mg/Kg 119 90 - 110

Lab Sample ID: 880-35649-A-4-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 66928

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Limit Analyte Result Qualifier Unit D %Rec Limits RPD Chloride 7720 F1 2530 10860 F1 mg/Kg 124 90 - 110

Lab Sample ID: MB 880-66983/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 67006

мв мв

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 11/14/23 18:25 mg/Kg

Lab Sample ID: LCS 880-66983/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 67006

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Chloride 250 241.8 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-66983/3-A

Matrix: Solid

Analysis Batch: 67006

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 241.8 mg/Kg 97 90 - 110 20

Lab Sample ID: 880-35681-A-38-B MS

Matrix: Solid

Analysis Batch: 67006

Sample Spike MS MS %Rec Sample Qualifier Added Analyte Result Result Qualifier Unit D %Rec Limits Chloride 14600 4970 19150 mg/Kg 90 - 110

Lab Sample ID: 880-35681-A-38-C MSD

Matrix: Solid

Analysis Batch: 67006

MSD MSD %Rec RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Limits RPD Limit Unit D %Rec Chloride 14600 4970 19140 mg/Kg 92 90 - 110 20

Eurofins Carlsbad

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

QC Association Summary

Client: Vertex Job ID: 890-5610-1
Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

GC VOA

Analysis Batch: 67021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Total/NA	Solid	8021B	67061
890-5610-2	BH 23-03 2'	Total/NA	Solid	8021B	67061
890-5610-3	BH 23-03 4'	Total/NA	Solid	8021B	67061
890-5610-4	BH 23-01 0'	Total/NA	Solid	8021B	67061
890-5610-5	BH 23-01 2'	Total/NA	Solid	8021B	67061
890-5610-6	BH 23-08 0'	Total/NA	Solid	8021B	67061
890-5610-7	BH 23-08 2'	Total/NA	Solid	8021B	67061
890-5610-8	BH 23-08 4'	Total/NA	Solid	8021B	67061
MB 880-67061/5-A	Method Blank	Total/NA	Solid	8021B	67061
MB 880-67094/5-A	Method Blank	Total/NA	Solid	8021B	67094
LCS 880-67061/1-A	Lab Control Sample	Total/NA	Solid	8021B	67061
LCSD 880-67061/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	67061
880-35797-A-81-B MS	Matrix Spike	Total/NA	Solid	8021B	67061
880-35797-A-81-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	67061

Prep Batch: 67061

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Total/NA	Solid	5035	
890-5610-2	BH 23-03 2'	Total/NA	Solid	5035	
890-5610-3	BH 23-03 4'	Total/NA	Solid	5035	
890-5610-4	BH 23-01 0'	Total/NA	Solid	5035	
890-5610-5	BH 23-01 2'	Total/NA	Solid	5035	
890-5610-6	BH 23-08 0'	Total/NA	Solid	5035	
890-5610-7	BH 23-08 2'	Total/NA	Solid	5035	
890-5610-8	BH 23-08 4'	Total/NA	Solid	5035	
MB 880-67061/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-67061/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-67061/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-35797-A-81-B MS	Matrix Spike	Total/NA	Solid	5035	
880-35797-A-81-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 67094

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-67094/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 67297

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Total/NA	Solid	Total BTEX	
890-5610-2	BH 23-03 2'	Total/NA	Solid	Total BTEX	
890-5610-3	BH 23-03 4'	Total/NA	Solid	Total BTEX	
890-5610-4	BH 23-01 0'	Total/NA	Solid	Total BTEX	
890-5610-5	BH 23-01 2'	Total/NA	Solid	Total BTEX	
890-5610-6	BH 23-08 0'	Total/NA	Solid	Total BTEX	
890-5610-7	BH 23-08 2'	Total/NA	Solid	Total BTEX	
890-5610-8	BH 23-08 4'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 67028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 20 of 31

1

2

3

4

6

8

J 6

11

13

14

ino Ganobao

QC Association Summary

Client: Vertex Job ID: 890-5610-1
Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

GC Semi VOA (Continued)

Prep Batch: 67028 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-2	BH 23-03 2'	Total/NA	Solid	8015NM Prep	
890-5610-3	BH 23-03 4'	Total/NA	Solid	8015NM Prep	
890-5610-4	BH 23-01 0'	Total/NA	Solid	8015NM Prep	
890-5610-5	BH 23-01 2'	Total/NA	Solid	8015NM Prep	
890-5610-6	BH 23-08 0'	Total/NA	Solid	8015NM Prep	
890-5610-7	BH 23-08 2'	Total/NA	Solid	8015NM Prep	
890-5610-8	BH 23-08 4'	Total/NA	Solid	8015NM Prep	
MB 880-67028/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-67028/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-67028/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-35343-A-1-G MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-35343-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 67152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Total/NA	Solid	8015B NM	67028
890-5610-2	BH 23-03 2'	Total/NA	Solid	8015B NM	67028
890-5610-3	BH 23-03 4'	Total/NA	Solid	8015B NM	67028
890-5610-4	BH 23-01 0'	Total/NA	Solid	8015B NM	67028
890-5610-5	BH 23-01 2'	Total/NA	Solid	8015B NM	67028
890-5610-6	BH 23-08 0'	Total/NA	Solid	8015B NM	67028
890-5610-7	BH 23-08 2'	Total/NA	Solid	8015B NM	67028
890-5610-8	BH 23-08 4'	Total/NA	Solid	8015B NM	67028
MB 880-67028/1-A	Method Blank	Total/NA	Solid	8015B NM	67028
LCS 880-67028/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	67028
LCSD 880-67028/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	67028
880-35343-A-1-G MS	Matrix Spike	Total/NA	Solid	8015B NM	67028
880-35343-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	67028

Analysis Batch: 67310

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Total/NA	Solid	8015 NM	
890-5610-2	BH 23-03 2'	Total/NA	Solid	8015 NM	
890-5610-3	BH 23-03 4'	Total/NA	Solid	8015 NM	
890-5610-4	BH 23-01 0'	Total/NA	Solid	8015 NM	
890-5610-5	BH 23-01 2'	Total/NA	Solid	8015 NM	
890-5610-6	BH 23-08 0'	Total/NA	Solid	8015 NM	
890-5610-7	BH 23-08 2'	Total/NA	Solid	8015 NM	
890-5610-8	BH 23-08 4'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 66791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-5610-4	BH 23-01 0'	Soluble	Solid	DI Leach	
890-5610-5	BH 23-01 2'	Soluble	Solid	DI Leach	
890-5610-6	BH 23-08 0'	Soluble	Solid	DI Leach	
890-5610-7	BH 23-08 2'	Soluble	Solid	DI Leach	
890-5610-8	BH 23-08 4'	Soluble	Solid	DI Leach	
MB 880-66791/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-66791/2-A	Lab Control Sample	Soluble	Solid	DI Leach	

Eurofins Carlsbad

3

5

a

10

13

14

Jimo Gariobaa

QC Association Summary

Client: Vertex Job ID: 890-5610-1
Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

HPLC/IC (Continued)

Leach Batch: 66791 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-66791/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-35571-A-8-D MS	Matrix Spike	Soluble	Solid	DI Leach	
880-35571-A-8-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
880-35649-A-4-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-35649-A-4-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 66928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-4	BH 23-01 0'	Soluble	Solid	300.0	66791
890-5610-5	BH 23-01 2'	Soluble	Solid	300.0	66791
890-5610-6	BH 23-08 0'	Soluble	Solid	300.0	66791
890-5610-7	BH 23-08 2'	Soluble	Solid	300.0	66791
890-5610-8	BH 23-08 4'	Soluble	Solid	300.0	66791
MB 880-66791/1-A	Method Blank	Soluble	Solid	300.0	66791
LCS 880-66791/2-A	Lab Control Sample	Soluble	Solid	300.0	66791
LCSD 880-66791/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	66791
880-35571-A-8-D MS	Matrix Spike	Soluble	Solid	300.0	66791
880-35571-A-8-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	66791
880-35649-A-4-B MS	Matrix Spike	Soluble	Solid	300.0	66791
880-35649-A-4-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	66791

Leach Batch: 66983

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Soluble	Solid	DI Leach	
890-5610-2	BH 23-03 2'	Soluble	Solid	DI Leach	
890-5610-3	BH 23-03 4'	Soluble	Solid	DI Leach	
MB 880-66983/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-66983/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-66983/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-35681-A-38-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-35681-A-38-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 67006

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5610-1	BH 23-03 0'	Soluble	Solid	300.0	66983
890-5610-2	BH 23-03 2'	Soluble	Solid	300.0	66983
890-5610-3	BH 23-03 4'	Soluble	Solid	300.0	66983
MB 880-66983/1-A	Method Blank	Soluble	Solid	300.0	66983
LCS 880-66983/2-A	Lab Control Sample	Soluble	Solid	300.0	66983
LCSD 880-66983/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	66983
880-35681-A-38-B MS	Matrix Spike	Soluble	Solid	300.0	66983
880-35681-A-38-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	66983

Eurofins Carlsbad

1

3

5

7

_

10

12

13

Н

Client: Vertex

Project/Site: PLU 29 WEST BIG SINKS

Job ID: 890-5610-1 SDG: 23E-05485

Client Sample ID: BH 23-03 0'

Lab Sample ID: 890-5610-1

Matrix: Solid

Date Collected: 11/08/23 09:00 Date Received: 11/09/23 15:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 15:30	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 15:30	AJ	EET MID
Total/NA	Analysis	8015 NM		1			67310	11/16/23 14:55	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	67028	11/15/23 09:52	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 14:55	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	66983	11/14/23 12:01	СН	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	67006	11/14/23 20:38	CH	EET MID

Client Sample ID: BH 23-03

Lab Sample ID: 890-5610-2

Matrix: Solid

Date Collected: 11/08/23 09:05 Date Received: 11/09/23 15:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 15:50	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 15:50	AJ	EET MID
Total/NA	Analysis	8015 NM		1			67310	11/16/23 15:16	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	67028	11/15/23 09:52	TKC	EET MIC
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 15:16	SM	EET MIC
Soluble	Leach	DI Leach			4.98 g	50 mL	66983	11/14/23 12:01	СН	EET MIC
Soluble	Analysis	300.0		5	50 mL	50 mL	67006	11/14/23 20:44	CH	EET MID

Client Sample ID: BH 23-03 4'

Lab Sample ID: 890-5610-3

Date Collected: 11/08/23 09:10 Date Received: 11/09/23 15:44

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 16:11	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 16:11	AJ	EET MID
Total/NA	Analysis	8015 NM		1			67310	11/16/23 15:37	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	67028	11/15/23 09:52	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 15:37	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	66983	11/14/23 12:01	СН	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	67006	11/14/23 21:04	CH	EET MID

Client Sample ID: BH 23-01 0'

Lab Sample ID: 890-5610-4

Date Collected: 11/09/23 09:00

Matrix: Solid

Date Received: 11/09/23 15:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 18:02	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 18:02	AJ	EET MID

Client: Vertex

Project/Site: PLU 29 WEST BIG SINKS

SDG: 23E-05485

Job ID: 890-5610-1

Client Sample ID: BH 23-01 0'

Lab Sample ID: 890-5610-4

Lab Sample ID: 890-5610-6

Lab Sample ID: 890-5610-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 11/09/23 09:00 Date Received: 11/09/23 15:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			67310	11/16/23 15:58	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	67028	11/15/23 09:52	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 15:58	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	66791	11/13/23 08:05	СН	EET MID
Soluble	Analysis	300.0		1			66928	11/14/23 10:44	СН	EET MID

Client Sample ID: BH 23-01 Lab Sample ID: 890-5610-5

Date Collected: 11/09/23 09:05

Date Received: 11/09/23 15:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 18:22	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 18:22	AJ	EET MID
Total/NA	Analysis	8015 NM		1			67310	11/16/23 16:19	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	67028	11/15/23 09:52	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 16:19	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	66791	11/13/23 08:05	СН	EET MID
Soluble	Analysis	300.0		1			66928	11/14/23 10:49	CH	EET MID

Client Sample ID: BH 23-08 0'

Date Collected: 11/09/23 09:10

Date Received: 11/09/23 15:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 18:42	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 18:42	AJ	EET MID
Total/NA	Analysis	8015 NM		1			67310	11/16/23 16:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	67028	11/15/23 09:52	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 16:40	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	66791	11/13/23 08:05	CH	EET MID
Soluble	Analysis	300.0		1			66928	11/14/23 14:23	CH	EET MID

Client Sample ID: BH 23-08 2'

Date Collected: 11/09/23 09:15

Date Received: 11/09/23 15:44

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 19:03	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 19:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			67310	11/16/23 17:01	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	67028	11/15/23 09:52	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 17:01	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Lab Chronicle

Client: Vertex Job ID: 890-5610-1 Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Client Sample ID: BH 23-08 2'

Date Received: 11/09/23 15:44

Lab Sample ID: 890-5610-7 Date Collected: 11/09/23 09:15

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	66791	11/13/23 08:05	СН	EET MID
Soluble	Analysis	300.0		10			66928	11/14/23 14:29	CH	EET MID

Client Sample ID: BH 23-08 4' Lab Sample ID: 890-5610-8

Date Collected: 11/09/23 09:20 Date Received: 11/09/23 15:44

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	67061	11/15/23 11:41	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67021	11/16/23 19:23	SM	EET MID
Total/NA	Analysis	Total BTEX		1			67297	11/16/23 19:23	AJ	EET MID
Total/NA	Analysis	8015 NM		1			67310	11/16/23 17:22	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	67028	11/15/23 09:52	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 17:22	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	66791	11/13/23 08:05	CH	EET MID
Soluble	Analysis	300.0		1			66928	11/14/23 11:06	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Vertex Job ID: 890-5610-1
Project/Site: PLU 29 WEST BIG SINKS SDG: 23E-05485

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	ım	Identification Number	Expiration Date
Texas	NELAF)	T104704400-23-26	06-30-24
The following analytes	are included in this report, but	t the laboratory is not certif	ied by the governing authority. This lis	t may include analyte
• •	•	t the laberatory to het cortin	iod by the governing additionty. This he	t may molado analyto
• ,	pes not offer certification.	t are laberatory to not sortal	iod by the governing additionly. This ha	t may molado analyto
• .	•	Matrix	Analyte	t may include analyte
for which the agency d	pes not offer certification.	•	, , ,	They molecule analyte

2

6

8

10

12

13

114

Method Summary

Client: Vertex

Project/Site: PLU 29 WEST BIG SINKS

Job ID: 890-5610-1

SDG: 23E-05485

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
Ol Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

6

9

4 4

12

Sample Summary

Client: Vertex

Project/Site: PLU 29 WEST BIG SINKS

Job ID: 890-5610-1

SDG: 23E-05485

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5610-1	BH 23-03 0'	Solid	11/08/23 09:00	11/09/23 15:44	0'
890-5610-2	BH 23-03 2'	Solid	11/08/23 09:05	11/09/23 15:44	2'
890-5610-3	BH 23-03 4'	Solid	11/08/23 09:10	11/09/23 15:44	4'
890-5610-4	BH 23-01 0'	Solid	11/09/23 09:00	11/09/23 15:44	0'
890-5610-5	BH 23-01 2'	Solid	11/09/23 09:05	11/09/23 15:44	2'
890-5610-6	BH 23-08 0'	Solid	11/09/23 09:10	11/09/23 15:44	0'
890-5610-7	BH 23-08 2'	Solid	11/09/23 09:15	11/09/23 15:44	2'
890-5610-8	BH 23-08 4'	Solid	11/09/23 09:20	11/09/23 15:44	4'

Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

-
-
~
773
-
7
-
(t)
~
E43
n
m .
15
1.0
-
_
_
o .
4.0
и.
11
1
l f

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. Aminimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) Pecelves by: (Signature) Date/Time Relinquished by: (Signature) Relinquished by: (Signature) 6	日日よう () 3 2 1 3 1 3 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Due Date: TAT starts the day received by 4:30pm	Name: PLU 39 West Bir Sinks Turn Around Number: 33E-05485 Magurine Rush Press	Company Name: XTO Address: City, State ZIP: Email: CCT1 XCVV(2) VE TT XX, CQ	Project Manager: CNOWCE DIXOIN Bill to: (if different) (70, YYC+ (779,01)
the sistings standard terms and conditions lies to circumstances beyond the control is will be enforced unless previously negotiated. Shed by: (Signature) Received by: (Signature) Date/Time	890-5610 Chain of Custody 890-5610 Chain of Custody	NABIS NASO 3 2+NaOH corbic Ac	ANALYSIS REQUEST Preservative Codes None. NO DI Water H ₂ O	Program: UST/PST ☐ PRP☐ Brownfields ☐ RRC ☐ Superfund ☐ State of Project: Reporting Level III ☐ PST/UST ☐ TRRP ☐ Level IV ☐ Deliverables: EDD ☐ ADaPT ☐ Other:	www.xenco.com Pageof

Login Sample Receipt Checklist

 Client: Vertex
 Job Number: 890-5610-1

 SDG Number: 23E-05485

Login Number: 5610 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

,c 70 0**j** 307

_

3

A

<u>ی</u>

<u>۾</u>

10

12

10

14

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5610-1 SDG Number: 23E-05485

List Source: Eurofins Midland

List Number: 2 Creator: Rodriguez, Leticia

Login Number: 5610

List Creation: 11/13/23 09:24 AM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Released to Imaging: 7/30/2024 4:40:16 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 11/29/2023 11:53:34 AM

JOB DESCRIPTION

PLU #29 WEST BIG SINKS 23E-05485

JOB NUMBER

890-5632-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/29/2023 11:53:34 AM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

.

5

6

8

9

10

4.0

13

14

Client: Vertex Laboratory Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS

SDG: 23E-05485

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	15
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

Definitions/Glossary

Client: Vertex Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS

SDG: 23E-05485

Qualifiers

GC VOA Qualifier

F1 MS and/or MSD recovery exceeds control limits.

Qualifier Description

F2 MS/MSD RPD exceeds control limits

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex

Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS SDG: 23E-05485

Job ID: 890-5632-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5632-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/15/2023 8:34 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH 23 - 13 0' (890-5632-1) and BH 23 - 13 1.5' (890-5632-2).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-67568 and analytical batch 880-67637 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-67741 and analytical batch 880-67809 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (890-5666-A-21-C). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-67231 and analytical batch 880-67245 was outside the upper control limits.

Method 8015MOD NM: Batch preparation batch 880-67231 and analytical batch 880-67245 is reported without a matrix spike/matrix spike duplicate (MS/MSD). The batch MS/MSD was originally performed on another client's sample, and this test was canceled at client request. This MS/MSD result does not have immediate bearing on any samples except for the actual sample spiked. The associated laboratory control sample (LCS) met acceptance criteria and provides long-term precision and accuracy for this batch.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Vertex Project/Site: PLU #29 WEST BIG SINKS

Job ID: 890-5632-1

SDG: 23E-05485

Client Sample ID: BH 23 - 13 0'

Lab Sample ID: 890-5632-1

Matrix: Solid

Date Collected: 11/14/23 09:30 Date Received: 11/15/23 08:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/27/23 11:00	11/28/23 11:55	1
Toluene	< 0.00199	U	0.00199	mg/Kg		11/27/23 11:00	11/28/23 11:55	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		11/27/23 11:00	11/28/23 11:55	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/27/23 11:00	11/28/23 11:55	
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/27/23 11:00	11/28/23 11:55	,
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/27/23 11:00	11/28/23 11:55	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		70 - 130			11/27/23 11:00	11/28/23 11:55	1
1,4-Difluorobenzene (Surr)	71		70 - 130			11/27/23 11:00	11/28/23 11:55	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	П	0.00398	mg/Kg			11/28/23 11:55	
				mg/Kg			11/20/20 11.00	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)	Unit	D	Prepared		Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ	ics (DRO) (D	Prepared	Analyzed 11/17/23 22:24	
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result	ics (DRO) (GC)	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH	Result <49.7	ics (DRO) (Gualifier	RL 49.7	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	el Range Organ Result <49.7 sel Range Organ	ics (DRO) (Gualifier	RL 49.7	Unit	<u>D</u>	Prepared Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result <49.7 sel Range Organ	Qualifier Unics (DRO) Qualifier	GC) RL 49.7	Unit mg/Kg		<u> </u>	Analyzed 11/17/23 22:24	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result <49.7 sel Range Orga Result <49.7	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.7 (GC) RL 49.7	Unit mg/Kg Unit mg/Kg		Prepared 11/16/23 16:02	Analyzed 11/17/23 22:24 Analyzed 11/17/23 22:24	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.7 sel Range Organ Result	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.7 (GC) RL	Unit mg/Kg		Prepared	Analyzed 11/17/23 22:24 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <49.7 sel Range Orga Result <49.7	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U	GC) RL 49.7 (GC) RL 49.7	Unit mg/Kg Unit mg/Kg		Prepared 11/16/23 16:02	Analyzed 11/17/23 22:24 Analyzed 11/17/23 22:24	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Organ Result <49.7 sel Range Orga Result <49.7 <49.7 <49.7	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U	GC) RL 49.7 (GC) RL 49.7 49.7 49.7	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/16/23 16:02 11/16/23 16:02 11/16/23 16:02	Analyzed 11/17/23 22:24 Analyzed 11/17/23 22:24 11/17/23 22:24 11/17/23 22:24	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ Result <49.7 sel Range Orga Result <49.7 <49.7 <49.7 %Recovery	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U	GC) RL 49.7 (GC) RL 49.7 49.7 49.7 Limits	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/16/23 16:02 11/16/23 16:02 11/16/23 16:02 Prepared	Analyzed 11/17/23 22:24 Analyzed 11/17/23 22:24 11/17/23 22:24 11/17/23 22:24 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	el Range Organ Result <49.7 sel Range Orga Result <49.7 <49.7 <49.7	ics (DRO) (COMPANIES (DRO)) Qualifier U Qualifier U U U	GC) RL 49.7 (GC) RL 49.7 49.7 49.7	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/16/23 16:02 11/16/23 16:02 11/16/23 16:02	Analyzed 11/17/23 22:24 Analyzed 11/17/23 22:24 11/17/23 22:24 11/17/23 22:24	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	el Range Organ	ics (DRO) (Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 49.7 (GC) RL 49.7 49.7 49.7 Limits 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/16/23 16:02 11/16/23 16:02 11/16/23 16:02 Prepared 11/16/23 16:02	Analyzed 11/17/23 22:24 Analyzed 11/17/23 22:24 11/17/23 22:24 11/17/23 22:24 Analyzed 11/17/23 22:24	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ Result <49.7 sel Range Orga Result <49.7 <49.7 <49.7 49.7 49.7 49.7 Chromatograp	ics (DRO) (Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 49.7 (GC) RL 49.7 49.7 49.7 Limits 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/16/23 16:02 11/16/23 16:02 11/16/23 16:02 Prepared 11/16/23 16:02	Analyzed 11/17/23 22:24 Analyzed 11/17/23 22:24 11/17/23 22:24 11/17/23 22:24 Analyzed 11/17/23 22:24	Dil Fac

Client Sample ID: BH 23 - 13 1.5'

Lab Sample ID: 890-5632-2

Matrix: Solid

Date Collected: 11/14/23 09:45 Date Received: 11/15/23 08:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		11/21/23 14:33	11/22/23 16:21	1
Toluene	<0.00202	U	0.00202	mg/Kg		11/21/23 14:33	11/22/23 16:21	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		11/21/23 14:33	11/22/23 16:21	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		11/21/23 14:33	11/22/23 16:21	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		11/21/23 14:33	11/22/23 16:21	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		11/21/23 14:33	11/22/23 16:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			11/21/23 14:33	11/22/23 16:21	1
1,4-Difluorobenzene (Surr)	77		70 - 130			11/21/23 14:33	11/22/23 16:21	1

Client Sample Results

Client: Vertex Job ID: 890-5632-1
Project/Site: PLU #29 WEST BIG SINKS SDG: 23E-05485

Client Sample ID: BH 23 - 13 1.5'

Date Collected: 11/14/23 09:45 Date Received: 11/15/23 08:34 Lab Sample ID: 890-5632-2

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			11/22/23 16:21	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/17/23 22:46	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		11/16/23 16:02	11/17/23 22:46	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		11/16/23 16:02	11/17/23 22:46	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/16/23 16:02	11/17/23 22:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130			11/16/23 16:02	11/17/23 22:46	1
o-Terphenyl	105		70 - 130			11/16/23 16:02	11/17/23 22:46	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	51.6		5.05	mg/Kg			11/17/23 13:02	1

Surrogate Summary

 Client: Vertex
 Job ID: 890-5632-1

 Project/Site: PLU #29 WEST BIG SINKS
 SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		DED4	DED 74	Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
∟ab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-5632-1	BH 23 - 13 0'	96	71	
390-5632-2	BH 23 - 13 1.5'	89	77	
390-5632-A-1-F MS	890-5632-A-1-F MS	105	106	
890-5632-A-1-G MSD	890-5632-A-1-G MSD	103	103	
390-5666-A-21-A MS	Matrix Spike	90	84	
390-5666-A-21-B MSD	Matrix Spike Duplicate	123	101	
_CS 880-67568/1-A	Lab Control Sample	104	104	
_CS 880-67741/1-A	Lab Control Sample	109	100	
_CSD 880-67568/2-A	Lab Control Sample Dup	102	105	
_CSD 880-67741/2-A	Lab Control Sample Dup	113	100	
MB 880-67568/5-A	Method Blank	71	88	
MB 880-67741/5-A	Method Blank	79	84	
Surrogate Legend				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-5632-1	BH 23 - 13 0'	100	110	
890-5632-2	BH 23 - 13 1.5'	100	105	
LCS 880-67231/2-A	Lab Control Sample	93	107	
LCSD 880-67231/3-A	Lab Control Sample Dup	90	103	
MB 880-67231/1-A	Method Blank	115	133 S1+	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

-				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID			
890-5635-A-5-C MS	Matrix Spike			
890-5635-A-5-D MSD	Matrix Spike Duplicate			
Surrogate Legend				
1CO = 1-Chlorooctane				

Eurofins Carlsbad

2

2

Л

J

8

10

10

13

OTPH = o-Terphenyl

Client: Vertex Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-67568/5-A

Matrix: Solid

Analysis Batch: 67637

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 67568

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/21/23 14:33	11/22/23 15:38	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/21/23 14:33	11/22/23 15:38	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/21/23 14:33	11/22/23 15:38	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/21/23 14:33	11/22/23 15:38	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/21/23 14:33	11/22/23 15:38	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/21/23 14:33	11/22/23 15:38	1

MB MB

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71	70 - 130	11/21/23 14:33	11/22/23 15:38	1
1,4-Difluorobenzene (Surr)	88	70 - 130	11/21/23 14:33	11/22/23 15:38	1

Lab Sample ID: LCS 880-67568/1-A

Matrix: Solid

Analysis Batch: 67637

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 67568

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08403		mg/Kg		84	70 - 130	
Toluene	0.100	0.08136		mg/Kg		81	70 - 130	
Ethylbenzene	0.100	0.08783		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	0.200	0.1813		mg/Kg		91	70 - 130	
o-Xylene	0.100	0.08648		mg/Kg		86	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 880-67568/2-A

Matrix: Solid

Analysis Batch: 67637

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 67568

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Limit 0.08384 Benzene 0.100 mg/Kg 84 70 - 130 0 35 Toluene 0.100 0.07787 mg/Kg 78 70 - 130 35 Ethylbenzene 0.100 0.08232 mg/Kg 82 70 - 130 6 35 m-Xylene & p-Xylene 0.200 0.1701 mg/Kg 85 70 - 130 35 0.100 0.08106 o-Xylene mg/Kg 70 - 130 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1.4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 890-5632-A-1-F MS

Matrix: Solid

Analysis Batch: 67637

Client Sample ID: 890-5632-A-1-F MS

Prep Type: Total/NA

Prep Batch: 67568

MS MS Sample Sample Spike Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits 0.0264 F1 0.0990 0.08324 F1 57 70 - 130 Benzene mg/Kg Toluene 0.0663 F1 0.0990 0.07497 F1 mg/Kg 9 70 - 130

Eurofins Carlsbad

1

QC Sample Results

Client: Vertex Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-5632-A-1-F MS

Lab Sample ID: 890-5632-A-1-G MSD

Matrix: Solid Analysis Batch: 67637

Client Sample ID: 890-5632-A-1-F MS Prep Type: Total/NA

Prep Batch: 67568

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ethylbenzene 0.0201 F1 0.0990 0.07512 F1 56 70 - 130 mg/Kg m-Xylene & p-Xylene 0.0523 0.198 0.1535 F1 mg/Kg 51 70 - 130 0.0181 F1 0.0990 o-Xylene 0.07435 F1 57 70 - 130 mg/Kg

MS MS

Surrogate	%Recovery Qual	ifier Limits
4-Bromofluorobenzene (Surr)	105	70 - 130
1,4-Difluorobenzene (Surr)	106	70 - 130

Client Sample ID: 890-5632-A-1-G MSD

Prep Type: Total/NA

Prep Batch: 67568

Analysis Batch: 67637 Sample Sample Spike MSD MSD RPD Result Qualifier Added %Rec RPD Limit Analyte Result Qualifier Unit Limits Benzene 0.0264 F1 0.101 0.07268 F1 mg/Kg 46 70 - 130 14 35 Toluene 0.0663 F1 0.101 0.06436 F1 mg/Kg -2 70 - 130 15 35 Ethylbenzene F1 0.101 0.06294 F1 43 70 - 130 18 35 0.0201 mg/Kg 0.202 m-Xylene & p-Xylene 0.0523 F1 0.1282 F1 mg/Kg 38 70 - 130 18 35 0.0181 F1 0.101 0.06264 F1 44 70 - 130 o-Xylene mg/Kg 17

MSD MSD

Surrogate	%Recovery Qua	lifier Limits
4-Bromofluorobenzene (Surr)	103	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: MB 880-67741/5-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 67809

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 67741

Result Qualifier Unit Prepared Dil Fac Analyte RL D Analyzed Benzene <0.00200 U 0.00200 mg/Kg 11/27/23 11:00 11/28/23 11:13 Toluene <0.00200 U 0.00200 11/27/23 11:00 11/28/23 11:13 mg/Kg Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/27/23 11:00 11/28/23 11:13 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 11/27/23 11:00 11/28/23 11:13 0.00200 11/28/23 11:13 o-Xylene <0.00200 U mg/Kg 11/27/23 11:00 Xylenes, Total <0.00400 U 0.00400 mg/Kg 11/27/23 11:00 11/28/23 11:13

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130	11/27/23 11:00	11/28/23 11:13	1
1,4-Difluorobenzene (Surr)	84		70 - 130	11/27/23 11:00	11/28/23 11:13	1

Lab Sample ID: LCS 880-67741/1-A

Matrix: Solid

Analysis Batch: 67809

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 67741

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.08598		mg/Kg		86	70 - 130
Toluene	0.100	0.08396		mg/Kg		84	70 - 130
Ethylbenzene	0.100	0.09073		mg/Kg		91	70 - 130
m-Xylene & p-Xylene	0.200	0.1862		mg/Kg		93	70 - 130

Client: Vertex

Project/Site: PLU #29 WEST BIG SINKS

Job ID: 890-5632-1 SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-67741/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 67809** Prep Batch: 67741

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits o-Xylene 0.100 0.09278 93 70 - 130 mg/Kg

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 109 70 - 130 70 - 130 1,4-Difluorobenzene (Surr) 100

Lab Sample ID: LCSD 880-67741/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 67809							Prep	Batch:	67741
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07910		mg/Kg		79	70 - 130	8	35
Toluene	0.100	0.07830		mg/Kg		78	70 - 130	7	35
Ethylbenzene	0.100	0.08506		mg/Kg		85	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.1736		mg/Kg		87	70 - 130	7	35
o-Xylene	0.100	0.08534		mg/Kg		85	70 - 130	8	35

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 113 70 - 130 1,4-Difluorobenzene (Surr) 100 70 - 130

Lab Sample ID: 890-5666-A-21-A MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 67809

Sample	Sample	Spike	MS	MS				%Rec
Analyte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene <0.00199		0.0996	0.04428	F1	mg/Kg		28	70 - 130
Toluene <0.00199		0.0996	0.04536	F1	mg/Kg		-52	70 - 130
Ethylbenzene <0.00199		0.0996	0.04729	F1	mg/Kg		23	70 - 130
m-Xylene & p-Xylene <0.00398		0.199	0.08896	F1	mg/Kg		13	70 - 130
o-Xylene <0.00199		0.0996	0.04647	F1	mg/Kg		18	70 - 130

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	90	70 - 130
1,4-Difluorobenzene (Surr)	84	70 - 130

MS MS

Lab Sample ID: 890-5666-A-21-B MSD

Matrix: Solid

Analysis Batch: 67809									Prep	Batch:	67741
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U F1 F2	0.0990	0.06350	F2 F1	mg/Kg		64	70 - 130	36	35
Toluene	<0.00199	U F1	0.0990	0.06178	F1	mg/Kg		62	70 - 130	31	35
Ethylbenzene	<0.00199	U F1 F2	0.0990	0.07379	F2	mg/Kg		75	70 - 130	44	35
m-Xylene & p-Xylene	<0.00398	U F1 F2	0.198	0.1495	F2	mg/Kg		75	70 - 130	51	35
o-Xylene	<0.00199	U F1 F2	0.0990	0.07229	F2	mg/Kg		73	70 - 130	43	35

Eurofins Carlsbad

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 67741

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client: Vertex

Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-5666-A-21-B MSD

Matrix: Solid

Analysis Batch: 67809

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 67741

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 123 70 - 130 1,4-Difluorobenzene (Surr) 101 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-67231/1-A

Matrix: Solid

Analysis Batch: 67245

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 67231

MB MB

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 11/16/23 16:02 11/17/23 18:53 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 11/16/23 16:02 11/17/23 18:53 C10-C28) 11/17/23 18:53 Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 11/16/23 16:02

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	115	70 - 130	11/16/23 16:02	11/17/23 18:53	1
o-Terphenyl	133 S1+	70 - 130	11/16/23 16:02	11/17/23 18:53	1

Lab Sample ID: LCS 880-67231/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 67245

Prep Batch: 67231 Spike LCS LCS %Rec

Result Qualifier Analyte Added Unit D %Rec Limits Gasoline Range Organics 1000 1023 mg/Kg 102 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 877.8 mg/Kg 88 70 - 130

C10-C28)

LCS LCS %Recovery Surrogate Qualifier Limits 70 - 130 1-Chlorooctane 93 o-Terphenyl 107 70 - 130

Lab Sample ID: LCSD 880-67231/3-A

Released to Imaging: 7/30/2024 4:40:16 PM

Matrix: Solid

Analysis Batch: 67245

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 67231

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits Limit Gasoline Range Organics 1000 1068 107 70 - 130 20 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 937.0 94 70 - 130 20 mg/Kg

C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	90		70 - 130
o-Terphenyl	103		70 - 130

Job ID: 890-5632-1

SDG: 23E-05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-5635-A-5-C MS

Project/Site: PLU #29 WEST BIG SINKS

Matrix: Solid Analysis Batch: 67245 Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 67231

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1010 1185 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1010 895.9 mg/Kg

C10-C28)

Client: Vertex

MS MS

Surrogate %Recovery Qualifier Limits

1-Chlorooctane

o-Terphenyl

Lab Sample ID: 890-5635-A-5-D MSD Client Sample ID: Matrix Spike Duplicate Matrix: Solid

Prep Type: Total/NA

Prep Batch: 67231

Analysis Batch: 67245 Spike MSD MSD %Rec RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1010 Gasoline Range Organics 1209 mg/Kg (GRO)-C6-C10

913.5

mg/Kg

1010

C10-C28)

MSD MSD

Surrogate %Recovery Qualifier Limits

1-Chlorooctane

o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-67161/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Soluble

Analysis Batch: 67234

Diesel Range Organics (Over

MB MB

Result Qualifier Analyte RL Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 11/17/23 11:43 mg/Kg

Lab Sample ID: LCS 880-67161/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 67234

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 248.7 99 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-67161/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 67234

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier %Rec Limits RPD Limit Unit D Chloride 250 100 249.5 mg/Kg 90 _ 110 20

Eurofins Carlsbad

Prep Type: Soluble

Lab Sample ID: 890-5631-A-1-B MS

Lab Sample ID: 890-5631-A-1-C MSD

Chloride

QC Sample Results

Client: Vertex Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS

SDG: 23E-05485

Method: 300.0 - Anions, Ion Chromatography (Continued)

46.0

Client Sample ID: Matrix Spike

Prep Type: Soluble

Matrix: Solid Analysis Batch: 67234

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits Chloride 46.0 249 292.6 mg/Kg 99 90 - 110

249

Client Sample ID: Matrix Spike Duplicate

90 - 110

100

Prep Type: Soluble

0

Matrix: Solid Analysis Batch: 67234

294.0

mg/Kg

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec

Eurofins Carlsbad

20

QC Association Summary

Client: Vertex Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS SDG: 23E-05485

GC VOA

Prep Batch: 67568

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-2	BH 23 - 13 1.5'	Total/NA	Solid	5035	
MB 880-67568/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-67568/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-67568/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5632-A-1-F MS	890-5632-A-1-F MS	Total/NA	Solid	5035	
890-5632-A-1-G MSD	890-5632-A-1-G MSD	Total/NA	Solid	5035	

Analysis Batch: 67637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-2	BH 23 - 13 1.5'	Total/NA	Solid	8021B	67568
MB 880-67568/5-A	Method Blank	Total/NA	Solid	8021B	67568
LCS 880-67568/1-A	Lab Control Sample	Total/NA	Solid	8021B	67568
LCSD 880-67568/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	67568
890-5632-A-1-F MS	890-5632-A-1-F MS	Total/NA	Solid	8021B	67568
890-5632-A-1-G MSD	890-5632-A-1-G MSD	Total/NA	Solid	8021B	67568

Prep Batch: 67741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Total/NA	Solid	5035	
MB 880-67741/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-67741/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-67741/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5666-A-21-A MS	Matrix Spike	Total/NA	Solid	5035	
890-5666-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 67764

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Total/NA	Solid	Total BTEX	
890-5632-2	BH 23 - 13 1.5'	Total/NA	Solid	Total BTEX	

Analysis Batch: 67809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Total/NA	Solid	8021B	67741
MB 880-67741/5-A	Method Blank	Total/NA	Solid	8021B	67741
LCS 880-67741/1-A	Lab Control Sample	Total/NA	Solid	8021B	67741
LCSD 880-67741/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	67741
890-5666-A-21-A MS	Matrix Spike	Total/NA	Solid	8021B	67741
890-5666-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	67741

GC Semi VOA

Prep Batch: 67231

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Total/NA	Solid	8015NM Prep	
890-5632-2	BH 23 - 13 1.5'	Total/NA	Solid	8015NM Prep	
MB 880-67231/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-67231/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-67231/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5635-A-5-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5635-A-5-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Vertex Job ID: 890-5632-1 Project/Site: PLU #29 WEST BIG SINKS

SDG: 23E-05485

GC Semi VOA

Analysis Batch: 67245

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Total/NA	Solid	8015B NM	67231
890-5632-2	BH 23 - 13 1.5'	Total/NA	Solid	8015B NM	67231
MB 880-67231/1-A	Method Blank	Total/NA	Solid	8015B NM	67231
LCS 880-67231/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	67231
LCSD 880-67231/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	67231
890-5635-A-5-C MS	Matrix Spike	Total/NA	Solid	8015B NM	67231
890-5635-A-5-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	67231

Analysis Batch: 67446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Total/NA	Solid	8015 NM	
890-5632-2	BH 23 - 13 1.5'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 67161

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Soluble	Solid	DI Leach	
890-5632-2	BH 23 - 13 1.5'	Soluble	Solid	DI Leach	
MB 880-67161/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-67161/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-67161/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5631-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-5631-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 67234

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5632-1	BH 23 - 13 0'	Soluble	Solid	300.0	67161
890-5632-2	BH 23 - 13 1.5'	Soluble	Solid	300.0	67161
MB 880-67161/1-A	Method Blank	Soluble	Solid	300.0	67161
LCS 880-67161/2-A	Lab Control Sample	Soluble	Solid	300.0	67161
LCSD 880-67161/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	67161
890-5631-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	67161
890-5631-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	67161

Client Sample ID: BH 23 - 13 0'

Client: Vertex

Project/Site: PLU #29 WEST BIG SINKS

Lab Sample ID: 890-5632-1

Matrix: Solid

Job ID: 890-5632-1

SDG: 23E-05485

Date Collected: 11/14/23 09:30 Date Received: 11/15/23 08:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	67741	11/27/23 11:00	MNR	EET MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	67809	11/28/23 11:55	MNR	EET MIC
Total/NA	Analysis	Total BTEX		1			67764	11/28/23 11:55	SM	EET MI
Total/NA	Analysis	8015 NM		1			67446	11/17/23 22:24	SM	EET MI
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	67231	11/16/23 16:02	TKC	EET MIC
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67245	11/17/23 22:24	SM	EET MIC
Soluble	Leach	DI Leach			5.03 g	50 mL	67161	11/16/23 11:00	SA	EET MIC
Soluble	Analysis	300.0		1	50 mL	50 mL	67234	11/17/23 12:57	SMC	EET MI

Client Sample ID: BH 23 - 13 1.5' Lab Sample ID: 890-5632-2

Date Collected: 11/14/23 09:45 Matrix: Solid

Date Received: 11/15/23 08:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	67568	11/21/23 14:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67637	11/22/23 16:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			67764	11/22/23 16:21	SM	EET MID
Total/NA	Analysis	8015 NM		1			67446	11/17/23 22:46	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	67231	11/16/23 16:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67245	11/17/23 22:46	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	67161	11/16/23 11:00	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	67234	11/17/23 13:02	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Vertex Job ID: 890-5632-1
Project/Site: PLU #29 WEST BIG SINKS SDG: 23E-05485

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
,	are included in this report, but oes not offer certification.	ut the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: Vertex Project/Site: PLU #29 WEST BIG SINKS Job ID: 890-5632-1

SDG: 23E-05485

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Vertex

Project/Site: PLU #29 WEST BIG SINKS

Job ID: 890-5632-1

SDG: 23E-05485

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-5632-1	BH 23 - 13 0'	Solid	11/14/23 09:30	11/15/23 08:34
890-5632-2	BH 23 - 13 1.5'	Solid	11/14/23 09:45	11/15/23 08:34

Revised Date 08/25/2020 Rev. 2020.2

Date/Time

121314

>
po
st
J
of (
0
air
4

5633 Work Order No: Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Environment Testing

💸 eurofins

Xenco

Droice M toolord	(Laure Divon	7.7.7.	Bill to: (if different)	nows toward	Work Order Comments	ıts
Company Name:	Ver+ex	NA CANA	Company Name:	XTO	Program: UST/PST	S RRC Superfund
Address:			Address:		State of Project:	
City, State ZIP:			City, State ZIP:		Reporting: Level Level PST/UST TRRP Level IV	TRRP Level IV
Phone:		En	Email: Colixon	cdixon@vertex.ca	Deliverables: EDD	Other:
Project Name	DLM 29 Wet Rickinks Turn Around	Rickinks	Turn Around	ANALYSIS REQUEST		Preservative Codes

Company Name:	マナウ×	Lombany Name.]
Address		Address:		State of Project:	
City Ctato ZID.		City State 7IP.		Reporting: Level II Level III PS	PST/UST TRRP Level IV
City, State 21r.		The state of the s	-		
Phone:		Email: Calixo	dixon@vertex.cg	Deliverables: EUU ADAPI	Other:
Project Name:	PLU 29 West Bics	Turn Around	ANALYSIS REQUEST	QUEST	Preservative Codes
Project Number:	23E-05485 7	1 3	Pres. Code		None: NO DI Water: H ₂ O
Project Location:		Due Date:			Cool MeOH: Me
Sampler's Name:	Hunter Klein	TAT starts the day received by			
PO #:		the lab, if received by 4:30pm			:H ₂ NaOH:Na
SAMPLE RECEIPT	Temp Blank: Yes-No	Wet Ice: Yes No	N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/		4: HP
Samples Received Intact:	Yes	ster ID: WMO	N N N N N N N N N N N N N N N N N N N	890-5632 Chain of Custody	C 4: NABIS
Cooler Custody Seals:	S: Yes No N/A Correction Factor:		\rangle 2d		,O3: NaSO 3
Sample Custody Seals:	Yes No N/A	Temperature Reading: 0. 4	H		Zn Acetate+NaOH: Zn
Total Containers:	Corrected	Corrected Temperature: 0.3	l'A		NaOH+Ascorbic Acid: SAPC
		A Part	200		Cample Comments
Sample Identification	ntification Matrix Sampled	Sampled Depth Comp	Cont		Campie Comments
RH23-13	5 (3' 50:134/4123	3 9.30	ナメメ		
3423-13	2.51		XXX		
Total 200.7 / 6010		8RCRA 13PPM Texas 11 /	Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V Zn	Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr T	11 Sn U V Zn
Circle Method(s)	Circle Method(s) and Metal(s) to be analyzed	TCLP / SPLP 6010 : 8KC	TCLP/SPLP6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Min Mo Ni Se Ag II U	II Se Ag II U Hg: 1031 / 245.1 / 7470 / 7471	/4/0 / /4/1

Received by: (Signature) of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Relinquished by: (Signature) 153 Date/Time 11-14 ed by: (Signature) Relinquished by: (Signature)

levised Date: 08/25/2020 Rev. 2020.2

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

Date/Time

d by: (Signature)

2152

111

ofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously nego otice: Signature of this document and relinquishment of samples constitutes a vaild purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and condition fervice. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control

Chain of Custody

890-5632 Chain of Custody Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296. Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Environment Testing

& eurofins

Xenco

Project Manager:	Chance Dixon	ikon	Bill to: (if different)		(zari	ret breen	Z		Work	Work Order Comments	ments	
Company Name:	Vertex		Company Name		×	Q Q		Program:	UST/PST ☐ PRP□		Brownfields	Superfund
Address:	•		Address.		•			State of Project:	ť			
City, State ZIP-			City, State ZIP:					Reporting:	Reporting: Level Level PST/UST TRRP Level IV	III PST,	/UST TRRP	☐ Level IV ☐
Phone:		Email.		Bu	vert	cdixon@vertex, ca		Deliverables.	ED0	ADaPT [☐ Other	
Project Name:	PLM 29 West Big Sinks		Turn Around			X	ANALYSIS REQUEST	 -			Preservative Codes	e Codes
Project Number	23E-05485	7 Z	Rush	Code Ses						ž	None NO	Di Water H ₂ O
Project Location		Due Date:								S -	Cool: Cool	MeOH: Me
Sampler's Name	Hunter Men		TAT starts the day received by							<u> </u>	HCL. HC	HNO ₃ HN
PO #:			the lab, if received by 4:30pm	_ <u></u>						I.	H ₂ SO ₄ H ₂	NaOH: Na
SAMPLE RECEIPT	Temp Blank.	Yes-No Wet Ice:	Yes No	eters	11	N,					H ₃ PO ₄ . HP	
Samples Received Intact:	Yes JNo	nermometer ID:	MAN	men (J	T N	N.				_ <u>z</u>	NaHSO 4. NABIS	
Cooler Custody Seals.	Yes No NA	Correction Factor	10.00	Pa Pa	,					ž	Na ₂ S ₂ O ₃ NaSO ₃	-
Sample Custody Seals.	Yes No N/A	Temperature Reading:	0,4		KE T					Z	Zn Acetate+NaOH. Zn	l. Zn
Total Containers:) _	Corrected Temperature	6.0		11					ž	NaOH+Ascorbic Acid: SAPC	cid: SAPC
		Date Time	Grab # of	ţ;	N S							
Sample Identification	Matrix	- N	Depth Comp	Gart							Sample Comments	nments
BH23-12	5 (S' S,11)	24/24/23 9:30			メメ	\ \ \						
13423-13	1.5' 1		?		7 4	X						
										_		
Total 200.7 / 6010	0 200.8 / 6020:		PM Texas 11	Al Sb /	As Ba Be	8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn	iu Fe Pb Mg N	An Mo Ni	K Se Ag SiO ₂	Na Sr TI	Sn U V Zn	
Circle Metriod(s)	CITCLE MEUTOQ(S) and Metal(s) to be attalyzed		SPLP OUIU: SK	KA SD	As bd be	ICLY/37LY0010; SKCKA 30 As ba be Ca Cf Co Cu Pp Min Mo NI Se Ag II U	MIN MIO INI SE	Ag II U	Hg: 1631 /	7 745.1 / /	Hg: 1631 / 245.1 / /4/0 / /4/1	

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5632-1 SDG Number: 23E-05485

Login Number: 5632 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Released to Imaging: 7/30/2024 4:40:16 PM

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5632-1 SDG Number: 23E-05485

Login Number: 5632 **List Source: Eurofins Midland** List Number: 2 List Creation: 11/16/23 11:01 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 11/30/2023 2:42:17 PM

JOB DESCRIPTION

PLU 29 BIG SINKS CTB 23E-05935

JOB NUMBER

890-5683-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/30/2023 2:42:17 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 26 11/30/2023

Client: Vertex Laboratory Job ID: 890-5683-1 Project/Site: PLU 29 BIG SINKS CTB

SDG: 23E-05935

Tak	ole	of	Cor	nte	nts

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	25

Definitions/Glossary

Client: Vertex Job ID: 890-5683-1 Project/Site: PLU 29 BIG SINKS CTB

SDG: 23E-05935

Qualifiers

GC VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	
Qualifier	Qualifier Description

Glossary

U

LOD

LOQ

C.CCCu. y	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit PQL**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex

Project/Site: PLU 29 BIG SINKS CTB

Job ID: 890-5683-1

SDG: 23E-05935

Job ID: 890-5683-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5683-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/27/2023 3:55 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH 23 -14 0' (890-5683-1), BH 23 -14 2' (890-5683-2), BH 23 -15 0' (890-5683-3) and BH 23 -15 2' (890-5683-4).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-67907 and analytical batch 880-67899 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-67907 and analytical batch 880-67899 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (890-5669-A-1-G). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-67878 and analytical batch 880-67889 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: BH 23 -14 2' (890-5683-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The method blank for preparation batch 880-67878 and analytical batch 880-67889 contained Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-67878 and analytical batch 880-67889 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Case Narrative

 Client: Vertex
 Job ID: 890-5683-1

 Project/Site: PLU 29 BIG SINKS CTB
 SDG: 23E-05935

Job ID: 890-5683-1 (Continued)

Laboratory: Eurofins Carlsbad (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

307

2

4

5

9

10

. .

13

12

Matrix: Solid

Lab Sample ID: 890-5683-1

Client Sample Results

Client: Vertex Job ID: 890-5683-1 Project/Site: PLU 29 BIG SINKS CTB SDG: 23E-05935

Client Sample ID: BH 23 -14 0'

Date Collected: 11/21/23 12:00 Date Received: 11/27/23 15:55

Sample Depth: 0'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/29/23 23:40	1
Toluene	< 0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/29/23 23:40	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/29/23 23:40	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/29/23 10:24	11/29/23 23:40	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/29/23 23:40	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/29/23 10:24	11/29/23 23:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			11/29/23 10:24	11/29/23 23:40	1
1,4-Difluorobenzene (Surr)	119		70 - 130			11/29/23 10:24	11/29/23 23:40	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/29/23 23:40	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Method: SW846 8015 NM - Diese Analyte		ics (DRO) (Qualifier	GC)	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	•	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 11/29/23 21:58	Dil Fac
Analyte Total TPH	Result <50.3	Qualifier U	RL 50.3		<u>D</u>	Prepared		Dil Fac
Analyte	Result <50.3 sel Range Orga	Qualifier U	RL 50.3		<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics	Result <50.3 sel Range Orga	Qualifier Unics (DRO) Qualifier	RL 50.3	mg/Kg			11/29/23 21:58	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die	Result <50.3 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U *1	RL 50.3 (GC)	mg/Kg		Prepared	11/29/23 21:58 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.3 sel Range Orga Result <50.3	Qualifier U nics (DRO) Qualifier U *1	RL 50.3 (GC) RL 50.3	mg/Kg Unit mg/Kg		Prepared 11/29/23 13:43	11/29/23 21:58 Analyzed 11/29/23 21:58	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.3 sel Range Orga Result <50.3	Qualifier U nics (DRO) Qualifier U *1	RL 50.3 (GC) RL 50.3	mg/Kg Unit mg/Kg		Prepared 11/29/23 13:43	11/29/23 21:58 Analyzed 11/29/23 21:58	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U nics (DRO) Qualifier U *1 U	RL 50.3 (GC) RL 50.3 50.3	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/29/23 13:43 11/29/23 13:43	11/29/23 21:58 Analyzed 11/29/23 21:58 11/29/23 21:58	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.3	Qualifier U nics (DRO) Qualifier U *1 U	RL 50.3 (GC) RL 50.3 50.3 50.3	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/29/23 13:43 11/29/23 13:43	11/29/23 21:58 Analyzed 11/29/23 21:58 11/29/23 21:58 11/29/23 21:58	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die: Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U nics (DRO) Qualifier U *1 U	RL 50.3 (GC) RL 50.3 50.3 50.3 <i>Limits</i>	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/29/23 13:43 11/29/23 13:43 11/29/23 13:43 Prepared	Analyzed 11/29/23 21:58 Analyzed 11/29/23 21:58 11/29/23 21:58 Analyzed	Dil Fac 1 Dil Fac 1 1 Dil Fac 1 1 Dil Fac 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U nics (DRO) Qualifier U *1 U Qualifier	RL 50.3 (GC) RL 50.3 50.3 50.3 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 11/29/23 13:43 11/29/23 13:43 11/29/23 13:43 Prepared 11/29/23 13:43	11/29/23 21:58 Analyzed 11/29/23 21:58 11/29/23 21:58 11/29/23 21:58 Analyzed 11/29/23 21:58	Dil Fac 1 1 Dil Fac 1

Client Sample ID: BH 23 -14 2'

Date Collected: 11/21/23 12:05 Date Received: 11/27/23 15:55

Sample Depth: 2'

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/30/23 00:00	1
Toluene	<0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/30/23 00:00	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/30/23 00:00	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		11/29/23 10:24	11/30/23 00:00	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		11/29/23 10:24	11/30/23 00:00	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/29/23 10:24	11/30/23 00:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/29/23 10:24	11/30/23 00:00	

5.05

5.07

mg/Kg

11/30/23 00:38

Lab Sample ID: 890-5683-2

Matrix: Solid

Released to Imaging: 7/30/2024 4:40:16 PM

Client: Vertex

Project/Site: PLU 29 BIG SINKS CTB

Job ID: 890-5683-1

SDG: 23E-05935

Client Sample ID: BH 23 -14 2' Date Collected: 11/21/23 12:05

Lab Sample ID: 890-5683-2 **Matrix: Solid**

Lab Sample ID: 890-5683-3

Matrix: Solid

Date Received: 11/27/23 15:55

Sample Depth: 2'

Method: SW846 8021B	- Volatile Organic	Compounds	(GC) (Continued)
---------------------	--------------------	-----------	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	120	70 - 130	11/29/23 10:24	11/30/23 00:00	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398 U	0.00398	mg/Kg			11/30/23 00:00	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte		llifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4 U	50.4	ma/Ka			11/29/23 22:20	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U *1	50.4	mg/Kg		11/29/23 13:43	11/29/23 22:20	1
Diesel Range Organics (Over C10-C28)	<50.4	U	50.4	mg/Kg		11/29/23 13:43	11/29/23 22:20	1
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		11/29/23 13:43	11/29/23 22:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	134	S1+	70 - 130	11/29/23 13:43	11/29/23 22:20	1
Į	o-Terphenyl	113		70 - 130	11/29/23 13:43	11/29/23 22:20	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.02	U	5.02	mg/Kg			11/30/23 00:43	1

Client Sample ID: BH 23 -15 0'

Date Collected: 11/21/23 12:09 Date Received: 11/27/23 15:55

Sample Depth: 0'

 Mathad.	CIMO 4C	0024D	Valatila Ossania	Compounds (GC)
viernoa:	SVVA4n	AUZID .	· voiatile Organic	: Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/30/23 00:21	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/30/23 00:21	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/30/23 00:21	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		11/29/23 10:24	11/30/23 00:21	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/30/23 00:21	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		11/29/23 10:24	11/30/23 00:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			11/29/23 10:24	11/30/23 00:21	1
4.4.Diff	101		70 400			44/00/02 40:04	44/20/02 00:04	

4-Diomondocalzene (Sun)	104	10 - 130	11/29/23 10.24	11/30/23 00.21	,
1,4-Difluorobenzene (Surr)	124	70 - 130	11/29/23 10:24	11/30/23 00:21	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	DII Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			11/30/23 00:21	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1	mg/Kg			11/29/23 22:41	1

Client: Vertex Job ID: 890-5683-1 Project/Site: PLU 29 BIG SINKS CTB SDG: 23E-05935

Sample Depth: 0'

Client Sample ID: BH 23 -15 0'	Lab Sample ID: 890-5683-3
Date Collected: 11/21/23 12:09	Matrix: Solid
Date Received: 11/27/23 15:55	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U *1	50.1	mg/Kg		11/29/23 13:43	11/29/23 22:41	1
Diesel Range Organics (Over C10-C28)	<50.1	U	50.1	mg/Kg		11/29/23 13:43	11/29/23 22:41	1
OII Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		11/29/23 13:43	11/29/23 22:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130			11/29/23 13:43	11/29/23 22:41	1
o-Terphenyl	103		70 - 130			11/29/23 13:43	11/29/23 22:41	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH 23 -15 2' Lab Sample ID: 890-5683-4 Date Collected: 11/21/23 12:11 Matrix: Solid

Date Received: 11/27/23 15:55

Sample Depth: 2'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		11/29/23 10:24	11/30/23 00:41	1
Toluene	<0.00201	U	0.00201	mg/Kg		11/29/23 10:24	11/30/23 00:41	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		11/29/23 10:24	11/30/23 00:41	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		11/29/23 10:24	11/30/23 00:41	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		11/29/23 10:24	11/30/23 00:41	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		11/29/23 10:24	11/30/23 00:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			11/29/23 10:24	11/30/23 00:41	1
1,4-Difluorobenzene (Surr)	113		70 - 130			11/29/23 10:24	11/30/23 00:41	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			11/30/23 00:41	1
- -				mg/Kg			11/30/23 00:41	1
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result	ics (DRO) (GC)	Unit	D	Prepared	Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		
Method: SW846 8015 NM - Diese Analyte	Range Organ Result <49.7	ics (DRO) (Qualifier	RL 49.7	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <49.7 sel Range Orga	ics (DRO) (Qualifier	RL 49.7	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result <49.7 sel Range Orga	Qualifier Unics (DRO) Qualifier	RL 49.7	Unit mg/Kg			Analyzed 11/29/23 23:04	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Range Organ Result <49.7 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U v 1	(GC) RL (GC) RL	Unit mg/Kg		Prepared	Analyzed 11/29/23 23:04 Analyzed	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <49.7 sel Range Orga Result <49.7	Qualifier U nics (DRO) Qualifier U v 1	GC) RL 49.7 (GC) RL 49.7 49.7	Unit mg/Kg Unit mg/Kg		Prepared 11/29/23 13:43	Analyzed 11/29/23 23:04 Analyzed 11/29/23 23:04	Dil Fac Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.7 sel Range Orga Result <49.7	cics (DRO) (On Qualifier Unics (DRO) Qualifier U*1	GC) RL 49.7 (GC) RL 49.7	Unit mg/Kg Unit mg/Kg		Prepared 11/29/23 13:43	Analyzed 11/29/23 23:04 Analyzed 11/29/23 23:04	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <49.7 sel Range Orga Result <49.7 <49.7	cics (DRO) (Control of the property of the pro	GC) RL 49.7 (GC) RL 49.7 49.7	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/29/23 13:43 11/29/23 13:43	Analyzed 11/29/23 23:04 Analyzed 11/29/23 23:04 11/29/23 23:04	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Organ Result <49.7 sel Range Orga Result <49.7 <49.7 <49.7	cics (DRO) (Control of the property of the pro	GC) RL 49.7 (GC) RL 49.7 49.7 49.7	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/29/23 13:43 11/29/23 13:43	Analyzed 11/29/23 23:04 Analyzed 11/29/23 23:04 11/29/23 23:04 11/29/23 23:04	Dil Fac Dil Fac 1 1 1

Client Sample Results

Client: Vertex Job ID: 890-5683-1
Project/Site: PLU 29 BIG SINKS CTB SDG: 23E-05935

Client Sample ID: BH 23 -15 2'

Lab Sample ID: 890-5683-4

Date Collected: 11/21/23 12:11

Matrix: Solid

Date Received: 11/27/23 15:55

Sample Depth: 2'

Method: EPA 300.0 - Anions, Ion C	hromatography - Solub	le					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.27	4.95	mg/Kg			11/30/23 00:54	1

4

O

9

11

13

12

Surrogate Summary

Client: Vertex Job ID: 890-5683-1 Project/Site: PLU 29 BIG SINKS CTB SDG: 23E-05935

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-5669-A-1-E MS	Matrix Spike	104	108	
890-5669-A-1-F MSD	Matrix Spike Duplicate	112	96	
890-5683-1	BH 23 -14 0'	98	119	
890-5683-2	BH 23 -14 2'	101	120	
890-5683-3	BH 23 -15 0'	104	124	
890-5683-4	BH 23 -15 2'	102	113	
LCS 880-67907/1-A	Lab Control Sample	86	106	
LCSD 880-67907/2-A	Lab Control Sample Dup	88	101	
MB 880-67907/5-A	Method Blank	101	138 S1+	

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

matrixi oona				. Top Type: Totalitis
				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-36155-A-21-D MS	Matrix Spike	120	93	
880-36155-A-21-E MSD	Matrix Spike Duplicate	126	87	
890-5683-1	BH 23 -14 0'	125	107	
890-5683-2	BH 23 -14 2'	134 S1+	113	
890-5683-3	BH 23 -15 0'	119	103	
890-5683-4	BH 23 -15 2'	112	100	
LCS 880-67878/2-A	Lab Control Sample	86	92	
LCSD 880-67878/3-A	Lab Control Sample Dup	116	114	
MB 880-67878/1-A	Method Blank	144 S1+	139 S1+	
Surrogate Legend				

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Released to Imaging: 7/30/2024 4:40:16 PM

Client: Vertex Project/Site: PLU 29 BIG SINKS CTB

Job ID: 890-5683-1 SDG: 23E-05935

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-67907/5-A

Lab Sample ID: LCS 880-67907/1-A

Matrix: Solid

Analysis Batch: 67899

Matrix: Solid Analysis Batch: 67899 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 67907

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/29/23 17:15	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/29/23 17:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/29/23 17:15	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		11/29/23 10:24	11/29/23 17:15	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/29/23 10:24	11/29/23 17:15	1
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		11/29/23 10:24	11/29/23 17:15	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	11/29/23 10:24	11/29/23 17:15	1
1,4-Difluorobenzene (Surr)	138	S1+	70 - 130	11/29/23 10:24	11/29/23 17:15	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

35

35

35

Prep Batch: 67907

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.08364 mg/Kg 84 70 - 130 Toluene 0.100 0.08172 mg/Kg 82 70 - 130 Ethylbenzene 0.100 0.07370 mg/Kg 74 70 - 130 70 - 130 0.200 m-Xylene & p-Xylene 0.1640 mg/Kg 82 0.100 0.08002 o-Xylene mg/Kg 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	86		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Client Sample ID: Lab Control Sample Dup

70 - 130

70 - 130

70 - 130

74

79

Matrix: Solid

Lab Sample ID: LCSD 880-67907/2-A

Analysis Batch: 67899

Analyte Benzene Toluene Ethylbenzene

o-Xylene

						Prep	Batch:	67907
Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.100	0.08388		mg/Kg		84	70 - 130		35
0.100	0.07696		mg/Kg		77	70 - 130	6	35

mg/Kg

mg/Kg

mg/Kg

LCSD LCSD

	LUSD	LUJD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	88		70 - 130
1 4-Difluorobenzene (Surr)	101		70 130

Lab Sample ID: 890-5669-A-1-E MS

Matrix: Solid

m-Xylene & p-Xylene

Analysis Batch: 67899

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 67907

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U F1	0.0996	0.06867	F1	mg/Kg	_	69	70 - 130	
Toluene	<0.00200	U F1	0.0996	0.05365	F1	mg/Kg		54	70 - 130	

0.100

0.200

0.100

0.07429

0.1578

0.07676

Client: Vertex Project/Site: PLU 29 BIG SINKS CTB Job ID: 890-5683-1

SDG: 23E-05935

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-5669-A-1-E MS

Lab Sample ID: 890-5669-A-1-F MSD

Matrix: Solid

Matrix: Solid

m-Xylene & p-Xylene

o-Xylene

Analysis Batch: 67899

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 67907

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U F1	0.0996	0.05484	F1	mg/Kg		55	70 - 130	
m-Xylene & p-Xylene	<0.00399	U	0.199	0.1452		mg/Kg		73	70 - 130	
o-Xylene	<0.00200	U	0.0996	0.07326		mg/Kg		74	70 - 130	
	MS	MS								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Client Sample ID: Matrix Spike Duplicate

70 - 130

70 - 130

85

82

Prep Type: Total/NA

15

11

Prep Batch: 67907

Analysis Batch: 67899 Sample Sample Spike MSD MSD RPD Result Qualifier Added RPD Limit Analyte Result Qualifier Unit %Rec Limits Benzene <0.00200 UF1 0.0994 0.07184 mg/Kg 72 70 - 130 5 35 Toluene <0.00200 UF1 0.0994 0.06955 mg/Kg 70 70 - 130 26 35 Ethylbenzene 0.0994 0.07211 73 70 - 130 27 35 <0.00200 UF1 mg/Kg

0.1683

0.08152

mg/Kg

mg/Kg

0.199

0.0994

MSD MSD

<0.00399 U

<0.00200 U

Surrogate Qualifier Limits %Recovery 70 - 130 4-Bromofluorobenzene (Surr) 112 1,4-Difluorobenzene (Surr) 96 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-67878/1-A

Matrix: Solid

Analysis Batch: 67889

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 67878

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/28/23 14:46	11/29/23 19:44	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/28/23 14:46	11/29/23 19:44	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/28/23 14:46	11/29/23 19:44	1
	MD	MD						

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	144	S1+	70 - 130	11/28/23 14:46	11/29/23 19:44	1
o-Terphenyl	139	S1+	70 - 130	11/28/23 14:46	11/29/23 19:44	1

Lab Sample ID: LCS 880-67878/2-A

Matrix: Solid

Analysis Batch: 67889

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 67878

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	870.5		mg/Kg		87	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	888.2		mg/Kg		89	70 - 130
C10-C28)							

Eurofins Carlsbad

35

Client: Vertex Job ID: 890-5683-1 Project/Site: PLU 29 BIG SINKS CTB

SDG: 23E-05935

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-67878/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 67889** Prep Batch: 67878

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	86		70 - 130
o-Terphenyl	92		70 - 130

Lab Sample ID: LCSD 880-67878/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 67889 Prep Batch: 67878

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics 1000 1085 *1 109 70 - 130 22 20 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1064 mg/Kg 106 70 - 130 18 20 C10-C28)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	116		70 - 130
o-Terphenyl	114		70 - 130

Lab Sample ID: 880-36155-A-21-D MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 67889 Prep Batch: 67878 Sample Sample Snike MS MS

	Jampie	Janipie	Spike	IVIO	IVIO				/ortec	
nalyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
asoline Range Organics	<49.7	U *1	1010	903.7		mg/Kg		87	70 - 130	
GRO)-C6-C10										
iesel Range Organics (Over	<49.7	U	1010	1292		mg/Kg		126	70 - 130	
10-C28)										
	asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28)	nalyte Result asoline Range Organics <49.7 GRO)-C6-C10 iesel Range Organics (Over <49.7	asoline Range Organics <49.7 U *1 GRO)-C6-C10 iesel Range Organics (Over <49.7 U	nalyte Result Qualifier Added asoline Range Organics <49.7 U *1 1010 GRO)-C6-C10 iesel Range Organics (Over <49.7 U 1010	nalyteResult asoline Range OrganicsQualifierAddedResultasoline Range Organics<49.7	nalyteResult asoline Range OrganicsQualifierAdded U*1Result 1010QualifierSRO)-C6-C10 iesel Range Organics (Over<49.7	nalyte Result asoline Range Organics Qualifier Value Added Added Added Security Result Added Mesult Added Mes	nalyte Result Qualifier Added Result 9003.7 U *1 1010 903.7 Unit mg/Kg SRO)-C6-C10 eisel Range Organics (Over <49.7 U 1010 1292 mg/Kg	nalyte Result Qualifier Added Result Qualifier Unit D %Rec asoline Range Organics <49.7 U *1 1010 903.7 mg/Kg 87 GRO)-C6-C10 iesel Range Organics (Over <49.7 U 1010 1292 mg/Kg 126	nalyte Result asoline Range Organics Qualifier (49.7 U *1) Added (10.0 mode) Result (10.0 mode) Qualifier (10.0 mode) Unit (10.0 mode) D (10.0 mode) %Rec (10.0 mode) Limits (10.0 mode) GRO)-C6-C10 iesel Range Organics (Over (10.0 mode) <49.7 U (10.0 mode)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	120		70 - 130
o-Ternhenyl	03		70 130

Lab Sample ID: 880-36155-A-21-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 67889 Prep Batch: 67878

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics (GRO)-C6-C10	<49.7	U *1	1010	889.0		mg/Kg		85	70 - 130	2	20	
Diesel Range Organics (Over C10-C28)	<49.7	U	1010	1246		mg/Kg		122	70 - 130	4	20	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	126		70 - 130
o-Terphenyl	87		70 - 130

Eurofins Carlsbad

11/30/2023

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Client Sample ID: Matrix Spike

QC Sample Results

 Client: Vertex
 Job ID: 890-5683-1

 Project/Site: PLU 29 BIG SINKS CTB
 SDG: 23E-05935

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-67832/1-A

Matrix: Solid

Analysis Batch: 67963

MB MB

 Analyte
 Result Chloride
 Qualifier
 RL Unit
 Unit mg/Kg
 D Prepared mg/Kg
 Analyzed 11/29/23 22:05
 Dil Fac 11/29/23 22:05

Lab Sample ID: LCS 880-67832/2-A

Matrix: Solid

Analysis Batch: 67963

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	
Chloride	250	255.1	m	g/Kg	102	90 - 110	

Lab Sample ID: LCSD 880-67832/3-A

Matrix: Solid

Analysis Batch: 67963

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	256.9		mg/Kg		103	90 - 110	1	20

Lab Sample ID: 880-36106-A-1-E MS

Matrix: Solid

Analysis Batch: 67963

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	8.30		251	264.5		mg/Kg		102	90 - 110	

Lab Sample ID: 880-36106-A-1-F MSD

Matrix: Solid

Analysis Batch: 67963

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	8.30		251	265.3		mg/Kg		102	90 - 110	0	20

Eurofins Carlsbad

3

4

6

7

9

11

13

QC Association Summary

 Client: Vertex
 Job ID: 890-5683-1

 Project/Site: PLU 29 BIG SINKS CTB
 SDG: 23E-05935

GC VOA

Analysis Batch: 67899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5683-1	BH 23 -14 0'	Total/NA	Solid	8021B	67907
890-5683-2	BH 23 -14 2'	Total/NA	Solid	8021B	67907
890-5683-3	BH 23 -15 0'	Total/NA	Solid	8021B	67907
890-5683-4	BH 23 -15 2'	Total/NA	Solid	8021B	67907
MB 880-67907/5-A	Method Blank	Total/NA	Solid	8021B	67907
LCS 880-67907/1-A	Lab Control Sample	Total/NA	Solid	8021B	67907
LCSD 880-67907/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	67907
890-5669-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	67907
890-5669-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	67907

Prep Batch: 67907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-5683-1	BH 23 -14 0'	Total/NA	Solid	5035	
890-5683-2	BH 23 -14 2'	Total/NA	Solid	5035	
890-5683-3	BH 23 -15 0'	Total/NA	Solid	5035	
890-5683-4	BH 23 -15 2'	Total/NA	Solid	5035	
MB 880-67907/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-67907/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-67907/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5669-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-5669-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 68041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5683-1	BH 23 -14 0'	Total/NA	Solid	Total BTEX	
890-5683-2	BH 23 -14 2'	Total/NA	Solid	Total BTEX	
890-5683-3	BH 23 -15 0'	Total/NA	Solid	Total BTEX	
890-5683-4	BH 23 -15 2'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 67878

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5683-1	BH 23 -14 0'	Total/NA	Solid	8015NM Prep	
890-5683-2	BH 23 -14 2'	Total/NA	Solid	8015NM Prep	
890-5683-3	BH 23 -15 0'	Total/NA	Solid	8015NM Prep	
890-5683-4	BH 23 -15 2'	Total/NA	Solid	8015NM Prep	
MB 880-67878/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-67878/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-67878/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-36155-A-21-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-36155-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 67889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5683-1	BH 23 -14 0'	Total/NA	Solid	8015B NM	67878
890-5683-2	BH 23 -14 2'	Total/NA	Solid	8015B NM	67878
890-5683-3	BH 23 -15 0'	Total/NA	Solid	8015B NM	67878
890-5683-4	BH 23 -15 2'	Total/NA	Solid	8015B NM	67878
MB 880-67878/1-A	Method Blank	Total/NA	Solid	8015B NM	67878
LCS 880-67878/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	67878

Eurofins Carlsbad

Page 16 of 26

QC Association Summary

Client: Vertex Job ID: 890-5683-1 Project/Site: PLU 29 BIG SINKS CTB SDG: 23E-05935

GC Semi VOA (Continued)

Analysis Batch: 67889 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-67878/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	67878
880-36155-A-21-D MS	Matrix Spike	Total/NA	Solid	8015B NM	67878
880-36155-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	67878

Analysis Batch: 68028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
890-5683-1	BH 23 -14 0'	Total/NA	Solid	8015 NM
890-5683-2	BH 23 -14 2'	Total/NA	Solid	8015 NM
890-5683-3	BH 23 -15 0'	Total/NA	Solid	8015 NM
890-5683-4	BH 23 -15 2'	Total/NA	Solid	8015 NM

HPLC/IC

Leach Batch: 67832

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5683-1	BH 23 -14 0'	Soluble	Solid	DI Leach	
890-5683-2	BH 23 -14 2'	Soluble	Solid	DI Leach	
890-5683-3	BH 23 -15 0'	Soluble	Solid	DI Leach	
890-5683-4	BH 23 -15 2'	Soluble	Solid	DI Leach	
MB 880-67832/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-67832/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-67832/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-36106-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-36106-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 67963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5683-1	BH 23 -14 0'	Soluble	Solid	300.0	67832
890-5683-2	BH 23 -14 2'	Soluble	Solid	300.0	67832
890-5683-3	BH 23 -15 0'	Soluble	Solid	300.0	67832
890-5683-4	BH 23 -15 2'	Soluble	Solid	300.0	67832
MB 880-67832/1-A	Method Blank	Soluble	Solid	300.0	67832
LCS 880-67832/2-A	Lab Control Sample	Soluble	Solid	300.0	67832
LCSD 880-67832/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	67832
880-36106-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	67832
880-36106-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	67832

Eurofins Carlsbad

Date Collected: 11/21/23 12:00 Date Received: 11/27/23 15:55

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	67907	11/29/23 10:24	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67899	11/29/23 23:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68041	11/29/23 23:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			68028	11/29/23 21:58	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	67878	11/29/23 13:43	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67889	11/29/23 21:58	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	67832	11/28/23 10:47	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	67963	11/30/23 00:38	CH	EET MID

Client Sample ID: BH 23 -14 2'

Lab Sample ID: 890-5683-2

Matrix: Solid

Date Collected: 11/21/23 12:05 Date Received: 11/27/23 15:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	67907	11/29/23 10:24	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67899	11/30/23 00:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68041	11/30/23 00:00	SM	EET MID
Total/NA	Analysis	8015 NM		1			68028	11/29/23 22:20	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	67878	11/29/23 13:43	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67889	11/29/23 22:20	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	67832	11/28/23 10:47	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	67963	11/30/23 00:43	CH	EET MID

Client Sample ID: BH 23 -15 0'

Lab Sample ID: 890-5683-3

Date Collected: 11/21/23 12:09 Date Received: 11/27/23 15:55 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	67907	11/29/23 10:24	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67899	11/30/23 00:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68041	11/30/23 00:21	SM	EET MID
Total/NA	Analysis	8015 NM		1			68028	11/29/23 22:41	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	67878	11/29/23 13:43	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67889	11/29/23 22:41	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	67832	11/28/23 10:47	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	67963	11/30/23 00:49	CH	EET MID

Client Sample ID: BH 23 -15 2'

Lab Sample ID: 890-5683-4

Date Collected: 11/21/23 12:11 Date Received: 11/27/23 15:55 **Matrix: Solid**

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	67907	11/29/23 10:24	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	67899	11/30/23 00:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			68041	11/30/23 00:41	SM	EET MID

Eurofins Carlsbad

Lab Chronicle

 Client: Vertex
 Job ID: 890-5683-1

 Project/Site: PLU 29 BIG SINKS CTB
 SDG: 23E-05935

Client Sample ID: BH 23 -15 2'

Lab Sample ID: 890-5683-4

Matrix: Solid

Date Collected: 11/21/23 12:11 Date Received: 11/27/23 15:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			68028	11/29/23 23:04	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	67878	11/29/23 13:43	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67889	11/29/23 23:04	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	67832	11/28/23 10:47	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	67963	11/30/23 00:54	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 7/30/2024 4:40:16 PM

2

_

6

9

1 U

12

Accreditation/Certification Summary

 Client: Vertex
 Job ID: 890-5683-1

 Project/Site: PLU 29 BIG SINKS CTB
 SDG: 23E-05935

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
0 ,		ut the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
for which the agency do	oes not offer certification. Prep Method	Matrix	Analyte	
8015 NM	1 TOP MOUNTOU	Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

3

4

5

7

9

10

4.0

EET MID

ASTM

Method Summary

 Client: Vertex
 Job ID: 890-5683-1

 Project/Site: PLU 29 BIG SINKS CTB
 SDG: 23E-05935

Method **Method Description** Protocol Laboratory 8021B Volatile Organic Compounds (GC) SW846 EET MID Total BTEX Calculation Total BTEX TAL SOP EET MID 8015 NM Diesel Range Organics (DRO) (GC) SW846 **EET MID** 8015B NM Diesel Range Organics (DRO) (GC) SW846 **EET MID** 300.0 Anions, Ion Chromatography EPA **EET MID** 5035 **EET MID** Closed System Purge and Trap SW846 8015NM Prep Microextraction SW846 EET MID

Protocol References:

DI Leach

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Deionized Water Leaching Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

1

9

4.4

Sample Summary

Client: Vertex

Project/Site: PLU 29 BIG SINKS CTB

Job ID: 890-5683-1

SDG: 23E-05935

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5683-1	BH 23 -14 0'	Solid	11/21/23 12:00	11/27/23 15:55	0'
890-5683-2	BH 23 -14 2'	Solid	11/21/23 12:05	11/27/23 15:55	2'
890-5683-3	BH 23 -15 0'	Solid	11/21/23 12:09	11/27/23 15:55	0'
890-5683-4	BH 23 -15 2'	Solid	11/21/23 12:11	11/27/23 15:55	2'

4

5

7

10

11

12

Date/Time

Received by: (Signature)

submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotlated.

if Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample

Relinquished by: (Signature)

Relinquished by: (Signature)

16551

CRIII SM eceived by: (Signature)

121314

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Environment Testing

💸 eurofins

Xenco

Work Order No: 181883100

Company Name: General Company Name: General Company Name: General Company Name: General City, State ZIP: Cit	Program: UST/PST PRP Brownfields RRC Superfund State of Project: Reporting: Level III PST/UST TRRP Level IV Deliverables: EDD ADaPT Other: ALYSIS REQUEST PRP Superfund Deliverables: EDD ADaPT Other: Preservative Codes None: NO DI Water: H ₂ O Cool: Cool MeOH: Me H ₂ CO Cool: Cool MeOH: Me H ₂ CO Cool: Cool MeOH: MeOH: Me H ₂ CO Cool: Cool MeOH: Meo
Turn Anound thame: Received Intact: Yes No N/A Temperature Reading: Sample Identification Sample US Sampled Sampled Sample US Sampled Sampl	trate of Project: Reporting: Level III PST/UST TRRP Deliverables: EDD ADaPT Other: Preservative None: NO Cool: Cool HCL: HC HyPO 4: HP NaHSO 4: NABIS NahSO 4: NASO 4: N
The ZIP: The series of the se	teporting: Level III PST/UST TRRP Deliverables: EDD ADaPT Other: Preservative None: NO Cool: Cool HCL: HC HySO 4: HP NaHSO 4: NABIS Na 5, 03: NASO 3.
thame: PLUAGING SAND Turn Around Code Strains of The Share Code Strains of The Share Code Strains of The Share Code Strains the day received by the lab. if received by 4.30pm of the lab. if the lab. if received by 4.30pm of the lab. if the lab. if received by 4.30pm of the lab. if the lab. if the lab. if received by 4.30pm of the lab. if the lab. if received by 4.30pm of the lab. if the lab. if the lab. if received by 4.30pm of the lab. if	Preservative Preservative None: NO Cool: Cool H;50 4: H; H;90 4: HP NaHSO 4: NABIS Na 5, 03: NSO 3.
Thumber: 126-15436 Sund Turn Around Fresh thomber: 128-15436 Sund Code Standard Fresh Code Sund Sund Code Sund Sund Code Sund Sund Sund Sund Sund Sund Sund Sund	Preservative None: NO Cool: Cool HCL: HC H,504: H,2 H,PO4: HP NaHSO 4: NABIS Na 5, O3: NaSO 3.
t Location: 12% - USH 365 Due Date: Date 1. Location: 12% - USH 365 Due Date: Date 1. Location: 12% - USH 365 Due Date: Date 1. Location: 12% - USH 365 Tal starts the dayreceived by tagopm 2. Location: 12% - USH 365 Tal starts the dayreceived by tagopm 2. Location: 12% - USH 365 Tal starts the dayreceived by tagopm 365 Tal starts the dayreceived by	None: NO Cool: Cool HCL: HC H,50 4: H2 H,9PO 4: HP NaHSO 4: NABIS Na 5, O3: NSSO 3
er's Name: JULY BILG SIMPLY (LTP) Due Date: Daco 1. er's Name: JULY SILCY (No. 1976 (D) TAT starts the day received by 4:30pm PLE RECEIPT Temp Blank: (Yes) No Wet Ice: Yes No Correction Factor: O. 2 CLustody Seals: Yes No WA Temperature Reading: O. 2 Containers: Corrected Temperature: O. 2 Sample Identification Matrix Sampled Sampled Depth Comp Cont 1.1 U.S. 1.1 U.	Cool: Cool HCL: HC H,504: H,2 H,504: H,2 H,7004: HP NAHSO 4: HP NAHSO 4: NASO 3
er's Name: JELUSALCW (27KL V) TAT starts the day received by any on the lab, if received by 4:30pm PLE RECEIPT Temp Blank: (Yes) No Wet Ice: Yes No Ees Received Intact: Yes No MAA Correction Factor: O. & Correction Factor: O. & Correction Factor: O. & Corrected Temperature: O. & Corrected Temperature: O. & Corrected Temperature: O. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	HCL: HC H,50 4: H, H,90 4: HP NaHSO 4: NABIS Na 5, 03: NaSO 3
Sample Identification	H,PO 4: HP NAHSO 4: NABIS NA 5, O.; NASO 3
Temp Blank: (Yes No Wet ICe: Yes No Yes No Thermometer ID: TAMA OF Thermometer ID: TAMA OF Yes No N/A Temperature Reading: C. & Thermometer ID: Take Depth Comp Cont Of Yes No N/A Sampled Sam	
Yes No N/A Temperature Reading: C. & Time Corrected Temperature: C	
Yes No N/A Temperature Reading: 70.8 Corrected Temperature: 70.8 Composition Matrix Sampled Sampled Depth Comp Cont (1.21.33, 1.1.00.0) Composition No. 1.1.00.00 Composition No. 1	
Treation Matrix Sampled Sampled Depth Comp Cont Cont Cont Cont Cont Cont Cont Cont	Zn Acetate+NaOH: Zn
Hontification Matrix Sampled Sampled Depth Cont Cont Cont Cont Cont Cont Cont Cont	NaOH+Ascorbic Acid: SAPC
3 - 14 0' 5.93 (1.21.33 1.3.00 0' comp - 14 21 1.21.33 1.3.00 0'	strommo O olomo
3-14 0' sad (1.21.31 '1.00 0' 1.21 1.20 0' 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
- 14 21 1 12 21 - 12 21 1 1 1 1 1 1 1 1 1 1	
15 01 1 1100	
3-15 21 3 4 12:11	
Total 2007 / 6010 2008 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mc	Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V Zn
Id Metal(s) to be analyzed TCLP / SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr C	Se Ag TI U Hg: 1631 / 245.1 / 7470 / 7471

9 20	
BRIBE	

Eurofins Carlsbad										ē	:	r						
1089 N Canal St Carlsbad NM 88220	0	Chain of Custody Record	of Cust	ody R	ecord					U :39		min				₽ ?•	eurofins 🤼	Environment Testing
Client Information (Sub Contract Lab)	Sampler			Lab PM Kramer	M er Jessica	۵					Carrier Tracking No(s)	racking	No(s				COC No. 890-1858 1	
ntact: g/Receiving	Phone [.]		***************************************	E-Mail Jessi		r@et.ei	urofins	us cor	3	7 0	State of Origin New Mexico	Origin					Page Page 1 of 1	
Company Eurofins Environment Testing South Centr					Accreditations Required (See note) NELAP - Texas	ns Requi	ed (See	note)				ĺ					Job #: 890-5683-1	
Address 1211 W Florida Ave,	Due Date Requested 12/1/2023	ā							<u>sis</u>	Requested	este	۱ ۵					000	BS NA Havana
City: Midland	TAT Requested (days):	ys):										\dashv	\neg	一			NaOH	N None O AsNaO2
State Zip: TX, 79701					трн											fisialitima	D Nitric Acid E NaHSO4	P Na2O4S Q Na2SO3
Phone: 432-704-5440(Tel)	PO#:						le						<u> </u>			ije VIII vote Massel	MeOH Amchlor	S H2SO4 T TSP Dodecahydrate
Email	#OW				lo)											• //	lce - DI Water	U Acetone V MCAA
Project Name PLU 29 BIG SINKS CTB	Project #: 89000161				s or l											ainer		Y Trizma Z other (specify)
Site:	SSOW#:				ISD (Y										•••••	1.000 cm	Other:	:
		W	Sample Type (C=comp,	Matrix (W=water S=solid, O=waste/oil,	eld Filtered erform MS/N 15MOD_NM/8	15MOD_Calc	0_ORGFM_28 21B/5035FP_	tal_BTEX_GC								tal Number		
Sample Neithication - Client ID (Lab ID)	Sample Date	X IIIe	Preservation Code:	Man 3	XP	en fed	52				-	- [(()				Xτ	Special In:	Special Instructions/Note
BH 23 -14 0' (890-5683-1)	11/21/23	12 00 Mountain		Solid	×	×	×	×								4		
BH 23 -14 2' (890-5683-2)	11/21/23	12 05 Mountain		Solid	×	×	×	×										
BH 23 -15 0' (890-5683-3)	11/21/23	12 09 Mountain		Solid	×	×	×	×								4		
BH 23 -15 2' (890-5683-4)	11/21/23	12 11 Mountain		Solid	×	×	×	×										
							_	ļ				-				a sit		
										<u> </u>	-							
												_	_			and the		
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central LLC places the ownership of method analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/flests/matrix being analyzed the samples must be shipped back to the Eurofins Environment Testing South Central LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.	Testing South Centrove for analysis/tests/ tral, LLC attention im	al LLC places t /matrix being ar imediately If al	he ownership on the sar	of method anal nples must be preditations are	yte & accred shipped bac current to d	litation co	ompliand Eurofins	e upon Environ gned Ch	our sut ment T vain of (esting :	ct labor South C	atories >entral	. This LLCI aid co	samp aborat npliar	le ship ory or ce to	ment other	is forwarded under chinstructions will be prons Environment Testin	nain-of-custody If the ovided. Any changes to ng South Central, LLC
Possible Hazard Identification					Samp	Sample Disposal (A fee	osal (A fee	may	may be assessed if samples	sess	diff	amb	les a		tain	are retained longer than 1	than 1 month)
Deliverable Requested I II, III, IV Other (specify)	Primary Deliverable Rank.	able Rank. 2			Specia	Special Instructions/QC R	ictions	QC R	equirements	ment	ents		ľ	١	-			
Empty Kit Relinquished by		Date			Time.		, 	ı	l		3	Method of Shipment:	f Ship	ment:	ı			
Relinquished by	Date/Time [.]			Company	\	Received by		Z	mathrew 1	2	2	N	Date/	- Wime	ail	1	28/1	Company
Relinquished by	Date/Time			Company	Re	Received by	1	ľ	ŀ		<u>'</u>		D _a	Date/Time	٦			Company
Relinquished by:	Date/Time.			Company	Re	Reserved by			***************************************				D D	Date/Time:	54			Company
Custody Seals Intact					ç	Cooler Temperature(s) °C and Other Remarks.	perature	(s) °C ε	and Oth	er Rem	arks.		ŀ	- m	V	1	2.2	
									l			١		k	ľ	_		Ver: 06/08/2021

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5683-1 SDG Number: 23E-05935

Login Number: 5683 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

UJ 307

2

3

4

6

8

10

12

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5683-1 SDG Number: 23E-05935

List Source: Eurofins Midland

Login Number: 5683 List Number: 2 List Creation: 11/29/23 11:34 AM

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 12/12/2023 3:34:13 PM

JOB DESCRIPTION

PLU 29 BIG SINKS 23E - 05485

JOB NUMBER

890-5756-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/12/2023 3:34:13 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Companies

Page 2 of 20 12/12/2023 Released to Imaging: 7/30/2024 4:40:16 PM

Client: Vertex Laboratory Job ID: 890-5756-1 Project/Site: PLU 29 BIG SINKS SDG: 23E - 05485

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

3

4

6

8

10

12

13

Definitions/Glossary

Client: Vertex Job ID: 890-5756-1 Project/Site: PLU 29 BIG SINKS

SDG: 23E - 05485

Qualifiers

GC VOA

Qualifier **Qualifier Description** S1-Surrogate recovery exceeds control limits, low biased. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description** U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid **CNF**

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac Dilution Factor

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit PQL**

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Carlsbad

Case Narrative

Client: Vertex

Project/Site: PLU 29 BIG SINKS

Job ID: 890-5756-1 SDG: 23E - 05485

Job ID: 890-5756-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5756-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/8/2023~8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.0° C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: BH23 - 03 4.5' (890-5756-1).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: (CCV 880-68756/2) and (LCS 880-68841/1-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH23 - 03 4.5' (890-5756-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (890-5745-A-1-C MS) and (890-5745-A-1-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-68852 and analytical batch 880-68750 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-68750/20), (CCV 880-68750/31), (CCV 880-68750/47), (CCV 880-68750/5), (CCV 880-68750/58) and (LCS 880-68852/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-68852 and analytical batch 880-68750 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

5

6

8

10

12

13

Matrix: Solid

Lab Sample ID: 890-5756-1

Client Sample Results

 Client: Vertex
 Job ID: 890-5756-1

 Project/Site: PLU 29 BIG SINKS
 SDG: 23E - 05485

Client Sample ID: BH23 - 03 4.5'

Date Collected: 12/01/23 06:30 Date Received: 12/08/23 08:00

Sample Depth: 4.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		12/11/23 13:38	12/12/23 09:59	1
Toluene	<0.00200	U	0.00200	mg/Kg		12/11/23 13:38	12/12/23 09:59	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		12/11/23 13:38	12/12/23 09:59	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		12/11/23 13:38	12/12/23 09:59	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		12/11/23 13:38	12/12/23 09:59	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		12/11/23 13:38	12/12/23 09:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	174	S1+	70 - 130			12/11/23 13:38	12/12/23 09:59	1
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130			12/11/23 13:38	12/12/23 09:59	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			12/12/23 09:59	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			12/12/23 03:59	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		12/11/23 14:33	12/12/23 03:59	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		12/11/23 14:33	12/12/23 03:59	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		12/11/23 14:33	12/12/23 03:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130			12/11/23 14:33	12/12/23 03:59	1
o-Terphenyl	81		70 - 130			12/11/23 14:33	12/12/23 03:59	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<4.99	11	4.99	mg/Kg	_	· 	12/11/23 18:50	1

Eurofins Carlsbad

_

3

5

0

10

12

13

-

Surrogate Summary

 Client: Vertex
 Job ID: 890-5756-1

 Project/Site: PLU 29 BIG SINKS
 SDG: 23E - 05485

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5745-A-1-C MS	Matrix Spike	167 S1+	154 S1+
890-5745-A-1-D MSD	Matrix Spike Duplicate	151 S1+	89
890-5756-1	BH23 - 03 4.5'	174 S1+	67 S1-
LCS 880-68841/1-A	Lab Control Sample	136 S1+	86
LCSD 880-68841/2-A	Lab Control Sample Dup	125	77
MB 880-68778/5-A	Method Blank	73	75
MB 880-68841/5-A	Method Blank	74	92

BFB = 4-Bromofluorobenzene (Surr)
DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Reco
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-36743-A-7-B MS	Matrix Spike	93	90	
880-36743-A-7-C MSD	Matrix Spike Duplicate	95	85	
890-5756-1	BH23 - 03 4.5'	86	81	
LCS 880-68852/2-A	Lab Control Sample	130	148 S1+	
LCSD 880-68852/3-A	Lab Control Sample Dup	102	117	
MB 880-68852/1-A	Method Blank	124	134 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Vertex Project/Site: PLU 29 BIG SINKS

Job ID: 890-5756-1 SDG: 23E - 05485

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-68778/5-A

Lab Sample ID: MB 880-68841/5-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 68756

Analysis Batch: 68756

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 68778

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		12/11/23 10:04	12/11/23 11:51	1
Toluene	<0.00200	U	0.00200	mg/Kg		12/11/23 10:04	12/11/23 11:51	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		12/11/23 10:04	12/11/23 11:51	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		12/11/23 10:04	12/11/23 11:51	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		12/11/23 10:04	12/11/23 11:51	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		12/11/23 10:04	12/11/23 11:51	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Pr	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73	70 - 130	12/17	1/23 10:04	12/11/23 11:51	1
1,4-Difluorobenzene (Surr)	75	70 - 130	12/1:	1/23 10:04	12/11/23 11:51	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 68841

MR MR Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 12/11/23 13:38 12/12/23 01:20 Toluene <0.00200 U 0.00200 mg/Kg 12/11/23 13:38 12/12/23 01:20 Ethylbenzene <0.00200 U 0.00200 mg/Kg 12/11/23 13:38 12/12/23 01:20 0.00400 m-Xylene & p-Xylene <0.00400 U mg/Kg 12/11/23 13:38 12/12/23 01:20 <0.00200 U 0.00200 o-Xylene mg/Kg 12/11/23 13:38 12/12/23 01:20 Xylenes, Total <0.00400 U 0.00400 mg/Kg 12/11/23 13:38 12/12/23 01:20

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130	12/11/23 13:38	12/12/23 01:20	1
1,4-Difluorobenzene (Surr)	92		70 - 130	12/11/23 13:38	12/12/23 01:20	1

Lab Sample ID: LCS 880-68841/1-A

Matrix: Solid

Analysis Batch: 68756

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 68841

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09705		mg/Kg		97	70 - 130	
Toluene	0.100	0.1014		mg/Kg		101	70 - 130	
Ethylbenzene	0.100	0.07841		mg/Kg		78	70 - 130	
m-Xylene & p-Xylene	0.200	0.1920		mg/Kg		96	70 - 130	
o-Xylene	0.100	0.1058		mg/Kg		106	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	136	S1+	70 - 130
1.4-Difluorobenzene (Surr)	86		70 - 130

Lab Sample ID: LCSD 880-68841/2-A

Matrix: Solid

Analysis Batch: 68756

Client Sample ID: Lab	Control Sample Dup
	Dron Type, Total/NA

Prep Type: Total/NA

Prep Batch: 68841

	эріке	LCSD LCSD				%Rec		KPD	
Analyte	Added	Result Qualifie	r Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.08638	mg/Kg		86	70 - 130	12	35	

Eurofins Carlsbad

QC Sample Results

Client: Vertex Job ID: 890-5756-1 SDG: 23E - 05485 Project/Site: PLU 29 BIG SINKS

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-68841/2-A

Matrix: Solid

Analysis Batch: 68756

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 68841

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.1061		mg/Kg		106	70 - 130	5	35
Ethylbenzene	0.100	0.09885		mg/Kg		99	70 - 130	23	35
m-Xylene & p-Xylene	0.200	0.1787		mg/Kg		89	70 - 130	7	35
o-Xylene	0.100	0.09863		mg/Kg		99	70 - 130	7	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	125		70 - 130
1,4-Difluorobenzene (Surr)	77		70 - 130

Lab Sample ID: 890-5745-A-1-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 68756

Prep Type: Total/NA

Prep Batch: 68841

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene <0.00199 0.0996 0.08256 83 mg/Kg 70 - 130 Toluene <0.00199 U 0.0996 0.09685 97 70 - 130 mg/Kg Ethylbenzene <0.00199 U 0.0996 0.08965 90 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00398 U 0.199 0.2057 70 - 130 mg/Kg 103 o-Xylene <0.00199 U 0.0996 0.1012 mg/Kg 102 70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	167	S1+	70 - 130
1,4-Difluorobenzene (Surr)	154	S1+	70 - 130

Lab Sample ID: 890-5745-A-1-D MSD

Matrix: Solid

Analysis Batch: 68756

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 68841

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.0990	0.08316		mg/Kg		84	70 - 130	1	35
Toluene	< 0.00199	U	0.0990	0.09553		mg/Kg		96	70 - 130	1	35
Ethylbenzene	< 0.00199	U	0.0990	0.08776		mg/Kg		89	70 - 130	2	35
m-Xylene & p-Xylene	<0.00398	U	0.198	0.1742		mg/Kg		88	70 - 130	17	35
o-Xylene	< 0.00199	U	0.0990	0.08344		mg/Kg		84	70 - 130	19	35

MSD MSD

мв мв Result Qualifier

<50.0 U

Surrogate	%Recovery	Quaimer	Limits
4-Bromofluorobenzene (Surr)	151	S1+	70 - 130
1,4-Difluorobenzene (Surr)	89		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-68852/1-A

Matrix: Solid

Analysis Batch: 68750

Gasoline Range Organics

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 68852

Unit Prepared mg/Kg 12/11/23 14:33 12/11/23 19:35

(GRO)-C6-C10

Eurofins Carlsbad

Page 9 of 20

RL

50.0

12/12/2023

Client: Vertex Job ID: 890-5756-1 SDG: 23E - 05485 Project/Site: PLU 29 BIG SINKS

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-68852/1-A **Matrix: Solid**

Lab Sample ID: LCS 880-68852/2-A

Matrix: Solid

Analysis Batch: 68750

Analysis Batch: 68750

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 68852

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		12/11/23 14:33	12/11/23 19:35	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		12/11/23 14:33	12/11/23 19:35	1

MB MB

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	124		70 - 130	12/11/23 14:33	12/11/23 19:35	1
l	o-Terphenyl	134	S1+	70 - 130	12/11/23 14:33	12/11/23 19:35	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 68852

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 813.0 81 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 781.5 mg/Kg 78 70 - 130 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	130		70 - 130
o-Terphenyl	148	S1+	70 - 130

Lab Sample ID: LCSD 880-68852/3-A

Matrix: Solid Analysis Batch: 68750 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 68852

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	877.4		mg/Kg		88	70 - 130	8	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	910.4		mg/Kg		91	70 - 130	15	20	
C10-C28)										

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 102 70 - 130 o-Terphenyl 117 70 - 130

Lab Sample ID: 880-36743-A-7-B MS

Matrix: Solid

Analysis Batch: 68750

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 68852

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	<50.4	U F1	1000	701.6	F1	mg/Kg		68	70 - 130
Diesel Range Organics (Over	<50.4	U F1	1000	722.3	F1	mg/Kg		68	70 - 130

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	93		70 - 130
o-Terphenyl	90		70 - 130

Eurofins Carlsbad

Client: Vertex Job ID: 890-5756-1 SDG: 23E - 05485 Project/Site: PLU 29 BIG SINKS

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-36743-A-7-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 68750 Prep Batch: 68852

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.4	U F1	1000	727.5		mg/Kg		71	70 - 130	4	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.4	U F1	1000	708.9	F1	mg/Kg		67	70 - 130	2	20
C10-C28)											

	พรบ	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	95		70 _ 130
o-Terphenyl	85		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68794/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 68825

мв мв

	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	<5.00 U	5.00	mg/Kg			12/11/23 14:35	1

Lab Sample ID: LCS 880-68794/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 68825

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 250	255.4		mg/Kg		102	90 - 110	 -

Lab Sample ID: LCSD 880-68794/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 68825

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	253.3		mg/Kg		101	90 - 110	1	20	

Lab Sample ID: 890-5744-A-2-C MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 68825

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	185		249	434.6		ma/Ka		100	90 - 110	

Lab Sample ID: 890-5744-A-2-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 68825

Analysis Baton, 60020												
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	185		249	432.4		ma/Ka		100	90 - 110	1	20	

Eurofins Carlsbad

Prep Type: Soluble

QC Association Summary

Client: Vertex Job ID: 890-5756-1 Project/Site: PLU 29 BIG SINKS SDG: 23E - 05485

GC VOA

Analysis Batch: 68756

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5756-1	BH23 - 03 4.5'	Total/NA	Solid	8021B	68841
MB 880-68778/5-A	Method Blank	Total/NA	Solid	8021B	68778
MB 880-68841/5-A	Method Blank	Total/NA	Solid	8021B	68841
LCS 880-68841/1-A	Lab Control Sample	Total/NA	Solid	8021B	68841
LCSD 880-68841/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	68841
890-5745-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	68841
890-5745-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	68841

Prep Batch: 68778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-68778/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 68841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5756-1	BH23 - 03 4.5'	Total/NA	Solid	5035	
MB 880-68841/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-68841/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-68841/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5745-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
890-5745-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 68941

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5756-1	BH23 - 03 4.5'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 68750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5756-1	BH23 - 03 4.5'	Total/NA	Solid	8015B NM	68852
MB 880-68852/1-A	Method Blank	Total/NA	Solid	8015B NM	68852
LCS 880-68852/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	68852
LCSD 880-68852/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	68852
880-36743-A-7-B MS	Matrix Spike	Total/NA	Solid	8015B NM	68852
880-36743-A-7-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	68852

Prep Batch: 68852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5756-1	BH23 - 03 4.5'	Total/NA	Solid	8015NM Prep	
MB 880-68852/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-68852/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-68852/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-36743-A-7-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-36743-A-7-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 68905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5756-1	BH23 - 03 4.5'	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

QC Association Summary

 Client: Vertex
 Job ID: 890-5756-1

 Project/Site: PLU 29 BIG SINKS
 SDG: 23E - 05485

HPLC/IC

Leach Batch: 68794

Lab Sample ID 890-5756-1	Client Sample ID BH23 - 03 4.5'	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
MB 880-68794/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-68794/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-68794/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5744-A-2-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-5744-A-2-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 68825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5756-1	BH23 - 03 4.5'	Soluble	Solid	300.0	68794
MB 880-68794/1-A	Method Blank	Soluble	Solid	300.0	68794
LCS 880-68794/2-A	Lab Control Sample	Soluble	Solid	300.0	68794
LCSD 880-68794/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	68794
890-5744-A-2-C MS	Matrix Spike	Soluble	Solid	300.0	68794
890-5744-A-2-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	68794

Eurofins Carlsbad

-

3

Δ

8

4 C

4 1

Lab Chronicle

Client: Vertex Job ID: 890-5756-1 Project/Site: PLU 29 BIG SINKS SDG: 23E - 05485

Client Sample ID: BH23 - 03 4.5'

Lab Sample ID: 890-5756-1 Date Collected: 12/01/23 06:30

Matrix: Solid

Date Received: 12/08/23 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	68841	12/11/23 13:38	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68756	12/12/23 09:59	SM	EET MID
Total/NA	Analysis	Total BTEX		1			68941	12/12/23 09:59	SM	EET MID
Total/NA	Analysis	8015 NM		1			68905	12/12/23 03:59	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	68852	12/11/23 14:33	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	68750	12/12/23 03:59	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	68794	12/11/23 10:29	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68825	12/11/23 18:50	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Accreditation/Certification Summary

 Client: Vertex
 Job ID: 890-5756-1

 Project/Site: PLU 29 BIG SINKS
 SDG: 23E - 05485

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
	are included in this report, bu	it the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

4

6

R

4.0

11

13

Method Summary

Client: Vertex Project/Site: PLU 29 BIG SINKS

Job ID: 890-5756-1 SDG: 23E - 05485

col	Laboratory
6	EET MID
OP	EET MID
6	EET MID

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
Ol Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Vertex

Project/Site: PLU 29 BIG SINKS

Job ID: 890-5756-1 SDG: 23E - 05485

ODG: 20E - 00+00

	011 10 1 15	••			
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5756-1	BH23 - 03 4.5'	Solid	12/01/23 06:30	12/08/23 08:00	4.5'

3

4

6

R

9

4 4

12

ŏ

Page_

www.xenco.com

Work Order No: 181883 1001

Superfund

RC

Brownfields 🗌

UST/PST | PRP

Program:

Garrett Green

Bill to: (if different)

Company Name:

City, State ZIP:

Address

5,70

ナ
た

Widland, TX (432)-704-5440, San Antonio, TX (210) 509-333

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Chain of Custody

Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296

Work Order Comments

Level IV

PST/UST TRRP

State of Project:

Other:

ADaPT

EDD

Deliverables:

ANALYSIS REQUEST

Pres. Code

DI Water: H₂O

None: NO

Preservative Codes

MeOH: Me HNO 3: HN NaOH: Na

Cool: Cool HCL: HC NaOH+Ascorbic Acid: SAPC

Zn Acetate+NaOH: Zn

Na 25 203: NaSO 3

NaHSO 4: NABIS

890-5756 Chain of Custody

1208

5108

MMOO

-02

æ

Yes No

Parameters

H₂SO 4: H₂ H₃PO₄: HP Sample Comments

10

HOLL

18 X3.

of

Grab/

Ć

Cont

Comp

4.5 Depth

Revised Date 08/25/2020 Rev. 2020

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

Date/Time

gceived by: (Signature)

Relinquished by: (Signature)

13 14

Due Date: 12/13/28 TAT starts the day received by the lab, if received by 4:30pm Routine Rush Turn Around Email: 6:30 Corrected Temperature: Sampled Wet Ice: Time Temperature Reading: **Environment Testing** Correction Factor: Thermometer ID: 501/12/1/23 PLUZG. BIGSINIS Sampled Hance Dixon Yes) No Date 236-05485 Matrix Xenco N/A MA Temp Blank: E.16 S Yes No Yes No Yes varte 4.5 1770 Sample Identification Samples Received Intact: BH23-03 Sample Custody Seals: Cooler Custody Seals: SAMPLE RECEIPT Project Number: Fotal Containers: Project Manager: Sampler's Name: Company Name: Project Location: Project Name: City, State ZIP: Address: Phone: PO #:

Se Ag SiO₂ Na Sr Tl Sn U V Zn Hg: 1631 / 245.1 / 7470 / 7471 ¥ 8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni TCLP/SPLP6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U lotice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions fawfee. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Circle Method(s) and Metal(s) to be analyzed 200.8 / 6020: Total 200.7 / 6010

Eurofins Xenco. A minimum charge of \$8.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously regordated.

12-8

eurofins

Page 18 of 20

Login Sample Receipt Checklist

 Client: Vertex
 Job Number: 890-5756-1

 SDG Number: 23E - 05485

Login Number: 5756 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5756-1 SDG Number: 23E - 05485

Login Number: 5756 **List Source: Eurofins Midland** List Number: 2 List Creation: 12/11/23 08:54 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 1/15/2024 5:53:57 PM

JOB DESCRIPTION

PLU 29 BIG SINKS WEST CTB 23 E - 05485

JOB NUMBER

890-5931-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 1/15/2024 5:53:57 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies 1/15/2024 Client: Vertex Laboratory Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB

SDG: 23 E - 05485

Table of Contents

1
3
4
5
6
10
11
15
17
19
20
21
22
23

Definitions/Glossary

Client: Vertex Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

Qualifiers

GC VOA Qualifier

Qualifier Description S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 890-5931-1

Project: PLU 29 BIG SINKS WEST CTB

Eurofins Carlsbad Job ID: 890-5931-1

Job Narrative 890-5931-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/9/2024 3:56 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BES24-01 1' (890-5931-1), BES24-02 0.5' (890-5931-2), B E S 24 - 03 0.5' (890-5931-3), B E S 24 - 05 0.5' (890-5931-4) and B E S 24 - 06 0.5' (890-5931-5).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: B E S 24 - 06 0.5' (890-5931-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The method blank for preparation batch 880-70783 and analytical batch 880-70807 contained o-Xylene above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, reextraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-70668 and analytical batch 880-70803 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: B E S 24 - 01 1' (890-5931-1), B ES 24 - 02 0.5' (890-5931-2), BES 24 - 03 0.5' (890-5931-3), BES 24 - 05 0.5' (890-5931-4), BES 24 - 06 0.5' (890-5931-5), (890-5930-A-41-E), (890-5930-A-41-F MS) and (890-5930-A-41-G MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-5931-1

Lab Sample ID: 890-5931-2

Matrix: Solid

 Client: Vertex
 Job ID: 890-5931-1

 Project/Site: PLU 29 BIG SINKS WEST CTB
 SDG: 23 E - 05485

Client Sample ID: B E S 24 - 01 1'

Date Collected: 01/08/24 10:40 Date Received: 01/09/24 15:56

Sample Depth: 1'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/13/24 22:11	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/13/24 22:11	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/13/24 22:11	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/12/24 15:10	01/13/24 22:11	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/13/24 22:11	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/12/24 15:10	01/13/24 22:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			01/12/24 15:10	01/13/24 22:11	1
1,4-Difluorobenzene (Surr)	130		70 - 130			01/12/24 15:10	01/13/24 22:11	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	
								Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/13/24 22:11	Dil Fac
. -				mg/Kg				Dil Fac
Total BTEX Method: SW846 8015 NM - Die Analyte	esel Range Organ			mg/Kg Unit	D	Prepared		Dil Fac
: Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) ((GC)		<u>D</u>	Prepared	01/13/24 22:11	1
Method: SW846 8015 NM - Die Analyte	esel Range Organ Result <49.6	ics (DRO) (0 Qualifier	RL 49.6	Unit	<u>D</u>	Prepared	01/13/24 22:11 Analyzed	1
Method: SW846 8015 NM - Die Analyte Total TPH	esel Range Organ Result 49.6 Viesel Range Organ	ics (DRO) (0 Qualifier	RL 49.6	Unit	<u>D</u>	Prepared Prepared	01/13/24 22:11 Analyzed	1

1-Chlorooctane	167	S1+	70 - 130		01/11/24 14:55	01/13/24 23:50	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg	01/11/24 14:55	01/13/24 23:50	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6	mg/Kg	01/11/24 14:55	01/13/24 23:50	1
(GRO)-C6-C10	:10.0		40.0		04/44/04 44 55	04/40/04 00 50	4

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7260	99.2	mg/Kg			01/12/24 13:33	20

70 - 130

145 S1+

Client Sample ID: B E S 24 - 02 0.5'

Date Collected: 01/08/24 10:45 Date Received: 01/09/24 15:56

Sample Depth: 0.5'

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 22:31	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 22:31	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 22:31	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		01/12/24 15:10	01/13/24 22:31	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 22:31	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		01/12/24 15:10	01/13/24 22:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			01/12/24 15:10	01/13/24 22:31	

Eurofins Carlsbad

2

Λ

6

۹ Q

40

4.6

13

۰

rofins Carisbac

Lab Sample ID: 890-5931-2

Lab Sample ID: 890-5931-3

Matrix: Solid

Client Sample Results

Client: Vertex Job ID: 890-5931-1
Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

Client Sample ID: B E S 24 - 02 0.5'

Date Collected: 01/08/24 10:45 Date Received: 01/09/24 15:56

Sample Depth: 0.5'

Method: SW846 8021B -	Volatile Organic	Compounds	(GC)	(Continued)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	94	70 - 130	01/12/24 15:10	01/13/24 22:31	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			01/13/24 22:31	1

Analyte	Result Q	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	72.8	50.1	mg/Kg			01/14/24 00:11	1

	Mothod: SW046 904ED NM Diocol Dan	go Organico (DBO) (CC)	v
ı	Method: SW846 8015B NM - Diesel Ran	ge Organics (DRO) (GC)	,

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	50.1	mg/Kg		01/11/24 14:55	01/14/24 00:11	1
Diesel Range Organics (Over C10-C28)	72.8		50.1	mg/Kg		01/11/24 14:55	01/14/24 00:11	1
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		01/11/24 14:55	01/14/24 00:11	1
Curre mate	0/ Danassams	Ovelifier	Limita			Duamanad	Amalumad	Dil 5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	142	S1+	70 - 130	01/11/24 14:55	01/14/24 00:11	1
o-Terphenyl	126		70 - 130	01/11/24 14:55	01/14/24 00:11	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7280		100	mg/Kg			01/12/24 13:38	20

Client Sample ID: B E S 24 - 03 0.5'

Date Collected: 01/08/24 10:50 Date Received: 01/09/24 15:56

Sample Depth: 0.5'

l				
Method: SW	846 8021B	- Volatile Orga	anic Compound	s (GC)

Organic Comp	ounus (OO	<i>,</i>					
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00199	U	0.00199	mg/Kg		01/12/24 15:10	01/13/24 22:52	1
<0.00199	U	0.00199	mg/Kg		01/12/24 15:10	01/13/24 22:52	1
< 0.00199	U	0.00199	mg/Kg		01/12/24 15:10	01/13/24 22:52	1
<0.00398	U	0.00398	mg/Kg		01/12/24 15:10	01/13/24 22:52	1
< 0.00199	U	0.00199	mg/Kg		01/12/24 15:10	01/13/24 22:52	1
<0.00398	U	0.00398	mg/Kg		01/12/24 15:10	01/13/24 22:52	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
104		70 - 130			01/12/24 15:10	01/13/24 22:52	1
91		70 - 130			01/12/24 15:10	01/13/24 22:52	1
	Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <0.00398 %Recovery 104	Result Qualifier	<0.00199	Result Qualifier RL Unit <0.00199	Result Qualifier RL Unit D <0.00199	Result Qualifier RL Unit D Prepared <0.00199	Result Qualifier RL Unit D Prepared Analyzed <0.00199 U

Mothod: TAI	SOP Total RTFY	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/13/24 22:52	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (G
--

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	73.2		50.4	mg/Kg			01/14/24 00:32	1

Eurofins Carlsbad

2

3

4

6

8

10

12

4 4

Lab Sample ID: 890-5931-3

Lab Sample ID: 890-5931-4

Matrix: Solid

Client Sample Results

Client: Vertex Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

Client Sample ID: B E S 24 - 03 0.5'

Date Collected: 01/08/24 10:50 Date Received: 01/09/24 15:56

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4	mg/Kg		01/11/24 14:55	01/14/24 00:32	1
Diesel Range Organics (Over C10-C28)	73.2		50.4	mg/Kg		01/11/24 14:55	01/14/24 00:32	1
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		01/11/24 14:55	01/14/24 00:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	167	S1+	70 - 130			01/11/24 14:55	01/14/24 00:32	1
o-Terphenyl -	147	S1+	70 - 130			01/11/24 14:55	01/14/24 00:32	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			101	mg/Kg			01/12/24 13:43	20

Client Sample ID: B E S 24 - 05 0.5'

Date Collected: 01/08/24 11:35 Date Received: 01/09/24 15:56

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		01/12/24 15:10	01/14/24 00:42	1
Toluene	<0.00198	U	0.00198	mg/Kg		01/12/24 15:10	01/14/24 00:42	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		01/12/24 15:10	01/14/24 00:42	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		01/12/24 15:10	01/14/24 00:42	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		01/12/24 15:10	01/14/24 00:42	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		01/12/24 15:10	01/14/24 00:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130			01/12/24 15:10	01/14/24 00:42	1
1,4-Difluorobenzene (Surr)	102		70 - 130			01/12/24 15:10	01/14/24 00:42	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T-4-I DTEV	<0.00396	11	0.00000				01/14/24 00:42	1
Total BTEX	~0.00390	U	0.00396	mg/Kg			01/14/24 00:42	1
- -				mg/Kg			01/14/24 00:42	ı
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					·
Method: SW846 8015 NM - Diese Analyte	el Range Organ		GC)	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		·
Method: SW846 8015 NM - Diese Analyte	Range Organ Result 1880	ics (DRO) (RL 50.5	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result 1880 sel Range Orga	ics (DRO) (RL 50.5	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result 1880 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 50.5	<mark>Unit</mark> mg/Kg			Analyzed 01/14/24 01:14	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	Pl Range Organ Result 1880 sel Range Orga Result	Qualifier nics (DRO) Qualifier	GC) RL 50.5 (GC) RL	Unit mg/Kg		Prepared	Analyzed 01/14/24 01:14 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 1880 sel Range Organ Result 1880 sel Range Orga Result < 50.5	Qualifier nics (DRO) Qualifier	GC) RL 50.5 (GC) RL 50.5	Unit mg/Kg Unit mg/Kg		Prepared 01/11/24 14:55	Analyzed 01/14/24 01:14 Analyzed 01/14/24 01:14	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	Result 1880 sel Range Organ Result 1880 sel Range Orga Result < 50.5	ics (DRO) (Qualifier nics (DRO) Qualifier U	GC) RL 50.5 (GC) RL 50.5	Unit mg/Kg Unit mg/Kg		Prepared 01/11/24 14:55	Analyzed 01/14/24 01:14 Analyzed 01/14/24 01:14	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 1880 sel Range Orga Result sel-Range Orga Result sel-Range Orga 1880	ics (DRO) (Qualifier nics (DRO) Qualifier U	GC) RL 50.5 (GC) RL 50.5 50.5	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 01/11/24 14:55 01/11/24 14:55	Analyzed 01/14/24 01:14 Analyzed 01/14/24 01:14 01/14/24 01:14	Dil Fac Dil Fac 1 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Organ Result 1880 sel Range Orga Result <50.5 1880 <50.5	ics (DRO) (Qualifier nics (DRO) Qualifier U	GC) RL 50.5 (GC) RL 50.5 50.5 50.5	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 01/11/24 14:55 01/11/24 14:55 01/11/24 14:55	Analyzed 01/14/24 01:14 Analyzed 01/14/24 01:14 01/14/24 01:14 01/14/24 01:14	Dil Fac Dil Fac 1

Client: Vertex

Project/Site: PLU 29 BIG SINKS WEST CTB

Job ID: 890-5931-1 SDG: 23 E - 05485

Client Sample ID: B E S 24 - 05 0.5'

Date Collected: 01/08/24 11:35 Date Received: 01/09/24 15:56

Sample Depth: 0.5'

Lab Sample ID: 890-5931-4

Lab Sample ID: 890-5931-5

Matrix: Solid

Matrix: Solid

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7270	50.2	mg/Kg			01/12/24 13:48	10

Client Sample ID: B E S 24 - 06 0.5'

Date Collected: 01/08/24 11:40

Date Received: 01/09/24 15:56

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/14/24 01:02	
Toluene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/14/24 01:02	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/14/24 01:02	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/12/24 15:10	01/14/24 01:02	,
o-Xylene	0.00248		0.00201	mg/Kg		01/12/24 15:10	01/14/24 01:02	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/12/24 15:10	01/14/24 01:02	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130			01/12/24 15:10	01/14/24 01:02	
1,4-Difluorobenzene (Surr)	133	S1+	70 - 130			01/12/24 15:10	01/14/24 01:02	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/14/24 01:02	
Analyte Total TPH	Result 2860	Qualifier	RL 50.2	Unit mg/Kg	D	Prepared	Analyzed 01/14/24 01:35	Dil Fac
				mg/rtg			01/11/21 01:00	,
Method: SW846 8015B NM - Dies Analyte		nics (DRO) Qualifier	(GC)	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifici		0		rioparoa	Allalyzou	
Gasoline Range Organics	<50.2	U	50.2	ma/Ka		01/11/24 14:55	01/14/24 01:35	
0 0	<50.2	U	50.2	mg/Kg		01/11/24 14:55	01/14/24 01:35	1
(GRO)-C6-C10	<50.2 2860	U	50.2	mg/Kg		01/11/24 14:55 01/11/24 14:55	01/14/24 01:35 01/14/24 01:35	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U						1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)								1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	2860		50.2	mg/Kg		01/11/24 14:55	01/14/24 01:35	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	2860 <50.2	U	50.2 50.2	mg/Kg		01/11/24 14:55 01/11/24 14:55	01/14/24 01:35 01/14/24 01:35	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	2860 <50.2 %Recovery 159	U Qualifier	50.2 50.2 <i>Limits</i>	mg/Kg		01/11/24 14:55 01/11/24 14:55 Prepared	01/14/24 01:35 01/14/24 01:35 <i>Analyzed</i>	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	2860 <50.2 	U Qualifier S1+ S1+	50.2 50.2 <u>Limits</u> 70 - 130 70 - 130	mg/Kg		01/11/24 14:55 01/11/24 14:55 Prepared 01/11/24 14:55	01/14/24 01:35 01/14/24 01:35 Analyzed 01/14/24 01:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	2860 <50.2 %Recovery 159 141 Chromatograp	U Qualifier S1+ S1+	50.2 50.2 <u>Limits</u> 70 - 130 70 - 130	mg/Kg		01/11/24 14:55 01/11/24 14:55 Prepared 01/11/24 14:55	01/14/24 01:35 01/14/24 01:35 Analyzed 01/14/24 01:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Surrogate Summary

 Client: Vertex
 Job ID: 890-5931-1

 Project/Site: PLU 29 BIG SINKS WEST CTB
 SDG: 23 E - 05485

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-37820-A-1-C MS	Matrix Spike	105	99	
880-37820-A-1-D MSD	Matrix Spike Duplicate	116	120	
890-5931-1	B E S 24 - 01 1'	120	130	
890-5931-2	BES24-02 0.5'	106	94	
890-5931-3	BES24-03 0.5'	104	91	
890-5931-4	BES24-05 0.5'	86	102	
890-5931-5	BES24-06 0.5'	121	133 S1+	
LCS 880-70783/1-A	Lab Control Sample	77	117	
LCSD 880-70783/2-A	Lab Control Sample Dup	101	108	
MB 880-70783/5-A	Method Blank	107	122	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5930-A-41-F MS	Matrix Spike	132 S1+	107
890-5930-A-41-G MSD	Matrix Spike Duplicate	131 S1+	104
890-5931-1	B E S 24 - 01 1'	167 S1+	145 S1+
890-5931-2	BES24-02 0.5'	142 S1+	126
890-5931-3	B E S 24 - 03 0.5'	167 S1+	147 S1+
890-5931-4	B E S 24 - 05 0.5'	148 S1+	133 S1+
890-5931-5	BES24-06 0.5'	159 S1+	141 S1+
LCS 880-70668/2-A	Lab Control Sample	94	91
LCSD 880-70668/3-A	Lab Control Sample Dup	103	109
MB 880-70668/1-A	Method Blank	194 S1+	182 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Client: Vertex Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-70783/5-A

Lab Sample ID: LCS 880-70783/1-A

Matrix: Solid Analysis Batch: 70807 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 70783

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/12/24 15:10	01/13/24 19:19	1

MB MB

MD ME

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130	01/12/24 15:10	01/13/24 19:19	1
1,4-Difluorobenzene (Surr)	122		70 - 130	01/12/24 15:10	01/13/24 19:19	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 70783

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1072 mg/Kg 107 70 - 130 Toluene 0.100 0.09783 mg/Kg 98 70 - 130 Ethylbenzene 0.100 0.08429 mg/Kg 84 70 - 130 70 - 130 0.200 0.1853 93 m-Xylene & p-Xylene mg/Kg 0.100 o-Xylene 0.09331 mg/Kg 93 70 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	77	70 - 130
1,4-Difluorobenzene (Surr)	117	70 - 130

Lab Sample ID: LCSD 880-70783/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 70807

Analysis Batch: 70807

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 70783

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1251 mg/Kg 125 70 - 130 15 35 Toluene 0.100 0.1007 mg/Kg 101 70 - 130 3 35 Ethylbenzene 0.100 0.1034 mg/Kg 103 70 - 130 20 35 m-Xylene & p-Xylene 0.200 0.2147 mg/Kg 107 70 - 130 15 35 0.100 0.1078 o-Xylene mg/Kg 108 70 - 130 14 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1.4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 880-37820-A-1-C MS

Matrix: Solid

Analysis Batch: 70807

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 70783

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <0.00198 U 0.100 111 Benzene 0 1111 mg/Kg 70 - 130 Toluene <0.00198 U 0.100 0.09664 mg/Kg 96 70 - 130

QC Sample Results

Client: Vertex Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-37820-A-1-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 70807

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	<0.00198	U	0.100	0.09823		mg/Kg		98	70 - 130
m-Xylene & p-Xylene	<0.00396	U	0.201	0.2071		mg/Kg		103	70 - 130
o-Xylene	<0.00198	U	0.100	0.1071		mg/Kg		107	70 - 130

MS MS

Surrogate	%Recovery Qu	alifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 880-37820-A-1-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 70807

Prep Type: Total/NA

Prep Batch: 70783

Prep Batch: 70783

Sample Sample Spike MSD MSD RPD Result Qualifier Added Result Qualifier %Rec RPD Limit Analyte Unit Limits Benzene <0.00198 U 0.101 0.1149 mg/Kg 114 70 - 130 3 35 0.07986 Toluene <0.00198 U 0.101 mg/Kg 79 70 - 130 19 35 Ethylbenzene <0.00198 U 0.101 0.07243 72 70 - 130 30 35 mg/Kg 0.202 0.2054 70 - 130 35 m-Xylene & p-Xylene <0.00396 U mg/Kg 102 <0.00198 U 0.101 0.1065 106 70 - 130 o-Xylene mg/Kg

MSD MSD

MB MB

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	116		70 - 130
1,4-Difluorobenzene (Surr)	120		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Client Sample ID: Method Blank Lab Sample ID: MB 880-70668/1-A **Matrix: Solid**

Analysis Batch: 70803

Cheft Sample ID. Method Blank	
Prep Type: Total/NA	
Prep Batch: 70668	

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/11/24 14:55	01/13/24 19:40	1
	(GRO)-C6-C10								
	Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/11/24 14:55	01/13/24 19:40	1
	C10-C28)								
	OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/11/24 14:55	01/13/24 19:40	1
١									

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 70 - 130 1-Chlorooctane 194 S1+ 01/11/24 14:55 01/13/24 19:40 o-Terphenyl 182 S1+ 70 - 130 01/11/24 14:55 01/13/24 19:40

Lab Sample ID: LCS 880-70668/2-A **Matrix: Solid**

Analysis Batch: 70803

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

Analyte

						Prep	Batch: 70	88
Spike	LCS	LCS				%Rec		
Added	Result	Qualifier	Unit	D	%Rec	Limits		
1000	972.0		mg/Kg		97	70 - 130		
1000	974.2		mg/Kg		97	70 - 130		

C10-C28)

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: Vertex

Job ID: 890-5931-1 SDG: 23 E - 05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-70668/2-A

Project/Site: PLU 29 BIG SINKS WEST CTB

Matrix: Solid

Analysis Batch: 70803

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 70668

LCS LCS

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 94 70 - 130 o-Terphenyl 91 70 - 130

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 880-70668/3-A **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 70803** Prep Batch: 70668

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 999.4 100 70 - 1303 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 966.6 97 mg/Kg 70 - 13020 C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 103 70 - 130 1-Chlorooctane 109 70 - 130 o-Terphenyl

Lab Sample ID: 890-5930-A-41-F MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 70803

Prep Type: Total/NA

Prep Batch: 70668

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.8 U 1010 1257 mg/Kg 122 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.8 U 1010 1311 mg/Kg 127 70 - 130 C10-C28)

MS MS Surrogate %Recovery Qualifier Limits S1+ 70 - 130 1-Chlorooctane 132 70 - 130 o-Terphenyl 107

Lab Sample ID: 890-5930-A-41-G MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 70803

Prep Type: Total/NA

Prep Batch: 70668

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	1010	1252		mg/Kg		122	70 - 130	0	20
Diesel Range Organics (Over C10-C28)	<49.8	U	1010	1303		mg/Kg		126	70 - 130	1	20

MSD MSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 131 S1+ 70 - 130 104 70 - 130 o-Terphenyl

Eurofins Carlsbad

1/15/2024

Dil Fac

QC Sample Results

Client: Vertex Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB

SDG: 23 E - 05485

Analyzed

01/12/24 12:26

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-70714/1-A

Matrix: Solid

Analysis Batch: 70747

Analyte

Chloride

Client Sample ID: Method Blank **Prep Type: Soluble**

MB MB

D

Prepared

Unit

mg/Kg

Lab Sample ID: LCS 880-70714/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

RL

5.00

Analysis Batch: 70747

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 249.8 mg/Kg 100 90 - 110

Result Qualifier

<5.00 U

Lab Sample ID: LCSD 880-70714/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 70747

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit Limits **RPD** Limit Chloride 250 249.9 90 - 110 mg/Kg 100

Lab Sample ID: 890-5931-5 MS Client Sample ID: B E S 24 - 06 0.5' **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 70747

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Qualifier Result Unit %Rec Limits 7280 Chloride 4900 2490 96 90 - 110 mg/Kg

Lab Sample ID: 890-5931-5 MSD Client Sample ID: B E S 24 - 06 0.5' **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 70747

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 2490 Chloride 4900 7267 mg/Kg 95 90 - 110 0 20

QC Association Summary

Client: Vertex

Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

GC VOA

Prep Batch: 70783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Total/NA	Solid	5035	
890-5931-2	BES24-02 0.5'	Total/NA	Solid	5035	
890-5931-3	BES24-03 0.5'	Total/NA	Solid	5035	
890-5931-4	BES24-05 0.5'	Total/NA	Solid	5035	
890-5931-5	B E S 24 - 06 0.5'	Total/NA	Solid	5035	
MB 880-70783/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-70783/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-70783/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-37820-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-37820-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 70807

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Total/NA	Solid	8021B	70783
890-5931-2	B E S 24 - 02 0.5'	Total/NA	Solid	8021B	70783
890-5931-3	B E S 24 - 03 0.5'	Total/NA	Solid	8021B	70783
890-5931-4	B E S 24 - 05 0.5'	Total/NA	Solid	8021B	70783
890-5931-5	B E S 24 - 06 0.5'	Total/NA	Solid	8021B	70783
MB 880-70783/5-A	Method Blank	Total/NA	Solid	8021B	70783
LCS 880-70783/1-A	Lab Control Sample	Total/NA	Solid	8021B	70783
LCSD 880-70783/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	70783
880-37820-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	70783
880-37820-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	70783

Analysis Batch: 70955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Total/NA	Solid	Total BTEX	
890-5931-2	B E S 24 - 02 0.5'	Total/NA	Solid	Total BTEX	
890-5931-3	B E S 24 - 03 0.5'	Total/NA	Solid	Total BTEX	
890-5931-4	B E S 24 - 05 0.5'	Total/NA	Solid	Total BTEX	
890-5931-5	B E S 24 - 06 0.5'	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 70668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Total/NA	Solid	8015NM Prep	
890-5931-2	B E S 24 - 02 0.5'	Total/NA	Solid	8015NM Prep	
890-5931-3	B E S 24 - 03 0.5'	Total/NA	Solid	8015NM Prep	
890-5931-4	B E S 24 - 05 0.5'	Total/NA	Solid	8015NM Prep	
890-5931-5	B E S 24 - 06 0.5'	Total/NA	Solid	8015NM Prep	
MB 880-70668/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-70668/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-70668/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5930-A-41-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5930-A-41-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 70803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Total/NA	Solid	8015B NM	70668
890-5931-2	B E S 24 - 02 0.5'	Total/NA	Solid	8015B NM	70668

Eurofins Carlsbad

Page 15 of 24

QC Association Summary

Client: Vertex Job ID: 890-5931-1 Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

GC Semi VOA (Continued)

Analysis Batch: 70803 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-3	B E S 24 - 03 0.5'	Total/NA	Solid	8015B NM	70668
890-5931-4	B E S 24 - 05 0.5'	Total/NA	Solid	8015B NM	70668
890-5931-5	B E S 24 - 06 0.5'	Total/NA	Solid	8015B NM	70668
MB 880-70668/1-A	Method Blank	Total/NA	Solid	8015B NM	70668
LCS 880-70668/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	70668
LCSD 880-70668/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	70668
890-5930-A-41-F MS	Matrix Spike	Total/NA	Solid	8015B NM	70668
890-5930-A-41-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	70668

Analysis Batch: 70912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Total/NA	Solid	8015 NM	
890-5931-2	B E S 24 - 02 0.5'	Total/NA	Solid	8015 NM	
890-5931-3	B E S 24 - 03 0.5'	Total/NA	Solid	8015 NM	
890-5931-4	B E S 24 - 05 0.5'	Total/NA	Solid	8015 NM	
890-5931-5	B E S 24 - 06 0.5'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 70714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Soluble	Solid	DI Leach	
890-5931-2	B E S 24 - 02 0.5'	Soluble	Solid	DI Leach	
890-5931-3	B E S 24 - 03 0.5'	Soluble	Solid	DI Leach	
890-5931-4	B E S 24 - 05 0.5'	Soluble	Solid	DI Leach	
890-5931-5	B E S 24 - 06 0.5'	Soluble	Solid	DI Leach	
MB 880-70714/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-70714/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-70714/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5931-5 MS	B E S 24 - 06 0.5'	Soluble	Solid	DI Leach	
890-5931-5 MSD	BES24-06 0.5'	Soluble	Solid	DI Leach	

Analysis Batch: 70747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5931-1	B E S 24 - 01 1'	Soluble	Solid	300.0	70714
890-5931-2	B E S 24 - 02 0.5'	Soluble	Solid	300.0	70714
890-5931-3	B E S 24 - 03 0.5'	Soluble	Solid	300.0	70714
890-5931-4	B E S 24 - 05 0.5'	Soluble	Solid	300.0	70714
890-5931-5	B E S 24 - 06 0.5'	Soluble	Solid	300.0	70714
MB 880-70714/1-A	Method Blank	Soluble	Solid	300.0	70714
LCS 880-70714/2-A	Lab Control Sample	Soluble	Solid	300.0	70714
LCSD 880-70714/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	70714
890-5931-5 MS	B E S 24 - 06 0.5'	Soluble	Solid	300.0	70714
890-5931-5 MSD	B E S 24 - 06 0.5'	Soluble	Solid	300.0	70714

Client: Vertex

Project/Site: PLU 29 BIG SINKS WEST CTB

Job ID: 890-5931-1

SDG: 23 E - 05485

Client Sample ID: B E S 24 - 01 1'

Date Collected: 01/08/24 10:40

Lab Sample ID: 890-5931-1

Lab Sample ID: 890-5931-2

Matrix: Solid

Matrix: Solid

Date Received: 01/09/24 15:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	70783	01/12/24 15:10	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70807	01/13/24 22:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70955	01/13/24 22:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			70912	01/13/24 23:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	70668	01/11/24 14:55	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70803	01/13/24 23:50	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	70714	01/12/24 08:03	CH	EET MID
Soluble	Analysis	300.0		20			70747	01/12/24 13:33	CH	EET MID

Client Sample ID: B E S 24 - 02 0.5'

Date Collected: 01/08/24 10:45

Date Received: 01/09/24 15:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	70783	01/12/24 15:10	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70807	01/13/24 22:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70955	01/13/24 22:31	SM	EET MID
Total/NA	Analysis	8015 NM		1			70912	01/14/24 00:11	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	70668	01/11/24 14:55	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70803	01/14/24 00:11	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	70714	01/12/24 08:03	CH	EET MID
Soluble	Analysis	300.0		20			70747	01/12/24 13:38	CH	EET MID

Client Sample ID: B E S 24 - 03 0.5'

Date Collected: 01/08/24 10:50

Date Received: 01/09/24 15:56

Lab Sample	ID: 890-5931-3
------------	----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	70783	01/12/24 15:10	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70807	01/13/24 22:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70955	01/13/24 22:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			70912	01/14/24 00:32	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	70668	01/11/24 14:55	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70803	01/14/24 00:32	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	70714	01/12/24 08:03	CH	EET MID
Soluble	Analysis	300.0		20			70747	01/12/24 13:43	CH	EET MID

Client Sample ID: B E S 24 - 05 0.5'	Lab Sample ID: 890-5931-4
Date Collected: 01/08/24 11:35	Matrix: Solid
Date Received: 01/09/24 15:56	
_	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	70783	01/12/24 15:10	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70807	01/14/24 00:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70955	01/14/24 00:42	SM	EET MID

Eurofins Carlsbad

Page 17 of 24

Client: Vertex Project/Site: PLU 29 BIG SINKS WEST CTB

SDG: 23 E - 05485

Job ID: 890-5931-1

Client Sample ID: B E S 24 - 05 0.5' Lab Sample ID: 890-5931-4 Date Collected: 01/08/24 11:35

Matrix: Solid

Date Received: 01/09/24 15:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			70912	01/14/24 01:14	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	70668	01/11/24 14:55	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70803	01/14/24 01:14	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	70714	01/12/24 08:03	СН	EET MID
Soluble	Analysis	300.0		10			70747	01/12/24 13:48	CH	EET MID

Client Sample ID: B E S 24 - 06 0.5' Lab Sample ID: 890-5931-5

Date Collected: 01/08/24 11:40 **Matrix: Solid**

Date Received: 01/09/24 15:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	70783	01/12/24 15:10	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70807	01/14/24 01:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70955	01/14/24 01:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			70912	01/14/24 01:35	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	70668	01/11/24 14:55	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70803	01/14/24 01:35	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	70714	01/12/24 08:03	CH	EET MID
Soluble	Analysis	300.0		10			70747	01/12/24 13:53	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Vertex Job ID: 890-5931-1
Project/Site: PLU 29 BIG SINKS WEST CTB SDG: 23 E - 05485

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
,	are included in this report, but oes not offer certification.	ut the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: Vertex

Project/Site: PLU 29 BIG SINKS WEST CTB

Job ID: 890-5931-1

SDG: 23 E - 05485

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Vertex

Project/Site: PLU 29 BIG SINKS WEST CTB

Job ID: 890-5931-1

SDG: 23 E - 05485

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5931-1	BES24-01 1'	Solid	01/08/24 10:40	01/09/24 15:56	1'
890-5931-2	B E S 24 - 02 0.5'	Solid	01/08/24 10:45	01/09/24 15:56	0.5'
890-5931-3	B E S 24 - 03 0.5'	Solid	01/08/24 10:50	01/09/24 15:56	0.5'
890-5931-4	BES24-05 0.5'	Solid	01/08/24 11:35	01/09/24 15:56	0.5'
890-5931-5	B E S 24 - 06 0.5'	Solid	01/08/24 11:40	01/09/24 15:56	0.5'

3

4

9

10

12

13

114

Work Order No:

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

Environment Testing Xenco

eurofins 😽

Chain of Custody
Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296

evised Date: 08/25/2020 Rev. 2020.

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

2

2

3

5

7

9

11 12

13

Relinquished by: (Signature) Repeived by: (Signature) Date/Time

mum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins. Xenco, its affiliates and subcontractors, it assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control

Company Name	Program USTPST PRP Recommended PRP P	Project Manager:	Ance Dixon		Bill to: (if different)		Langet Green	Work Order Comments	omments
State of Project Chrosopt Character Chrosopt Chrosopt Chrosopt Chrosopt Chrosopt	State of Project Control Contr	Company Name:	nder		Company Name:		XTO.	UST/PST PRP	
City, State 2IP; Email: City, State 2IP; Email:	Control Cont	Address:	On Ale		Address:		OW TITE	State of Project:	
Continue	Public P	City, State ZIP:	>		City, State ZIP:			Reporting: Level Level	PST/UST TRRP Level IV
None: No 126-05485 Turn Acound Pets None: No Location: 126-05485 Due Date:	10 10 10 10 10 10 10 10	Phone:	_	Email:				EDD	
None No Cool Cool	None: NO Location: PLL A Due Date: Cook Cook	4	à	STOR Turn	Around		ANALYSIS F	REQUEST	Preservative Codes
The Cool Cool Cool Cool Cool Cool Cool Coo	Cool Cool		-05485	Routine	Rush	Pres. Code			None: NO DI Water: H ₂ O
HCLHC Let Le	HCLERCE Log		50	Due Date:					_
	The FRECEIPT	Sampler's Name: L. P.	Iman	TAT starts the the lab, if rec	e day received by eived by 4:30pm				2
Ves. No. NIA Temperature: Co. 2 Contected Temperature: Co. 3 Contected Temperature: Co. 3 Contected Temperature: Co. 3 Co. 3 Co. 4 Co. 4 Co. 4 Co. 5 Co. 6 Co. 6 Co. 6 Co. 6 Co. 7 Co. 6 Co. 7 Co. 6 Co. 7 Co.	Ves. No. Thermometer ID: TAMACO Per No. Correction Factor: Correction Factor: Correction Factor: Correction Factor: Correction Factor: Corrected Temperature Reading: L.C. Corrected T	SAMPLE RECEIPT	Yes		Yes No		11		H ₃ PO ₄ : HP
Yes No NA Correction Factor: O S No NA Temperature Reading: O S No NA Temper	Yes No Not Correction Factor: Correction Factor: Correction Factor: Corrected Temperature: Corrected Temperat	M	Q _N	meter ID:	TAMOS		202	31 Chain of Custody	NaHSO 4: NABIS
Corrected Temperature:	Corrected Temperature: C. A A E Composition Matrix Date Time Depth Comp Comp X X X A		No N/A	ion Factor: rature Reading:	100	_			Na ₂ > ₂ O ₃ : Na ₂ O ₃ Zn Acetate+NaOH: Zn
ple identification Matrix Sampled Sampled Sampled Corp Corp Corp Corp Corp Corp Corp Corp	Sor 1-8-14 (0)-40 Comp Cont			ed Temperature:	0.8		L Hd		NaOH+Ascorbic Acid: SAPC
03 0.5' -8-14 (0):40 -0.5'	0.5'	Sample Identification				# of Cont) T		Sample Comments
10:40 0:81 10:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	0.5' 10:45 0.5' 0.5	1 10-HCS-18		=		-	XX		
05:01 3:00 3:01 3:00	0.51			54:01					
0h:11 / 15:0	0.51 V V II: 40 0.8' V V II: 40 0.8' V V V V V V V V V V V V V V V V V V V			0000	(A) (A)				
	200.8 / 6020: 8RCRA 13PPM Texas 11		7	11:40	→ -8-0		>		
	200.8 / 6020: 8RCRA 13PPM Texas 11								
	200.8 / 6020: 8RCRA 13PPM Texas 11								
	200.8 / 6020: 8RCRA 13PPM Texas 11								

Login Sample Receipt Checklist

 Client: Vertex
 Job Number: 890-5931-1

 SDG Number: 23 E - 05485

Login Number: 5931 List Source: Eurofins Carlsbad

List Number: 1 Creator: Bruns, Shannon

Question Answer Comment The cooler's custody seal, if present, is intact. True Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) True Sample containers have legible labels. Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. N/A Refer to Job Narrative for details. Sample bottles are completely filled. True N/A Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs Containers requiring zero headspace have no headspace or bubble is N/A

1

1

5

7

9

11

13

14

<6mm (1/4").

1/15/2024

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5931-1 SDG Number: 23 E - 05485

Login Number: 5931 **List Source: Eurofins Midland** List Number: 2 List Creation: 01/11/24 11:21 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 1/12/2024 2:11:10 PM

JOB DESCRIPTION

PLU 29 BS WEST CTB 23 - E - 05485

JOB NUMBER

890-5939-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 1/12/2024 2:11:10 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Client: Vertex Laboratory Job ID: 890-5939-1 Project/Site: PLU 29 BS WEST CTB SDG: 23 - E - 05485

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

3

4

6

0

10

12

13

14

Definitions/Glossary

Client: Vertex Job ID: 890-5939-1 Project/Site: PLU 29 BS WEST CTB

SDG: 23 - E - 05485

Qualifiers

GC VOA

Qualifier **Qualifier Description** LCS and/or LCSD is outside acceptance limits, high biased. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac Dilution Factor

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit PQL**

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 890-5939-1

Project: PLU 29 BS WEST CTB

Eurofins Carlsbad Job ID: 890-5939-1

Job Narrative 890-5939-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/10/2024 8:55 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -3.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: B E S 24 - 07 (890-5939-1), B E S 24 - 09 (890-5939-2) and B E S 24 - 10 (890-5939-3).

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-70626 recovered under the lower control limit for Benzene and Toluene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-70640 and analytical batch 880-70626 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-70655 and analytical batch 880-70619 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-70655/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: B E S 24 - 07 (890-5939-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-70612 and analytical batch 880-70696 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-5939-1

01/11/24 21:59

Lab Sample ID: 890-5939-2

Client Sample Results

 Client: Vertex
 Job ID: 890-5939-1

 Project/Site: PLU 29 BS WEST CTB
 SDG: 23 - E - 05485

Client Sample ID: B E S 24 - 07

Date Collected: 01/09/24 09:45 Date Received: 01/10/24 08:55

Sample Depth: 0.5'

Total BTEX

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		01/11/24 12:30	01/11/24 21:59	1
Toluene	<0.00202	U	0.00202	mg/Kg		01/11/24 12:30	01/11/24 21:59	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		01/11/24 12:30	01/11/24 21:59	1
m-Xylene & p-Xylene	<0.00404	U *+	0.00404	mg/Kg		01/11/24 12:30	01/11/24 21:59	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		01/11/24 12:30	01/11/24 21:59	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		01/11/24 12:30	01/11/24 21:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130			01/11/24 12:30	01/11/24 21:59	1
1,4-Difluorobenzene (Surr)	88		70 - 130			01/11/24 12:30	01/11/24 21:59	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Method: SW846 8015 NM - Diesel	Range Organics (DRO) (GO	C)					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2 U	50.2	mg/Kg			01/11/24 23:30	1

0.00404

mg/Kg

<0.00404 U

Method: SW846 8015B NM - Dies	sei Range Orga	INICS (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2	mg/Kg		01/11/24 13:50	01/11/24 23:30	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.2	U	50.2	mg/Kg		01/11/24 13:50	01/11/24 23:30	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		01/11/24 13:50	01/11/24 23:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	137	S1+	70 - 130			01/11/24 13:50	01/11/24 23:30	1
o-Ternhenyl	147	S1+	70 130			01/11/24 13:50	01/11/24 23:30	1

Method: EPA 300.0 - Anions, Ion C	hromatography -	- Soluble					
Analyte	Result Qua	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7030	49.7	mg/Kg			01/11/24 23:00	10

Client Sample ID: B E S 24 - 09

Date Collected: 01/09/24 13:20 Date Received: 01/10/24 08:55

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/11/24 12:30	01/11/24 22:20	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/11/24 12:30	01/11/24 22:20	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/11/24 12:30	01/11/24 22:20	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402	mg/Kg		01/11/24 12:30	01/11/24 22:20	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/11/24 12:30	01/11/24 22:20	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/11/24 12:30	01/11/24 22:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			01/11/24 12:30	01/11/24 22:20	1

Eurofins Carlsbad

2

3

5

<u>'</u>

10

12

13

Matrix: Solid

Client: Vertex

Project/Site: PLU 29 BS WEST CTB

Job ID: 890-5939-1

SDG: 23 - E - 05485

Client Sample ID: B E S 24 - 09

Date Collected: 01/09/24 13:20 Date Received: 01/10/24 08:55

Sample Depth: 0.5'

Lab Sample ID: 890-5939-2

Lab Sample ID: 890-5939-3

Matrix: Solid

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 01/11/24 12:30 1,4-Difluorobenzene (Surr) 85 01/11/24 22:20

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Total BTEX <0.00402 0.00402 01/11/24 22:20 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <50.1 U 50.1 mg/Kg 01/11/24 23:51

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Result Qualifier Analyte RL Unit D Prepared Analyzed Dil Fac <50.1 U 50.1 01/11/24 13:50 01/11/24 23:51 Gasoline Range Organics mg/Kg (GRO)-C6-C10 <50.1 U 50.1 mg/Kg 01/11/24 13:50 01/11/24 23:51 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) <50.1 U 50.1 mg/Kg 01/11/24 13:50 01/11/24 23:51

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 110 70 - 130 01/11/24 13:50 01/11/24 23:51 o-Terphenyl 118 70 - 130 01/11/24 13:50 01/11/24 23:51

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 4480 101 01/11/24 23:05 Chloride mg/Kg 20

Client Sample ID: B E S 24 - 10

Date Collected: 01/09/24 13:25

Date Received: 01/10/24 08:55

Sample Depth: 0.5'

Method: SW846 8021B - Volatile Organic Compounds (GC)

Prepared Analyte Result Qualifier RL Unit D Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/Kg 01/11/24 12:30 01/11/24 22:40 Toluene <0.00200 U 0.00200 01/11/24 12:30 01/11/24 22:40 mg/Kg Ethylbenzene <0.00200 U 0.00200 01/11/24 12:30 01/11/24 22:40 mg/Kg 0.00399 01/11/24 12:30 01/11/24 22:40 m-Xylene & p-Xylene <0.00399 U*+ mg/Kg o-Xylene <0.00200 0.00200 mg/Kg 01/11/24 12:30 01/11/24 22:40 Xylenes, Total <0.00399 U 0.00399 mg/Kg 01/11/24 12:30 01/11/24 22:40

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 102 70 - 130 01/11/24 12:30 4-Bromofluorobenzene (Surr) 01/11/24 22:40 1,4-Difluorobenzene (Surr) 82 70 - 130 01/11/24 12:30 01/11/24 22:40

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL D Dil Fac Unit Prepared Analyzed Total BTEX <0.00399 0.00399 01/11/24 22:40 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <50.5 U Total TPH 50.5 mg/Kg 01/12/24 00:14

Lab Sample ID: 890-5939-3

01/11/24 23:10

Client Sample Results

 Client: Vertex
 Job ID: 890-5939-1

 Project/Site: PLU 29 BS WEST CTB
 SDG: 23 - E - 05485

Client Sample ID: B E S 24 - 10

Date Collected: 01/09/24 13:25 Date Received: 01/10/24 08:55

Sample Depth: 0.5'

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5	mg/Kg		01/11/24 13:50	01/12/24 00:14	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.5	U	50.5	mg/Kg		01/11/24 13:50	01/12/24 00:14	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		01/11/24 13:50	01/12/24 00:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130			01/11/24 13:50	01/12/24 00:14	1
o-Terphenyl	118		70 - 130			01/11/24 13:50	01/12/24 00:14	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl	6					
Analyte	• .	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

100

mg/Kg

5060

6

8

46

11

20

12

Client: Vertex

Project/Site: PLU 29 BS WEST CTB

Job ID: 890-5939-1

SDG: 23 - E - 05485

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-5939-1	B E S 24 - 07	84	88	
890-5939-1 MS	B E S 24 - 07	125	107	
890-5939-1 MSD	B E S 24 - 07	128	115	
890-5939-2	B E S 24 - 09	92	85	
890-5939-3	B E S 24 - 10	102	82	
LCS 880-70640/1-A	Lab Control Sample	134 S1+	107	
LCSD 880-70640/2-A	Lab Control Sample Dup	110	104	
MB 880-70580/5-A	Method Blank	73	90	
MB 880-70640/5-A	Method Blank	72	88	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-5929-A-3-H MS	Matrix Spike	113	104	
890-5929-A-3-I MSD	Matrix Spike Duplicate	115	106	
890-5939-1	B E S 24 - 07	137 S1+	147 S1+	
890-5939-2	B E S 24 - 09	110	118	
890-5939-3	B E S 24 - 10	112	118	
LCS 880-70655/2-A	Lab Control Sample	130	141 S1+	
LCSD 880-70655/3-A	Lab Control Sample Dup	99	113	
MB 880-70655/1-A	Method Blank	133 S1+	155 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Vertex

Job ID: 890-5939-1 SDG: 23 - E - 05485

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-70580/5-A

Project/Site: PLU 29 BS WEST CTB

Matrix: Solid

Analysis Batch: 70626

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 70580

1

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/10/24 14:02	01/11/24 11:00	
Toluene	<0.00200	U	0.00200	mg/Kg		01/10/24 14:02	01/11/24 11:00	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/10/24 14:02	01/11/24 11:00	
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/10/24 14:02	01/11/24 11:00	
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/10/24 14:02	01/11/24 11:00	
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/10/24 14:02	01/11/24 11:00	•

MB MB

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	73		70 - 130
1,4-Difluorobenzene (Surr)	90		70 - 130

Prepared Dil Fac Analyzed 01/10/24 14:02 01/11/24 11:00 01/10/24 14:02 01/11/24 11:00

Lab Sample ID: MB 880-70640/5-A

Matrix: Solid

Analysis Batch: 70626

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 70640

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/11/24 12:30	01/11/24 21:37	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/11/24 12:30	01/11/24 21:37	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/11/24 12:30	01/11/24 21:37	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/11/24 12:30	01/11/24 21:37	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/11/24 12:30	01/11/24 21:37	1
Xvlenes Total	<0.00400	П	0.00400	ma/Ka		01/11/24 12:30	01/11/24 21:37	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	l Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	72		70 - 130	01/11/24 12	:30 01/11/24 21:37	1
1,4-Difluorobenzene (Surr)	88		70 - 130	01/11/24 12	:30 01/11/24 21:37	1

Lab Sample ID: LCS 880-70640/1-A

Matrix: Solid

Analysis Batch: 70626

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 70640

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1159		mg/Kg		116	70 - 130	
Toluene	0.100	0.1082		mg/Kg		108	70 - 130	
Ethylbenzene	0.100	0.1213		mg/Kg		121	70 - 130	
m-Xylene & p-Xylene	0.200	0.2613	*+	mg/Kg		131	70 - 130	
o-Xylene	0.100	0.1246		mg/Kg		125	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130
1.4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: LCSD 880-70640/2-A

Matrix: Solid

Analysis Batch: 70626

Client Sample ID: Lab	Control Sample Dup
	Dunn Times Tetal/NIA

Prep Type: Total/NA

Prep Batch: 70640

	Spike	LCSD LCSD				70 KeC		KPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1046	mg/Kg		105	70 - 130	10	35

LCCD LCCD

Cnika

QC Sample Results

Client: Vertex Job ID: 890-5939-1 SDG: 23 - E - 05485 Project/Site: PLU 29 BS WEST CTB

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-70640/2-A

Matrix: Solid Analysis Batch: 70626 **Client Sample ID: Lab Control Sample Dup**

Prep Type: Total/NA Prep Batch: 70640

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.08721		mg/Kg		87	70 - 130	22	35
Ethylbenzene	0.100	0.09701		mg/Kg		97	70 - 130	22	35
m-Xylene & p-Xylene	0.200	0.1972		mg/Kg		99	70 - 130	28	35
o-Xylene	0.100	0.09543		mg/Kg		95	70 - 130	26	35

LCSD LCSD

Surrogate	%Recovery Qualifi	er Limits
4-Bromofluorobenzene (Surr)	110	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 890-5939-1 MS Client Sample ID: B E S 24 - 07

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 70626

Prep Batch: 70640

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.101	0.1109		mg/Kg		110	70 - 130	
Toluene	<0.00202	U	0.101	0.1034		mg/Kg		103	70 - 130	
Ethylbenzene	<0.00202	U	0.101	0.1187		mg/Kg		118	70 - 130	
m-Xylene & p-Xylene	<0.00404	U *+	0.202	0.2456		mg/Kg		122	70 - 130	
o-Xylene	<0.00202	U	0.101	0.1158		mg/Kg		115	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	125	70 - 130
1.4-Difluorobenzene (Surr)	107	70 - 130

Lab Sample ID: 890-5939-1 MSD Client Sample ID: B E S 24 - 07

Matrix: Solid

Analysis Batch: 70626

Prep Type: Total/NA Prep Batch: 70640

i many ord Editorni i does											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00202	U	0.0994	0.1048		mg/Kg		105	70 - 130	6	35
Toluene	<0.00202	U	0.0994	0.09392		mg/Kg		94	70 - 130	10	35
Ethylbenzene	<0.00202	U	0.0994	0.1074		mg/Kg		108	70 - 130	10	35
m-Xylene & p-Xylene	<0.00404	U *+	0.199	0.2288		mg/Kg		115	70 - 130	7	35
o-Xylene	<0.00202	U	0.0994	0.1084		mg/Kg		109	70 - 130	7	35

MSD MSD

мв мв Result Qualifier

<50.0 U

Surrogate	%Recovery	Quaimer	Limits
4-Bromofluorobenzene (Surr)	128		70 - 130
1,4-Difluorobenzene (Surr)	115		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-70655/1-A

Matrix: Solid

Analysis Batch: 70619

Gasoline Range Organics

Client Sample ID: Method Blank Prep Type: Total/NA

Prepared

01/11/24 13:50

Prep Batch: 70655

01/11/24 20:57

(GRO)-C6-C10

Eurofins Carlsbad

50.0

Unit

mg/Kg

Client: Vertex

Job ID: 890-5939-1

SDG: 23 - E - 05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-70655/1-A **Matrix: Solid**

Lab Sample ID: LCS 880-70655/2-A

Matrix: Solid

Analysis Batch: 70619

Project/Site: PLU 29 BS WEST CTB

Analysis Batch: 70619

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 70655

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/11/24 13:50	01/11/24 20:57	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/11/24 13:50	01/11/24 20:57	1
	MP	MP						

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1-Chlorooctane	133	S1+	70 - 130	01/11/24 13:50	01/11/24 20:57	1
Į	o-Terphenyl	155	S1+	70 - 130	01/11/24 13:50	01/11/24 20:57	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 70655

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 815.7 82 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 986.4 mg/Kg 99 70 - 130 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	130		70 - 130
o-Terphenyl	141	S1+	70 - 130

Lab Sample ID: LCSD 880-70655/3-A

Matrix: Solid Analysis Batch: 70619 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 70655

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	891.3		mg/Kg		89	70 - 130	9	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	968.6		mg/Kg		97	70 - 130	2	20	
C10-C28)										

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 99 70 - 130 o-Terphenyl 113 70 - 130

Lab Sample ID: 890-5929-A-3-H MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 70619

Prep Type: Total/NA

Prep Batch: 70655

	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	1010	1297		mg/Kg		126	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.6	U	1010	883.9		mg/Kg		85	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	113		70 - 130
o-Terphenyl	104		70 - 130

Job ID: 890-5939-1

Project/Site: PLU 29 BS WEST CTB SDG: 23 - E - 05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-5929-A-3-I MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Analysis Batch: 70619 Prep Type: Total/NA Prep Batch: 70655

Sample Sample Spike MSD MSD RPD Limit Result Qualifier RPD Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <49.6 U 1010 1322 mg/Kg 128 70 - 130 2 20 (GRO)-C6-C10 1010 Diesel Range Organics (Over <49.6 U 908 2 mg/Kg 87 70 - 130 3

C10-C28)

Client: Vertex

MSD MSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	115	70 - 130
o-Terphenyl	106	70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-70612/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 70696

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			01/11/24 21:48	1

Lab Sample ID: LCS 880-70612/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 70696

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	248.4		mg/Kg		99	90 - 110	

Lab Sample ID: LCSD 880-70612/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 70696

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	248.8		mg/Kg		100	90 - 110	0	20	

Lab Sample ID: 880-37779-A-58-E MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 70696

	Sample	Sample	Бріке	IVIS	IVIS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	89.1	F1	249	311.2	F1	mg/Kg		89	90 - 110	

Lab Sample ID: 880-37779-A-58-F MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 70696

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	89.1	F1	249	312.6		mg/Kg		90	90 - 110	0	20

Eurofins Carlsbad

Prep Type: Soluble

QC Association Summary

Client: Vertex

Project/Site: PLU 29 BS WEST CTB

Job ID: 890-5939-1 SDG: 23 - E - 05485

GC VOA

Prep Batch: 70580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-70580/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 70626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5939-1	B E S 24 - 07	Total/NA	Solid	8021B	70640
890-5939-2	B E S 24 - 09	Total/NA	Solid	8021B	70640
890-5939-3	B E S 24 - 10	Total/NA	Solid	8021B	70640
MB 880-70580/5-A	Method Blank	Total/NA	Solid	8021B	70580
MB 880-70640/5-A	Method Blank	Total/NA	Solid	8021B	70640
LCS 880-70640/1-A	Lab Control Sample	Total/NA	Solid	8021B	70640
LCSD 880-70640/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	70640
890-5939-1 MS	B E S 24 - 07	Total/NA	Solid	8021B	70640
890-5939-1 MSD	B E S 24 - 07	Total/NA	Solid	8021B	70640

Prep Batch: 70640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-5939-1	B E S 24 - 07	Total/NA	Solid	5035	
890-5939-2	B E S 24 - 09	Total/NA	Solid	5035	
890-5939-3	B E S 24 - 10	Total/NA	Solid	5035	
MB 880-70640/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-70640/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-70640/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5939-1 MS	B E S 24 - 07	Total/NA	Solid	5035	
890-5939-1 MSD	B E S 24 - 07	Total/NA	Solid	5035	

Analysis Batch: 70770

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	890-5939-1	B E S 24 - 07	Total/NA	Solid	Total BTEX	
	890-5939-2	B E S 24 - 09	Total/NA	Solid	Total BTEX	
L	890-5939-3	B E S 24 - 10	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 70619

Г					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5939-1	B E S 24 - 07	Total/NA	Solid	8015B NM	70655
890-5939-2	B E S 24 - 09	Total/NA	Solid	8015B NM	70655
890-5939-3	B E S 24 - 10	Total/NA	Solid	8015B NM	70655
MB 880-70655/1-A	Method Blank	Total/NA	Solid	8015B NM	70655
LCS 880-70655/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	70655
LCSD 880-70655/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	70655
890-5929-A-3-H MS	Matrix Spike	Total/NA	Solid	8015B NM	70655
890-5929-A-3-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	70655

Prep Batch: 70655

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5939-1	B E S 24 - 07	Total/NA	Solid	8015NM Prep	
890-5939-2	B E S 24 - 09	Total/NA	Solid	8015NM Prep	
890-5939-3	B E S 24 - 10	Total/NA	Solid	8015NM Prep	
MB 880-70655/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-70655/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Vertex

Project/Site: PLU 29 BS WEST CTB

Job ID: 890-5939-1

SDG: 23 - E - 05485

GC Semi VOA (Continued)

Prep Batch: 70655 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-70655/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5929-A-3-H MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5929-A-3-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 70743

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5939-1	B E S 24 - 07	Total/NA	Solid	8015 NM	
890-5939-2	B E S 24 - 09	Total/NA	Solid	8015 NM	
890-5939-3	B E S 24 - 10	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 70612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5939-1	B E S 24 - 07	Soluble	Solid	DI Leach	_
890-5939-2	B E S 24 - 09	Soluble	Solid	DI Leach	
890-5939-3	B E S 24 - 10	Soluble	Solid	DI Leach	
MB 880-70612/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-70612/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-70612/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-37779-A-58-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-37779-A-58-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 70696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5939-1	B E S 24 - 07	Soluble	Solid	300.0	70612
890-5939-2	B E S 24 - 09	Soluble	Solid	300.0	70612
890-5939-3	B E S 24 - 10	Soluble	Solid	300.0	70612
MB 880-70612/1-A	Method Blank	Soluble	Solid	300.0	70612
LCS 880-70612/2-A	Lab Control Sample	Soluble	Solid	300.0	70612
LCSD 880-70612/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	70612
880-37779-A-58-E MS	Matrix Spike	Soluble	Solid	300.0	70612
880-37779-A-58-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	70612

Client: Vertex

Project/Site: PLU 29 BS WEST CTB

Job ID: 890-5939-1

SDG: 23 - E - 05485

Client Sample ID: B E S 24 - 07

Date Collected: 01/09/24 09:45 Date Received: 01/10/24 08:55

Lab Sample ID: 890-5939-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	70640	01/11/24 12:30	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70626	01/11/24 21:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70770	01/11/24 21:59	SM	EET MID
Total/NA	Analysis	8015 NM		1			70743	01/11/24 23:30	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	70655	01/11/24 13:50	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70619	01/11/24 23:30	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	70612	01/10/24 17:01	SA	EET MID
Soluble	Analysis	300.0		10			70696	01/11/24 23:00	CH	EET MID

Client Sample ID: B E S 24 - 09

Date Collected: 01/09/24 13:20

Date Received: 01/10/24 08:55

Lab Sample ID: 890-5939-2

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 70640 01/11/24 12:30 Total/NA Prep 4.98 g 5 mL EL EET MID 8021B Total/NA 5 mL 70626 01/11/24 22:20 **EET MID** Analysis 1 5 mL MNR Total/NA Total BTEX 70770 01/11/24 22:20 SM Analysis 1 **EET MID** Total/NA Analysis 8015 NM 70743 01/11/24 23:51 SM **EET MID** Total/NA 9.98 g 70655 01/11/24 13:50 EET MID Prep 8015NM Prep 10 mL TKC Total/NA Analysis 8015B NM 1 uL 1 uL 70619 01/11/24 23:51 SM **EET MID** 70612 Soluble 01/10/24 17:01 Leach DI Leach 4.95 g 50 mL SA **EET MID** Soluble Analysis 300.0 20 70696 01/11/24 23:05 СН **EET MID**

Client Sample ID: B E S 24 - 10

Date Collected: 01/09/24 13:25

Date Received: 01/10/24 08:55

Lab Sample ID: 890-5939-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	70640	01/11/24 12:30	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70626	01/11/24 22:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70770	01/11/24 22:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			70743	01/12/24 00:14	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	70655	01/11/24 13:50	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70619	01/12/24 00:14	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	70612	01/10/24 17:01	SA	EET MID
Soluble	Analysis	300.0		20			70696	01/11/24 23:10	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

 Client: Vertex
 Job ID: 890-5939-1

 Project/Site: PLU 29 BS WEST CTB
 SDG: 23 - E - 05485

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
0 ,		ut the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
for which the agency do	oes not offer certification. Prep Method	Matrix	Analyte	
8015 NM	1 TOP MOUNTOU	Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

2

5

4

O

7

9

11

12

Method Summary

Client: Vertex

Project/Site: PLU 29 BS WEST CTB

Job ID: 890-5939-1

SDG: 23 - E - 05485

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

2

3

- -

6

9

Sample Summary

Client: Vertex

Project/Site: PLU 29 BS WEST CTB

Job ID: 890-5939-1

SDG: 23 - E - 05485

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5939-1	B E S 24 - 07	Solid	01/09/24 09:45	01/10/24 08:55	0.5'
890-5939-2	B E S 24 - 09	Solid	01/09/24 13:20	01/10/24 08:55	0.5'
890-5939-3	B E S 24 - 10	Solid	01/09/24 13:25	01/10/24 08:55	0.5'

4

O

q

10

12

13

Revised Date: 08/25/2020 Rev 2020 2

Date/Time

Received by: (Signature)

1

1

2

3

4

6 7

9

11 12

13

Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Environment Testing

💸 eurofins

Xenco

Work Order No: 18/8831001

Company Name: VECTEX Address: On File	30%	Bill to: (if different)	Garrett Green	Work Order Comments	mments
7.0		Company Name:	XTO	Program: UST/PST PRP	Brownfields ☐ RRC ☐ Superfund ☐
		Address:	On File		[
CITY, State 2IP:		City, State ZIP:	/		PST/UST TRRP L Level IV
Phone:	Email:	Colixon Durrey. Ca	MITTER.CO	Deliverables: EDD ADaPT	יז ☐ Other:
Project Name: DLI 29 RT WELLCH'R		Turn Around		ANALYSIS REQUEST	Preservative Codes
er:	Rout	Rush 43 Code			None: NO DI Water: H ₂ O
	Due Date:	1112124			10
Sampler's Name: ΔC	TAT starts the	TAT starts the day received by the lab, if received by 4:30pm			H ₂ SO ₄ : H ₂ NaOH: Na
SAMPLE RECEIPT Femp Blank:	Yes No Wet Ice:	Yes No	5.	890-5939 Chain of Custody	H ₃ PO ₄ :HP
	Thermometer ID:	THIND)	7 C		NaHSO 4: NABIS
Yes No N/A	Correction Factor:	20.0	25		Na25203: NaSO 3
Sample Custody Seals: Yes No N/A	Temperature Reading:	0.6-	X3		Zn Acetate+NaOH: Zn
Total Containers:	Corrected Temperature:	-3.8	HC		NaOH+Ascorbic Acid: SAPC
Sample Identification Matrix	Date Time Sampled Sampled	Depth Grab/ # of	/) // //		Sample Comments
865CV-07 SOV	50:4 4215/1KOS	9	7		
BE524-00	1 13:20 0	1 / 150	1/		
13 5524-10	13:58	7 / 20	7		
		1.11		VII ON TO SEA OF THE CONTRACT	TI Sp. 11 V. 7p.

mum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Relinquished by: (Signature)

Relinquished by: (Signature)

Received by: (Signature)

Date/Time

1/12/2024

Login Sample Receipt Checklist

 Client: Vertex
 Job Number: 890-5939-1

 SDG Number: 23 - E - 05485

Login Number: 5939 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

2 100 *0j* 307

2

1

_

8

10

15

13

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5939-1 SDG Number: 23 - E - 05485

List Source: Eurofins Midland

List Creation: 01/11/24 11:21 AM

Login Number: 5939 List Number: 2

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Released to Imaging: 7/30/2024 4:40:16 PM

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 1/19/2024 2:13:46 PM

JOB DESCRIPTION

PLU 29 BIG SINK WEST CTB 23E-05485

JOB NUMBER

890-5975-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 1/19/2024 2:13:46 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Companies

Client: Vertex Laboratory Job ID: 890-5975-1
Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Racaint Chacklists	23

-

7

8

10

11

13

Definitions/Glossary

Client: Vertex Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB

SDG: 23E-05485

Qualifiers

GC VOA

Qualifier **Qualifier Description** S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

LOD

LOQ

<u> </u>	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Limit of Quantitation (DoD/DOE)

Limit of Detection (DoD/DOE)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit** PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 890-5975-1

Project: PLU 29 BIG SINK WEST CTB

Eurofins Carlsbad Job ID: 890-5975-1

Job Narrative 890-5975-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/16/2024 9:33 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -7.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BES 24 - 13 (890-5975-1), BES 24 - 14 (890-5975-2), BES 24 - 15 (890-5975-3) and BES 24 - 16 (890-5975-4).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71092 and analytical batch 880-71087 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (880-38036-A-1-E), (880-38036-A-1-F MS) and (880-38036-A-1-G MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (880-38105-A-13-B MDLV) and (880-38105-A-14-B MDLV). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-71122 and analytical batch 880-71082 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD NM: The continuing calibration verification (CCV) associated with batch 880-71082 recovered below the lower control limit for Diesel Range Organics (Over C10-C28). An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-71082/47).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-71073 and analytical batch 880-71091 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-5975-1

Client: Vertex

Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Client Sample ID: BES 24 - 13

Date Collected: 01/12/24 09:20 Date Received: 01/16/24 09:33

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 11:56	
Toluene	<0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 11:56	•
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 11:56	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/18/24 09:37	01/18/24 11:56	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 11:56	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/18/24 09:37	01/18/24 11:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	85		70 - 130			01/18/24 09:37	01/18/24 11:56	1
1,4-Difluorobenzene (Surr)	110		70 - 130			01/18/24 09:37	01/18/24 11:56	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
		O 116	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	KL	Ollit		ricparca	7 tilaly 20 a	
Total BTEX	<0.00398	U	0.00398	mg/Kg		Tropulcu	01/18/24 11:56	1
	<0.00398	U	0.00398		<u></u> D	Prepared		1
Total BTEX Method: SW846 8015 NM - Diese	<0.00398	ics (DRO) (Qualifier	0.00398 GC)	mg/Kg		<u> </u>	01/18/24 11:56	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	<0.00398 Range Organ Result <49.7	ics (DRO) (Qualifier	0.00398 GC) RL 49.7	mg/Kg		<u> </u>	01/18/24 11:56 Analyzed	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte	<0.00398 Range Organ Result <49.7 sel Range Orga	ics (DRO) (Qualifier	0.00398 GC) RL 49.7	mg/Kg		<u> </u>	01/18/24 11:56 Analyzed	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	<0.00398 Range Organ Result <49.7 sel Range Orga	ics (DRO) (Qualifier Unics (DRO) Qualifier	0.00398 GC) RL 49.7 (GC)	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	01/18/24 11:56 Analyzed 01/18/24 20:43	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<0.00398 Range Organ Result <49.7 Sel Range Orga Result	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	0.00398 GC) RL 49.7 (GC) RL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	01/18/24 11:56 Analyzed 01/18/24 20:43 Analyzed	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	<0.00398 Plange Organ Result <49.7 Result <49.7 Result <49.7	ics (DRO) (Qualifier U nics (DRO) Qualifier U U U U	0.00398 GC) RL 49.7 (GC) RL 49.7	unit mg/Kg Unit mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared 01/18/24 13:49	01/18/24 11:56 Analyzed 01/18/24 20:43 Analyzed 01/18/24 20:43	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<0.00398 Plange Organ Result <49.7 Sel Range Orga Result <49.7 <49.7 <49.7	ics (DRO) (Qualifier U nics (DRO) Qualifier U U U U	0.00398 GC) RL 49.7 (GC) RL 49.7 49.7	unit mg/Kg Unit mg/Kg unit mg/Kg mg/Kg	<u>D</u>	Prepared Prepared 01/18/24 13:49 01/18/24 13:49	O1/18/24 11:56 Analyzed O1/18/24 20:43 Analyzed O1/18/24 20:43 O1/18/24 20:43	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<0.00398 I Range Organ Result <49.7 sel Range Orga Result <49.7 <49.7	ics (DRO) (Qualifier U nics (DRO) Qualifier U U U U	0.00398 RL 49.7 (GC) RL 49.7 49.7 49.7	unit mg/Kg Unit mg/Kg unit mg/Kg mg/Kg	<u>D</u>	Prepared Prepared 01/18/24 13:49 01/18/24 13:49	O1/18/24 11:56 Analyzed O1/18/24 20:43 Analyzed O1/18/24 20:43 O1/18/24 20:43 O1/18/24 20:43	Dil Fac

Client Sample ID: BES 24 - 14

Date Collected: 01/12/24 09:25

Date Received: 01/16/24 09:33

Sample Depth: 0.5'

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 12:17	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 12:17	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 12:17	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/18/24 09:37	01/18/24 12:17	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 12:17	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/18/24 09:37	01/18/24 12:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			01/18/24 09:37	01/18/24 12:17	1

RL

50.4

Unit

mg/Kg

D

Prepared

Analyzed

01/18/24 09:19

Lab Sample ID: 890-5975-2

Dil Fac

Matrix: Solid

Result Qualifier

2420

Matrix: Solid

Client: Vertex

Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Client Sample ID: BES 24 - 14 Lab Sample ID: 890-5975-2

Date Collected: 01/12/24 09:25 Date Received: 01/16/24 09:33

Sample Depth: 0.5'

Method: SW846 8021B -	Volatile Organic	Compounds (GC)	(Continued)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	113	70 - 130	01/18/24 09:37	01/18/24 12:17	1

Method: TAI	SOP Total BTEX	- Total BTFX	Calculation
Mictilou. IAL	- OOI TOTAL DIEA	- IOIGI DIEA	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			01/18/24 12:17	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/18/24 21:03	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

			()					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		01/18/24 13:49	01/18/24 21:03	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/18/24 13:49	01/18/24 21:03	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/18/24 13:49	01/18/24 21:03	1
Surrogato	%Pacayany	Qualifier	l imite			Propared	Analyzod	Dil Eac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	84	70 - 130	01/18/24 13:49	01/18/24 21:03	1
o-Terphenyl	85	70 - 130	01/18/24 13:49	01/18/24 21:03	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2320	49.7	mg/Kg			01/18/24 09:34	10

Client Sample ID: BES 24 - 15

Date Collected: 01/12/24 12:30 Date Received: 01/16/24 09:33

Sample Depth: 0.5'

Method: SW946 9021B Veletile Organic Compounds (CC)

Method: SW846 8021B - Volati	ethod: SW846 8021B - Volatile Organic Compounds (GC)									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	<0.00198	U	0.00198	mg/Kg		01/18/24 09:37	01/18/24 12:37	1		
Toluene	<0.00198	U	0.00198	mg/Kg		01/18/24 09:37	01/18/24 12:37	1		
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		01/18/24 09:37	01/18/24 12:37	1		
m-Xylene & p-Xylene	<0.00397	U	0.00397	mg/Kg		01/18/24 09:37	01/18/24 12:37	1		
o-Xylene	<0.00198	U	0.00198	mg/Kg		01/18/24 09:37	01/18/24 12:37	1		
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		01/18/24 09:37	01/18/24 12:37	1		
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	101		70 - 130			01/18/24 09:37	01/18/24 12:37	1		
1,4-Difluorobenzene (Surr)	112		70 - 130			01/18/24 09:37	01/18/24 12:37	1		

Method: TAI	SOP Total BTFX	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00397	U	0.00397	mg/Kg			01/18/24 12:37	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3	mg/Kg			01/18/24 21:24	1

Eurofins Carlsbad

Lab Sample ID: 890-5975-3

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-5975-3

Client: Vertex

Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Client Sample ID: BES 24 - 15

Date Collected: 01/12/24 12:30 Date Received: 01/16/24 09:33

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3	mg/Kg		01/18/24 13:49	01/18/24 21:24	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.3	U	50.3	mg/Kg		01/18/24 13:49	01/18/24 21:24	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		01/18/24 13:49	01/18/24 21:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	75		70 - 130			01/18/24 13:49	01/18/24 21:24	1
o-Terphenyl	74		70 - 130			01/18/24 13:49	01/18/24 21:24	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BES 24 - 16 Lab Sample ID: 890-5975-4 Date Collected: 01/12/24 12:35 Matrix: Solid

Date Received: 01/16/24 09:33

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 12:58	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 12:58	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 12:58	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/18/24 09:37	01/18/24 12:58	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		01/18/24 09:37	01/18/24 12:58	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/18/24 09:37	01/18/24 12:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			01/18/24 09:37	01/18/24 12:58	1
1,4-Difluorobenzene (Surr)	105		70 - 130			01/18/24 09:37	01/18/24 12:58	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/18/24 12:58	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	510		50.5	mg/Kg			01/18/24 21:45	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		01/18/24 13:49	01/18/24 21:45	1
Diesel Range Organics (Over C10-C28)	510		50.5	mg/Kg		01/18/24 13:49	01/18/24 21:45	1
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		01/18/24 13:49	01/18/24 21:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	72		70 - 130			01/18/24 13:49	01/18/24 21:45	1
o-Terphenyl	74		70 - 130			01/18/24 13:49	01/18/24 21:45	1

Client Sample Results

Client: Vertex Job ID: 890-5975-1
Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Client Sample ID: BES 24 - 16 Lab Sample ID: 890-5975-4

Date Collected: 01/12/24 12:35

Date Received: 01/16/24 09:33

Matrix: Solid

Sample Depth: 0.5'

	Method: EPA 300.0 - Anions, Ion Chromatography - Soluble								
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	6060		99.4	mg/Kg			01/18/24 09:45	20

4

6

8

10

12

13

Surrogate Summary

Client: Vertex Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-5975-1	BES 24 - 13	85	110	
890-5975-1 MS	BES 24 - 13	95	97	
890-5975-1 MSD	BES 24 - 13	107	102	
390-5975-2	BES 24 - 14	98	113	
390-5975-3	BES 24 - 15	101	112	
890-5975-4	BES 24 - 16	102	105	
_CS 880-71092/1-A	Lab Control Sample	93	104	
_CSD 880-71092/2-A	Lab Control Sample Dup	103	98	
MB 880-71092/5-A	Method Blank	125	146 S1+	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-38036-A-1-F MS	Matrix Spike	75	69 S1-	
880-38036-A-1-G MSD	Matrix Spike Duplicate	76	69 S1-	
890-5975-1	BES 24 - 13	77	78	
890-5975-2	BES 24 - 14	84	85	
890-5975-3	BES 24 - 15	75	74	
890-5975-4	BES 24 - 16	72	74	
LCS 880-71122/2-A	Lab Control Sample	95	114	
LCSD 880-71122/3-A	Lab Control Sample Dup	88	104	
MB 880-71122/1-A	Method Blank	97	103	

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Client: Vertex Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-71092/5-A

Matrix: Solid

Analysis Batch: 71087

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 71092

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 11:28	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 11:28	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 11:28	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/18/24 09:37	01/18/24 11:28	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/18/24 09:37	01/18/24 11:28	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/18/24 09:37	01/18/24 11:28	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	125	70 - 130	01/18/24 09:37	01/18/24 11:28	
1,4-Difluorobenzene (Surr)	146 S1+	70 - 130	01/18/24 09:37	01/18/24 11:28	

Lab Sample ID: LCS 880-71092/1-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 71087

Prep Type: Total/NA Prep Batch: 71092

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1076		mg/Kg		108	70 - 130	
Toluene	0.100	0.1029		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.09780		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	0.200	0.2105		mg/Kg		105	70 - 130	
o-Xylene	0.100	0.1046		mg/Kg		105	70 - 130	

LCS LCS

Surrogate	%Recovery Qu	alifier Limits
4-Bromofluorobenzene (Surr)	93	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: LCSD 880-71092/2-A

Matrix: Solid

Analysis Batch: 71087

Prep Type: Total/NA Prep Batch: 71092

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1026		mg/Kg		103	70 - 130	5	35
Toluene	0.100	0.09557		mg/Kg		96	70 - 130	7	35
Ethylbenzene	0.100	0.09616		mg/Kg		96	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.2111		mg/Kg		106	70 - 130	0	35
o-Xylene	0.100	0.1054		mg/Kg		105	70 - 130	1	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	103	70 - 130
1,4-Difluorobenzene (Surr)	98	70 - 130

Lab Sample ID: 890-5975-1 MS

Matrix: Solid

Analysis Batch: 71087

Client Sample ID: BES 24 - 13

Prep Type: Total/NA

Prep Batch: 71092

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.1026		mg/Kg	_	103	70 - 130	
Toluene	< 0.00199	U	0.0996	0.09372		mg/Kg		94	70 - 130	

QC Sample Results

Client: Vertex Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-59

Matrix: Solid

Analysis Batch: 71087

975-1 MS	Client Sample ID: BES 24 - 13	

Prep Type: Total/NA

Prep Batch: 71092

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00199	U	0.0996	0.08595		mg/Kg		86	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.199	0.1735		mg/Kg		87	70 - 130	
o-Xylene	<0.00199	U	0.0996	0.09429		mg/Kg		94	70 - 130	

MS MS

Surrogate	%Recovery Qualifie	r Limits
4-Bromofluorobenzene (Surr)	95	70 - 130
1,4-Difluorobenzene (Surr)	97	70 - 130

Lab Sample ID: 890-5975-1 MSD

Matrix: Solid

Analysis Batch: 71087

Client Sample ID: BES 24 - 13 Prep Type: Total/NA

Prep Batch: 71092

Sample Sample Spike MSD MSD RPD %Rec Result Qualifier Added Result Qualifier RPD Limit Analyte Unit Limits 0.0990 101 Benzene <0.00199 U 0.1004 mg/Kg 70 - 130 2 35 Toluene <0.00199 U 0.0990 0.09078 35 mg/Kg 92 70 - 130 3 Ethylbenzene <0.00199 U 0.0990 0.09219 mg/Kg 93 70 - 130 35 <0.00398 U 0.198 0.2034 103 70 - 130 35 m-Xylene & p-Xylene mg/Kg 16 0.0990 98 <0.00199 U 0.09806 70 - 130 o-Xylene mg/Kg

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-71122/1-A

Matrix: Solid

Analysis Batch: 71082

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 71122

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/18/24 13:49	01/18/24 18:37	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/18/24 13:49	01/18/24 18:37	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/18/24 13:49	01/18/24 18:37	1

MB MB

--- ---

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130	01/18/24 13:49	01/18/24 18:37	1
o-Terphenyl	103		70 - 130	01/18/24 13:49	01/18/24 18:37	1

Lab Sample ID: LCS 880-71122/2-A

Matrix: Solid

Analysis Batch: 71082

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 71122

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	925.5		mg/Kg		93	70 - 130	 _
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	912.6		mg/Kg		91	70 - 130	
C10-C28)								

o-Terphenyl

Client: Vertex Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

114

Lab Sample ID: LCS 880-71122/2-A Client Sample ID: Lab Control Sample

Matrix: Solid Prep Type: Total/NA Analysis Batch: 71082 Prep Batch: 71122

70 - 130

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 95 70 - 130

Lab Sample ID: LCSD 880-71122/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 71082 Prep Batch: 71122

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1000 962.9 96 70 - 13020 Gasoline Range Organics mg/Kg 4 (GRO)-C6-C10 Diesel Range Organics (Over 1000 906.8 91 mg/Kg 70 - 13020 C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 88 104 70 - 130 o-Terphenyl

Lab Sample ID: 880-38036-A-1-F MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 71082 Prep Batch: 71122 Sample Sample Spike MS MS

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <50.1 U 1010 738.9 mg/Kg 70 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.1 UF1 1010 690.4 F1 mg/Kg 65 70 - 130 C10-C28)

MS MS

%Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 75 70 - 130 o-Terphenyl 69 S1-

Lab Sample ID: 880-38036-A-1-G MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Total/NA Analysis Batch: 71082

Sample Sample MSD MSD Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD U 1010 748.5 Gasoline Range Organics <50.1 mg/Kg 71 70 - 130 20

(GRO)-C6-C10 Diesel Range Organics (Over <50.1 UF1 1010 691.6 F1 mg/Kg 65 70 - 130 20 C10-C28)

MSD MSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 76 70 - 130 69 S1-70 - 130 o-Terphenyl

Released to Imaging: 7/30/2024 4:40:16 PM

Eurofins Carlsbad

Prep Batch: 71122

Client: Vertex Project/Site: PLU 29 BIG SINK WEST CTB

Job ID: 890-5975-1

SDG: 23E-05485

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-71073/1-A

Matrix: Solid

Analysis Batch: 71091

Client Sample ID: Method Blank **Prep Type: Soluble**

MB MB

Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 01/18/24 08:12

Lab Sample ID: LCS 880-71073/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 71091

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits

Chloride 250 229.7 mg/Kg 92 90 - 110

Lab Sample ID: LCSD 880-71073/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Soluble

Analysis Batch: 71091

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 230.9 mg/Kg 90 - 110

Lab Sample ID: 880-38036-A-1-C MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 71091

Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier %Rec Unit Limits 598.6 F1 Chloride 393 F1 249 82 90 - 110 mg/Kg

Lab Sample ID: 880-38036-A-1-D MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 71091

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 393 F1 249 600.4 F1 mg/Kg 83 90 - 110 0 20

QC Association Summary

Client: Vertex Job ID: 890-5975-1
Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

GC VOA

Analysis Batch: 71087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5975-1	BES 24 - 13	Total/NA	Solid	8021B	71092
890-5975-2	BES 24 - 14	Total/NA	Solid	8021B	71092
890-5975-3	BES 24 - 15	Total/NA	Solid	8021B	71092
890-5975-4	BES 24 - 16	Total/NA	Solid	8021B	71092
MB 880-71092/5-A	Method Blank	Total/NA	Solid	8021B	71092
LCS 880-71092/1-A	Lab Control Sample	Total/NA	Solid	8021B	71092
LCSD 880-71092/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71092
890-5975-1 MS	BES 24 - 13	Total/NA	Solid	8021B	71092
890-5975-1 MSD	BES 24 - 13	Total/NA	Solid	8021B	71092

Prep Batch: 71092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-5975-1	BES 24 - 13	Total/NA	Solid	5035	
890-5975-2	BES 24 - 14	Total/NA	Solid	5035	
890-5975-3	BES 24 - 15	Total/NA	Solid	5035	
890-5975-4	BES 24 - 16	Total/NA	Solid	5035	
MB 880-71092/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71092/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-71092/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5975-1 MS	BES 24 - 13	Total/NA	Solid	5035	
890-5975-1 MSD	BES 24 - 13	Total/NA	Solid	5035	

Analysis Batch: 71221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	1
890-5975-1	BES 24 - 13	Total/NA	Solid	Total BTEX	
890-5975-2	BES 24 - 14	Total/NA	Solid	Total BTEX	
890-5975-3	BES 24 - 15	Total/NA	Solid	Total BTEX	
890-5975-4	BES 24 - 16	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 71082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5975-1	BES 24 - 13	Total/NA	Solid	8015B NM	71122
890-5975-2	BES 24 - 14	Total/NA	Solid	8015B NM	71122
890-5975-3	BES 24 - 15	Total/NA	Solid	8015B NM	71122
890-5975-4	BES 24 - 16	Total/NA	Solid	8015B NM	71122
MB 880-71122/1-A	Method Blank	Total/NA	Solid	8015B NM	71122
LCS 880-71122/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	71122
LCSD 880-71122/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	71122
880-38036-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	71122
880-38036-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	71122

Prep Batch: 71122

Lab Sample ID 890-5975-1	Client Sample ID BES 24 - 13	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
890-5975-2	BES 24 - 14	Total/NA	Solid	8015NM Prep	
890-5975-3	BES 24 - 15	Total/NA	Solid	8015NM Prep	
890-5975-4	BES 24 - 16	Total/NA	Solid	8015NM Prep	
MB 880-71122/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-71122/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Vertex Job ID: 890-5975-1
Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

GC Semi VOA (Continued)

Prep Batch: 71122 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-71122/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-38036-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-38036-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 71163

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
890-5975-1	BES 24 - 13	Total/NA	Solid	8015 NM
890-5975-2	BES 24 - 14	Total/NA	Solid	8015 NM
890-5975-3	BES 24 - 15	Total/NA	Solid	8015 NM
890-5975-4	BES 24 - 16	Total/NA	Solid	8015 NM

HPLC/IC

Leach Batch: 71073

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5975-1	BES 24 - 13	Soluble	Solid	DI Leach	
890-5975-2	BES 24 - 14	Soluble	Solid	DI Leach	
890-5975-3	BES 24 - 15	Soluble	Solid	DI Leach	
890-5975-4	BES 24 - 16	Soluble	Solid	DI Leach	
MB 880-71073/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71073/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71073/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-38036-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-38036-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 71091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5975-1	BES 24 - 13	Soluble	Solid	300.0	71073
890-5975-2	BES 24 - 14	Soluble	Solid	300.0	71073
890-5975-3	BES 24 - 15	Soluble	Solid	300.0	71073
890-5975-4	BES 24 - 16	Soluble	Solid	300.0	71073
MB 880-71073/1-A	Method Blank	Soluble	Solid	300.0	71073
LCS 880-71073/2-A	Lab Control Sample	Soluble	Solid	300.0	71073
LCSD 880-71073/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71073
880-38036-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	71073
880-38036-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	71073

Client: Vertex

Project/Site: PLU 29 BIG SINK WEST CTB

Job ID: 890-5975-1 SDG: 23E-05485

Client Sample ID: BES 24 - 13

Date Collected: 01/12/24 09:20 Date Received: 01/16/24 09:33

Lab Sample ID: 890-5975-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	71092	01/18/24 09:37	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71087	01/18/24 11:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71221	01/18/24 11:56	SM	EET MID
Total/NA	Analysis	8015 NM		1			71163	01/18/24 20:43	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	71122	01/18/24 13:49	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71082	01/18/24 20:43	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	71073	01/17/24 15:48	SA	EET MID
Soluble	Analysis	300.0		10			71091	01/18/24 09:19	CH	EET MID

Client Sample ID: BES 24 - 14

Date Collected: 01/12/24 09:25

Date Received: 01/16/24 09:33

Lab Sample ID: 890-5975-2

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 71092 01/18/24 09:37 Total/NA Prep 5.01 g 5 mL MNR EET MID 8021B Total/NA 5 mL 01/18/24 12:17 **EET MID** Analysis 1 5 mL 71087 MNR Total/NA Total BTEX 71221 01/18/24 12:17 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 71163 01/18/24 21:03 SM **EET MID** Total/NA 71122 01/18/24 13:49 TKC EET MID Prep 8015NM Prep 10.02 g 10 mL Total/NA Analysis 8015B NM 1 uL 1 uL 71082 01/18/24 21:03 SM **EET MID** 71073 Soluble 5.03 g 01/17/24 15:48 Leach DI Leach 50 mL SA **EET MID** Soluble Analysis 300.0 10 71091 01/18/24 09:34 СН **EET MID**

Client Sample ID: BES 24 - 15

Date Collected: 01/12/24 12:30

Date Received: 01/16/24 09:33

Lab Sample ID: 890-5975-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	71092	01/18/24 09:37	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71087	01/18/24 12:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71221	01/18/24 12:37	SM	EET MID
Total/NA	Analysis	8015 NM		1			71163	01/18/24 21:24	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	71122	01/18/24 13:49	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71082	01/18/24 21:24	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	71073	01/17/24 15:48	SA	EET MID
Soluble	Analysis	300.0		10			71091	01/18/24 09:39	CH	EET MID

Client Sample ID: BES 24 - 16

Date Collected: 01/12/24 12:35

Date Received: 01/16/24 09:33

Lab Sample ID: 890-5975-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71092	01/18/24 09:37	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71087	01/18/24 12:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71221	01/18/24 12:58	SM	EET MID

Lab Chronicle

Client: Vertex Job ID: 890-5975-1 Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Client Sample ID: BES 24 - 16

Lab Sample ID: 890-5975-4 Date Collected: 01/12/24 12:35

Matrix: Solid

Date Received: 01/16/24 09:33

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			71163	01/18/24 21:45	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	71122	01/18/24 13:49	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71082	01/18/24 21:45	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	71073	01/17/24 15:48	SA	EET MID
Soluble	Analysis	300.0		20			71091	01/18/24 09:45	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Vertex Job ID: 890-5975-1
Project/Site: PLU 29 BIG SINK WEST CTB SDG: 23E-05485

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date 06-30-24
Texas	NELAI)	T104704400-23-26	
The following analytes	are included in this report hu	t the laboratory is not certif	ied by the governing authority. This lis	st may include analyt
,	oes not offer certification.	t and laboratory to flot doran	iod by the governing duthonly. This ha	a may molado analy c
,		Matrix	Analyte	ic may morado diraly c
for which the agency de	oes not offer certification.	•	, , ,	

4

6

8

10

1 1

13

Method Summary

Client: Vertex

Project/Site: PLU 29 BIG SINK WEST CTB

Job ID: 890-5975-1

SDG: 23E-05485

ooratory	
T MID	
TMID	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 7/30/2024 4:40:16 PM

Sample Summary

Client: Vertex

Project/Site: PLU 29 BIG SINK WEST CTB

Job ID: 890-5975-1 SDG: 23E-05485

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5975-1	BES 24 - 13	Solid	01/12/24 09:20	01/16/24 09:33	0.5'
890-5975-2	BES 24 - 14	Solid	01/12/24 09:25	01/16/24 09:33	0.5'
890-5975-3	BES 24 - 15	Solid	01/12/24 12:30	01/16/24 09:33	0.5'
890-5975-4	BES 24 - 16	Solid	01/12/24 12:35	01/16/24 09:33	0.5'

Date 08/25/2020 Rev 2020

Date/Time

Received by: (Signature)

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Environment Testing

eurofins

Xenco

Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296

Work Order No: 181833400

Level IV Superfund DI Water: H₂O HNO 3: HN NaOH: Na MeOH: Me NaOH+Ascorbic Acid: SAPC Sample Comments Preservative Codes Zn Acetate+NaOH: Zn TRRP [RRC Na 2 S 2 O 3: Na SO 3 Other: Se Ag SiO₂ Na Sr Tl Sn U V Zn NaHSO 4: NABIS Hg: 1631 / 245.1 / 7470 / 7471 PST/UST H3PO 4: HP Brownfields 🗌 None: NO Page H2504: H Cool: Cool Work Order Comments HCL: HC ADaPT www.xenco.com Reporting: Level II Level III UST/PST | PRP EDD State of Project: ¥ Deliverables: 8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni TCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U 890-5975 Chain of Custody ANALYSIS REQUEST John とてる and ×10 Cont # of 4 G. J Pres. Code Parameters Bill to: (if different) Company Name: Rush 72 Grab/ Tundo 115/1 City, State ZIP: TAT starts the day received by the lab, if received by 4:30pm -7.8 Yes No 0 0 Address: Depth Turn Around 0 Email: Due Date: 8:30 Corrected Temperature: Sampled Wet Ice: Time Temperature Reading: Correction Factor: hermometer ID: 300 1 41 1C Sampled Yes No Date Circle Method(s) and Metal(s) to be analyzed Chonce Dixon Matrix heuravan A/A/ Temp Blank: Yes No CALLA Year No 200.8 / 6020: 129 Bin Yes No V. P. P. Sample Identification Samples Received Intact: Total 200.7 / 6010 Sample Custody Seals: Cooler Custody Seals: SAMPLE RECEIPT Company Name: Project Number. roject Location: Sampler's Name: Fotal Containers: roject Manager City, State ZIP: roject Name: Address: Phone :# 00

um charge of 885.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated loicice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control f Eurofins Xenco. A m

Relinquished by: (Signature) 2933 16/26 Junionon Corto Relinquished by: (Signature)

Date/Time Recoived by: (Signature)

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-5975-1 SDG Number: 23E-05485

Login Number: 5975 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

Login Sample Receipt Checklist

Client: Vertex

SDG Number: 23E-05485

Job Number: 890-5975-1

Login Number: 5975 **List Source: Eurofins Midland** List Number: 2 List Creation: 01/17/24 12:03 PM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Chance Dixon Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 1/26/2024 4:23:14 PM

JOB DESCRIPTION

PLU 29 Big Sink West 23c-05485

JOB NUMBER

890-6015-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 1/26/2024 4:23:14 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Vertex Laboratory Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West SDG: 23c-05485

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Campio Cammary	19
Chain of Custody	20
Receipt Checklists	

Definitions/Glossary

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West

SDG: 23c-05485

Qualifiers

GC VOA

Qualifier **Qualifier Description** LCS and/or LCSD is outside acceptance limits, high biased.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit

Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 890-6015-1

Project: PLU 29 Big Sink West

Job ID: 890-6015-1 Eurofins Carlsbad

Job Narrative 890-6015-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/23/2024 8:23 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: WES 24-05 (890-6015-1) and WES 24-06 (890-6015-2).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: (CCV 880-71559/20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Released to Imaging: 7/30/2024 4:40:16 PM

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-71470 and analytical batch 880-71515 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

9

J

4

5

7

9

11

4.0

Client Sample Results

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West SDG: 23c-05485

Client Sample ID: WES 24-05 Lab Sample ID: 890-6015-1 Date Collected: 01/22/24 14:30 Matrix: Solid Date Received: 01/23/24 08:23

Sample Depth: 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:24	
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:24	
Ethylbenzene	< 0.00199	U *+	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:24	
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/25/24 14:04	01/26/24 02:24	
o-Xylene	< 0.00199	U *+	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:24	
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/25/24 14:04	01/26/24 02:24	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	87		70 - 130			01/25/24 14:04	01/26/24 02:24	
1,4-Difluorobenzene (Surr)	82		70 - 130			01/25/24 14:04	01/26/24 02:24	
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/26/24 02:24	
Mothod: SW946 9045 NM Diggs	al Banga Organ	ico (DBO) (20)					
Method: SW846 8015 NM - Diese Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	88.9		50.0	 mg/Kg			01/26/24 03:39	
10411111	00.0		00.0					
							0.72072.00.00	
Method: SW846 8015B NM - Die:	sel Range Orga	nics (DRO)	(GC)				0.720/2.7 00:00	
		nics (DRO) Qualifier	(GC)	Unit	D	Prepared	Analyzed	
Analyte Gasoline Range Organics		Qualifier	• •	Unit mg/Kg	<u>D</u>	Prepared 01/25/24 08:57		Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier	RL		<u>D</u>	<u>·</u>	Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U	RL 50.0	mg/Kg	<u>D</u>	01/25/24 08:57	Analyzed 01/26/24 03:39	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 88.9	Qualifier U	RL 50.0	mg/Kg	<u> </u>	01/25/24 08:57 01/25/24 08:57	Analyzed 01/26/24 03:39 01/26/24 03:39 01/26/24 03:39	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0 88.9 <50.0	Qualifier U	RL 50.0 50.0 50.0	mg/Kg	<u>D</u>	01/25/24 08:57 01/25/24 08:57 01/25/24 08:57	Analyzed 01/26/24 03:39 01/26/24 03:39	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U	50.0 50.0 50.0 <i>Limits</i>	mg/Kg	<u>D</u>	01/25/24 08:57 01/25/24 08:57 01/25/24 08:57 <i>Prepared</i>	Analyzed 01/26/24 03:39 01/26/24 03:39 01/26/24 03:39 Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	Result	Qualifier U Qualifier	RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg	<u> </u>	01/25/24 08:57 01/25/24 08:57 01/25/24 08:57 Prepared 01/25/24 08:57	Analyzed 01/26/24 03:39 01/26/24 03:39 01/26/24 03:39 Analyzed 01/26/24 03:39	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U Qualifier	RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg	<u>D</u>	01/25/24 08:57 01/25/24 08:57 01/25/24 08:57 Prepared 01/25/24 08:57	Analyzed 01/26/24 03:39 01/26/24 03:39 01/26/24 03:39 Analyzed 01/26/24 03:39	Dil Fa

Client Sample ID: WES 24-06 Lab Sample ID: 890-6015-2

Date Collected: 01/22/24 12:10 Date Received: 01/23/24 08:23

Sample Depth: 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:44	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:44	1
Ethylbenzene	<0.00199	U *+	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:44	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/25/24 14:04	01/26/24 02:44	1
o-Xylene	<0.00199	U *+	0.00199	mg/Kg		01/25/24 14:04	01/26/24 02:44	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/25/24 14:04	01/26/24 02:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130			01/25/24 14:04	01/26/24 02:44	1

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-6015-2

Client Sample Results

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West SDG: 23c-05485

Client Sample ID: WES 24-06

Date Collected: 01/22/24 12:10 Date Received: 01/23/24 08:23

Analyte

Chloride

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	78		70 - 130			01/25/24 14:04	01/26/24 02:44	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/26/24 02:44	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			01/26/24 04:01	•
: Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					•
Method: SW846 8015B NM - Dies	sel Range Orga Result	nics (DRO) Qualifier	(GC)	mg/Kg Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	sel Range Orga	nics (DRO) Qualifier	(GC)		<u>D</u>	Prepared 01/25/24 08:57		Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Orga Result	nics (DRO) Qualifier	(GC)	Unit	<u>D</u>		Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <49.8	nics (DRO) Qualifier	(GC) RL 49.8	Unit mg/Kg	<u>D</u>	01/25/24 08:57	Analyzed 01/26/24 04:01	Dil Fa
	sel Range Orga Result <49.8	nics (DRO) Qualifier U	(GC) RL 49.8	Unit mg/Kg	<u> </u>	01/25/24 08:57	Analyzed 01/26/24 04:01	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <49.8	nics (DRO) Qualifier U	(GC) RL 49.8	Unit mg/Kg mg/Kg	<u> </u>	01/25/24 08:57 01/25/24 08:57	Analyzed 01/26/24 04:01 01/26/24 04:01	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <49.8 <49.8	nics (DRO) Qualifier U	(GC) RL 49.8 49.8 49.8	Unit mg/Kg mg/Kg	<u>D</u>	01/25/24 08:57 01/25/24 08:57 01/25/24 08:57	Analyzed 01/26/24 04:01 01/26/24 04:01 01/26/24 04:01	

49.9

Unit

mg/Kg

Prepared

Analyzed

01/24/24 17:25

Dil Fac

Result Qualifier

4790

Eurofins Carlsbad

Surrogate Summary

 Client: Vertex
 Job ID: 890-6015-1

 Project/Site: PLU 29 Big Sink West
 SDG: 23c-05485

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-38380-A-4-A MS	Matrix Spike	116	95	
880-38380-A-4-B MSD	Matrix Spike Duplicate	112	125	
890-6015-1	WES 24-05	87	82	
890-6015-2	WES 24-06	86	78	
LCS 880-71517/1-A	Lab Control Sample	118	113	
LCSD 880-71517/2-A	Lab Control Sample Dup	114	110	
MB 880-71461/5-A	Method Blank	74	93	
MB 880-71517/5-A	Method Blank	74	87	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-38285-A-101-F MS	Matrix Spike	92	86	
880-38285-A-101-G MSD	Matrix Spike Duplicate	96	90	
890-6015-1	WES 24-05	87	88	
890-6015-2	WES 24-06	93	96	
LCS 880-71494/2-A	Lab Control Sample	98	123	
LCSD 880-71494/3-A	Lab Control Sample Dup	90	108	
MB 880-71494/1-A	Method Blank	97	104	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West

SDG: 23c-05485

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-71461/5-A

Matrix: Solid

Analysis Batch: 71559

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 71461

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/23/24 15:23	01/25/24 11:40	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/23/24 15:23	01/25/24 11:40	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/23/24 15:23	01/25/24 11:40	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/23/24 15:23	01/25/24 11:40	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/23/24 15:23	01/25/24 11:40	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/23/24 15:23	01/25/24 11:40	1

MB MB

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	74	70 - 130
1,4-Difluorobenzene (Surr)	93	70 - 130

Dil Fac Prepared Analyzed 01/23/24 15:23 01/25/24 11:40 01/23/24 15:23 01/25/24 11:40

> Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 71517

Lab Sample ID: MB 880-71517/5-A

Matrix: Solid

Analysis Batch: 71559

	MB	MB							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00200	U	0.00200	mg/Kg		01/24/24 14:04	01/26/24 00:20	1	
Toluene	<0.00200	U	0.00200	mg/Kg		01/24/24 14:04	01/26/24 00:20	1	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/24/24 14:04	01/26/24 00:20	1	
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/24/24 14:04	01/26/24 00:20	1	
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/24/24 14:04	01/26/24 00:20	1	
Xylenes, Total	< 0.00399	U	0.00399	mg/Kg		01/24/24 14:04	01/26/24 00:20	1	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	d Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130	01/24/24 14	01/26/24 00:20	1
1,4-Difluorobenzene (Surr)	87		70 - 130	01/24/24 14	1:04 01/26/24 00:20	1

Lab Sample ID: LCS 880-71517/1-A

Matrix: Solid

Analysis Batch: 71559

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 71517

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1218 mg/Kg 122 70 - 130 Toluene 0.100 0.1126 mg/Kg 113 70 - 130 0.100 Ethylbenzene 0.1341 *+ mg/Kg 134 70 - 130 0.200 0.2659 *+ m-Xylene & p-Xylene mg/Kg 133 70 - 130 0.100 70 - 130 o-Xylene 0.1481 *+ mg/Kg 148

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	118	70 - 130
1.4-Difluorobenzene (Surr)	113	70 - 130

Lab Sample ID: LCSD 880-71517/2-A

Matrix: Solid

Analysis Batch: 71559

Client Sample ID: Lab	Control Sample Dup
	D T T (1014

Prep Type: Total/NA

Prep Batch: 71517

	Бріке	LCSD LCSD				%Rec		RPD	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.1153	mg/Kg		115	70 - 130	5	35	

Eurofins Carlsbad

Page 9 of 23

QC Sample Results

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West SDG: 23c-05485

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-71517/2-A **Matrix: Solid**

Analysis Batch: 71559

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 71517

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Toluene 0.100 0.1052 105 70 - 130 35 mg/Kg Ethylbenzene 0.100 0.1168 mg/Kg 117 70 - 130 14 35 0.200 m-Xylene & p-Xylene 0.2334 mg/Kg 70 - 130 35 117 13 o-Xylene 0.100 0.1213 mg/Kg 121 70 - 130 20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Lab Sample ID: 880-38380-A-4-A MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 71559

Prep Type: Total/NA

Prep Batch: 71517

MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Benzene <0.00201 U 0.0996 0.09654 97 mg/Kg 70 - 130 Toluene <0.00201 U 0.0996 0.08790 88 70 - 130 mg/Kg Ethylbenzene <0.00201 U*+ 0.0996 0.09146 70 - 130 mg/Kg 92 m-Xylene & p-Xylene <0.00402 U*+ 0.199 0.1768 89 70 - 130 mg/Kg o-Xylene <0.00201 U*+ 0.0996 0.08824 mg/Kg 89 70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	116	70 - 130
1,4-Difluorobenzene (Surr)	95	70 - 130

Lab Sample ID: 880-38380-A-4-B MSD

Matrix: Solid

Analysis Batch: 71559

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 71517

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0994	0.1087		mg/Kg		109	70 - 130	12	35
Toluene	<0.00201	U	0.0994	0.09197		mg/Kg		92	70 - 130	5	35
Ethylbenzene	<0.00201	U *+	0.0994	0.09820		mg/Kg		99	70 - 130	7	35
m-Xylene & p-Xylene	<0.00402	U *+	0.199	0.1906		mg/Kg		96	70 - 130	8	35
o-Xylene	<0.00201	U *+	0.0994	0.09673		mg/Kg		97	70 - 130	9	35

MSD MSD

MD MD

Surrogate	76Recovery	Qualifier	LIIIIII
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	125		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-71494/1-A

Matrix: Solid

Analysis Batch: 71545

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 71494

	MD	MD						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/24/24 09:03	01/25/24 19:43	1
(CDO) C6 C10								

(GRO)-C6-C10

Eurofins Carlsbad

Client: Vertex Project/Site: PLU 29 Big Sink West

Job ID: 890-6015-1 SDG: 23c-05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-71494/1-A **Matrix: Solid**

Analysis Batch: 71545

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 71494

ı		MB	MR						
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/24/24 09:03	01/25/24 19:43	1
	C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/24/24 09:03	01/25/24 19:43	1

MB MB

Surrogate	%Recovery Qu	Qualifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	97	70 - 130	01/24/24 09:03	01/25/24 19:43	1
o-Terphenyl	104	70 - 130	01/24/24 09:03	01/25/24 19:43	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-71494/2-A Matrix: Solid Prep Type: Total/NA

Analysis Batch: 71545 Prep Batch: 71494

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	991.7		mg/Kg		99	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	988.8		mg/Kg		99	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	98		70 - 130
o-Terphenyl	123		70 - 130

Lab Sample ID: LCSD 880-71494/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 71545

Prep Type: Total/NA Prep Batch: 71494

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	976.2		mg/Kg		98	70 - 130	2	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	963.2		mg/Kg		96	70 - 130	3	20	
C10-C28)										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	90		70 - 130
o-Terphenyl	108		70 - 130

Lab Sample ID: 880-38285-A-101-F MS Client Sample ID: Matrix Spike Matrix: Solid Prep Type: Total/NA

Analysis Batch: 71545

•	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	999	871.2		mg/Kg		87	70 - 130	
Diesel Range Organics (Over	<49.8	U	999	963.8		ma/Ka		94	70 - 130	

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	86		70 - 130

Eurofins Carlsbad

Prep Batch: 71494

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West SDG: 23c-05485

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-38285-A-101-G MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 71545

Prep Type: Total/NA Prep Batch: 71494

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Sample Sample Spike MSD MSD RPD Result Qualifier RPD Limit Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <49.8 U 999 905.0 mg/Kg 91 70 - 130 4 20 (GRO)-C6-C10 999 Diesel Range Organics (Over <49.8 U 1023 mg/Kg 100 70 - 130 6

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 130
o-Terphenyl	90		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-71470/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 71515

мв мв

Analyte	Result Qua	lifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00 U	5.00	mg/Kg			01/24/24 12:43	1

Lab Sample ID: LCS 880-71470/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 71515

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	262.4	-	mg/Kg		105	90 - 110	

Lab Sample ID: LCSD 880-71470/3-A

Matrix: Solid

Analysis Batch: 71515

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	262 1		ma/Ka		105	90 - 110		20

Lab Sample ID: 880-38127-A-2-B MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 71515

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	5650	F1	2530	8505	F1	ma/Ka		113	90 - 110	

Lab Sample ID: 880-38127-A-2-C MSD

Matrix: Solid

Analysis Ratch: 71515

Alialysis Datcii. 1 1919											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	5650	F1	2530	8470	F1	mg/Kg		112	90 - 110	0	20

Eurofins Carlsbad

Prep Type: Soluble

Lab Sample ID: 880-38400-A-1-B MS

Lab Sample ID: 880-38400-A-1-C MSD

QC Sample Results

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West

SDG: 23c-05485

Method: 300.0 - Anions, Ion Chromatography (Continued)

Client Sample ID: Matrix Spike

Prep Type: Soluble

Analysis Batch: 71515

Matrix: Solid

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	426		252	675.4		mg/Kg		99	90 - 110	

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Matrix: Solid

Analysis Batch: 71515

ı		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Į	Chloride	426		252	671.8		mg/Kg		98	90 - 110	1	20

QC Association Summary

Client: Vertex

Project/Site: PLU 29 Big Sink West

Job ID: 890-6015-1 SDG: 23c-05485

c-05485

GC VOA

Prep Batch: 71461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-71461/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 71517

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6015-1	WES 24-05	Total/NA	Solid	5035	
890-6015-2	WES 24-06	Total/NA	Solid	5035	
MB 880-71517/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71517/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-71517/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-38380-A-4-A MS	Matrix Spike	Total/NA	Solid	5035	
880-38380-A-4-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 71559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6015-1	WES 24-05	Total/NA	Solid	8021B	71517
890-6015-2	WES 24-06	Total/NA	Solid	8021B	71517
MB 880-71461/5-A	Method Blank	Total/NA	Solid	8021B	71461
MB 880-71517/5-A	Method Blank	Total/NA	Solid	8021B	71517
LCS 880-71517/1-A	Lab Control Sample	Total/NA	Solid	8021B	71517
LCSD 880-71517/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71517
880-38380-A-4-A MS	Matrix Spike	Total/NA	Solid	8021B	71517
880-38380-A-4-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	71517

Analysis Batch: 71713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6015-1	WES 24-05	Total/NA	Solid	Total BTEX	
890-6015-2	WES 24-06	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 71494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6015-1	WES 24-05	Total/NA	Solid	8015NM Prep	
890-6015-2	WES 24-06	Total/NA	Solid	8015NM Prep	
MB 880-71494/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-71494/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-71494/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-38285-A-101-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-38285-A-101-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 71545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6015-1	WES 24-05	Total/NA	Solid	8015B NM	71494
890-6015-2	WES 24-06	Total/NA	Solid	8015B NM	71494
MB 880-71494/1-A	Method Blank	Total/NA	Solid	8015B NM	71494
LCS 880-71494/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	71494
LCSD 880-71494/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	71494
880-38285-A-101-F MS	Matrix Spike	Total/NA	Solid	8015B NM	71494
880-38285-A-101-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	71494

Eurofins Carlsbad

QC Association Summary

Client: Vertex
Project/Site: PLU 29 Big Sink West

Job ID: 890-6015-1 SDG: 23c-05485

GC Semi VOA

Analysis Batch: 71664

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	890-6015-1	WES 24-05	Total/NA	Solid	8015 NM	
L	890-6015-2	WES 24-06	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 71470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6015-1	WES 24-05	Soluble	Solid	DI Leach	
890-6015-2	WES 24-06	Soluble	Solid	DI Leach	
MB 880-71470/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71470/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71470/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-38127-A-2-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-38127-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
880-38400-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-38400-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 71515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6015-1	WES 24-05	Soluble	Solid	300.0	71470
890-6015-2	WES 24-06	Soluble	Solid	300.0	71470
MB 880-71470/1-A	Method Blank	Soluble	Solid	300.0	71470
LCS 880-71470/2-A	Lab Control Sample	Soluble	Solid	300.0	71470
LCSD 880-71470/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71470
880-38127-A-2-B MS	Matrix Spike	Soluble	Solid	300.0	71470
880-38127-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	71470
880-38400-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	71470
880-38400-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	71470

Eurofins Carlsbad

-

3

4

5

7

ŏ

10

10

13

14

Client: Vertex Project/Site: PLU 29 Big Sink West

Job ID: 890-6015-1 Sig Sink West SDG: 23c-05485

Client Sample ID: WES 24-05

Lab Sample ID: 890-6015-1

Date Collected: 01/22/24 14:30
Date Received: 01/23/24 08:23
Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71517	01/25/24 14:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71559	01/26/24 02:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71713	01/26/24 02:24	AJ	EET MID
Total/NA	Analysis	8015 NM		1			71664	01/26/24 03:39	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	71494	01/25/24 08:57	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71545	01/26/24 03:39	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	71470	01/24/24 15:00	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71515	01/24/24 17:18	SMC	EET MID

Client Sample ID: WES 24-06 Lab Sample ID: 890-6015-2

Date Collected: 01/22/24 12:10

Date Received: 01/23/24 08:23

Matrix: Solid

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 71517 Total/NA Prep 5.03 g 5 mL 01/25/24 14:04 MNR EET MID 8021B Total/NA 5 mL 01/26/24 02:44 **EET MID** Analysis 1 5 mL 71559 MNR Total/NA Total BTEX 71713 01/26/24 02:44 Analysis 1 A.I **EET MID** Total/NA Analysis 8015 NM 71664 01/26/24 04:01 ΑJ **EET MID** Total/NA 71494 Prep 8015NM Prep 10.05 g 10 mL 01/25/24 08:57 AM EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 71545 01/26/24 04:01 ΑJ **EET MID** Soluble 71470 01/24/24 15:00 SA Leach DI Leach 5.01 g 50 mL **EET MID**

50 mL

50 mL

71515

01/24/24 17:25

SMC

EET MID

10

Laboratory References:

Analysis

Soluble

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

300.0

3

4

5

0

9

10

4.0

14

Accreditation/Certification Summary

Client: Vertex Job ID: 890-6015-1
Project/Site: PLU 29 Big Sink West SDG: 23c-05485

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
	are included in this report, bu	it the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

3

6

_

11

13

14

Method Summary

Client: Vertex Job ID: 890-6015-1 Project/Site: PLU 29 Big Sink West

SDG: 23c-05485

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: Vertex

Project/Site: PLU 29 Big Sink West

Job ID: 890-6015-1

SDG: 23c-05485

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-6015-1	WES 24-05	Solid	01/22/24 14:30	01/23/24 08:23	1
890-6015-2	WES 24-06	Solid	01/22/24 12:10	01/23/24 08:23	1

💸 eurofins	Environment Testing Xenco	Houston, T) Mediand, TX (4 EL Paso, TX (6 Hobbs, NM (6)	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Middend, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (91-5) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carisbad, NM (575) 988-3199	6815	890-6015 Chain of Custody	1
Project Manager: PW	Demce Deson	Bill to: (if different)	Conntidan		mments	
Name: \	when / XI	Company Name:	JXto. "	Program:	r/PST ☐ PRP ☐ Brownfields ☐ RRC ☐	Superfund
Address:	0, 10	Address:	an John	State of Project: Reporting: Levi	TRRP PST//JST TRRP	Vileval
Phone:	Email:	_		Deliverables:	DaPT Other:	
Project Name:	29 Aig Survey of them	LTG Turn Around	AN	ANALYSIS REQUEST	Preservative Codes	des
Project Number: 236	35 , [None: NO DI	DI Water: H ₂ O
Location: PLU	PLU 29 BLC Cont Well Due Date:	Due Date: 1.25.2M	(0)			MeOH: Me HNO 3: HN
	0	1	5			NaOH: Na
Samples Received Intact:	Temp Blank: (Yes, No Wet Ice:	Net No	(0		H ₃ PO 4: HP	
		П	8) X		Na ₂ S ₂ O ₃ :NaSO ₃	
Sample Custody Seals: Ye	Yes No WA Temperature Reading:	0.1.5	1-10		Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC	APC
A Committee of the Comm		Grab/	11			
Sample Identification	Sampled	Deput Comp Cont	_		Sample Comments	ents
WES 24 - 05	CE-41 122.11 14:30	-				
4.14.06	J V 12:40	9	>			
1		1				
	/					
			\			
\	\					
		74				
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	8RCR.	PM Texas 11 Al Sb SPLP 6010 : BRCRA SI	A 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N TCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U	Cu Fe Pb Mg Mn Mo Ni K b Mn Mo Ni Se Ag TI U	Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn Hg: 1631/245.1/7470 /7471	
Notice: Signature of this document and rell of service: Eurofins Xenco will be lable only of Eurofins Xenco. Aminhrum charge of \$8	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xento, its affiliates and subcontractors. It assigns standard terms and conflictors of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the compoil of survice. Eurofins Xenco, will be lable only for the cost of samples and shall not assume any responsibility for any interest or enrolled to such project and a charge of \$5 for each sample admitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	rder from client company to Euroi ionsibility for any losses or expens 5 for each sample submitted to Eu	ins Xenco, its affiliates and subcontractors. It assissincurred by the client if such losses are due to mofins Xenco, but not analyzed. These terms will I	gns standard terms and conditions itcumstances beyond the control se enforced unless previously nego	is oriand.	
Relinquished by: (Signature)	e) Received by: (Signature)	re)	Date/Time Relinquished	Relinquished by: (Signature)	Received by: (Signature) Date/Time	ne
Shubara.	colugh	8	23 1/23			

Work Order No: 48 1834001		EDD ADAPT Other	ervative	Cool: Cool MeOH: H ₂ O HCL. HC HNO 3: HN H ₂ SO 4: H ₂ NaOH: Na	NaHSO 4: NABIS Na ₂ 5,0 ₃ : NaSO ₃ Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC Sample Comments	890-6015 Chain of Custody	Se Ag SiO ₂ Na Sr Tl Sn U V Zn Hg: 1631/245.1/7470 /7471	wed by: (Signature) Date/Time	Revised Date: 08/75/7020 Rev. 2020.2
210 m	am: of Proje		ANALYSIS REQUEST			8		(Signature) Recei	
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	Capultanen X10.	an ma		(15) (10)	08)+101 08)+101		AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K RA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U ro Euroffins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions are expenses incurred by the clernit such losses are due to circumstances beyond the control	Rejnquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) R	9
Housto Midland, Xenco EL Paso, Hobbs,	Still to: (If different) Company Name: Address:	City, State ZIP: Email:	C B Turn Around	Ly Due Date: 1.26.24 C. TAT starts the day received by 4:30pm	tion Factor: 19, 2 reture Reading: 5, 4 red Temperature: 5, 4 red Tamperature: 5, 4 red Tamperature: 5, 4 red Tamperature: 5, 4		SRCRA 13PPM Texas 11 Al Specification SRCRA TCLP / SPLP 6010 : BRCRA Sconstitutes a valid purchase order from client company to Example stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the stand shall not assume any negonshillity for any losses or eapsing the standard negonshillity f	Received by: (Signature)	
eurofins Environn Xenco	Project Manager: はかいんしょうな Company Name: Virtex/Xt Address:	City, State ZIP: 1) All Phone:		Project Number: 4.28 (124 13 2) Project Location: PLU 29 (2000 10 10 10 10 10 10 10 10 10 10 10 10	is: Yes No WA is	W 20 - 12 M	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 / Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: BRC Notte: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company of service. Bunding Xenou will be labele only for the cost of samples and shall not assume any responsibility for any bases of Firmfor Xenou will be labele only for the Cost of samples and shall not assume any responsibility for any bases of Firmfor Xenou will be labele only for the Cost of Samples and shall not assume any responsibility for any bases of Firmfor Xenou will be labele only for the Cost of Samples and shall not assume any responsibility for any bases of Firmfor Xenou will be also for the Cost of Samples and shall not assume any responsibility for any bases of Firmfor Xenou will be also for the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and shall not seem to the Cost of Samples and	Relinquished by: (Signature)	1

1/26/2024

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6015-1 SDG Number: 23c-05485

Login Number: 6015 List Source: Eurofins Carlsbad

List Number: 1

Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Vertex Job Number: 890-6015-1 SDG Number: 23c-05485

Login Number: 6015 **List Source: Eurofins Midland** List Number: 2 List Creation: 01/24/24 02:02 PM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 13, 2024

Chance Dixon
Vertex Resources Services, Inc.
3101 Boyd Drive
Carlsbad, NM 88220
TEL: (505) 506-0040

FAX:

RE: PLU 29 BS WEST CTB OrderNo.: 2402015

Dear Chance Dixon:

Eurofins Environment Testing South Central, LLC received 7 sample(s) on 2/1/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES24-04 0.5'

 Project:
 PLU 29 BS WEST CTB
 Collection Date: 1/30/2024 11:00:00 AM

 Lab ID:
 2402015-001
 Matrix: SOIL
 Received Date: 2/1/2024 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	20	9.3	mg/Kg	1	2/3/2024 12:06:39 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/3/2024 12:06:39 AM
Surr: DNOP	101	61.2-134	%Rec	1	2/3/2024 12:06:39 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	2/5/2024 9:23:56 PM
Surr: BFB	103	15-244	%Rec	1	2/5/2024 9:23:56 PM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.023	mg/Kg	1	2/5/2024 9:23:56 PM
Toluene	ND	0.046	mg/Kg	1	2/5/2024 9:23:56 PM
Ethylbenzene	ND	0.046	mg/Kg	1	2/5/2024 9:23:56 PM
Xylenes, Total	ND	0.091	mg/Kg	1	2/5/2024 9:23:56 PM
Surr: 4-Bromofluorobenzene	92.1	39.1-146	%Rec	1	2/5/2024 9:23:56 PM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	3100	150	mg/Kg	50	2/5/2024 11:08:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES24-08 1'

 Project:
 PLU 29 BS WEST CTB
 Collection Date: 1/30/2024 11:05:00 AM

 Lab ID:
 2402015-002
 Matrix: SOIL
 Received Date: 2/1/2024 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	17	9.3	mg/Kg	1	2/3/2024 12:29:59 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/3/2024 12:29:59 AM
Surr: DNOP	113	61.2-134	%Rec	1	2/3/2024 12:29:59 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	2/5/2024 10:11:09 PM
Surr: BFB	100	15-244	%Rec	1	2/5/2024 10:11:09 PM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.023	mg/Kg	1	2/5/2024 10:11:09 PM
Toluene	ND	0.047	mg/Kg	1	2/5/2024 10:11:09 PM
Ethylbenzene	ND	0.047	mg/Kg	1	2/5/2024 10:11:09 PM
Xylenes, Total	ND	0.094	mg/Kg	1	2/5/2024 10:11:09 PM
Surr: 4-Bromofluorobenzene	89.3	39.1-146	%Rec	1	2/5/2024 10:11:09 PM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	2500	150	mg/Kg	50	2/5/2024 11:23:09 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 14

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES24-11 0.5'

 Project:
 PLU 29 BS WEST CTB
 Collection Date: 1/30/2024 11:10:00 AM

 Lab ID:
 2402015-003
 Matrix: SOIL
 Received Date: 2/1/2024 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	21	9.5	mg/Kg	1	2/3/2024 12:53:15 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/3/2024 12:53:15 AM
Surr: DNOP	116	61.2-134	%Rec	1	2/3/2024 12:53:15 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	2/5/2024 10:34:45 PM
Surr: BFB	101	15-244	%Rec	1	2/5/2024 10:34:45 PM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.023	mg/Kg	1	2/5/2024 10:34:45 PM
Toluene	ND	0.047	mg/Kg	1	2/5/2024 10:34:45 PM
Ethylbenzene	ND	0.047	mg/Kg	1	2/5/2024 10:34:45 PM
Xylenes, Total	ND	0.093	mg/Kg	1	2/5/2024 10:34:45 PM
Surr: 4-Bromofluorobenzene	89.3	39.1-146	%Rec	1	2/5/2024 10:34:45 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	2600	150	mg/Kg	50	2/6/2024 9:48:15 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 14

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES24-12 0.5'

 Project:
 PLU 29 BS WEST CTB
 Collection Date: 1/30/2024 11:15:00 AM

 Lab ID:
 2402015-004
 Matrix: SOIL
 Received Date: 2/1/2024 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: JKU
Diesel Range Organics (DRO)	18	9.1	mg/Kg	1	2/5/2024 12:52:34 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/5/2024 12:52:34 PM
Surr: DNOP	85.3	61.2-134	%Rec	1	2/5/2024 12:52:34 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	2/6/2024 9:05:00 PM
Surr: BFB	103	15-244	%Rec	1	2/6/2024 9:05:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.025	mg/Kg	1	2/6/2024 9:05:00 PM
Toluene	ND	0.050	mg/Kg	1	2/6/2024 9:05:00 PM
Ethylbenzene	ND	0.050	mg/Kg	1	2/6/2024 9:05:00 PM
Xylenes, Total	ND	0.099	mg/Kg	1	2/6/2024 9:05:00 PM
Surr: 4-Bromofluorobenzene	96.0	39.1-146	%Rec	1	2/6/2024 9:05:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	2500	150	mg/Kg	50	2/6/2024 10:03:25 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc.

Client Sample ID: WES24-01 0-0.5'

 Project:
 PLU 29 BS WEST CTB
 Collection Date: 1/30/2024 11:20:00 AM

 Lab ID:
 2402015-005
 Matrix: SOIL
 Received Date: 2/1/2024 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	GANICS				Analyst: JKU
Diesel Range Organics (DRO)	24	9.1	mg/Kg	1	2/5/2024 1:28:56 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/5/2024 1:28:56 PM
Surr: DNOP	81.6	61.2-134	%Rec	1	2/5/2024 1:28:56 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	2/6/2024 10:11:00 PM
Surr: BFB	108	15-244	%Rec	1	2/6/2024 10:11:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.025	mg/Kg	1	2/6/2024 10:11:00 PM
Toluene	ND	0.050	mg/Kg	1	2/6/2024 10:11:00 PM
Ethylbenzene	ND	0.050	mg/Kg	1	2/6/2024 10:11:00 PM
Xylenes, Total	ND	0.10	mg/Kg	1	2/6/2024 10:11:00 PM
Surr: 4-Bromofluorobenzene	98.0	39.1-146	%Rec	1	2/6/2024 10:11:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	3000	150	mg/Kg	50	2/6/2024 10:18:33 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 5 of 14

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc.

Client Sample ID: WES24-02 0-0.5'

 Project:
 PLU 29 BS WEST CTB
 Collection Date: 1/30/2024 11:25:00 AM

 Lab ID:
 2402015-006
 Matrix: SOIL
 Received Date: 2/1/2024 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: JKU
Diesel Range Organics (DRO)	30	9.5	mg/Kg	1	2/5/2024 1:41:03 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/5/2024 1:41:03 PM
Surr: DNOP	82.1	61.2-134	%Rec	1	2/5/2024 1:41:03 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	2/6/2024 11:17:00 PM
Surr: BFB	104	15-244	%Rec	1	2/6/2024 11:17:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.025	mg/Kg	1	2/6/2024 11:17:00 PM
Toluene	ND	0.050	mg/Kg	1	2/6/2024 11:17:00 PM
Ethylbenzene	ND	0.050	mg/Kg	1	2/6/2024 11:17:00 PM
Xylenes, Total	ND	0.10	mg/Kg	1	2/6/2024 11:17:00 PM
Surr: 4-Bromofluorobenzene	96.7	39.1-146	%Rec	1	2/6/2024 11:17:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	3900	150	mg/Kg	50	2/6/2024 10:33:44 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc.

Client Sample ID: WES24-03 0-0.5'

 Project:
 PLU 29 BS WEST CTB
 Collection Date: 1/30/2024 11:30:00 AM

 Lab ID:
 2402015-007
 Matrix: SOIL
 Received Date: 2/1/2024 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS				Analyst: JKU
Diesel Range Organics (DRO)	35	9.1	mg/Kg	1	2/5/2024 1:53:23 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/5/2024 1:53:23 PM
Surr: DNOP	87.2	61.2-134	%Rec	1	2/5/2024 1:53:23 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	2/6/2024 11:39:00 PM
Surr: BFB	106	15-244	%Rec	1	2/6/2024 11:39:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.024	mg/Kg	1	2/6/2024 11:39:00 PM
Toluene	ND	0.048	mg/Kg	1	2/6/2024 11:39:00 PM
Ethylbenzene	ND	0.048	mg/Kg	1	2/6/2024 11:39:00 PM
Xylenes, Total	ND	0.097	mg/Kg	1	2/6/2024 11:39:00 PM
Surr: 4-Bromofluorobenzene	96.9	39.1-146	%Rec	1	2/6/2024 11:39:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	2500	150	mg/Kg	50	2/6/2024 10:48:53 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2402015**

13-Feb-24

Client: Vertex Resources Services, Inc.

Project: PLU 29 BS WEST CTB

Sample ID: MB-80236 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 80236 RunNo: 102858

Prep Date: 2/2/2024 Analysis Date: 2/3/2024 SeqNo: 3800520 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-80236 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 80236 RunNo: 102858

Prep Date: 2/2/2024 Analysis Date: 2/3/2024 SeqNo: 3800521 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 95.3 90 110

Sample ID: MB-80268 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 80268 RunNo: 102887

Prep Date: 2/5/2024 Analysis Date: 2/5/2024 SeqNo: 3801903 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-80268 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 80268 RunNo: 102887

Prep Date: 2/5/2024 Analysis Date: 2/5/2024 SeqNo: 3801904 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 92.9 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: 2402015 13-Feb-24

Client: Vertex Resources Services, Inc. **Project:** PLU 29 BS WEST CTB

Sample ID: MB-80224	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics
---------------------	----------------	---

Client ID: PBS Batch ID: 80224 RunNo: 102843

Prep Date: 2/1/2024 Analysis Date: 2/2/2024 SeqNo: 3800103 Units: %Rec

SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result %REC LowLimit HighLimit Qual

Surr: DNOP 12 10.00 123 61.2 134

Sample ID: LCS-80224 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 80224 RunNo: 102843 Prep Date: 2/1/2024 Analysis Date: 2/2/2024 SeqNo: 3800104 Units: %Rec %REC %RPD Analyte Result PQL SPK value SPK Ref Val LowLimit HighLimit **RPDLimit** Qual

Surr: DNOP 6.4 5.000 127 147

Sample ID: MB-80220 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 80220 RunNo: 102843 Units: mg/Kg Prep Date: Analysis Date: 2/2/2024 SeqNo: 3800108 2/1/2024 Result PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Qual Analyte LowLimit HighLimit Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 11 10.00 110 61.2 134

Sample ID: LCS-80220 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 80220 RunNo: 102843 Prep Date: Analysis Date: 2/2/2024 SeqNo: 3800109 2/1/2024 Units: mg/Kg Analyte Result POI SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 59 10 50.00 0 117 61.9 Surr: DNOP 5.000 5.9 119 69 147

Sample ID: LCS-80234	Samp1	Гуре: LC	S	TestCode: EPA Method 8015M/D: Diesel Range Organics						Code: EPA Method 8015M/D: Diesel Range Organics		
Client ID: LCSS	Batcl	h ID: 80 2	234	F	RunNo: 10	02868						
Prep Date: 2/2/2024	Analysis Date: 2/5/2024			5	SeqNo: 3800879			Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Diesel Range Organics (DRO)	40	10	50.00	0	79.6	59.7	135					
Surr: DNOP	4.3		5.000		86.3	61.2	134					

Sample ID: MB-80234	SampType: MBLK			SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range							SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics								
Client ID: PBS	Batch	ID: 80 2	234	F	RunNo: 1	02868													
Prep Date: 2/2/2024	Analysis D	5/2024	5	SeqNo: 3	801344	Units: mg/K	(g												
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual									
Diesel Pange Organics (DPO)	ND	10																	

Diesel Range Organics (DRO)

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 9 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2402015**

13-Feb-24

Client: Vertex Resources Services, Inc.

Project: PLU 29 BS WEST CTB

Sample ID: 2402015-004AMS

Sample ID: 2402015-004AMSD

Sample ID: MB-80234	SampT	уре: МВ	LK	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batch	n ID: 802	234	F	RunNo: 10	02868				
Prep Date: 2/2/2024	Analysis D	ate: 2/	5/2024	5	SeqNo: 38	301344	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Motor Oil Range Organics (MRO)	ND	50		_			•			

Motor Oil Range Organics (MRO) ND 50
Surr: DNOP 9.4 10.00 93.7

TestCode: EPA Method 8015M/D: Diesel Range Organics

61.2

134

TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: **BES24-12 0.5'** Batch ID: **80234** RunNo: **102868**

SampType: MS

Prep Date: 2/2/2024 Analysis Date: 2/5/2024 SeqNo: 3801349 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 63 47.13 18.17 94.3 43.7

Surr: DNOP 4.1 4.713 88.0 61.2 134

Client ID: BES24-12 0.5' Batch ID: 80234 RunNo: 102868

SampType: MSD

Prep Date: 2/2/2024 Analysis Date: 2/5/2024 SeqNo: 3801350 Units: mg/Kg

%REC %RPD **RPDLimit** PQL SPK value SPK Ref Val HighLimit Qual Analyte Result LowLimit Diesel Range Organics (DRO) 50 9.1 45.45 18.17 70.8 43.7 136 21.7 31.3 Surr: DNOP 4.545 86.3 0 3.9 61.2 134 0

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2402015**

13-Feb-24

Client:	Vertex Resources Services, Inc
Project:	PLU 29 BS WEST CTB

Project:	PLU 29 B	S WEST	СТВ								
Sample ID:	lcs-80203	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	line Range		
Client ID:	LCSS	Batch	ID: 802	203	F	RunNo: 10	02873				
Prep Date:	2/1/2024	Analysis D	ate: 2/	5/2024	8	SeqNo: 3	800986	Units: mg/k	〈 g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
_	ge Organics (GRO)	26	5.0	25.00	0	102	70	130			
Surr: BFB		2100		1000		206	15	244			
Sample ID:	mb-80203	•	ype: ME		Tes	tCode: El	PA Method	8015D: Gaso	line Range		
Client ID:	PBS		ID: 802			RunNo: 10					
Prep Date:	2/1/2024	Analysis D	ate: 2/	5/2024	8	SeqNo: 3	800987	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Surr: BFB	ge Organics (GRO)	ND 990	5.0	1000		99.1	15	244			
Sample ID:			ype: LC					8015D: Gaso	line Range		
Client ID:	LCSS		ID: 80 2	-		RunNo: 10			•		
Prep Date:	2/2/2024	Analysis D				SeqNo: 3		Units: mg/h	·	DDDI imit	
Analyte	ge Organics (GRO)	Result 24	PQL 5.0	SPK value 25.00	SPK Ref Val	%REC 97.2	LowLimit 70	HighLimit 130	%RPD	RPDLimit	Qual
Surr: BFB	ge Organics (GRO)	2200	5.0	1000	U	215	15	244			
Comple ID:	mb 90220	CompT	vano: ME	01 IZ	Too	tCodo: El	DA Mathad	904ED: Cooo	line Denge		
Client ID:	mb-80229 PBS		ype: ME i ID: 80 2			RunNo: 1		8015D: Gaso	nine Kange		
Prep Date:	-	Analysis D				SeqNo: 3		Units: mg/k	(n		
•	<i>L</i> / <i>L</i> / <i>L</i> / <i>L</i> -	•				·		•	•	DDDI imit	Ougl
Analyte Gasoline Rang	ge Organics (GRO)	Result ND	PQL 5.0	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	, , ,	1100		1000		105	15	244			
Sample ID:	2402015-004ams	SampType: MS		Tes	tCode: EI	PA Method	8015D: Gaso	line Range			
Client ID:	BES24-12 0.5'	Batch	SampType: MS Batch ID: 80229 Analysis Date: 2/6/2024		F	RunNo: 10	02909				
Prep Date:	2/2/2024	Analysis D			5	SeqNo: 3	802683	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	ge Organics (GRO)	25	5.0	24.98	0	101	70	130			
Surr: BFB		2200		999.0		225	15	244			
Sample ID:	2402015-004amsd	SampT	ype: MS	SD SD	Tes	tCode: El	PA Method	8015D: Gaso	line Range	ı.	
Sample ID.	2402013-004a11150										
Client ID:	BES24-12 0.5'		ID: 80 2	229	F	RunNo: 10	02909				
·	BES24-12 0.5'					RunNo: 10 SeqNo: 38		Units: mg/h	(g		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: 2402015

Qual

13-Feb-24

Client: Vertex Resources Services, Inc.

PLU 29 BS WEST CTB **Project:**

Sample ID: 2402015-004amsd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range Client ID: BES24-12 0.5' Batch ID: 80229 RunNo: 102909 SeqNo: 3802685 Prep Date: 2/2/2024 Analysis Date: 2/6/2024 Units: mg/Kg

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Result Gasoline Range Organics (GRO) 24 5.0 24.78 97.8 70 130 4.10 20 Surr: BFB 2200 991.1 221 15 244 0 0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 12 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2402015**

13-Feb-24

Client: Vertex Resources Services, Inc.

Project: PLU 29 BS WEST CTB

Sample ID: LCS-80203	Samp	Гуре: LC :	s	Tes	tCode: EF	PA Method	8021B: Volati	iles		
Client ID: LCSS	Batcl	h ID: 802	203	F	RunNo: 10	02873				
Prep Date: 2/1/2024	Analysis [Date: 2/	5/2024	5	SeqNo: 38	300993	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.84	0.025	1.000	0	84.4	70	130			
Toluene	0.84	0.050	1.000	0	84.2	70	130			
Ethylbenzene	0.85	0.050	1.000	0	85.4	70	130			
Xylenes, Total	2.6	0.10	3.000	0	85.8	70	130			
Surr: 4-Bromofluorobenzene	0.91		1.000		91.1	39.1	146			

Sample ID: mb-80203	Samp1	уре: МЕ	BLK	Tes	tCode: EF	A Method	8021B: Volati	les		
Client ID: PBS	Batch	n ID: 80 2	203	F	RunNo: 10)2873				
Prep Date: 2/1/2024	Analysis D)ate: 2/	5/2024	5	SeqNo: 38	300994	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025		<u> </u>		<u> </u>		<u> </u>		
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.89		1.000		88.6	39.1	146			

Sample ID: Ics-80229	Samp	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: LCSS	Batcl	n ID: 802	229	F	RunNo: 10	2909				
Prep Date: 2/2/2024	Analysis [Date: 2/6	6/2024	5	SeqNo: 38	303025	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.90	0.025	1.000	0	89.6	70	130			
Toluene	0.90	0.050	1.000	0	89.9	70	130			
Ethylbenzene	0.91	0.050	1.000	0	91.4	70	130			
Xylenes, Total	2.8	0.10	3.000	0	91.9	70	130			
Surr: 4-Bromofluorobenzene	0.98		1.000		97.6	39.1	146			

Sample ID: mb-80229	Samp ⁻	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: PBS	Batc	h ID: 80 2	229	F	RunNo: 10	02909				
Prep Date: 2/2/2024	Analysis [Date: 2/ 9	6/2024	5	SeqNo: 38	803026	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.96		1.000		95.8	39.1	146			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 14

Hall Environmental Analysis Laboratory, Inc.

WO#: **2402015**

13-Feb-24

Client: Vertex Resources Services, Inc.

Project: PLU 29 BS WEST CTB

Sample ID: 2402015-005ams	Samp ⁻	Туре: м S	3	Tes	tCode: EF	PA Method	8021B: Volati	iles		
Client ID: WES24-01 0-0.5'	Batc	h ID: 80 2	229	F	RunNo: 10	02909				
Prep Date: 2/2/2024	Analysis [Date: 2/ 0	6/2024	5	SeqNo: 38	803029	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.87	0.025	1.000	0	87.3	70	130			
Toluene	0.88	0.050	1.000	0	87.8	70	130			
Ethylbenzene	0.90	0.050	1.000	0	89.7	70	130			
Xylenes, Total	2.7	0.10	3.000	0	90.4	70	130			
Surr: 4-Bromofluorobenzene	0.97		1.000		97.1	39.1	146			

Sample ID: 2402015-005AMS	Samp	Туре: МЅ	SD	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: WES24-01 0-0.5'	Batc	h ID: 80 2	229	F	RunNo: 10	02909				
Prep Date: 2/2/2024	Analysis [Date: 2/ 9	6/2024	(SeqNo: 38	803030	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.025	0.9980	0	89.0	70	130	1.66	20	
Toluene	0.89	0.050	0.9980	0	89.5	70	130	1.74	20	
Ethylbenzene	0.90	0.050	0.9980	0	90.5	70	130	0.607	20	
Xylenes, Total	2.7	0.10	2.994	0	90.8	70	130	0.259	20	
Surr: 4-Bromofluorobenzene	0.98		0.9980		97.9	39.1	146	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 14

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Released to Imaging: 7/30/2024 4:40:16 PM

			,	vebsite: www.h	allenvironmer	itai.com		
Client Name:	Vertex Reso	ources	Work	Order Numbe	r: 2402015		RcptNo	: 1
Received By:	Tracy Casa	arrubias	2/1/202	4 7:30:00 AM				
Completed By:	Desiree Do	ominguez	2/1/202	4 9:19:19 AM		TD3		
Reviewed By:	M Z-1-	24						
Chain of Custo	ody							
1. Is Chain of Cus		ete?			Yes 🗌	No 🗸	Not Present	
2. How was the s	ample delive	ered?			Courier			
Log In								
3. Was an attemp	t made to c	ool the sampl	es?		Yes 🗸	No 🗌	NA \square	
						_		
4. Were all sample	es received	at a temperat	ture of >0° C t	to 6.0°C	Yes 🗸	No 🗌	NA 🗆	
5. Sample(s) in pr	oper contain	ner(s)?			Yes 🗸	No 🗌		
						¬		
6. Sufficient samp				-10	Yes ✓ Yes ✓	No □ No □		
7. Are samples (ex			perly preserve	ea?		No ☑	NA 🗆	
8. Was preservativ	e added to	Dottles?			Yes 🗌	NO E	WA C	
9. Received at lea	st 1 vial with	headspace	<1/4" for AQ V	OA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sam	ole containe	rs received b	roken?		Yes	No 🗹	# of preserved	
					<u></u>	🗆	bottles checked	
11.Does paperwork (Note discrepar			1		Yes 🗹	No 🗀	for pH: (<2 c	r >12 unless noted)
12. Are matrices co		•			Yes 🗸	No 🗌	Adjusted?	
13. Is it clear what a	analyses we	re requested	?		Yes 🗹	No 🗌		1 21/24
14. Were all holding					Yes 🗹	No ∐	Checked by:	JU 211/29
(If no, notify cus	stomer for a	utnorization.)						
Special Handlir	ng (if app	licable)				_	_	
15. Was client noti	fied of all di	screpancies v	vith this order?		Yes 🗌	No 🗆	NA 🗹	
Person N	lotified:			Date: ∫				
By Whon	n: J			Via:	eMail [Phone Fax	☐ In Person	
Regardin								
	tructions:							
16. Additional rem								
		ne number a	nd Email/Fax a	are missing on	COC- DAD	2/1/24		
17. Cooler Inform Cooler No	<u>ration</u> Temp ⁰C	Condition	Seal Intact	Seal No	Seal Date	Signed By	1	
Coolei No	2.0	Condition	ocai iillact	Ocal INO	ocai Dale	Olginea by		

1
•
P4
_
0
-
٠.
N.
•
16
· C
4
- T
17
9
\mathcal{O}
· ·
SO
4.5
\mathcal{C}^{\prime}
/·
<u>.</u>
$\ddot{\epsilon}$
Ö
Ö
<u>G</u>
<u>G</u>
<u>G</u>
OCD
OCD.
v OCD.
v OCD.
OCD.
by OCD.
' by OCD.
d by OCD.
ed by OCD.
ed by OCD.
ed by OCD.
ived by OCD.
ived by OCD.
eived by OCD.
eived by OCD.
ceived by OCD.
ceived by OCD.
eceived by OCD.
eceived by OCD.
eceived by OCD.
eceived by OCD.
eceived by OCD.
eceived by OCD.

Chain-of-Custody Record	urn-Arouna 11me:				HAII		7	RON	ENVIRONMENTAL	
Client: Vertex		Rush 6 MAA			ANA	LYS	IS	ABC	ANALYSIS LABORATORY	_
	ame:				www.	nallenvii	onme	www.hallenvironmental.com		
Mailing Address: On File	FLU 24 BS	4636	 	4901 Hawkins NE	kins NE	1	ndnerd	Albuquerque, NM 87109	37109	
	Project #:		Ĕ	Tel. 505-345-3975	45-397		ax 50	Fax 505-345-4107	07	
Phone #:	236-05485	SA				Inal	Analysis Request	quest		
email or Fax#:	Project Manager:	18				[†] OS		(jue	The state of the s	
QA/QC Package:	Chance	e Dixon			SWI	S '⁵O		edA		
)d 7(о ' ^г		'Juə		
	9			808/		NC	(7			
□ NELAC □ Other	On ice:	es L No you		/sə	0 0					
□ EDD (Type)	# or Coolers:	1, 1, 1,	8TI	icic	168					
	Cooler Temp(including CF).	0.7 = 1.0 = 1.7	N X	səc	pλ g					
Time Name	Container Pres	Preservative 2403015	X3TEX	1808 1) BOE	sHAc	3CRA 3I,F,) 0928) 0728	Total (
7/1:02 KD. 1		1001	V-	3	1		_	_		
1/20/1/20/1/1		1	-		1	-				
		-003								
		400-								
1/1/2011-01		-005				99 13				
		700-			i	1				
		700-								
200000000000000000000000000000000000000			-							
								2	T. seed (8)	
					18	1100			TO THE STATE OF	
Date: Time: Relinquished by:	Received by: Via:		Remarks:	(S:						
13/ 130 Canal	Chamas	(3)								
Date: Time: Relinquished by:	Received by: Via:	county Date 1	16.00							
13/2 Ma (2011/11/202)	The state of the s	211/24 7.30							i ettis	
	7	the state of the state of the state of the state of	f this money hillips	Aire	- strangen	ad live note	d change	th an bases	trong light and an experience of the analytical report	

Released to Imaging: 730/2014 4:40:16 PM

Incident Number: nAPP2326151503

Release Assessment and Closure

PLU 29 Big Sinks West CTB

Unit F, Section 29, Township 25 South, Range 31 East

County: Eddy

Vertex File Number: 23E-05485

Prepared for:

XTO Energy, Inc.

Prepared by:

Vertex Resource Services Inc.

Date:

June 2024

Release Assessment and Closure June 2024

Release Assessment and Closure
PLU 29 Big Sinks West CTB
Unit F, Section 29, Township 25 South, Range 31 East
County: Eddy

Prepared for:

XTO Energy, Inc.

3104 East Greene Street Carlsbad, New Mexico 88220

New Mexico Oil Conservation Division - District 2

508 West Texas Avenue Artesia, New Mexico 88210

Prepared by:

Vertex Resource Services Inc.

3101 Boyd Drive

Carlsbad, New Mexico 88220

June 5, 2024

Date

Date

Lakin Pullman, B.Sc.

ENVIRONMENTAL SPECIALIST, REPORTING

June 5, 2024

Dixon, B.Sc.

PROJECT MANAGER, REPORT REVIEW

Release Assessment and Closure June 2024

Table of Contents

1.0	Introduction	1
2.0	Incident Description	1
	Site Characteristics	
	Closure Criteria Determination	
5.0	Remedial Actions Taken	4
	Closure Request	
	References	
	Limitations	

Release Assessment and Closure June 2024

In-text Tables

- Table 1. Closure Criteria Determination
- Table 2. Closure Criteria for Soils Impacted by a Release

List of Figures

- Figure 1. Characterization Sampling Site Schematic
- Figure 2. Confirmation Sampling Site Schematic

List of Tables

- Table 3. Initial Characterization Sample Field Screen and Laboratory Results Depth to Groundwater 51-100 feet bgs
- Table 4. Confirmatory Sample Field Screen and Laboratory Results Depth to Groundwater 51-100 feet bgs

List of Appendices

Appendix A. Closure Criteria Research Documentation

Appendix B. Daily Field Reports

Appendix C. Notifications and Extension Request

Appendix D. Laboratory Data Reports and Chain of Custody Forms

Release Assessment and Closure June 2024

1.0 Introduction

XTO Energy, Inc. (XTO) retained Vertex Resource Services Inc. (Vertex) to conduct a Release Assessment and Closure for a produced water release that occurred on September 7, 2023, at PLU 29 Big Sinks West CTB (hereafter referred to as the "site"). Incident ID number nAPP2326151503 was assigned to this incident. A remediation plan for the site was submitted and approved by the New Mexico Oil Conservation Division (NMOCD) on May 10, 2024.

This report describes the release assessment and remediation activities associated with the site. The information presented demonstrates that closure criteria established in Table I of 19.15.29.12 of the *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) related to NMOCD have been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NMOCD for closure of this release, with the understanding that restoration of the release site will be deferred until all oil and gas activities are terminated and the site is reclaimed as per NMAC 19.15.29.13.

2.0 Incident Description

The release occurred on September 7, 2023, due to interior corrosion caused by a pinhole on Bulk 701 6" CS water line resulting in the release of approximately 12.99 barrels (bbl) of produced water under equipment on the facility pad. No fluids were recovered.

3.0 Site Characteristics

The site is located approximately 17.5 miles southeast of Malaga, New Mexico. The legal location for the site is Unit F, Section 29, Township 25 South and Range 31 East in Eddy County, New Mexico. The release area is located on Bureau of Land Management property. An aerial photograph and site schematic are presented on Figure 1.

The location is typical of oil and gas exploration and production sites in the Permian Basin and is currently used for oil and gas production and storage. The following sections specifically describe the release area under the equipment east of the tank battery on or in proximity to the constructed pad (Figure 1).

The *Geological Map of New Mexico* (New Mexico Bureau of Geology and Mineral Resources, 2024) indicates the site's surface geology primarily comprises Qep - Eolian and Piedmont deposits (New Mexico Bureau of Geology and Mineral Resources, 2024). The karst geology potential for the site is medium (United States Department of the Interior, Bureau of Land Management, 2018). The surrounding landscape is associated with plains, alluvial fans, and flood plains with elevations ranging between 1,800 and 5,000 feet. The climate is semiarid with average annual precipitation ranging between 8 and 24 inches. Predominant soil textures around the site are gravelly fine sandy loam and silty clay loam, resulting in well-drained soils with runoff classes ranging from very low to very high. Using information from the United States Department of Agriculture, the dominant vegetation was determined to be grasses interspersed with shrubs (United States Department of Agriculture, Natural Resources Conservation Service, 2024). Limited to no vegetation is allowed to grow on the compacted facility pad.

Release Assessment and Closure June 2024

4.0 Closure Criteria Determination

The depth to groundwater was determined by drilling a borehole permitted by the New Mexico Office of the State Engineer (NMOSE) within a 0.5 mile radius of the site. The borehole was advanced to a depth of 55 feet. The borehole was left to recharge as per the requirements on the WR-07 Application for Permit to Drill a Well with No Water Rights, and an interface probe was utilized to determine whether groundwater was present at the conclusion of the 72-hour recharge period. No water was found to be present at that time. The borehole was plugged and abandoned according to the WR-08 permit, Well Plugging Plan of Operations, filed with NMOSE. Documentation related to the exploratory borehole is included in Appendix A.

There is no surface water present at the site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 NMAC, as defined in Subsection P of 19.15.17.7 NMAC, is an intermittent stream located approximately 4,121 feet south of the site (United States Fish and Wildlife Service, 2024). At the site, there are no continuously flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Release Assessment and Closure June 2024

aill Caar	e: PLU 29 Big Sinks West CTB dinates: 32.104485, -103.801960	X: 613036	Y: 3552645	
	fic Conditions	Value	1. 3332043 Unit	
ite spec	Depth to Groundwater (nearest reference)	>55	feet	
1	Distance between release and nearest DTGW reference	0.09	miles	
1	Date of nearest DTGW reference measurement		e 3, 2024	
	Within 300 feet of any continuously flowing watercourse	Julie	3, 2024	
2	or any other significant watercourse	4,121	feet	
	Within 200 feet of any lakebed, sinkhole or playa lake			
3	(measured from the ordinary high-water mark)	12,657	feet	
4	Within 300 feet from an occupied residence, school,	61,108	feet	
	hospital, institution or church	<u> </u>		
5	i) Within 500 feet of a spring or a private, domestic fresh	6.005		
	water well used by less than five households for	6,935	feet	
	domestic or stock watering purposes, or	C 025	foot	
	ii) Within 1000 feet of any fresh water well or spring	6,935	feet	
	Within incorporated municipal boundaries or within a			
	defined municipal fresh water field covered under a			
6	municipal ordinance adopted pursuant to Section 3-27-3	No	(Y/N)	
	NMSA 1978 as amended, unless the municipality			
	specifically approves			
7	Within 300 feet of a wetland	7,255	feet	
8	Within the area overlying a subsurface mine	No	(Y/N)	
	Distance between release and nearest registered mine	73,190	feet	
			Critical	
	Within an unstable area (Karst Map)	Medium	High	
9	Within an anstable area (Raist Wap)	Wicaram	Medium	
,			Low	
	Distance between release and nearest high- or critical-	0.65	Miles	
	karst zone		1411163	
	Within a 100-year Floodplain	No	year	
10	Distance between release and nearest FEMA Zone A (100-	4,455	feet	
	year Floodplain)	.,		
11	Soil Type	SM - Simona	-Bippus Complex	
12	Ecological Classification	Shallow sandy, bottomland		
13	Geology	Eolian and pi	edmont deposits	
			<50'	
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	51-100'	51-100'	
			>100'	

Release Assessment and Closure June 2024

The depth to groundwater reference was within 0.5 miles from the release area; therefore, the closure criteria for remediation and reclamation of the site was determined to be associated with the second strictest constituent concentration limits as presented in Table 2.

Table 2. Closure Criteria for Soils Impacted by a Release						
Minimum depth below any point within the horizontal boundary of the release to groundwater less than 10,000 mg/l TDS	Constituent	Limit				
10,000 Hig/1 1D3	Chloride	10,000 mg/kg				
	TPH (GRO+DRO+MRO)	2,500 mg/kg				
51 feet - 100 feet	GRO+DRO	1,000 mg/kg				
	BTEX	50 mg/kg				
	Benzene	10 mg/kg				

TDS - total dissolved solids

5.0 Remedial Actions Taken

Inspection and site characterization of the release around the infrastructure was completed by Vertex between November 8 and December 1, 2023, including vertical and horizontal delineation. The impacted area was determined to be approximately 71 feet long and 87 feet wide; the total affected area was determined to be approximately 3,699 square feet. The Daily Field Reports (DFRs) associated with the site visits are included in Appendix B. Characterization sample locations and approximate release areas are presented on Figure 1. Characterization field screening and laboratory results are summarized in Table 3.

On November 30, 2023, XTO requested an extension to January 5, 2024, for incident nAPP2326151503, which was approved on December 1, 2023. The extension request is included in Appendix C.

Remediation efforts began on January 4, 2024, and were finalized on January 30, 2024. Vertex personnel supervised the removal of impacted soils under the production equipment. Field screening was completed on a total of 18 sample points and consisted of analysis using a Photo Ionization Detector (volatile hydrocarbons), Dexsil Petroflag using EPA SW-846 Method 9074 (extractable hydrocarbons) and Silver Nitrate titrations (chlorides). Field screening results were used to identify areas requiring further remediation. These materials were removed to a depth of 0.5 to 1 feet below ground surface. Impacted soil was transported by a licensed waste hauler and disposed of at an approved waste management facility. The final DFR with photographs of the remediated site prior to backfill is included in Appendix B.

Notifications that confirmatory samples were being collected was provided to the NMOCD as required and are included in Appendix C. Confirmatory composite samples, each representative of no more than 200 square feet, were collected from the base and walls of the excavation. A total of 18 samples were collected for laboratory analysis following NMOCD soil sampling procedures. Samples were submitted to Eurofins South Central under chain-of-custody protocols and analyzed for BTEX (EPA Method 8021B), total petroleum hydrocarbons (GRO, DRO, MRO – EPA Method 8015D) and

TPH - total petroleum hydrocarbons, GRO - gas range organics, DRO - diesel range organics, MRO - motor oil range organics

BTEX - benzene, toluene, ethylbenzene and xylenes

Release Assessment and Closure June 2024

total chlorides (EPA Method 300.0). Confirmation sampling laboratory results are presented in Table 4, and the laboratory data reports are included in Appendix D. All confirmatory samples collected and analyzed were below closure criteria for the site.

6.0 Closure Request

The release area was fully delineated, remediated, and backfilled with local soils. Confirmatory samples were analyzed by the laboratory and found to be below allowable concentrations as per the NMAC Closure Criteria for Soils Impacted by a Release locations "51-100 feet depth to groundwater". Based on these findings, XTO requests that this release be closed. The reclamation requirements set forth in 19.15.29.13 NMAC for the top 4 feet will be completed when the site is decommissioned and all oil and gas activities are terminated.

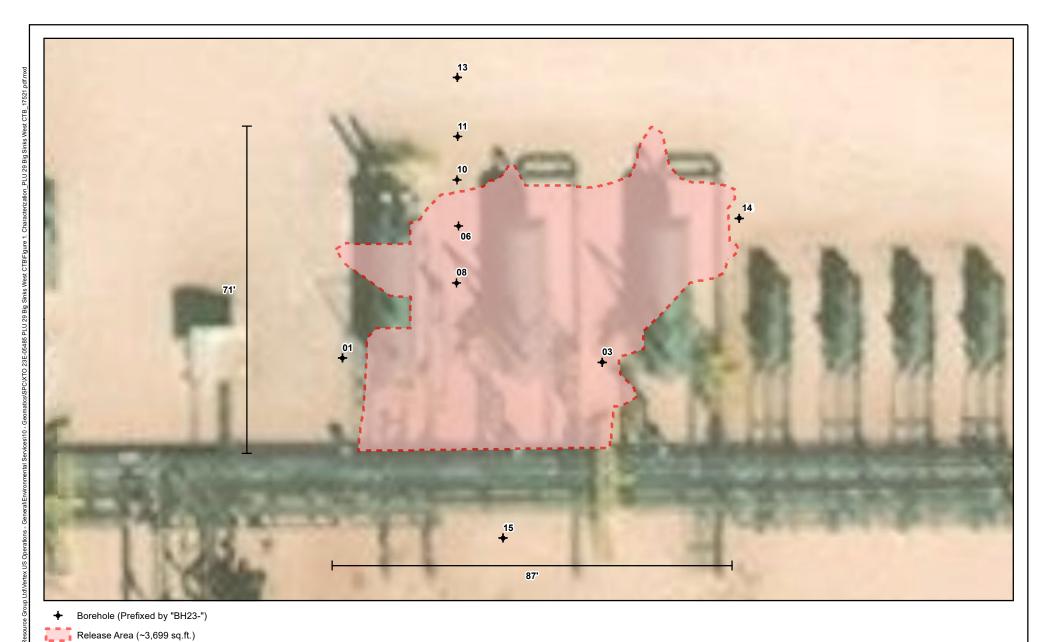
Release Assessment and Closure June 2024

7.0 References

- New Mexico Bureau of Geology and Mineral Resources. (2024). *Interactive Geologic Map*. Retrieved from https://maps.nmt.edu/
- New Mexico Office of the State Engineer. (2024). *Point of Diversion Location Report New Mexico Water Rights Reporting System*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/wellSurfaceDiversion.html
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service. (2024). Web Soil Survey. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
- United States Department of the Interior, Bureau of Land Management. (2018). *New Mexico Cave/Karst*. Retrieved from https://www.nm.blm.gov/shapeFiles/cfo/carlsbad_spatial_data.html
- United States Fish and Wildlife Service. (2024). *National Wetland Inventory Surface Waters and Wetlands*. Retrieved from https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/

Release Assessment and Closure June 2024

8.0 Limitations


This report has been prepared for the sole benefit of XTO Energy, Inc. This document may not be used by any other person or entity, except for the New Mexico Oil Conservation Division and the Bureau of Land Management, without the express written consent of Vertex Resource Services Inc. (Vertex) and XTO Energy, Inc. Any use of this report by a third party, or any reliance on decisions made based on it, or damage suffered because of the use of this report are the sole responsibility of the user.

The information and conclusions in this report are based upon work undertaken by trained professional and technical staff by generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgment of Vertex based on the data collected during the assessment. Due to the nature of the evaluation and the data available, Vertex cannot warrant undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

FIGURES

FIGURES

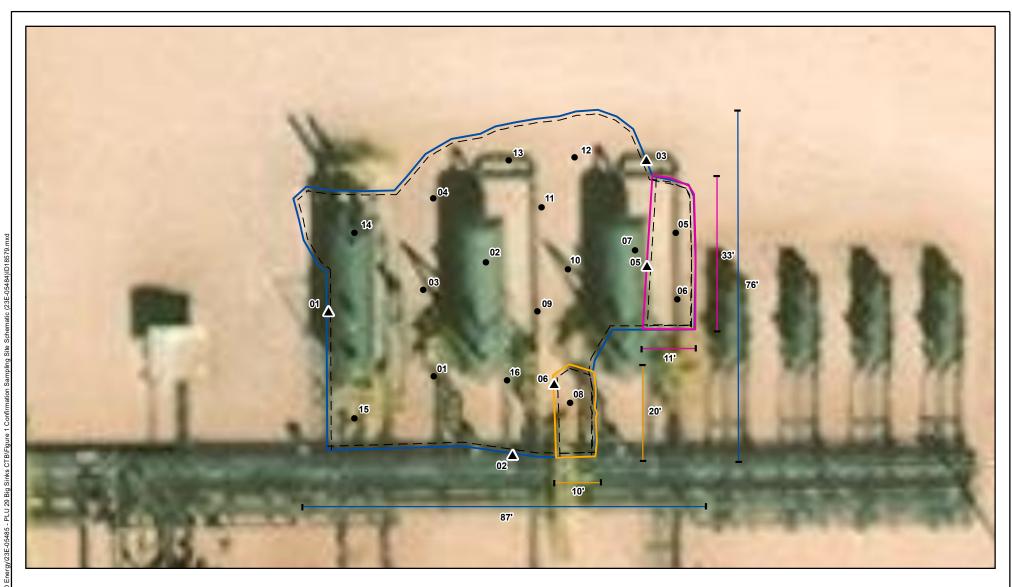
Received by OCD: 7/25/2024 5:07:10 PM

0 12.5 25 ft

Map Center:
Lat/Long: 32.104424, -103.801921

NAD 1983 UTM Zone 13N Date: Dec 12/23

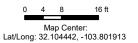
Characterization Sampling Site Schematic PLU 29 Big Sinks West CTB


FIGURE:

1

Geospatial data presented in this figure may be derived from external sources and Vertex does not assume any liability for inaccuracies. This figure is intended for reference use only and is not certified for legal, survey, or engineering purposes.

Note: Georeferenced image from Esri, 2022. Approximate lease boundary from imagery by Vertex Professional Services Ltd. (Vertex), 2023. Site features from GPS, Vertex, 2023.


Excavation to 0.5' bgs (~ 4,770 sq. ft.)

Excavation to 1' bgs (~ 170 sq. ft.)

Wall Sample (Excavated) (Prefixed by "WES24-")

Excavation to 1 ft. bgs (~332 sq.ft.)

NAD 1983 UTM Zone 13N Date: Jun 05/24

Confirmation Sampling Site Schematic PLU 29 Big Sinks West CTB

FIGURE: 2

Geospatial data presented in this figure may be derived from external sources and Vertex does not assume any liability for inaccuracies. This figure is intended for reference use only and is not certified for legal, survey, or engineering purposes.

Note: Georeferenced image from Esri, 2022. Site features from GPS, Vertex Professional Services Ltd., 2024.

TABLES

Client Name: XTO Energy, Inc. Site Name: PLU 29 Big Sinks West CTB NMOCD Tracking #: nAPP2326151503

Project #: 23E-05485

Lab Reports: 890-5610-1, 890-5632-1, 890-5683-1, and 890-5756-1

	Table 3. Ini	tial Characterization	Sample F	ield Scree	n and Lab	oratory Re	esults - De	pth to Gr	oundwate	r 51-100 f	eet bgs	
	Sample Desc	ription	Field Sc	reening	Laboratory Results							
							Petrole	um Hydro	arbons			Inorganic
Sample ID	Depth (ft)	Sample Date	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH23-01	0	November 9, 2023	61	37	ND	ND	ND	ND	ND	ND	ND	78.9
B1123-01	2	November 9, 2023	24	37	ND	ND	ND	ND	ND	ND	ND	15.7
	0	November 8, 2023	67	7,729	ND	ND	ND	ND	ND	ND	ND	9920
BH23-03	2	November 8, 2023	49	3,204	ND	ND	ND	ND	ND	ND	ND	601
B1123-03	4	November 8, 2023	50	353	ND	ND	ND	ND	ND	ND	ND	3040
	4.5	December 1, 2023	85	418	ND	ND	ND	ND	ND	ND	ND	ND
BH23-06	0	November 10, 2023	56	1,010	-	-	-	-	-	-	-	-
B1123-00	1.5	November 10, 2023	52	581	-	1	-	-	1	-	-	-
	0	November 9, 2023	48	2,226	ND	ND	ND	ND	ND	ND	ND	58.8
BH23-08	2	November 9, 2023	57	1,957	ND	ND	ND	ND	ND	ND	ND	460
	4	November 9, 2023	49	33	ND	ND	ND	ND	ND	ND	ND	34.7
BH23-10	0	November 14, 2023	73	1,033	-	-	-	-	-	-	-	-
БП25-10	2	November 14, 2023	28	648	-	-	-	-		-	-	-
DU122 11	0	November 14, 2023	36	854	-	-	-	-	-	-	-	-
BH23-11	2	November 14, 2023	23	99	-	-	-	-	-	-	-	-
BH23-13	0	November 14, 2023	82	186	ND	ND	ND	ND	ND	ND	ND	39.1
вп23-13	1.5	November 14, 2023	41	89	ND	ND	ND	ND	ND	ND	ND	51.6
BH23-14	0	November 21, 2023	ND	172	ND	ND	ND	ND	ND	ND	ND	5.07
BHZ3-14	2	November 21, 2023	ND	315	ND	ND	ND	ND	ND	ND	ND	ND
BH23-15	0	November 21, 2023	200	215	ND	ND	ND	ND	ND	ND	ND	ND
BH23-13	2	November 21, 2023	232	242	ND	ND	ND	ND	ND	ND	ND	5.27

[&]quot;ND" Not Detected at the Reporting Limit

Bold and grey shaded indicates exceedance outside of NMOCD Remediation Closure Criteria

[&]quot;-" indicates not analyzed/assessed

Client Name: XTO Energy, Inc. Site Name: PLU 29 Big Sinks West CTB NMOCD Tracking #: nAPP2326151503

Project #: 23E-05485-01

Lab Reports: 890-5931, 890-5939, 890-5975, 890-6015, 890-5966, 2402015

	Table 4. Confirmatory Sample Field Screen and Laboratory Results - Depth to Groundwater 51-100 feet bgs											
	Sample Des	cription	Field Sc	reening		Petroleum Hydrocarbons						
					Volatile Extractable					Inorganic		
Sample ID	Depth (ft)	Sample Date	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
DEC24 04		1	(ppm) 83	(ppm) 9,603	(mg/kg)	(mg/kg) ND	(mg/kg) ND	(mg/kg) ND	(mg/kg) ND	(mg/kg) ND	(mg/kg) ND	(mg/kg) 7,260
BES24-01	1	January 8, 2024	99	9,803	ND ND	ND ND	ND ND	73	ND ND	73	73	7,280
BES24-02	0.5	January 8, 2024				ND ND	ND ND	73		73		,
BES24-03	0.5	January 8, 2024	111	8,575	ND ND	ND ND	ND ND	20	ND ND	20	72 20	6,700
BES24-04	0.5	January 30, 2024	-	-								3,100
BES24-05	0.5	January 8, 2024	861 163	9,230	ND	ND	ND	1,880	ND	1,880 89	1,880	7,270 703
	1	January 22, 2024		6,300	ND	ND	ND	89	ND		89	
BES24-06	0.5	January 8, 2024	1,134 142	6,565 1,600	ND ND	ND ND	ND ND	2,860 ND	ND ND	2,860 ND	2,860 ND	4,900 4,790
55024.07	1	January 22, 2024	53	7,350	ND	ND ND	ND	ND	ND	ND	ND ND	7,030
BES24-07	0.5	January 9, 2024		7,330		ND ND	ND	17	ND	17	17	,
BES24-08	1	January 30, 2024	- 61	5,750	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	2,500 4,480
BES24-09	0.5	January 9, 2024	184	5,750	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5,060
BES24-10	0.5	January 9, 2024	-	5,900	ND	ND ND	ND	21	ND ND	21	21	2,600
BES24-11	0.5	January 30, 2024		-	ND	ND ND	ND	18	ND	18	18	
BES24-12	0.5	January 30, 2024	- 84	7 200	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	2,500
BES24-13	0.5	January 12, 2024	_	7,200								2,420
BES24-14	0.5	January 12, 2024	78	3,032	ND	ND	ND	ND	ND	ND	ND	2,320
BES24-15	0.5	January 12, 2024	153	6,630	ND	ND	ND	ND 540	ND	ND 540	ND 540	3,470
BES24-16	0.5	January 12, 2024	615	7,100	ND	ND	ND	510	ND	510	510	6,060
WES24-01	0.5	January 30, 2024	-	-	ND	ND	ND	24	ND	24	24	3000
WES24-02	0.5	January 30, 2024	-	-	ND	ND	ND	30	ND	30	30	3900
WES24-03	0.5	January 30, 2024	-	-	ND	ND	ND	35	ND	35	35	2500
WES24-05	1	January 22, 2024	-	-	ND	ND	ND	89	ND	89	89	703
WES24-06	1	January 22, 2024	-	-	ND	ND	ND	ND	ND	ND	ND	4,790

[&]quot;ND" Not Detected at the Reporting Limit

Bold and grey shaded indicates exceedance outside of NMOCD Remediation Closure Criteria 51-100 ft. bgs

[&]quot;-" indicates not analyzed/assessed

APPENDIX A – Closure Criteria Research Documentation

APPENDIX B – Daily Field Reports

Site Photos

Western portion of spill area between equipment.

Viewing Direction: East

Southern spill area with surface crystallization.

Viewing Direction: East

Southeastern portion of spill area behind equipment.

Viewing Direction: South

Northeastern spill area.

Southern spill area with surface staining.

Site Photos

Viewing Direction: North

Site Placard

Viewing Direction: North

BH23-15 at 2

BH23-14 at 2'

Site Photos

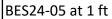
WES24-13 at 0.5

Viewing Direction: East

Date s. Time Fn. Jan 12 08 42 26 MS 1 2024
Pesisten +032 10447 +103 80208
Altitude 1024m
Datum Wids-84
Azimuth Bearing 105 1575E 1867mils (frue)
Zoom 1X

Descriptive Photo - 2
Viewing Direction: East
Descriptive Photo - 12
Comparison of the Comparison of th

WES24-14 at 0.5



WES24-16 at 0.5'

Site Photos

BES24-06 at 1 ft

APPENDIX C – Notifications and Extension Request

FW: XTO - Extension Request - nAPP2326151503 PLU 29 Big Sinks West

Chance Dixon <cdixon@vertexresource.com>

Tue 6/4/2024 9:11 AM

To:Sally Carttar <SCarttar@vertexresource.com>

From: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Sent: Friday, December 1, 2023 8:40 AM

To: Green, Garrett J <garrett.green@exxonmobil.com>

Cc: Chance Dixon <cdixon@vertex.ca>; Collins, Melanie Suzanne <melanie.collins@exxonmobil.com>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Rodgers, Scott, EMNRD <Scott.Rodgers@emnrd.nm.gov>;

Velez, Nelson, EMNRD < Nelson. Velez@emnrd.nm.gov>

Subject: XTO - Extension Request - nAPP2326151503 PLU 29 Big Sinks West

RE: Incident #NAPP2326151503

Garrett,

Your request for an extension to **January 5th, 2024** is approved. Please include this e-mail correspondence in the remediation and/or closure report.

Robert Hamlet • Environmental Specialist - Advanced

Environmental Bureau

EMNRD - Oil Conservation Division
506 W. Texas Ave. | Artesia, NM 88210

575.909.0302 | robert.hamlet@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Rodgers, Scott, EMNRD <Scott.Rodgers@emnrd.nm.gov>

Sent: Thursday, November 30, 2023 2:21 PM

To: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov >

Subject: FW: [EXTERNAL] XTO - Extension Request - nAPP2326151503 PLU 29 Big Sinks West

Scott Rodgers • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
8801 Horizon Blvd. NE, Suite 260 | Albuquerque, NM 87113
505.469.1830 | scott.rodgers@emnrd.nm.gov
http://www.emnrd.nm.gov/ocd

From: Green, Garrett J < garrett.green@exxonmobil.com >

Sent: Thursday, November 30, 2023 11:42 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov >

Cc: Chance Dixon < cdixon@vertex.ca >; Collins, Melanie < melanie.collins@exxonmobil.com > Subject: [EXTERNAL] XTO - Extension Request - nAPP2326151503 PLU 29 Big Sinks West

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

XTO is requesting an extension for the current deadline of December 12, 2023 to complete remedial activities and submitting a report required in 19.15.29.12.B.(1) NMAC at the PLU 29 Big Sinks West Battery (nAPP2326151503). In order to complete all remedial activities and submit a report, XTO requests an extension until January 5, 2024.

Garrett Green

Environmental Coordinator
Delaware Business Unit
(575) 200-0729
Garrett.Green@ExxonMobil.com

XTO Energy, Inc.

3104 E. Greene Street | Carlsbad, NM 88220 | M: (575)200-0729

OCD Permitting

SIGN-IN HELP

Searches

Districts:

Counties:

Operator Data

Artesia

Eddy

Hearing Fee Application

OCD Permitting

Operator Data

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

298365

[5380] XTO ENERGY, INC

Description:

Operator:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

Status Date:

12/29/2023

References (1):

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name

NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type Incident Status

Produced Water Release Initial C-141 Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered

09/07/2023

Surface Owner

Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet 4,000 What is the estimated number of samples that will be gathered

19.15.29.12 NMAC

Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of

01/04/2024

Time sampling will commence

08:00 AM

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

Garrett Green 575-637-1752

Please provide any information necessary for navigation to sampling site

PLU 29 Big Sinks West CTB F-29-25S-31E Open access

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found for	or this submission.			
Conditions				
Summary:	ggreen (12/29/2023), Failure to notify the OCD of sampling events including any charemediation closure samples not being accepted.	anges in date/time per the r	equirements of 19.15.29.1	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for	this submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

EMNRD Home OCD Main Page OCD Rules Help

Districts:

Counties:

SIGN-IN HELP

Operator Data Hearing Fee Application Searches

Artesia

Eddy

OCD Permitting

Operator Data

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

298366

[5380] XTO ENERGY, INC

Description:

Operator:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

Status Date:

12/29/2023

References (1):

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type Incident Status Produced Water Release Initial C-141 Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered Surface Owner

09/07/2023 Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet 4,000 What is the estimated number of samples that will be gathered Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 01/05/2024

19.15.29.12 NMAC

08:00 AM

Time sampling will commence Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

575-200-0729

Please provide any information necessary for navigation to sampling site

PLU 29 Big Sinks West CTB F-29-25S-31E Open Access

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found for	this submission.			
Conditions				
Summary:	ggreen (12/29/2023), Failure to notify the OCD of sampling events including any change remediation closure samples not being accepted.	es in date/time per the r	requirements of 19.15.29.1	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for thi	is submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

EMNRD Home OCD Main Page OCD Rules Help

Searches Operator Data Heari

Artesia

Eddy

Hearing Fee Application

OCD Permitting

Home

Operator Data

Action Status

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

300283

[5380] XTO ENERGY, INC

Description:

Operator:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

References (1):

APPROVED

Status Date:

01/05/2024

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name

NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

OCD Permitting

Districts:

Counties:

Incident Type
Incident Status

Produced Water Release
Initial C-141 Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered

09/07/2023

Surface Owner

Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet 4,000
What is the estimated number of samples that will be gathered 25

Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of

19.15.29.12 NMAC

Time sampling will commence

08:00 AM

01/09/2024

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

Garrett Green 5752000729

Please provide any information necessary for navigation to sampling site

PLU 29 Big Sinks West CTB, F-29-25S-31E

			Searches	Operator Data	Hearing Fee Application
Comments					
No comments found for	this submission.				
Conditions					
Summary:	ggreen (1/5/2024), Failure to notify remediation closure samples not	s including any changes in o	date/time per the rec	quirements of 19.15.29.12	D.(1).(a) NMAC, may result in the
Reasons					
No reasons found for th	is submission.				
Go Back					

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

EMNRD Home OCD Main Page OCD Rules Help

Districts:

Counties:

SIGN-IN HELP

Operator Data Hearing Fee Application Searches

Artesia

Eddy

OCD Permitting

Operator Data

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

300285

[5380] XTO ENERGY, INC

Description:

Operator:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

Status Date:

01/05/2024

References (1):

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type Produced Water Release Incident Status Initial C-141 Received

Location of Release Source

Site Name PLU 29 BIG SINKS WEST CTB

Date Release Discovered 09/07/2023 Surface Owner Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet 4,000 What is the estimated number of samples that will be gathered Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 01/10/2024

19.15.29.12 NMAC

Time sampling will commence 08:00 AM

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers Garrett Green 5752000729

Open access, PLU 29 Big Sinks West CTB, F-29-25S-31E Please provide any information necessary for navigation to sampling site

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found fo	or this submission.			
Conditions				
Summary:	ggreen (1/5/2024), Failure to notify the OCD of sampling events including any charemediation closure samples not being accepted.	anges in date/time per the rec	uirements of 19.15.29.12.	D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for	this submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

EMNRD Home OCD Main Page OCD Rules Help

Districts:

Counties:

SIGN-IN HELP

Operator Data Searches

Artesia

Eddy

Hearing Fee Application

OCD Permitting

Operator Data

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

301936

[5380] XTO ENERGY, INC

Description:

Operator:

XTO ENERGY, INC [5380] , PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

nAPP2326151503

Status Date: References (1): 01/10/2024

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type Produced Water Release Incident Status Remediation Plan Received

Location of Release Source

Site Name PLU 29 BIG SINKS WEST CTB

Date Release Discovered 09/07/2023 Surface Owner Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet 4,000 What is the estimated number of samples that will be gathered Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 01/12/2024

19.15.29.12 NMAC

Time sampling will commence 08:00 AM

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers Garrett Green 5752000729

F-29-25S-31E - 32.10427,-103.80211 Open access Please provide any information necessary for navigation to sampling site

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found	for this submission.			
Conditions —				
Summary:	ggreen (1/10/2024), Failure to notify the OCD of sampling events including any char remediation closure samples not being accepted.	nges in date/time per the re	equirements of 19.15.29.1:	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for	r this submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

Districts:

Counties:

SIGN-IN HELP

Searches Operator Data Hearing Fee Application

Artesia

Eddy

OCD Permitting

Home

Operator Data

Action Status

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

304953

Operator: [5380] XTO ENERGY, INC

Description: XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status: APPROVED

Status Date: 01/18/2024

References (1): nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name

NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type
Incident Status

Produced Water Release

Remediation Plan Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered

09/07/2023

Surface Owner

Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet 1,000

What is the estimated number of samples that will be gathered

Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of

19.15.29.12 NMAC

01/22/2024 10:30 AM

Time sampling will commence

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

Garrett Green 5752000729

Please provide any information necessary for navigation to sampling site

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found	for this submission.			
Conditions				
Summary:	ggreen (1/18/2024), Failure to notify the OCD of sampling events including any change remediation closure samples not being accepted.	ges in date/time per the re	quirements of 19.15.29.1	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for	this submission.			
Go Back				
	New Mexico Energy, Minerals and Natural Resources Depa			

1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

Searches Operator Data Hearing Fee Application

OCD Permitting

Home Op

Operator Data

Action Status

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

304969

Districts:

Artesia

Operator:

[<u>5380</u>] XTO ENERGY, INC

Counties:

Eddy

Description:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

Status Date:

01/18/2024

References (1):

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name

NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type
Incident Status

Produced Water Release

Remediation Plan Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered
Surface Owner

09/07/2023 Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet

1,000

What is the estimated number of samples that will be gathered

5

Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC

01/23/2024 08:00 AM

Time sampling will commence

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

Garrett Green 5752000729

Please provide any information necessary for navigation to sampling site

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found	for this submission.			
Conditions				
Summary:	ggreen (1/18/2024), Failure to notify the OCD of sampling events including any chan- remediation closure samples not being accepted.	ges in date/time per the re	quirements of 19.15.29.17	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for	this submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

Operator Data Hearing Fee Application Searches

OCD Permitting

Operator Data

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

304971

Districts:

Artesia

Operator:

[5380] XTO ENERGY, INC

Counties:

Eddy

Description:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

Status Date:

01/18/2024

References (1):

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name

NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type Incident Status

Produced Water Release Remediation Plan Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered Surface Owner

09/07/2023 Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet

1,000

What is the estimated number of samples that will be gathered

Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC

01/24/2024

Time sampling will commence

08:00 AM

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

Garrett Green 5752000729

Please provide any information necessary for navigation to sampling site

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found fo	r this submission.			
Conditions				
Summary:	ggreen (1/18/2024), Failure to notify the OCD of sampling events including any changes i remediation closure samples not being accepted.	in date/time per the re	quirements of 19.15.29.12	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for t	nis submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

Searches Operator Data

Hearing Fee Application

OCD Permitting

Home

Operator Data

Action Status

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

304974

Artesia

Operator:

[5380] XTO ENERGY, INC

Districts:
Counties:

Eddy

Description:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

Status Date:

01/18/2024

References (1):

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name

NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type
Incident Status

Produced Water Release

Remediation Plan Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered

09/07/2023

Surface Owner

Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet

1,000

What is the estimated number of samples that will be gathered

5

Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of

01/25/2024

19.15.29.12 NMAC
Time sampling will commence

08:00 AM

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

Garrett Green 5752000729

Please provide any information necessary for navigation to sampling site

		Searches	Operator Data	Hearing Fee Application
Comments				
No comments found for	this submission.			
Conditions				
Summary:	ggreen (1/18/2024), Failure to notify the OCD of sampling events including any changes remediation closure samples not being accepted.	in date/time per the re	quirements of 19.15.29.12	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for th	is submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

Searches Operator Data Hearing Fee Application

OCD Permitting

Home Oper

Operator Data Action Sta

Action Search Results

Action Status Item Details

[NOTIFY] Notification Of Sampling (C-141N) Application

Submission Information

Submission ID:

308067

Districts:

Artesia

Operator:

[<u>5380</u>] XTO ENERGY, INC

Counties:

Eddy

Description:

XTO ENERGY, INC [5380]

, PLU 29 BIG SINKS WEST CTB

, nAPP2326151503

Status:

APPROVED

Status Date:

01/25/2024

References (1):

nAPP2326151503

Forms

This application type does not have attachments.

Questions

Prerequisites

Incident ID (n#)

nAPP2326151503

Incident Name

NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0

Incident Type
Incident Status

Produced Water Release

Remediation Plan Received

Location of Release Source

Site Name

PLU 29 BIG SINKS WEST CTB

Date Release Discovered
Surface Owner

09/07/2023 Federal

Sampling Event General Information

Please answer all the questions in this group.

What is the sampling surface area in square feet

1,400

What is the estimated number of samples that will be gathered

7

Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC

01/30/2024

Time sampling will commence

08:00 AM

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers

Garrett Green 5752000729

Please provide any information necessary for navigation to sampling site

F-29-25S-31E PLU 29 Big Sinks West CTB

		Searches	Operator Data	Hearing Fee Application
_ Comments				
No comments found fo	or this submission.			
Conditions				
Summary:	ggreen (1/25/2024). Failure to notify the OCD of sampling events including any change remediation closure samples not being accepted.	es in date/time per the re	equirements of 19.15.29.12	2.D.(1).(a) NMAC, may result in the
Reasons				
No reasons found for t	his submission.			
Go Back				

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 367507

QUESTIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	367507
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2326151503
Incident Name	NAPP2326151503 PLU 29 BIG SINKS WEST CTB @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received

Location of Release Source	
Please answer all the questions in this group.	
Site Name	PLU 29 BIG SINKS WEST CTB
Date Release Discovered	09/07/2023
Surface Owner	Federal

Incident Details	
Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Material(s) released, please answer all that apply below. Any calculations or specific justifications	for the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Corrosion Other (Specify) Produced Water Released: 13 BBL Recovered: 0 BBL Lost: 13 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Interior corrosion caused a pin hole on the Bulk 701 6" CS water line and released fluids to pad.

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 367507

QUEST	TONS (continued)
Operator: XTO ENERGY, INC 6401 Holiday Hill Road Midland, TX 79707	OGRID: 5380 Action Number: 367507 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	•
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.	e. gas only) are to be submitted on the C-129 form.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i. Initial Response The responsible party must undertake the following actions immediately unless they could create a	
Initial Response	
Initial Response The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.
Initial Response The responsible party must undertake the following actions immediately unless they could create a The source of the release has been stopped The impacted area has been secured to protect human health and the	safety hazard that would result in injury. True True
Initial Response The responsible party must undertake the following actions immediately unless they could create a The source of the release has been stopped The impacted area has been secured to protect human health and the environment Released materials have been contained via the use of berms or dikes, absorbent	safety hazard that would result in injury. True True
Initial Response The responsible party must undertake the following actions immediately unless they could create a The source of the release has been stopped The impacted area has been secured to protect human health and the environment Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices All free liquids and recoverable materials have been removed and managed	safety hazard that would result in injury. True True True

to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Garrett Green Title: SHE Coordinator I hereby agree and sign off to the above statement Email: garrett.green@exxonmobil.com Date: 01/08/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 367507

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	367507
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Less than or equal 25 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1 and 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 1 and 5 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Between ½ and 1 (mi.)	
Categorize the risk of this well / site being in a karst geology	Medium	
A 100-year floodplain	Between ½ and 1 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

vided to the appropriate district office no later than 90 days after the release discovery date.
Yes
mination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Yes
No
h, in milligrams per kilograms.)
9920
0
0
0
0
ompleted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
01/04/2024
01/04/2024
01/10/2024
3700
175
3700
175
tion at the time of submission and may (be) change(d) over time as more remediation efforts are completed.

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 367507

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	367507
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	No	
OR is the off-site disposal site, to be used, an NMED facility	No	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No	
(In Situ) Soil Vapor Extraction	No	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No	
Ground Water Abatement pursuant to 19.15.30 NMAC	No	
OTHER (Non-listed remedial process)	No	

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation

hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Alan Romero Title: Regulatory Analyst

Email: alan.romero1@exxonmobil.com

Date: 07/25/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 7/30/2024 4:40:16 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 367507

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	367507
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation. Requesting a deferral of the remediation closure due date with the approval of this No submission

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

DISTRICT II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III

7000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 367507

	(continu	
	ICONTINI	וחמו

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	367507
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	308067
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/30/2024
What was the (estimated) number of samples that were to be gathered	7
What was the sampling surface area in square feet	1400

Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	4770
What was the total volume (cubic yards) remediated	1000
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	4770
What was the total volume (in cubic yards) reclaimed	1000
Summarize any additional remediation activities not included by answers (above)	The release area was fully delineated, remediated, and backfilled with local soils. Confirmatory samples were analyzed by the laboratory and found to be below allowable concentrations as per the NMAC Closure Criteria for Soils Impacted by a Release locations "51-100 feet depth to groundwater". Based on these findings, XTO requests that this release be closed.

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Alan Romero

Title: Regulatory Analyst
Email: alan.romero1@exxonmobil.com
Date: 07/25/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 7

Action 367507

QUESTIONS	(continued)
-----------	-------------

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	367507
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No
•	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 367507

CONDITIONS

Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	367507	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

CONDITIONS

Created B	y Condition	Condition Date
scwells	None	7/30/2024