ATTACHMENT 5

PLU 25 Brushy Draw West Plates: 32.104434,-103.839389 Conditions Depth to Groundwater (nearest reference) Distance between release and nearest DTGW reference Date of nearest DTGW reference measurement Within 300 feet of any continuously flowing watercourse or any other significant watercourse Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, hospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or	X: 609505 Value 109 1,458 0.27 Febru 331 3,612 69,853	Y: 3552601 Unit feet feet miles ary 24, 2021 feet feet feet feet	Reference 1 2 3 4
Conditions Depth to Groundwater (nearest reference) Distance between release and nearest DTGW reference Date of nearest DTGW reference measurement Within 300 feet of any continuously flowing watercourse or any other significant watercourse Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, nospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	Value 109 1,458 0.27 Febru 331 3,612 69,853	Unit feet feet miles ary 24, 2021 feet feet feet	1 2 3 4
Distance between release and nearest DTGW reference Date of nearest DTGW reference measurement Within 300 feet of any continuously flowing watercourse or any other significant watercourse Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, nospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	109 1,458 0.27 Febru 331 3,612 69,853	feet feet miles ary 24, 2021 feet feet feet	1 2 3 4
Distance between release and nearest DTGW reference Date of nearest DTGW reference measurement Within 300 feet of any continuously flowing watercourse or any other significant watercourse Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, hospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or	1,458 0.27 Febru 331 3,612 69,853	feet miles ary 24, 2021 feet feet feet	3 4
Oate of nearest DTGW reference measurement Within 300 feet of any continuously flowing watercourse or any other significant watercourse Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, nospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	0.27 Febru 331 3,612 69,853	miles ary 24, 2021 feet feet feet	3 4
Within 300 feet of any continuously flowing watercourse or any other significant watercourse. Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark). Within 300 feet from an occupied residence, school, pospital, institution or church. Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	331 3,612 69,853	feet feet feet	3
Within 300 feet of any continuously flowing watercourse or any other significant watercourse. Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark). Within 300 feet from an occupied residence, school, pospital, institution or church. Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	331 3,612 69,853	feet feet feet	3
or any other significant watercourse Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, nospital, institution or church Within 500 feet of a spring or a private, domestic fresh vater well used by less than five households for lomestic or stock watering purposes, or	3,612 69,853	feet	3
Within 200 feet of any lakebed, sinkhole or playa lake measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, hospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	69,853	feet	4
measured from the ordinary high-water mark) Within 300 feet from an occupied residence, school, hospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	69,853	feet	4
Within 300 feet from an occupied residence, school, nospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or	69,853		
nospital, institution or church Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for lomestic or stock watering purposes, or			
Within 500 feet of a spring or a private, domestic fresh vater well used by less than five households for lomestic or stock watering purposes, or		feet	
vater well used by less than five households for lomestic or stock watering purposes, or	3,881	feet	
lomestic or stock watering purposes, or	3,881	feet	
			5
) Within 1000 feet of any fresh water well or spring			
, 2000 root of any moon mater men or opining	3,881	feet	5
Vithin incorporated municipal boundaries or within a			
·			
•	No	(Y/N)	6
·	140	(1714)	
	969	feet	7
			<u>'</u>
	-		8
Distance between release and nearest registered mine	92,505	feet	
		Critical	
Nithin an unctable area (Karst Man)	Low	High	
vicinii an unstable area (Karst Wap)	LOW	Medium	9
		Low	9
Distance between release and nearest unstable area	26,473	feet	
Vithin a 100-year Floodplain	>500	year	1
Distance between release and nearest FEMA Zone A (100-		·	10
rear Floodplain)	2,656	feet	
oil Type	Gravelly fine sa	andy loam, indurated	11
cological Classification	Sha	llow Sandy	12
Geology	Eolian and p	piedmont deposits	13
	'	·	
INAC 10 15 20 12 5 /Table 1\ Classes Critoria	>100		
NIVIAC 19.15.29.12 E (Table 1) Closure Criteria	>100		
	vithin an unstable area (Karst Map) istance between release and nearest unstable area vithin a 100-year Floodplain istance between release and nearest FEMA Zone A (100- ear Floodplain) oil Type cological Classification	efined municipal fresh water field covered under a nunicipal ordinance adopted pursuant to Section 3-27-3 No IMSA 1978 as amended, unless the municipality pecifically approves Vithin 300 feet of a wetland 969 Vithin the area overlying a subsurface mine No istance between release and nearest registered mine 92,505 Vithin an unstable area (Karst Map) Low Low Vithin a 100-year Floodplain >500 istance between release and nearest FEMA Zone A (100-year Floodplain) oil Type Gravelly fine sa cological Classification Shall feology Eolian and person and person services of the cology of the cology Eolian and person services of the cology are serviced under a nunicipality of the cology and the cological cologica	efined municipal fresh water field covered under a nunicipal ordinance adopted pursuant to Section 3-27-3 (Y/N) MSA 1978 as amended, unless the municipality pecifically approves Within 300 feet of a wetland 969 feet Within the area overlying a subsurface mine No (Y/N) iistance between release and nearest registered mine Within an unstable area (Karst Map) Low Critical High Medium Low iistance between release and nearest unstable area Within a 100-year Floodplain iistance between release and nearest FEMA Zone A (100-ear Floodplain) poil Type Gravelly fine sandy loam, indurated Cological Classification Shallow Sandy Eolian and piedmont deposits

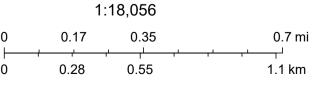
OSE POD Location Map

3/1/2024, 2:08:53 PM

Override 1

OSE District Boundary GIS WATERS PODs Water Right Regulations

NHD Flowlines **Artificial Path**


Active

Artesian Planning Area New Mexico State Trust Lands

Stream River

Plugged

Both Estates

Esri, HERE, iPC, Esri, HERE, Garmin, iPC, Maxar

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters) (In feet)

,	POD												
	Sub-		Q	Q ()						Depth	Depth	Water
POD Number	Code basin (County	64	16 4	Sec	Tws	Rng	Х	Υ	Distance	Well	Water	Column
C 04498 POD1	CUB	ED	2	1 :	3 25	25S	30E	609394	3552168 🌕	446	109		
C 04624 POD1	CUB	ED	4	4	1 30	25S	31E	611501	3552305 🌍	2017	120	0	120
C 03781 POD1	CUB	ED	3	3 3	3 13	25S	30E	609306	3554761 🎒	2170	720	325	395
C 01379	С	ED	4	4 :	3 10	25S	30E	606571	3556355*	4764	400		

Average Depth to Water: 162 feet

> Minimum Depth: 0 feet

325 feet Maximum Depth:

Record Count: 4

UTMNAD83 Radius Search (in meters):

Easting (X): 609504.76 Northing (Y): 3552601 Radius: 5000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec Tws Rng

X Y

NA C 04498 POD1 2 1 3 25 25S 30E

609394 3552168

Driller Name: JAKCIE D ATKINS

Drill Start Date: 02/24/2021

Drill Finish Date: 02/24/2021

Plug Date:

03/02/2021

Log File Date: 03/11/2021

PCW Rcv Date:

Source:

Pipe Discharge Size: Es

Estimated Yield: 0 GPM

Depth Water:

Pump Type: Casing Size:

Depth Well: 109 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

WELL TAG ID NO.

	OSE POD NO		0.)		WELL TAG ID NO.			OSE FILE NO	S).					
GENERAL AND WELL LOCATION	POD1 (B)	H-01)			n/a			C-4498						
ATI	WELL OWN		•		•			PHONE (OPTIC	ONAL)					
ပို	XTO Energ	gy (Kyle	Littrell)											
Ţ			G ADDRESS					CITY		STATE		ZIP		
YE.	6401 Holid	lay Hill	Dr.					Midland		TX	79707			
è	· WELL		D	EGREES	MINUTES	SECOND	s	i i						
[F]	LOCATIO	N T	ATITUDE	32°	6'	1.96"	N	* ACCURACY	REQUIRED: ONE TEN	TH OF A	SECOND			
[KA]	(FROM GP	rs) =		-103°	50'	26.19		* DATUM REC	QUIRED: WGS 84					
ENE	D.700 (7) (7)	1	ONGITUDE	O CERTIFIE A D.D.	DD00 13/D 0010 103			CONCORDA TO		EDE ALL	ATT ADVE			
1. G			ING WELL LOCATION T 5 T25S R30E	O STREET ADD	RESS AND COMMON	ILANDMAR	KS – PLS	s (section, to	wnshjip, range) wh	eke av <i>i</i>	AILABLE			
	LICENSE NO).	NAME OF LICENSE	D DRILLER					NAME OF WELL DR	ILLING C	OMPANY			
	124	49			Jackie D. Atkins				Atkins Eng	ineering	g Associates, I	nc.		
	DRILLING S	TARTED	DRILLING ENDED		OMPLETED WELL (F			LE DEPTH (FT)	DEPTH WATER FIR	ST ENCO	UNTERED (FT)			
	02/24/	2021	02/24/2021	tempo	rary well materia	1		109		n/a	ı			
	COLUMN TECH	D 3177 10	. [] .pm;	[] prusso					STATIC WATER LEVEL IN COMPLETED WELL (FT)					
Z	COMPLETE	D WELL IS	: ARTESIAN	DRY HO	LE SHALLO	W (UNCON	FINED)		n/a					
)III	DRILLING F	LUID:	☐ AIR	☐ MUD	ADDITIV	ES – SPECII	Y:		·					
ORM.	DRILLING FLUID: AIR DRILLING METHOD: ROTARY DEPTH (feet bgl) FROM TO DIAM (inches)			П намме	R CABLE T	OOL	7 OTHE	R – SPECIFY:	Hollo	w Sten	Auger			
N.	DEPTH	(feet bgl)	BORE HOLE	CASING	MATERIAL AND	O/OR	C/	ASING	CASING	CAS	ING WALL	SLOT		
S	FROM	то	DIAM	(include	GRADE each casing string,	and	CON	NECTION	INSIDE DIAM.		ICKNESS	SIZE		
ASI			(inches)		sections of screen)	- 1		TYPE ling diameter)	(inches)		(inches)	(inches)		
3	0	109	±6.5		Boring- HSA			-						
2. DRILLING &														
IT.								_						
DRI														
2.										ļ				
									Comment of the second of	2 3 365	* ** · · · · · · · · · · · · · · · · ·			
									USE DI MAR	11 Z	JZ1 PM4; ZX			
										ļ				
										-		 		
		<u> </u>	<u> </u>	+					I .			<u> </u>		
_	DEPTH	(feet bgl)		l.	IST ANNULAR SE				AMOUNT		метно			
ANNULAR MATERIAL	FROM	то	DIAM. (inches)	GRA	AVEL PACK SIZE	-RANGE I	BY INTE	RVAL	(cubic feet)		PLACEN	MENT		
TER														
MA														
AR														
Į,				_										
ANI				1				<u> </u>						
સ				1										
		l							<u> </u>			-		
	OSE INTER				1				0 WELL RECORD	& LOG	(Version 06/3	0/17)		
\vdash	ENO	44		~ 0	POD NO	,		TRN	- O S FA	52	ــــــــــــــــــــــــــــــــــــــ			
LOC	ATION	1 5	4 12.	ラ5 八	30E Sec	イン		WELL TAG I	DNO. /VXI		PAGE	1 OF 2		

	DEPTH (1	eet bgl)		COLOR A	ND TYPE OF MAT	ERIAI EN	JCOI IN	TERED -		337 A 7	ED	ESTIMATED
			THICKNESS		ER-BEARING CAV				s	WAT BEAR		YIELD FOR WATER-
	FROM	то	(feet)	(attach s	ipplemental sheets (to fully de	scribe a	ll units)		(YES	NO)	BEARING ZONES (gpm)
	0	34	34	C	aliche, tan, no odor, r	no stain, gr	avel, dry	,		Y	✓ N	
	34	40	6	sand/ caclich	e, tan, no odor, no st	ain, m-f gr	ain, well	sorted, dry		Y	√ N	
	40	56	16	sand, tar	ı, no odor, no stain, r	n-f grain,	well sort	ed, dry		Y	✓ N	
ļ	56	72	16	sandstone, low conse	olidation, tan, no odo	r, no stain	, m-f gra	in, well sorted	l, dry	Y	√N	
	72	79	7	sand, tar	n, no odor, no stain, r	n-f grain,	well sort	ed, dry		Y	√ N	
-Ţ	79	109	30	sandstone, low - med	ium consolidation, ta	n, no odo	, m-f gra	ained, well so	ted, m	Y	√ N	
4 HYDROGEOLOGIC 106 OF WELL										Y	N	
Q.						-				Y	N	
\$							Y	N				
5								Y	N			
9										Y	N	
E										Y	N	
80										Y	N	
										Y	N	
4										Y	N	
										Y	N	····
l										Y	N	
						****				Y	N	
ŀ										Y	N	
										Y	N	
l					•					Y	N	
ŀ	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARI	NG STRATA:				TOTA	AL ESTIM	IATED	
	PUM		IR LIFT	BAILER TO	OTHER - SPECIFY:				WEL	L YIELD	(gpm):	0.00
				JD/MEDIK E_I	THER BLEEN 1.							
z	WELL TES	TEST	RESULTS - ATT	ACH A COPY OF DAME. AND A TABLE	ATA COLLECTED I	OURING Y	WELL T	ESTING, INC	LUDII	NG DISCI	HARGE I	METHOD,
/ISION						INGL TIN						
RY	MISCELLA	NEOUS INF	ORMATION: To	emporary well mater	rials removed and	the soil b	oring b	ackfilled usi	ng drill	cuttings	from to	tal depth to ten
100				et below ground sur ogs adapted from W			te cnips	from ten fee	t belo	w ground	surface	to surface.
IC 8								OE	Œ DI.	MAR 1	1 2021	, PM4:26
TEST; RIG SUPERV												
	PRINT NAM	fE(S) OF DI	RILL RIG SUPE	RVISOR(S) THAT PR	OVIDED ONSITE S	UPERVI	SION OF	WELL CON	STRU	CTION O	THER TH	IAN LICENSEE:
, rç	Shane Eldri	ige										
	THEIRM	DCICMED T	IDDEDV CERTE	FIES THAT, TO THE	י מס מוני מס מפר	שוע ספנ	ימש ועו	CE AND DE	יי סקו	пе есть	CONIC	C A TRITE AND
뛽	CORRECT	RECORD OF	F THE ABOVE I	DESCRIBED HOLE A	ND THAT HE OR	SHE WIL	LFILE					
[E]	AND THE P	ERMIT HO	LDER WITHIN	30 DAYS AFTER CO	MPLETION OF WE	LL DRILI	LING:					
SIGNATURE	Oack A	Atkins		1	ackie D. Atkins					03/11	/2021	
6. SI	1											
		SIGNAT	URE OF DRILLE	ER / PRINT SIGNE	E NAME					,	DATE	
FOF	R OSE INTER	NAL USF						WR-20 WF	LL RF	CORD &	LOG (Ve	rsion 06/30/2017)
	E NO.	4499	3		POD NO.	1		TRN NO.	68	252	-8	0.50.2011)
LOC	CATION	132	T25	55 R30E	Sec 2-5		WELL	TAG ID NO.	/	VA		PAGE 2 OF 2
												

John R. D Antonio, Jr., P.E. State Engineer

koswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

682528

File Nbr:

C 04498

Well File Nbr: C 04498 POD1

Mar. 11, 2021

TACOMA MORRISEY WSP USA 3300 NORTH A STREET BLDG 1 #222 MIDLAND, TX 79705

Greetings:

The above numbered permit was issued in your name on 12/01/2020.

The Well Record was received in this office on 03/11/2021, stating that it had been completed on 02/24/2021, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 12/01/2021.

If you have any questions, please feel free to contact us.

Andrew Dennis (575) 622 - 6521

drywell

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	Engineer Well Number: C-4498- POD1	 							
	owner: XTO ENERGY (Kyle Littrell)		Phone No.: 432.682.8873						
Maili	ing address: 6401 Holiday Hill Dr.				+				
City:	Midland	_ State: _	7	exas	Zip code:				
<u>II. W</u>	WELL PLUGGING INFORMATION:	laa	talo D. Addino (A41 -	arina Assasiatas Inc.)				
1)	Name of well drilling company that plugged	d well: Jac	KIE D. Atkins (Atkins Engine	ering Associates Inc.)				
2)	New Mexico Well Driller License No.: 12	49	<u>.</u>	F	expiration Date: 04/30/21				
3)	Well plugging activities were supervised by Shane Eldridge	the followi	ng well driller	(s)/rig supervi	sor(s):				
4)	Date well plugging began: 03/02/2021		Date well pl	ugging conclu	ded: 03/02/2021				
5)	GPS Well Location: Latitude: Longitude:		eg, 6 eg, 50	,	.96 sec 5.19 sec, WGS 84				
6)	Depth of well confirmed at initiation of plug by the following manner: weighted tape	gging as: _	109 ft be	elow ground le	evel (bgl),				
7)	Static water level measured at initiation of p	olugging: _	n/a ft bį	gl					
8)	Date well plugging plan of operations was a	approved by	the State Eng	ineer: 12/01	/2020				
9)	Were all plugging activities consistent with differences between the approved plugging								
	· · · · · · · · · · · · · · · · · · ·								
				·**	SE DII MAR 11 2021 •×4:25				
				لية	DE DU WALLTY KANT ALEV NO				

Version: September 8, 2009 Page 1 of 2

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
- -	0-10' Hydrated Bentonite	Approx. 16 gallons	16 gallons	Augers	
	10'-109' Drill Cuttings	Approx. 171 gallons	171 gallons	Boring	
- -					
÷					
<u>-</u>					
-					
- - -				OSE DII N	1AR 11 2021 pm4;27
	ı	MULTIPLY cubic feet x 7. cubic yards x 201.	9Y AND OBTAIN 1805 = gallons 97 = gallons	•	•

III. SIGNATURE:

I, Jackie D. Atkins , say that I am familiar w	ith the rules of the Office of the State
Engineer pertaining to the plugging of wells and that each and all of the statements	in this Plugging Record and attachments
are true to the best of my knowledge and belief.	
Jack Atkins	03/11/2021
Signature of Well Dr	iller Date

Version: September 8, 2009 Page 2 of 2

STATE OF NEW MEXICO

OFFICE OF THE STATE ENGINEER ROSWELL

John R. D'Antonio, P.E.

State Engineer

DISTRICT II

1900 West Second St. Roswell, NM 88201 Phone: (575) 622-6521

Fax: (575) 623-8559

April 12, 2021

XTO Energy 6401 Holiday Hill Dr. Midland, TX 79707

RE: Well Plugging Record for OSE File No. C-4498 POD1

Greetings:

Please find enclosed Well Plugging Record, received and filed in our office on 03/11/21

Thank/you,

Andrew Dennis

Engineering Technician

2020-03-10_C-4498-POD1_OSE_Well Record and Log-forsign

Final Audit Report

2021-03-11

Created:

2021-03-11

By:

Lucas Middleton (lucas@atkinseng.com)

Status:

Signed

Transaction ID:

CBJCHBCAABAAq2m7g1wGV8cRoBzMugpPTk25-4ojFW8H

"2020-03-10_C-4498-POD1_OSE_Well Record and Log-forsign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2021-03-11 7:17:39 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2021-03-11 7:18:18 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2021-03-11 7:29:33 PM GMT- IP address: 74.50.153.115
- Document e-signed by Jack Atkins (jack@atkinseng.com)

 Signature Date: 2021-03-11 7:31:05 PM GMT Time Source: server- IP address: 74.50.153.115
- Agreement completed. 2021-03-11 7:31:05 PM GMT

IDSE DIT MAR 11 2021 PM4:27

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Intermittent 331 feet

June 12, 2024

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Pond

Lake

Freshwater Forested/Shrub Wetland

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

U.S. Fish and Wildlife Service

National Wetlands Inventory

Pond 3,612 feet

June 12, 2024

Wetlands

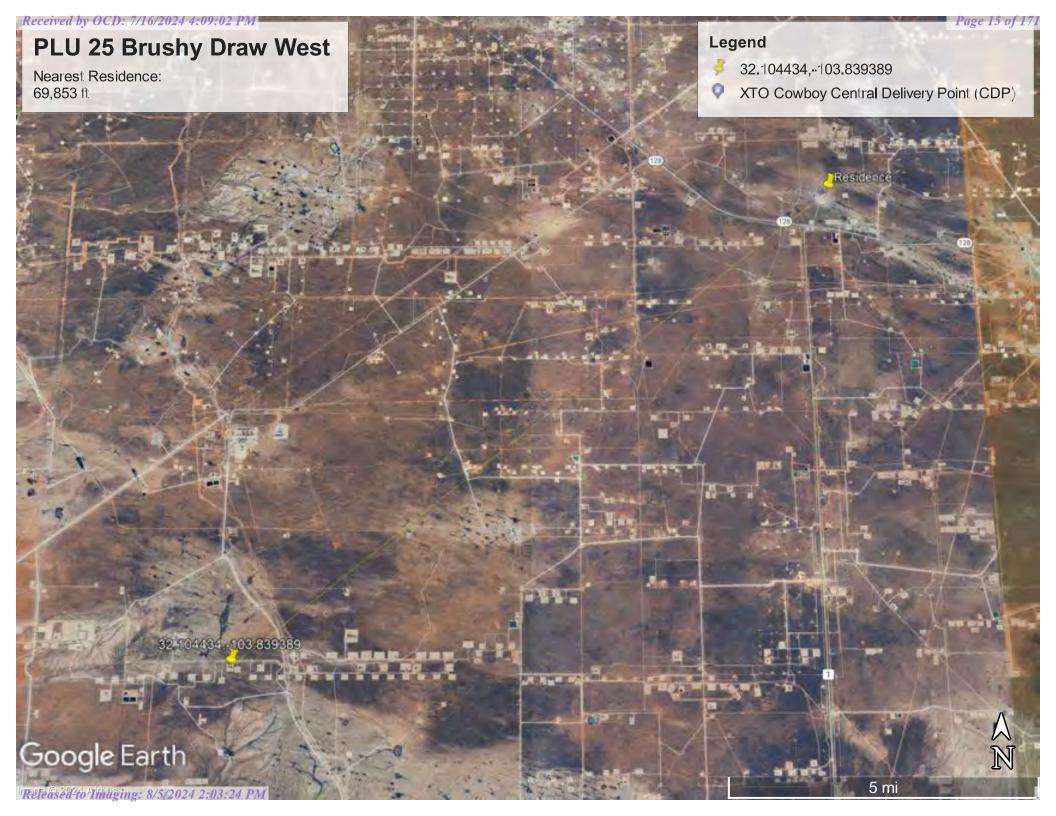
Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond


Lake

Lake

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Received by OCD: 7/16/2024 4:09:02 PM

Page 16 of 171

New Mexico Office of the State Engineer

Active & Inactive Points of Diversion

(with Ownership Information)

(R=POD has been replaced

and no longer serves this file, (quarters are 1=NW 2=NE 3=SW 4=SE)

C=the file is closed) (quarters are smallest to largest) (NAD83 UTM in meters)

		(dolo it poi c	armann,				O=tric file is closed)	(quai	icis air	Jillai	icsi ic i	argest	(, ., .,) i i i i i i i i i i i i i i i i i i i	
	Sub					Well			qqq						
WR File Nbr	basin	Use Diversion	on Owner	County	POD Number	Tag	Code Grant	Source	6416 4	Sec	Tws R	ng	Х	Y	Distance
<u>C 04498</u>	CUB	MON	0 XTO ENERGY INC	ED	C 04498 POD1	NA			2 1 3	25	25S 3	60E	609394	3552168	446
LWD 01188	CUB	PLS 89).2 BUCK & LARUE JACKSON TRUST	ED	LWD 01188 POD1				1 1 3	24	25S 3	60E	609238	3553754*	1183
<u>C 04624</u>	CUB	MON	0 ENSOLUM LLC	ED	C 04624 POD1	NA			4 4 1	30	25S 3	1E	611500	3552305	2017
<u>C 03781</u>	CUB	EXP	0 ATKINS ENGR ASSOC INC	ED	C 03781 POD1			Artesian	3 3 3	13	25S 3	60E	609305	3554761 🌑	2170
LWD 01210	CUB	PLS	17 BUCK & LARUE JACKSON TRUST	ED	LWD 01210 POD1				3 2 3	36	25S 3	60E	609665	3550314*	2292
<u>C 04730</u>	CUB	MON	0 ENSOLUM	ED	C 04730 POD1	NA			3 3 1	27	25S 3	0E	606032	3552256	3489
<u>C 02441</u>	С	STK	0 BYRON W PASCHAL	ED	<u>C 02441</u>					21	25S 3	60E	605077	3553783*	4582
<u>C 01379</u>	С	STK	3 BUCK JACKSON	ED	<u>C 01379</u>				4 4 3	10	25S 3	60E	606571	3556355*	4764
<u>C 01831</u>	С	PRO	0 OXY PETROLEUM INC	ED	<u>C 01831</u>				2 1	17	25S 3	1E	612972	3556126*	4944

Record Count: 9

UTMNAD83 Radius Search (in meters):

(acre ft per annum)

Easting (X): 609504.76 **Northing (Y):** 3552601 **Radius:** 5000

Sorted by: Distance

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/1/24 2:49 PM Page 1 of 1 ACTIVE & INACTIVE POINTS OF DIVERSION

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number

Q64 Q16 Q4 Sec Tws Rng

X

LWD 01188 POD1

1 1 3 24 25S 30E

609238 3553754*

9

Driller License:

Driller Company:

Driller Name:

Drill Start Date: Plug Date:
Log File Date: PCW Rev Date: Source:

Pump Type:Pipe Discharge Size:Estimated Yield:Casing Size:Depth Well:Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/12/24 4:54 PM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

New Mexico Office of the State Engineer

Water Right Summary

get image list

WR File Number: LWD 01188 Subbasin: CUB Cross Reference: LWD-C-7

Primary Purpose: PLS NON 72-12-1 LIVESTOCK WATERING

Primary Status: DCL DECLARATION

Total Acres: 34.7 Subfile: - Header: -

Total Diversion: 89.2 Cause/Case: -

Owner: BUCK & LARUE JACKSON TRUST

Documents on File

Status From/

Trn# Doc File/Act 1 2 Transaction Desc. To Acres Diversion Consumptive

Current Points of Diversion

(NAD83 UTM in meters)

 POD Number
 Well Tag
 Source
 64Q16Q4Sec
 Tws Rng
 X
 Y
 Other Location Desc

 LWD 01188 POD1
 1
 1
 3
 24
 25S
 30E
 609238
 3553754*

An () after northing value indicates UTM location was derived from PLSS - see Help

Priority Summary

 Priority
 Status
 Acres
 Diversion
 Pod Number

 12/31/1906
 DCL
 34.7
 89.2
 <u>LWD 01188 POD1</u>

Place of Use

V V

 256
 64 Q16 Q4Sec Tws Rng
 Acres
 Diversion
 CU
 Use
 Priority
 Status Other Location Desc

 1
 1
 3
 24
 25S
 30E
 34.7
 89.2
 PLS
 12/31/1906
 DCL

Source

AcresDiversionCUUsePrioritySourceDescription34.789.2PLS12/31/1906SW

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/12/24 4:54 PM WATER RIGHT SUMMARY

U.S. Fish and Wildlife Service National Wetlands Inventory

PLU 25 BD West_Wetland_969 ft

March 1, 2024

Wetlands

Estuarine and Marine Deepwater

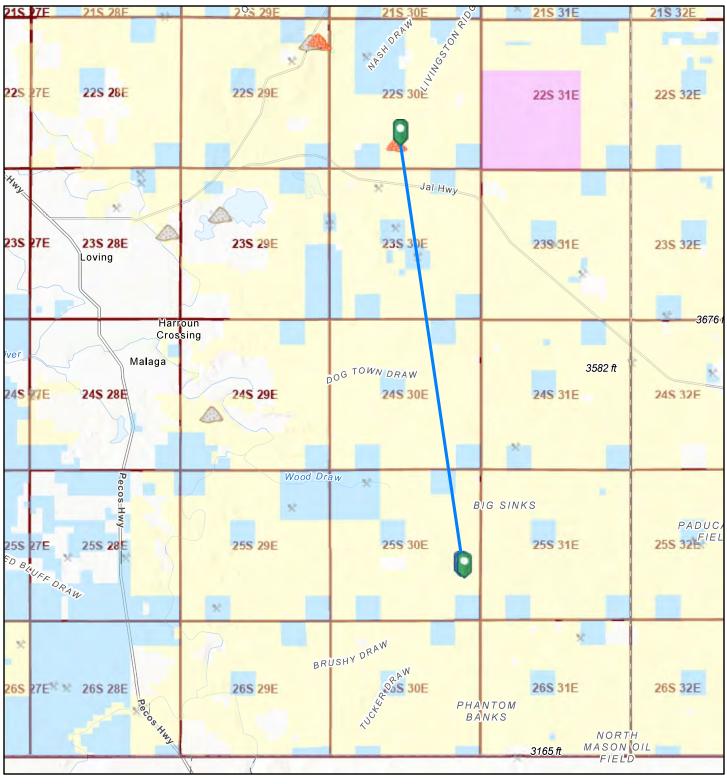
Estuarine and Marine Wetland

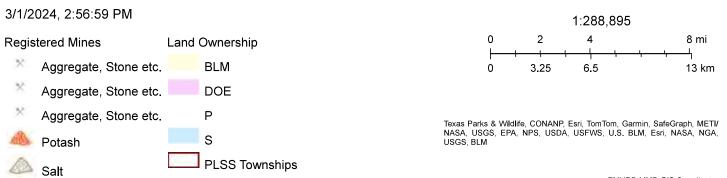
Freshwater Emergent Wetland

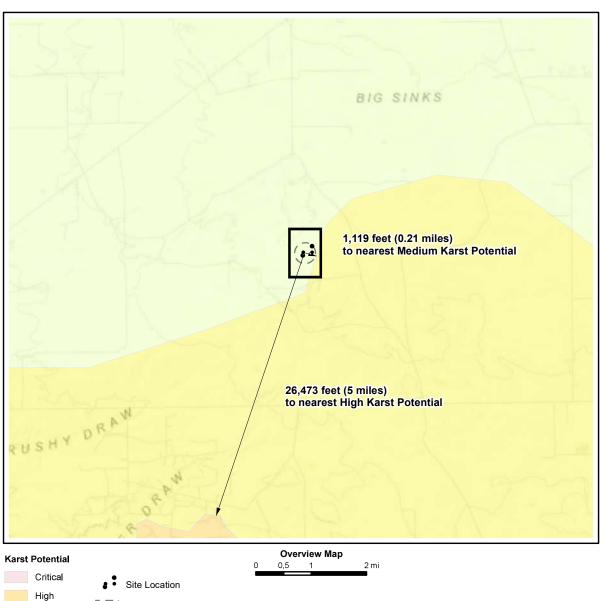
Freshwater Pond

Freshwater Forested/Shrub Wetland

L


Lake


Other


Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Active Mines in New Mexico

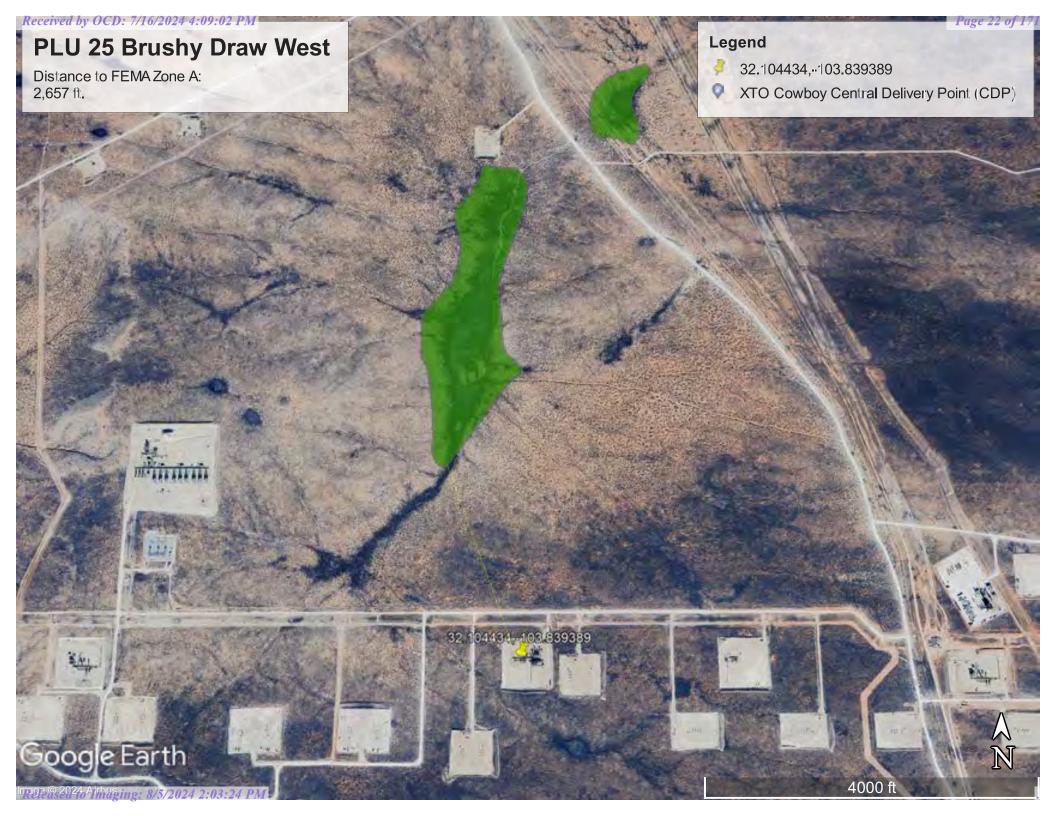
0 150 300

Low

Medium

Map Center: -103.840731° 32.097917°

__ | Site Buffer (1000 ft.)


NAD 1983 UTM Zone 13N Date: Mar 05/24

Karst Potential Map PLU 25 Brushy Draw West Figure: X

Geospatial data presented in this figure may be derived from external sources and Vertex does not assume any liability for inaccuracies. This figure is intended for reference use only and is not certified for legal, survey, or engineering purposes.

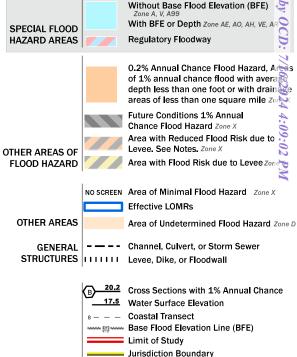
National Flood Hazard Layer FIRMette **FEMA** ₹03°50'41"W 32°6'31"N AREA OF MINIMAL FLOOD HAZARD Eddy County 350120

∎Feet

2.000

250

500


1,000

1.500

1:6,000

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Digital Data Available

— --- Coastal Transect Baseline

Hydrographic Feature

Profile Baseline

No Digital Data Available

MAP PANELS Unmapped

OTHER

FEATURES

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

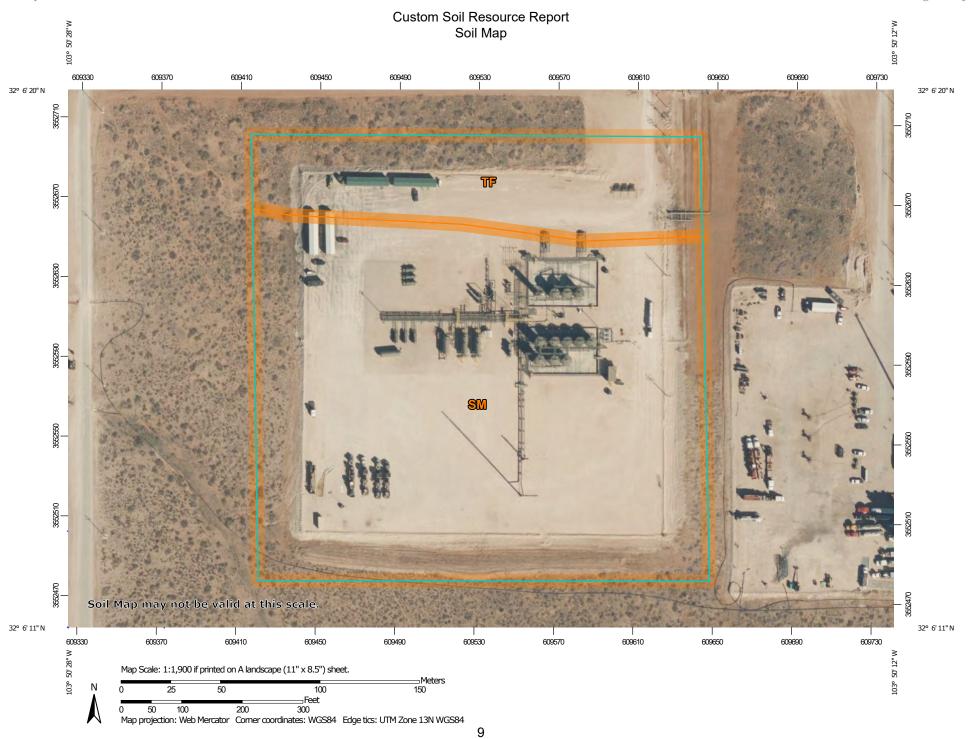
This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/1/2024 at 5:20 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 🍮 unmapped and unmodernized areas cannot be used for regulatory purposes.

103°50'3"W 32°6'1"N

VRCS


Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip Sodic Spot

Spoil Area Stony Spot

å

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

00

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 19, Sep 7, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
SM	Simona-Bippus complex, 0 to 5 percent slopes	10.0	79.4%
TF	Tonuco loamy fine sand, 0 to 3 percent slopes	2.6	20.6%
Totals for Area of Interest		12.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

SM—Simona-Bippus complex, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1w5x Elevation: 1,800 to 5,000 feet

Mean annual precipitation: 8 to 24 inches

Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 180 to 230 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 55 percent Bippus and similar soils: 30 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains, alluvial fans

Landform position (three-dimensional): Rise

Down-slope shape: Convex, linear

Across-slope shape: Linear

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 19 inches: gravelly fine sandy loam

H2 - 19 to 23 inches: indurated

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R070BD002NM - Shallow Sandy

Hydric soil rating: No

Description of Bippus

Setting

Landform: Flood plains, alluvial fans

Landform position (three-dimensional): Talf, rise

Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 37 inches: silty clay loam H2 - 37 to 60 inches: clay loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Occasional Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: R070BC017NM - Bottomland

Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 8 percent

Ecological site: R070BD002NM - Shallow Sandy

Hydric soil rating: No

Bippus

Percent of map unit: 7 percent

Ecological site: R070BC017NM - Bottomland

Hydric soil rating: No

TF—Tonuco loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w61 Elevation: 3,000 to 4,100 feet

Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F

Frost-free period: 200 to 217 days

Farmland classification: Not prime farmland

Map Unit Composition

Tonuco and similar soils: 98 percent Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tonuco

Setting

Landform: Plains, alluvial fans

Landform position (three-dimensional): Rise

Down-slope shape: Convex, linear

Across-slope shape: Linear

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 5 inches: loamy fine sand H2 - 5 to 15 inches: loamy fine sand H3 - 15 to 19 inches: indurated

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 6 to 20 inches to petrocalcic

Drainage class: Excessively drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R070BD004NM - Sandy

Hydric soil rating: No

Minor Components

Dune land

Percent of map unit: 1 percent Hydric soil rating: No

Tonuco

Percent of map unit: 1 percent Ecological site: R070BD004NM - Sandy Hydric soil rating: No

Ecological site R070BD002NM Shallow Sandy

Accessed: 03/01/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R070BD004NM	Sandy	Ì
	Sandy sites often occur in association or in a complex with Shallow Sandy Sites.	

Similar sites

R070BD004NM	Sandy
	Sandy ecological sites are similar to Shallow Sandy sites in species composition and Transition pathways.

Table 1. Dominant plant species

Tree	Not specified					
Shrub	Not specified					
Herbaceous	Not specified					

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Fan piedmont(3) Alluvial fan
Elevation	2,842-4,500 ft
Slope	1–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common.

Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are:

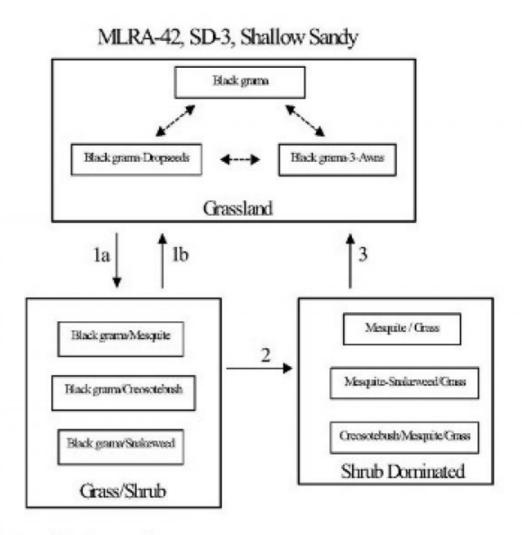
Simona

Jerag

Table 4. Representative soil features

Surface texture	(1) Fine sandy loam(2) Loamy fine sand(3) Gravelly fine sandy loam
Family particle size	(1) Loamy
Drainage class	Well drained to moderately well drained
Permeability class	Moderately slow to moderate

Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%


Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrub-dominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

Seed dispersal, drought, overgrazing, fire suppression.

- 1b. Prescribed fire, brush control, prescribed grazing.
- 2. Persistent loss of grass cover, resource competition, increased winter precipitation.
- Brush control, range seeding, prescribed grazing.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water perched and available to shallow rooted grasses. Black grama is the dominant species in the historic plant community, averaging 50 to 60 percent of the total production for this site. Bush muhly, blue grama, and dropseeds are present as sub-dominants. Typically, yucca, javalinabush, range ratany, prickly pear, and mesquite are sparsely dotted across the landscape. Leatherweed croton, cutleaf

happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrub seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state). Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m). Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass. Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite. Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 5. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

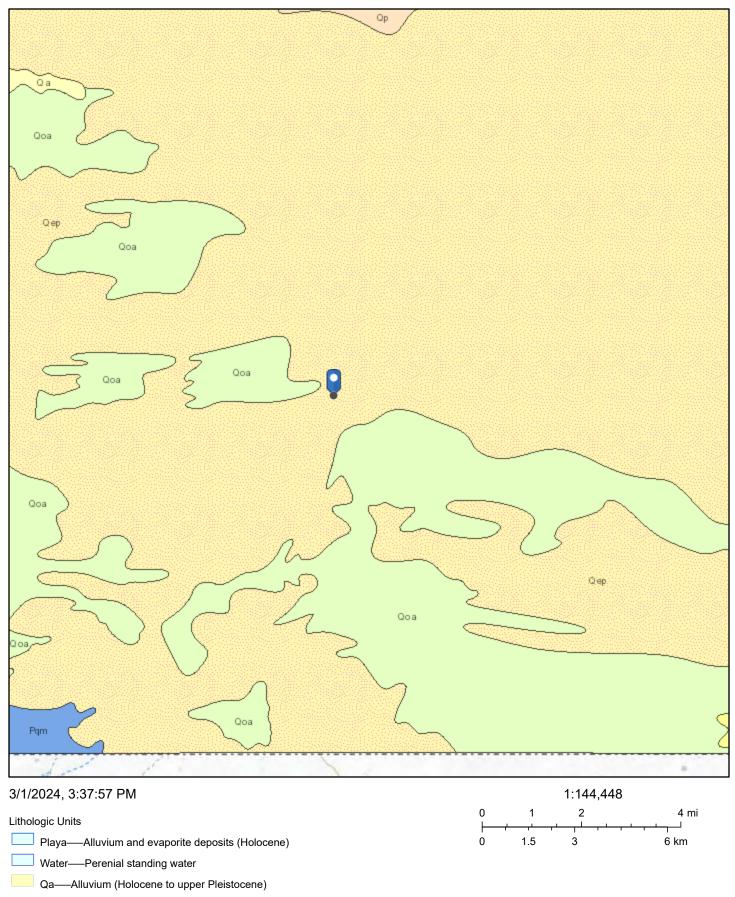
Community 2.1 Grass/Shrub

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom snakeweed, and/or creosotebush, however grasses remain as the dominant species. Black grama is the dominant

grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs. Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed. Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment. Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8 Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands.6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated


Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or sub-dominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state. Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common. Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition.5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4 Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7 Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			413–495	
	black grama	BOER4	Bouteloua eriopoda	413–495	_
2	Warm Season			41–83	
	bush muhly	MUPO2	Muhlenbergia porteri	41–83	_
3	Warm Season			41–83	

ArcGIS Web Map

Esri, NASA, NGA, USGS, NMBGMR, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S. Census Bureau TIGER/Line data; USFS

General Information

NMOCD District:	District 1	Incident ID:	nAPP2403657069
Landowner:	Federal	Facility:	fAPP2126355953
Client:	XTO Energy, Inc.	Site Location:	PLU 25 Brushy Draw West
Date:	July 12, 2024	Project #:	24E-00670
Client Contact:	Amy Ruth	Phone #:	432.661.0571
Vertex PM:	Sally Carttar	Phone #:	575.361.3561

Objective

The objective of the environmental remediation work plan is to identify exceedances found during the site assessment/characterization activity and propose an appropriate remediation technique to address the produced water and crude oil release at PLU 25 Brushy Draw West. The release occurred due to corrosion and resulted in 40 barrels (bbl) of produced water to be released on the facility pad shown on Figure 1 (Attachment 1). Areas of environmental concern identified and delineated include around the production equipment on the west side of the pad. Closure criteria have been selected as per New Mexico Administrative Code 19.15.29. The closure criteria for the site are presented below in Table 1.

Table 1. Closure Criteria for Soils Impacted by a Release						
Minimum depth below any point within the horizontal boundary of the release to groundwater less than 10,000 mg/l TDS	Constituent	Limit				
	Chloride	20,000 mg/kg				
	TPH (GRO+DRO+MRO)	2,500 mg/kg				
> 100 feet	GRO+DRO	1,000 mg/kg				
	BTEX	50 mg/kg				
	Benzene	10 mg/kg				

TDS - Total dissolved solids

Site Assessment/Characterization

Site characterization was started on March 18, 2024, and concluded on June 24, 2024. A total of 33 sample points were established, and 50 samples were collected for field screening. Samples were obtained at two discrete depths for horizontal delineation, and samples at the greatest lateral limits below criteria were submitted to the laboratory for analysis. Vertical limits were not attainable with the tools available due to caliche refusal and will be completed at the time of remediation. In total, 25 samples were submitted to Eurofins Environmental Testing, Albuquerque, New Mexico, for analysis. The sample locations are presented on Figure 1 (Attachment 1). Laboratory analysis results have been compared to the above noted closure criteria and the results from the characterization activity are presented in Table 2 (Attachment 2). If present, exceedances to reclamation and remediation criteria are identified in the table as bold with grey background. All samples collected within the documented release area were below characterization criteria limits, as shown in Table 2 (Attachment 2). Daily field reports and laboratory data reports are included in Attachments 3 and 4, respectively. All applicable research as it pertains to closure criteria selection is presented in Attachment 5.

TPH - Total petroleum hydrocarbons = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO),

BTEX - Benzene, toluene, ethylbenzene, and xylenes

Proposed Remedial Activities

General

Areas identified with contaminant concentrations above closure criteria will be remediated through excavation. Laboratory results from the site assessment/characterization have been referenced to estimate both the vertical and horizontal limits of the impacts and the volume of soil to be removed. Soil will be excavated to the extents of the known impacts or in 0.5 foot increments, whichever is less. Field screening will be utilized to confirm removal of impacted soil below the applicable closure criteria. Excavated soils will be stored on a 30mil liner prior to disposal at an approved facility. Once excavation is complete, confirmatory samples will be collected and laboratory analysis completed to confirm closure criteria guidelines are met. Excavations will be backfilled with clean soil sourced locally.

nAPP2403657069 (January 22, 2024) - Produced Water Released onto Pad

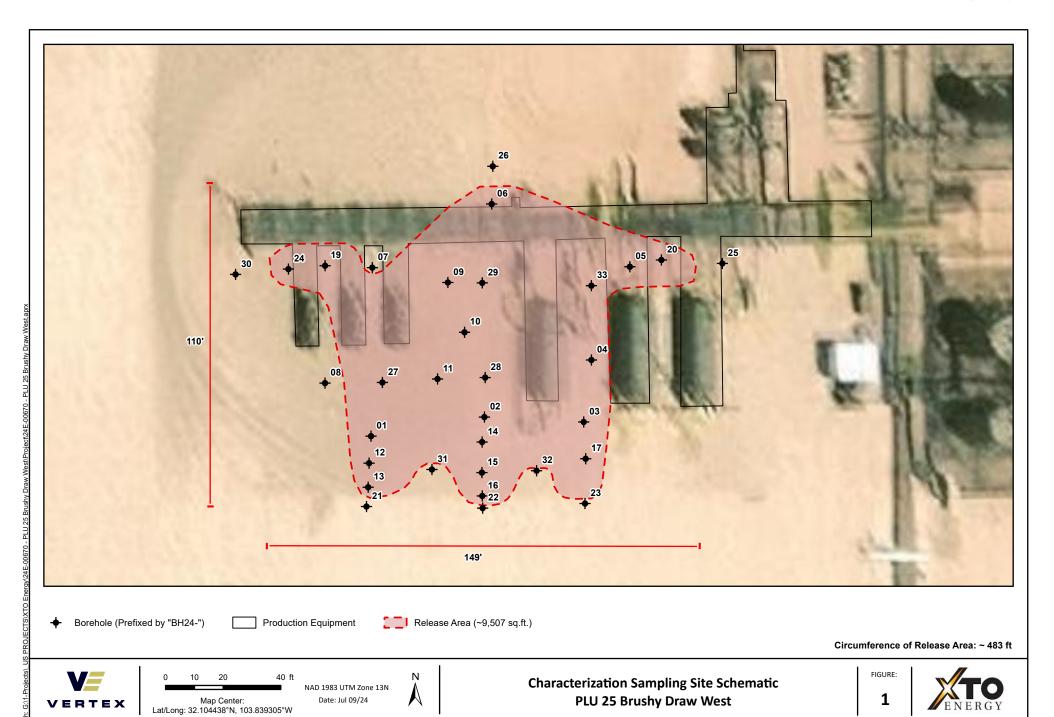
Field screening and laboratory analysis were utilized to find the horizontal and vertical extents of the spill area. A total of 40 samples were collected for analysis north and south of the production equipment. The site is constructed on a cemented material that limited collection of depth samples and requires mechanical assistance to complete vertical characterization. At least one vertical delineation location will have samples collected at 2 and 4 feet below ground surface or greater as needed within the release area during excavation. Exceedances to closure criteria were not identified; however, the release area will be excavated where accessible to a depth of 0.5 feet to remove staining and the impacted material with the highest chloride concentration. The sample locations and proposed excavations are presented on Figures 1 and 2, respectively (Attachment 1). Heavy equipment will be used to excavate open areas on the pad to remove contaminated soil. A hydrovac truck may be utilized to identify utility and buried pipelines where necessary, and hand tools will be utilized to remove contaminated soil in close proximity to equipment, buried utility and pipelines. Confirmation samples will be collected as per New Mexico Oil Conservation Division guidance and submitted for laboratory analysis of all applicable parameters. The estimated volume to be excavated is approximately 200 cubic yards. Excavation is planned to be completed within 90 days of approval of this Environmental Site Remediation Work Plan. The completed NMCOD C-141 Report for the incident and the approved 90-day extension for characterization and remediation plan are presented in Attachment 6.

Sample Point	Excavation Depth	Remediation Method
BH24-01	0.5'	Excavator
BH24-02	0.5'	Excavator
BH24-03	0.5'	Handcrew or Hydrovac
BH24-04	0.5'	Handcrew or Hydrovac
BH24-05	0.5'	Handcrew or Hydrovac
BH24-06	0.5'	Handcrew or Hydrovac
BH24-09	0.5'	Excavator
BH24-10	0.5'	Excavator
BH24-11	0.5'	Excavator
BH24-12	0.5'	Excavator
BH24-13	0.5'	Excavator
BH24-14	0.5'	Excavator
BH24-15	0.5'	Excavator
BH24-16	0.5'	Excavator
BH24-17	0.5'	Excavator
BH24-18	0.5'	Excavator
BH24-19	0.5'	Handcrew or Hydrovac
BH24-20	0.5'	Handcrew or Hydrovac
BH24-24	0.5'	Handcrew or Hydrovac
BH24-27	0.5'	Excavator
BH24-28	0.5'	Excavator
BH24-29	0.5'	Excavator
BH24-33	0.5'	Handcrew or Hydrovac

Should you have any questions or concerns, please do not hesitate to contact Sally Carttar at 575.361.3561 or SCarttar@vertexresource.com.

John Rewis	July 12, 2024	
John Rewis, B.Sc.	Date	
ENVIRONMENTAL TECHNICIAN, REPORTING		
Sally Carttar	July 12, 2024	
Sally Carttar, BA	Date	
PROJECT MANAGER, REPORT REVIEW		

Environmental Site Remediation Work Plan

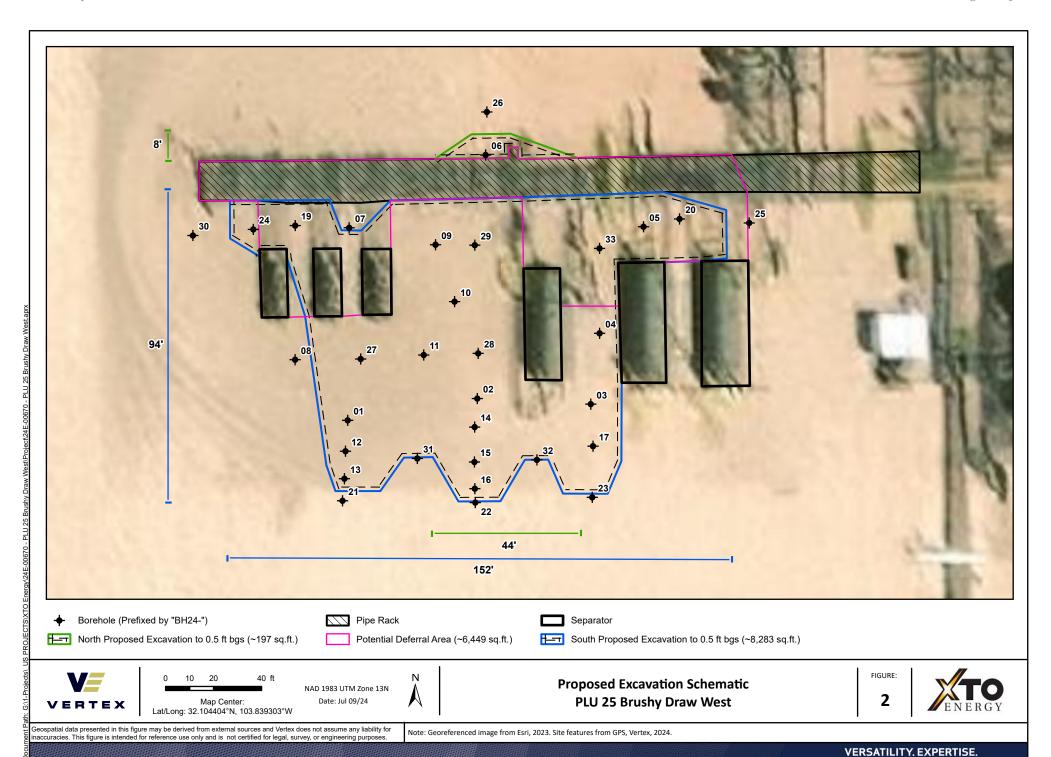


Attachments

- Attachment 1. Characterization Sampling and Proposed Excavation Schematics
- Attachment 2. Initial Characterization Sample Field Screen and Laboratory Results Depth to Groundwater >100 feet bgs
- Attachment 3. Daily Field Reports with Photographs
- Attachment 4. Laboratory Data Reports with Chain of Custody Forms
- Attachment 5. Closure Criteria Research
- Attachment 6. NMOCD C-141 Report

ATTACHMENT 1

Received by OCD: 7/16/2024 4:09:02 PM



Note: Georeferenced image from Esri, 2023. Site features from GPS, Vertex, 2024.

Released to Imaging: 8/5/2024 2:03:24 PM

VERSATILITY. EXPERTISE.

Seospatial data presented in this figure may be derived from external sources and Vertex does not assume any liability for

ATTACHMENT 2

Client Name: XTO Energy, Inc. Site Name: PLU 25 Brushy Draw West NMOCD Tracking #: nAPP2403657069

Project #: 24E-00670

Lab Reports: 885-1706-1, 885-1922-1, 885-2016-1, and 885-6878-1

	Sample Desc	nitial Characterization	•	reening	and Labe	ratory Ne		um Hydro		- 100 1661	~ 53	
	Sample Desc	прион	Field 30	reening	Vol	atile	retiole		Extractable	,		Inorganic
Sample ID	Depth (ft)	Sample Date	Extractable Organic Compounds (PetroFlag)	Chloride Concentration			Gasoline Range Organics (GRO)	Organics	Motor Oil Range Organics (MRO)		Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(mdd) Compou	(mada)	euseue Beuzeue (mg/kg)	BTEX (Total)	(mg/kg)	B Diesel Range (DRO)	(Mg/kg) (MRO)	(mg/kg)	ਤੇ Total Pe ਨ੍ਹੇ Hydroca	(mg/kg)
BH24-01	0	March 18, 2024	(ppiii)	5,525	- (1116/116)	- (1116/116/	- (1116/116)	- (1116/116/	- (1116/116)	- (1116/116)	- (1116/116)	- (1116/116)
BH24-01	0	March 18, 2024	_	13.500	_	_	_	_	_	_	_	_
BH24-03	0	March 18, 2024		10,800				_	_	_		_
	0	March 19, 2024	_	10,228	_	_	_	_	_	_	_	
BH24-04	1.5	March 19, 2024	-	5,962	-	_	_	_	-	_	_	_
BH24-05	0	June 24, 2024	-	10,105	ND	ND	ND	ND	ND	ND	ND	11,000
	0	March 19, 2024	_	8.005	-	_	_	-	-	_	_	-
BH24-06	2	March 19, 2024	-	2,237	-	-	-	-	-	-	-	-
	0	June 24, 2024	-	505	ND	ND	ND	ND	ND	ND	ND	370
BH24-07	1.5	June 24, 2024	-	165	ND	ND	ND	ND	ND	ND	ND	95
BH24-08	0	March 18, 2024	81	450	-	-	-	-	-	-	-	-
BH24-08	2	March 22, 2024	0	223	ND	ND	ND	ND	ND	ND	ND	120
BH24-09	0	June 24, 2024	-	10,353	ND	ND	ND	ND	ND	ND	ND	10,000
BH24-10	0	June 24, 2024	-	15,658	ND	ND	ND	23	ND	23	23	17,000
BH24-11	0	June 24, 2024	-	7,148	ND	ND	ND	ND	ND	ND	ND	6,700
DIIZ4 II	1.5	June 24, 2024	-	638	ND	ND	ND	ND	ND	ND	ND	280
BH24-12	0	March 19, 2024	-	799	-	-	-	-	-	-	-	-
BH24-13	0	March 20, 2024	-	635	-	-	-	-	-	-	-	-
	1.5	March 20, 2024	-	982	-	-	-	-	-	-	-	-
BH24-14	0	March 20, 2024	-	1,451	-	-	-	-	-	-	-	-
BH24-15	0	March 20, 2024	-	1,502	-	-	-	-	-	-	-	-
BH24-16	0	March 20, 2024	-	1,501	-	-	-	-	-	-	-	-
BH24-17	0	March 20, 2024	-	7,311	-	-	-	-	-	-	-	-
BH24-18	0	March 20, 2024	-	1,336	-	-	-	-	-	-	-	-
BH24-19	0	March 20, 2024	-	4,995	-	-		-	-	-	-	-
BH24-20	0	March 20, 2024 March 21, 2024	-	809							-	270
BH24-21	1.5	March 21, 2024 March 22, 2024	35	165 225	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	270 50
	0	March 21, 2024	0	483	ND ND	ND	ND	ND	ND ND	ND ND	ND	370
BH24-22	2	March 22, 2024	25	188	ND ND	ND	ND	ND	ND ND	ND ND	ND	31
	0	March 21, 2024	0	248	ND	ND	ND	ND	ND	ND	ND	76
BH24-23	2	March 22, 2024	36	200	ND	ND	ND	ND	ND	ND	ND	29
BH24-24	0	March 21, 2024	0	3,125	-	-	-	-	-	-	-	-
	0	March 21, 2024	0	250	ND	ND	ND	ND	ND	ND	ND	92
BH24-25	1	March 22, 2024	46	175	ND	ND	ND	ND	ND	ND	ND	120
	0	March 21, 2024	0	238	ND	ND	ND	ND	ND	ND	ND	130
BH24-26	2	March 22, 2024	43	208	ND	ND	ND	ND	ND	ND	ND	96

Client Name: XTO Energy, Inc. Site Name: PLU 25 Brushy Draw West NMOCD Tracking #: nAPP2403657069

Project #: 24E-00670

Lab Reports: 885-1706-1, 885-1922-1, 885-2016-1, and 885-6878-1

	Table 2. I	nitial Characterization	Sample F	ield Scree	n and Labo	oratory Re	sults - Dep	oth to Gro	undwater	>100 feet	bgs	
	Field Sc	reening		Petroleum Hydrocarbons								
					Vol	atile			Extractable)		Inorganic
Sample ID	Depth (ft)	Sample Date	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH24-27	0	March 22, 2024	-	10,923	-	-	-	-	-	-	-	-
D1124 27	2	March 22, 2024	-	2,763	-	-	-	-	-	-	-	-
BH24-28	0	March 22, 2024	-	10,773	-	-	-	-	-	-	-	-
BH24-26	1.5	March 22, 2024	-	898	-	-	-	-	-	-	-	-
BH24-29	0	March 22, 2024	-	12,400	-	-	-	-	-	-	-	-
D1124-23	1.5	March 22, 2024	-	2,763	-	-	-	-	-	-	-	-
BH24-30	0	March 22, 2024	39	140	ND	ND	ND	ND	ND	ND	ND	120
BH24-30	2	March 26, 2024	3	265	ND	ND	ND	ND	ND	ND	ND	ND
BH24-31	0	June 24, 2024	-	355	ND	ND	ND	ND	ND	ND	ND	180
BH24-32	0	June 24, 2024	-	278	ND	ND	ND	ND	ND	ND	ND	130
	1	June 24, 2024	-	188	ND	ND	ND	ND	ND	ND	ND	60
DH3/1 33	0	June 24, 2024	-	8,080	ND	ND	ND	ND	ND	ND	ND	8,300
BH24-33												

[&]quot;ND" Not Detected at the Reporting Limit

Bold and grey shaded indicates exceedance outside of NMOCD Reclamation Closure Criteria

[&]quot;-" indicates not analyzed/assessed

ATTACHMENT 3

XTO Energy Inc. (US) Inspection Date: 3/22/2024 Client: 3/23/2024 2:14 AM PLU 25 Brushy Draw West Report Run Date: Site Location Name: Client Contact Name: Garrett Green API#: Client Contact Phone #: 575-200-0729 **Unique Project ID** Project Owner: Project Reference # Project Manager: **Summary of Times** Arrived at Site 3/22/2024 8:30 AM **Departed Site**

Field Notes

- 8:56 Arrived on site informed Amy Ruth with XTo that I'm on site, assessed area for hazards. Filled out JSAs.
- 8:56 There's another crew working on the gas tanks where I need to dig I made contact with them and told them what I was doing.
- 9:21 Began delineation
- 9:21 Collected BH24-26 at a depth of 2ft bgs. It was stepped out from BH24-06
- 10:22 BH24-25 which was stepped east of BH24-20 was sampled at a depth of 1ft due to dense caliche rock
- 11:17 BH24-23 was dug and sampled at a depth of 2ft bgs
- 12:19 BH24-22 was sampled at a depth of 2ft bgs.
- **13:17** BH24-21 was sampled at 1.5ft bgs hit refusal due to dense caliche layer.
- 14:34 BH24-27 was sampled at a depth of 1.5 feet bgs hit refusal due to caliche.
- 15:22 BH24-28 reached a depth of 1.5ft bgs hit refusal due to dense caliche layer

Next Steps & Recommendations

1

Site Photos

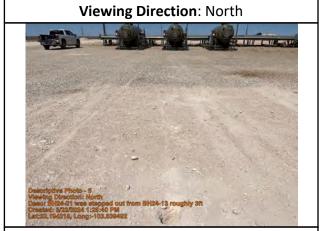
Viewing Direction: Southwest

BH24-26 was stepped out roughly 3ft from BH24-06

Viewing Direction: North

BH24-23 located roughly 3ft south of BH24-16

Viewing Direction: Northwest


BH24-25 which was sampled east of BH24-20 roughly 10 ft due to pipeline areas

Viewing Direction: North

BH24-22 was stepped out from BH24-16 roughly 3ft

BH24-21 was stepped out from BH24-13 roughly 3ft

BH24-27 located just south of the inner most water transfer pump roughly 10 ft

BH24-28 located just west of the front of heater treater

BH24-29 reached a depth of 2ft hit refusal due to dense caliche layer

Daily Site Visit Signature

Inspector: Wyatt Wadleigh

Signature:

Client:	XTO Energy Inc. (US)	Inspection Date:	6/24/2024
Site Location Name:	PLU 25 Brushy Draw West	Report Run Date:	6/24/2024 11:38 PM
Client Contact Name:	Marshall Boles	API #:	
Client Contact Phone #:	(806) 367-2174		
Unique Project ID		Project Owner:	
Project Reference #	#	Project Manager:	
		Summary of	Times
Arrived at Site	6/24/2024 9:16 AM		
Departed Site	6/24/2024 3:28 PM		

Field Notes

9:56 Informed Wes Byrd of my arrival on site and assessed site for hazards. Filled out safety documentation.

On site to collect 12 more samples to complete delineation.

14:30 Located areas to be sampled via gps and marked location with paint.

Began collecting:

-BH24-05, -09, -10, and -31 at surface (0')

-BH24-07, -11 at 0' and 1.5' (hit refusal)

-BH24-32 at 0' and 1' (hit refusal).

-BH24-33at 0' and 2'

14:30 All samples field screened for Chlorides using titration. All samples passed field screening criteria

Next Steps & Recommendations

1 Jar samples and send to lab for analysis

Site Photos

Viewing Direction: North

Overview of area sampled

Viewing Direction: East

BH24-07 at surface (0') and 1.5'. Hit refusal

Viewing Direction: Northeast

BH24-05 at surface (0')

Viewing Direction: East

BH24-09 at surface (0')

BH24-10 at surface (0')

BH24-11 at surface (0') and 1.5'. Hit refusal

BH24-31 at surface (0')

BH24-32 at surface (0') and 1'. Hit refusal

BH24-33 at surface (0') and 2'. Hit refusal.

Daily Site Visit Signature

Inspector: Andrew Ludvik

Signature: Signature

ATTACHMENT 4

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Sally Carter Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 3/29/2024 12:17:39 PM

JOB DESCRIPTION

PLU 25 Brushy Draw West

JOB NUMBER

885-1706-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 3/29/2024 12:17:39 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 3

4

5

7

8

44

Client: Vertex Laboratory Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	15
Certification Summary	17
Chain of Custody	18
Receint Checklists	20

Definitions/Glossary

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Qualifiers

GC VOA

S1- Surrogate recovery exceeds control limits, low biased.

GC Semi VOA

Qualifier Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Vertex Job ID: 885-1706-1

Project: PLU 25 Brushy Draw West

Job ID: 885-1706-1 **Eurofins Albuquerque**

> Job Narrative 885-1706-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/23/2024 10:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C.

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH24-08 2ft (885-1706-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-76734 and analytical batch 880-76669 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-08 2ft

Lab Sample ID: 885-1706-1

Date Collected: 03/21/24 12:00 **Matrix: Solid** Date Received: 03/23/24 10:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 18:34	1
Toluene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 18:34	1
Ethylbenzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 18:34	1
Xylenes, Total	ND		0.0040	mg/Kg		03/27/24 09:11	03/27/24 18:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130			03/27/24 09:11	03/27/24 18:34	1
1,4-Difluorobenzene (Surr)	101		70 - 130			03/27/24 09:11	03/27/24 18:34	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		50	mg/Kg		03/27/24 12:12	03/27/24 18:44	1
(GRO)-C6-C10								
Diesel Range Organics (Over	ND		50	mg/Kg		03/27/24 12:12	03/27/24 18:44	1
C10-C28)								
OII Range Organics (Over C28-C36)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 18:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130			03/27/24 12:12	03/27/24 18:44	1
o-Terphenyl	87		70 - 130			03/27/24 12:12	03/27/24 18:44	1

Method: EPA 300.0 - Anions, I	on Chromatography - So	oluble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	120	5.0	mg/Kg			03/27/24 23:45	1

Lab Sample ID: 885-1706-2 Client Sample ID: BH24-21 Oft Date Collected: 03/21/24 12:15 **Matrix: Solid** Date Received: 03/23/24 10:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		0.0020	mg/Kg		03/27/24 09:11	03/27/24 18:55	1
Toluene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 18:55	1
Ethylbenzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 18:55	1
Xylenes, Total	ND		0.0040	mg/Kg		03/27/24 09:11	03/27/24 18:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130			03/27/24 09:11	03/27/24 18:55	1
1,4-Difluorobenzene (Surr)	103		70 - 130			03/27/24 09:11	03/27/24 18:55	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/27/24 12:12	03/27/24 19:48	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 19:48	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 19:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	96		70 - 130			03/27/24 12:12	03/27/24 19:48	-
o-Terphenyl	80		70 - 130			03/27/24 12:12	03/27/24 19:48	1

Eurofins Albuquerque

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-21 Oft Lab Sample ID: 885-1706-2

Date Collected: 03/21/24 12:15 **Matrix: Solid**

Date Received: 03/23/24 10:40

Method: EPA 300.0 - Anions, Io	n Chromato	ography - S	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	270		5.0	mg/Kg			03/28/24 00:14	1

Client Sample ID: BH24-22 Oft Lab Sample ID: 885-1706-3 **Matrix: Solid**

Date Collected: 03/21/24 12:30 Date Received: 03/23/24 10:40

Method: SW846 8021B - Vo	olatile Organic	Compoun	ds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:15	1
Toluene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:15	1
Ethylbenzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:15	1
Xylenes, Total	ND		0.0040	mg/Kg		03/27/24 09:11	03/27/24 19:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130			03/27/24 09:11	03/27/24 19:15	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/27/24 09:11	03/27/24 19:15	1

Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC	S)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:10	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:10	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130			03/27/24 12:12	03/27/24 20:10	1
o-Terphenyl	91		70 - 130			03/27/24 12:12	03/27/24 20:10	1

Method: EPA 300.0 - Anions, I	on Chromat	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	370		5.0	mg/Kg			03/28/24 00:29	1

Lab Sample ID: 885-1706-4 Client Sample ID: BH24-23 Oft Date Collected: 03/21/24 12:45 **Matrix: Solid**

Date Received: 03/23/24 10:40

Gasoline Range Organics

(GRO)-C6-C10

ND	0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:36	1
ND	0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:36	1
ND	0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:36	1
ND	0.0040	mg/Kg		03/27/24 09:11	03/27/24 19:36	1
%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
75	70 - 130			03/27/24 09:11	03/27/24 19:36	1
102	70 - 130			03/27/24 09:11	03/27/24 19:36	1
	ND ND ND **Recovery Qualifier 75	ND 0.0020 ND 0.0020 ND 0.0040 %Recovery Qualifier Limits 75 70 - 130	ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0040 mg/Kg **Recovery Qualifier Limits 75 70 - 130	ND 0.0020 mg/Kg ND 0.0020 mg/Kg ND 0.0040 mg/Kg **Recovery Qualifier Limits 75 70-130	ND 0.0020 mg/Kg 03/27/24 09:11 ND 0.0020 mg/Kg 03/27/24 09:11 ND 0.0040 mg/Kg 03/27/24 09:11 **Recovery Qualifier Limits Prepared 75 70 - 130 03/27/24 09:11	ND 0.0020 mg/Kg 03/27/24 09:11 03/27/24 19:36 ND 0.0020 mg/Kg 03/27/24 09:11 03/27/24 19:36 ND 0.0040 mg/Kg 03/27/24 09:11 03/27/24 19:36 %Recovery Qualifier Limits Prepared Analyzed 75 70 - 130 03/27/24 09:11 03/27/24 19:36

Eurofins Albuquerque

03/27/24 12:12 03/27/24 20:32

50

mg/Kg

ND

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-23 Oft

Lab Sample ID: 885-1706-4 Date Collected: 03/21/24 12:45

Matrix: Solid

Date Received: 03/23/24 10:40

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:32	1
C10-C28)								
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130			03/27/24 12:12	03/27/24 20:32	1
o-Terphenyl	84		70 - 130			03/27/24 12:12	03/27/24 20:32	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Unit Prepared Analyzed Dil Fac Chloride 5.0 03/28/24 00:34 76 mg/Kg

Client Sample ID: BH24-25 Oft

Date Collected: 03/21/24 13:00 Date Received: 03/23/24 10:40

Lab Sample ID: 885-1706-5 **Matrix: Solid**

Method: SW846 8021B - Vo	Result (•	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:57	1
Toluene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:57	1
Ethylbenzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 19:57	1
Xylenes, Total	ND		0.0040	mg/Kg		03/27/24 09:11	03/27/24 19:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		70 - 130			03/27/24 09:11	03/27/24 19:57	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/27/24 09:11	03/27/24 19:57	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:53	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:53	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 20:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130			03/27/24 12:12	03/27/24 20:53	1
o-Terphenyl	72		70 - 130			03/27/24 12:12	03/27/24 20:53	1

Method: EPA 300.0 - Anions, Id	on Chromato	ography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	92		5.0	mg/Kg			03/28/24 00:38	1

Client Sample ID: BH24-26 Oft Lab Sample ID: 885-1706-6 Date Collected: 03/21/24 13:15 **Matrix: Solid**

Date Received: 03/23/24 10:40

Released to Imaging: 8/5/2024 2:03:24 PM

Method: SW846 8021B	- Volatile Organic Compound	ds (GC)					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.0020	mg/Kg		03/27/24 09:11	03/27/24 20:17	1
Toluene	ND	0.0020	mg/Kg		03/27/24 09:11	03/27/24 20:17	1
Ethylbenzene	ND	0.0020	mg/Kg		03/27/24 09:11	03/27/24 20:17	1
Xylenes, Total	ND	0.0040	mg/Kg		03/27/24 09:11	03/27/24 20:17	1

Eurofins Albuquerque

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-26 Oft

Lab Sample ID: 885-1706-6

Date Collected: 03/21/24 13:15 **Matrix: Solid** Date Received: 03/23/24 10:40

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77	70 - 130	03/27/24 09:11	03/27/24 20:17	1
1,4-Difluorobenzene (Surr)	105	70 - 130	03/27/24 09:11	03/27/24 20:17	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/27/24 12:12	03/27/24 21:15	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 21:15	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 21:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130			03/27/24 12:12	03/27/24 21:15	1
o-Terphenyl	82		70 - 130			03/27/24 12:12	03/27/24 21:15	1

Method: EPA 300.0 - Anions, Io	on Chromato	ography - So	oluble					
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	130		5.0	mg/Kg			03/28/24 00:43	1

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-76689/5-A

Matrix: Solid

Analysis Batch: 76683

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 76689

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 13:40	1
Toluene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 13:40	1
Ethylbenzene	ND		0.0020	mg/Kg		03/27/24 09:11	03/27/24 13:40	1
Xylenes, Total	ND		0.0040	mg/Kg		03/27/24 09:11	03/27/24 13:40	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	72		70 - 130	03/27/24 09.	11 03/27/24 13:40	1
1,4-Difluorobenzene (Surr)	107		70 - 130	03/27/24 09.	11 03/27/24 13:40	1

Lab Sample ID: LCS 880-76689/1-A

Matrix: Solid

Analysis Batch: 76683

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 76689

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.107		mg/Kg	_	107	70 - 130	
Toluene	0.100	0.103		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.0921		mg/Kg		92	70 - 130	
m-Xylene & p-Xylene	0.200	0.182		mg/Kg		91	70 - 130	
o-Xylene	0.100	0.0880		mg/Kg		88	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	80		70 - 130
1,4-Difluorobenzene (Surr)	119		70 - 130

Lab Sample ID: LCSD 880-76689/2-A

Matrix: Solid

Analysis Batch: 76683

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 76689

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.100	0.105		mg/Kg		105	70 - 130	2	35
0.100	0.101		mg/Kg		101	70 - 130	1	35
0.100	0.0929		mg/Kg		93	70 - 130	1	35
0.200	0.183		mg/Kg		92	70 - 130	1	35
0.100	0.0893		mg/Kg		89	70 - 130	1	35
	Added 0.100 0.100 0.100 0.200	Added Result 0.100 0.105 0.100 0.101 0.100 0.0929 0.200 0.183	Added Result Qualifier 0.100 0.105 0.100 0.101 0.100 0.0929 0.200 0.183	Added Result Qualifier Unit 0.100 0.105 mg/Kg 0.100 0.101 mg/Kg 0.100 0.0929 mg/Kg 0.200 0.183 mg/Kg	Added Result Qualifier Unit D 0.100 0.105 mg/Kg 0.100 0.101 mg/Kg 0.100 0.0929 mg/Kg 0.200 0.183 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.105 mg/Kg 105 0.100 0.101 mg/Kg 101 0.100 0.0929 mg/Kg 93 0.200 0.183 mg/Kg 92	Added Result Qualifier Unit D %Rec Limits 0.100 0.105 mg/Kg 105 70 - 130 0.100 0.101 mg/Kg 101 70 - 130 0.100 0.0929 mg/Kg 93 70 - 130 0.200 0.183 mg/Kg 92 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 0.100 0.105 mg/Kg 105 70 - 130 2 0.100 0.101 mg/Kg 101 70 - 130 1 0.100 0.0929 mg/Kg 93 70 - 130 1 0.200 0.183 mg/Kg 92 70 - 130 1

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	81	70 - 130
1,4-Difluorobenzene (Surr)	117	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-76734/1-A

Released to Imaging: 8/5/2024 2:03:24 PM

Matrix: Solid

Analysis Batch: 76669

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 76734

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Gasoline Range Organics ND 50 mg/Kg 03/27/24 12:12 03/27/24 17:39 (GRO)-C6-C10

Eurofins Albuquerque

Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

149 S1+

Lab Sample ID: MB 880-76734/1-A **Matrix: Solid**

Analysis Batch: 76669

Client: Vertex

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 76734

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 17:39	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/27/24 12:12	03/27/24 17:39	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	161	S1+	70 - 130			03/27/24 12:12	03/27/24 17:39	1

70 - 130

Lab Sample ID: LCS 880-76734/2-A

o-Terphenyl

Analysis Batch: 76669

Matrix: Solid

Client Sample ID: Lab Control Sample

03/27/24 12:12 03/27/24 17:39

Prep Type: Total/NA

Prep Batch: 76734

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	956		mg/Kg		96	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	910		mg/Kg		91	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	105	70 - 130
o-Terphenyl	106	70 - 130

Lab Sample ID: LCSD 880-76734/3-A

Matrix: Solid

Analysis Batch: 76669

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 76734

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	972		mg/Kg		97	70 - 130	2	20
Diesel Range Organics (Over C10-C28)	1000	942		mg/Kg		94	70 - 130	3	20

LCSD LCSD

Surrogate	%Recovery Qualifi	ier Limits
1-Chlorooctane	109	70 - 130
o-Terphenyl	107	70 - 130

Lab Sample ID: 885-1706-1 MS

Matrix: Solid

Analysis Batch: 76669

Client Sample ID: BH24-08 2ft

Prep Type: Total/NA

Prep Batch: 76734

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	ND		1000	795		mg/Kg		78	70 - 130
Diesel Range Organics (Over	ND		1000	885		mg/Kg		89	70 - 130

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	101		70 - 130
o-Terphenyl	82		70 - 130

Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 885-1706-1 MSD Client Sample ID: BH24-08 2ft

Matrix: Solid

Client: Vertex

Analysis Batch: 76669

Prep Type: Total/NA Prep Batch: 76734

Sample Sample Spike MSD MSD %Rec **RPD Result Qualifier** Added Result Qualifier Unit D %Rec Limits **RPD** Limit Analyte 1000 Gasoline Range Organics ND 810 mg/Kg 79 70 - 130 2 20 (GRO)-C6-C10 ND 1000 Diesel Range Organics (Over 909 mg/Kg 91 70 - 130 20 3

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	105		70 - 130
o-Terphenyl	84		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-76738/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 76756

MB MB

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND —	5.0	mg/Kg			03/27/24 23:31	1

Lab Sample ID: LCS 880-76738/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 76756

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	234		mg/Kg		94	90 - 110	

Lab Sample ID: LCSD 880-76738/3-A **Client Sample ID: Lab Control Sample Dup Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 76756

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	235		ma/Ka		94	90 - 110		20

Lab Sample ID: 885-1706-1 MS Client Sample ID: BH24-08 2ft

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	120		252	362		mg/Kg		96	90 - 110	

Lab Sample ID: 885-1706-1 MSD Client Sample ID: BH24-08 2ft

Allalysis Datcil. 10130											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	120		252	361		mg/Kg	_	96	90 - 110	0	20

Eurofins Albuquerque

Prep Type: Soluble

Matrix: Solid Analysis Batch: 76756

QC Association Summary

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

GC VOA

Analysis Batch: 76683

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1706-1	BH24-08 2ft	Total/NA	Solid	8021B	76689
885-1706-2	BH24-21 0ft	Total/NA	Solid	8021B	76689
885-1706-3	BH24-22 0ft	Total/NA	Solid	8021B	76689
885-1706-4	BH24-23 0ft	Total/NA	Solid	8021B	76689
885-1706-5	BH24-25 0ft	Total/NA	Solid	8021B	76689
885-1706-6	BH24-26 0ft	Total/NA	Solid	8021B	76689
MB 880-76689/5-A	Method Blank	Total/NA	Solid	8021B	76689
LCS 880-76689/1-A	Lab Control Sample	Total/NA	Solid	8021B	76689
LCSD 880-76689/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	76689

Prep Batch: 76689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1706-1	BH24-08 2ft	Total/NA	Solid	5035	
885-1706-2	BH24-21 0ft	Total/NA	Solid	5035	
885-1706-3	BH24-22 0ft	Total/NA	Solid	5035	
885-1706-4	BH24-23 0ft	Total/NA	Solid	5035	
885-1706-5	BH24-25 0ft	Total/NA	Solid	5035	
885-1706-6	BH24-26 0ft	Total/NA	Solid	5035	
MB 880-76689/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-76689/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-76689/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 76669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1706-1	BH24-08 2ft	Total/NA	Solid	8015B NM	76734
885-1706-2	BH24-21 0ft	Total/NA	Solid	8015B NM	76734
885-1706-3	BH24-22 0ft	Total/NA	Solid	8015B NM	76734
885-1706-4	BH24-23 0ft	Total/NA	Solid	8015B NM	76734
885-1706-5	BH24-25 0ft	Total/NA	Solid	8015B NM	76734
885-1706-6	BH24-26 0ft	Total/NA	Solid	8015B NM	76734
MB 880-76734/1-A	Method Blank	Total/NA	Solid	8015B NM	76734
LCS 880-76734/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	76734
LCSD 880-76734/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	76734
885-1706-1 MS	BH24-08 2ft	Total/NA	Solid	8015B NM	76734
885-1706-1 MSD	BH24-08 2ft	Total/NA	Solid	8015B NM	76734

Prep Batch: 76734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1706-1	BH24-08 2ft	Total/NA	Solid	8015NM Prep	
885-1706-2	BH24-21 0ft	Total/NA	Solid	8015NM Prep	
885-1706-3	BH24-22 0ft	Total/NA	Solid	8015NM Prep	
885-1706-4	BH24-23 0ft	Total/NA	Solid	8015NM Prep	
885-1706-5	BH24-25 0ft	Total/NA	Solid	8015NM Prep	
885-1706-6	BH24-26 0ft	Total/NA	Solid	8015NM Prep	
MB 880-76734/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-76734/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-76734/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
885-1706-1 MS	BH24-08 2ft	Total/NA	Solid	8015NM Prep	
885-1706-1 MSD	BH24-08 2ft	Total/NA	Solid	8015NM Prep	

Eurofins Albuquerque

Page 13 of 21

2

5

7

10

QC Association Summary

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

HPLC/IC

Leach Batch: 76738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1706-1	BH24-08 2ft	Soluble	Solid	DI Leach	
885-1706-2	BH24-21 Oft	Soluble	Solid	DI Leach	
885-1706-3	BH24-22 0ft	Soluble	Solid	DI Leach	
885-1706-4	BH24-23 0ft	Soluble	Solid	DI Leach	
885-1706-5	BH24-25 0ft	Soluble	Solid	DI Leach	
885-1706-6	BH24-26 0ft	Soluble	Solid	DI Leach	
MB 880-76738/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-76738/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-76738/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
885-1706-1 MS	BH24-08 2ft	Soluble	Solid	DI Leach	
885-1706-1 MSD	BH24-08 2ft	Soluble	Solid	DI Leach	

Analysis Batch: 76756

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1706-1	BH24-08 2ft	Soluble	Solid	300.0	76738
885-1706-2	BH24-21 0ft	Soluble	Solid	300.0	76738
885-1706-3	BH24-22 0ft	Soluble	Solid	300.0	76738
885-1706-4	BH24-23 0ft	Soluble	Solid	300.0	76738
885-1706-5	BH24-25 0ft	Soluble	Solid	300.0	76738
885-1706-6	BH24-26 0ft	Soluble	Solid	300.0	76738
MB 880-76738/1-A	Method Blank	Soluble	Solid	300.0	76738
LCS 880-76738/2-A	Lab Control Sample	Soluble	Solid	300.0	76738
LCSD 880-76738/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	76738
885-1706-1 MS	BH24-08 2ft	Soluble	Solid	300.0	76738
885-1706-1 MSD	BH24-08 2ft	Soluble	Solid	300.0	76738

Eurofins Albuquerque

-

5

7

0

4 6

10

Lab Sample ID: 885-1706-1

Matrix: Solid

Date Collected: 03/21/24 12:00 Date Received: 03/23/24 10:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76689	EL	EET MID	03/27/24 09:11
Total/NA	Analysis	8021B		1	76683	MNR	EET MID	03/27/24 18:34
Total/NA	Prep	8015NM Prep			76734	EL	EET MID	03/27/24 12:12
Total/NA	Analysis	8015B NM		1	76669	SM	EET MID	03/27/24 18:44
Soluble	Leach	DI Leach			76738	SA	EET MID	03/27/24 12:17
Soluble	Analysis	300.0		1	76756	SMC	EET MID	03/27/24 23:45

Lab Sample ID: 885-1706-2 Client Sample ID: BH24-21 Oft

Date Collected: 03/21/24 12:15 **Matrix: Solid** Date Received: 03/23/24 10:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76689	EL	EET MID	03/27/24 09:11
Total/NA	Analysis	8021B		1	76683	MNR	EET MID	03/27/24 18:55
Total/NA	Prep	8015NM Prep			76734	EL	EET MID	03/27/24 12:12
Total/NA	Analysis	8015B NM		1	76669	SM	EET MID	03/27/24 19:48
Soluble	Leach	DI Leach			76738	SA	EET MID	03/27/24 12:17
Soluble	Analysis	300.0		1	76756	SMC	EET MID	03/28/24 00:14

Client Sample ID: BH24-22 Oft Lab Sample ID: 885-1706-3

Date Collected: 03/21/24 12:30 **Matrix: Solid** Date Received: 03/23/24 10:40

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76689	EL	EET MID	03/27/24 09:11
Total/NA	Analysis	8021B		1	76683	MNR	EET MID	03/27/24 19:15
Total/NA	Prep	8015NM Prep			76734	EL	EET MID	03/27/24 12:12
Total/NA	Analysis	8015B NM		1	76669	SM	EET MID	03/27/24 20:10
Soluble	Leach	DI Leach			76738	SA	EET MID	03/27/24 12:17
Soluble	Analysis	300.0		1	76756	SMC	EET MID	03/28/24 00:29

Lab Sample ID: 885-1706-4 Client Sample ID: BH24-23 Oft Matrix: Solid

Date Collected: 03/21/24 12:45 Date Received: 03/23/24 10:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76689	EL	EET MID	03/27/24 09:11
Total/NA	Analysis	8021B		1	76683	MNR	EET MID	03/27/24 19:36
Total/NA	Prep	8015NM Prep			76734	EL	EET MID	03/27/24 12:12
Total/NA	Analysis	8015B NM		1	76669	SM	EET MID	03/27/24 20:32
Soluble	Leach	DI Leach			76738	SA	EET MID	03/27/24 12:17
Soluble	Analysis	300.0		1	76756	SMC	EET MID	03/28/24 00:34

Client Sample ID: BH24-25 Oft

Lab Sample ID: 885-1706-5 Date Collected: 03/21/24 13:00

Matrix: Solid

Date Received: 03/23/24 10:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76689	EL	EET MID	03/27/24 09:11
Total/NA	Analysis	8021B		1	76683	MNR	EET MID	03/27/24 19:57
Total/NA	Prep	8015NM Prep			76734	EL	EET MID	03/27/24 12:12
Total/NA	Analysis	8015B NM		1	76669	SM	EET MID	03/27/24 20:53
Soluble	Leach	DI Leach			76738	SA	EET MID	03/27/24 12:17
Soluble	Analysis	300.0		1	76756	SMC	EET MID	03/28/24 00:38

Client Sample ID: BH24-26 Oft

Lab Sample ID: 885-1706-6

Date Collected: 03/21/24 13:15 **Matrix: Solid** Date Received: 03/23/24 10:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76689	EL	EET MID	03/27/24 09:11
Total/NA	Analysis	8021B		1	76683	MNR	EET MID	03/27/24 20:17
Total/NA	Prep	8015NM Prep			76734	EL	EET MID	03/27/24 12:12
Total/NA	Analysis	8015B NM		1	76669	SM	EET MID	03/27/24 21:15
Soluble	Leach	DI Leach			76738	SA	EET MID	03/27/24 12:17
Soluble	Analysis	300.0		1	76756	SMC	EET MID	03/28/24 00:43

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Vertex Job ID: 885-1706-1

Project/Site: PLU 25 Brushy Draw West

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

1/1

ပ	hain-	of-Cu	Chain-of-Custody Record	Turn-Around Time	Ime					€ €		6 6		7	į	S L		
Client V	Client Vertex (XTO)	(01		🖟 Standard	⊠ Rush	5 Day			_ ~		1 7 7 2			AALL ENVIKONMENTAL ANALYSIS LABORATORY			, >	
				Project Name	PLU 25 Brus	Name PLU 25 Brushy Draw West			l	WWW	haller	noliron	menta	www hallenvironmental com	r r }	I		
Mailing /	Mailing Address On File	On File						4901	Hawk	4901 Hawkins NE	٠ ا	nbng	erque	- Albuquerque, NM 87109	60		4	
				Project # 24E	24E-00670			<u> </u>	505-3	505-345-3975	5	Fax	505-3	505-345-4107			il	
Phone #	On File										Ans	Analysis Request	Requ	est	88	885-1706 COC	000	
email or	Fax# So	email or Fax# Scartter@vertex ca	ertex ca	Project Manager Sally Carttar	ger Sally Car	ttar		(0			,0	70		(ţu				
QA/QC Package	ackage									SW	S Ԡ(o 't'		əsq				
□ Standard	dard		☐ Level 4 (Full Validation)							ISO.	Ja	- · ·		A\ta				
Accreditation	ation	□ Az Cc	☐ Az Compliance	Sampler Wya	Wyatt Wadleigh					728	ON	701		 əsə				
□ NELAC	Ş	□ Other	_	On Ice:	∰YYes	□ No marky							(AC	19)				
☐ EDD (Type)	(Type)			# of Coolers: ()						etal VO)/\-l	w.				_
				Cooler Temp	ncluding CF): 5. 2	5-7 R= 2:5-c							ıwə	ojilo -				_
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No.	BTEX /	08 H9T 99 1808	EDB (W	d sHA9	RCRA 8 СІ, F, E	V) 09Z8	S) 07 <u>5</u> 8	Total Co				
03/21/24	12.00	Soll	BH24-08 2ft	1, 4oz jar		-	×	×			×							
03/21/24	12 15	Soil	BH24-21 0ft	1, 4oz jar		2	X	×			×							
03/21/24	12 30	Soil	BH24-22 0ft	1, 4oz jar		3	×	×			×							
03/21/24	12 45	Soil	BH24-23 0ft	1, 4oz jar		h	×	×			×							
03/21/24	13 00	Soil	BH24-25 Oft	1, 4oz jar		5	×	×			×							
03/21/24	13 15	Soil	BH24-26 Oft	1, 4oz jar		9)	×	×			×							
																		_
		:																
Date 2/22/21/	Time	Relinquish	Relinquished by Wyatt Wadleigh	Received by	Via	Date Time	Remarks	irks F	lease	Remarks Please CC wwadleigh@vertex ca	wadi	eigh@) verte	xca				
heleel	25			Whales	CM	ति	1800	֖֖֖֖֖֖֖֖֖֖֖֖֖֓֞֝֝֝֝֝֝֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝	2	v Dei	0							
Date Time	Time	Relinquished by		Received by	Via Caude	5 Date Time 16・40 70 70 70 70 70 70 70 70 70 70 70 70 70												
halant	3	727	I'M WIMMINGS			2/22/67			-			-		-				_
	if necessar,	y samples su	bmitted to Hall Environmental may be subd	soptracted to other a	ccredited laboratori	other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical repo	s possio	lity An	/ sub-co	ntracted	data w	De cies	ипу пота	ed on tne ana	ilyticai re	8		

10

885-1702 COC **ANALYSIS LABORATORY** HALL ENVIRONMENTAL If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 www.hallenvironmental.com Analysis Request Total Coliform (Present/Absent) (AOV-im92) 07S8 (AOV) 09S8 NO⁵' bO⁴' 2O⁴ ι_εΟΝ Br, (lo Tel. 505-345-3975 RCRA 8 Metals 2MIS0728 10 0168 yd eHA9 EDB (Method 504.1) 8081 Pesticides/8082 PCB's Remarks: TPH:8015D(GRO / DRO / MRO) (X3T8 (1208) a'8MT WIBE \ by 3-26 P. C. 4 15 4,45 ပ် HEAL No. 9-10-29 Burns Next 2 Kush Day Preservative Hyde Cooler Temp(including CF): 2 35 Riverine C 00 % HUMO Turn-Around Time: Type Project Manager: Stuart Project Name: □ Standard # of Coolers: Type and # Received by: Received by: Container). 4 oz - 4 cz Sampler: Project #: On Ice: □ Level 4 (Full Validation) Chain-of-Custody Record 0.5 Sample Name 7 FSØ1 &5 CSWOID Client: Hithorp Energy □ Az Compliance K. 1) on of Relinduished by □ Other Matrix Sol 7103 Mitch Mailing Address: QA/QC Package: 94:91 (6:30 EDD (Type) Time email or Fax#: Accreditation: Time. □ Standard □ NELAC Phone #: 3,22 Date: 22-27 Date 43. Page 19 of 21

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-1706-1

List Source: Eurofins Albuquerque Login Number: 1706

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-1706-1

Login Number: 1706 **List Source: Eurofins Midland** List Number: 2 List Creation: 03/27/24 11:39 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Sally Carter Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 4/3/2024 3:30:18 PM

JOB DESCRIPTION

PLU 25 Brushy Draw West

JOB NUMBER

885-1922-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 4/3/2024 3:30:18 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 3

Δ

5

0

8

9

10

Client: Vertex

Laboratory Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Chain of Custody	20
Receipt Checklists	21

Definitions/Glossary

Client: Vertex Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

Qualifiers

GC Semi VOA

Qualifier Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 885-1922-1

Project: PLU 25 Brushy Draw West

Job ID: 885-1922-1 Eurofins Albuquerque

Job Narrative 885-1922-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/28/2024 8:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.7°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-76919 and analytical batch 880-76887 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-77127 and analytical batch 880-77142 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

 $BH24-21\ 2ft\ (885-1922-1),\ BH24-22\ 2ft\ (885-1922-2),\ BH24-23\ 0ft\ (885-1922-3),\ BH24-30\ 0ft\ (885-1922-4),\ BH24-25\ 1ft\ (885-1922-5)\ and\ BH24-26\ 2ft\ (885-1922-6)$

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

0

8

9

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-21 2ft

Date Received: 03/28/24 08:40

o-Terphenyl

Lab Sample ID: 885-1922-1 Date Collected: 03/22/24 10:00

Matrix: Solid

03/29/24 12:09 03/29/24 13:47

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 16:01	1
Toluene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 16:01	1
Ethylbenzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 16:01	1
Xylenes, Total	ND		0.0040	mg/Kg		03/29/24 12:05	03/29/24 16:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130			03/29/24 12:05	03/29/24 16:01	1
1.4-Difluorobenzene (Surr)	102		70 - 130			03/29/24 12:05	03/29/24 16:01	1

Method: SW846 8015B NM - E	Diesel Range Organics	(DRO) (GC)					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND	50	mg/Kg		03/29/24 12:09	03/29/24 13:47	1
Diesel Range Organics (Over C10-C28)	ND	50	mg/Kg		03/29/24 12:09	03/29/24 13:47	1
Oll Range Organics (Over C28-C36)	ND	50	mg/Kg		03/29/24 12:09	03/29/24 13:47	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	99	70 - 130			03/29/24 12:09	03/29/24 13:47	1

Method: EPA 300.0 - Anions, I	on Chromatography - S	Soluble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	50	5.0	mg/Kg			04/02/24 18:55	1

70 - 130

83

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-22 2ft

Lab Sample ID: 885-1922-2 Date Collected: 03/22/24 10:30 Date Received: 03/28/24 08:40

Matrix: Solid

Analyte	Result Quali	fier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.0020	mg/Kg		03/29/24 12:05	03/29/24 16:21	1
Toluene	ND	0.0020	mg/Kg		03/29/24 12:05	03/29/24 16:21	1
Ethylbenzene	ND	0.0020	mg/Kg		03/29/24 12:05	03/29/24 16:21	1
Xylenes, Total	ND	0.0040	mg/Kg		03/29/24 12:05	03/29/24 16:21	1
Surrogate	%Recovery Quali	ifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96	70 - 130			03/29/24 12:05	03/29/24 16:21	1
1.4-Difluorobenzene (Surr)	90	70 ₋ 130			03/29/24 12:05	03/29/24 16:21	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:08	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:08	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130			03/29/24 12:09	03/29/24 14:08	1
o-Terphenyl	80		70 - 130			03/29/24 12:09	03/29/24 14:08	1

Method: EPA 300.0 - Anions, Id	on Chromatography - So	oluble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	31	5.1	mg/Kg			04/02/24 19:01	1

Client Sample Results

Client: Vertex Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-23 Oft

Date Collected: 03/22/24 11:00 Date Received: 03/28/24 08:40

o-Terphenyl

Lab Sample ID: 885-1922-3

03/29/24 12:09 03/29/24 14:30

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 17:45	1
Toluene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 17:45	1
Ethylbenzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 17:45	1
Xylenes, Total	ND		0.0040	mg/Kg		03/29/24 12:05	03/29/24 17:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130			03/29/24 12:05	03/29/24 17:45	1
1,4-Difluorobenzene (Surr)	104		70 - 130			03/29/24 12:05	03/29/24 17:45	1
- Method: SW846 8015B NM	- Diesel Range	e Organics	(DRO) (GC)					
Analyte		Qualifier	. RL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte	Nosuit						,u.,u	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:30	1
(GRO)-C6-C10								
Diesel Range Organics (Over	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:30	1
C10-C28)								
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:30	1
_								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130			03/29/24 12:09	03/29/24 14:30	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	29		5.0	mg/Kg			04/02/24 19:20	1	

70 - 130

84

o-Terphenyl

1-Chlorooctane

Client: Vertex Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-30 Oft Lab Sample ID: 885-1922-4

Date Collected: 03/22/24 14:00 **Matrix: Solid**

Date Received: 03/28/24 08:40							Width 12	. Oona
	tile Organic	Compoun	ds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:06	1
Toluene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:06	1
Ethylbenzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:06	1
Xylenes, Total	ND		0.0040	mg/Kg		03/29/24 12:05	03/29/24 18:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130			03/29/24 12:05	03/29/24 18:06	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/29/24 12:05	03/29/24 18:06	1
_ Method: SW846 8015B NM - [Diesel Range	Organics	(DRO) (GC)					
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:52	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:52	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 14:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Method: EPA 300.0 - Anions,	Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	120	5.0	mg/Kg			04/02/24 19:26	1			

70 - 130

70 - 130

90

75

03/29/24 12:09 03/29/24 14:52

03/29/24 12:09 03/29/24 14:52

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-25 1ft

Date Received: 03/28/24 08:40

Lab Sample ID: 885-1922-5 Date Collected: 03/22/24 11:00

Matrix: Solid

Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:26	1
Toluene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:26	1
Ethylbenzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:26	1
Xylenes, Total	ND		0.0040	mg/Kg		03/29/24 12:05	03/29/24 18:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130			03/29/24 12:05	03/29/24 18:26	1
1.4-Difluorobenzene (Surr)	87		70 - 130			03/29/24 12:05	03/29/24 18:26	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/29/24 12:09	03/29/24 15:14	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 15:14	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 15:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130			03/29/24 12:09	03/29/24 15:14	1
o-Terphenyl	96		70 - 130			03/29/24 12:09	03/29/24 15:14	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	120		5.0	mg/Kg			04/02/24 19:32	1	

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-26 2ft

Lab Sample ID: 885-1922-6

Date Collected: 03/22/24 12:00 **Matrix: Solid**

Method: SW846 8021B - Vola	_	•	• •	11!4	_	Duamanad	Aalad	Dil Fac
Analyte		Qualifier	RL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:46	1
Toluene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:46	1
Ethylbenzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 18:46	1
Xylenes, Total	ND		0.0040	mg/Kg		03/29/24 12:05	03/29/24 18:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130			03/29/24 12:05	03/29/24 18:46	1
1,4-Difluorobenzene (Surr)	90		70 - 130			03/29/24 12:05	03/29/24 18:46	1
Method: SW846 8015B NM - I Analyte	_	Organics Qualifier	(DRO) (GC) RL	Unit	D	Prepared	Analyzed	Dil Fa
	_	_	. , . ,	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result ND	_	RL 50	mg/Kg	<u>D</u>	03/29/24 12:09	03/29/24 15:35	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result ND ND	_	FL 50	mg/Kg	<u>D</u>	03/29/24 12:09	03/29/24 15:35 03/29/24 15:35	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result ND	_	RL 50	mg/Kg	<u>D</u>	03/29/24 12:09	03/29/24 15:35	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result ND ND	Qualifier	FL 50	mg/Kg	<u>D</u>	03/29/24 12:09	03/29/24 15:35 03/29/24 15:35	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result ND ND ND	Qualifier	FIL 50 50 50	mg/Kg	_ <u>D</u>	03/29/24 12:09 03/29/24 12:09 03/29/24 12:09	03/29/24 15:35 03/29/24 15:35 03/29/24 15:35	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result ND ND ND ND %Recovery	Qualifier	FRL 50 50 50 Limits	mg/Kg	<u>D</u>	03/29/24 12:09 03/29/24 12:09 03/29/24 12:09 Prepared 03/29/24 12:09	03/29/24 15:35 03/29/24 15:35 03/29/24 15:35 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result ND ND ND **Recovery** 103 86	Qualifier Qualifier	FRL 50 50 50 50 Limits 70 - 130 70 - 130	mg/Kg	<u>D</u>	03/29/24 12:09 03/29/24 12:09 03/29/24 12:09 Prepared 03/29/24 12:09	03/29/24 15:35 03/29/24 15:35 03/29/24 15:35 Analyzed 03/29/24 15:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result ND ND ND **Recovery 103 86 Ion Chromat	Qualifier Qualifier	FRL 50 50 50 50 Limits 70 - 130 70 - 130	mg/Kg	<u>D</u>	03/29/24 12:09 03/29/24 12:09 03/29/24 12:09 Prepared 03/29/24 12:09	03/29/24 15:35 03/29/24 15:35 03/29/24 15:35 Analyzed 03/29/24 15:35	Dil Fac

Project/Site: PLU 25 Brushy Draw West

Method: 8021B - Volatile Organic Compounds (GC)

Analysis Batch: 76894

Matrix: Solid

Lab Sample ID: MB 880-76918/5-A **Client Sample ID: Method Blank**

Prep Type: Total/NA

Prep Batch: 76918

	IVID	1410						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg	_	03/29/24 12:05	03/29/24 12:54	1
Toluene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 12:54	1
Ethylbenzene	ND		0.0020	mg/Kg		03/29/24 12:05	03/29/24 12:54	1
Xylenes, Total	ND		0.0040	mg/Kg		03/29/24 12:05	03/29/24 12:54	1

MB MB

MR MR

Surrogate	%Recovery Qualific	ier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	72	70 - 130	03/29/24 12:05	03/29/24 12:54	1
1,4-Difluorobenzene (Surr)	100	70 - 130	03/29/24 12:05	03/29/24 12:54	1

Lab Sample ID: LCS 880-76918/1-A

Matrix: Solid

Analysis Batch: 76894

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 76918

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.112		mg/Kg		112	70 - 130	
Toluene	0.100	0.109		mg/Kg		109	70 - 130	
Ethylbenzene	0.100	0.104		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	0.200	0.201		mg/Kg		101	70 - 130	
o-Xylene	0.100	0.0989		mg/Kg		99	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	86		70 - 130
1,4-Difluorobenzene (Surr)	120		70 - 130

Lab Sample ID: LCSD 880-76918/2-A

Matrix: Solid

Analysis Batch: 76894

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 76918

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.105		mg/Kg		105	70 - 130	6	35
Toluene	0.100	0.100		mg/Kg		100	70 - 130	9	35
Ethylbenzene	0.100	0.0941		mg/Kg		94	70 - 130	10	35
m-Xylene & p-Xylene	0.200	0.188		mg/Kg		94	70 - 130	7	35
o-Xylene	0.100	0.0916		mg/Kg		92	70 - 130	8	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
1,4-Difluorobenzene (Surr)	120		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-76919/1-A

Matrix: Solid

Analysis Batch: 76887

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 76919

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Gasoline Range Organics ND 50 mg/Kg 03/29/24 09:00 03/29/24 09:33 (GRO)-C6-C10

Project/Site: PLU 25 Brushy Draw West

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

168 S1+

Lab Sample ID: MB 880-76919/1-A **Matrix: Solid**

Analysis Batch: 76887

Client Sample ID: Method Blank

03/29/24 09:00 03/29/24 09:33

Prep Type: Total/NA

Prep Batch: 76919

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/29/24 09:00	03/29/24 09:33	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/29/24 09:00	03/29/24 09:33	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	182	S1+	70 - 130			03/29/24 09:00	03/29/24 09:33	1

Lab Sample ID: LCS 880-76919/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 76887** Prep Batch: 76919 LCS LCS

70 - 130

Spike %Rec Added Result Qualifier Limits Analyte Unit %Rec Gasoline Range Organics 1000 912 70 - 130 mg/Kg 91 (GRO)-C6-C10 Diesel Range Organics (Over 1000 915 mg/Kg 91 70 - 130

C10-C28)

o-Terphenyl

LCS LCS Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 105 70 - 130 o-Terphenyl 105

Lab Sample ID: LCSD 880-76919/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 76887

Prep Type: Total/NA Prep Batch: 76919

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	959		mg/Kg		96	70 - 130	5	20
Diesel Range Organics (Over C10-C28)	1000	923		mg/Kg		92	70 - 130	1	20

LCSD LCSD %Recovery Qualifier Surrogate Limits 1-Chlorooctane 104 70 - 130 o-Terphenyl 105 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-77127/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 77142

мв мв Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride $\overline{\mathsf{ND}}$ 5.0 mg/Kg 04/02/24 18:05

QC Sample Results

Client: Vertex Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-77127/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble

Analysis Batch: 77142

Lab Sample ID: LCSD 880-77127/3-A

Client Sample ID: Lab Control Sample Dup
Matrix: Solid

Prep Type: Soluble

Analysis Batch: 77142

LCSD LCSD RPD Spike %Rec **Analyte** Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 251 100 90 - 110 0 mg/Kg

9

4

O

9

Client: Vertex Job ID: 885-1922-1
Project/Site: PLU 25 Brushy Draw West

GC VOA

Analysis Batch: 76894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1922-1	BH24-21 2ft	Total/NA	Solid	8021B	76918
885-1922-2	BH24-22 2ft	Total/NA	Solid	8021B	76918
885-1922-3	BH24-23 0ft	Total/NA	Solid	8021B	76918
885-1922-4	BH24-30 0ft	Total/NA	Solid	8021B	76918
885-1922-5	BH24-25 1ft	Total/NA	Solid	8021B	76918
885-1922-6	BH24-26 2ft	Total/NA	Solid	8021B	76918
MB 880-76918/5-A	Method Blank	Total/NA	Solid	8021B	76918
LCS 880-76918/1-A	Lab Control Sample	Total/NA	Solid	8021B	76918
LCSD 880-76918/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	76918

Prep Batch: 76918

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1922-1	BH24-21 2ft	Total/NA	Solid	5035	_
885-1922-2	BH24-22 2ft	Total/NA	Solid	5035	
885-1922-3	BH24-23 0ft	Total/NA	Solid	5035	
885-1922-4	BH24-30 0ft	Total/NA	Solid	5035	
885-1922-5	BH24-25 1ft	Total/NA	Solid	5035	
885-1922-6	BH24-26 2ft	Total/NA	Solid	5035	
MB 880-76918/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-76918/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-76918/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 76887

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1922-1	BH24-21 2ft	Total/NA	Solid	8015B NM	76919
885-1922-2	BH24-22 2ft	Total/NA	Solid	8015B NM	76919
885-1922-3	BH24-23 0ft	Total/NA	Solid	8015B NM	76919
885-1922-4	BH24-30 Oft	Total/NA	Solid	8015B NM	76919
885-1922-5	BH24-25 1ft	Total/NA	Solid	8015B NM	76919
885-1922-6	BH24-26 2ft	Total/NA	Solid	8015B NM	76919
MB 880-76919/1-A	Method Blank	Total/NA	Solid	8015B NM	76919
LCS 880-76919/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	76919
LCSD 880-76919/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	76919

Prep Batch: 76919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1922-1	BH24-21 2ft	Total/NA	Solid	8015NM Prep	
885-1922-2	BH24-22 2ft	Total/NA	Solid	8015NM Prep	
885-1922-3	BH24-23 0ft	Total/NA	Solid	8015NM Prep	
885-1922-4	BH24-30 0ft	Total/NA	Solid	8015NM Prep	
885-1922-5	BH24-25 1ft	Total/NA	Solid	8015NM Prep	
885-1922-6	BH24-26 2ft	Total/NA	Solid	8015NM Prep	
MB 880-76919/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-76919/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-76919/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Eurofins Albuquerque

2

3

Л

5

7

Q

10

1-

QC Association Summary

Client: Vertex Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

HPLC/IC

Leach Batch: 77127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1922-1	BH24-21 2ft	Soluble	Solid	DI Leach	
885-1922-2	BH24-22 2ft	Soluble	Solid	DI Leach	
885-1922-3	BH24-23 0ft	Soluble	Solid	DI Leach	
885-1922-4	BH24-30 0ft	Soluble	Solid	DI Leach	
885-1922-5	BH24-25 1ft	Soluble	Solid	DI Leach	
885-1922-6	BH24-26 2ft	Soluble	Solid	DI Leach	
MB 880-77127/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-77127/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-77127/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 77142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1922-1	BH24-21 2ft	Soluble	Solid	300.0	77127
885-1922-2	BH24-22 2ft	Soluble	Solid	300.0	77127
885-1922-3	BH24-23 0ft	Soluble	Solid	300.0	77127
885-1922-4	BH24-30 0ft	Soluble	Solid	300.0	77127
885-1922-5	BH24-25 1ft	Soluble	Solid	300.0	77127
885-1922-6	BH24-26 2ft	Soluble	Solid	300.0	77127
MB 880-77127/1-A	Method Blank	Soluble	Solid	300.0	77127
LCS 880-77127/2-A	Lab Control Sample	Soluble	Solid	300.0	77127
LCSD 880-77127/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	77127

Eurofins Albuquerque

3

0

8

9

IU

Lab Chronicle

Client: Vertex Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-21 2ft

Date Collected: 03/22/24 10:00 Date Received: 03/28/24 08:40

Lab Sample ID: 885-1922-1

Matrix: Solid

Job ID: 885-1922-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76918	EL	EET MID	03/29/24 12:05
Total/NA	Analysis	8021B		1	76894	MNR	EET MID	03/29/24 16:01
Total/NA	Prep	8015NM Prep			76919	EL	EET MID	03/29/24 12:09
Total/NA	Analysis	8015B NM		1	76887	SM	EET MID	03/29/24 13:47
Soluble	Leach	DI Leach			77127	SA	EET MID	04/02/24 13:45
Soluble	Analysis	300.0		1	77142	SMC	EET MID	04/02/24 18:55

Client Sample ID: BH24-22 2ft

Date Collected: 03/22/24 10:30 Date Received: 03/28/24 08:40

Lab Sample ID: 885-1922-2

Matrix: Solid

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number Analyst Lab or Analyzed 03/29/24 12:05 Total/NA Prep 5035 76918 EL **EET MID** Total/NA 8021B 76894 MNR 03/29/24 16:21 Analysis **EET MID** 1 Total/NA Prep 8015NM Prep 76919 EL **EET MID** 03/29/24 12:09 Total/NA 76887 SM 03/29/24 14:08 Analysis 8015B NM **EET MID** 1 Soluble Leach DI Leach 77127 SA **EET MID** 04/02/24 13:45 Soluble 300.0 04/02/24 19:01 Analysis 77142 SMC **EET MID** 1

Client Sample ID: BH24-23 Oft

Date Collected: 03/22/24 11:00

Date Received: 03/28/24 08:40

Lab Sample ID: 885-1922-3

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76918	EL	EET MID	03/29/24 12:05
Total/NA	Analysis	8021B		1	76894	MNR	EET MID	03/29/24 17:45
Total/NA	Prep	8015NM Prep			76919	EL	EET MID	03/29/24 12:09
Total/NA	Analysis	8015B NM		1	76887	SM	EET MID	03/29/24 14:30
Soluble	Leach	DI Leach			77127	SA	EET MID	04/02/24 13:45
Soluble	Analysis	300.0		1	77142	SMC	EET MID	04/02/24 19:20

Client Sample ID: BH24-30 0ft

Date Collected: 03/22/24 14:00

Date Received: 03/28/24 08:40

Lab	Samp	le ID:	885-1	922-4

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76918	EL	EET MID	03/29/24 12:05
Total/NA	Analysis	8021B		1	76894	MNR	EET MID	03/29/24 18:06
Total/NA	Prep	8015NM Prep			76919	EL	EET MID	03/29/24 12:09
Total/NA	Analysis	8015B NM		1	76887	SM	EET MID	03/29/24 14:52
Soluble	Leach	DI Leach			77127	SA	EET MID	04/02/24 13:45
Soluble	Analysis	300.0		1	77142	SMC	EET MID	04/02/24 19:26

Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-25 1ft

Date Collected: 03/22/24 11:00

Date Received: 03/28/24 08:40

Client: Vertex

Lab Sample ID: 885-1922-5

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76918	EL	EET MID	03/29/24 12:05
Total/NA	Analysis	8021B		1	76894	MNR	EET MID	03/29/24 18:26
Total/NA	Prep	8015NM Prep			76919	EL	EET MID	03/29/24 12:09
Total/NA	Analysis	8015B NM		1	76887	SM	EET MID	03/29/24 15:14
Soluble	Leach	DI Leach			77127	SA	EET MID	04/02/24 13:45
Soluble	Analysis	300.0		1	77142	SMC	EET MID	04/02/24 19:32

Client Sample ID: BH24-26 2ft

Date Collected: 03/22/24 12:00

Date Received: 03/28/24 08:40

Lab Sample ID: 885-1922-6

Matrix: Solid

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number Analyst Lab or Analyzed Total/NA Prep 5035 76918 EL **EET MID** 03/29/24 12:05 Total/NA 8021B 76894 MNR 03/29/24 18:46 Analysis EET MID 1 Total/NA Prep 8015NM Prep 76919 EL **EET MID** 03/29/24 12:09 Total/NA 03/29/24 15:35 Analysis 8015B NM 76887 SM **EET MID** 1 Soluble DI Leach 77127 SA **EET MID** 04/02/24 13:45 Leach Soluble Analysis 300.0 77142 SMC **EET MID** 04/02/24 19:39 1

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Vertex Job ID: 885-1922-1

Project/Site: PLU 25 Brushy Draw West

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

1/1

Client: Vertex (XTO)	Standard Rush	50M			AA	ALY	SIS	HALL ENVIRONME ANALYSIS LABORA	ī <
	Project Name: PLU 25 Brushy Draw West	shy Draw West			**	v.haller	ıvironn	www.hallenvironmental.com	885,1922,000
Mailing Address: On File			46	01 Ha	4901 Hawkins NE		ənbnqı	Albuquerque, NM 87109	
	Project #: 24E-00670			el. 505	Tel. 505-345-3975		Fax	Fax 505-345-4107	
			ı	1	ı	Ana	Analysis F	Request	
email or Fax#: Scartter@vertex.ca	Project Manager: Sally Carttar	rttar				POS		(ĵu	
					SWI	O [†] , 9		∍sq∀	
☐ Level 4 (Full Validation))d 7		9 ''		/Ju	
mpliance	Sampler: Wyatt Wadleigh			2808		ON		_	
□ Other	On Ice: 💢 Yes	□ No Uda		3/S€		_			
	# of Coolers: i	, 0		bic					
	ů	3-6-01-3-4.		oitse					
Matrix Sample Name	Container Preservativ Type and # e Type	HEAL No.	BTEX /	9 1808	M) 803 PAHs b	RCRA 8	V) 0928	S) 0728 D letoT	
Soil BH24-21 2ft	1, 4oz jar	٦.	×			×			
Soil BH24-22 2ft	1, 4oz jar	べ	×			×			
Soil BH24-23 Oft	1, 4oz jar	-3	×			×			
Soil BH24-30 Oft	1, 4oz jar	7:-	×			×			
Soil BH24-25 1ft	1, 4oz jar	5-	×			×			
Soil BH24-26 2ft	1, 4oz jar	-10	×			×			
Relinquished by: Wyatt Wadleigh	Received by: Via:	Sate Time	Remark Cost ce	S: Plex	ase CC umber:	wwadl 21918	eigh@ 51001	Remarks: Please CC wwadleigh@vertex.ca Cost center Number: 2191851001	
Time: Relinquished by: Received	Received by: Via: County	S Date CrivTime	1						

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-1922-1

List Source: Eurofins Albuquerque Login Number: 1922

List Number: 1

Creator: Lowman, Nick

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-1922-1

Login Number: 1922 **List Source: Eurofins Midland** List Number: 2 List Creation: 03/29/24 10:53 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Sally Carter Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 4/9/2024 4:01:11 PM

JOB DESCRIPTION

PLU 25 Brushy Draw West

JOB NUMBER

885-2016-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 4/9/2024 4:01:11 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

3

4

5

6

8

9

Client: Vertex

Laboratory Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

Table of Contents

Cover Page	
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	10
Lab Chronicle	12
Certification Summary	13
Chain of Custody	14
Receint Checklists	15

Definitions/Glossary

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

Glossary

LOD

LOQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

•

3

4

9

10

1-

Job ID: 885-2016-1

Case Narrative

Client: Vertex Job ID: 885-2016-1

Project: PLU 25 Brushy Draw West

Eurofins Albuquerque

Job Narrative 885-2016-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/29/2024 7:55 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015D_DRO: The continuing calibration verification (CCV) associated with batch 885-2722 recovered above the upper control limit for Di-n-octyl phthalate (Surr). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-30 2ft

Date Received: 03/29/24 07:55

Lab Sample ID: 885-2016-1 Date Collected: 03/26/24 10:30

Matrix: Solid

Method: SW846 8015D - Gasoline	lethod: SW846 8015D - Gasoline Range Organics (GRO) (GC)										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Gasoline Range Organics [C6 - C10]	ND		5.0	mg/Kg		03/29/24 15:54	04/03/24 08:12	1			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)			15 - 244			03/29/24 15:54	04/03/24 08:12	1			

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		03/29/24 15:54	04/03/24 08:12	1
Ethylbenzene	ND		0.050	mg/Kg		03/29/24 15:54	04/03/24 08:12	1
Toluene	ND		0.050	mg/Kg		03/29/24 15:54	04/03/24 08:12	1
Xylenes, Total	ND		0.10	mg/Kg		03/29/24 15:54	04/03/24 08:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		39 - 146			03/29/24 15:54	04/03/24 08:12	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		04/01/24 16:29	04/03/24 11:54	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		04/01/24 16:29	04/03/24 11:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	96		62 - 134			04/01/24 16:29	04/03/24 11:54	1

Method: EPA 300.0 - Anions, Ion Chromatography										
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	ND ND	60	mg/Kg		04/02/24 09:41	04/02/24 13:50	20			

Prep Batch: 2523

Job ID: 885-2016-1 Client: Vertex

Project/Site: PLU 25 Brushy Draw West

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Client Sample ID: Method Blank Lab Sample ID: MB 885-2523/1-A **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 2726

MB MB Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Gasoline Range Organics [C6 - C10] ND 5.0 mg/Kg 03/29/24 15:54 04/02/24 23:51

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 110 15 - 244 03/29/24 15:54 04/02/24 23:51

Lab Sample ID: LCS 885-2523/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 2726

Prep Batch: 2523 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit D %Rec Limits 25.0 24.6 mg/Kg 99 70 - 130Gasoline Range Organics [C6 -

C10]

LCS LCS

%Recovery Qualifier Limits Surrogate 15 - 244 4-Bromofluorobenzene (Surr) 221

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-2518/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 2731

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac ND 0.025 03/29/24 14:08 04/02/24 12:57 Benzene mg/Kg Ethylbenzene ND 0.050 mg/Kg 03/29/24 14:08 04/02/24 12:57 04/02/24 12:57 Toluene NΠ 0.050 03/29/24 14:08 mg/Kg Xylenes, Total ND 0.10 mg/Kg 03/29/24 14:08 04/02/24 12:57

MB MB

Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed 03/29/24 14:08 04/02/24 12:57 4-Bromofluorobenzene (Surr) 39 - 146 93

Lab Sample ID: MB 885-2523/1-A

Matrix: Solid

Analysis Batch: 2731

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 2523

Prep Batch: 2518

MB MB

Qualifier RL Unit D Dil Fac Analyte Result Prepared Analyzed 0.025 03/29/24 15:54 04/02/24 23:51 Benzene ND mg/Kg Ethylbenzene ND 0.050 mg/Kg 03/29/24 15:54 04/02/24 23:51 ND Toluene 0.050 03/29/24 15:54 04/02/24 23:51 mg/Kg 03/29/24 15:54 04/02/24 23:51 Xylenes, Total ND 0.10 mg/Kg

MB MB

%Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 4-Bromofluorobenzene (Surr) 97 39 - 146 03/29/24 15:54 04/02/24 23:51

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 885-2523/3-A

Matrix: Solid Analysis Batch: 2731 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 2523

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	1.00	0.932		mg/Kg		93	70 - 130	
Ethylbenzene	1.00	0.935		mg/Kg		93	70 - 130	
m,p-Xylene	2.00	1.89		mg/Kg		95	70 - 130	
o-Xylene	1.00	0.942		mg/Kg		94	70 - 130	
Toluene	1.00	0.968		mg/Kg		97	70 - 130	
Xylenes, Total	3.00	2.83		mg/Kg		94	70 - 130	
	108 108							

LCS LCS

%Recovery Qualifier Surrogate Limits 39 - 146 4-Bromofluorobenzene (Surr) 99

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-2574/1-A

Matrix: Solid

Analysis Batch: 2722

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 2574

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		10	mg/Kg		04/01/24 16:29	04/03/24 11:30	1
Motor Oil Range Organics [C28-C40]	ND		50	mg/Kg		04/01/24 16:29	04/03/24 11:30	1

MB MB

Qualifier %Recovery Dil Fac Limits Prepared Analyzed Surrogate 04/03/24 11:30 04/01/24 16:29 62 - 134 Di-n-octyl phthalate (Surr) 106

Lab Sample ID: LCS 885-2574/2-A

Matrix: Solid

Analysis Batch: 2722

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 2574

Spike LCS LCS Result Qualifier Added Analyte Unit D %Rec Limits Diesel Range Organics 50.0 49.3 mg/Kg 60 - 135

[C10-C28]

LCS LCS

%Recovery Qualifier Limits Surrogate Di-n-octyl phthalate (Surr) 128 62 - 134

Lab Sample ID: 885-2016-1 MS

Matrix: Solid

Analysis Batch: 2722

Client Sample ID: BH24-30 2ft

Prep Type: Total/NA

Prep Batch: 2574

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Diesel Range Organics ND 45.0 42.8 mg/Kg 95 44 - 136

[C10-C28]

MS MS

Surrogate %Recovery Qualifier Limits Di-n-octyl phthalate (Surr) 105 62 - 134

Eurofins Albuquerque

Released to Imaging: 8/5/2024 2:03:24 PM

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 885-2016-1 MSD Client Sample ID: BH24-30 2ft **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 2722

Prep Batch: 2574 Sample Sample Spike MSD MSD RPD Result Qualifier Qualifier RPD Analyte Added Result Unit %Rec Limits Limit Diesel Range Organics ND 46.4 41.9 mg/Kg 90 44 - 136 2 32

[C10-C28]

MSD MSD %Recovery Limits Surrogate Qualifier 62 - 134 Di-n-octyl phthalate (Surr) 110

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-2604/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 2667 Prep Batch: 2604 мв мв

Analyte Result Qualifier RL Unit Dil Fac D Prepared Analyzed Chloride 3.0 mg/Kg 04/02/24 09:41 04/02/24 10:37 ND

Lab Sample ID: LCS 885-2604/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 2667

Spike LCS LCS %Rec

Added Analyte Result Qualifier %Rec Limits Unit D Chloride 30.0 28.0 mg/Kg 93 90 - 110

Lab Sample ID: 885-2016-1 MS Client Sample ID: BH24-30 2ft

Matrix: Solid

Analysis Batch: 2667

Prep Batch: 2604 MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride ND 29.7 84.7 50 - 150 mg/Kg NC

Lab Sample ID: 885-2016-1 MSD Client Sample ID: BH24-30 2ft Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 2667 Prep Batch: 2604 MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride ND 29.8 83.1 NC 50 - 150 20 mg/Kg

Eurofins Albuquerque

Prep Type: Total/NA

Prep Batch: 2604

Prep Type: Total/NA

QC Association Summary

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

GC VOA

Prep Batch: 2518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 885-2518/1-A	Method Blank	Total/NA	Solid	5030C	

Prep Batch: 2523

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2016-1	BH24-30 2ft	Total/NA	Solid	5030C	
MB 885-2523/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-2523/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-2523/3-A	Lab Control Sample	Total/NA	Solid	5030C	

Analysis Batch: 2726

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2016-1	BH24-30 2ft	Total/NA	Solid	8015D	2523
MB 885-2523/1-A	Method Blank	Total/NA	Solid	8015D	2523
LCS 885-2523/2-A	Lab Control Sample	Total/NA	Solid	8015D	2523

Analysis Batch: 2731

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2016-1	BH24-30 2ft	Total/NA	Solid	8021B	2523
MB 885-2518/1-A	Method Blank	Total/NA	Solid	8021B	2518
MB 885-2523/1-A	Method Blank	Total/NA	Solid	8021B	2523
LCS 885-2523/3-A	Lab Control Sample	Total/NA	Solid	8021B	2523

GC Semi VOA

Prep Batch: 2574

Lab Sample ID 885-2016-1	Client Sample ID BH24-30 2ft	Prep Type Total/NA	Matrix Solid	Method SHAKE	Prep Batch
MB 885-2574/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-2574/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
885-2016-1 MS	BH24-30 2ft	Total/NA	Solid	SHAKE	
885-2016-1 MSD	BH24-30 2ft	Total/NA	Solid	SHAKE	

Analysis Batch: 2722

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2016-1	BH24-30 2ft	Total/NA	Solid	8015D	2574
MB 885-2574/1-A	Method Blank	Total/NA	Solid	8015D	2574
LCS 885-2574/2-A	Lab Control Sample	Total/NA	Solid	8015D	2574
885-2016-1 MS	BH24-30 2ft	Total/NA	Solid	8015D	2574
885-2016-1 MSD	BH24-30 2ft	Total/NA	Solid	8015D	2574

HPLC/IC

Prep Batch: 2604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2016-1	BH24-30 2ft	Total/NA	Solid	300_Prep	
MB 885-2604/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-2604/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
885-2016-1 MS	BH24-30 2ft	Total/NA	Solid	300_Prep	
885-2016-1 MSD	BH24-30 2ft	Total/NA	Solid	300_Prep	

QC Association Summary

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

HPLC/IC

Analysis Batch: 2667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2016-1	BH24-30 2ft	Total/NA	Solid	300.0	2604
MB 885-2604/1-A	Method Blank	Total/NA	Solid	300.0	2604
LCS 885-2604/2-A	Lab Control Sample	Total/NA	Solid	300.0	2604
885-2016-1 MS	BH24-30 2ft	Total/NA	Solid	300.0	2604
885-2016-1 MSD	BH24-30 2ft	Total/NA	Solid	300.0	2604

1/1

5

_

8

9

10

Lab Chronicle

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-30 2ft Lab Sample ID: 885-2016-1

Date Collected: 03/26/24 10:30

Date Received: 03/29/24 07:55

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			2523	IMR	EET ALB	03/29/24 15:54
Total/NA	Analysis	8015D		1	2726	RA	EET ALB	04/03/24 08:12
Total/NA	Prep	5030C			2523	IMR	EET ALB	03/29/24 15:54
Total/NA	Analysis	8021B		1	2731	RA	EET ALB	04/03/24 08:12
Total/NA	Prep	SHAKE			2574	JU	EET ALB	04/01/24 16:29
Total/NA	Analysis	8015D		1	2722	JU	EET ALB	04/03/24 11:54
Total/NA	Prep	300_Prep			2604	JT	EET ALB	04/02/24 09:41
Total/NA	Analysis	300.0		20	2667	JT	EET ALB	04/02/24 13:50

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

3

_

6

8

10

Accreditation/Certification Summary

Client: Vertex Job ID: 885-2016-1

Project/Site: PLU 25 Brushy Draw West

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Prog	ram	Identification Number	Expiration Date
New Mexico	State		NM9425, NM0901	02-26-25
• •	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This li	st may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
300.0	300_Prep	Solid	Chloride	
8015D	5030C	Solid	Gasoline Range Organics	[C6 - C10]
8015D	SHAKE	Solid	Diesel Range Organics [0	C10-C28]
8015D	SHAKE	Solid	Motor Oil Range Organics	s [C28-C40]
8021B	5030C	Solid	Benzene	
8021B	5030C	Solid	Ethylbenzene	
8021B	5030C	Solid	Toluene	
8021B	5030C	Solid	Xylenes, Total	
)regon	NELA	Λ P	NM100001	02-26-25

4

3

4

5

Q

9

10

S	hain-	of-Cu	Chain-of-Custody Record	Tum-Around Time:	Time:							Ē	HALL ENIVERS NIMENT			
Client: Vertex (XTO)	ertex (X	TO)		Standard	Rush.	5 DAW			Z	A L	SIS	Z Z	ANALYSIS LABOF	-		
				Project Name	PLU 25 Brus	Project Name: PLU 25 Brushy Draw West			*	v.halle	www.hallenvironmental.com	menta	.com			
Mailing Address: On File	Address:	On File					46	4901 Hawkins NE -	wkins	· 男	Albuqu	erque	Albuquerque, NM 871		1	
				Project #: 241	: 24E-00670		<u> </u>	Tel. 505	505-345-3975		Fax	505-3	505-345-4107		885-2016 CUC	
Phone #	Phone #: On File									An	Analysis	Request	sst			
email or	Fax#: So	email or Fax#: Scartter@vertex.ca	vertex.ca	Project Mana	Project Manager: Sally Carttar	ttar				0.	† ○0	· ·	hui			
QA/QC Package:	ackage:								SM		` ' Þ (esa/			
□ Standard	lard		☐ Level 4 (Full Validation)						IS0		74.5		₩/NU:			
Accreditation:	ation:	□ Az Co	☐ Az Compliance		: Wyatt Wadleigh			2808		OIN	405					
□ NELAC	Ç	□ Other		On Ice:	₩ Yes	□ No		8/86			3, 1		احا)			
☐ EDD (Type	(Type)_			# of Coolers:	/	MOSTX		əbic					ши			
				Cooler Temp(including CF):	(including CF): 0, 4.	0-1-0		itse					OIIIO			
Date	Time	Matrix	Sample Name	Container Type and #	Preservativ e Type	HEAL No.	\ X3T8 08:H9T	9 1808	N) BOS PAHs b	RCRA 8	85e0 (<i>/</i> Cl' E' E	S) 07S8	Total C			
03/26/24	10:30	io.	BH24-30 2ft	1 407 jar			×	_			-					
							+		-							
									-						-	
									9							
							\perp		-							
							$\perp \downarrow$	\Box								
	i	-							_{						-	
Date:	Time:	Relinquish	Relinquished by: Wyatt Wadleigh	Received by: [MMMM]	Via:	_	Remarks: Please CC wwadleigh@vertex.ca Cost center Number: 2191851001	s: Ple nter N	ase CC	21918	lleigh(g 351001	gverte	x.ca			
3/37/34	Time: (900)	Relinquished by:	ned by:	Received by:	Via:	3/24/24 755										4
٠	f necessary.	samples sub	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	contracted to other a	ccredited laboratorie	es. This serves as notice of the	is possibility.	Any sub	-contracte	ed data w	ill be clea	rly notate	d on the an	alytical repo	ort.	7

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-2016-1

Login Number: 2016 List Source: Eurofins Albuquerque

List Number: 1

Creator: Dominguez, Desiree

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Sally Carttar Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 7/12/2024 10:24:37 AM

JOB DESCRIPTION

PLU 25 Brushy Draw West

JOB NUMBER

885-6878-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 7/12/2024 10:24:37 AM

Authorized for release by Cheyenne Cason, Project Manager cheyenne.cason@et.eurofinsus.com (505)345-3975

Laboratory Job ID: 885-6878-1 Client: Vertex Project/Site: PLU 25 Brushy Draw West

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	18
QC Association Summary	24
Lab Chronicle	28
Certification Summary	32
Chain of Custody	33
Receipt Checklists	34

Definitions/Glossary

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

.

Qualifiers

GC VOA

Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

LOQ

MCL

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Colony Forming Unit
Contains No Free Liquid
Duplicate Error Ratio (normalized absolute difference)
Dilution Factor
Detection Limit (DoD/DOE)
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision Level Concentration (Radiochemistry)
Estimated Detection Limit (Dioxin)
Limit of Detection (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin)

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level"

ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 885-6878-1

Case Narrative

Client: Vertex Job ID: 885-6878-1

Project: PLU 25 Brushy Draw West

Eurofins Albuquerque

Job Narrative 885-6878-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/26/2024 7:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

9

E

7

Client Sample Results

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-05 0.0'

Lab Sample ID: 885-6878-1 Date Collected: 06/24/24 10:00

Matrix: Solid

06/26/24 13:39

Prepared

06/27/24 10:14

06/27/24 07:11

Analyzed

06/28/24 22:13

Dil Fac

200

Date Received: 06/26/24 07:50

Di-n-octyl phthalate (Surr)

Analyte

Chloride

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.8	mg/Kg		06/26/24 11:16	07/03/24 16:29	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		35 - 166			06/26/24 11:16	07/03/24 16:29	1
- Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		06/26/24 11:16	07/03/24 16:29	1
Ethylbenzene	ND		0.048	mg/Kg		06/26/24 11:16	07/03/24 16:29	1
Toluene	ND		0.048	mg/Kg		06/26/24 11:16	07/03/24 16:29	1
Xylenes, Total	ND		0.096	mg/Kg		06/26/24 11:16	07/03/24 16:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		48 - 145			06/26/24 11:16	07/03/24 16:29	1
- Method: SW846 8015M/D - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		06/26/24 13:39	06/27/24 07:11	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		06/26/24 13:39	06/27/24 07:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

RL

600

Unit

mg/Kg

62 - 134

122

11000

Result Qualifier

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-07 0.0'

Date Received: 06/26/24 07:50

4-Bromofluorobenzene (Surr)

Lab Sample ID: 885-6878-2 Date Collected: 06/24/24 10:05

Matrix: Solid

06/26/24 11:16

07/03/24 16:53

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	 mg/Kg		06/26/24 11:16	07/03/24 16:53	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		35 - 166			06/26/24 11:16	07/03/24 16:53	1
Method: SW846 8021B - Volati	•	• •		11mi4	ь	Drawavad	Analysed	Dil Faa
Method: SW846 8021B - Volati Analyte	•	ounds (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	•	• •		Unit mg/Kg	<u>D</u>	Prepared 06/26/24 11:16	Analyzed 07/03/24 16:53	Dil Fac
Analyte	Result	• •	RL		<u>D</u>	<u>.</u>		Dil Fac
Analyte Benzene	Result ND	• •	RL 0.024	mg/Kg	<u>D</u>	06/26/24 11:16	07/03/24 16:53	Dil Fac 1 1 1
Analyte Benzene Ethylbenzene	Result ND ND	• •	0.024 0.049	mg/Kg	<u>D</u>	06/26/24 11:16 06/26/24 11:16	07/03/24 16:53 07/03/24 16:53	Dil Fac 1 1 1 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		8.8	mg/Kg		06/26/24 13:39	06/27/24 07:23	1
Motor Oil Range Organics [C28-C40]	ND		44	mg/Kg		06/26/24 13:39	06/27/24 07:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	103		62 - 134			06/26/24 13:39	06/27/24 07:23	

48 - 145

92

	mothod: El A 000.0 Amono, ion o	omatograpi	y						
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
L	Chloride	370		60	mg/Kg		06/27/24 10:14	06/27/24 22:57	20

Client Sample Results

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-07 1.5'

Lab Sample ID: 885-6878-3

Matrix: Solid

Date Collected: 06/24/24 10:20 Date Received: 06/26/24 07:50

Motor Oil Range Organics [C28-C40]

Surrogate

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	MD		5.0	mg/Kg		06/26/24 11:16	07/03/24 17:17	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		35 - 166			06/26/24 11:16	07/03/24 17:17	1
Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)	١					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 11:16	07/03/24 17:17	1
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 11:16	07/03/24 17:17	1
Toluene	ND		0.050	mg/Kg		06/26/24 11:16	07/03/24 17:17	1
Xylenes, Total	ND		0.10	mg/Kg		06/26/24 11:16	07/03/24 17:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		48 - 145			06/26/24 11:16	07/03/24 17:17	1
Method: SW846 8015M/D - Die	sel Range Organ	ics (DRO) (GC)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND	-	8.9	mg/Kg		06/26/24 13:39	06/27/24 07:36	

44

60

Limits

mg/Kg

mg/Kg

Di-n-octyl phthalate (Surr)	98		62 - 134			06/26/24 13:39	06/2
Method: EPA 300.0 - Anions, Ion C	hromatograph	ıy					
Analyte	Result C	Qualifier	RL	Unit	D	Prepared	

Qualifier

ND

95

%Recovery

Analyzed Dil Fac 06/27/24 10:14 06/27/24 23:10 20

06/26/24 13:39

Prepared

06/27/24 07:36

Analyzed

06/27/24 07:36

Dil Fac

Client Sample Results

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-09 0.0'

Lab Sample ID: 885-6878-4 Date Collected: 06/24/24 10:25

Matrix: Solid

Date Received: 06/26/24 07:50

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		06/26/24 11:16	07/03/24 18:04	1
GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
-Bromofluorobenzene (Surr)	100		35 - 166			06/26/24 11:16	07/03/24 18:04	1
Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 11:16	07/03/24 18:04	1
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 11:16	07/03/24 18:04	1
oluene	ND		0.050	mg/Kg		06/26/24 11:16	07/03/24 18:04	1
(ylenes, Total	ND		0.099	mg/Kg		06/26/24 11:16	07/03/24 18:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
I-Bromofluorobenzene (Surr)	87		48 - 145			06/26/24 11:16	07/03/24 18:04	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		06/26/24 13:39	06/27/24 07:48	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		06/26/24 13:39	06/27/24 07:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	109		62 - 134			06/26/24 13:39	06/27/24 07:48	1

Mictiloa. El A 000.0 - Al	nons, ion omomatograp	···y						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10000		600	mg/Kg		06/27/24 10:14	06/28/24 22:52	200

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-10 0.0'

Lab Sample ID: 885-6878-5

Date Collected: 06/24/24 10:30 Matrix: Solid Date Received: 06/26/24 07:50

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		06/26/24 15:02	06/28/24 14:15	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		35 - 166			06/26/24 15:02	06/28/24 14:15	
Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 15:02	06/28/24 14:15	- (
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 14:15	C
Toluene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 14:15	(
Xylenes, Total	ND		0.10	mg/Kg		06/26/24 15:02	06/28/24 14:15	(
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		48 - 145			06/26/24 15:02	06/28/24 14:15	
Method: SW846 8015M/D - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	23		9.7	mg/Kg		06/27/24 08:15	06/27/24 13:00	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		06/27/24 08:15	06/27/24 13:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	98		62 - 134			06/27/24 08:15	06/27/24 13:00	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17000		600	mg/Kg		06/27/24 10:14	06/28/24 23:04	200

Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Method: EPA 300.0 - Anions, Ion Chromatography

Result Qualifier

6700

Client Sample ID: BH24-11 0.0'

Lab Sample ID: 885-6878-6 Date Collected: 06/24/24 10:35

Matrix: Solid

Date Received: 06/26/24 07:50

Client: Vertex

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		06/26/24 15:02	06/28/24 15:21	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		35 - 166			06/26/24 15:02	06/28/24 15:21	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 15:02	06/28/24 15:21	1
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 15:21	1
Toluene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 15:21	1
Xylenes, Total	ND		0.10	mg/Kg		06/26/24 15:02	06/28/24 15:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		48 - 145			06/26/24 15:02	06/28/24 15:21	1
- Method: SW846 8015M/D - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.0	mg/Kg		06/27/24 08:15	06/27/24 13:12	1
Motor Oil Range Organics [C28-C40]	ND		45	mg/Kg		06/27/24 08:15	06/27/24 13:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	99		62 - 134			06/27/24 08:15	06/27/24 13:12	

RL

300

Unit

mg/Kg

Prepared

06/27/24 10:14

Analyzed

06/28/24 23:17

Dil Fac

100

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Method: SW846 8015M/D - Gasoline Range Organics (GRO) (GC)

Result Qualifier

ND

%Recovery Qualifier

94

92

Client Sample ID: BH24-11 1.5'

Date Collected: 06/24/24 10:45 Date Received: 06/26/24 07:50

Gasoline Range Organics

4-Bromofluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

(GRO)-C6-C10

Surrogate

Lab Sample ID: 885-6878-7

Matrix: Solid

Prepared	Analyzed	Dil Fac	5
06/26/24 15:02	06/28/24 16:27	1	6
Duamanad	Analyzad	Dil Ess	

 Prepared
 Analyzed
 Dil Fac

 06/26/24 15:02
 06/28/24 16:27
 1

06/28/24 16:27

06/26/24 15:02

Analyte	Posult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier						Dillac
Benzene	ND		0.025	mg/Kg		06/26/24 15:02	06/28/24 16:27	1
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 16:27	1
Toluene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 16:27	1
Xylenes, Total	ND		0.10	mg/Kg		06/26/24 15:02	06/28/24 16:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

RL

5.0

Limits

35 - 166

Unit

mg/Kg

Method: SW846 8015M/D - Diese Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		8.8	mg/Kg		06/27/24 08:15	06/27/24 13:25	1
Motor Oil Range Organics [C28-C40]	ND		44	mg/Kg		06/27/24 08:15	06/27/24 13:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	100		62 - 134			06/27/24 08:15	06/27/24 13:25	1

48 - 145

Method: EPA 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	280	59	mg/Kg		06/27/24 10:14	06/28/24 00:27	20

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-31 0.0'

Lab Sample ID: 885-6878-8

Date Collected: 06/24/24 10:50 Matrix: Solid Date Received: 06/26/24 07:50

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		5.0	mg/Kg		06/26/24 15:02	06/28/24 16:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		35 - 166			06/26/24 15:02	06/28/24 16:49	1
Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 15:02	06/28/24 16:49	1
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 16:49	1
Toluene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 16:49	1
Xylenes, Total	ND		0.099	mg/Kg		06/26/24 15:02	06/28/24 16:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		48 - 145			06/26/24 15:02	06/28/24 16:49	1
Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (0	GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.8	mg/Kg		06/27/24 08:15	06/27/24 13:38	1
Motor Oil Range Organics [C28-C40]	ND		49	mg/Kg		06/27/24 08:15	06/27/24 13:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	95		62 - 134			06/27/24 08:15	06/27/24 13:38	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	180		60	mg/Kg		06/27/24 10:14	06/28/24 00:40	20

Released to Imaging: 8/5/2024 2:03:24 PM

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-32 0.0'

Date Received: 06/26/24 07:50

Date Collected: 06/24/24 10:55

Lab Sample ID: 885-6878-9

Matrix: Solid

Method: SW846 8015M/D - Ga Analyte		Qualifier)) (GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier			_ =			Dillac
Gasoline Range Organics	ND		5.0	mg/Kg		06/26/24 15:02	06/28/24 17:33	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		35 - 166			06/26/24 15:02	06/28/24 17:33	1
Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 15:02	06/28/24 17:33	1
Ethylhonzono	ND		0.050	malka		06/26/24 15:02	06/20/24 17:22	4

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	ND	0.099	mg/Kg	06/26/24 15:02	06/28/24 17:33	1
Toluene	ND	0.050	mg/Kg	06/26/24 15:02	06/28/24 17:33	1
Ethylbenzene	ND	0.050	mg/Kg	06/26/24 15:02	06/28/24 17:33	1
201120110		0.020	9/.19	00/20/21 10:02	00/20/2:00	•

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		48 - 145	06/26/24 15:02	06/28/24 17:33	1

Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.7	mg/Kg		06/27/24 08:15	06/27/24 13:50	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		06/27/24 08:15	06/27/24 13:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	99		62 - 134			06/27/24 08:15	06/27/24 13:50	1

Wethou. EPA 300.0 - Amons, fon Ci	ilioiliatograpily						
Analyte	Result Qualit	fier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	130	60	mg/Kg		06/27/24 10:14	06/28/24 00:53	20

2

3

5

7

Q

10

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-32 1.0'

Chloride

Lab Sample ID: 885-6878-10

Date Collected: 06/24/24 11:10 Matrix: Solid Date Received: 06/26/24 07:50

ND				_	Prepared	Analyzed	Dil Fac
		4.8	mg/Kg		06/26/24 15:02	06/28/24 17:55	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
94		35 - 166			06/26/24 15:02	06/28/24 17:55	1
Organic Comp	ounds (GC))					
•		RL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.024	mg/Kg		06/26/24 15:02	06/28/24 17:55	1
ND		0.048	mg/Kg		06/26/24 15:02	06/28/24 17:55	1
ND		0.048	mg/Kg		06/26/24 15:02	06/28/24 17:55	1
ND		0.096	mg/Kg		06/26/24 15:02	06/28/24 17:55	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
92		48 - 145			06/26/24 15:02	06/28/24 17:55	1
l Range Organ	ics (DRO) (GC)					
		RL	Unit	D	Prepared	Analyzed	Dil Fac
ND		9.6	mg/Kg		06/27/24 08:15	06/27/24 14:03	1
ND		48	mg/Kg		06/27/24 08:15	06/27/24 14:03	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
100		62 - 134			06/27/24 08:15	06/27/24 14:03	1
	Organic Comp Result ND ND ND ND ND ND ND ND WRecovery 92 I Range Organ Result ND WRecovery	Organic Compounds (GC) Result Qualifier ND ND ND ND ND WRecovery Qualifier 92 Il Range Organics (DRO) (CRESULT ND ND ND ND Result Qualifier ND ND WRecovery Qualifier	94 35 - 166	Organic Compounds (GC) Result Qualifier RL Unit ND 0.024 mg/Kg ND 0.048 mg/Kg ND 0.048 mg/Kg ND 0.096 mg/Kg ND 0.096 mg/Kg WRecovery Qualifier Limits 92 48 - 145 Range Organics (DRO) (GC) Result Qualifier RL Unit ND 9.6 mg/Kg ND 48 mg/Kg WRecovery Qualifier Limits Limits Limits WRecovery Qualifier Limits Washington Limits WRecovery Qualifier Limits	Organic Compounds (GC) Result Qualifier RL Unit D ND 0.024 mg/Kg ND 0.048 mg/Kg ND 0.048 mg/Kg ND 0.096 mg/Kg ND 0.096 mg/Kg WRecovery Qualifier Limits 92 48 - 145 Range Organics (DRO) (GC) Result Qualifier RL Unit D ND 9.6 mg/Kg ND 48 mg/Kg WRecovery Qualifier Limits WRecovery Qualifier Limits WRecovery Qualifier Limits	Organic Compounds (GC) Result Qualifier RL Unit D Prepared ND 0.024 mg/Kg 06/26/24 15:02 ND 0.048 mg/Kg 06/26/24 15:02 ND 0.096 mg/Kg 06/26/24 15:02 ND 0.096 mg/Kg 06/26/24 15:02 **Recovery Qualifier Limits Prepared 92 48 - 145 06/26/24 15:02 **I Range Organics (DRO) (GC) Result Unit D Prepared ND 9.6 mg/Kg 06/27/24 08:15 06/27/24 08:15 ND 48 mg/Kg 06/27/24 08:15 **Recovery Qualifier Limits Prepared	Organic Compounds (GC) Result Qualifier RL Unit D Prepared Analyzed ND 0.024 mg/Kg 06/26/24 15:02 06/28/24 17:55 ND 0.048 mg/Kg 06/26/24 15:02 06/28/24 17:55 ND 0.048 mg/Kg 06/26/24 15:02 06/28/24 17:55 ND 0.096 mg/Kg 06/26/24 15:02 06/28/24 17:55 **Recovery Qualifier Limits **Prepared Analyzed 92 48 - 145 **O6/26/24 15:02 06/28/24 17:55 **I Range Organics (DRO) (GC) **Result Qualifier RL Unit D Prepared Analyzed ND 9.6 mg/Kg 06/27/24 08:15 06/27/24 14:03 ND 48 mg/Kg 06/27/24 08:15 06/27/24 14:03 **Recovery Qualifier Limits **Prepared Analyzed

60

60

mg/Kg

06/27/24 15:29

06/27/24 23:53

Client Sample Results

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-33 0.0'

Lab Sample ID: 885-6878-11

	Ma	trix:	Sol	hi

Date Collected:	06/24/24	11:15
Date Received:	06/26/24	07:50

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		06/26/24 15:02	06/28/24 18:17	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		35 - 166			06/26/24 15:02	06/28/24 18:17	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 15:02	06/28/24 18:17	1
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 18:17	1
Toluene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 18:17	1
Xylenes, Total	ND		0.10	mg/Kg		06/26/24 15:02	06/28/24 18:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		48 - 145			06/26/24 15:02	06/28/24 18:17	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		06/27/24 08:15	06/27/24 14:15	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		06/27/24 08:15	06/27/24 14:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	99		62 - 134			06/27/24 08:15	06/27/24 14:15	

RL

300

Unit

mg/Kg

Prepared

06/27/24 15:29

Analyzed

07/01/24 17:31

Dil Fac

100

Result Qualifier

Client Sample Results

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-33 2.0'

Date Collected: 06/24/24 11:30 Date Received: 06/26/24 07:50

Toluene

Lab Sample ID: 885-6878-12

06/28/24 18:39

06/26/24 15:02

Method: SW846 8015M/D - Ga	soline Range Org	anics (GRC)) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		06/26/24 15:02	06/28/24 18:39	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		35 - 166			06/26/24 15:02	06/28/24 18:39	1
— Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		06/26/24 15:02	06/28/24 18:39	1
Ethylbenzene	ND		0.049	ma/Ka		06/26/24 15:02	06/28/24 18:39	1

Xylenes, Total	ND		0.098	mg/Kg	06/26/24 15:02	06/28/24 18:39	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		48 - 145		06/26/24 15:02	06/28/24 18:39	1

0.049

mg/Kg

ND

Method: SW846 8015M/D - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.9	mg/Kg		06/27/24 08:15	06/27/24 14:28	1
Motor Oil Range Organics [C28-C40]	ND		50	mg/Kg		06/27/24 08:15	06/27/24 14:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	103		62 - 134			06/27/24 08:15	06/27/24 14:28	1

Method: EPA 300.0 - Anions, Ion Cl	hromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	620		60	mg/Kg		06/27/24 15:29	06/28/24 00:43	20

Job ID: 885-6878-1 Client: Vertex

Project/Site: PLU 25 Brushy Draw West

Method: 8015M/D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-7404/1-A Client Sample ID: Method Blank Prep Type: Total/NA

5.0

Matrix: Solid

Analysis Batch: 7896

Prep Batch: 7404 мв мв Result Qualifier RLUnit D Prepared Analyzed Dil Fac

mg/Kg

Gasoline Range Organics (GRO)-C6-C10

Analyte

Analyte

MB MB

%Recovery Qualifier Surrogate 4-Bromofluorobenzene (Surr)

Limits 35 - 166 96

ND

06/26/24 11:16 07/03/24 14:55

Lab Sample ID: LCS 885-7404/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

25.0

Matrix: Solid

Analysis Batch: 7896

Spike LCS LCS babbA

Result Qualifier 26.5

Unit mg/Kg

D %Rec 106

06/26/24 11:16

Prepared

Limits 70 - 130

07/03/24 14:55

Analyzed

Prep Batch: 7404

Gasoline Range Organics (GRO)-C6-C10

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 209 S1+ 35 - 166

Lab Sample ID: MB 885-7434/1-A

Matrix: Solid

Analysis Batch: 7671

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

Prep Batch: 7434

MB MB

Analyte Result Qualifier RL Unit ND Gasoline Range Organics

(GRO)-C6-C10 MB MB

5.0 mg/Kg 06/26/24 15:02 06/28/24 08:42

mg/Kg

D

Prepared

Surrogate %Recovery

Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 94 35 - 166 06/26/24 15:02 06/28/24 08:42

25.6

Lab Sample ID: LCS 885-7434/2-A

Matrix: Solid Analysis Batch: 7671

Client Sample ID: Lab Control Sample Prep Type: Total/NA

70 - 130

Prep Batch: 7434

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits

25.0

Gasoline Range Organics (GRO)-C6-C10

LCS LCS

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 204 S1+ 35 - 166

Lab Sample ID: 885-6878-5 MS

Matrix: Solid

Analysis Batch: 7671

Client Sample ID: BH24-10 0.0'

102

Prep Type: Total/NA

Prep Batch: 7434

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier %Rec Unit Limits Gasoline Range Organics ND 25.0 26.9 108 70 - 130 mg/Kg

(GRO)-C6-C10

Eurofins Albuquerque

Dil Fac

Dil Fac

Dil Fac

Client Sample ID: BH24-10 0.0'

Client Sample ID: BH24-10 0.0

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 7434

Job ID: 885-6878-1 Client: Vertex

Project/Site: PLU 25 Brushy Draw West

Method: 8015M/D - Gasoline Range Organics (GRO) (GC) (Continued)

Lab Sample ID: 885-6878-5 MS **Matrix: Solid**

Analysis Batch: 7671

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 214 S1+ 35 - 166

Lab Sample ID: 885-6878-5 MSD

Matrix: Solid

Analysis Batch: 7671

Prep Batch: 7434 MSD MSD Sample Sample Spike %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics ND 25.0 24.9 mg/Kg 100 70 - 130 20

(GRO)-C6-C10

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 213 S1+ 35 - 166

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-7404/1-A

Matrix: Solid

Analysis Batch: 7897

Prep Batch: 7404 MB MB Analyte Qualifier RL Unit D Prepared Analyzed Dil Fac Result Benzene ND 0.025 mg/Kg 06/26/24 11:16 07/03/24 14:55 Ethylbenzene ND 0.050 06/26/24 11:16 07/03/24 14:55 mg/Kg Toluene ND 0.050 mg/Kg 06/26/24 11:16 07/03/24 14:55

ND 0.10 06/26/24 11:16 07/03/24 14:55 Xvlenes, Total mg/Kg MB MB

Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 88 48 - 145 06/26/24 11:16 07/03/24 14:55

Lab Sample ID: LCS 885-7404/3-A

Matrix: Solid

Analysis Batch: 7897

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 7404

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 88 Benzene 1.00 0.882 mg/Kg 70 - 130 1.00 0.850 85 Ethylbenzene mg/Kg 70 - 130m-Xylene & p-Xylene 2.00 1.73 mg/Kg 87 70 - 130 1 00 0.834 83 70 - 130 o-Xylene mg/Kg Toluene 1.00 0.845 mg/Kg 85 70 - 130

LCS LCS

Limits Surrogate %Recovery Qualifier 4-Bromofluorobenzene (Surr) 48 - 145 90

Lab Sample ID: MB 885-7434/1-A

Matrix: Solid

Analysis Batch: 7673

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 7434

мв мв

Result Qualifier RL Unit Dil Fac Analyte Prepared Analyzed 0.025 06/26/24 15:02 06/28/24 08:42 Benzene ND mg/Kg

Client: Vertex

Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 885-7434/1-A

Matrix: Solid

Analysis Batch: 7673

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 7434

•								
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 08:42	1
Toluene	ND		0.050	mg/Kg		06/26/24 15:02	06/28/24 08:42	1
Xylenes, Total	ND		0.10	mg/Kg		06/26/24 15:02	06/28/24 08:42	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		48 - 145			06/26/24 15:02	06/28/24 08:42	1

Lab Sample ID: LCS 885-7434/3-A

Matrix: Solid

Analysis Batch: 7673

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 7434

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	1.00	0.895		mg/Kg		90	70 - 130	
Ethylbenzene	1.00	0.908		mg/Kg		91	70 - 130	
m-Xylene & p-Xylene	2.00	1.83		mg/Kg		91	70 - 130	
o-Xylene	1.00	0.918		mg/Kg		92	70 - 130	
Toluene	1.00	0.897		mg/Kg		90	70 - 130	
100 100								

LCS LCS

95

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 48 - 145 90

Lab Sample ID: 885-6878-6 MS

Matrix: Solid

Analysis Batch: 7673

Client Sample ID: BH24-11 0.0'

Prep Type: Total/NA

Prep Batch: 7434

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.999	0.922		mg/Kg		92	70 - 130	
Ethylbenzene	ND		0.999	0.949		mg/Kg		95	70 - 130	
m-Xylene & p-Xylene	ND		2.00	1.90		mg/Kg		95	70 - 130	
o-Xylene	ND		0.999	0.973		mg/Kg		97	70 - 130	
Toluene	ND		0.999	0.935		mg/Kg		94	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

48 - 145

Lab Sample ID: 885-6878-6 MSD

Matrix: Solid

Analysis Batch: 7673

4-Bromofluorobenzene (Surr)

Client Sample ID: BH24-11 0.0'

Prep Type: Total/NA

Prep Batch: 7434

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.991	0.885		mg/Kg		89	70 - 130	4	20
Ethylbenzene	ND		0.991	0.927		mg/Kg		93	70 - 130	2	20
m-Xylene & p-Xylene	ND		1.98	1.86		mg/Kg		94	70 - 130	2	20
o-Xylene	ND		0.991	0.930		mg/Kg		94	70 - 130	5	20
Toluene	ND		0.991	0.900		mg/Kg		91	70 - 130	4	20

Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Lab Sample ID: 885-6878-6 MSD

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid

Client: Vertex

Analysis Batch: 7673

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 48 - 145

Method: 8015M/D - Diesel Range Organics (DRO) (GC)

Client Sample ID: BH24-11 0.0'

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 7423

Prep Batch: 7434

Analysis Batch: 7443

Lab Sample ID: MB 885-7423/1-A Client Sample ID: Method Blank Matrix: Solid

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		10	mg/Kg		06/26/24 13:39	06/27/24 04:04	1
Motor Oil Range Organics [C28-C40]	ND		50	mg/Kg		06/26/24 13:39	06/27/24 04:04	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

62 - 134

Lab Sample ID: LCS 885-7423/2-A

Matrix: Solid

Analysis Batch: 7443

Di-n-octyl phthalate (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

06/26/24 13:39

Prep Batch: 7423 %Rec

06/27/24 04:04

Spike LCS LCS Analyte Result Qualifier Added Unit D %Rec Limits Diesel Range Organics 50.0 44.2 88 60 - 135 mg/Kg [C10-C28]

LCS LCS

90

Surrogate %Recovery Qualifier Limits Di-n-octyl phthalate (Surr) 95 62 - 134

Lab Sample ID: MB 885-7454/1-A

Lab Sample ID: LCS 885-7454/2-A

Matrix: Solid

Matrix: Solid

[C10-C28]

Analysis Batch: 7443

Analysis Batch: 7443

Client Sample ID: Method Blank

Analyzed

06/27/24 12:35

Prep Type: Total/NA Prep Batch: 7454

мв мв Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 10 06/27/24 08:15 Diesel Range Organics [C10-C28] ND mg/Kg 06/27/24 12:35 Motor Oil Range Organics [C28-C40] ND 50 06/27/24 08:15 06/27/24 12:35 mg/Kg

MR MR

%Recovery Qualifier Limits Surrogate Di-n-octyl phthalate (Surr) 99 62 - 134

Client Sample ID: Lab Control Sample

Prepared

06/27/24 08:15

Prep Type: Total/NA

Dil Fac

Prep Batch: 7454

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Diesel Range Organics 50.0 38.0 76 mg/Kg 60 - 135

LCS LCS

Surrogate %Recovery Qualifier Limits Di-n-octyl phthalate (Surr) 99 62 - 134

Project/Site: PLU 25 Brushy Draw West

Job ID: 885-6878-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-7485/1-A

Matrix: Solid

Client: Vertex

Analyte

Analysis Batch: 7495

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 7485

мв мв Result Qualifier RLUnit D Prepared Analyzed Dil Fac

Chloride ND 3.0 mg/Kg 06/27/24 10:14 06/27/24 18:06 Lab Sample ID: LCS 885-7485/2-A Client Sample ID: Lab Control Sample

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 7495** Prep Batch: 7485

Spike LCS LCS Added Analyte Result Qualifier Unit D %Rec Limits Chloride 30.0 28.3 mg/Kg 94 90 - 110

Lab Sample ID: MB 885-7495/34 Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 7495

мв мв

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 0.50 06/28/24 01:18 ND mg/Kg

Lab Sample ID: MRL 885-7495/33 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 7495

MRL MRL Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 0.500 0.547 109 50 - 150 mg/L

Lab Sample ID: MB 885-7524/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 7586

MR MR

60

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 3.0 Chloride ND mg/Kg 06/27/24 15:29 06/27/24 23:29

Lab Sample ID: LCS 885-7524/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 7586

Spike LCS LCS Added Analyte Result Qualifier Unit D %Rec Limits Chloride 30.0 28.0 mg/Kg 93 90 - 110

Lab Sample ID: 885-6878-10 MS Client Sample ID: BH24-32 1.0'

Matrix: Solid

Analysis Batch: 7586

MS MS Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec

30.1

Lab Sample ID: 885-6878-10 MSD Client Sample ID: BH24-32 1.0'

69.7

mg/Kg

NC

Prep Type: Total/NA **Analysis Batch: 7586** Prep Batch: 7524 Spike Sample MSD MSD %Rec RPD Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 60 30.1 74.5 mg/Kg NC 50 - 150

Eurofins Albuquerque

Prep Type: Total/NA Prep Batch: 7524

Prep Batch: 7524

Prep Type: Total/NA

Prep Batch: 7524

50 - 150

Matrix: Solid

Chloride

QC Sample Results

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-7733/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 7733

MB MB Result Qualifier RL Unit Dil Fac Analyte D Prepared Analyzed Chloride ND0.50 mg/Kg 07/01/24 13:14

Lab Sample ID: MRL 885-7733/3 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 7733

Spike MRL MRL %Rec Added Result Qualifier Limits Analyte Unit D %Rec 0.500 Chloride 0.557 mg/L 111 50 - 150

QC Association Summary

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

GC VOA

Prep Batch: 7404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-1	BH24-05 0.0'	Total/NA	Solid	5030C	
885-6878-2	BH24-07 0.0'	Total/NA	Solid	5030C	
885-6878-3	BH24-07 1.5'	Total/NA	Solid	5030C	
885-6878-4	BH24-09 0.0'	Total/NA	Solid	5030C	
MB 885-7404/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-7404/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-7404/3-A	Lab Control Sample	Total/NA	Solid	5030C	

Prep Batch: 7434

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-5	BH24-10 0.0'	Total/NA	Solid	5030C	
885-6878-6	BH24-11 0.0'	Total/NA	Solid	5030C	
885-6878-7	BH24-11 1.5'	Total/NA	Solid	5030C	
885-6878-8	BH24-31 0.0'	Total/NA	Solid	5030C	
885-6878-9	BH24-32 0.0'	Total/NA	Solid	5030C	
885-6878-10	BH24-32 1.0'	Total/NA	Solid	5030C	
885-6878-11	BH24-33 0.0'	Total/NA	Solid	5030C	
885-6878-12	BH24-33 2.0'	Total/NA	Solid	5030C	
MB 885-7434/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-7434/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-7434/3-A	Lab Control Sample	Total/NA	Solid	5030C	
885-6878-5 MS	BH24-10 0.0'	Total/NA	Solid	5030C	
885-6878-5 MSD	BH24-10 0.0'	Total/NA	Solid	5030C	
885-6878-6 MS	BH24-11 0.0'	Total/NA	Solid	5030C	
885-6878-6 MSD	BH24-11 0.0'	Total/NA	Solid	5030C	

Analysis Batch: 7671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-5	BH24-10 0.0'	Total/NA	Solid	8015M/D	7434
885-6878-6	BH24-11 0.0'	Total/NA	Solid	8015M/D	7434
885-6878-7	BH24-11 1.5'	Total/NA	Solid	8015M/D	7434
885-6878-8	BH24-31 0.0'	Total/NA	Solid	8015M/D	7434
885-6878-9	BH24-32 0.0'	Total/NA	Solid	8015M/D	7434
885-6878-10	BH24-32 1.0'	Total/NA	Solid	8015M/D	7434
885-6878-11	BH24-33 0.0'	Total/NA	Solid	8015M/D	7434
885-6878-12	BH24-33 2.0'	Total/NA	Solid	8015M/D	7434
MB 885-7434/1-A	Method Blank	Total/NA	Solid	8015M/D	7434
LCS 885-7434/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	7434
885-6878-5 MS	BH24-10 0.0'	Total/NA	Solid	8015M/D	7434
885-6878-5 MSD	BH24-10 0.0'	Total/NA	Solid	8015M/D	7434

Analysis Batch: 7673

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-5	BH24-10 0.0'	Total/NA	Solid	8021B	7434
885-6878-6	BH24-11 0.0'	Total/NA	Solid	8021B	7434
885-6878-7	BH24-11 1.5'	Total/NA	Solid	8021B	7434
885-6878-8	BH24-31 0.0'	Total/NA	Solid	8021B	7434
885-6878-9	BH24-32 0.0'	Total/NA	Solid	8021B	7434
885-6878-10	BH24-32 1.0'	Total/NA	Solid	8021B	7434
885-6878-11	BH24-33 0.0'	Total/NA	Solid	8021B	7434
885-6878-12	BH24-33 2.0'	Total/NA	Solid	8021B	7434

QC Association Summary

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

GC VOA (Continued)

Analysis Batch: 7673 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 885-7434/1-A	Method Blank	Total/NA	Solid	8021B	7434
LCS 885-7434/3-A	Lab Control Sample	Total/NA	Solid	8021B	7434
885-6878-6 MS	BH24-11 0.0'	Total/NA	Solid	8021B	7434
885-6878-6 MSD	BH24-11 0.0'	Total/NA	Solid	8021B	7434

Analysis Batch: 7896

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-1	BH24-05 0.0'	Total/NA	Solid	8015M/D	7404
885-6878-2	BH24-07 0.0'	Total/NA	Solid	8015M/D	7404
885-6878-3	BH24-07 1.5'	Total/NA	Solid	8015M/D	7404
885-6878-4	BH24-09 0.0'	Total/NA	Solid	8015M/D	7404
MB 885-7404/1-A	Method Blank	Total/NA	Solid	8015M/D	7404
LCS 885-7404/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	7404

Analysis Batch: 7897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-1	BH24-05 0.0'	Total/NA	Solid	8021B	7404
885-6878-2	BH24-07 0.0'	Total/NA	Solid	8021B	7404
885-6878-3	BH24-07 1.5'	Total/NA	Solid	8021B	7404
885-6878-4	BH24-09 0.0'	Total/NA	Solid	8021B	7404
MB 885-7404/1-A	Method Blank	Total/NA	Solid	8021B	7404
LCS 885-7404/3-A	Lab Control Sample	Total/NA	Solid	8021B	7404

GC Semi VOA

Prep Batch: 7423

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
885-6878-1	BH24-05 0.0'	Total/NA	Solid	SHAKE	_
885-6878-2	BH24-07 0.0'	Total/NA	Solid	SHAKE	
885-6878-3	BH24-07 1.5'	Total/NA	Solid	SHAKE	
885-6878-4	BH24-09 0.0'	Total/NA	Solid	SHAKE	
MB 885-7423/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-7423/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

Analysis Batch: 7443

Released to Imaging: 8/5/2024 2:03:24 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-1	BH24-05 0.0'	Total/NA	Solid	8015M/D	7423
885-6878-2	BH24-07 0.0'	Total/NA	Solid	8015M/D	7423
885-6878-3	BH24-07 1.5'	Total/NA	Solid	8015M/D	7423
885-6878-4	BH24-09 0.0'	Total/NA	Solid	8015M/D	7423
885-6878-5	BH24-10 0.0'	Total/NA	Solid	8015M/D	7454
885-6878-6	BH24-11 0.0'	Total/NA	Solid	8015M/D	7454
885-6878-7	BH24-11 1.5'	Total/NA	Solid	8015M/D	7454
885-6878-8	BH24-31 0.0'	Total/NA	Solid	8015M/D	7454
885-6878-9	BH24-32 0.0'	Total/NA	Solid	8015M/D	7454
885-6878-10	BH24-32 1.0'	Total/NA	Solid	8015M/D	7454
885-6878-11	BH24-33 0.0'	Total/NA	Solid	8015M/D	7454
885-6878-12	BH24-33 2.0'	Total/NA	Solid	8015M/D	7454
MB 885-7423/1-A	Method Blank	Total/NA	Solid	8015M/D	7423
MB 885-7454/1-A	Method Blank	Total/NA	Solid	8015M/D	7454
LCS 885-7423/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	7423

Eurofins Albuquerque

4

3

4

6

7

10

1'

QC Association Summary

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

GC Semi VOA (Continued)

Analysis Batch: 7443 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 885-7454/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	7454

Prep Batch: 7454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-5	BH24-10 0.0'	Total/NA	Solid	SHAKE	<u> </u>
885-6878-6	BH24-11 0.0'	Total/NA	Solid	SHAKE	
885-6878-7	BH24-11 1.5'	Total/NA	Solid	SHAKE	
885-6878-8	BH24-31 0.0'	Total/NA	Solid	SHAKE	
885-6878-9	BH24-32 0.0'	Total/NA	Solid	SHAKE	
885-6878-10	BH24-32 1.0'	Total/NA	Solid	SHAKE	
885-6878-11	BH24-33 0.0'	Total/NA	Solid	SHAKE	
885-6878-12	BH24-33 2.0'	Total/NA	Solid	SHAKE	
MB 885-7454/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-7454/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

HPLC/IC

Prep Batch: 7485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-1	BH24-05 0.0'	Total/NA	Solid	300_Prep	_
885-6878-2	BH24-07 0.0'	Total/NA	Solid	300_Prep	
885-6878-3	BH24-07 1.5'	Total/NA	Solid	300_Prep	
885-6878-4	BH24-09 0.0'	Total/NA	Solid	300_Prep	
885-6878-5	BH24-10 0.0'	Total/NA	Solid	300_Prep	
885-6878-6	BH24-11 0.0'	Total/NA	Solid	300_Prep	
885-6878-7	BH24-11 1.5'	Total/NA	Solid	300_Prep	
885-6878-8	BH24-31 0.0'	Total/NA	Solid	300_Prep	
885-6878-9	BH24-32 0.0'	Total/NA	Solid	300_Prep	
MB 885-7485/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-7485/2-A	Lab Control Sample	Total/NA	Solid	300 Prep	

Analysis Batch: 7495

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-2	BH24-07 0.0'	Total/NA	Solid	300.0	7485
885-6878-3	BH24-07 1.5'	Total/NA	Solid	300.0	7485
885-6878-7	BH24-11 1.5'	Total/NA	Solid	300.0	7485
885-6878-8	BH24-31 0.0'	Total/NA	Solid	300.0	7485
885-6878-9	BH24-32 0.0'	Total/NA	Solid	300.0	7485
MB 885-7485/1-A	Method Blank	Total/NA	Solid	300.0	7485
MB 885-7495/34	Method Blank	Total/NA	Solid	300.0	
LCS 885-7485/2-A	Lab Control Sample	Total/NA	Solid	300.0	7485
MRL 885-7495/33	Lab Control Sample	Total/NA	Solid	300.0	

Prep Batch: 7524

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-10	BH24-32 1.0'	Total/NA	Solid	300_Prep	
885-6878-11	BH24-33 0.0'	Total/NA	Solid	300_Prep	
885-6878-12	BH24-33 2.0'	Total/NA	Solid	300_Prep	
MB 885-7524/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-7524/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
885-6878-10 MS	BH24-32 1.0'	Total/NA	Solid	300_Prep	

QC Association Summary

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

HPLC/IC (Continued)

Prep Batch: 7524 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-10 MSD	BH24-32 1.0'	Total/NA	Solid	300 Prep	

Analysis Batch: 7586

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-10	BH24-32 1.0'	Total/NA	Solid	300.0	7524
885-6878-12	BH24-33 2.0'	Total/NA	Solid	300.0	7524
MB 885-7524/1-A	Method Blank	Total/NA	Solid	300.0	7524
LCS 885-7524/2-A	Lab Control Sample	Total/NA	Solid	300.0	7524
885-6878-10 MS	BH24-32 1.0'	Total/NA	Solid	300.0	7524
885-6878-10 MSD	BH24-32 1.0'	Total/NA	Solid	300.0	7524

Analysis Batch: 7597

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-1	BH24-05 0.0'	Total/NA	Solid	300.0	7485
885-6878-4	BH24-09 0.0'	Total/NA	Solid	300.0	7485
885-6878-5	BH24-10 0.0'	Total/NA	Solid	300.0	7485
885-6878-6	BH24-11 0.0'	Total/NA	Solid	300.0	7485

Analysis Batch: 7733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-6878-11	BH24-33 0.0'	Total/NA	Solid	300.0	7524
MB 885-7733/4	Method Blank	Total/NA	Solid	300.0	
MRL 885-7733/3	Lab Control Sample	Total/NA	Solid	300.0	

Client Sample ID: BH24-05 0.0'

Date Collected: 06/24/24 10:00 Date Received: 06/26/24 07:50

Client: Vertex

Lab Sample ID: 885-6878-1

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8015M/D		1	7896	JP	EET ALB	07/03/24 16:29
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8021B		1	7897	JP	EET ALB	07/03/24 16:29
Total/NA	Prep	SHAKE			7423	KR	EET ALB	06/26/24 13:39
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 07:11
Total/NA	Prep	300_Prep			7485	RC	EET ALB	06/27/24 10:14
Total/NA	Analysis	300.0		200	7597	RC	EET ALB	06/28/24 22:13

Client Sample ID: BH24-07 0.0'

Date Collected: 06/24/24 10:05

Lab Sample ID: 885-6878-2

Matrix: Solid

Date Received: 06/26/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8015M/D		1	7896	JP	EET ALB	07/03/24 16:53
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8021B		1	7897	JP	EET ALB	07/03/24 16:53
Total/NA	Prep	SHAKE			7423	KR	EET ALB	06/26/24 13:39
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 07:23
Total/NA	Prep	300_Prep			7485	RC	EET ALB	06/27/24 10:14
Total/NA	Analysis	300.0		20	7495	RC	EET ALB	06/27/24 22:57

Client Sample ID: BH24-07 1.5'

Date Collected: 06/24/24 10:20

Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-3

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8015M/D		1	7896	JP	EET ALB	07/03/24 17:17
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8021B		1	7897	JP	EET ALB	07/03/24 17:17
Total/NA	Prep	SHAKE			7423	KR	EET ALB	06/26/24 13:39
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 07:36
Total/NA	Prep	300_Prep			7485	RC	EET ALB	06/27/24 10:14
Total/NA	Analysis	300.0		20	7495	RC	EET ALB	06/27/24 23:10

Client Sample ID: BH24-09 0.0'

Date Collected: 06/24/24 10:25

Date Received: 06/26/24 07:50

ab Sam	ple ID: 8	885-6878-4
--------	-----------	------------

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8015M/D		1	7896	JP	EET ALB	07/03/24 18:04

Client Sample ID: BH24-09 0.0'

Date Collected: 06/24/24 10:25 Date Received: 06/26/24 07:50

Client: Vertex

Lab Sample ID: 885-6878-4

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7404	AT	EET ALB	06/26/24 11:16
Total/NA	Analysis	8021B		1	7897	JP	EET ALB	07/03/24 18:04
Total/NA	Prep	SHAKE			7423	KR	EET ALB	06/26/24 13:39
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 07:48
Total/NA	Prep	300_Prep			7485	RC	EET ALB	06/27/24 10:14
Total/NA	Analysis	300.0		200	7597	RC	EET ALB	06/28/24 22:52

Client Sample ID: BH24-10 0.0'

Date Collected: 06/24/24 10:30 Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-5

Matrix: Solid

Batch Batch Dilution Prepared Batch Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed Total/NA Prep 5030C 7434 AT **EET ALB** 06/26/24 15:02 Total/NA 8015M/D 06/28/24 14:15 7671 RA **EET ALB** Analysis 1 Total/NA 5030C ΑT **EET ALB** 06/26/24 15:02 Prep 7434 Total/NA Analysis 8021B O 7673 RA **EET ALB** 06/28/24 14:15 Total/NA **EET ALB** 06/27/24 08:15 Prep SHAKE 7454 KR Total/NA Analysis 8015M/D 1 7443 DH **EET ALB** 06/27/24 13:00 Total/NA 300 Prep 7485 RC **EET ALB** 06/27/24 10:14 Prep 7597 RC 06/28/24 23:04 Total/NA Analysis 300.0 200 **EET ALB**

Client Sample ID: BH24-11 0.0'

Date Collected: 06/24/24 10:35 Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-6

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8015M/D		1	7671	RA	EET ALB	06/28/24 15:21
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8021B		1	7673	RA	EET ALB	06/28/24 15:21
Total/NA	Prep	SHAKE			7454	KR	EET ALB	06/27/24 08:15
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 13:12
Total/NA	Prep	300_Prep			7485	RC	EET ALB	06/27/24 10:14
Total/NA	Analysis	300.0		100	7597	RC	EET ALB	06/28/24 23:17

Client Sample ID: BH24-11 1.5'

Date Collected: 06/24/24 10:45

Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-7

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8015M/D		1	7671	RA	EET ALB	06/28/24 16:27
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8021B		1	7673	RA	EET ALB	06/28/24 16:27

Client: Vertex Project/Site: PLU 25 Brushy Draw West

Client Sample ID: BH24-11 1.5'

Date Collected: 06/24/24 10:45 Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-7

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	SHAKE			7454	KR	EET ALB	06/27/24 08:15
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 13:25
Total/NA	Prep	300_Prep			7485	RC	EET ALB	06/27/24 10:14
Total/NA	Analysis	300.0		20	7495	RC	EET ALB	06/28/24 00:27

Client Sample ID: BH24-31 0.0'

Date Collected: 06/24/24 10:50 Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-8

Matrix: Solid

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA 5030C 7434 AT EET ALB 06/26/24 15:02 Prep Total/NA 8015M/D 06/28/24 16:49 Analysis 7671 RA **EET ALB** 1 Total/NA Prep 5030C 7434 AT **EET ALB** 06/26/24 15:02 8021B Total/NA 7673 RA **EET ALB** 06/28/24 16:49 Analysis 1 Total/NA SHAKE **EET ALB** 06/27/24 08:15 Prep 7454 KR 8015M/D Total/NA Analysis 7443 DH **EET ALB** 06/27/24 13:38 1 Total/NA **EET ALB** 06/27/24 10:14 Prep 300 Prep 7485 RC Total/NA Analysis 300.0 20 7495 RC **EET ALB** 06/28/24 00:40

Client Sample ID: BH24-32 0.0'

Date Collected: 06/24/24 10:55

Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-9

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8015M/D		1	7671	RA	EET ALB	06/28/24 17:33
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8021B		1	7673	RA	EET ALB	06/28/24 17:33
Total/NA	Prep	SHAKE			7454	KR	EET ALB	06/27/24 08:15
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 13:50
Total/NA	Prep	300_Prep			7485	RC	EET ALB	06/27/24 10:14
Total/NA	Analysis	300.0		20	7495	RC	EET ALB	06/28/24 00:53

Client Sample ID: BH24-32 1.0'

Date Collected: 06/24/24 11:10

Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-10

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8015M/D		1	7671	RA	EET ALB	06/28/24 17:55
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8021B		1	7673	RA	EET ALB	06/28/24 17:55
Total/NA	Prep	SHAKE			7454	KR	EET ALB	06/27/24 08:15
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 14:03

Client Sample ID: BH24-32 1.0'

Lab Sample ID: 885-6878-10

Matrix: Solid

Date Collected: 06/24/24 11:10 Date Received: 06/26/24 07:50

Client: Vertex

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	300_Prep			7524	ES	EET ALB	06/27/24 15:29
Total/NA	Analysis	300.0		20	7586	JT	EET ALB	06/27/24 23:53

Lab Sample ID: 885-6878-11

Matrix: Solid

Client Sample ID: BH24-33 0.0'

Date Collected: 06/24/24 11:15 Date Received: 06/26/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C		- 	7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8015M/D		1	7671	RA	EET ALB	06/28/24 18:17
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8021B		1	7673	RA	EET ALB	06/28/24 18:17
Total/NA	Prep	SHAKE			7454	KR	EET ALB	06/27/24 08:15
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 14:15
Total/NA	Prep	300_Prep			7524	ES	EET ALB	06/27/24 15:29
Total/NA	Analysis	300.0		100	7733	JT	EET ALB	07/01/24 17:31

Client Sample ID: BH24-33 2.0'

Date Collected: 06/24/24 11:30

Date Received: 06/26/24 07:50

Lab Sample ID: 885-6878-12

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8015M/D		1	7671	RA	EET ALB	06/28/24 18:39
Total/NA	Prep	5030C			7434	AT	EET ALB	06/26/24 15:02
Total/NA	Analysis	8021B		1	7673	RA	EET ALB	06/28/24 18:39
Total/NA	Prep	SHAKE			7454	KR	EET ALB	06/27/24 08:15
Total/NA	Analysis	8015M/D		1	7443	DH	EET ALB	06/27/24 14:28
Total/NA	Prep	300_Prep			7524	ES	EET ALB	06/27/24 15:29
Total/NA	Analysis	300.0		20	7586	JT	EET ALB	06/28/24 00:43

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Released to Imaging: 8/5/2024 2:03:24 PM

Accreditation/Certification Summary

Client: Vertex Job ID: 885-6878-1

Project/Site: PLU 25 Brushy Draw West

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	Progr	am	Identification Number	Expiration Date
w Mexico	State		NM9425, NM0901	02-26-25
• •	are included in this report, bu	ut the laboratory is not certif	ied by the governing authority. This lis	st may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
300.0	300_Prep	Solid	Chloride	
8015M/D	5030C	Solid	Gasoline Range Organics	(GRO)-C6-C10
8015M/D	SHAKE	Solid	Diesel Range Organics [C	10-C28]
8015M/D	SHAKE	Solid	Motor Oil Range Organics	[C28-C40]
8021B	5030C	Solid	Benzene	
8021B	5030C	Solid	Ethylbenzene	
8021B	5030C	Solid	Toluene	
8021B	5030C	Solid	Xylenes, Total	
egon	NELA	P	NM100001	02-26-25

Eurofins Albuquerque

9

3

4

5

0

9

10

if necessary, samples submitted to Hall Environmental agy be subcontracted to other accredited taboratories

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-6878-1

Login Number: 6878 List Source: Eurofins Albuquerque

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

OJ 171

2

3

Л

<u>ی</u>

Q

9

ATTACHMENT 5

ATTACHMENT 6

Green, Garrett J

From: Green, Garrett J

Sent:Tuesday, January 23, 2024 3:21 PMTo:'ocd.enviro (ocd.enviro@emnrd.nm.gov)'Cc:Ruth, Amy; Collins, Melanie; Green, Garrett J

Subject: XTO 24 Hour Notification PLU 25 Brushy Draw West 1/22/2024

All,

This is notification of a release greater than 25 bbls that occurred at PLU 25 Brushy Draw West on 1/22/2024. All standing fluids have been recovered. Details will be provided with an NOR and C-141 submission.

GPS:32.1.450,-103.83919

Thanks,

Garrett Green

Environmental Advisor
Delaware Business Unit
(575) 200-0729
Garrett.Green@ExxonMobil.com

XTO Energy, Inc.

3104 E. Greene Street | Carlsbad, NM 88220 | M: (575)200-0729

Location:	PLU 25 Brushy Draw West		
Spill Date:	1/22/2024		
	Area 1		
Approximate A	rea =	5247.10	sq. ft.
Average Saturation (or depth) of spill = 2.25 inch			inches
Average Porosi	ty Factor =	0.03	
	VOLUME OF LEAK		
Total Crude Oil	=		bbls
Total Produced Water = 40.26 k			

TOTAL VOLUME OF LEAK				
Total Crude Oil =		bbls		
Total Produced Water =	40.26	bbls		
TOTAL VOLUME RECOVERED				
Total Crude Oil =		bbls		
Total Produced Water =	35.00	bbls		

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 311511

QUESTIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	311511
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Prerequisites			
Incident ID (n#)	nAPP2403657069		
Incident Name	NAPP2403657069 PLU 25 BRUSHY DRAW WEST @ 0		
Incident Type	Produced Water Release		
Incident Status	Initial C-141 Received		

Location of Release Source				
Please answer all the questions in this group.				
Site Name	PLU 25 Brushy Draw West			
Date Release Discovered	01/22/2024			
Surface Owner	Federal			

ncident Details				
Please answer all the questions in this group.				
Incident Type	Produced Water Release			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	No			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release		
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Not answered.	
Produced Water Released (bbls) Details	Cause: Corrosion Flow Line - Production Produced Water Released: 40 BBL Recovered: 35 BBL Lost: 5 BBL.	
Is the concentration of chloride in the produced water >10,000 mg/l	Yes	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

QUESTIONS, Page 2

Action 311511

District I
1625 N. French Dr., Hobbs, NM 88240
Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III
1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTI	ONS (continued)	
Operator: XTO ENERGY, INC		OGRID: 5380
6401 Holiday Hill Road Midland, TX 79707		Action Number: 311511
		Action Type: [C-141] Initial C-141 (C-141-v-Initial)
QUESTIONS		
Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied vo	olumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major ro (1) an unauthorized rele	elease" determine using: ease of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the	ne C-129 form.
Initial Response The responsible party must undertake the following actions immediately unless they could create a s	afaty hazard that would regult in ini-	
The source of the release has been stopped	True	ry.
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remedi actions to date in the follow-up C-141 submission. If remedial efforts have been successfully complet Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure e	ted or if the release occurred within a	lined containment area (see Subparagraph (a) of Paragraph (5) of
I hereby certify that the information given above is true and complete to the best of my to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 report local laws and/or regulations.	ases which may endanger public adequately investigate and remo	c health or the environment. The acceptance of a C-141 report by ediate contamination that pose a threat to groundwater, surface
I hereby agree and sign off to the above statement	Name: Garrett Green Title: SHE Coordinator Email: garrett.green@exxonr Date: 02/05/2024	nobil.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 311511

OLIECTION.	C (acatiousad)
QUESTION	S (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
	Action Number:
Midland, TX 79707	311511
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Not answered.	
What method was used to determine the depth to ground water	Not answered.	
Did this release impact groundwater or surface water	Not answered.	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Not answered.	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.	
An occupied permanent residence, school, hospital, institution, or church	Not answered.	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.	
Any other fresh water well or spring	Not answered.	
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.	
A wetland	Not answered.	
A subsurface mine	Not answered.	
An (non-karst) unstable area	Not answered.	
Categorize the risk of this well / site being in a karst geology	Not answered.	
A 100-year floodplain	Not answered.	
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.	

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation plan approval with this submission	No	
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.		

District I
1625 N. French Dr., Hobbs, NM 88240
Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 311511

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	311511
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

CONDITIONS

Created By		Condition Date
scwells	None	2/6/2024

XTO - Extension Request - PLU 25 Brushy Draw West

Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Thu 4/18/2024 9:22 AM

To:Romero, Alan <alan.romero1@exxonmobil.com>

Cc:Ruth, Amy <amy.ruth@exxonmobil.com>;Garcia, Amanda <amanda.garcia@exxonmobil.com>;Sally Carttar <SCarttar@vertexresource.com>;Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>;Wells, Shelly, EMNRD

<Shelly.Wells@emnrd.nm.gov>;Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>

RE: Incident #NAPP2403657069

Alan,

Your request for a 90-day extension to **July 16th, 2024**, is approved. Please include this e-mail correspondence in the remediation and/or closure report.

Robert Hamlet • Environmental Specialist - Advanced

Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave.| Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Sent: Wednesday, April 17, 2024 3:56 PM

To: Hamlet, Robert, EMNRD <Robert.Hamlet@emnrd.nm.gov> **Cc:** Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>

Subject: FW: [EXTERNAL] XTO Extension Request - PLU 25 Brushy Draw West - nAPP2403657069

From: Romero, Alan alan.romero1@exxonmobil.com>

Sent: Wednesday, April 17, 2024 3:26 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov >

Cc: Ruth, Amy <amy.ruth@exxonmobil.com>; Garcia, Amanda <amanda.garcia@exxonmobil.com>; Sally Carttar

<<u>SCarttar@vertex.ca</u>>

Subject: [EXTERNAL] XTO Extension Request - PLU 25 Brushy Draw West - nAPP2403657069

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good afternoon,

XTO is requesting an extension for the current deadline of April 22, 2024, to complete remedial activities and submitting a report required in 19.15.29.12.B.(1) NMAC at the PLU 25 Brushy Draw West (nAPP2403657069). In order to complete all remedial activities and submit a report, XTO requests an extension until July 21, 2024.

Respectfully,

Alan Romero

Environmental Advisor
Permian BU – New Mexico-Delaware
ExxonMobil Upstream Oil & Gas Unconventional

Direct: (575) 988-3383

alan.romero1@exxonmobil.com

XTO ENERGY, INC. – An ExxonMobil Subsidiary

3104 E. Greene Street | Carlsbad, New Mexico 88220

This document may contain information that is privileged, confidential and exempt from disclosure under applicable law. If you are not the intended recipient, you are notified that any unauthorized disclosure, copying, distribution or action on/of the contents of this document is prohibited.

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 364633

QUESTIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	364633
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2403657069
Incident Name	NAPP2403657069 PLU 25 BRUSHY DRAW WEST @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Plan Received

Location of Release Source	
Please answer all the questions in this group.	
Site Name	PLU 25 Brushy Draw West
Date Release Discovered	01/22/2024
Surface Owner	Federal

Incident Details	
Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.	
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Corrosion Flow Line - Production Produced Water Released: 40 BBL Recovered 35 BBL Lost: 5 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 364633

Phone:(505) 476-3470 Fax:(505) 476-3462	
QUESTI	ONS (continued)
Operator: XTO ENERGY, INC 6401 Holiday Hill Road Midland, TX 79707	OGRID: 5380 Action Number: 364633 Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)
QUESTIONS	[e, e.e e.a c c (e t.a.)
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response The responsible party must undertake the following actions immediately unless they could create a s	tofoty haved that would coult in injury
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	I ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
	·

Name: Garrett Green Title: SHE Coordinator

Date: 02/05/2024

Email: garrett.green@exxonmobil.com

I hereby agree and sign off to the above statement

District III

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 364633

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	364633
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between 300 and 500 (ft.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between ½ and 1 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)	
Any other fresh water well or spring	Between ½ and 1 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 500 and 1000 (ft.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Between 1 and 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Between 1 and 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

ided to the appropriate district office no later than 90 days after the release discovery date.
Yes
nination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Yes
No
, in milligrams per kilograms.)
17000
23
23
0
0
mpleted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
07/22/2024
06/24/2024
10/22/2024
8480
200
8480
200
on at the time of submission and may (be) change(d) over time as more remediation efforts are completed.
,

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 364633

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	364633
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:	
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Alan Romero Title: Regulatory Analyst

Email: alan.romero1@exxonmobil.com

Date: 07/16/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 364633

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	364633
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 6

Action 364633

QUESTIONS (continued)
-------------	------------

XTO ENERGY, INC 6401 Holiday Hill Road Midland, TX 79707	OGRID: 5380 Action Number: 364633	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		
Sampling Event Information		
Last sampling notification (C-141N) recorded	{Unavailable.}	
Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	No	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 364633

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	364633
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created By	Condition	Condition Date
rhamlet	The Remediation Plan is Conditionally Approved. All samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. Floor confirmation samples should be delineated/excavated to meet closure criteria standards from Table 1 of the OCD Spill Rule for site assessment/characterization/proven depth to water determination. Sidewall/Edge samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Please collect confirmation samples, representing no more than 200 ft2. All sidewall samples should be taken from the sidewall of the excavation. Please make sure that the edge of the release extent is accurately defined. The work will need to occur in 90 days after the report has been reviewed.	8/5/2024