

811 Louisiana, Suite 2100 Houston, TX 77002 713.584.1000 www.targaresources.com

October 10, 2022

Mr. Brad Billings
State of New Mexico Energy Minerals and Natural Resources Department
Oil Conservation Division (OCD) - District IV
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

SUBJECT: Transmittal of 2022 Annual Groundwater Monitoring Report

Targa Midstream Services LLC

Eunice Gas Plant, Eunice, Lea County, New Mexico

Dear Mr. Billings:

Targa Midstream Services LLC (Targa) is submitting the enclosed 2022 Annual Groundwater Monitoring Report for the Eunice Gas Plant in Lea County, New Mexico.

Please do not hesitate to contact me at (713) 584-1396 or <u>chigginbotham@targaresources.com</u> if you have any questions regarding this submittal.

incerely

REVIEWED

By Mike Buchanan at 1:16 pm, Aug 08, 2024

Sincerely,

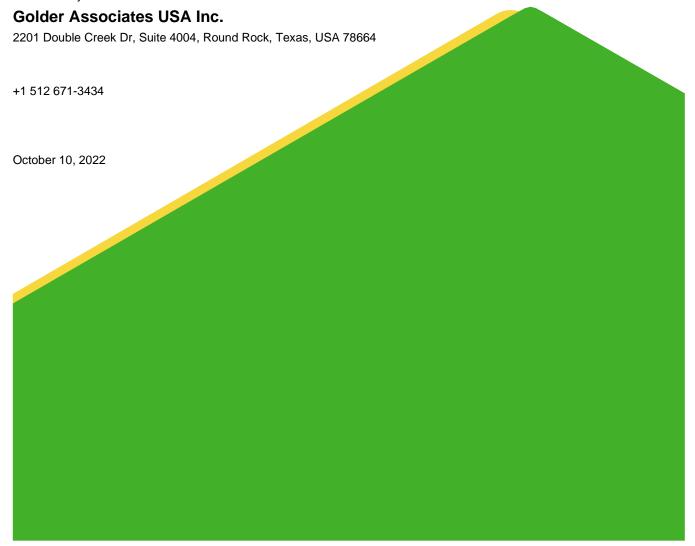
Christina M. Higginbotham, P.G. (Texas) Senior Environmental Specialist

Enclosures

Review of the 2022 Annual Groundwater Monitoring Report for Eunice Gas Plant, Targa Midstream: content satisfactory

- 1. Groundwater sampling for the site has been conducted for 2023/2022 on a subsequent seasonal schedule as prescribed by OCD. Samples were analyzed for chloride and BTEX.
- Plans for 2023 were to investigate
 LNAPL plume source which is still under
 review
- 3. Site has been in compliance for this annual reporting period; subsequent reports have also been submitted through the OCD portal.

2022 Annual Groundwater Monitoring Report


Targa Midstream Services LLC Eunice Gas Plant 25 Middle Plant Lane Eunice, New Mexico

Submitted to:

Targa Resources

811 Louisiana Street Suite 2100 Houston, TX 77002

Submitted by:

Distribution List

Mr. Bradford Billings, NMOCD

Ms. Cindy Klein, Targa

Ms. Christina Higginbotham, Targa

•

EXECUTIVE SUMMARY

Golder Associates USA Inc. (Golder), a member of WSP, was retained by Targa Midstream Services LLC (Targa) to conduct annual groundwater monitoring in March 2022 at the Targa Eunice Gas Plant (Facility) located in Eunice, New Mexico. The Eunice Gas Plant is located in Section 3, Township 22 South, Range 37 East, Lea County, New Mexico at geographic coordinates 32° 25′ 29.3″ N, 103° 08′ 50.1″ W (Site).

On March 28, 2022, Golder conducted a synoptic gauging event that included measurement of static fluid levels and total depths of the 53 Site monitoring wells. On March 29-30, 2022, groundwater samples were collected using low-flow techniques from monitoring wells MW-1, MW-5, MW-6, MW-8, MW-13, MW-14, MW-15, MW-18, MW-19, MW-20, MW-23, MW-28, MW-30 and MW-31. All samples were analyzed for chloride and samples from MW-6, MW-14, MW-18, MW-19 and MW-23 were additionally analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) as agreed to in a February 2018 meeting between Targa and New Mexico Oil Conservation Division (OCD).

Light non-aqueous phase liquid (LNAPL) was recorded at a measurable thickness in 20 wells (MW-2A, MW-3, MW-22, MW-27, MW-32 through MW-35, MW-37, MW-38, RW-1, VW-1 through VW-4, HVR-1 and HV-1 through HV-4) this reporting period. Although the average apparent LNAPL thickness measured in wells decreased from 3.80 feet in October 2021 to 3.28 feet in March 2022, LNAPL thickness increased minimally in HV-2 (2.36 feet), HV-3 (0.04 foot), HV-4 (0.99 foot) and MW-3 (6.73 feet) indicating a slight expansion of the product plume to the east and southeast. The greatest reduction in LNAPL thickness relative to October 2021 (1.56 feet) was measured at VW-1 in response to a falling groundwater elevation suggesting LNAPL exists under confined conditions at this location. However, in general, groundwater elevations in March 2022 were consistent with those measured in October 2021 and changes in LNAPL thickness reflect either rising (reduced LNAPL thickness) or falling groundwater levels (increased LNAPL thickness) under unconfined conditions at the Site.

Groundwater data collected in March 2022 were generally consistent (within seasonal variability) with results from October 2021. Benzene was detected at MW-14 and MW-18 at concentrations exceeding the applicable New Mexico Water Quality Control Commission (WQCC) human health standard of 0.010 milligrams per liter (mg/L). The benzene concentration of 0.06640 mg/L reported in MW-14 represents an increase from 0.00399 mg/L in October 2021 and signifies the end of an apparent decreasing trend in this well since May 2017. Benzene reported at 0.0627 mg/L in MW-18 in March 2022 is consistent with the 0.0638 mg/L reported in October 2021. As both MW-14 and MW-18 are located distal/downgradient of the LNAPL plume and benzene was detected at a trace concentration (estimated 0.000811 mg/L) in the sample collected from MW-23 (located approximately 130 feet southeast and hydraulically downgradient of the leading edge of the product plume), the benzene impact in MW-14 and MW-18 does not appear to be associated with the LNAPL plume and appear to indicate another source. Total xylenes were detected at a maximum concentration of an estimated 0.000238 mg/L (MW-14) which is below the WQCC standard of 0.62 mg/L. Toluene and ethylbenzene were detected up to an estimated 0.000908 mg/L and an estimated 0.000260 mg/L, respectively in MW-23, concentrations below the WQCC standards of 0.75 mg/L.

Chloride was detected at concentrations exceeding the WQCC domestic water supply standard of 250 mg/L in all groundwater samples collected in March 2022, except those from MW-5, MW-23 and MW-28. Elevated chloride concentrations were reported in MW-13 (6,560 mg/L), MW-14 (29,500 mg/L), MW-18 (16,700 mg/L), MW-19 (7,340 mg/L) and MW-30 (11,000 mg/L) located distal and downgradient of the Facility. The chloride exceedances in monitoring wells MW-14 and MW-18 may be associated with historic brine storage pond/cavern

storage operations in the vicinity. Further, benzene data for these same two wells supports a petroleum hydrocarbon source other than the Facility LNAPL plume.

Golder recommends that the next groundwater monitoring event be performed in the second quarter of 2023 to comply with OCD's request of completing annual sampling on a progressively subsequent quarter schedule along with continued investigation of the LNAPL source.

Table of Contents

1.0	INTRO	DDUCTION	1						
	1.1	Background	1						
	1.2	Physical Setting	6						
	1.2.1	Topography							
	1.2.2	Geology	6						
	1.2.3	Groundwater	7						
2.0	GROU	JNDWATER MONITORING	8						
	2.1	Fluid Level Gauging and Potentiometric Surface Elevation	8						
	2.2	LNAPL Distribution and Condition	8						
	2.3	Groundwater Sampling	9						
	2.4	Groundwater Quality	9						
	2.5	Field Quality Assurance/Quality Control Sample Evaluation	10						
3.0	LNAP	L SOURCE INVESTIGATION	11						
4.0	CONC	CLUSIONS AND RECOMMENDATIONS	12						
5.0	REFE	REFERENCES14							

TABLES

- Table 1 Summary of Monitoring Well Completion and Gauging Data
- Table 2 Summary of Apparent LNAPL Thickness in Wells
- Table 3 Summary of Groundwater Analytical Data (BTEX & Chloride)

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Groundwater Gradient Map March 28, 2022
- Figure 4 Apparent LNAPL Thickness Map March 28, 2022
- Figure 5 Benzene in Groundwater Concentration Map March 2022
- Figure 6 Chloride in Groundwater Concentration Map March 2022

APPENDICES

- APPENDIX A Notification of Groundwater Sampling Event
- APPENDIX B Laboratory Analytical Reports

1.0 INTRODUCTION

Golder Associates USA Inc. (Golder), a member of WSP, has prepared this report on behalf of Targa Midstream Services LLC (Targa) to document annual groundwater monitoring activities conducted in March 2022 at the Targa Eunice Gas Plant (Facility) located in Eunice, New Mexico.

The Eunice Gas Plant is in Section 3, Township 22 South, Range 37 East, Lea County, New Mexico at geographic coordinates 32° 25' 29.3" N, 103° 08' 50.1" W (Site) as shown in the Site Location Map included as **Figure 1**.

Targa has performed select subsurface investigations on and off Site to date that has included the installation of numerous soil borings and monitoring wells. The investigations along with light non-aqueous phase liquid (LNAPL) fingerprinting and daylighting/exposure of underground piping and appurtenances has not identified a specific source of the condensate plume located in the southeast portion of the Facility.

1.1 Background

The Facility historically operated under New Mexico Oil Conservation Division (OCD) Water Quality Control Commission (WQCC) Discharge Permit GW-005. However, this permit was rescinded upon Targa's affirmation that operations at the Facility did not intentionally result in discharge of contaminants to the ground surface, subsurface or to groundwater.

As part of an investigation of alleged discharge of chromium bearing wastewater east of the Facility in 2002, the former operator of the Facility, Dynegy Midstream Services, LP, (acquired by Targa in November 2005), installed twenty-one monitoring wells (MW-1 through MW-21 from April 2002 through November 2005). Further, Chevron USA (Chevron) installed two monitoring wells (MW-UN-1 and MW-UN-2) south of the Facility to assess a release from a drilling pit associated with the Mark #13 well (API 30-025-37385). OCD issued an abatement permit (AP-081) for the Chevron release.

In July 2008, Targa decommissioned a tank battery (Shell tanks) located in the southeast corner of the Facility. The Shell tanks included one 500-barrel (bbl) gun barrel tank, two 500-bbl condensate tanks and an oil/water separator. Former Shell Tanks Excavation Report and Closure Approval Request prepared by Larson & Associates, Inc. (Larson) dated June 7, 2010 documented excavation (125 feet long, 75 feet wide and 6-8 feet deep) and offsite disposal of approximately 2,028 cubic yards of petroleum impacted soil. Confirmation sampling indicated that total petroleum hydrocarbons (TPH), at concentrations up to 1,652 milligrams per kilogram (mg/kg) (sample East Wall-SS4), remained in place along the eastern extent of the excavation adjacent to monitoring well MW-3 exceeding the cleanup goal of 1,000 mg/kg. Further, TPH was reported at 3,704 mg/kg in a soil sample collected at 18-19.5 feet below ground surface (bgs) and 1,084 mg/kg in a sample collected at 23-24.5 feet bgs from a boring installed in the center of the excavation. Targa replaced the Shell tanks, relocating the tank battery approximately 200 feet north of the original location. The new (current) tank battery includes two 500-bbl condensate tanks and one 500-bbl gun barrel tank (oil/water separation).

On July 29, 2008, while the Shell tank excavation remained open, approximately 20 bbl of condensate was released due to a dresser sleeve failure near the closed drain scrubber (adjacent to the current tank battery). The July 2008 Dresser Sleeve Release was caused by over pressurization of a dump line during pigging operations and resulted in liquid flowing into the Shell tank excavation. Targa reportedly recovered 20-bbl of the condensate released using a vacuum truck.

LNAPL, visually consistent with natural gas condensate, was initially discovered at the Site in monitoring well MW-3 (apparent thickness of 5.15 feet) adjacent to the former Shell tanks located in the southeast portion of the Facility on October 12, 2009. The discovery occurred while conducting routine groundwater monitoring associated with Facility discharge permit GW-005. Targa evaluated the source of the product in MW-3 by collecting a sample from this well and three potential Facility sources (XTO inlet scrubber, closed drain scrubber and condensate from the Shell tanks) in October and November 2009. Samples were analyzed for API gravity, sulfur, and extended hydrocarbons. As the sample collected from the XTO inlet scrubber only contained trace phase separated hydrocarbons (PSH), fingerprint analysis of this sample was not possible. Biomarkers pristane and phytane were reported in the closed drain scrubber sample but not in the samples collected from MW-3 or the Shell tanks. Biomarker farnesane was not detected in the Shell tanks sample but was reported in MW-3 and the closed drain scrubber sample. Based on the fingerprint analysis, it was concluded that the product samples were not from the same source and the closed drain scrubber was not considered the source of the hydrocarbon in MW-3. Short-term pressure testing of underground lines in the vicinity of MW-3 (including the closed drain scrubber, north and south vapor recovery unit (VRU) sales tanks, three-phase separator, west and east inlet scrubbers, new condensate and gun barrel tanks, sump, and lease automatic custody transfer (LACT) for sales lines failed to identify a leak and the source of the product discovered in MW-3.

Targa installed a pneumatic product recovery system in MW-3 and recovered approximately 236 gallons of condensate between November 19, 2009 and July 12, 2010. At the request of OCD, Targa installed monitoring well MW-22 upgradient of MW-3 (and MW-23 downgradient of MW-3) on March 8-9, 2010. Upon discovery of LNAPL in MW-22, a pneumatic pump was installed in this well and product recovery initiated on June 6, 2010. Approximately 2,060 gallons of condensate was recovered from MW-22 from July 28, 2010 through November 1, 2010. Monitoring wells MW-24 through MW-26 were subsequently installed upgradient of MW-3 and MW-22 in May 2010 to further delineate the LNAPL plume. Petroleum hydrocarbon impact to the vadose zone was not reported in soil samples collected during drilling of borings in which these wells were installed and LNAPL was not present at a measurable thickness in contact with groundwater.

On October 13, 2010, Targa exposed underground flow lines, fittings, and valves approximately 40 feet west of the current condensate tank battery and 60 feet north of MW-22 and discovered soil saturated with hydrocarbon that was associated with a leaking union on a 2-inch dump line buried approximately 4 feet bgs.

Targa installed three monitoring wells (MW-27 through MW-29) downgradient and cross gradient of MW-3 and MW-22 along with recovery well (RW-1) and four vent wells (VW-1 through VW-4) near the suspected source of the LNAPL plume in February 2011. Monitoring well MW-29 was installed near the eastern lateral extent of the groundwater bearing unit where the groundwater level was close to the Ogallala and underlying shale confining unit contact. A pneumatic recovery pump installed in MW-27 recovered 1,311 gallons of product between March 2011 and March 2012. In July 2011, Larson recovered approximately 58 gallons of product from RW-1 during a pump test.

In 2012, Southwest Geoscience were retained to conduct LNAPL recovery using high vacuum extraction (HVE) techniques. Nine two-inch vacuum extraction wells (HV-1 through HV-9) and a 6-inch vacuum extraction well (HVR-1) were installed. Approximately 2,300 gallons of LNAPL (600 gallons liquid phase and 1,700 gallons vapor phase) was recovered by HVE techniques from wells HV-1, HV-2, HV-5, HV-7, HVR-1, MW-27, VW-1 and VW-4 from September 27, 2012 through November 7, 2012. In comparison, approximately 5,658 gallons of product were recovered by pneumatic skimmer from October 2009 to September 2012.

Monitoring well MW-30 was installed southeast of the Facility in April 2015 to delineate the extent of benzene in groundwater. The well is located on State of New Mexico land administered by the State Land Office. Monitoring well MW-31 was installed southeast of MW-30 to better delineate the downgradient extent of chloride and TDS in groundwater. Targa installed two soil borings on August 4-5, 2015 near the condensate tanks (SB-1) to further evaluate the LNAPL plume and west of MW-2A (SB-2) to assess LNAPL present in MW-2A. No elevated photoionization detector (PID) measurements were recorded in soil samples collected from SB-2 and no LNAPL was observed in contact with groundwater. Because elevated PID measurements were recorded at a depth of 25 feet bgs and 2.13 feet of LNAPL was measured in SB-1, the boring was completed as permanent monitoring well MW-32. Monitoring wells MW-33 through MW-38 were subsequently installed in November 2015 to better define and characterize the LNAPL plume in the southeast portion of the Facility.

As documented in 2016 Groundwater Monitoring Report prepared by Larson, dated November 20, 2017, bail down tests were conducted on December 7-8, 2016 to measure LNAPL recovery in eight wells (MW-3, MW-22, MW-32, MW-34, MW-37, RW-1, VW-2 and HVR-1). Larson reported the fastest LNAPL recharge rates in MW-22 and RW-1 and suggested that these wells may be proximate to the LNAPL source. Other wells, such as MW-34, exhibited slow recharge despite having similar or greater initial LNAPL thickness. Samples of product collected from wells MW-3, MW-22, MW-34, MW-35, MW-37, VW-2, VW-4, HV-4, HVR-1 and RW-1 and from potential Facility sources (east inlet scrubber, condensate tanks and VRU) were analyzed for select metals (vanadium, nickel and iron) by ASTM International (ASTM) Method D5708 and hydrocarbons by ASTM Method D6730. Analysis indicated that the samples from the VRU and condensate tanks lacked detectable concentrations of heavier range (C15+) hydrocarbons that were reported in the east inlet scrubber. Furthermore, the east inlet scrubber sample had an elevated iron concentration (217 parts per million (ppm)) compared to the condensate tanks (2.30 ppm) or VRU (1.24 ppm) samples. As the samples collected from the wells contained detectable quantities of heavier hydrocarbons and iron concentrations in VW-2 (12.1 ppm), MW-22 (19.5 ppm) and RW-1 (88.6 ppm) were significantly above background, Targa investigated conditions around underground lines at the east inlet scrubber. However, excavation failed to identify any leaking lines suggesting that the east inlet scrubber was not the source of the LNAPL plume.

As documented in 2017 Groundwater Monitoring Report prepared by Larson, dated April 24, 2018, Targa conducted further exploratory investigation to identify leaking subsurface lines that may be contributing to the LNAPL plume. Hydrovac excavation completed to expose shallow underground pipelines near the three-phase separator and condensate tanks identified two leaking dresser sleeves on a 60-foot section of pipeline that was replaced immediately west of the condensate tanks. However, no significant source of the LNAPL plume was identified. The line from the water leg of the three-phase separator to the sump was replaced in mid-February 2018. The location of the hydro excavation trenches and potholes are shown on **Figure 4**.

The 2018 Groundwater Monitoring Report prepared by Larson, dated March 11, 2019 documented the following conditions at the Site:

- Groundwater flow direction remained consistent with flow towards the southeast under a gradient of approximately 0.008 ft./ft.;
- LNAPL (condensate) was observed in 20 wells during 2018. Based on the LNAPL measurements in 2018, LNAPL thickness increased in fourteen wells including MW-22, MW-32, MW-33, MW-34, MW-35, MW-37, MW-38, RW-1, VW-2, VW-3, VW-4, HVR-1, HV-2, and HV-4 and decreased in MW-2A. LNAPL thickness in remaining wells, including HV-1, HV-3, HV-5, MW-3 and VW-1, remained steady;

- Benzene exceeded the WQCC human health standard of 0.010 milligrams per liter (mg/L) in groundwater samples from MW-6 (0.0253 mg/L), MW-14 (0.0453 mg/L) and MW-18 (0.238 mg/L) during the annual monitoring event;
- Chloride exceeded the WQCC domestic water quality standard of 250 mg/L in groundwater samples from 12 monitoring wells during the June 15, 2018 monitoring event, with the highest concentrations reported in monitoring wells MW-14 (29,000 mg/L) and MW-18 (23,900 mg/L) located southeast of the Facility where historic brine ponds operated in conjunction with cavern wells; and
- Ethylbenzene, toluene, and xylenes were reported below the WQCC human health standards of 0.75 mg/L, 0.75 mg/L, and 0.62 mg/L, respectively, in all samples.

In a meeting between Targa and OCD on February 22, 2018, OCD agreed that Targa could reduce the groundwater monitoring frequency to annually and limit sampling to fourteen wells (MW-1, MW-5, MW-6, MW-8, MW-13, MW-14, MW-15, MW-18, MW-19, MW-20, MW-23, MW-28, MW-30 and MW-31). Further, OCD agreed to reducing groundwater sample analysis to chloride for all fourteen wells and benzene, toluene, ethylbenzene and xylenes (BTEX) for wells MW-6, MW-14, MW-18, MW-19, and MW-23. While OCD agreed to discontinuing analysis of groundwater samples for RCRA metals, cations, anions and total dissolved solids (TDS), OCD noted that resumption of TDS analysis may be requested in the future. OCD concurred that chloride had been sufficiently delineated to the southeast/downgradient of the Facility and agreed that remediation may be suspended until the source of the LNAPL plume was identified. It was also agreed that LNAPL gauging frequency be reduced.

In April 2019, Targa retained Golder to perform annual groundwater monitoring activities at the Facility. A synoptic gauging event performed on April 1, 2019 included measurement of static fluid levels and total depths of the 53 Site monitoring wells. On April 4-8, 2019, groundwater samples were collected using low-flow techniques from monitoring wells MW-1, MW-5, MW-6, MW-8, MW-13, MW-14, MW-15, MW-18, MW-19, MW-20, MW-23, MW-28, MW-30 and MW-31. All samples were analyzed for chloride and BTEX constituents to verify the groundwater quality previously reported by Larson, since sampling through 2018 had been performed using pump/bailer techniques.

On July 29, 2019, Golder performed a focused LNAPL gauging event that included those wells located in the southeastern portion of the Facility. LNAPL was recorded at a measurable thickness in 23 wells (MW-2A, MW-3, MW-22, MW-29, MW-32 through MW-35, MW-37 through MW-38, RW-1, VW-1 through VW-4, HVR-1, HV-1 through HV-5, HV-7 and HV-9) in gauging events completed in 2019. The average LNAPL thickness increased from 2.99 feet in April 2019 to 3.61 feet in July 2019. Diagnostic gauge plots demonstrated that LNAPL existed predominantly, under unconfined conditions and, therefore, the increased LNAPL thickness reflected a response to falling groundwater levels. However, LNAPL thickness measured in July 2019 at MW-29, VW-1, HVR-1, HV-3, HV-4, HV-7 and HV-9, wells generally located east of the Facility and the eastern extent of the LNAPL plume, receded with no measurable product present in MW-29, HV-7 and HV-9 (near the eastern lateral extent of the groundwater bearing unit).

Groundwater data collected by Golder in 2019 was generally consistent (within seasonal variability) with results obtained by Larson in June 2018. Benzene in groundwater concentrations exceeded the applicable WQCC human health standard of 0.010 mg/L in samples collected from MW-6, MW-18 and MW-28 in April 2019. Benzene was detected at a maximum concentration of 1.3 mg/L in MW-28, a well located approximately 130 feet southeast and hydraulically downgradient of the core of the product plume where apparent LNAPL thickness

exceeded 5 feet. Toluene, ethylbenzene and total xylenes were detected at maximum concentrations of an estimated 0.0008 mg/L, 0.470 mg/L and 0.053 mg/L, respectively in MW-28; concentrations that did not exceed the applicable WQCC standards of 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively.

Chloride was detected at concentrations exceeding the domestic water supply standard of 250 mg/L in all wells sampled in April 2019 except for MW-5, MW-23 and MW-28. Since monitoring wells MW-23 and MW-28 were not impacted by chloride and are located immediately downgradient of the LNAPL plume, the chloride impact to groundwater did not appear to be associated with the LNAPL plume release. Elevated chloride concentrations were reported in MW-13 (4,700 mg/L), MW-14 (13,100 mg/L), MW-18 (24,600 mg/L), MW-19 (8,260 mg/L) and MW-30 (4,480 mg/L) located distal and downgradient of the Facility. MW-14 and MW-18 are located in the vicinity of historic brine storage ponds associated with cavern storage operations.

Golder conducted the 2020 annual groundwater monitoring event in the third quarter of the year per OCD's request of annual sampling on a progressively subsequent quarter schedule. LNAPL was recorded at a measurable thickness in 21 wells (MW-2A, MW-3, MW-22, MW-27, MW-29, MW-32 through MW-35, MW-37, MW-38, RW-1, VW-1 through VW-4, HVR-1 and HV-1 through HV-4). The average LNAPL thickness increased from 3.61 feet in July 2019 to 3.97 feet in August 2020. The LNAPL plume receded in the east with no measurable product present in HV-5 through HV-9 and only a minimal thickness of 0.01 foot (ft.) measured in MW-29 (near the eastern lateral extent of the groundwater bearing unit).

Samples were collected August 18-19, 2020 from monitoring wells MW-1, MW-6, MW-8, MW-13, MW-14, MW-15, MW-18, MW-19, MW-20, MW-23, MW-28, MW-30 and MW-31 and analyzed for BTEX and chloride to verify July 2019 data collected by Golder. Monitoring well MW-5 was damaged and was not sampled. Groundwater data collected in August 2020 were generally consistent (within seasonal variability) with data collected by Golder in July 2019. Benzene concentrations exceeded the WQCC human health standard of 0.010 mg/L in samples collected from MW-18 and MW-28. Benzene was detected at a maximum concentration of 1.38 mg/L in MW-28, a well located approximately 130 feet southeast and hydraulically downgradient of the core of the free product plume where apparent LNAPL thickness exceeded 6 feet. Ethylbenzene and total xylenes were detected at low concentrations below the applicable WQCC standards while toluene was not detected. The downgradient extent of the dissolved phase petroleum hydrocarbon plume was defined by MW-23, located approximately 250 feet downgradient of MW-28, where benzene was reported at 0.00663 mg/L. Chloride was detected at concentrations exceeding the WQCC domestic water supply standard of 250 mg/L in all wells sampled in August 2020 except for MW-23 and MW-28 confirming 2019 data. Elevated chloride concentrations were verified in MW-13 (6,120 mg/L). MW-14 (15,900 mg/L), MW-18 (14,600 mg/L), MW-19 (8,780 mg/L) and MW-30 (7,790 mg/L) located distal and downgradient of the Facility. MW-14 and MW-18 are reportedly located in the vicinity of historic brine storage ponds associated with cavern storage operations.

The 2021 annual groundwater sampling event was performed in the fourth quarter and included gauging of fluid levels in the 53 Site wells and sampling of the monitoring wells MW-1, MW-5, MW-6, MW-8, MW-13, MW-14, MW-15, MW-18, MW-19, MW-20, MW-23, MW-30 and MW-31 for the analytes agreed upon in the February 2018 meeting with OCD. Prior to the sampling event, Golder repaired and redeveloped MW-5. Discovery of a slight deflection in the well casing of MW-28 precluded sampling of this well. LNAPL was recorded at a measurable thickness in 19 wells (MW-2A, MW-3, MW-22, MW-27, MW-32 through MW-35, MW-37, MW-38, RW-1, VW-1 through VW-4, HVR-1 and HV-1, HV-2 and HV-4). Although average apparent LNAPL thickness measured in wells decreased from 3.97 feet in August 2020 to 3.80 feet in October 2021, thicknesses generally decreased in the area extending from MW-37 to VW-4 (western portion of the product plume) but increased in the vicinity of

MW-3. The changes in LNAPL thickness reflected either rising (reduced LNAPL thickness) or falling groundwater levels (increased LNAPL thickness) under unconfined conditions. However, a notable increase in LNAPL thickness recorded at VW-1 in October 2021 in response to rising groundwater levels suggested LNAPL exists under confined conditions at this location. Data from October 2021 indicated the LNAPL plume had receded in the east with no measurable product present in HV-3, HV-5 through HV-9 and MW-29 (near the eastern lateral extent of the groundwater bearing unit).

Groundwater data collected in October 2021 were generally consistent (within seasonal variability) with results from August 2020. Benzene was detected at a solitary location (MW-18) at a concentration exceeding the applicable WQCC human health standard of 0.010 mg/L. Although benzene was reported at 0.0638 mg/L in MW-18, located distal/downgradient of the LNAPL plume, benzene was not detected in the sample collected from MW-23 in the vicinity of the downgradient/leading edge of the product plume. Total xylenes were detected at a maximum concentration of an estimated 0.000411 mg/L (MW-14) which is below the WQCC standard of 0.62 mg/L. Toluene and ethylbenzene were not detected.

Chloride was detected at concentrations exceeding the WQCC domestic water supply standard of 250 mg/L in all groundwater samples collected in October 2021, except for MW-5. Chloride was detected at 374 mg/L, slightly exceeding the standard in MW-23, located immediately downgradient of the LNAPL plume. Elevated chloride concentrations were reported in MW-13 (5,730 mg/L), MW-14 (13,900 mg/L), MW-18 (17,200 mg/L), MW-19 (7,060 mg/L) and MW-30 (10,000 mg/L) located distal and downgradient of the Facility with MW-14 and MW-18 located in the vicinity of historic brine storage ponds associated with cavern storage operations.

1.2 Physical Setting

1.2.1 Topography

The Facility topography grades toward the southeast with elevations ranging from approximately 3,430 feet above mean sea level (MSL) in the northwest to 3,380 feet MSL in the southeast. Surface runoff is routed to an area near the southeast corner of the Facility. No surface water bodies are located on the Facility. Monument Draw, the closest ephemeral body, is located about 1.5 miles east as shown on **Figure 1**.

1.2.2 Geology

According to *Geologic Atlas of Texas, Hobbs Sheet* (Barnes, V.E et al, University of Texas, Bureau of Economic Geology, 1976), the Facility is underlain by Holocene-age windblown sand (Qsu) that is characterized as sand and silt in sheets and is light brown to reddish in color. The Pliocene-aged Ogallala Formation (To) underlies the windblown sand. The Ogallala is a fluviatile sand, silt, clay and gravel capped by caliche. The sand is fine to medium-grained quartz, in part silty and calcareous with common clay balls. The upper part of the Ogallala Formation is clayey, indistinctly bedded to massive, cross-bedded, unconsolidated to weakly cohesive with local quartzite lenses and colored various shades of grey and red. Silt and clay components are characterized as containing caliche nodules, reddish brown and dusky red and pink in color. Gravel is not always present, but consists mostly of quartz, some quartzite, sandstone, limestone, chert, igneous and metamorphic rock and worn *Gryphaea* in intraformational channel deposits and basal conglomerate. The caliche is sandy, pisolitic at the top and hard. The maximum thickness of the Ogallala is 100 feet. The upper Triassic-aged Chinle Formation is up to 300 feet thick and underlies the Ogallala Formation. The Chinle Formation is characterized as micaceous claystone, greenish and red in color with reduction spots and is interbedded with thinly bedded, fine-grained sandstone.

Larson characterized the Site geology based on boring logs as unconsolidated aeolian sand overlying an eight- to 20-foot-thick carbonate-indurated sand (caliche) which in turn overlies a fine-grained pink quartz sand that is locally represented by sandstone. Clayey sand or red-bed clay is encountered ranging from approximately 24 feet bgs to 50 feet bgs in the east and center of the Facility, respectively.

1.2.3 Groundwater

Groundwater at the Site occurs in the Ogallala Formation. The regional flow has historically been reported to be generally toward the southeast.

Records of the New Mexico State Engineer identify a fresh water well about 0.7 miles south (cross gradient) of the Facility. The well is in Unit O (SW/4, SE/4), Section 3, Township 22 South, Range 6, 37 East. A water level of 32.58 feet bgs was reported in this well on January 27,1976.

2.0 GROUNDWATER MONITORING

2.1 Fluid Level Gauging and Potentiometric Surface Elevation

Golder provided OCD with notification of the 2022 annual groundwater monitoring event via electronic mail on March 17, 2022. A copy of this notification is included in **Appendix A**.

On March 28, 2022, Golder conducted a synoptic gauging event that included measurement of static fluid levels (depth to LNAPL and groundwater) and total depths (wells without measurable LNAPL) of the 53 Site monitoring wells. Well caps were removed, and fluid levels allowed to equilibrate prior to gauging to the nearest one hundredth of one foot (0.01 ft.) from the top of well casing (TOC) with an oil/water interface probe. Cumulative fluid gauging data along with monitoring well completion data are summarized in **Table 1**. Groundwater elevations are corrected for the presence of LNAPL based on a specific gravity of 0.70, where appropriate.

Depth to groundwater ranged from 57.98 feet bgs at MW-8 located near the northwest corner of the Facility (topographically high) to 22.80 feet bgs at MW-4 located southeast of the Facility. Groundwater elevations ranged from 3,371.15 feet MSL at MW-22 to 3,316.82 feet MSL at MW-31. A Groundwater Gradient Map included as **Figure 3** was developed from the groundwater elevation data measured on March 28, 2022. Based on the potentiometric surface contours depicted on this map and groundwater elevations measured at MW-9 and MW-31, groundwater generally flows to the southeast under a mean hydraulic gradient of approximately 0.009 ft./ft. However, mounding, evident in the southeast portion of the Facility and centered near the condensate tank battery, results in a semi-radial flow configuration. Groundwater flow in this part of the Facility ranges from toward the east to southwest and appears to influence the LNAPL plume geometry.

2.2 LNAPL Distribution and Condition

Golder measured LNAPL thickness in monitoring wells on March 28, 2022 as part of the sitewide synoptic gauging event. LNAPL thicknesses are summarized in **Table 1** and **Table 2** and depicted on **Figure 4**.

LNAPL was gauged at a measurable thickness (minimum 0.01 ft.) in 20 wells (MW-2A, MW-3, MW-22, MW-27, MW-32 through MW-35, MW-37, MW-38, RW-1, VW-1 through VW-4, HVR-1 and HV-1 through HV-4) this reporting period. Based on the March 2022 gauging data, two discrete areas of elevated product thickness are evident within the LNAPL plume: 1) vicinity of wells MW-35 and MW-37 and 2) vicinity of MW-3 and HV-1. Although the average apparent LNAPL thickness measured in wells decreased from 3.80 feet in October 2021 to 3.28 feet in March 2022, slight increases in LNAPL thickness in HV-2, HV-3, HV-4 and MW-3 indicated minimal expansion of the product plume to the east and southeast. The greatest reduction in LNAPL thickness relative to October 2021 (1.56 feet) was measured at VW-1 in response to a falling groundwater elevation suggesting LNAPL may exist under confined conditions at this location. However, groundwater elevations in March 2022 were consistent with those measured in October 2021 and changes in LNAPL thickness reflect either rising (reduced LNAPL thickness) or falling groundwater levels (increased LNAPL thickness) under generally unconfined conditions at the Site.

Diagnostic gauge plots provided in the *2019 Annual Groundwater Monitoring Report* prepared by Golder, dated July 20, 2020, indicated that LNAPL in MW-3, MW-22, MW-32, MW-34, MW-35, MW-37, VW-2 through VW-4, HV-1, HV-2, HV-7 and HVR-1 existed under unconfined conditions. Under unconfined conditions, LNAPL thickness in a monitoring well may increase as the water table falls allowing LNAPL to flow into the well. As the water table rises, LNAPL may become entrapped in the saturated zone and the apparent LNAPL thickness in the

well reduces. When unconfined conditions are at equilibrium, the apparent LNAPL thickness in the well may closely match the equilibrium thickness of the mobile LNAPL interval intercepted by the well.

2.3 Groundwater Sampling

Golder collected groundwater samples on March 29-30, 2022. As agreed in the February 22, 2018 meeting with OCD, groundwater samples were collected from the following fourteen monitoring wells: MW-1, MW-5, MW-6, MW-8, MW-13, MW-14, MW-15, MW-18, MW-19, MW-20, MW-23, MW-28, MW-30 and MW-31. Groundwater samples were analyzed for chloride and samples collected from MW-6, MW-14, MW-18, MW-19, and MW-23 additionally analyzed for BTEX.

Prior to purging, static fluid levels were gauged to the nearest 0.01 ft. from TOC using an interface probe. Samples were collected using low flow purging/sampling techniques with a pneumatically powered 1.75-inch diameter bladder pump (dedicated disposable bladders), an in-line flow through cell with a multi-parameter water quality meter and dedicated down well polyethylene tubing for air supply and purge water discharge/sample collection. A smaller diameter (0.85-inch) bladder pump (capable of circumventing a slight casing deflection) was employed to sample MW-28. The pump intake was placed approximately midway within the water column and within the screened interval. While purging, typically at a rate of approximately 0.1 liters per minute, the water level was periodically monitored to ensure minimal drawdown and field parameters were measured every five minutes until stable conditions had been achieved for three consecutive measurements. Stabilization limits were ± 0.1 for pH, ± 3% for conductivity, ± 10% for dissolved oxygen (DO) and ± 10mv for oxidation reduction potential (ORP) in accordance with *EPA publication EPA/540/S-95/504 Low-Flow (Minimal drawdown) Ground-water Sampling Procedures* (April 1996). Groundwater samples were collected by disconnecting the flow cell and filling sample jars directly from the pump discharge.

Samples were analyzed for BTEX by SW-846 Method 8260B and chloride by EPA Method 9056A.

For quality assurance/quality control (QA/QC) purposes, a trip blank accompanied sample bottles for BTEX analysis from and back to the laboratory as a check on cross contamination during transport and storage. A blind field duplicate was collected from MW-23 (DUP-01) as a check on sampling reproducibility and analytical precision. An equipment blank (EB-01) was collected after sampling MW-18 to verify proper decontamination of equipment and to identify possible cross contamination. The trip blank sample was inadvertently not analyzed. The field duplicate and equipment blank samples were analyzed for BTEX and chloride. Additional sample volume was collected from MW-23 for matrix spike/matrix spike duplicate (MS/MSD) analysis.

Groundwater samples were placed on wet ice in an insulated cooler to reduce and maintain sample temperature at 4 ± 2 degrees Celsius. Coolers were shipped by courier for overnight delivery to the analytical laboratory under proper chain-of-custody procedures. Samples were submitted to the Pace Analytical National laboratory located in Mount Juliet, Tennessee.

The submersible bladder pumps, interface probe and flow-through cell were decontaminated prior to each use using a distilled water and laboratory-grade, phosphate free detergent solution (brushing as necessary) followed by a distilled water rinse. Purged groundwater was contained in an onsite tank that was discharged to a sump at the condensate tanks for subsequent disposal in the Facility's OCD permitted disposal well.

2.4 Groundwater Quality

BTEX and chloride analytical data for the fourteen monitoring wells included in the March 2022 groundwater sampling event are summarized along with historic data for these constituents of concern (COC) in **Table 3**.

Laboratory analytical reports are provided in **Appendix B**. Groundwater COC concentrations have been compared to the New Mexico WQCC Standards for Groundwater of 10,000 mg/L TDS Concentration or Less listed at NMAC 20.6.2.3103 (Human Health Standards and Other Standards for Domestic Water Supply).

According to NMAC 20.6.2.10, new regulations that included revisions to WQCC standards for benzene and toluene do not apply to any activity or condition subject to the authority of the Oil Conservation Commission pursuant to the provisions of the Oil and Gas Act, NMSA 1978, Section 70-2-12 and other laws conferring power on the Oil Conservation Commission and the Oil Conservation Division of the Energy, Minerals and Natural Resources Department to prevent or abate water pollution. As such, the WQCC standards for benzene and toluene at the Site were not revised.

Table 3 and Benzene in Groundwater Concentration Map included as Figure 5 shows that benzene was reported in monitoring wells MW-14 and MW-18 at concentrations exceeding the human health standard of 0.010 mg/L. The benzene concentration of 0.06640 mg/L reported in MW-14 represents an increase from 0.00399 mg/L in October 2021 and signifies the end of a decreasing concentration trend evident since May 2017. Benzene reported at 0.0627 mg/L in MW-18 in March 2022 is consistent with the 0.0638 mg/L reported in October 2021. As both MW-14 and MW-18 are located distal/downgradient of the LNAPL plume and benzene was detected at a trace concentration (estimated 0.000811 mg/L) in the sample collected from MW-23 (located approximately 130 feet southeast and hydraulically downgradient of the leading edge of the product plume), the benzene impact in MW-14 and MW-18 does not appear to be associated with the LNAPL plume and appears to reflect an offsite source. Total xylenes were detected at a maximum concentration of an estimated 0.000238 mg/L (MW-14) which is below the WQCC standard of 0.62 mg/L. Toluene and ethylbenzene were detected up to an estimated 0.000908 mg/L and an estimated 0.000260 mg/L, respectively in MW-23, concentrations below the WQCC standards of 0.75 mg/L.

Chloride was detected at concentrations exceeding the WQCC domestic water supply standard of 250 mg/L in all groundwater samples collected in March 2022, except those from MW-5, MW-23 and MW-28. Data are summarized in **Table 3** and depicted spatially in Chloride in Groundwater Concentration Map included as **Figure 6**. Monitoring wells MW-23 and MW-28 are located hydraulically downgradient of the LNAPL plume while MW-5 is located south of the Facility fence line. Elevated chloride concentrations were reported in MW-13 (6,560 mg/L), MW-14 (29,500 mg/L), MW-18 (16,700 mg/L), MW-19 (7,340 mg/L) and MW-30 (11,000 mg/L) located distal and downgradient of the Facility. Larson noted in the *2018 Groundwater Monitoring Report* that the highest chloride concentrations reported in MW-14 and MW-18 were in the vicinity of historic brine storage ponds associated with cavern storage operations. Further, benzene data for these two wells supports a source other than the Facility LNAPL plume.

2.5 Field Quality Assurance/Quality Control Sample Evaluation

BTEX constituents were not detected, and chloride was reported at an estimated concentration of 0.535 mg/L (and detected in the laboratory method blank) in the equipment blank sample. Golder calculated the relative percent difference (RPD) for the COCs analyzed in the parent sample/blind duplicate MW-23/DUP-01. The RPD of 2.9% calculated for chloride is regarded as acceptable for inorganic analytes. The RPDs calculated for BTEX constituents, ranging from 29.4% to 35.5%, are considered acceptable for organic compounds. No qualifiers were assigned to the data by Golder.

3.0 LNAPL SOURCE INVESTIGATION

Golder understands that the OCD has acknowledged that the existing site characterization, existing monitoring well network, and associated reporting have satisfied the required elements of a Stage 1 Abatement Plan, including design and performance of a site investigation to adequately define Site conditions and provide the data necessary to select and design an effective abatement option. However, as the source of the LNAPL plume has not been identified and characterization/definition is crucial in developing an effective Stage 2 Abatement Plan for this Site, further assessment is required.

Golder initiated additional investigation activities at the Facility during 2019 to locate the source of the LNAPL plume. Based on data collected, additional investigation activities are required and will be scheduled. The identification of the LNAPL source is critical in developing an effective remedy for the Site. The results of the investigation will be submitted to OCD in a separate report.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the groundwater monitoring event, Golder has the following conclusions:

- Based on the sitewide synoptic gauging event completed March 28, 2022 and groundwater elevations measured in MW-9 and MW-31, groundwater generally flows to the southeast under a mean hydraulic gradient of approximately 0.009 ft./ft. However, localized mounding in the southeast portion of the Facility results in a localized semi-radial flow configuration. Groundwater flow in the southeast corner of the Facility ranges from toward the east to south and appears to influence the LNAPL plume geometry.
- LNAPL was gauged at a measurable thickness in 20 wells (MW-2A, MW-3, MW-22, MW-27, MW-32 through MW-35, MW-37, MW-38, RW-1, VW-1 through VW-4, HVR-1 and HV-1 through HV-4) this reporting period. Two discrete areas of elevated product thickness are evident within the LNAPL plume in March 2022: 1) vicinity of wells MW-35 and MW-37 and 2) vicinity of MW-3 and HV-1. Although the average apparent LNAPL thickness measured in wells decreased from 3.80 feet in October 2021 to 3.28 feet in March 2022, minor increases in LNAPL thickness in HV-2, HV-3, HV-4 and MW-3 indicates a slight expansion of the product plume to the east and southeast. The greatest reduction in LNAPL thickness relative to October 2021 (1.56 feet) was measured at VW-1 in response to a falling groundwater elevation suggesting LNAPL may exist under confined conditions at this location. However, groundwater elevations in March 2022 were consistent with those measured in October 2021 and changes in LNAPL thickness reflect either rising (reduced LNAPL thickness) or falling groundwater levels (increased LNAPL thickness) under predominantly unconfined conditions at the Site.
- Groundwater samples were collected by Golder using low-flow techniques from the following fourteen monitoring wells: MW-1, MW-5, MW-6, MW-8, MW-13, MW-14, MW-15, MW-18, MW-19, MW-20, MW-23, MW-30 and MW-31. Samples were analyzed for BTEX and chloride as agreed with OCD in February 2018. Data collected in March 2022 were generally consistent (considering seasonal variability) to data obtained by Golder in April 2019, August 2020 and October 2021.
- Benzene was detected at MW-14 and MW-18 at concentrations exceeding the applicable WQCC human health standard of 0.010 mg/L. As these wells are located distal/downgradient of the LNAPL plume and benzene was detected at a trace concentration (estimated 0.000811 mg/L) in the sample collected from MW-23 (located approximately 130 feet southeast and hydraulically downgradient of the leading edge of the product plume), the benzene impact in MW-14 and MW-18 does not appear to be sourced from the LNAPL plume and is likely associated with an offsite source. Total xylenes were detected at a maximum concentration of an estimated 0.000238 mg/L (MW-14) which is below the WQCC standard of 0.62 mg/L. Toluene and ethylbenzene were detected up to an estimated 0.000908 mg/L and an estimated 0.000260 mg/L, respectively in MW-23, concentrations below the WQCC standards of 0.75 mg/L.
- Chloride was detected at concentrations exceeding the WQCC domestic water supply standard of 250 mg/L in all groundwater samples collected in March 2022, except those from MW-5, MW-23 and MW-28. Monitoring wells MW-23 and MW-28 are located hydraulically downgradient of the LNAPL plume while MW-5 is located south of the Facility fence line. Elevated chloride concentrations were reported in MW-13 (6,560 mg/L), MW-14 (29,500 mg/L), MW-18 (16,700 mg/L), MW-19 (7,340 mg/L) and MW-30 (11,000 mg/L) located distal and downgradient of the Facility. Larson noted in the 2018 Groundwater Monitoring Report that the highest chloride concentrations reported in MW-14 and MW-18 were in the vicinity of historic brine

storage ponds associated with cavern storage operations. Further, benzene data for these two wells supports a petroleum hydrocarbon source other than the Facility LNAPL plume.

Based on the above conclusions, Golder developed the following recommendations:

- Conduct the 2023 annual groundwater monitoring event in the second quarter of the year (sampling on progressively subsequent season schedule as requested by NMOCD). Samples will be analyzed for BTEX and chloride as agreed in the February 2018 meeting with OCD.
- Continue to investigate the LNAPL plume source.

5.0 REFERENCES

- 1) Bureau of Economic Geology 2010. Geologic Atlas of Texas, Hobbs Sheet (Barnes, V.E et al, University of Texas, Bureau of Economic Geology 1976).
- 2) Golder, 2020. 2019 Groundwater Monitoring Report, Golder Associates Inc., July 20, 2020.
- 3) Golder, 2021. 2020 Groundwater Monitoring Report, Golder Associates Inc., April 22, 2021.
- 4) Golder, 2022. 2021 Groundwater Monitoring Report, Golder Associates USA Inc., April 20, 2022.
- 5) Larson, 2010. Former Shell Tanks Excavation Report and Closure Approval Request, Larson & Associates, Inc. dated June 7, 2010.
- 6) Larson, 2017. 2016 Groundwater Monitoring Report, Larson & Associates, Inc. November 20, 2017.
- 7) Larson, 2018. 2017 Groundwater Monitoring Report, Larson & Associates, Inc., April 24, 2018.
- 8) Larson, 2019. 2018 Groundwater Monitoring Report, Larson & Associates, Inc., March 11, 2019.
- 9) Puls, R.W. and Barcelona, M.J. April 1996. Low-Flow (Minimal drawdown) Ground-water Sampling Procedures EPA Publication EPA/540/S-95/504.
- 10) Southwest Geoscience, 2012. MDPE Evaluation, Southwest Geosciences, November 15, 2012.

Signature Page

Golder Associates USA Inc.

Steven S. Crowley, P.G. Senior Lead Consulting Geologist

Keith Wheeler, P.G. Principal Hydrogeologist

ALL WILL

Golder and the G logo are trademarks of Golder Associates Corporation.

https://golderassociates.sharepoint.com/sites/107056/project files/5 technical work/groundwater monitoring/2022 gwm report/draft 2022 annual groundwater monitoring report - targa eunice gas plant.docx

Tables

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	ì			Grou	ndwater Data	ì	
			Danth to	LNAPL	Danth to	Corrected	Depth to
Well ID		Date	Depth to Product	Thickness	Depth to Water	Groundwater	Corrected
Well ID		Gauged	(feet TOC)	(feet)	(feet TOC)	Elevation (feet	Groundwater
			(leet 100)	(leet)	(leet 100)	AMSL)	(feet BGS)
MW-01		11/5/2002			49.36	3,369.08	47.31
Date Drilled:	4/9/2002	6/12/2003			49.09	3,369.35	47.04
Drilled Depth BGS (feet):	60	11/11/2003			47.76	3,370.68	45.71
Well Depth from TOC (feet):	62.05	5/24/2004			48.83	3,369.61	46.78
Well Diameter (inches):	2	11/8/2004			48.64	3,369.80	46.59
Screen Interval BGS (feet):	40.17 - 59.79	5/24/2005			48.31	3,370.13	46.26
Casing Stickup (feet):	2.05	11/30/2005			48.01	3,370.43	45.96
Ground Elevation AMSL (feet)		1/19/2006			48.03	3,370.41	45.98
TOC Elevation AMSL (feet) Notes:	3,418.44	6/26/2006			48.18	3,370.26	46.13
Notes.		12/4/2006 6/6/2007			47.85 47.86	3,370.59 3,370.58	45.80 45.81
		12/3/2007			47.80	3,370.53	45.86
		6/25/2008			47.71	3,370.73	45.66
		11/24/2008			47.73	3,370.71	45.68
		3/23/2009			47.62	3,370.82	45.57
		10/12/2009			47.74	3,370.70	45.69
		6/21/2010			47.87	3,370.57	45.82
		11/10/2010			47.89	3,370.55	45.84
		6/21/2011			47.66	3,370.78	45.61
		11/28/2011			47.62	3,370.82	45.57
		6/18/2012			47.70	3,370.74	45.65
		12/3/2012			49.87	3,368.57	47.82
		5/15/2013			49.95	3,368.49	47.90
		10/1/2013			50.11	3,368.33	48.06
		11/18/2013			50.21	3,368.23	48.16
		6/20/2014			14.25	3,404.19	12.20
		9/18/2014			50.30	3,368.14	48.25
		12/17/2014			50.11 50.09	3,368.33	48.06
		5/11/2015 11/9/2015			49.95	3,368.35 3,368.49	48.04 47.90
		4/4/2016			49.91	3,368.53	47.86
		4/25/2016			49.77	3,368.67	47.72
		11/7/2016			49.82	3,368.62	47.77
		5/23/2017			49.75	3,368.69	47.70
		11/28/2017			49.68	3,368.76	47.63
		6/13/2018			49.52	3,368.92	47.47
		4/1/2019			49.33	3,369.11	47.28
		8/17/2020			49.41	3,369.03	47.36
		10/25/2021			49.22	3,369.22	47.17
		3/28/2022			49.24	3,369.20	47.19
**MW-02	1/0/0000	11/5/2002			26.37	3,368.57	24.23
Date Drilled:	4/9/2002	6/12/2003			26.76	3,368.18	24.62
Drilled Depth BGS (feet):	40	11/11/2003			26.96	3,367.98	24.82
Well Depth from TOC (feet): Well Diameter (inches):	42.14 2	5/24/2004 11/8/2004			24.51	3,370.43	22.37
Screen Interval BGS (feet):	19.17 - 38.79				23.43	3,371.51	21.29
Casing Stickup (feet):	2.14	11/30/2005			24.19	3,370.75	22.05
Ground Elevation AMSL (feet)		1/19/2006			24.21	3,370.73	22.07
TOC Elevation AMSL (feet)	3,394.94	6/26/2006			21.13	3,373.81	18.99
Notes: Replaced by MW-2A		12/4/2006					
1		6/6/2007			24.57	3,370.37	22.43
		12/3/2007			25.21	3,369.73	23.07
		6/25/2008					
		11/24/2008					
		2/19/2009					
		3/23/2009	We	I plugged and	replaced by	MVV-2A	

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information				Grou	ndwater Data	1	
			Depth to	LNAPL	Depth to	Corrected	Depth to
Well ID		Date	Product	Thickness	Water	Groundwater	Corrected
		Gauged	(feet TOC)	(feet)	(feet TOC)	Elevation (feet AMSL)	Groundwater (feet BGS)
MW-02A		3/23/2009			25.26	3,370.07	22.61
	2/18/2009	10/12/2009			26.09	3,369.24	23.44
Drilled Depth BGS (feet):	40	6/21/2010			26.53	3,368.80	23.88
. ,	42.65	11/10/2010			25.93	3,369.40	23.28
` ,	2	6/21/2011			26.73	3,368.60	24.08
. ,	18-38 2.65	11/28/2011			26.86 27.10	3,368.47	24.21
Ground Elevation AMSL (feet)		6/18/2012 12/3/2012			29.98	3,368.23 3,365.35	24.45 27.33
. ,	3,395.33	5/15/2013			30.02	3,365.31	27.37
Notes: Replaced MW-02	,	10/1/2013			30.33	3,365.00	27.68
		11/18/2013			30.34	3,364.99	27.69
		6/20/2014			30.21	3,365.12	27.56
		12/19/2014	28.49	0.01	28.50	3,366.84	25.84
		5/11/2015 11/9/2015	28.2 27.94	2.54 2.56	30.74 30.50	3,366.37 3,366.62	26.31 26.06
		4/4/2016		2.50	28.29	3,367.04	25.64
		4/25/2016			27.37	3,367.96	24.72
		11/7/2016			27.00	3,368.33	24.35
		5/23/2017			27.25	3,368.08	24.60
		11/28/2017	26.83	1.50	28.33	3,368.05	24.63
		6/13/2018	27.37 26.15	2.45	29.82 28.28	3,367.23	25.45
		4/1/2019 7/29/2019	26.15	2.13 2.90	30.33	3,368.54 3,367.03	24.14 25.65
		8/17/2020	28.11	2.67	30.78	3,366.42	26.26
		10/25/2021	28.85	2.62	31.47	3,365.69	26.99
		3/28/2022	28.86	2.50	31.36	3,365.72	26.96
MW-03		11/5/2002		-	23.69	3,374.77	21.20
	4/9/2002	6/12/2003			23.34	3,375.12	20.85
. ,	40	11/11/2003			24.33	3,374.13	21.84
' '	42.49 2	5/24/2004 11/8/2004			23.29 22.62	3,375.17 3,375.84	20.80 20.13
` ,	19.47-39.09	5/24/2005			21.94	3,376.52	19.45
. ,	2.49	11/30/2005			22.15	3,376.31	19.66
Ground Elevation AMSL (feet)	3,395.97	1/19/2006			22.48	3,375.98	19.99
` ,	3,398.46	6/26/2006	23.46	0.00	23.46	3,375.00	20.97
Notes:		12/4/2006			23.44	3,375.02	20.95
		6/6/2007 12/3/2007			21.94 23.23	3,376.52 3,375.23	19.45 20.74
		6/25/2008			24.24	3,374.22	21.75
		11/24/2008			23.90	3,374.56	21.41
		3/23/2009			24.61	3,373.85	22.12
		10/12/2009	26.85	1.99	28.84	3,371.01	24.96
		6/21/2010	22.74	2.49	25.23	3,374.97	21.00
		11/10/2010		 1 FO	22.33 26.47	3,376.13	19.84
		6/21/2011 11/28/2011	24.88 24.82	1.59 4.47	29.29	3,373.10 3,372.30	22.87 23.67
		6/25/2012	26.38	1.98	28.36	3,371.49	24.48
		12/3/2012					
		5/15/2013	29.61	0.02	29.63	3,368.84	27.13
		10/1/2013	28.13	1.62	29.75	3,369.84	26.13
		11/18/2013	29.58	1.87	31.45	3,368.32	27.65
		02/11/2014 6/20/2014	28.93 28.81	2.61 3.38	31.54 32.19	3,368.75 3,368.64	27.22 27.33
		8/27/2014	28.91	6.67	35.58	3,367.55	28.42
		9/18/2014	28.89	0.00	28.89	3,369.57	26.40
		12/22/2014	28.18	5.51	33.69	3,368.63	27.34
		5/11/2015	28.37	4.95	33.32	3,368.61	27.37
		11/9/2015	27.73	6.04	33.77	3,368.92	27.05
		4/4/2016	27.64	4.04	31.68	3,369.61	26.36
		4/25/2016 11/7/2016	27.56 27.1	3.54 3.33	31.10 30.43	3,369.84 3,370.36	26.13 25.61
		5/23/2017	27.16	3.80	30.43	3,370.36	25.81
		11/28/2017	27.10	3.32	30.34	3,370.44	25.53
		6/13/2018	27.26	4.07	31.33	3,369.98	25.99
		4/1/2019	27.39	4.75	32.14	3,369.65	26.33
		7/29/2019	27.59	4.77	32.36	3,369.44	26.53
		8/17/2020	27.94	6.25	34.19	3,368.65	27.33
		10/25/2021	28.17	6.68 6.73	34.85 34.81	3,368.29	27.68 27.61
		3/28/2022	28.08	6.73	34.81	3,368.36	27.61

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
Well ID	Well ID		Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-04		11/5/2002			22.80	3,365.41	20.32
Date Drilled:	8/6/2002	6/12/2003			22.29	3,365.92	19.81
Drilled Depth BGS (feet):	35	11/11/2003			22.18	3,366.03	19.70
Well Depth from TOC (feet):	37.48	5/24/2004			20.71	3,367.50	18.23
Well Diameter (inches):	2	11/8/2004			15.59	3,372.62	13.11
Screen Interval BGS (feet):	14.87-34.49	5/24/2005			15.74	3,372.47	13.26
Casing Stickup (feet):	2.48	11/30/2005			15.79	3,372.42	13.31
Ground Elevation AMSL (feet)	3,385.73	1/19/2006			16.14	3,372.07	13.66
TOC Elevation AMSL (feet)	3,388.21	6/26/2006			17.25	3,370.96	14.77
Notes:		12/4/2006			16.37	3,371.84	13.89
		6/6/2007			15.29	3,372.92	12.81
		12/3/2007			16.88	3,371.33	14.40
		6/25/2008			19.47	3,368.74	16.99
		11/24/2008			20.08	3,368.13	17.60
		3/23/2009			20.76	3,367.45	18.28
		10/12/2009			21.53	3,366.68	19.05
		6/21/2010			21.79	3,366.42	19.31
		11/10/2010			17.75	3,370.46	15.27
		6/21/2011			21.31	3,366.90	18.83
		11/28/2011			22.25	3,365.96	19.77
		6/18/2012			22.42	3,365.79	19.94
		12/3/2012			25.24	3,362.97	22.76
		5/15/2013			25.58	3,362.63	23.10
		10/1/2013			25.91	3,362.30	23.43
		11/18/2013			25.67	3,362.54	23.19
		6/20/2014			25.66	3,362.55	23.18
		12/17/2014			21.76	3,366.45	19.28
		5/11/2015			23.32	3,364.89	20.84
		11/9/2015			20.12	3,368.09	17.64
		4/4/2016			19.74	3,368.47	17.26
		4/25/2016			19.70	3,368.51	17.22
		11/7/2016			18.90	3,369.31	16.42
		5/23/2017			19.21	3,369.00	16.73
		11/28/2017			19.17	3,369.04	16.69
		6/13/2018			21.89	3,366.32	19.41
		4/1/2019			19.63	3,368.58	17.15
		8/17/2020			23.47	3,364.74	20.99
		10/25/2021			24.07	3,364.14	21.59
		3/28/2022			25.28	3,362.93	22.80

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information	n			Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-05		11/5/2002			28.29	3,368.55	25.74
Date Drilled:	8/6/2002	6/12/2003			25.67	3,371.17	23.12
Drilled Depth BGS (feet):	40	11/11/2003			25.47	3,371.37	22.92
Well Depth from TOC (feet):	42.55	5/24/2004			25.75	3,371.09	23.20
Well Diameter (inches):	2	11/8/2004			26.17	3,370.67	23.62
Screen Interval BGS (feet):	19.87-39.49	5/24/2005			25.70	3,371.14	23.15
Casing Stickup (feet):	2.55	11/30/2005			26.20	3,370.64	23.65
Ground Elevation AMSL (feet)	3,394.29	1/19/2006			26.26	3,370.58	23.71
TOC Elevation AMSL (feet)	3,396.84	6/26/2006			26.65	3,370.19	24.10
Notes:		12/4/2006			26.46	3,370.38	23.91
		6/7/2007 ¹			23.91	3,372.93	21.29
		12/3/2007			24.18	3,372.66	21.56
On 6/7/2007		6/25/2008			26.83	3,370.01	24.21
Well Depth from TOC (feet):	36.78	11/24/2008			27.23	3,369.61	24.61
Casing Stickup (feet):	2.62	3/23/2009			27.33	3,369.51	24.71
Ground Elevation AMSL (feet)	3,394.22	10/12/2009			27.78	3,369.06	25.16
TOC Elevation AMSL (feet)	3,396.77	6/21/2010			27.99	3,368.85	25.37
,	.,	11/10/2010			27.58	3,369.26	24.96
On 10/25/2021		6/21/2011			27.20	3,369.64	24.58
Casing Stickup (feet):	3.59	11/28/2011			27.81	3,369.03	25.19
Ground Elevation AMSL (feet)	3,394.22	6/18/2012			28.15	3,368.69	25.53
TOC Elevation AMSL (feet)	3,397.81	12/3/2012			30.95	3,365.89	28.33
()	.,	5/15/2013			31.16	3,365.68	28.54
		10/1/2013			31.38	3,365.46	28.76
I		11/18/2013			31.42	3,365.42	28.80
		6/20/2014			31.51	3,365.33	28.89
		9/18/2014			31.57	3,365.27	28.95
		12/18/2014	31.12	0.01	31.13	3,365.72	28.50
		5/11/2015			30.92	3,365.92	28.30
		11/9/2015			31.09	3,365.75	28.47
		4/4/2016			30.78	3,366.06	28.16
		4/25/2016			30.73	3,366.11	28.11
		11/7/2016			30.65	3,366.19	28.03
		5/23/2017			30.50	3,366.34	27.88
		11/28/2017			30.41	3,366.43	27.79
		6/15/2018			30.54	3,366.30	27.92
		4/1/2019			30.39	3,366.45	27.77
		8/17/2020	NM	NM	NM	NM	NM
		10/25/2021 ¹			31.38	3,366.43	27.79
1		3/28/2022			31.34	3,366.47	27.75

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
Well ID	Well ID		Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-06		11/5/2002			37.81	3,365.93	35.22
Date Drilled:	8/6/2002	6/12/2003			37.38	3,366.36	34.79
Drilled Depth BGS (feet):	52	11/11/2003			36.53	3,367.21	33.94
Well Depth from TOC (feet):	54.59	5/24/2004			36.78	3,366.96	34.19
Well Diameter (inches):	2	11/8/2004			36.59	3,367.15	34.00
Screen Interval BGS (feet):	31.87-51.49	5/24/2005			36.10	3,367.64	33.51
Casing Stickup (feet):	2.59	11/30/2005			36.14	3,367.60	33.55
Ground Elevation AMSL (feet)	3,401.15	1/19/2006			36.12	3,367.62	33.53
TOC Elevation AMSL (feet)	3,403.74	6/26/2006			36.22	3,367.52	33.63
Notes:		12/4/2006			35.97	3,367.77	33.38
		6/6/2007			36.15	3,367.59	33.56
		12/3/2007			36.20	3,367.54	33.61
		6/25/2008			36.19	3,367.55	33.60
		11/24/2008			36.29	3,367.45	33.70
		3/23/2009			36.23	3,367.51	33.64
		10/12/2009			36.46	3,367.28	33.87
		6/21/2010			36.51	3,367.23	33.92
		11/1/2010			36.38	3,367.36	33.79
		6/21/2011			36.15	3,367.59	33.56
		11/28/2011			36.37	3,367.37	33.78
		6/18/2012			36.48	3,367.26	33.89
		12/3/2012			39.16	3,364.58	36.57
		5/15/2013			39.31	3,364.43	36.72
		10/1/2013			39.42	3,364.32	36.83
		11/18/2013			39.46	3,364.28	36.87
		6/20/2014			39.54	3,364.20	36.95
		9/18/2014			39.61	3,364.13	37.02
		12/18/2014	39.34	0.01	39.35	3,364.40	36.75
		5/11/2015			39.35	3,364.39	36.76
		11/9/2015			39.26	3,364.48	36.67
		4/4/2016			39.10	3,364.64	36.51
		4/25/2016			39.01	3,364.73	36.42
		11/7/2016			38.97	3,364.77	36.38
		5/23/2017			38.89	3,364.85	36.30
		11/28/2017			38.82	3,364.92	36.23
		6/13/2018			38.76	3,364.98	36.17
		4/1/2019			38.63	3,365.11	36.04
		8/17/2020			38.71	3,365.03	36.12
		10/25/2021			38.61	3,365.13	36.02
		3/28/2022			38.51	3,365.23	35.92

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-07		11/5/2002			51.34	3,368.37	48.88
Date Drilled:	8/7/2002	6/12/2003			51.05	3,368.66	48.59
Drilled Depth BGS (feet):	60	11/11/2003			50.93	3,368.78	48.47
Well Depth from TOC (feet):	62.46	5/24/2004			50.76	3,368.95	48.30
Well Diameter (inches):	2	11/8/2004			50.70	3,369.01	48.24
Screen Interval BGS (feet):	39.87-59.49	5/24/2005			50.24	3,369.47	47.78
Casing Stickup (feet):	2.46	11/30/2005			50.10	3,369.61	47.64
Ground Elevation AMSL (feet)	3,417.25	1/19/2006			50.00	3,369.71	47.54
TOC Elevation AMSL (feet)	3,419.71	6/26/2006			49.97	3,369.74	47.51
Notes:		12/4/2006			49.75	3,369.96	47.29
		6/6/2007			49.65	3,370.06	47.19
		12/3/2007			49.67	3,370.04	47.21
		6/25/2008			49.43	3,370.28	46.97
		11/24/2008			49.48	3,370.23	47.02
		3/23/2009			49.31	3,370.40	46.85
		10/12/2009			49.47	3,370.24	47.01
		6/21/2010			49.47	3,370.24	47.01
		11/10/2010			49.45	3,370.26	46.99
		6/21/2011			49.32	3,370.39	46.86
		11/28/2011			49.30	3,370.41	46.84
		6/18/2012			49.31	3,370.40	46.85
		12/3/2012			51.83	3,367.88	49.37
		5/15/2013			51.86	3,367.85	49.40
		10/1/2013			51.97	3,367.74	49.51
		11/18/2013			52.10	3,367.61	49.64
		6/20/2014			52.14	3,367.57	49.68
		9/18/2014	52.11	0.02	52.13	3,367.59	49.66
		12/17/2014			52.00	3,367.71	49.54
		5/11/2015			52.06	3,367.65	49.60
		11/9/2015			51.92	3,367.79	49.46
		4/4/2016			51.82	3,367.89	49.36
		4/25/2016			51.71	3,368.00	49.25
		11/7/2016			51.74	3,367.97	49.28
		5/23/2017			51.66	3,368.05	49.20
		11/28/2017			51.51	3,368.20	49.05
		6/15/2018			51.37	3,368.34	48.91
		4/1/2019			51.52	3,368.19	49.06
		8/17/2020			51.21	3,368.50	48.75
		10/25/2021			51.08	3,368.63	48.62
		3/28/2022			51.09	3,368.62	48.63

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	ı			Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-08		11/5/2002			63.98	3,367.03	61.63
Date Drilled:	8/7/2002	6/12/2003			60.74	3,370.27	58.39
Drilled Depth BGS (feet):	75	11/11/2003			60.70	3,370.31	58.35
Well Depth from TOC (feet):	77.35	5/24/2004			60.45	3,370.56	58.10
Well Diameter (inches):	2	11/8/2004			60.45	3,370.56	58.10
Screen Interval BGS (feet):	54.87-74.49	5/24/2005			60.06	3,370.95	57.71
Casing Stickup (feet):	2.35	11/30/2005			59.89	3,371.12	57.54
Ground Elevation AMSL (feet)	3,428.66	1/19/2006			59.80	3,371.21	57.45
TOC Elevation AMSL (feet)	3,431.01	6/26/2006			59.66	3,371.35	57.31
Notes:		12/4/2006			59.51	3,371.50	57.16
		6/6/2007			59.29	3,371.72	56.94
		12/3/2007			58.86	3,372.15	56.51
		6/25/2008			58.95	3,372.06	56.60
		11/24/2008			59.05	3,371.96	56.70
		3/23/2009			58.81	3,372.20	56.46
		10/12/2009			58.94	3,372.07	56.59
		6/21/2010			58.93	3,372.08	56.58
		11/10/2010			58.87	3,372.14	56.52
		6/21/2011			58.80	3,372.21	56.45
		11/28/2011			58.74	3,372.27	56.39
		6/18/2012			58.65	3,372.36	56.30
		12/3/2012			60.95	3,370.06	58.60
		5/15/2013			61.00	3,370.01	58.65
		10/1/2013			61.11	3,369.90	58.76
		11/18/2013			61.21	3,369.80	58.86
		6/20/2014			61.26	3,369.75	58.91
		12/17/2014	61.14	0.02	61.16	3,369.86	58.80
		5/11/2015			61.31	3,369.70	58.96
		11/9/2015			61.05	3,369.96	58.70
		4/4/2016			61.02	3,369.99	58.67
		4/25/2016			60.90	3,370.11	58.55
		11/7/2016			60.92	3,370.09	58.57
		5/23/2017			60.84	3,370.17	58.49
		11/28/2017			60.72	3,370.29	58.37
		6/13/2018			60.48	3,370.53	58.13
		4/1/2019			60.35	3,370.66	58.00
		8/17/2020			60.37	3,370.64	58.02
		10/25/2021			60.24	3,370.77	57.89
		3/28/2022			60.33	3,370.68	57.98

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information				Grou	ndwater Data	1	
Well ID	Well ID		Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-09		11/5/2002			50.24	3,370.35	47.79
Date Drilled: 8/	7/2002	6/12/2003			49.97	3,370.62	47.52
Drilled Depth BGS (feet): 60	0	11/11/2003			49.92	3,370.67	47.47
Well Depth from TOC (feet): 62	2.45	5/24/2004			49.67	3,370.92	47.22
Well Diameter (inches): 2		11/8/2004			49.63	3,370.96	47.18
Screen Interval BGS (feet): 39	9.87-59.49	5/24/2005			49.22	3,371.37	46.77
Casing Stickup (feet): 2.	.45	11/30/2005			49.02	3,371.57	46.57
Ground Elevation AMSL (feet) 3,	418.14	1/19/2006			49.23	3,371.36	46.78
TOC Elevation AMSL (feet) 3,	420.59	6/26/2006			48.76	3,371.83	46.31
Notes:		12/4/2006			48.63	3,371.96	46.18
		6/6/2007			48.41	3,372.18	45.96
		12/3/2007			48.44	3,372.15	45.99
		6/25/2008			48.18	3,372.41	45.73
		11/24/2008			48.20	3,372.39	45.75
		3/23/2009			48.04	3,372.55	45.59
		10/12/2009			48.12	3,372.47	45.67
		6/21/2010			48.14	3,372.45	45.69
		11/10/2010			48.14	3,372.45	45.69
		6/21/2011			48.04	3,372.55	45.59
		11/28/2011			48.02	3,372.57	45.57
		6/18/2012			47.96	3,372.63	45.51
		12/3/2012			50.40	3,370.19	47.95
		5/15/2013			50.45	3,370.14	48.00
		10/1/2013			50.06	3,370.53	47.61
		11/18/2013			50.70	3,369.89	48.25
		6/20/2014			14.71	3,405.88	12.26
		12/17/2014	50.65	0.01	50.66	3,369.94	48.20
		5/11/2015			50.77	3,369.82	48.32
		11/9/2015			50.61	3,369.98	48.16
		4/4/2016			50.44	3,370.15	47.99
		4/25/2016			50.34	3,370.25	47.89
		11/7/2016			50.34	3,370.25	47.89
		5/23/2017			50.25	3,370.34	47.80
		11/28/2017			50.16	3,370.43	47.71
		6/15/2018			49.95	3,370.64	47.50
		4/1/2019			49.93	3,370.66	47.48
		8/17/2020			49.91	3,370.68	47.46
		10/25/2021			49.89	3,370.70	47.44
		3/28/2022			49.83	3,370.76	47.38

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	ı			Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-10		11/5/2002			35.68	3,370.05	33.26
Date Drilled:	8/9/2002	6/12/2003			35.45	3,370.28	33.03
Drilled Depth BGS (feet):	47	11/11/2003			35.29	3,370.44	32.87
Well Depth from TOC (feet):	49.42	5/24/2004			35.10	3,370.63	32.68
Well Diameter (inches):	2	11/8/2004			34.90	3,370.83	32.48
Screen Interval BGS (feet):	26.87-46.49	5/24/2005			34.46	3,371.27	32.04
Casing Stickup (feet):	2.42	11/30/2005			34.10	3,371.63	31.68
Ground Elevation AMSL (feet)	3,403.31	1/19/2006			34.05	3,371.68	31.63
TOC Elevation AMSL (feet)	3,405.73	6/26/2006			33.85	3,371.88	31.43
Notes:		12/4/2006			33.72	3,372.01	31.30
		6/6/2007			33.57	3,372.16	31.15
		12/3/2007			33.54	3,372.19	31.12
		6/25/2008			33.37	3,372.36	30.95
		11/24/2008			33.38	3,372.35	30.96
		3/23/2009			33.30	3,372.43	30.88
		10/12/2009			33.42	3,372.31	31.00
		6/21/2010			33.46	3,372.27	31.04
		11/10/2010			33.43	3,372.30	31.01
		6/21/2011			33.40	3,372.33	30.98
		11/28/2011			33.43	3,372.30	31.01
		6/18/2012			33.41	3,372.32	30.99
		12/3/2012			35.95	3,369.78	33.53
		5/15/2013			35.96	3,369.77	33.54
		10/1/2013			36.11	3,369.62	33.69
		11/18/2013			36.15	3,369.58	33.73
		6/20/2014			36.12	3,369.61	33.70
		12/17/2014	35.99	0.01	36.00	3,369.74	33.57
		5/11/2015			36.03	3,369.70	33.61
		11/9/2015			35.81	3,369.92	33.39
		4/4/2016			35.74	3,369.99	33.32
		4/25/2016			35.69	3,370.04	33.27
		11/7/2016			35.60	3,370.13	33.18
		5/23/2017			35.50	3,370.23	33.08
		11/28/2017			35.40	3,370.33	32.98
		6/15/2018			35.29	3,370.44	32.87
		4/1/2019			35.25	3,370.48	32.83
		8/17/2020			35.37	3,370.36	32.95
		10/25/2021			35.45	3,370.28	33.03
		3/28/2022			35.51	3,370.22	33.09

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
Well ID	Well ID		Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-11		11/5/2002			30.51	3,367.51	28.00
Date Drilled:	8/8/2002	6/12/2003			30.25	3,367.77	27.74
Drilled Depth BGS (feet):	47	11/11/2003			31.27	3,366.75	28.76
Well Depth from TOC (feet):	49.51	5/24/2004			30.17	3,367.85	27.66
Well Diameter (inches):	2	11/8/2004			29.86	3,368.16	27.35
Screen Interval BGS (feet):	30.87-50.49	5/24/2005			29.00	3,369.02	26.49
Casing Stickup (feet):	2.51	11/30/2005			28.34	3,369.68	25.83
Ground Elevation AMSL (feet)	3,395.51	1/19/2006			28.27	3,369.75	25.76
TOC Elevation AMSL (feet)	3,398.02	6/26/2006			28.12	3,369.90	25.61
Notes:		12/4/2006			28.00	3,370.02	25.49
		6/6/2007			27.77	3,370.25	25.26
		12/3/2007			27.86	3,370.16	25.35
		6/25/2008			27.78	3,370.24	25.27
		11/24/2008			27.96	3,370.06	25.45
		3/23/2009			27.73	3,370.29	25.22
		10/12/2009			28.11	3,369.91	25.60
		6/21/2010			28.11	3,369.91	25.60
		11/10/2010			28.12	3,369.90	25.61
		6/21/2011			28.18	3,369.84	25.67
		11/28/2011			28.29	3,369.73	25.78
		6/18/2012			28.19	3,369.83	25.68
		12/3/2012			31.01	3,367.01	28.50
		5/15/2013			30.93	3,367.09	28.42
		10/1/2013			31.25	3,366.77	28.74
		11/18/2013			31.19	3,366.83	28.68
		6/20/2014			30.79	3,367.23	28.28
		9/18/2014			31.11	3,366.91	28.60
		12/17/2014	30.34	0.01	30.35	3,367.68	27.83
		5/11/2015			30.12	3,367.90	27.61
		11/9/2015			30.02	3,368.00	27.51
		4/4/2016			29.66	3,368.36	27.15
		4/25/2016			29.58	3,368.44	27.07
		11/7/2016			29.45	3,368.57	26.94
		5/23/2017			29.19	3,368.83	26.68
		11/28/2017			29.17	3,368.85	26.66
		6/15/2018			29.31	3,368.71	26.80
		4/1/2019			29.26	3,368.76	26.75
		8/17/2020			29.96	3,368.06	27.45
		10/25/2021			30.31	3,367.71	27.80
		3/28/2022			30.41	3,367.61	27.90

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information			Grou	ndwater Data	1	
Well ID	Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-12	6/12/2003			28.57	3,368.21	26.60
Date Drilled: 6/3/20	03 11/11/2003			29.09	3,367.69	27.12
Drilled Depth BGS (feet): 45	5/24/2004			28.66	3,368.12	26.69
Well Depth from TOC (feet): 46.97	11/8/2004			28.25	3,368.53	26.28
Well Diameter (inches): 2	5/24/2005			26.31	3,370.47	24.34
Screen Interval BGS (feet): 25.0-4	4.49 11/30/2005			26.41	3,370.37	24.44
Casing Stickup (feet): 1.97	1/19/2006			26.38	3,370.40	24.41
Ground Elevation AMSL (feet) 3,394.				26.63	3,370.15	24.66
TOC Elevation AMSL (feet) 3,396.	78 12/4/2006			26.50	3,370.28	24.53
Notes:	6/6/2007			26.28	3,370.50	24.31
	12/3/2007			26.49	3,370.29	24.52
	6/25/2008			26.67	3,370.11	24.70
	11/24/2008			26.75	3,370.03	24.78
	3/23/2009			26.52	3,370.26	24.55
	10/12/2009			27.12	3,369.66	25.15
	6/21/2010			26.99	3,369.79	25.02
	11/10/2010			27.00	3,369.78	25.03
	6/21/2011			27.23	3,369.55	25.26
	11/28/2011			27.35	3,369.43	25.38
	6/18/2012			27.18	3,369.60	25.21
	12/3/2012			29.55	3,367.23	27.58
	5/15/2013			29.30	3,367.48	27.33
	10/1/2013			29.95	3,366.83	27.98
	11/18/2013			29.69	3,367.09	27.72
	6/20/2014			29.26	3,367.52	27.29
	12/18/2014			28.62	3,368.16	26.65
	5/11/2015			28.60	3,368.18	26.63
	11/9/2015			28.89	3,367.89	26.92
	4/4/2016			28.24	3,368.54	26.27
	4/25/2016			28.19	3,368.59	26.22
	11/7/2016			28.24	3,368.54	26.27
	5/23/2017			27.94	3,368.84	25.97
	11/28/2017			27.92	3,368.86	25.95
	6/15/2018			28.07	3,368.71	26.10
	4/1/2019			27.89	3,368.89	25.92
	8/17/2020			28.83	3,367.95	26.86
	10/25/2021			29.14	3,367.64	27.17
	3/28/2022			28.99	3,367.79	27.02

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information		Groundwater Data						
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)	
MW-13		6/12/2003			27.33	3,360.36	25.46	
Date Drilled:	6/3/2003	11/11/2003			29.12	3,358.57	27.25	
Drilled Depth BGS (feet):	35	5/24/2004			28.57	3,359.12	26.70	
Well Depth from TOC (feet):	36.87	11/8/2004			22.12	3,365.57	20.25	
Well Diameter (inches):	2	5/24/2005			22.30	3,365.39	20.43	
Screen Interval BGS (feet):	25.0-34.49	11/30/2005			21.04	3,366.65	19.17	
Casing Stickup (feet):	1.87	1/19/2006			21.34	3,366.35	19.47	
Ground Elevation AMSL (feet)	3,385.82	6/26/2006			23.60	3,364.09	21.73	
TOC Elevation AMSL (feet)	3,387.69	12/4/2006			22.56	3,365.13	20.69	
Notes:		6/6/2007			21.18	3,366.51	19.31	
		12/3/2007			22.64	3,365.05	20.77	
		6/25/2008			25.16	3,362.53	23.29	
		11/24/2008			25.78	3,361.91	23.91	
		3/23/2009			25.91	3,361.78	24.04	
		10/12/2009			26.93	3,360.76	25.06	
		6/21/2010			28.46	3,359.23	26.59	
		11/10/2010			25.29	3,362.40	23.42	
		6/21/2011			26.85	3,360.84	24.98	
		11/28/2011			28.37	3,359.32	26.50	
		6/18/2012			29.54	3,358.15	27.67	
		12/3/2012			31.77	3,355.92	29.90	
		5/15/2013			32.22	3,355.47	30.35	
		10/1/2013			32.53	3,355.16	30.66	
		11/18/2013			32.50	3,355.19	30.63	
		6/20/2014			32.68	3,355.01	30.81	
		12/17/2014			27.75	3,359.94	25.88	
		5/11/2015			28.93	3,358.76	27.06	
		11/9/2015			28.10	3,359.59	26.23	
		4/4/2016			25.82	3,361.87	23.95	
		4/25/2016			25.63	3,362.06	23.76	
		11/7/2016			24.48	3,363.21	22.61	
		5/23/2017			24.70	3,362.99	22.83	
		11/28/2017			24.97	3,362.72	23.10	
		6/13/2018			27.44	3,360.25	25.57	
		4/1/2019			26.68	3,361.01	24.81	
		8/17/2020			29.37	3,358.32	27.50	
		10/25/2021			32.58	3,355.11	30.71	
		3/28/2022			32.86	3,354.83	30.99	

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information		Groundwater Data						
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)	
MW-14		6/12/2003			29.90	3,352.09	27.57	
Date Drilled:	6/3/2003	11/11/2003			30.01	3,351.98	27.68	
Drilled Depth BGS (feet):	47	5/24/2004			29.76	3,352.23	27.43	
Well Depth from TOC (feet):	49.33	11/8/2004			28.87	3,353.12	26.54	
Well Diameter (inches):	2	5/24/2005			27.77	3,354.22	25.44	
Screen Interval BGS (feet):	27.0-46.49	11/30/2005			27.74	3,354.25	25.41	
Casing Stickup (feet):	2.33	1/19/2006			27.76	3,354.23	25.43	
Ground Elevation AMSL (feet)	3,379.66	6/26/2006			28.15	3,353.84	25.82	
TOC Elevation AMSL (feet)	3,381.99	12/4/2006			27.81	3,354.18	25.48	
Notes:		6/6/2007			27.26	3,354.73	24.93	
		12/3/2007			27.61	3,354.38	25.28	
		6/25/2008			28.33	3,353.66	26.00	
		11/24/2008			28.59	3,353.40	26.26	
		3/23/2009			28.68	3,353.31	26.35	
		10/12/2009			28.92	3,353.07	26.59	
		6/21/2010			29.22	3,352.77	26.89	
		11/10/2010			28.47	3,353.52	26.14	
		6/21/2011			28.98	3,353.01	26.65	
		11/28/2011			29.23	3,352.76	26.90	
		6/18/2012			29.40	3,352.59	27.07	
	•	12/3/2012						
		5/15/2013			31.94	3,350.05	29.61	
		10/1/2013			32.01	3,349.98	29.68	
		11/18/2013			31.83	3,350.16	29.50	
		6/20/2014			31.91	3,350.08	29.58	
		9/18/2014			31.97	3,350.02	29.64	
		12/17/2014			36.63	3,345.36	34.30	
		5/11/2015			31.10	3,350.89	28.77	
		11/9/2015			31.01	3,350.98	28.68	
		4/4/2016			30.22	3,351.77	27.89	
		4/25/2016			30.18	3,351.81	27.85	
		11/7/2016			29.81	3,352.18	27.48	
		5/23/2017			29.77	3,352.22	27.44	
		11/28/2017			29.18	3,352.81	26.85	
		6/13/2018			29.87	3,352.12	27.54	
		4/1/2019			29.91	3,352.08	27.58	
		8/17/2020			30.64	3,351.35	28.31	
		10/25/2021			31.12	3,350.87	28.79	
		3/28/2022			31.29	3,350.70	28.96	

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information		Groundwater Data						
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)	
MW-15		6/12/2003			38.73	3,357.88	36.79	
Date Drilled:	6/4/2003	11/11/2003			37.05	3,359.56	35.11	
Drilled Depth BGS (feet):	45	5/24/2004			36.81	3,359.80	34.87	
Well Depth from TOC (feet):	46.94	11/8/2004			36.55	3,360.06	34.61	
Well Diameter (inches):	2	5/24/2005			36.08	3,360.53	34.14	
Screen Interval BGS (feet):	25.0-44.49	11/30/2005			36.01	3,360.60	34.07	
Casing Stickup (feet):	1.94	1/19/2006			35.96	3,360.65	34.02	
Ground Elevation AMSL (feet)	3,394.67	6/26/2006			35.93	3,360.68	33.99	
TOC Elevation AMSL (feet)	3,396.61	12/4/2006			35.80	3,360.81	33.86	
Notes:		6/6/2007			35.76	3,360.85	33.82	
		12/3/2007			35.72	3,360.89	33.78	
		6/25/2008			35.77	3,360.84	33.83	
		11/24/2008			35.75	3,360.86	33.81	
		3/23/2009			35.76	3,360.85	33.82	
		10/12/2009			35.85	3,360.76	33.91	
		6/21/2010			35.89	3,360.72	33.95	
		11/10/2010			35.74	3,360.87	33.80	
		6/22/2011			35.79	3,360.82	33.85	
		11/28/2011			35.86	3,360.75	33.92	
		6/18/2012			35.86	3,360.75	33.92	
		12/3/2012			37.87	3,358.74	35.93	
		5/15/2013			37.94	3,358.67	36.00	
		10/1/2013			38.03	3,358.58	36.09	
		11/18/2013			37.98	3,358.63	36.04	
		6/20/2014			38.01	3,358.60	36.07	
		12/18/2014	37.74	0.01	37.75	3,358.87	35.80	
		5/11/2015			37.97	3,358.64	36.03	
		11/9/2015			37.94	3,358.67	36.00	
		4/4/2016			37.60	3,359.01	35.66	
		4/25/2016			37.57	3,359.04	35.63	
		11/7/2016			37.53	3,359.08	35.59	
		5/23/2017			37.40	3,359.21	35.46	
		11/28/2017			37.29	3,359.32	35.35	
		6/13/2018			37.22	3,359.39	35.28	
		4/1/2019			37.09	3,359.52	35.15	
		8/17/2020			37.22	3,359.39	35.28	
		10/25/2021			37.24	3,359.37	35.30	
		3/28/2022			37.24	3,359.37	35.30	

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-16		6/12/2003			41.25	3,363.26	39.22
Date Drilled:	6/4/2003	11/11/2003			39.81	3,364.70	37.78
Drilled Depth BGS (feet):	45	5/24/2004			39.45	3,365.06	37.42
Well Depth from TOC (feet):	47.03	11/8/2004			39.48	3,365.03	37.45
Well Diameter (inches):	2	5/24/2005			38.97	3,365.54	36.94
Screen Interval BGS (feet):	25.00-44.49	11/30/2005			38.93	3,365.58	36.90
Casing Stickup (feet):	2.03	1/19/2006			38.82	3,365.69	36.79
Ground Elevation AMSL (feet)	3,402.48	6/26/2006			38.86	3,365.65	36.83
TOC Elevation AMSL (feet)	3,404.51	12/4/2006			38.70	3,365.81	36.67
Notes:		6/6/2007			38.61	3,365.90	36.58
		12/3/2007			38.65	3,365.86	36.62
		6/25/2008			38.54	3,365.97	36.51
		11/24/2008			38.59	3,365.92	36.56
		3/23/2009			38.45	3,366.06	36.42
		10/12/2009			38.60	3,365.91	36.57
		6/21/2010			38.60	3,365.91	36.57
		11/10/2010			38.56	3,365.95	36.53
		6/21/2011			38.41	3,366.10	36.38
		11/28/2011			38.48	3,366.03	36.45
		6/18/2012			38.49	3,366.02	36.46
		12/3/2012			40.62	3,363.89	38.59
		5/15/2013			40.67	3,363.84	38.64
		10/1/2013			11.52	3,392.99	9.49
		11/18/2013			40.80	3,363.71	38.77
		6/20/2014			40.83	3,363.68	38.80
		12/17/2014			40.66	3,363.85	38.63
		5/11/2015			40.85	3,363.66	38.82
		11/9/2015			40.80	3,363.71	38.77
		4/4/2016			40.52	3,363.99	38.49
		4/25/2016			40.43	3,364.08	38.40
		11/7/2016			40.45	3,364.06	38.42
		5/23/2017			40.30	3,364.21	38.27
		11/28/2017			40.19	3,364.32	38.16
		6/15/2018			40.13	3,364.38	38.10
		1/4/2019			40.01	3,364.50	37.98
		8/17/2020			39.99	3,364.52	37.96
		10/25/2021			39.88	3,364.63	37.85
		3/28/2022			39.84	3,364.67	37.81

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

MW-17	Well Information	n			Grou	ndwater Data	1	
Date Drilled: 12/19/2005 2 2 2 2 2 2 2 2 2	Well ID			Product	Thickness	Water	Groundwater Elevation (feet	Corrected Groundwater
Drilled Depth BGS (feet): 37.02	MW-17		1/19/2006			Dry		
Date Drilled: 1/19/2005	Date Drilled: Drilled Depth BGS (feet): Well Depth from TOC (feet): Well Diameter (inches): Screen Interval BGS (feet): Casing Stickup (feet): Ground Elevation AMSL (feet) TOC Elevation AMSL (feet)	35 37.02 2 19.49-34.49 2.02 3,372.62			Well			
Date Drilled: 12/19/2005 6/26/2006 26.54 3,348.63 24.39			1/19/2006			26.06	3.349.11	23.91
Well Depth from TOC (feet): 37.15 Well Diameter (inches): 2 Screen Interval BGS (feet): 19.49-34.49 Casing Stickup (feet): 2.15 Ground Elevation AMSL (feet) 3,373.02 TOC Elevation AMSL (feet) 3,375.17 Notes: 10/12/2008 26.93 Notes: 26.93 Notes: 27.34 Notes: 26.93 Notes: 27.34 Notes: 27.3		12/19/2005					· '	
Well Depth from TOC (feet): 37.15 Well Diameter (inches): 2 Screen Interval BGS (feet): 19.49-34.49 Casing Stickup (feet): 2.15 Ground Elevation AMSL (feet) 3,373.02 TOC Elevation AMSL (feet) 3,375.17 Notes: 10/12/2008 27.33 3,348.34 24.88	Drilled Depth BGS (feet):	35				26.44	· '	24.29
Screen Interval BGS (feet): 19.49-34.49 6/25/2008	Well Depth from TOC (feet):	37.15	6/7/2007			26.15	3,349.02	24.00
Casing Stickup (feet): 2.15 11/24/2008 26.93 3,348.24 24.78 Ground Elevation AMSL (feet) 3,373.02 3/23/2009 27.03 3,348.14 24.88 TOC Elevation AMSL (feet) 3,375.17 10/12/2009 27.34 3,347.83 25.19 Notes: 6/21/2010 27.39 3,347.78 25.24 11/10/2010 27.03 3,348.14 24.88 6/22/2011 27.39 3,347.78 25.24 11/10/2010 27.03 3,347.78 25.24 24.78 24.78 24.78 25.29 27.39 3,347.83 25.19 25.24 27.39 3,347.75 25.27 27.39 3,347.75 25.27 27.42 3,347.75 25.27 27.50 3,347.67 25.35 27.67 27.58 3,347.59 25.43 21/3/2012 29.82 3,345.35 27.67 25.15/2013 29.82 3,345.35 27.67 25.15/2013 29.82 3,345.08 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 3.345.08 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.94 27.94 3,345.08 27.94 27.94 27.95 3,345.08 27.94 27.94 27.95 3,345.08 27.94 27.94 27.95 3,345.08 27.94 27.94 27.95 3,345.08 27.94 27.94 27.95 3,345.08 27.94 27.94 27.95 3,345.08 27.94 27.95 27.95 27.95 28.95 3,345.36 28.95 3,346.36 28.95 3,346.36 28.95 3,346.36 28.95 3,346.36 28.95 3,346.36 28.95 3,346.36 28.95 3,346.36 28.95 3,346.36 28.95	Well Diameter (inches):	2	12/3/2007			26.43	3,348.74	24.28
Ground Elevation AMSL (feet) 3,373.02 TOC Elevation AMSL (feet) 3,375.17 Notes:	Screen Interval BGS (feet):	19.49-34.49	6/25/2008			26.87	3,348.30	24.72
TOC Elevation AMSL (feet) 3,375.17 Notes: 10/12/2009	Casing Stickup (feet):	2.15	11/24/2008			26.93	3,348.24	24.78
Notes: 6/21/2010	Ground Elevation AMSL (feet)	3,373.02	3/23/2009			27.03	3,348.14	24.88
11/10/2010 27.03 3,348.14 24.88 6/22/2011 27.42 3,347.75 25.27 11/28/2011 27.50 3,347.67 25.35 6/18/2012 27.58 3,347.59 25.43 12/3/2012 29.82 3,345.35 27.67 5/15/2013 10/2/2013 30.09 3,345.08 27.94 11/18/2013 29.82 3,345.35 27.67 6/20/2014 29.82 3,345.35 27.67 6/20/2014 29.82 3,345.48 27.54 12/19/2014 29.69 3,346.28 26.80 5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.32 26.66 4/42/2016 28.45 3,346.72 26.30 <td>TOC Elevation AMSL (feet)</td> <td>3,375.17</td> <td>10/12/2009</td> <td></td> <td></td> <td>27.34</td> <td>3,347.83</td> <td>25.19</td>	TOC Elevation AMSL (feet)	3,375.17	10/12/2009			27.34	3,347.83	25.19
6/22/2011	Notes:		6/21/2010			27.39	3,347.78	25.24
11/28/2011 27.50 3,347.67 25.35 6/18/2012 27.58 3,347.59 25.43 12/3/2012 29.82 3,345.35 27.67 5/15/2013 10/2/2013 30.09 3,345.08 27.94 11/18/2013 29.82 3,345.35 27.67 6/20/2014 29.69 3,345.48 27.54 12/19/2014 28.95 3,346.22 26.80 5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.72 26.25 11/7/2016 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26			11/10/2010			27.03	3,348.14	24.88
6/18/2012 27.58 3,347.59 25.43 12/3/2012 29.82 3,345.35 27.67 5/15/2013 30.09 3,345.08 27.94 11/18/2013 29.82 3,345.35 27.67 6/20/2014 29.69 3,345.48 27.54 12/19/2014 28.95 3,346.22 26.80 5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49			6/22/2011			27.42	3,347.75	25.27
12/3/2012 29.82 3,345.35 27.67 5/15/2013 30.09 3,345.08 27.94 11/18/2013 29.82 3,345.35 27.67 6/20/2014 29.69 3,345.48 27.54 12/19/2014 28.95 3,346.22 26.80 5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49			11/28/2011				3,347.67	
5/15/2013			6/18/2012			27.58	3,347.59	25.43
10/2/2013 30.09 3,345.08 27.94 11/18/2013 29.82 3,345.35 27.67 6/20/2014 29.69 3,345.48 27.54 12/19/2014 28.95 3,346.22 26.80 5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49			12/3/2012			29.82	3,345.35	27.67
11/18/2013			5/15/2013					
6/20/2014 29.69 3,345.48 27.54 12/19/2014 28.95 3,346.22 26.80 5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							· '	-
12/19/2014 28.95 3,346.22 26.80 5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							· '	
5/11/2015 28.79 3,346.38 26.64 11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49								
11/9/2015 28.81 3,346.36 26.66 4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							-,	
4/4/2016 28.45 3,346.72 26.30 4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							· '	
4/25/2016 28.40 3,346.77 26.25 11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							· '	
11/7/2016 28.34 3,346.83 26.19 5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							'	
5/23/2017 28.27 3,346.90 26.12 11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							· '	
11/28/2017 28.35 3,346.82 26.20 6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49								
6/13/2018 28.72 3,346.45 26.57 4/1/2019 28.64 3,346.53 26.49							, , , , , , , , , , , , , , , , , , ,	-
4/1/2019 28.64 3,346.53 26.49								
						_	, , , , , , , , , , , , , , , , , , ,	
			8/17/2020			29.19	3,345.98	27.04
10/25/2021								

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	1			Grou	ndwater Data	3	
			Depth to	LNAPL	Depth to	Corrected	Depth to
Well ID		Date	Product	Thickness	Water	Groundwater	Corrected
		Gauged	(feet TOC)	(feet)	(feet TOC)	Elevation (feet	Groundwater
1814/ 40		44/00/0005	,	` '	, , ,	AMSL)	(feet BGS)
MW-19 Date Drilled:	10/31/2005	11/30/2005 1/19/2006			29.36 29.27	3,351.65	26.90 26.81
Drilled Depth BGS (feet):	38	6/26/2006			29.27 29.08	3,351.74 3,351.93	26.62
. ,	40.46	12/4/2006			29.31	3,351.70	26.85
	2	6/6/2007			29.25	3,351.76	26.79
3	23.0-37.49	12/3/2007			29.19	3,351.82	26.73
Casing Stickup (feet):	2.46	6/25/2008			29.39	3,351.62	26.93
Ground Elevation AMSL (feet)	3,378.55	11/24/2008			29.55	3,351.46	27.09
TOC Elevation AMSL (feet)	3,381.01	3/23/2009			29.55	3,351.46	27.09
Notes:		10/12/2009			29.76	3,351.25	27.30
		6/21/2010			29.85	3,351.16	27.39
		11/10/2010			29.73 29.77	3,351.28	27.27 27.31
		6/22/2011 11/28/2011			29.87	3,351.24 3,351.14	27.41
		6/18/2012			30.06	3,350.95	27.60
		12/3/2012			32.45	3,348.56	29.99
		5/15/2013					
		10/2/2013			32.64	3,348.37	30.18
		11/18/2013			32.61	3,348.40	30.15
		6/20/2014			32.44	3,348.57	29.98
		9/18/2014			32.58	3,348.43	30.12
		12/22/2014			32.15 32.03	3,348.86	29.69 29.57
		5/11/2015 11/9/2015			32.05	3,348.98 3,348.96	29.59
		4/4/2016			31.86	3,349.15	29.40
		4/25/2016			31.81	3,349.20	29.35
		11/7/2016			31.79	3,349.22	29.33
		5/23/2017			31.59	3,349.42	29.13
		11/28/2017			31.52	3,349.49	29.06
		6/13/2018			31.46	3,349.55	29.00
		4/1/2019			31.46	3,349.55	29.00
		8/17/2020			31.94	3,349.07	29.48
		10/25/2021			32.09	3,348.92	29.63
MW-20		3/28/2022 11/30/2005			32.19 36.16	3,348.82 3,353.93	29.73 33.75
Date Drilled:	10/31/2005	1/19/2006			36.06	3,354.03	33.65
	48	6/26/2006			35.89	3,354.20	33.48
	50.41	12/4/2006			35.87	3,354.22	33.46
Well Diameter (inches):	2	6/6/2007			35.79	3,354.30	33.38
Screen Interval BGS (feet):	33.0-47.41	12/3/2007			35.66	3,354.43	33.25
Casing Stickup (feet):	2.41	6/25/2008			35.80	3,354.29	33.39
Ground Elevation AMSL (feet)		11/24/2008			35.92	3,354.17	33.51
TOC Elevation AMSL (feet) Notes:	3,390.09	3/23/2009			35.92	3,354.17	33.51
Notes:		10/12/2009			36.09	3,354.00	33.68
		6/21/2010 11/10/2010			36.23 36.02	3,353.86 3,354.07	33.82 33.61
		6/22/2011			36.13	3,353.96	33.72
		11/28/2011			36.26	3,353.83	33.85
		6/18/2012			36.30	3,353.79	33.89
		12/3/2012			38.83	3,351.26	36.42
		5/15/2013					
		10/2/2013			39.02	3,351.07	36.61
		11/18/2013			38.91	3,351.18	36.50
		12/22/2014			39.39	3,350.70	36.98
		5/11/2015			38.34	3,351.75	35.93 35.97
		11/9/2015 4/4/2016			38.38 38.13	3,351.71 3,351.96	35.97 35.72
		4/25/2016			38.06	3,352.03	35.65
		11/7/2016			37.96	3,352.03	35.55
		5/23/2017			37.77	3,352.32	35.36
		11/28/2017			37.59	3,352.50	35.18
		6/13/2018			37.51	3,352.58	35.10
		4/1/2019			NR	NR	NR
		8/17/2020			37.86	3,352.23	35.45
		10/25/2021			38.05	3,352.04	35.64
		3/28/2022			38.21	3,351.88	48.84

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Date Gauged Depth to Product (feet TOC) Thickness (feet TOC) Depth to Thickness (feet TOC) D	vater (feet Corrected Groundwater (feet BGS) 25 29.57 04 29.78
Date Drilled: 2/19/2009 10/12/2009 31.96 3,356.0 Drilled Depth BGS (feet): 45 6/21/2010 32.43 3,355.0 Well Depth from TOC (feet): 47.18 11/10/2010 31.02 3,356.0 Well Diameter (inches): 2 6/21/2011 32.21 3,355.1 Screen Interval BGS (feet): 25-45 11/28/2011 32.56 3,355.4 Casing Stickup (feet): 2.18 6/18/2012 32.03 3,355.3	29.78
Date Drilled: 2/19/2009 10/12/2009 31.96 3,356.0 Drilled Depth BGS (feet): 45 6/21/2010 32.43 3,355.5 Well Depth from TOC (feet): 47.18 11/10/2010 31.02 3,356.9 Well Diameter (inches): 2 6/21/2011 32.21 3,355.7 Screen Interval BGS (feet): 25-45 11/28/2011 32.56 3,355.4 Casing Stickup (feet): 2.18 6/18/2012 32.03 3,355.8	29.78
Drilled Depth BGS (feet): 45 6/21/2010 32.43 3,355.5 Well Depth from TOC (feet): 47.18 11/10/2010 31.02 3,356.9 Well Diameter (inches): 2 6/21/2011 32.21 3,355.7 Screen Interval BGS (feet): 25-45 11/28/2011 32.56 3,355.7 Casing Stickup (feet): 2.18 6/18/2012 32.03 3,355.8	
Well Diameter (inches): 2 6/21/2011 32.21 3,355.7 Screen Interval BGS (feet): 25-45 11/28/2011 32.56 3,355.4 Casing Stickup (feet): 2.18 6/18/2012 32.03 3,355.8	
Well Diameter (inches): 2 6/21/2011 32.21 3,355.7 Screen Interval BGS (feet): 25-45 11/28/2011 32.56 3,355.4 Casing Stickup (feet): 2.18 6/18/2012 32.03 3,355.8	98 28.84
Screen Interval BGS (feet): 25-45 11/28/2011 32.56 3,355.4 Casing Stickup (feet): 2.18 6/18/2012 32.03 3,355.4	
Casing Stickup (feet): 2.18 6/18/2012 32.03 3,355.9	
Ground Elevation AMSI (feet) 3 385 82 12/3/2012 - 35 14 3 353 9	97 29.85
Ground Lievation Aiviol (1661) 3,303.02 12/3/2012 30.14 3,332.0	32.96
TOC Elevation AMSL (feet) 3,388.00 5/15/2013 35.28 3,352.7	72 33.10
Notes: 10/2/2013 38.48 3,349.5	52 36.30
11/18/213 34.14 3,353.8	31.96
12/18/2014 33.25 3,354.7	75 31.07
5/11/2015 34.32 3,353.6	32.14
11/9/2015 31.92 3,356.0	08 29.74
4/4/2016 33.04 3,354.9	96 30.86
4/25/2016 33.12 3,354.8	30.94
11/7/2016 31.20 3,356.8	30 29.02
5/23/2017 31.73 3,356.2	27 29.55
11/28/2017 31.46 3,356.5	54 29.28
6/15/2018 31.97 3,356.0	03 29.79
4/1/2019 32.51 3,355.4	49 30.33
8/17/2020 32.66 3,355.3	30.48
10/25/2021 34.18 3,353.8	
3/28/2022 34.38 3,353.6	
MW-22 3/19/2010 29.47 2.85 32.32 3,371.7	
Date Drilled: 3/8/2010 6/21/2010 25.94 2.85 28.79 3,375.3	
Drilled Depth BGS (feet): 32 11/10/2010 26.14 2.85 28.99 3,375.	
Well Depth from TOC (feet): 35.17 6/22/2011 29.91 0.53 30.44 3,372.0	
Well Diameter (inches): 2 11/28/2011 29.92 1.48 31.40 3,371.7	
Screen Interval BGS (feet): 21.5-31 6/25/2012 27.65 3.98 31.63 3,373.2	
Casing Stickup (feet): 3.17 12/3/2012	
Ground Elevation AMSL (feet) 3,398.94 5/15/2013 30.68 3.85 34.53 3,370.2	
TOC Elevation AMSL (feet) 3,402.11 10/2/2013 30.85 4.32 35.17 3,369.9	
Notes: 11/18/2013 30.81 4.04 34.85 3,370.0	
02/11/2014 30.83 3.75 34.58 3,370.	
6/20/2014 30.91 3.70 34.61 3,370.0	
9/19/2014 30.65 3.87 34.52 3,370.3	
12/22/2014 29.71 0.88 30.59 3,372.11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5/11/2015 30.51 3.38 33.89 3,370.8	
11/9/2015 30.37 3.38 33.75 3,370.7	
4/4/2016 29.63 1.02 30.65 3,372. 4/25/2016 29.55 1.08 30.63 3.372.	
5/23/2017 29.73 1.67 31.40 3,371.8 11/28/2017 29.13 3,372.8	
11/28/2017 29.13 3,372.9	
6/13/2018 29.51 2.64 32.15 3,371.8	
6/13/2018 29.51 2.64 32.15 3,371.8 4/1/2019 29.81 3.96 33.77 3,371.	
6/13/2018 29.51 2.64 32.15 3,371.8 4/1/2019 29.81 3.96 33.77 3,371.7 7/29/2019 29.98 4.26 34.24 3,370.8	35 28.09
6/13/2018 29.51 2.64 32.15 3,371.8 4/1/2019 29.81 3.96 33.77 3,371.	28.09 52 28.42

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
			Dow'l 1			Corrected	Depth to
W-11 ID		Date	Depth to	LNAPL	Depth to	Groundwater	Corrected
Well ID		Gauged	Product (feet TOC)	Thickness	Water	Elevation (feet	Groundwater
			(reet TOC)	(feet)	(feet TOC)	AMSL)	(feet BGS)
MW-23		3/19/2010			19.68	3,372.37	16.84
Date Drilled:	3/9/2010	6/21/2010			20.33	3,371.72	17.49
Drilled Depth BGS (feet):	31	11/10/2010			19.34	3,372.71	16.50
Well Depth from TOC (feet):	33.84	6/21/2011			20.54	3,371.51	17.70
Well Diameter (inches):	2	11/28/2011			20.57	3,371.48	17.73
Screen Interval BGS (feet):	20.5-30.5	6/18/2012			20.96	3,371.09	18.12
Casing Stickup (feet):	2.84	12/3/2012			24.07	3,367.98	21.23
Ground Elevation AMSL (feet)		5/15/2013	Sheen		24.46	3,367.59	21.62
TOC Elevation AMSL (feet)	3,392.05	10/2/2013			25.16	3,366.89	22.32
Notes:		11/18/2013			24.36	3,367.69	21.52
		6/20/2014			24.96	3,367.09	22.12
		12/17/2014	22.46	0.01	22.47	3,369.59	19.62
		5/11/2015			23.76	3,368.29	20.92
		11/9/2015			22.91	3,369.14	20.07
		4/4/2016			22.18	3,369.87	19.34
		4/25/2016			22.12	3,369.93	19.28
		11/7/2016			21.86	3,370.19	19.02
		5/23/2017			21.85	3,370.20	19.01
		11/28/2017			21.56	3,370.49	18.72
		6/13/2018			22.91	3,369.14	20.07
		4/1/2019			21.79	3,370.26	18.95
		7/29/2019			22.97	3,369.08	20.13
		8/17/2020			24.20	3,367.85	21.36
		10/25/2021			24.81 25.46	3,367.24	21.97
MW-24		3/28/2022			30.06	3,366.59	22.62 27.52
Date Drilled:	5/21/2010	5/27/2010 6/21/2010			30.00	3,373.46 3,373.43	27.55 27.55
Drilled Depth BGS (feet):	35	11/10/2010			29.56	3,373.96	27.02
Well Depth from TOC (feet):	37.54	6/22/2011			29.79	3,373.73	27.25
Well Diameter (inches):	2	11/28/2011			30.11	3,373.41	27.57
Screen Interval BGS (feet):	19.5-34.5	6/18/2012			30.11	3,373.18	27.80
Casing Stickup (feet):	2.54	12/3/2012			32.88	3,370.64	30.34
Ground Elevation AMSL (feet)	-	5/15/2013			33.02	3,370.50	30.48
TOC Elevation AMSL (feet)	3,403.52	10/2/2013			33.25	3,370.27	30.71
Notes:	0,100.02	11/18/2013			33.27	3,370.25	30.73
110100.		6/20/2014			33.45	3,370.07	30.91
		9/18/2014			34.24	3,369.28	31.70
		12/22/2014	33.24	0.01	33.25	3,370.28	30.70
		5/11/2015			33.21	3,370.31	30.67
		11/9/2015			33.49	3,370.03	30.95
		4/4/2016			32.11	3,371.41	29.57
		4/25/2016			32.02	3,371.50	29.48
		11/7/2016			31.93	3,371.59	29.39
		5/23/2017			31.83	3,371.69	29.29
		11/28/2017			31.88	3,371.64	29.34
		6/13/2018			32.08	3,371.44	29.54
		4/1/2019			32.29	3,371.23	29.75
		7/29/2019			32.46	3,371.06	29.92
		8/17/2020			32.78	3,370.74	30.24
		10/25/2021			32.58	3,370.94	30.04
		3/28/2022			32.38	3,371.14	29.84

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
	-		Double to			Corrected	Depth to
Wall ID		Date	Depth to	LNAPL	Depth to	Groundwater	Corrected
Well ID		Gauged	Product (feet TOC)	Thickness	Water	Elevation (feet	Groundwater
			(reet TOC)	(feet)	(feet TOC)	AMSL)	(feet BGS)
MW-25		5/27/2010			33.02	3,372.40	30.88
Date Drilled:	5/21/2010	6/21/2010			33.05	3,372.37	30.91
Drilled Depth BGS (feet):	36	11/10/2010			32.83	3,372.59	30.69
Well Depth from TOC (feet):	38.14	6/22/2011			32.79	3,372.63	30.65
Well Diameter (inches):	2	11/28/2011			33.05	3,372.37	30.91
Screen Interval BGS (feet):	20.5-35.5	6/18/2012			33.30	3,372.12	31.16
Casing Stickup (feet):	2.14	12/3/2012			35.57	3,369.85	33.43
Ground Elevation AMSL (feet)		5/15/2013			35.59	3,369.83	33.45
TOC Elevation AMSL (feet)	3,405.42	10/2/2013			35.92	3,369.50	33.78
Notes:		11/18/2013			35.96	3,369.46	33.82
		6/20/2014			36.21	3,369.21	34.07
		12/19/2014			36.35	3,369.07	34.21
		5/11/2015			36.15	3,369.27	34.01
		11/9/2015			36.20	3,369.22	34.06
		4/4/2016 4/25/2016			35.07 35.01	3,370.35	32.93 32.87
		11/7/2016			35.05	3,370.41 3,370.37	32.91
		5/23/2017			34.90	3,370.52	32.76
		11/28/2017			34.89	3,370.53	32.75
		6/13/2018			35.07	3,370.35	32.93
		4/1/2019			34.03	3,371.39	31.89
		7/29/2019			35.24	3,370.18	33.10
		8/17/2020			34.91	3,370.51	32.77
		10/25/2021			34.43	3,370.99	32.29
		3/28/2022			34.50	3,370.92	32.36
MW-26		5/27/2010			31.39	3,372.20	28.60
Date Drilled:	5/24/2010	6/21/2010			31.43	3,372.16	28.64
Drilled Depth BGS (feet):	34	11/10/2010			31.03	3,372.56	28.24
Well Depth from TOC (feet):	36.79	6/22/2011			31.21	3,372.38	28.42
Well Diameter (inches):	2	11/28/2011			31.49	3,372.10	28.70
Screen Interval BGS (feet):	18.5-33.5	6/18/2012			31.77	3,371.82	28.98
Casing Stickup (feet):	2.79	12/3/2012			34.32	3,369.27	31.53
Ground Elevation AMSL (feet)	3,400.80	5/15/2013			34.50	3,369.09	31.71
TOC Elevation AMSL (feet)	3,403.59	10/2/2013			34.77	3,368.82	31.98
Notes:		11/18/2013			34.08	3,369.51	31.29
		6/20/2014			35.04	3,368.55	32.25
		9/18/2014			32.14	3,371.45	29.35
		12/22/2014	34.33	0.01	34.34	3,369.26	31.54
		5/11/2015			34.44	3,369.15	31.65
		11/9/2015			34.55	3,369.04	31.76
		4/4/2016			33.93	3,369.66	31.14
		4/25/2016			33.85	3,369.74	31.06
		11/7/2016			33.72	3,369.87	30.93
		5/23/2017			33.61	3,369.98	30.82
		11/28/2017			33.49	3,370.10	30.70
		6/13/2018			33.76	3,369.83	30.97
		4/1/2019			33.71	3,369.88	30.92
		7/29/2019			33.93	3,369.66	31.14
		8/17/2020			33.57	3,370.02	30.78
		10/25/2021			32.30	3,371.29	29.51
		3/28/2022			32.39	3,371.20	29.60

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information			Grou	ndwater Data	1	
Well ID	Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-27	6/22/2011	28.55	1.09	29.64	3,371.24	26.86
Date Drilled: 2/4/2011	11/28/2011	26.31	3.47	29.78	3,372.77	25.33
Drilled Depth BGS (feet): 36.5	6/25/2012	26.74	3.24	29.98	3,372.41	25.69
Well Depth from TOC (feet): 38.49	12/3/2012					
Well Diameter (inches): 2	5/15/2013	28.96	2.73	31.69	3,370.34	27.76
Screen Interval BGS (feet): 16.5-36.5	10/2/2013	29.20	2.60	31.80	3,370.14	27.96
Casing Stickup (feet): 1.99	11/18/2013	29.27	2.68	31.95	3,370.05	28.05
Ground Elevation AMSL (feet) 3,398.10	02/11/2014	29.35	2.60	31.95	3,369.99	28.11
TOC Elevation AMSL (feet) 3,400.12	6/20/2014	29.51	0.08	29.59	3,370.59	27.51
Notes:	8/27/2014	29.59	2.24	31.83	3,369.86	28.24
	9/18/2014	29.61	1.96	31.57	3,369.92	28.18
	12/19/2014	29.1	1.49	30.59	3,370.57	27.53
	5/11/2015	29.09	0.70	29.79	3,370.82	27.28
	11/9/2015	29.02	0.74	29.76	3,370.88	27.22
	4/4/2016			28.80	3,371.32	26.78
	4/25/2016	Sheen		28.75	3,371.37	26.73
	11/7/2016			29.53	3,370.59	27.51
	5/23/2017			28.54	3,371.58	26.52
	11/28/2017			28.36	3,371.76	26.34
	6/13/2018			28.51	3,371.61	26.49
	4/1/2019			28.74	3,371.38	26.72
	7/29/2019			28.89	3,371.23	26.87
	8/17/2020	28.81	2.37	31.18	3,370.60	27.50
	10/25/2021	29.07	2.42	31.49	3,370.32	27.78
MW 00	3/28/2022	29.06	2.11	31.17	3,370.43	27.67
MW-28	6/22/2011	26.59	0.03	26.62	3,373.51	23.69
Date Drilled: 2/7/2011	11/28/2011			27.05	3,373.06	24.14
Drilled Depth BGS (feet): 33.5	6/18/2012			27.40	3,372.71	24.49
Well Depth from TOC (feet): 36.41 Well Diameter (inches): 2	12/3/2012			30.53	3,369.58	27.62
Well Diameter (inches): 2 Screen Interval BGS (feet): 18.5-33.5	5/15/2013			30.78 31.10	3,369.33	27.87 28.19
Casing Stickup (feet): 2.91	10/2/2013			31.10	3,369.01	28.15
Ground Elevation AMSL (feet) 3,397.20	11/18/2013 6/20/2014			31.00	3,369.05	28.30
TOC Elevation AMSL (feet) 3,400.11	8/27/2014	31.31	0.01	31.32	3,368.90 3,368.80	28.40
Notes:	9/18/2014	31.34	0.01	31.32	3,368.77	28.43
Notes.	12/22/2014	28.56	0.01	28.57	3,371.55	25.65
	5/11/2015	20.30		30.16	3,369.95	27.25
	11/9/2015			30.10	3,369.74	27.46
	4/4/2016			29.16	3,369.74	26.25
	4/25/2016			29.10	3,370.95	26.19
	11/7/2016			28.72	3,371.39	25.81
	5/23/2017			30.24	3,369.87	27.33
	11/28/2017			29.75	3,370.36	26.84
	6/13/2018			30.73	3,369.38	27.82
	4/1/2019			31.09	3,369.02	28.18
	7/29/2019			31.33	3,368.78	28.42
	8/17/2020			31.74	3,368.37	28.83
	10/25/2021			31.59	3,368.52	28.68
	3/28/2022			31.11	3,369.00	28.20

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-29		6/21/2011	23.84	1.03	24.87	3,368.03	21.27
Date Drilled:	3/9/2011	11/28/2011	24.25	1.08	25.33	3,367.61	21.69
Drilled Depth BGS (feet):	26	6/18/2012	24.37	0.97	25.34	3,367.52	21.78
Well Depth from TOC (feet):	28.88	12/3/2012	27.77	0.53	28.30	3,364.25	25.05
Well Diameter (inches):	2	5/15/2013	27.90	0.34	28.24	3,364.18	25.12
Screen Interval BGS (feet):		10/2/2013	28.13	0.10	28.23	3,364.02	25.28
Casing Stickup (feet):	2.88	11/18/2013	28.16	0.07	28.23	3,364.00	25.30
Ground Elevation AMSL (feet)	3,389.30	02/11/2014	28.23	0.03	28.26	3,363.94	25.36
TOC Elevation AMSL (feet)	3,392.18	6/20/2014			28.33	3,363.85	25.45
Notes:		8/27/2014	28.33	0.01	28.34	3,363.85	25.45
		9/18/2014	28.36	0.33	28.69	3,363.72	25.58
		12/19/2014	28.21	0.01	28.22	3,363.97	25.33
		5/11/2015			27.43	3,364.75	24.55
		11/9/2015	26.90	0.96	27.86	3,364.99	24.31
		4/4/2016	26.10	1.84	27.94	3,365.53	23.77
		4/25/2016	25.87	2.06	27.93	3,365.69	23.61
		11/7/2016	25.67	0.53	26.20	3,366.35	22.95
		5/23/2017			25.31	3,366.87	22.43
		11/28/2017			25.12	3,367.06	22.24
		6/13/2018			25.81	3,366.37	22.93
		4/1/2019	25.59	0.01	25.60	3,366.59	22.71
		7/29/2019			26.15	3,366.03	23.27
		8/17/2020	26.88	0.01	26.89	3,365.30	24.00
		10/25/2021	Sheen		27.81	3,364.37	24.93
		3/28/2022			27.96	3,364.22	25.08
MW-30		5/11/2015			41.04	3,331.04	38.26
Date Drilled:	4/15/2015	11/9/2015			40.83	3,331.25	38.05
Drilled Depth BGS (feet):	41	4/4/2016			40.14	3,331.94	37.36
Well Depth from TOC (feet):	43.78	4/25/2016			40.04	3,332.04	37.26
Well Diameter (inches):	2	11/7/2016			39.8	3,332.28	37.02
Screen Interval BGS (feet):	20.75-40.75	5/23/2017			39.40	3,332.68	36.62
Casing Stickup (feet):	2.78	11/28/2017			39.14	3,332.94	36.36
Ground Elevation AMSL (feet)	3,369.30	6/13/2018			38.78	3,333.30	36.00
TOC Elevation AMSL (feet)	3,372.08	4/1/2019			38.71	3,333.37	35.93
Notes:		8/17/2020			39.90	3,332.18	37.12
		10/25/2021			39.88	3,332.20	37.10
		3/28/2022			40.13	3,331.95	37.35
MW-31		4/13/2016			45.65	3,318.35	42.95
Date Drilled:	4/12/2016	4/25/2016			48.63	3,315.37	45.93
Drilled Depth BGS (feet):	51	11/7/2016			48.5	3,315.50	45.80
Well Depth from TOC (feet):	53.7	5/23/2017			48.35	3,315.65	45.65
Well Diameter (inches):	2	11/28/2017			48.17	3,315.83	45.47
Screen Interval BGS (feet):	30.45-50.18	6/13/2018			47.91	3,316.09	45.21
Casing Stickup (feet):	2.7	4/1/2019			47.58	3,316.42	44.88
Ground Elevation AMSL (feet)	3,361.30	8/17/2020			48.72	3,315.28	46.02
TOC Elevation AMSL (feet)	3,364.00	10/25/2021			47.88	3,316.12	45.18
Notes:		3/28/2022		-	47.18	3,316.82	44.48

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information	,			Grou	ndwater Data		
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
MW-32		4/4/2016	26.88	2.55	29.43	3,371.44	27.67
Date Drilled:	8/4/2015	4/25/2016	26.80		29.32	3,369.76	29.34
Drilled Depth BGS (feet):	42	11/7/2016	26.84	2.58	29.42	3,371.47	27.63
Well Depth from TOC (feet):	40.22	5/23/2017	27.00	2.78	29.78	3,371.25	27.85
Well Diameter (inches):	2	11/28/2017	26.50	2.07	28.57	3,371.96	27.14
Screen Interval BGS (feet):	19.99-39.72	6/13/2018	26.92	3.49	30.41	3,371.11	27.99
Casing Stickup (feet):	-0.02	4/1/2019	27.08	4.60	31.68	3,370.62	28.48
Ground Elevation AMSL (feet)	3,399.10	7/29/2019	27.25	4.86	32.11	3,370.37	28.73
TOC Elevation AMSL (feet)	3,399.08	8/17/2020	27.52	5.08	32.6	3,370.04	29.06
Notes:	ŕ	10/25/2021	27.34	3.77	31.11	3,370.61	28.49
		3/28/2022	27.24	3.31	30.55	3,370.85	28.25
MW-33		4/4/2016	28.81	2.09	30.90	3,370.84	29.46
Date Drilled:	11/11/2015	4/25/2016	28.72	2.28	31.00	3,370.88	29.42
Drilled Depth BGS (feet):	43	11/7/2016	28.4	3.50	31.9	3,370.83	29.47
Well Depth from TOC (feet):	39.65	5/23/2017	28.45	3.45	31.90	3,370.80	29.51
Well Diameter (inches):	2	11/28/2017	28.18	3.40	31.58	3,371.08	29.22
Screen Interval BGS (feet):	19.42-39.15	6/13/2018	28.52	3.75	32.27	3,370.64	29.67
Casing Stickup (feet):	-0.02	4/1/2019	28.51	4.73	33.24	3,370.35	29.95
Ground Elevation AMSL (feet)	3,400.30	7/29/2019	28.65	4.91	33.56	3,370.16	30.14
TOC Elevation AMSL (feet)	3,400.28	8/17/2020	28.72	5.21	33.93	3,370.00	30.30
Notes:		10/25/2021	28.34	3.97	32.31	3,370.75	29.55
		3/28/2022	28.38	3.70	32.08	3,370.79	29.51
MW-34		4/4/2016	28.20	1.93	30.13	3,370.79	28.71
Date Drilled:	11/12/2015	4/25/2016	27.69	3.76	31.45	3,370.75	28.75
Drilled Depth BGS (feet):	41	11/7/2016	27.44	4.61	32.05	3,370.75	28.75
Well Depth from TOC (feet):	40.11	5/23/2017	27.56	4.52	32.08	3,370.65	28.85
Well Diameter (inches):	2	11/28/2017	27.15	4.31	31.46	3,371.13	28.37
Screen Interval BGS (feet):	19.84-39.57	6/13/2018	27.64	5.02	32.66	3,370.42	29.08
Casing Stickup (feet):	0.07	4/1/2019	27.72	5.69	33.41	3,370.14	29.36
Ground Elevation AMSL (feet)	3,399.50	7/29/2019	27.92	5.75	33.67	3,369.93	29.57
TOC Elevation AMSL (feet)	3,399.57	8/17/2020	28.04	6.04	34.08	3,369.72	29.78
Notes:		10/25/2021	27.70	4.51	32.21	3,370.52	28.98
		3/28/2022	27.67	3.97	31.64	3,370.71	28.79

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	1			Grou	ndwater Data	1	
	-		Donth to			Corrected	Depth to
Well ID		Date	Depth to Product	LNAPL Thickness	Depth to Water	Groundwater	Corrected
Woll is		Gauged	(feet TOC)	(feet)	(feet TOC)	Elevation (feet	Groundwater
MW-35		4/4/2016	26.45	2.90	29.35	AMSL) 3,371.30	(feet BGS) 27.30
Date Drilled:	11/12/2015	4/25/2016	26.38	2.84	29.22	3,371.39	27.21
Drilled Depth BGS (feet):	42	11/7/2016	26.38	2.41	28.79	3,371.52	27.08
Well Depth from TOC (feet):	39.75	5/23/2017	26.55	3.19	29.74	3,371.11	27.49
Well Diameter (inches):	2	11/28/2017	26.13	1.99	28.12	3,371.89	26.71
Screen Interval BGS (feet): Casing Stickup (feet):	19.48-39.21 0.02	6/13/2018 4/1/2019	26.62 26.69	4.06 5.46	30.68 32.15	3,370.78 3,370.29	27.82 28.31
Ground Elevation AMSL (feet)		7/29/2019	26.09	5.75	32.15	3,370.29	28.61
TOC Elevation AMSL (feet)	3,398.62	8/17/2020	27.08	6.15	33.23	3,369.70	28.91
Notes:	,	10/25/2021	26.84	4.54	31.38	3,370.42	28.18
		3/28/2022	26.72	4.55	31.27	3,370.54	28.07
MW-36	44/47/0045	4/4/2016			26.95	3,371.30	26.90
Date Drilled: Drilled Depth BGS (feet):	11/17/2015 43	4/25/2016 11/7/2016			26.86 26.65	3,371.39	26.81 26.60
Well Depth from TOC (feet):	39.48	5/23/2017			26.03	3,371.60 3,371.28	26.92
Well Diameter (inches):	2	11/28/2017			26.31	3,371.94	26.26
Screen Interval BGS (feet):	19.18-38.91	6/13/2018			27.42	3,370.83	27.37
Casing Stickup (feet):	0.05	4/1/2019			27.59	3,370.66	27.54
Ground Elevation AMSL (feet)		7/29/2019			28.03	3,370.22	27.98
TOC Elevation AMSL (feet)	3,398.25	8/17/2020			28.33	3,369.92	28.28
Notes:		10/25/2021			27.83	3,370.42	27.78
MW-37		3/28/2022 4/4/2016	27.03	3.68	27.46 30.71	3,370.79 3.370.45	27.41 28.15
Date Drilled:	11/16/2015	4/25/2016	27.47	1.78	29.25	3,370.45	28.02
Drilled Depth BGS (feet):	42	11/7/2016	26.58	4.72	31.3	3.370.58	28.02
Well Depth from TOC (feet):	39.79	5/23/2017	26.65	4.93	31.58	3,370.45	28.15
Well Diameter (inches):	2	11/28/2017	26.34	4.11	30.45	3,371.01	27.59
Screen Interval BGS (feet):	19.63-39.36	6/13/2018	26.91	5.21	32.12	3,370.11	28.49
Casing Stickup (feet):	-0.02	4/1/2019	26.96	5.93	32.89	3,369.84	28.76
Ground Elevation AMSL (feet) TOC Elevation AMSL (feet)	3,398.60	7/29/2019 8/17/2020	27.16 27.27	6.08 6.61	33.24 33.88	3,369.60 3,369.33	29.00 29.27
Notes:	3,390.30	10/25/2021	26.91	4.98	31.89	3,370.18	28.42
110.00.		3/28/2022	26.79	4.07	30.86	3,370.57	28.03
MW-38		4/4/2016	28.07	0.07	28.14	3,371.00	28.00
Date Drilled:	11/19/2015	4/25/2016	28.02	0.84	28.86	3,370.82	28.18
Drilled Depth BGS (feet):	43	11/7/2016	27.84	1.03	28.87	3,370.94	28.06
Well Depth from TOC (feet):	39.62	5/23/2017	27.88	1.43	29.31 COVER S	3,370.78	28.22
Well Diameter (inches): Screen Interval BGS (feet):	2 19.39-39.12	11/28/2017 6/13/2018	27.64	3.44	31.08	3,370.42	28.58
Casing Stickup (feet):	0.09	4/1/2019	27.49	5.19	32.68	3,370.04	28.96
Ground Elevation AMSL (feet)		7/29/2019	27.57	5.81	33.38	3,369.78	29.22
TOC Elevation AMSL (feet)	3,399.09	8/17/2020	27.66	6.33	33.99	3,369.53	29.47
Notes:		10/25/2021	27.34	4.54	31.88	3,370.39	28.61
RW-1		3/28/2022	27.24	3.93	31.17	3,370.67	28.33
Date Drilled:	2/9/2011	6/22/2011 12/2/2011	26.37	4.81	31.18 31.63	3,373.83 3,373.50	25.07 25.40
Drilled Depth BGS (feet):	37.5	6/18/2012	26.64 27.06	4.99 4.88	31.94	3,373.12	25.78
Well Depth from TOC (feet):	40.24	12/3/2012					
Well Diameter (inches):	2	5/15/2013					
Screen Interval BGS (feet):	22.5-37.5	10/2/2013					
Casing Stickup (feet):	2.74	11/18/2013		 40			
Ground Elevation AMSL (feet) TOC Elevation AMSL (feet)	3,398.90 3,401.64	02/11/2014 6/20/2014	30.48 30.58	5.48 5.40	35.96 35.98	3,369.52	29.38
Notes:	0,401.04	12/22/2014	29.26	1.04	30.30	3,369.44 3,372.07	29.46 26.83
		5/11/2015	29.90	2.99	32.89	3,370.84	28.06
		11/9/2015	29.73	3.88	33.61	3,370.75	28.15
		4/4/2016	29.19	2.41	31.60	3,371.73	27.17
		4/25/2016	29.17	2.35	31.52	3,371.77	27.14
		11/7/2016	29.22	2.40	31.62	3,371.70	27.20
		5/23/2017 11/28/2017	29.30 28.90	2.74 2.13	32.04 31.03	3,371.52 3,372.10	27.38 26.80
		6/13/2018	29.07	4.00	33.07	3,372.10	27.53
		4/1/2019	29.42	4.28	33.70	3,370.94	27.96
		7/29/2019	29.56	4.60	34.16	3,370.70	28.20
		8/17/2020	29.87	4.78	34.65	3,370.34	28.56
		10/25/2021	29.75	3.47	33.22	3,370.85	28.05
		3/28/2022	29.66	3.03	32.69	3,371.07	27.83

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information	1		Grou	ndwater Data	3	
Well ID	Date	Depth to Product	LNAPL Thickness	Depth to Water	Corrected Groundwater	Depth to Corrected
	Gauged	(feet TOC)	(feet)	(feet TOC)	Elevation (feet AMSL)	Groundwater (feet BGS)
VW-1	6/22/2011					
Date Drilled: 2/4/2011	12/2/2011					
Drilled Depth BGS (feet): 38 Well Depth from TOC (feet): 38	6/18/2012 12/3/2012					
Well Diameter (inches): 2	5/15/2013	29.96	0.08	30.04	3,370.32	29.98
Screen Interval BGS (feet): 17-37	10/2/2013	30.15	0.23	30.38	3,370.08	30.22
Casing Stickup (feet): 0	11/18/2013	30.16	0.24	30.40	3,370.07	30.23
Ground Elevation AMSL (feet) 3,400.30 TOC Elevation AMSL (feet) 3,400.30	02/11/2014	30.21	0.33	30.54	3,369.99	30.31
Notes:	6/20/2014 12/22/2014	29.25 28.58	1.04 0.40	30.29 28.98	3,370.74 3,371.60	29.56 28.70
	5/11/2015	29.3	0.36	29.66	3,370.89	29.41
	11/9/2015	29.55	0.15	29.70	3,370.71	29.59
	4/4/2016	28.74	0.11	28.85	3,371.53	28.77
	4/25/2016 11/7/2016	28.71 28.72	0.09	28.80 28.78	3,371.56 3,371.52	28.74 28.78
	5/23/2017	28.74	0.12	28.86	3,371.52	28.78
	11/28/2017	28.49	0.03	28.52	3,371.80	28.50
	6/13/2018	28.89	0.14	29.03	3,371.37	28.93
	4/1/2019	28.31	1.00	29.31	3,371.69	28.61
	7/29/2019 8/17/2020	29.38 28.79	0.19 3.86	29.57 32.65	3,370.86 3,370.35	29.44 29.95
	10/25/2021	27.34	4.81	32.15	3,371.52	28.78
	3/28/2022	28.32	3.25	31.57	3,371.01	29.30
VW-2	6/22/2011		-			
Date Drilled: 2/8/2011	12/2/2011					
Drilled Depth BGS (feet): 37.5 Well Depth from TOC (feet): 37.5	6/18/2012 12/3/2012					
Well Diameter (inches): 2	5/15/2013	28.06	5.03	33.09	3,369.86	29.64
Screen Interval BGS (feet): 17-37	10/2/2013	28.25	5.33	33.58	3,369.58	29.92
Casing Stickup (feet): -0.07	11/18/2013	28.26	5.37	33.63	3,369.56	29.94
Ground Elevation AMSL (feet) 3,399.50 TOC Elevation AMSL (feet) 3,399.43	02/11/2014 6/20/2014	28.30	5.40	33.70 28.38	3,369.51	29.99 28.45
Notes:	12/22/2014	26.99	 3.13	30.12	3,371.05 3,371.50	28.00
	5/11/2015	27.73	3.95	31.68	3,370.52	28.99
	11/9/2015	27.73	4.48	32.21	3,370.36	29.14
	4/4/2016	27.15	2.99	30.14	3,371.38	28.12
	4/25/2016 11/7/2016	27.12 27.15	2.95 3.05	30.07 30.20	3,371.43 3,371.37	28.08 28.13
	5/23/2017	27.10	3.16	30.43	3,371.21	28.29
	11/28/2017	26.86	2.98	29.84	3,371.68	27.82
	6/13/2018	27.15	4.04	31.19	3,371.07	28.43
	4/1/2019 7/29/2019	27.38	4.68	32.06 32.44	3,370.65	28.85 29.08
	8/17/2020	27.54 27.81	4.90 4.99	32.44	3,370.42 3,370.12	29.38
	10/25/2021	27.69	3.52	31.21	3,370.68	28.82
	3/28/2022	27.54	3.23	30.77	3,370.92	28.58
VW-3 Date Drilled: 2/8/2011	6/22/2011					
Date Drilled: 2/8/2011 Drilled Depth BGS (feet): 37.5	12/2/2011 6/18/2012					
Well Depth from TOC (feet): 37.5	12/3/2012					
Well Diameter (inches): 2	5/15/2013	26.90	4.05	30.95	3,370.14	28.36
Screen Interval BGS (feet): 17-37	10/2/2013	27.06	4.75	31.81	3,369.77	28.74
Casing Stickup (feet): -0.25 Ground Elevation AMSL (feet) 3,398.50	11/18/2013 02/11/2014	27.00 27.08	4.73 4.46	31.73 31.54	3,369.83	28.67 28.67
TOC Elevation AMSL (feet) 3,398.50	6/20/2014	27.08	4.46 	27.22	3,369.83 3,371.03	27.47
Notes:	12/22/2014	29.78	0.01	29.79	3,368.47	30.03
	5/11/2015	26.61	1.93	28.54	3,371.06	27.44
	11/9/2015	26.38	1.87	28.25	3,371.31	27.19
	4/4/2016 4/25/2016	25.98 25.95	0.88 0.92	26.86 26.87	3,372.01 3,372.02	26.49 26.48
	11/7/2016	25.98	1.00	26.98	3,371.97	26.53
	5/23/2017	26.06	1.88	27.94	3,371.63	26.87
	11/28/2017	25.55	0.91	26.46	3,372.43	26.07
	6/13/2018	25.73	2.98	28.71	3,371.63	26.87 27.45
	4/1/2019 7/29/2019	26.19 26.33	3.36 3.84	29.55 30.17	3,371.05 3,370.77	27.45 27.73
	8/17/2020	26.64	4.09	30.73	3,370.77	28.12
	10/25/2021	26.55	3.16	29.71	3,370.75	27.75
	3/28/2022	26.42	2.89	29.31	3,370.96	27.54

Table 1 Summary of Monitoring Well Completion and Gauging Data Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information				Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
VW-4		6/22/2011					
	2/8/2011	12/2/2011					
- ()	37.5	6/18/2012					
(/	37.5	12/3/2012					
` /	2	5/15/2013	27.09	3.96	31.05	3,370.20	28.40
	17-37	10/2/2013	27.25	4.41	31.66	3,369.91	28.69
- 3 ()	-0.12	11/18/2013	27.21	4.46	31.67	3,369.93	28.67
Ground Elevation AMSL (feet)		02/11/2014	27.25	4.45	31.70	3,369.90	28.70
` ,	3,398.48	6/20/2014	27.39	4.55	31.94	3,369.73	28.88
Notes:		9/18/2014	26.84	2.76	29.60	3,370.81	27.79
		12/22/2014	26.45	0.01	26.46	3,372.03	26.57
		5/11/2015	26.90	2.06	28.96	3,370.96	27.64
		11/9/2015	26.82	2.98	29.80	3,370.77	27.83
		4/4/2016	26.32	1.93	28.25	3,371.58	27.02
		4/25/2016	26.30	2.02	28.32	3,371.57	27.03
		11/7/2016	26.29	2.06	28.35	3,371.57	27.03
		5/23/2017	26.35	2.40	28.75	3,371.41	27.19
		11/28/2017	26.09	1.84	27.93	3,371.84	26.76
		6/13/2018	26.07	3.86	29.93	3,371.25	27.35 27.67
		4/1/2019	26.31	4.14 4.46	30.45 30.89	3,370.93	27.89
		7/29/2019 8/17/2020	26.43 26.80	4.46 4.51	31.31	3,370.71	28.27
		10/25/2021	26.80	3.40	30.37	3,370.33	28.11
		3/28/2022	26.63	3.40	29.89	3,370.49 3,370.87	27.73
**HVR-1		02/11/2014	28.95	4.53	33.48	3,370.79	26.11
	8/16/2012	9/19/2014	29.01	4.84	33.85	3,370.79	26.26
	35	12/22/2014	28.15	1.56	29.71	3,370.64	24.42
	39.2	5/11/2015	28.56	2.03	30.59	3,371.93	24.97
. ,	2	11/9/2015	28.60	2.06	30.66	3,371.88	25.02
,	25-35	4/4/2016	28.09	1.04	29.13	3.372.70	24.20
` '	4.2	4/25/2016	28.08	1.01	29.09	3,372.72	24.18
Ground Elevation AMSL (feet)		11/7/2016	28.00	1.02	29.02	3,372.79	24.11
` ,	3,401.10	5/23/2017	28.31	0.44	28.75	3,372.66	24.24
Notes:	-,	11/28/2017	28.13	0.44	28.57	3,372.84	24.06
		6/13/2018	28.11	1.51	29.62	3.372.54	24.36
		4/1/2019	28.28	2.61	30.89	3,372.04	24.86
		7/29/2019	28.41	2.82	31.23	3,371.84	25.06
		8/17/2020	28.67	3.57	32.24	3,371.36	25.54
		10/25/2021	28.73	4.09	32.82	3,371.14	25.76
		3/28/2022	28.66	3.95	32.61	3,371.26	25.65

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information	I		Grou	ndwater Data	1	
Well ID	Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
**HV-1	02/11/2014	29.17	5.62	34.79	3,368.87	27.33
Date Drilled: 8/14/2012	9/19/2014	29.17	5.61	34.75	3,368.71	27.49
Drilled Depth BGS (feet): 39	12/22/2014	28.80	4.41	33.21	3,369.61	26.59
Well Depth from TOC (feet): 42.52	5/11/2015	28.79	9.43	38.22	3,368.11	28.09
Well Diameter (inches): 2	11/9/2015	28.79	4.27	33.06	3,369.66	26.54
Screen Interval BGS (feet): 24-39	4/4/2016	28.43	3.32	31.75	3,370.30	25.90
Casing Stickup (feet): 3.53	4/25/2016	28.38	2.91	31.29	3,370.48	25.72
Ground Elevation AMSL (feet) 3,396.20	11/7/2016	27.45	2.10	29.55	3,371.65	24.55
TOC Elevation AMSL (feet) 3,399.73	5/23/2017	27.49	2.15	29.64	3,371.60	24.60
Notes:	11/28/2017	27.47	1.73	29.20	3,371.74	24.46
	6/13/2018	27.52	2.38	29.90	3,371.50	24.70
	4/1/2019	27.82	3.09	30.91	3,370.98	25.22
	7/29/2019	27.89	3.15	31.04	3,370.90	25.30
	8/17/2020	28.15	4.23	32.38	3,370.31	25.89
	10/25/2021	28.34	4.77	33.11	3,369.96	26.24
	3/28/2022	28.31	4.70	33.01	3,370.01	26.19
**HV-2	02/11/2014	28.83	1.78	30.61	3,367.94	25.96
Date Drilled: 8/14/2012	8/27/2014	29.11	1.66	30.77	3,367.69	26.21
Drilled Depth BGS (feet): 39	9/19/2014	29.11	1.71	30.82	3,367.68	26.22
Well Depth from TOC (feet): 43.25	12/18/2014	28.75	1.64	30.39	3,368.06	25.84
Well Diameter (inches): 2	5/11/2015	28.48	1.61	30.09	3,368.34	25.56
Screen Interval BGS (feet): 24-39	11/9/2015	28.40	1.51	29.91	3,368.45	25.45
Casing Stickup (feet): 3.4	4/4/2016	28.13	1.38	29.51	3,368.76	25.14
Ground Elevation AMSL (feet) 3,393.90	4/25/2016	28.05	1.26	29.31	3,368.87	25.03
TOC Elevation AMSL (feet) 3,397.30	11/7/2016	27.94	0.91	28.85	3,369.09	24.81
Notes:	5/23/2017	27.82	0.43	28.25	3,369.35	24.55
	11/28/2017	27.81	0.40	28.21	3,369.37	24.53
	6/13/2018	27.85	0.42	28.27	3,369.32	24.58
	4/1/2019	27.82	0.87	28.69	3,369.22	24.68
	7/29/2019	28.01	1.05	29.06	3,368.98	24.92
	8/17/2020	28.49	1.48	29.97	3,368.37	25.53
	10/25/2021	28.81	2.32	31.13	3,367.79	26.11
44197.4	3/28/2022	28.85	2.36	31.21	3,367.74	26.16
**HV-3	02/11/2014			28.81	3,367.34	25.16
Date Drilled: 8/15/2012	8/27/2014	29.54	0.01	29.55	3,366.61	25.89
Drilled Depth BGS (feet): 39	9/19/2014			29.54	3,366.61	25.89
Well Depth from TOC (feet): 42.94	12/18/2014			28.73	3,367.42	25.08
Well Diameter (inches): 2	5/11/2015			28.21	3,367.94	24.56
Screen Interval BGS (feet): 24-39	11/9/2015			28.37	3,367.78	24.72
Casing Stickup (feet): 3.65	4/4/2016	 27.56	 0.17	27.73 27.73	3,368.42	24.08 23.96
Ground Elevation AMSL (feet) 3,392.50 TOC Elevation AMSL (feet) 3,396.15	4/25/2016 11/7/2016	27.56	0.17	27.73 28.24	3,368.54 3,368.57	23.96
Notes:	5/23/2017	26.79	0.94	27.55	3,369.13	23.93
NOIGS.	11/28/2017	26.79	0.76	27.33	3,369.27	23.23
	6/13/2018	27.11	0.64	27.82	3,368.83	23.67
	4/1/2019	26.89	0.71	27.82	3,369.13	23.37
	7/29/2019	27.59	0.42	27.81	3,368.49	24.01
	8/17/2020	28.57	0.22	28.85	3,367.50	25.00
	10/25/2021	Sheen		29.48	3,366.67	25.83
ĺ	3/28/2022	29.40	0.04	29.44	3,366.74	25.76

Table 1
Summary of Monitoring Well Completion and Gauging Data
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

Well Information			Grou	ndwater Data	3	
		Depth to	LNAPL	Depth to	Corrected	Depth to
Well ID	Date	Product	Thickness	Water	Groundwater	Corrected
	Gauged	(feet TOC)	(feet)	(feet TOC)	Elevation (feet	Groundwater
**HV-4	02/11/2014			29.56	AMSL)	(feet BGS)
Date Drilled: 8/15/2012	02/11/2014	30.22	0.01	30.23	3,366.66 3,366.00	26.34 27.00
Drilled Depth BGS (feet): 39	9/19/2014			30.08	3,366.14	26.86
Well Depth from TOC (feet): 43	12/19/2014	29.42	0.01	29.43	3,366.80	26.20
Well Diameter (inches): 2	5/11/2015	28.35	1.28	29.63	3,367.49	25.51
Screen Interval BGS (feet): 24-39	11/9/2015	28.06	1.92	29.98	3,367.58	25.42
Casing Stickup (feet): 3.22	4/4/2016	27.28	2.85	30.13	3,368.09	24.92
Ground Elevation AMSL (feet) 3,393.00	4/25/2016	27.08	2.84	29.92	3,368.29	24.71
TOC Elevation AMSL (feet) 3,396.22 Notes:	11/7/2016 5/23/2017	27.00	2.33	29.33	3,368.52	24.48
110.00.	11/28/2017	26.94	1.44	28.38	3,368.85	24.15
	6/13/2018	27.21	1.50	28.71	3,368.56	24.44
	4/1/2019	27.03	1.39	28.42	3,368.77	24.23
	7/29/2019	27.79	1.37	29.16	3,368.02	24.98
	8/17/2020	28.56	0.39	28.95	3,367.54	25.46
1	10/25/2021	28.84	0.98	29.82	3,367.09	25.91 25.94
**HV-5	3/28/2022 02/11/2014	28.86	0.99	29.85 29.70	3,367.06 3,365.22	26.18
Date Drilled: 8/15/2012		30.33	0.02	30.35	3,364.58	26.82
Drilled Depth BGS (feet): 39	12/19/2014	29.74	1.67	31.41	3,364.68	26.72
Well Depth from TOC (feet): 42.29	5/11/2015	29.29	1.33	30.62	3,365.23	26.17
Well Diameter (inches): 2	11/9/2015	29.27	1.24	30.51	3,365.28	26.12
Screen Interval BGS (feet): 24-39	4/4/2016	28.24	0.38	28.62	3,366.57	24.83
Casing Stickup (feet): 3.52	4/25/2016	28.05 27.65	0.49	28.54	3,366.72	24.68
Ground Elevation AMSL (feet) 3,391.40 TOC Elevation AMSL (feet) 3,394.92	11/7/2016 5/23/2017	27.05	0.63 0.47	28.28 27.57	3,367.08 3,367.68	24.32 23.72
Notes:	11/28/2017	26.96	0.47	27.39	3,367.83	23.57
	6/13/2018	27.58	0.54	28.12	3,367.18	24.22
	4/1/2019	27.51	0.19	27.70	3,367.35	24.05
	7/29/2019	27.98	0.44	28.42	3,366.81	24.59
	8/17/2020			28.74	3,366.18	25.22
	10/25/2021 3/28/2022	Sheen Sheen		29.51 29.56	3,365.41 3,365.36	25.99 26.04
**HV-6	02/11/2014			27.61	3,366.80	24.40
Date Drilled: 8/15/2012		29.19	0.10	29.29	3,365.19	26.01
Drilled Depth BGS (feet): 39	9/19/2014	29.05	0.00	29.05	3,365.36	25.84
Well Depth from TOC (feet): 42.61	12/18/2014			27.99	3,366.42	24.78
Well Diameter (inches): 2	5/11/2015			27.35	3,367.06	24.14
Screen Interval BGS (feet): 24-39 Casing Stickup (feet): 3.21	11/9/2015 4/4/2016			27.55 26.87	3,366.86 3,367.54	24.34 23.66
Ground Elevation AMSL (feet) 3,391.20	4/25/2016			26.67	3,367.74	23.46
TOC Elevation AMSL (feet) 3,394.41	11/7/2016			26.59	3,367.82	23.38
Notes:	5/23/2017			26.30	3,368.11	23.09
	11/28/2017			26.24	3,368.17	23.03
	6/13/2018			26.48	3,367.93	23.27
1	4/1/2019			25.96	3,368.45	22.75
	7/29/2019 8/17/2020			26.84 28.14	3,367.57 3,366.27	23.63 24.93
	10/25/2021			28.88	3,365.53	25.67
	3/28/2022			28.58	3,365.83	25.37
**HV-7	02/11/2014	29.97	3.34	33.31	3,364.01	27.59
Date Drilled: 8/16/2012				30.29	3,364.69	26.91
Drilled Depth BGS (feet): 39	8/27/2014	30.24	3.19	33.43	3,363.78	27.82
Well Depth from TOC (feet): 43.08 Well Diameter (inches): 2	12/19/2014 5/11/2015	29.63 29.20	3.59 3.02	33.22 32.22	3,364.27 3,364.87	27.33 26.73
Screen Interval BGS (feet): 24-39	11/9/2015	29.20	2.06	32.22	3,365.16	26.73 26.44
Casing Stickup (feet): 3.38	4/4/2016	28.67	0.67	29.34	3,366.11	25.49
Ground Elevation AMSL (feet) 3,391.60	4/25/2016	28.51	0.43	28.94	3,366.34	25.26
TOC Elevation AMSL (feet) 3,394.98	11/7/2016	28.18	0.17	28.35	3,366.75	24.85
Notes:	5/23/2017			27.83	3,367.15	24.45
	11/28/2017			27.65	3,367.33	24.27
	6/13/2018	27.00	 0.01	28.29 28.00	3,366.69	24.91 24.61
	4/1/2019 7/29/2019	27.99	0.01	28.58	3,366.99 3,366.40	25.20
	8/17/2020			29.37	3,365.61	25.99
	10/25/2021			30.13	3,364.85	26.75
I	3/28/2022			30.21	3,364.77	26.83

Table 1 **Summary of Monitoring Well Completion and Gauging Data** Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

Well Information	ı			Grou	ndwater Data	1	
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Groundwater Elevation (feet AMSL)	Depth to Corrected Groundwater (feet BGS)
**HV-8		02/11/2014			30.13	3,364.50	26.60
Date Drilled:	8/16/2012	8/27/2014	30.45	0.01	30.46	3,364.18	26.92
Drilled Depth BGS (feet):	35	9/19/2014			30.46	3,364.17	26.93
Well Depth from TOC (feet):	38.53	12/18/2014			31.41	3,363.22	27.88
Well Diameter (inches):	2	5/11/2015			26.16	3,368.47	22.63
Screen Interval BGS (feet):	20-35	11/9/2015			28.97	3,365.66	25.44
Casing Stickup (feet):	3.53	4/4/2016			28.18	3,366.45	24.65
Ground Elevation AMSL (feet)	3,391.10	4/25/2016			27.93	3,366.70	24.40
TOC Elevation AMSL (feet)	3,394.63	11/7/2016			27.51	3,367.12	23.98
Notes:		5/23/2017			27.15	3,367.48	23.62
		11/28/2017			26.97	3,367.66	23.44
		6/13/2018			27.94	3,366.69	24.41
		4/1/2019			27.20	3,367.43	23.67
		7/29/2019			28.17	3,366.46	24.64
		8/17/2020			29.01	3,365.62	25.48
		10/25/2021			30.25	3,364.38	26.72
		3/28/2022			30.03	3,364.60	26.50
**HV-9		02/11/2014			28.69	3,363.54	25.26
Date Drilled:	8/16/2012	8/22/2014			dry		
Drilled Depth BGS (feet):	32	12/19/2014			28.38	3,363.85	24.95
Well Depth from TOC (feet):	28.78	5/11/2015			27.95	3,364.28	24.52
Well Diameter (inches):	2	11/9/2015			27.74	3,364.49	24.31
Screen Interval BGS (feet):	20-32	4/4/2016			26.50	3,365.73	23.07
Casing Stickup (feet):	3.43	4/25/2016	26.26	0.86	27.12	3,365.71	23.09
Ground Elevation AMSL (feet)		11/7/2016	25.97	0.11	26.08	3,366.23	22.57
TOC Elevation AMSL (feet)	3,392.23	5/23/2017			25.30	3,366.93	21.87
Notes:		11/28/2017			25.16	3,367.07	21.73
		6/13/2018			26.02	3,366.21	22.59
		4/1/2019	25.84	0.26	26.10	3,366.31	22.49
		7/29/2019			26.28	3,365.95	22.85
		8/17/2020			27.03	3,365.20	23.60
		10/25/2021			27.98	3,364.25	24.55
		3/28/2022			28.22	3,364.01	24.79

Notes:

Elevations are above mean sea level (MSL) referenced to 1984 Geodetic Datum.

Groundwater elevation corrected for LNAPL thickness assuming 0.7 specific gravity

All values are in feet, unless otherwise noted.

bgs - below ground surface

TOC - top of casing

NR - Not recorded * Well completed at grade with no casing stickup

^{**}HV- high vacuum extraction well location

1 MW-5 damaged. TOC elevation resurveyed following repair (6/7/2007 & 10/25/2021).

Received by OCD: 10/25/2022 9:30:27 AM

Table 2
Summary of Apparent LNAPL Thickness In Wells
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

												Well Des	ignation											
Date	MW-2A	MW-03	MW-22	MW-27	MW-29	MW-32 (SB-1)	MW-33 SB-3)	MW-34 (SB-4)	MW-35 (SB-5)	MW-37 (SB-7)	MW-38 (SB-8)	RW-1	VW-1	VW-2	VW-3	VW-4	HVR-1	HV-1	HV-2	HV-3	HV-4	HV-5	HV-7	HV-9
6/21/2011		1.59	0.53	1.09	1.03	N/I	N/I	N/I	N/I	N/I	N/I	4.81												
11/28/2011		4.47	1.48	3.47	1.08	N/I	N/I	N/I	N/I	N/I	N/I	4.99												
6/25/2012		1.98	3.98	3.24	0.97	N/I	N/I	N/I	N/I	N/I	N/I	4.88												
9/17/2012		0.74	1.16	5.49	N/G	N/I	N/I	N/I	N/I	N/I	N/I	5.06												
12/3/2012					0.53	N/I	N/I	N/I	N/I	N/I	N/I													
5/15/2013		0.02	3.85	2.73	0.34	N/I	N/I	N/I	N/I	N/I	N/I		0.08	5.03	4.05	3.96								
10/1/2013		1.62	4.32	2.60	0.10	N/I	N/I	N/I	N/I	N/I	N/I		0.23	5.33	4.75	4.41								
11/18/2013 2/11/2014		1.87	4.04 3.75	2.68	0.07 0.03	N/I	N/I	N/I	N/I	N/I	N/I	 5.48	0.24 0.33	5.37 5.40	4.73	4.46	4.53	5.62	1.78				3.34	
6/20/2014		2.61 3.38	3.75 3.65	0.08	0.03	N/I N/I	N/I N/I	N/I N/I	N/I N/I	N/I N/I	N/I N/I	5.40	0.55	5.40		4.45 4.55	4.55	5.02	1.76				3.34	
7/22/2014		1.49	0.25	0.08		N/I	N/I	N/I	N/I	N/I	N/I	J.40 	0.63	0.01	0.01	0.01	0.44		0.01					
7/22/2014		1.49	3.55	1.73		N/I	N/I	N/I	N/I	N/I	N/I	5.73	1.10	6.40	1.40	5.35	1.24	1.24	0.82					
8/27/2014		1.13	3.33	1.75	0.01	N/I	N/I	N/I	N/I	N/I	N/I								1.56			0.02	3.19	
9/18/2014		6.51	3.89	1.99	0.33	N/I	, N/I	N/I	N/I	, N/I	, N/I	1.13	0.48	3.55	0.76	2.77	4.84	5.61	1.71					
10/23/2014		5.89	2.11	2.24		N/I	ν/I	N/I	N/I	N/I	N/I	0.14	0.49	2.96	0.02	0.73	5.42	5.42	1.74			1.90	3.38	Dry
11/20/2014		6.29	0.84	1.99		N/I	N/I	N/I	N/I	N/I	N/I	0.28	0.49	2.27	0.01	0.43	4.79	4.79	1.60			1.89	3.59	
12/22/2014	0.01	5.51		0.71	0.01	N/I	N/I	N/I	N/I	N/I	N/I	1.04	0.40	3.13		1.01	1.56	4.41	1.60			1.67	3.59	
2/13/2015	0.31	5.37	2.00	0.85		N/I	N/I	N/I	N/I	N/I	N/I	1.36	0.41	3.54	0.09	1.60	1.70	4.39	1.48		1.25	1.49	5.26	Dry
3/19/2015	0.82	4.79	2.56	0.31		N/I	N/I	N/I	N/I	N/I	N/I	2.12	0.43	3.64	0.33	1.88	1.75	4.01	1.57		1.41	1.49	4.72	Dry
3/31/2015	1.07	5.04	2.39	0.52		N/I	N/I	N/I	N/I	N/I	N/I	2.19	0.46	3.66	0.93	1.91	4.40		1.57		1.21	1.34	1.91	Dry
4/9/2015	1.55	4.86	2.56	0.52	1.19	N/I	N/I	N/I	N/I	N/I	N/I	2.44	0.27	3.74	2.23	1.97	1.87	4.62	1.55		1.19	1.22	4.09	Dry
4/13/2015	1.82	4.90	3.01	0.61	N/G	N/I	N/I	N/I	N/I	N/I	N/I	2.60		3.76	1.01		1.67	4.26	1.27		1.20	1.21	2.03	Dry
4/29/2015	2.31	5.32	2.92	0.71	N/G	N/I	N/I	N/I	N/I	N/I	N/I	2.78	0.34	3.75	1.76	2.00	1.99	4.47	1.68		1.26	1.38	3.33	Dry
5/18/2015	2.57	5.23	3.10	0.69	N/G	N/I	N/I	N/I	N/I	N/I	N/I	2.56	0.37	3.87	2.15	2.45	1.98	4.39	1.69		1.23	1.29	2.79	Dry
6/9/2015 6/19/2015	2.27	3.67	3.18 3.29	0.64	N/G	N/I	N/I	N/I	N/I	N/I	N/I	3.21		4.02	3.30 2.42	2.23 2.77	1.83	4.37 4.35	0.99		0.87	1.38	0.72	Dry
6/19/2015	2.54 2.69	5.03 5.26	3.31	0.65 0.67	N/G N/G	N/I N/I	N/I	N/I N/I	N/I	N/I	N/I	3.37 3.38		4.07 4.11	1.55	2.77	2.07 2.08	4.33 4.28	1.29 1.35		0.74 0.77	1.49 1.48	2.21 2.12	Dry
7/10/2015	2.68	5.20	3.33	0.07	N/G N/G	N/I	N/I N/I	N/I	N/I N/I	N/I N/I	N/I N/I	3.40		2.38	2.43	2.35	2.05	4.26	1.32		0.77	1.48	2.12	Dry Dry
7/30/2015	3.02	5.44	3.73	0.74	N/G	N/I	N/I	N/I	N/I	N/I	N/I	3.66	0.27	0.43	2.71	2.46	2.42	4.45	1.53		0.99	1.56	2.01	Dry
8/5/2015	N/G	5.44	3.51	0.73	N/G	2.13	N/I	N/I	N/I	N/I	N/I	3.09		4.17	2.62	2.76	2.35	4.35	1.45		0.88	1.69	4.18	Dry
8/19/2015	3.01	5.08	3.55	0.71	N/G	4.50	N/I	N/I	N/I	N/I	N/I	4.27	0.25	4.27	2.94	2.66	2.22	4.24	1.47		1.04	1.35	1.96	Dry
8/24/2015	3.04	5.56	3.60	0.80	N/G	4.43	ν/I	N/I	N/I	, N/I	N/I	3.83	0.26	4.26	3.23		2.33	4.50	1.56		2.71	1.55	1.92	Dry
9/8/2015	3.07	5.42	3.78	0.71	N/G	4.48	N/I	N/I	N/I	N/I	N/I	3.75	0.24	4.23	2.79	2.77	2.24	4.31	1.07		1.11	1.50	1.93	Dry
9/24/2015	3.43	5.75	3.63	0.84	N/G	4.51	N/I	N/I	N/I	N/I	N/I	3.88	0.25	4.46	3.10	2.94	2.52	3.49	1.66		1.29	0.54	1.95	Dry
10/2/2015	3.06	5.78	3.71	0.46	N/G	4.54	N/I	N/I	N/I	N/I	N/I	3.78	0.27	4.28	2.78	2.93	4.33		1.55		1.34	1.41	1.87	Dry
10/7/2015	3.21	5.81	3.84	0.75	N/G	4.69	N/I	N/I	N/I	N/I	N/I	4.08	0.26	4.95	2.93	3.03	2.34	4.45	1.61		1.39	1.42	1.94	Dry
10/21/2015	3.06	5.78	3.71	0.46	N/G	4.74	N/I	N/I	N/I	N/I	N/I	3.78	0.32	4.23	2.78	2.93	2.36	4.33	1.55		1.34	1.41	1.87	Dry
11/3/2015	2.64	5.74	4.42	0.72	N/G	4.71	N/I	N/I	N/I	N/I	N/I	3.99	0.17	4.49	1.82	2.92	2.15	4.26	1.54		1.66	1.38	2.04	Dry
11/9/2015	2.56	6.04	3.38	0.74	0.96	4.96	N/I	N/I	N/I	N/I	N/I	3.88	0.15	4.48	1.87	2.98	2.06	4.27	1.51		1.92	1.24	2.06	Dry
11/25/2015	1.89	5.45	3.04	0.48	1.08	4.51	0.21		4.97	0.06	0.21	3.76	0.15	4.42	1.83	2.76	1.79	4.12	1.44		1.73	0.74	1.87	
12/18/2015	1.32	5.01	3.13	0.81	N/G	4.61 **	0.68		3.16	0.57	0.55	4.01	0.21 **	4.51 **	1.14 **	2.86 **	1.79	4.54	1.58		2.18	1.04	1.77	N/G
12/29/2015	0.71	5.41	3.11	0.46	N/G	ተ ች	0.99		5.03	0.73	0.62	3.60	ጥጥ	ተ ች	ጥች	**	1.72	4.16	1.43		2.21	1.01	2.12	N/G

Received by OCD: 10/25/2022 9:30:27 AM

Table 2
Summary of Apparent LNAPL Thickness In Wells
Targa Midstream Services LLC, Eunice Gas Plant
Lea County, New Mexico

												Well Des	ignation											
Date	MW-2A	MW-03	MW-22	MW-27	MW-29	MW-32 (SB-1)	MW-33 SB-3)	MW-34 (SB-4)	MW-35 (SB-5)	MW-37 (SB-7)	MW-38 (SB-8)	RW-1	VW-1	VW-2	VW-3	VW-4	HVR-1	HV-1	HV-2	HV-3	HV-4	HV-5	HV-7	HV-9
1/6/2016	0.93	5.15	2.86	0.40	1.41	4.19	1.04		4.84	1.25	0.66	3.35	0.13	4.09	1.78	2.62	1.71	3.96	1.42		2.01	0.94	1.50	
1/20/2016	0.93	4.28	1.01	0.47	N/G		1.37		3.30	2.29	0.68	2.24	0.18	3.17	0.84	2.07	1.56	4.15	1.45		2.39	1.12	1.48	
2/2/2016	0.93	4.52	0.33	0.38		2.58	1.49		2.96	2.59	0.84	2.09	0.09	2.66	0.76	1.44	1.27	2.67	1.51		2.39	0.35	1.19	0.14
2/17/2016	0.81	4.46	0.26	0.30	1.70	2.22	1.53		2.59	2.64	0.70	2.11	0.93	2.63	0.61	1.42	1.04	3.66	1.32		2.56		1.02	0.55
3/1/2016	0.84	4.20	0.82	0.22	1.77	2.36	1.88		2.64	2.96	0.92	2.47	0.17	2.83	0.82	1.59	1.05	3.64	1.38		2.72	0.33	0.99	0.79
3/10/2016	0.92	4.11	0.84	0.22	1.83	2.41	1.95		2.83	3.10	1.01	2.47	0.11	2.93	0.84	1.63	1.16	3.54	1.41		2.75	0.52	1.01	0.91
3/21/2016	0.76	3.27	0.77	0.16	1.79	2.43	1.98	0.95	2.77	3.17	0.91	2.35	0.12	2.93	0.78	1.79	1.03	3.42	1.40		2.81	0.37	0.78	0.78
4/4/2016	Sheen	4.04	1.02		1.84	2.55	2.09	1.93	2.90	3.68	0.07	2.41	0.11	2.99	0.88	1.93	1.04	3.32	1.38	0.47	2.85	0.38	0.67	
4/25/2016 5/4/2016	Sheen Sheen	3.54 4.19	1.08 1.14	0.02	2.06 1.83	2.52 2.59	2.28 2.38	3.76 4.53	2.84 2.85	1.78 2.36	0.84 0.89	2.35 2.45	0.09 0.13	2.95 3.02	0.92 0.98	2.02 2.10	1.01 1.01	2.91	1.26 1.27	0.17 0.51	2.84 2.96	0.49 0.47	0.43 0.54	0.86 0.72
5/18/2016	Sheen	3.90	0.22		1.75	2.59	2.56	4.55	2.87	3.31	0.89	2.43	0.13	3.02	1.03	2.16	1.01	*	1.20	1.24	2.89	0.47	0.34	0.72
6/3/2016		3.99	1.42		1.73	2.69	2.02	4.09	3.00	4.24	0.88	2.40 N/G	0.12	3.04	1.14	2.10	1.01	*	1.16	0.82	2.83	0.51	0.42	0.58
6/16/2016		3.86	1.57		1.39	1.80	4.03	4.78	3.07	4.61	0.98	2.51	0.19	3.03	1.22	2.22	1.01	*	1.11	0.83	2.80	0.59	0.29	0.52
6/30/2016		3.88	1.58		1.42	1.81	4.02	4.81	3.12	5.06	1.01	2.43	0.19	3.07	1.19	2.26	1.02	*	1.16	0.82	2.00	0.55	0.49	0.55
7/20/2016		4.17	1.88		0.91	3.01	3.28	4.83	3.36	5.40	1.01	N/G	0.16	3.16	1.56	2.27	1.01	*	1.10	1.01	2.79	0.46	0.37	0.53
7/28/2016		4.02	1.97		0.88	3.05	2.80	4.82	3.44	5.13	1.03	2.69	0.15	3.19	1.62	1.36	1.01	*	1.04	1.03	2.71	0.46	0.35	0.51
8/22/2016		4.19	2.16		0.79	3.23	3.55	4.85	3.60	5.27	1.04	2.81	0.18	3.28	1.75	2.43	1.01	*	1.13	1.18	2.63	0.43	0.39	0.54
9/7/2016		4.33	1.79		0.77	3.15	3.50	4.86	3.51	5.38	1.02	2.75	0.15	3.36	1.54	2.37	1.03	*	1.08	1.22	2.53	0.43		0.48
9/19/2016		3.94	1.05		0.70	2.83	3.53	4.87	4.95	5.32	0.96	2.48	0.10	3.21	1.02	2.15	1.03	2.84	1.04	1.23	2.49	0.46		0.41
10/4/2016		3.10	0.80		0.71	2.60	3.55	4.67	2.41	5.05	0.96	2.34	0.05	3.05	0.89	2.06	1.03	2.68	0.98	1.09	2.48	0.59	0.25	0.33
10/14/2016		3.51	0.85		0.61	2.56	3.54	4.64	2.25	4.89	0.95	2.40	0.06	3.09		2.00	1.05	2.25	0.99	1.09	2.45	0.60	0.24	0.35
10/25/2016		3.47	0.89		0.55	2.55	3.52	4.59	2.25	4.80	0.93	2.40	0.08	5.22	0.92	2.06	1.04	4.35	N/G	1.05	2.42	0.62	0.21	0.05
11/7/2016		3.33	1.06		0.53	2.59	3.50	4.61	2.41	4.72	1.03	2.40	0.06	3.05	1.00	2.06	1.02	2.10	0.91	0.94	2.33	0.63	0.17	0.29
11/21/2016		3.16	1.11		0.48	2.54	3.46	4.49	2.50	4.69	1.05	2.31	0.04	2.96	1.00	2.03	1.00	1.91	N/G	0.85	2.30	0.65	0.17	0.28
11/30/2016		2.59	1.38		0.43	2.69	3.49	4.61	2.69	4.72	1.18	2.52	0.11	3.08	1.21	1.00	1.00	2.24	0.84	0.97	2.33	0.67	0.14	0.25
12/7/2016		3.44	1.37		0.32	2.68	3.47	4.57	2.39	4.46	1.21	2.45	0.08	3.03	1.24	2.00	1.02	2.01	0.77	0.89	1.57	0.60	0.07	0.25
12/19/2016 1/3/2017		3.39 3.52	1.53 1.49		0.26 0.11	2.75 2.93	3.44 3.47	3.80 4.60	2.66 2.89	2.31	1.27 1.30	2.61 2.49	0.12 0.10	3.09 2.94	1.40 1.41	2.03	0.45 0.46	2.54 2.11	0.83 0.70	0.98	1.61 1.56	0.75 0.55	0.16 0.04	0.31
1/3/2017		3.28	1.49			2.95	4.44	4.59	2.89	4.29	1.31	2.49	0.10	3.03	1.38	2.03	0.45	2.11	0.70	0.89	1.56	0.55	0.04	0.25
1/30/2017		3.65	1.49			2.78	3.40	4.50	3.05	4.55	1.35	2.50	0.03	3.06	1.40	2.10	0.49	2.44	0.70	0.83	1.54	0.69	0.04	0.23
2/13/2017		3.77	1.49			2.78	3.42	4.48	3.10	4.69	1.32	2.51	0.09	3.04	1.41	2.10	0.50	2.34	0.62	0.80	1.56	0.61		0.12
3/10/2017		3.69	1.51			2.86	3.43	4.56	3.22	5.01	1.41	2.53	0.10	3.08	1.60	2.11	0.49	2.41	0.48	0.76	1.51	0.63		0.07
3/20/2017		3.61	1.43			2.77	3.42	4.50	3.22	5.09	1.41	2.44	0.07	3.03	1.41	2.11	0.47	2.29	0.52	0.77	1.54	0.59		0.07
4/10/2017		3.60	1.49			2.87	3.46	4.60	3.34	4.87	1.46	2.59	0.10	3.10	1.63	2.14	0.46	2.38	0.43	0.77	1.52	0.61		0.03
4/24/2017		3.22	1.31			2.79	3.43	4.60	3.30	5.18	1.41	2.40	0.09	3.02	1.45	2.15	0.44	2.15	0.39	0.77	1.82	0.47		
5/19/2017		3.63	1.98			2.87	3.48	4.53	3.25	4.91	1.43	2.25	0.07	3.10	1.80	2.23	0.46	2.33	0.37	0.83	1.49	0.41		
5/23/2017		N/G	N/G			N/G	N/G	N/G	N/G	N/G	N/G	N/G	N/G	N/G	N/G	N/G	0.44	2.15	0.93	0.76	N/G	0.47		
6/12/2017		3.66	1.87			3.14	3.55	4.51	2.19	5.09	1.32	2.74	0.11	3.19	1.95	2.40	0.43	2.15	0.43	0.95	1.78	0.50		
6/23/2017			1.94			3.05	3.55	4.56	2.20	5.27	1.57	2.75	0.11	3.23	1.96	2.42	0.44	2.24						
7/11/2017	1.11	3.63	1.99			3.00	3.53	4.70	3.18	4.88	1.48	2.80	0.07	3.23	1.97	2.46	0.39	2.40	0.47	0.73	1.52	0.49		
8/3/2017	1.68	3.98	2.13			3.07	3.55	4.58	4.20	5.01	1.65	2.90	0.10	3.34	2.07	2.57	0.47	2.45	0.55	0.70	1.55	0.49		
8/25/2017	1.67	3.98	2.15			3.02	3.60	4.57	4.19	4.98	1.65	2.91	0.12	3.35	2.05	2.54	0.50	2.47	0.52	0.70	1.52	0.60		
9/5/2017	1.71	3.91	1.19			2.48	3.59	4.36	2.10	4.51	1.29	2.35	0.11	3.10	0.95	1.70	0.42	2.41	0.57	0.59	1.50	0.44		
9/21/2017	1.21	3.80	0.70			2.22	3.47	4.27	1.42	4.32	N/R	2.15	0.02	2.85	0.73	1.82	0.43	2.23	0.56	0.58	1.43	0.36		
10/11/2017 11/8/2017	1.20 0.16	4.13 3.77	0.63 0.17			2.13 2.03	3.39 3.44	4.19 4.15	1.27 1.66	4.17 4.20	N/R N/R	2.15 2.15	0.04 0.10	2.85 2.82	0.71 0.71	1.88 1.91	0.43 0.49	2.34 2.12	0.58 0.48	0.64 0.63	1.90 1.49	0.45 0.45		
11/8/2017	1.50	3.77				2.03	3.40	4.13	1.00	4.20	N/R	2.13	0.10	2.82	0.71	1.84	0.49	1.73	0.40	0.63	1.49	0.43		
12/20/2017	1.47	3.43				2.07	3.40	4.32	2.36	4.15	2.94	2.44	0.03	2.95	1.05	1.97	0.44	1.73	0.33	0.63	1.44	0.43		

Received by OCD: 10/25/2022 9:30:27 AM

Table 2 Summary of Apparent LNAPL Thickness In Wells Targa Midstream Services LLC, Eunice Gas Plant Lea County, New Mexico

												Well Des	signation											
Date	MW-2A	MW-03	MW-22	MW-27	MW-29	MW-32 (SB-1)	MW-33 SB-3)	MW-34 (SB-4)	MW-35 (SB-5)	MW-37 (SB-7)	MW-38 (SB-8)	RW-1	VW-1	VW-2	VW-3	VW-4	HVR-1	HV-1	HV-2	HV-3	HV-4	HV-5	HV-7	HV-9
1/10/2018	1.58	2.99				2.15	3.44	4.34	2.64	4.24	2.96	2.47	0.03	2.96	1.11	2.11	0.45	0.45	0.32	0.64	1.44	1.46		
1/26/2018	1.71	3.34				2.35	3.44	4.41	2.87	4.33	3.04	2.65	0.03	3.15	1.16	2.51	0.45	1.98	0.31	0.72	1.44	0.51		
2/9/2018	1.76	3.40				4.43	3.45	4.42	3.04	4.43	3.10	2.76	0.05	3.18	1.27	2.61	0.44	2.20	0.28	0.63	1.48	0.45		
2/23/2018	1.79	3.61				3.43	3.52	4.39	4.22	4.54	3.16	2.87	0.04	3.28	1.34	2.75	0.43	1.96	0.29	0.62	1.45	0.48		
3/12/2018	1.87	4.01				2.45	3.51	4.46	3.33	4.58	3.22	3.10	0.08	3.46	1.52	3.01	0.44	2.27	0.26	0.62	1.46	0.52		
3/26/2018	1.94	3.52	0.13			2.55	3.60	4.63	3.50	4.72	3.28	3.10	0.07	3.49	1.60	3.14	0.44	1.92	0.28	0.62	1.40	0.46		
4/30/2018	2.20	2.01	0.79			2.76	3.66	4.78	3.74	4.91	3.27	3.18	0.11	3.87	1.86	3.48	0.43	3.60	0.27	0.60	1.41	0.42		
5/29/2018	2.35	3.75	1.95			3.21		4.94	3.98	5.11	3.38	3.46	0.12	3.77	2.38	3.71	1.36	2.12	0.31	0.63	1.41	0.47		
6/13/2018	2.45	4.07	2.64			3.49	3.75	5.02	4.06	5.93	3.44	4.00	0.14	4.04	2.98	3.86	1.51	2.38	0.42	0.71	1.50	0.54		
7/20/2018	2.62	2.32	3.21			4.03	3.92	5.21	4.37	5.48	3.71	4.26	0.16	4.49	3.25	4.22	1.82	4.05	0.61	0.54	1.44	0.52		
8/24/2018	2.71	4.22	3.58			4.38	4.14	5.34	4.59	5.75	5.75	4.39	0.11	4.68	3.35	4.39	2.03	2.31	0.71	0.38	1.50	0.45		
9/21/2018	2.79	2.88	3.77			4.57	4.35	5.50	4.86	5.87	4.11	4.37	0.17	4.87	3.37	4.33	2.00	2.54	0.82	0.47	1.97	0.50		
10/18/2018	2.77	3.14	3.57			4.71	4.65	5.65	5.02	4.30	4.33	0.18	0.18	4.90	2.93	4.62	2.40	2.98	0.90	0.33	1.05	0.47		
11/1/2018								5.64				4.20												
12/18/2018	0.87	4.51	4.53			5.25	4.62	5.16		5.89	5.09	4.13	0.08	4.69	3.15	4.18	2.35	2.72	0.85	0.31	1.43	0.33		
4/1/2019	2.13	4.75	3.96		0.01	4.60	4.73	5.69	5.46	5.93	5.19	4.28	1.00	4.68	3.36	4.14	2.61	3.09	0.87	0.42	1.39	0.19	0.01	0.26
7/29/2019	2.90	4.77	4.26			4.86	4.91	5.75	5.75	6.08	5.81	4.60	0.19	4.90	3.84	4.46	2.82	3.15	1.05	0.22	1.37	0.44		
8/17/2020	2.67	6.25	4.40	2.37	0.01	5.08	5.21	6.04	6.15	6.61	6.33	4.78	3.86	4.99	4.09	4.51	3.57	4.23	1.48	0.28	0.39			
10/25/2021	2.62	6.68	3.72	2.42		3.77	3.97	4.51	4.54	4.98	4.54	3.47	4.81	3.52	3.16	3.40	4.09	4.77	2.32		0.98			
3/28/2022	2.50	6.73	3.22	2.11		3.31	3.70	3.97	4.55	4.07	3.93	3.03	3.25	3.23	2.89	3.26	3.95	4.70	2.36	0.04	0.99			

Data prior to April 2019 collected by others and transposed from 2018 Groundwater Monitoring Report prepared by Larson & Associates, Inc. (March 11, 2019).

N/G: Not gauged

N/I: Well not installed

-- : Measurable LNAPL not observed

Table 3
Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L)
Targa Midstream Services LLC - Eunice Gas Plant
Eunice, Lea County, New Mexico

Well Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
NM WQCC Standa		0.01	0.75	0.75	0.62	250
MW-1	04/23/02	<0.001	<0.001	<0.001	<0.001	724
	09/05/02	<0.001	<0.001	<0.001	<0.001	851
	11/06/02					957
	06/13/03	<0.001	<0.001	<0.001	<0.001	939
	11/11/03	<0.001	<0.001	<0.001	<0.002	1,170
Duplicate	11/11/03	<0.001	<0.001	<0.001	<0.002	
·	05/24/04	<0.001	<0.001	<0.001	<0.002	956
	11/10/04	<0.001	<0.001	<0.001	<0.002	1,060
Duplicate	11/10/04	<0.001	<0.001	<0.001	<0.002	·
·	05/25/05	<0.001	<0.001	<0.001	<0.002	1,170
	11/30/05	<0.001	<0.001	<0.001	<0.002	828
	06/27/06	<0.001	<0.001	<0.001	<0.002	808
	12/05/06	<0.001	<0.001	<0.001	<0.002	662
	06/07/07	<0.0002	<0.0002	<0.0002	<0.0006	740
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	810
	06/25/08	<0.0008	<0.002	<0.002	<0.003	909
	11/24/08	<0.0008	<0.002	<0.002	<0.003	849
	03/23/09	<0.0008	<0.002	<0.002	<0.003	836
	10/12/09	<0.0008	<0.002	<0.002	<0.003	692
	06/21/10	<0.0008	<0.002	<0.002	<0.003	570
Duplicate	06/21/10	<0.0008	<0.002	<0.002	<0.003	
Duplicate	11/10/10	<0.0008	<0.002	<0.002	<0.003	446
	06/22/11	<0.000	<0.002	<0.002	<0.003	562
	11/29/11	<0.004	<0.001	<0.001	<0.001	360
	06/19/12	<0.0004	<0.0003	<0.0003	<0.003	361
						339
	12/03/12 05/16/13	<0.0008 <0.0008	<0.002 <0.002	<0.002 <0.002	<0.003 <0.003	408
	11/19/13	<0.0008	<0.002	<0.002	<0.003 <0.003	747
	06/04/14	<0.0008	<0.002	<0.002	<0.003	721
	12/17/14	<0.0008	<0.002	<0.002	<0.003	885
	06/02/15	<0.0008	<0.002	<0.002	<0.003	839
	11/10/15	<0.0008	<0.002	<0.002	<0.003	863
	04/05/16	<0.0008	<0.002	<0.002	<0.003	356
	11/08/16	<0.00200	<0.00600	<0.00600	<0.00900	763
	05/24/17	<0.00200	<0.00600	<0.00600	<0.00600	831
	11/30/17	<0.0008	<0.002	<0.002	<0.002	728
	06/15/18					523
	04/05/19	<0.0002	<0.0002	<0.0004	<0.001	350
	8/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	301
	10/25/2021					318
	3/30/2022					312
MW-5	09/05/02	<0.001	<0.001	<0.001	<0.001	514
	11/06/02					585
	06/13/03	<0.001	<0.001	<0.001	<0.001	425
5	11/12/03	<0.001	<0.001	<0.001	<0.002	549
Duplicate	11/12/03	<0.001	<0.001	<0.001	<0.002	
	05/24/04	<0.001	<0.001	<0.001	<0.002	898
	11/10/04	<0.001	<0.001	<0.001	<0.002	727
	05/25/05	<0.001	<0.001	<0.001	<0.002	794
	12/02/05	0.00108	<0.001	0.000992	0.000936	568
	06/27/06	<0.001	<0.001	<0.001	<0.002	682
	12/12/06	<0.001	<0.001	<0.001	<0.002	565
Duplicate	12/12/06	<0.001	<0.001	<0.001	<0.002	
	06/06/07	0.0016	<0.0002	<0.0002	<0.0006	350
	12/04/07	0.0069	<0.0002	<0.0002	<0.0006	210
	06/26/06	0.00166	<0.002	<0.002	< 0.003	196

Table 3
Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L)
Targa Midstream Services LLC - Eunice Gas Plant
Eunice, Lea County, New Mexico

Vell Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
IM WQCC Standa		0.01	0.75	0.75	0.62	250
MW-5	11/25/08	0.000839	<0.002	<0.002	<0.003	170
	03/23/09	0.000805	<0.002	<0.002	<0.003	150
Duplicate	03/23/09	0.000875	< 0.002	<0.002	<0.003	
Duplicate	10/13/09	0.00363	<0.002	<0.002	<0.003	149
	06/22/10	0.00303	<0.002	<0.002	<0.003	170
	11/10/10	0.0636	0.0979	0.0837	0.122	173
	06/23/11	< 0.000743	<0.000671	<0.000923	<0.000838	348
	11/29/11	<0.000743	<0.000871	<0.000923	<0.00036	158
	06/19/12	0.00787	0.0793	0.0602	0.1020	228
	12/04/12	<0.0008	<0.002	<0.002	<0.003	205
	05/16/13	0.00305	<0.002	<0.002	<0.003	215
	11/20/13	<0.0008	<0.002	<0.002	<0.003	226
	06/11/14	0.00175	<0.002	0.0028	<0.003	145
	12/18/14	<0.0008	<0.002	<0.002	<0.003	153
	06/02/15	<0.0008	<0.002	<0.002	<0.003	187
	11/10/15	<0.0008	<0.002	<0.002	<0.003	212
	04/05/16	<0.0008	<0.002	<0.002	<0.003	176
	11/08/16	<0.00200	<0.00600	<0.00600	<0.00900	195
	05/24/17	0.00116	<0.00600	<0.00600	<0.00600	230
	11/29/17	0.00102	<0.002	<0.002	<0.002	229
	06/15/18					232
	04/08/19	0.001	<0.0002	<0.0004	<0.001	226
	08/18/20		Well	Damaged - Not Sar	npled	
	10/27/21					240
	03/30/22					241
MW-6	09/05/02	0.136	0.307	0.003	0.229	514
	11/06/02	0.102	<0.010	0.212	<0.219	567
	06/13/03	0.036	0.005	0.019	0.029	487
	11/12/03	0.007	0.004	0.084	<0.001	487
	05/24/04	0.186	<0.001	0.002	<0.001	418
	11/10/04	0.0385	0.00318	0.00435	0.01089	496
	05/25/05	0.787	0.00577	1.16	0.0514	404
	12/02/05	0.684	0.00377	0.109	<0.02	241
	06/27/06	0.0533	<0.001	<0.001	<0.02	279
	12/08/06	0.335	0.0025	0.060	0.00307	244
	06/07/07	1.0	<0.002	0.019	<0.006	240
	12/04/07	0.12	0.0035	0.013	<0.006	230
	06/26/08	0.403	<0.002	0.153	0.0922	306
	11/25/08	0.520	<0.01	0.130	0.235	316
	03/24/09	0.393	0.00210	0.0653	0.162	322
	10/13/09	1.18	0.00230	<0.002	0.0335	265
	06/21/10	1.64	0.06470	<0.01	0.0878	197
	11/10/10	2.50	<0.04	<0.04	<0.06	226
	06/23/11	3.02	< 0.0336	<0.0462	<0.0419	265
	11/29/11	2.49	<0.0150	0.0937	<0.0166	231
	06/19/12	1.06	<0.04	0.08	<0.06	348
	12/04/12	0.81	<0.02	0.0981	<0.03	414
	05/16/13	0.62	0.123	<0.01	<0.015	434
	11/20/13	0.70	0.697	<0.02	<0.03	453
	06/04/14	1.49	<0.01	0.2920	<0.015	577
	12/18/14	1.44	<0.02	0.17100	<0.03	417
	06/02/15	0.80	<0.02	0.17300	<0.03	872
	11/10/15	0.50	<0.02	0.16900	0.0375	862
	04/05/16	0.389	<0.02	0.14400	0.0643	997
	11/09/16	0.167	<0.0600	<0.0600	<0.0900	894
	05/24/17	0.00161	<0.00600	<0.00600	0.0331	1,010
						2,210
	11/29/17	0.00700	<0.002	<0.002	<0.002	•
	06/15/18	0.0253	<0.00600	0.183	0.0256	1,010
	04/08/19	0.091	<0.0002	0.070	0.004 J	1,250
	08/19/20	0.00174	0.000418 J	0.00159	0.000216 J	1,030
	10/26/21 03/29/22	0.00244 0.00142	<0.001	<0.001	<0.003	913 1,020
			< 0.001	<0.001	<0.003	4 020

Table 3
Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L)
Targa Midstream Services LLC - Eunice Gas Plant
Eunice, Lea County, New Mexico

Well Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
NM WQCC Standa		0.01	0.75	0.75	0.62	250
MW-8	09/06/02	<0.001	<0.001	<0.001	<0.001	337
	11/07/02					638
	06/13/03	<0.001	<0.001	<0.001	<0.001	399
	11/11/03	<0.001	<0.001	<0.001	<0.002	1,080
	05/24/04	<0.001	<0.001	<0.001	<0.002	400
	11/10/04	<0.001	<0.001	<0.001	<0.002	674
	05/26/05	<0.001	<0.001	<0.001	<0.002	281
Duplicate	05/26/05	<0.001	<0.001	<0.001	<0.002	
	12/06/05	<0.001	<0.001	<0.001	<0.002	385
	12/05/06	<0.001	<0.001	<0.001	<0.002	588
	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	460
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	750
	06/25/08	<0.0008	<0.002	<0.002	<0.003	746
	11/24/08	<0.0008	<0.002	<0.002	<0.003	686
	03/23/09	<0.0008	<0.002	<0.002	<0.003	662
	10/12/09	<0.0008	<0.002	<0.002	<0.003	471
	06/21/10	<0.0008	<0.002	<0.002	<0.003	558
	11/10/10	0.0187	0.0130	0.0185	0.0262	575
	06/23/11	<0.000743	<0.000671	<0.000923	<0.000838	682
	11/29/11	<0.000743	<0.0003	<0.0003	<0.000333	175
	06/19/12	<0.0004	<0.003	<0.002	<0.003	308
	12/03/12	<0.0008	<0.002	<0.002	<0.003	679
	05/16/13	<0.0008	<0.002	<0.002	<0.003	608
	11/19/13	<0.0008	<0.002	<0.002	<0.003	807
	06/04/14	<0.0008	<0.002	<0.002	<0.003	552
	12/17/14					
		<0.0008	<0.002	<0.002	<0.003	236
	06/02/15	<0.0008	<0.002	<0.002	<0.003	592
	11/11/15	<0.0008	<0.002	<0.002	<0.003	490 523
	04/05/16	<0.0008	<0.002	<0.002	<0.003	523 545
	11/08/16	<0.00200	<0.00600	<0.00600	<0.00900	
	05/24/17	<0.00200	<0.00600	<0.00600	<0.00600	622
	11/29/17	0.00254	<0.002	<0.002	<0.002	2,950
	06/15/18					838
	04/08/19	<0.0002	0.0004 J	<0.0004	<0.001	1,740
	08/18/20	<0.001	<0.001	<0.001	<0.003	1,490
	10/27/21					1,480
	03/30/22					1,780
MW-13	06/16/03	<0.001	<0.001	<0.001	<0.001	8,680
	11/13/03	<0.001	<0.001	<0.001	<0.002	9,310
	05/26/04	<0.001	<0.001	<0.001	<0.002	7,500
	11/11/04	0.000404	<0.001	<0.001	<0.002	9,390
	05/25/05	<0.001	<0.001	<0.001	<0.002	4,220
	12/07/05	<0.001	<0.001	<0.001	<0.002	5,950
	06/27/06	<0.001	<0.001	<0.001	<0.002	6,890
Duplicate	06/27/06	<0.001	<0.001	<0.001	<0.002	
	12/06/06	<0.001	<0.001	<0.001	<0.002	6,150
	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	5,800
	12/03/07	0.0061	<0.0002	<0.0002	<0.0006	5,900
	06/25/08	0.00560	<0.002	0.00797	< 0.003	7,290
	11/24/08	0.00430	<0.002	0.00716	< 0.003	6,500
	03/24/09	0.00447	<0.002	<0.002	0.00444	6,460
	10/12/09	0.00164	<0.002	<0.002	< 0.003	5,780
	06/22/10	<0.0008	<0.002	<0.002	< 0.003	6,460

Table 3
Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L)
Targa Midstream Services LLC - Eunice Gas Plant
Eunice, Lea County, New Mexico

Well Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
NM WQCC Standa		0.01	0.75	0.75	0.62	250
MW-13	11/10/10	<0.0008	<0.002	<0.002	<0.003	6,690
	06/22/11	<0.001	<0.001	<0.001	<0.001	7,180
	11/30/11	<0.001	<0.001	<0.001	<0.001	5,950
	06/19/12	0.05620	0.719	0.25	0.414	6,930
	12/04/12	<0.0008	<0.002	< 0.002	< 0.003	7,010
	05/16/13	0.00112	<0.002	0.0081	0.00922	8,100
	11/20/13	<0.0008	<0.002	<0.002	< 0.003	8,370
	12/17/14	<0.0008	<0.002	<0.002	< 0.003	6,280
	06/03/15	<0.0008	<0.002	<0.002	< 0.003	6,520
	11/10/15	<0.0008	<0.002	<0.002	< 0.003	6,810
	04/05/16	<0.0008	<0.002	<0.002	<0.003	6,180
	11/08/16	<0.00200	<0.00600	<0.00600	<0.00900	5,560
	05/25/17	0.00481	<0.00600	<0.00600	<0.00600	5,520
	11/29/17	<0.0008	<0.002	<0.002	<0.002	5,290
	06/15/18					5,580
	04/05/19	<0.0002	0.0002 J	<0.0004	<0.001	4,700
	08/19/20	<0.002	<0.001	<0.001	<0.001	6,120
	10/26/21	<0.001 	<0.001 	~U.UU I		5,730
	03/30/22	<u></u>				6,560
MW-14		0.012	<0.001	<0.001	<0.002	25,000
10100-14	06/16/03					
	11/12/03	0.002	<0.001	<0.001	<0.001	25,900
	05/24/04	0.510	<0.001	<0.001	<0.001	12,300
	11/10/04	0.817	0.000813	0.001820	0.006435	25,500
	05/25/05	0.95	<0.005	0.0302	0.0215	57,600
	12/07/05	0.334	<0.010	<0.010	<0.020	22,800
Duplicate	12/07/05	0.334	<0.010	<0.010	<0.010	
	06/27/06	0.639	<0.001	<0.001	<0.002	13,700
	12/06/06	0.0271	0.00707	0.0004	0.0258	8,770
	06/07/07	0.20	0.00054	0.00049	0.0025	31,000
	12/03/07	0.40	<0.0008	0.011	0.0077	43,000
Duplicate	12/03/07	0.41	<0.0008	0.011	0.008	
	06/26/08	0.574	<0.002	0.00461	0.00505	43,400
Duplicate	06/26/08	0.575	<0.002	0.00515	0.00577	
	11/25/08	0.657	<0.01	<0.01	<0.015	44,600
	03/24/09	0.555	<0.002	0.00474	0.00534	45,500
	10/13/09	0.700	<0.02	<0.02	< 0.03	50,100
	06/22/10	0.520	<0.02	<0.02	< 0.03	39,600
	11/10/10	0.589	<0.01	<0.01	<0.015	43,900
	06/23/11	0.470	<0.00336	< 0.00462	< 0.00419	39,600
	11/29/11	0.873	<0.00150	0.0104	0.01690	49,000
	06/19/12	0.277	<0.002	<0.002	<0.003	24,800
	12/04/12	0.582	<0.01	<0.01	<0.015	35,700
	05/16/13	0.551	<0.01	<0.01	<0.015	35,600
	11/19/13	0.301	<0.01	<0.02	<0.03	38,300
	06/11/14	0.634	<0.02	<0.02	<0.03	20,600
	12/17/14	0.189	<0.02	<0.02	<0.03	34,900
	06/02/15	0.639	<0.02	<0.02	<0.03	
	11/10/15				<0.003 <0.015	24,500
		0.559	<0.01	<0.01		24,500 24,800
	04/05/16	0.299	<0.002	<0.002	< 0.003	21,800
	11/09/16	0.00342	<0.00600	<0.00600	<0.00900	21,500
	05/25/17	0.104	<0.00600	<0.00600	<0.00600	23,400
	11/29/17	0.0652	<0.002	<0.002	<0.002	26,300
	06/15/18	0.0453	<0.00600	<0.00600	<0.00600	29,000
	04/05/19	0.009	<0.0002	<0.0004	<0.001	13,100
Ouplicate (MW-X)	04/05/19	0.013	<0.0002	<0.0004	<0.001	
	08/19/20	0.00318	<0.001	<0.001	0.000391 J	15,900
	10/25/21	0.00399	<0.001	<0.001	0.000411 J	13,900
	03/29/22	0.06640	<0.001	<0.001	0.000238 J	29,500

Table 3
Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L)
Targa Midstream Services LLC - Eunice Gas Plant
Eunice, Lea County, New Mexico

Well Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
NM WQCC Standa		0.01	0.75	0.75	0.62	250
MW-15	06/16/03	<0.001	<0.001	<0.001	<0.001	1,600
	11/12/03	<0.001	<0.001	<0.001	<0.002	1,120
	05/24/04	<0.001	<0.001	<0.001	<0.002	924
	11/10/04	<0.001	<0.001	<0.001	<0.002	1,240
	05/25/05	<0.001	<0.001	0.000718	0.000665	782
	12/07/05	<0.001	<0.001	<0.001	<0.002	746
	12/08/06	<0.001	0.00121	0.000355	0.002667	834
Duplicate	12/08/06	<0.001	<0.001	<0.001	<0.002	
Bapiloato	06/07/07	<0.0002	<0.0002	<0.0002	< 0.0006	1,100
	12/04/07	0.0028	<0.0002	<0.0002	<0.0006	940
	06/26/08	0.00330	<0.002	<0.002	<0.003	882
	11/25/08	0.00354	< 0.002	0.00269	0.005680	1,090
	03/24/09	0.00333	<0.002	<0.002	< 0.003	1,130
	10/13/09	0.00620	<0.002	<0.002	<0.003	862
	06/22/10	0.00020	<0.002	<0.002	<0.003	752
	11/11/10	0.00154	<0.002	<0.002	<0.003	835
	06/22/11	<0.001	<0.001	<0.001	<0.001	1,200
Dumlington	11/29/11	<0.0004	<0.0003	<0.0003	<0.000333	709
Duplicate	11/29/11	<0.0004	<0.0003	<0.0003	<0.000333	713
	06/19/12	<0.0008	<0.002	<0.002	<0.003	862
	12/04/12	<0.0008	<0.002	<0.002	<0.003	874
	05/16/13	0.00211	<0.002	<0.002	<0.003	656
	11/20/13	<0.0008	<0.002	<0.002	< 0.003	611
	06/11/14	0.00439	<0.002	0.00452	0.00390	945
	12/18/14	<0.0008	<0.002	<0.002	< 0.003	396
	06/02/15	<0.0008	<0.002	<0.002	< 0.003	391
	11/10/15	<0.0008	<0.002	<0.002	< 0.003	396
	04/05/16	<0.0008	< 0.002	< 0.002	< 0.003	434
	11/09/16	<0.00200	<0.00600	<0.00600	<0.00900	407
	05/24/17	<0.00200	<0.00600	<0.00600	<0.00600	341
	11/29/17	<0.0008	<0.002	<0.002	<0.002	384
	06/15/18					383
	04/08/19	< 0.0002	< 0.0002	< 0.0004	<0.001	267
	08/18/20	<0.001	<0.001	< 0.001	< 0.003	374
	10/25/21					386
	03/30/22					361
MW-18	01/19/06	<0.001	<0.001	<0.001	<0.002	2,430
	06/28/06	<0.001	<0.001	<0.001	< 0.002	3,100
	12/08/06	<0.001	<0.001	<0.001	<0.002	2,310
	06/07/07	<0.0002	<0.0002	<0.0002	<0.0006	3,700
	12/04/07	<0.0002	<0.0002	<0.0002	<0.0006	4,600
	06/25/08	<0.0008	<0.002	<0.002	<0.003	5,710
	11/25/08	<0.0008	<0.002	<0.002	<0.003	5,670
	03/24/09	<0.0008	< 0.002	<0.002	<0.003	5,750
	10/13/09	<0.0008	<0.002	<0.002	<0.003	6,090
	06/21/10	<0.0008	<0.002	<0.002	<0.003	6,120
	11/11/10	0.00221	<0.002	<0.002	<0.003	5,820
Duplicata	11/11/10	0.00221	<0.002	<0.002	<0.003	5,820
Duplicate	06/23/11	<0.00217	<0.002	<0.002	<0.003	6,370
Dunlingta						
Duplicate	06/23/11	<0.000765	<0.000719	<0.000860	<0.000942	6,090
	11/29/11	<0.0004	<0.0003	<0.0003	<0.000333	6,500
	06/19/12	<0.0008	<0.002	<0.002	<0.003	6,840
	12/04/12	<0.0008	<0.002	<0.002	<0.003	7,980
	05/17/13	0.00172	<0.002	<0.002	<0.003	8,940
	11/19/13	<0.0008	<0.002	<0.002	<0.003	8,330
	06/11/14	0.00156	<0.002	<0.002	<0.003	7,200

Table 3
Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L)
Targa Midstream Services LLC - Eunice Gas Plant
Eunice, Lea County, New Mexico

Well Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
NM WQCC Standa		0.01	0.75	0.75	0.62	250
MW-18	12/19/14	<0.008	<0.002	<0.002	<0.003	10,700
10100-10	06/02/15	0.0111	<0.002	<0.002	<0.003	11,200
	11/11/15	0.0277	<0.002	<0.002	<0.003	11,600
	04/05/16	0.0357	<0.002	<0.002	<0.003	13,400
	11/09/16	0.372	0.002 0.211	0.0452	0.0735	19,700
	05/25/17	0.372	0.0264	0.0452	0.0733	20,400
	11/29/17	0.219			0.0118	21,400
	06/14/18		0.0346	0.00646		23,900
		0.238	<0.00600	<0.00600	<0.00600	24,600
	04/08/19 08/19/20	0.130 0.139	<0.0002	<0.0004	<0.001	
			<0.001	<0.001	<0.003	14,600
	10/26/21	0.0638	<0.001	<0.001	<0.003	17,200
1414/40	03/29/22	0.0627	<0.001	<0.001	<0.003	16,700
MW-19	12/07/05	0.000812	<0.001	<0.001	<0.002	2,730
	06/28/06	<0.001	<0.001	<0.001	<0.002	3,760
Duplicate	06/28/06	<0.001	<0.001	<0.001	<0.002	
	12/08/06	<0.001	<0.001	<0.001	<0.002	4,510
	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	4,900
	12/04/07	<0.0002	<0.0002	<0.0002	<0.0006	5,300
	06/25/08	<0.0008	<0.002	<0.002	<0.003	7,130
	11/25/08	0.00262	<0.002	<0.002	<0.003	7,930
	03/24/09	0.00400	<0.002	<0.002	< 0.003	8,750
	10/13/09	0.0491	<0.002	<0.002	< 0.003	10,200
	06/21/10	0.0751	<0.002	<0.002	< 0.003	10,600
	11/11/10	0.0804	<0.002	<0.002	< 0.003	12,100
	06/23/11	0.0916	<0.000671	<0.000923	<0.000838	13,100
	11/29/11	0.1030	<0.0003	<0.0003	<0.000333	12,700
	06/19/12	0.0726	<0.002	<0.002	< 0.003	14,600
	12/04/12	0.0519	<0.002	<0.002	< 0.003	14,200
	05/17/13	0.0518	<0.002	<0.002	< 0.003	18,600
	11/19/13	0.0265	<0.002	<0.002	< 0.003	16,600
	06/11/14	0.0308	0.0135	0.003	< 0.003	11,600
	12/22/14	0.0234	<0.002	<0.002	< 0.003	14,300
	06/02/15	0.0173	<0.002	<0.002	< 0.003	13,300
	11/10/15	0.0291	<0.002	<0.002	< 0.003	13,000
	04/05/16	0.0202	<0.002	<0.002	< 0.003	11,500
	11/09/16	0.00904	<0.00600	<0.00600	<0.00900	12,200
	05/25/17	0.00573	<0.00600	<0.00600	<0.00600	10,700
	11/29/17	0.00382	<0.002	<0.002	<0.002	9,910
	06/15/18	0.00206	<0.00600	<0.00600	<0.00600	9,520
	04/04/19	0.0005 J	<0.0002	<0.0004	<0.001	8,260
	08/18/20	0.000288 J	0.000642 J	0.000251 J	0.000509 J	8,780
	10/26/21	<0.001	<0.001	<0.001	<0.003	7,060
	03/29/22	<0.001	<0.001	<0.001	<0.003	7,340
MW-20	12/07/05	<0.001	<0.001	<0.001	<0.002	3,110
	06/28/06	<0.001	<0.001	<0.001	<0.002	2,960
	12/08/06	<0.001	<0.001	<0.001	<0.002	2,110
Duplicate	12/08/06	<0.001	<0.001	<0.001	<0.002	
Daphouto	06/06/07	<0.0001	<0.001	<0.0001	<0.002	2,100
	12/04/07	<0.0002	<0.0002	<0.0002	<0.0006	2,300
	06/25/08	<0.0008	<0.002	<0.002	<0.003	2,270
	11/25/08	0.000936	<0.002	<0.002	<0.003	2,380
	03/24/09	0.00105	<0.002	<0.002	<0.003	2,790
	10/13/09	<0.008	<0.002	<0.002	<0.003	3,010
	06/21/10	<0.0008	<0.002	<0.002 <0.002	<0.003	2,730
	11/11/10	0.00200	< 0.002		<0.003	2,760
	06/23/11	<0.000743	<0.000671	<0.000923	<0.000838	3,400
	11/29/11	<0.0004	<0.0003	<0.0003	<0.000333	3,460
	06/19/12	<0.0008	<0.002	<0.002	<0.003	3,160
	12/04/12	<0.0008	<0.002	<0.002	<0.003	3,240

Table 3
Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L)
Targa Midstream Services LLC - Eunice Gas Plant
Eunice, Lea County, New Mexico

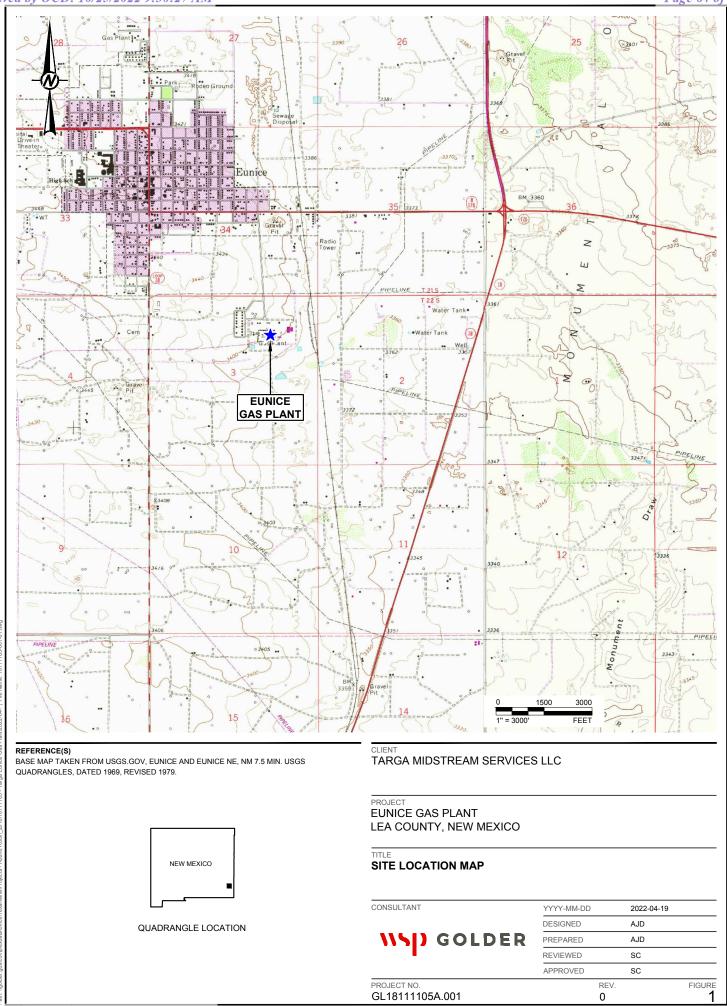
Well Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
NM WQCC Standa		0.01	0.75	0.75	0.62	250
MW-20	05/17/13	<0.0008	<0.002	<0.002	<0.003	3,270
WW 20	11/19/13	<0.0008	< 0.002	<0.002	<0.003	3,400
	12/22/14	<0.0008	<0.002	<0.002	<0.003	3,270
	06/02/15	<0.0008	<0.002	<0.002	<0.003	3,180
	11/10/15	<0.0008	<0.002	<0.002	<0.003	3,090
	04/05/16	<0.0008	<0.002	<0.002	<0.003	3,010
	11/09/16	<0.0008	<0.002	<0.002	<0.003	3,110
	05/25/17	<0.00200	<0.00600	<0.00600	<0.00900	2,800
		<0.00200	<0.002	<0.002	<0.002	2,560
	11/29/17	\0.0000	\0.002	\0.002	~0.002 	2,510
	06/15/18	<0.0002	<0.0002	<0.0004	<0.001	
	04/08/19					2,380
	08/18/20	<0.001	<0.001	<0.001	<0.003	2,190 2,400
	10/26/21					
NAVA / 00	03/30/22					2,420
MW-23	03/19/10	0.00447	0.00380	<0.002	<0.003	578
	05/27/10	0.00701	<0.002	<0.002	<0.003	355
	06/22/10	0.00854	<0.002	<0.002	<0.003	313
	11/11/10	0.00929	0.00473	0.00706	0.00907	573
	03/29/11	0.0129	<0.001	<0.001	<0.001	
	06/23/11	0.0081	<0.000719	<0.000860	<0.000942	1,140
	11/30/11	0.00660	<0.001	<0.001	<0.001	922
	06/19/12	0.00981	0.09540	0.06780	0.12000	1,400
Dup-1	06/20/12	0.00511	0.00551	0.00304	0.00403	1,330
	12/04/12	0.00914	<0.002	<0.002	<0.003	1,170
	05/16/13	0.01040	<0.002	<0.002	<0.003	1,540
	11/20/13	0.00148	<0.002	<0.002	<0.003	1,360
	06/11/14	0.01030	<0.002	<0.002	< 0.003	792
	12/19/14	0.00128	< 0.002	<0.002	< 0.003	399
	06/03/15	0.01070	<0.002	<0.002	< 0.003	344
	11/11/15	0.00303	< 0.002	<0.002	< 0.003	555
	04/05/16	0.00778	< 0.002	<0.002	< 0.003	158
	11/08/16	0.00806	<0.00600	<0.00600	<0.00900	241
	05/25/17	0.00549	<0.00600	<0.00600	<0.00600	230
	11/29/17	0.00722	<0.002	<0.002	<0.002	153
	06/14/18	0.00577	<0.00600	<0.00600	<0.00600	170
	04/05/19	0.010	<0.0002	<0.0004	<0.001	127
Duplicate (MW-Y)	04/05/19					146
	08/19/20	0.00663	<0.001	<0.001	0.000217 J	98.5
	10/25/21	<0.001	<0.001	<0.001	<0.001	374
DUP	10/25/21	<0.001	<0.001	<0.001	<0.001	384
	03/29/22	0.000811 J	0.000634 J	<0.001	0.000386 J	98.8
DUP-01	03/29/22	0.00109	0.000908 J	0.000260 J	0.000524 J	96.0
MW-28	03/29/11					757
	11/29/11	3.08	0.034	1.59	2.07	295
	06/19/12	2.43	0.094	1.61	2.04	419
	12/04/12	2.72	<0.04	1.90	2.83	357
Dup-2	12/04/12	2.44	<0.04	1.63	2.29	
	05/16/13	1.12	<0.04	0.38	0.33	625
	11/20/13	1.56	<0.02	1.13	1.34	769
	06/11/14	2.21	<0.02	1.57	1.80	659
	12/22/14	1.94	<0.04	1.870	1.62	143
	06/03/15	1.47	<0.04	1.240	0.609	178
	00/03/13					
		0.75	< 0.04	0.534	0.28	506
	11/11/15	0.75 1.03	<0.04 <0.002	0.534 0.781	0.28 0.304	506 433
	11/11/15 04/05/16	1.03	<0.002	0.781	0.304	433
	11/11/15 04/05/16 11/08/16	1.03 1.16	<0.002 <0.0600	0.781 1.04	0.304 0.285	433 408
	11/11/15 04/05/16 11/08/16 05/25/17	1.03 1.16 0.945	<0.002 <0.0600 <0.00600	0.781 1.04 0.656	0.304 0.285 0.115	433 408 290
	11/11/15 04/05/16 11/08/16 05/25/17 11/29/17	1.03 1.16 0.945 1.84	<0.002 <0.0600 <0.00600 <0.002	0.781 1.04 0.656 1.34	0.304 0.285 0.115 0.036	433 408 290 86.1
	11/11/15 04/05/16 11/08/16 05/25/17 11/29/17 06/15/18	1.03 1.16 0.945 1.84	<0.002 <0.0600 <0.00600 <0.002	0.781 1.04 0.656 1.34	0.304 0.285 0.115 0.036	433 408 290 86.1 452
	11/11/15 04/05/16 11/08/16 05/25/17 11/29/17 06/15/18 04/05/19	1.03 1.16 0.945 1.84 1.300	<0.002 <0.0600 <0.00600 <0.002 0.0008 J	0.781 1.04 0.656 1.34 0.470	0.304 0.285 0.115 0.036 0.053	433 408 290 86.1 452 208
Dup 04	11/11/15 04/05/16 11/08/16 05/25/17 11/29/17 06/15/18 04/05/19 08/19/20	1.03 1.16 0.945 1.84 1.300 1.380	<0.002 <0.0600 <0.00600 <0.002 0.0008 J <0.001	0.781 1.04 0.656 1.34 0.470 0.238 (J)	0.304 0.285 0.115 0.036 0.053 0.00268 J	433 408 290 86.1 452 208 135
Dup-01	11/11/15 04/05/16 11/08/16 05/25/17 11/29/17 06/15/18 04/05/19	1.03 1.16 0.945 1.84 1.300	<0.002 <0.0600 <0.00600 <0.002 0.0008 J	0.781 1.04 0.656 1.34 0.470	0.304 0.285 0.115 0.036 0.053	433 408 290 86.1 452 208

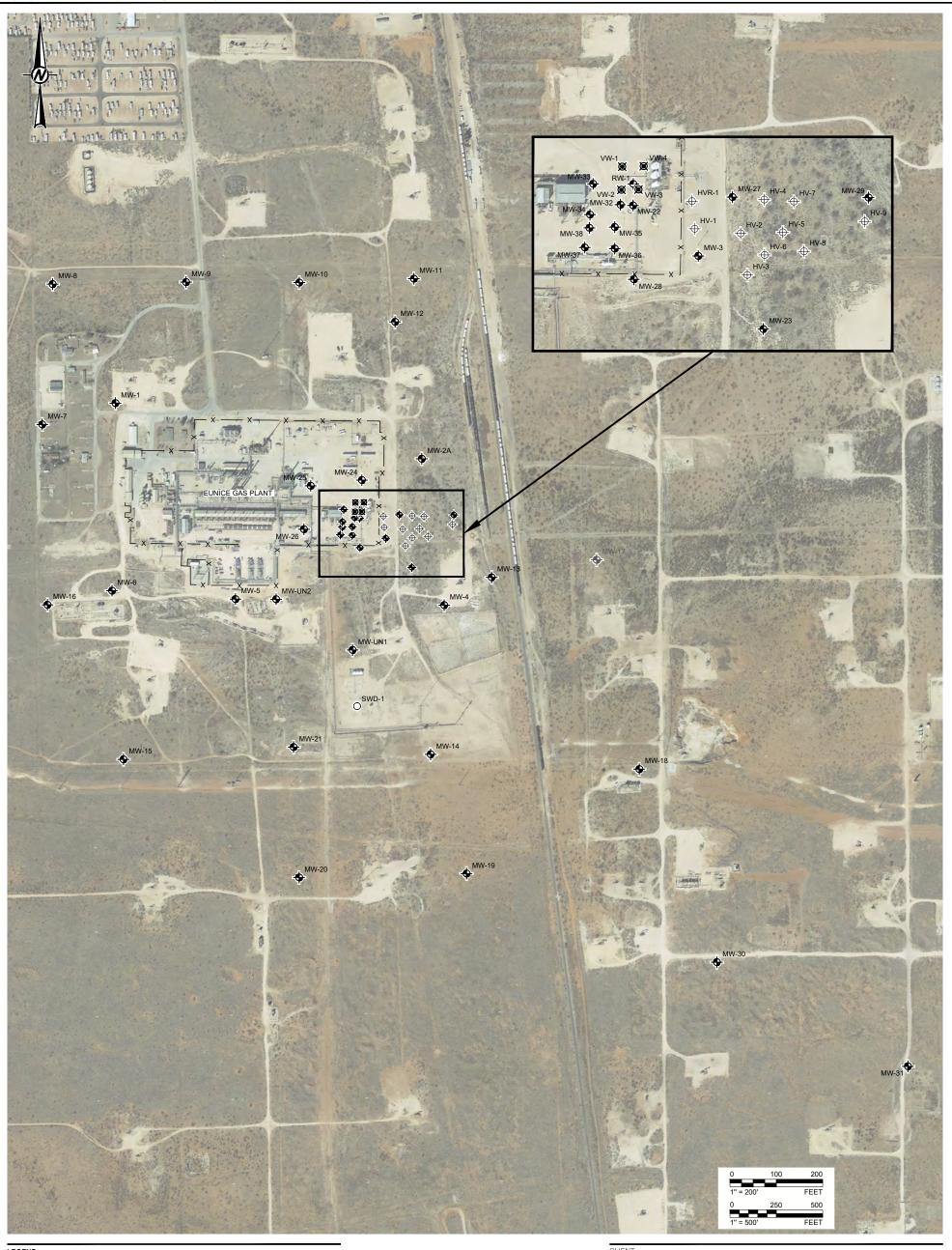
Table 3 Summary of Groundwater Analytical Data - BTEX and Chloride (mg/L) Targa Midstream Services LLC - Eunice Gas Plant Eunice, Lea County, New Mexico

Well Designation	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
NM WQCC Standard (mg/L):		0.01	0.75	0.75	0.62	250
MW-30	06/02/15	<0.0008	<0.002	<0.002	< 0.003	4,980
	11/11/15	<0.0008	<0.002	<0.002	< 0.003	4,570
	04/05/16	<0.0008	< 0.002	<0.002	< 0.003	4,640
	11/09/16	<0.00200	<0.00600	<0.00600	<0.00900	4,570
	05/25/17	<0.00200	<0.00600	<0.00600	<0.00600	3,790
	11/29/17	<0.0008	<0.002	<0.002	<0.002	3,200
	06/15/18					3,160
	04/08/19	<0.0002	<0.0002	<0.0004	<0.001	4,480
	08/18/20	<0.001	<0.001	<0.001	< 0.003	7,790
	10/26/21					10,000
	03/30/22					11,000
MW-31	04/25/16	<0.0008	<0.002	<0.002	< 0.003	1,830
	11/09/16	< 0.00200	<0.00600	<0.00600	<0.00900	1,940
	05/25/17	<0.00200	<0.00600	<0.00600	<0.00600	1,850
	11/29/17	<0.0008	<0.002	<0.002	<0.002	2,050
	06/15/18					2,480
	04/08/19	<0.0002	<0.0002	<0.0004	<0.001	3,100
	08/18/20	<0.001	<0.001	<0.001	< 0.003	3,050
	10/26/21					3,210
	03/30/22					3,660

Notes:

Data reported in milligrams per liter (mg/L)


Data collected by others through June 14, 2018 and transposed from 2017 and 2018 Groundwater Monitoring Reports (Larson & Associates, Inc.)


- < Denotes concentration below the Reporting Limit.
- -- Denotes chemical not analyzed
- J Estimated value >= Detection Limit and <Quantitation Limit
- (J) Estimated value Assigned through Data Validation (Relative Percent Difference > 40% for organic analytes)

LNAPL: Light non-aqueous phase liquid

Highlighted value denotes concentration exceeds New Mexico Water Quality Control Commission (WQCC) Standard for Groundwater of 10,000 mg/L TDS

Figures

LEGEND

SECURITY FENCE

- MONITORING WELL LOCATION
- HIGH VACUUM EXTRACTION WELL LOCATION
- RECOVERY WELL LOCATION
- MONITORING WELL LOCATION PLUGGED
- SALT WATER DISPOSAL WELL 0

NOTE(S)

1. LOCATION OF PLUGGED MONITORING WELL MW-17 AND MONITORING WELLS MW-25, MW-27 AND MW-29 ARE APPROXIMATE.

REFERENCE(S)
BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 2/20/19.

TARGA MIDSTREAM SERVICES LLC

PROJECT EUNICE GAS PLANT LEA COUNTY, NEW MEXICO

TITLE SITE MAP

CONSULTANT

GL18111105A.001

WSD GOLDER

YYYY-MM-DD		2022-04-19	
DESIGNED		AJD	
PREPARED		AJD	
REVIEWED		SC	
APPROVED		SC	
	REV.		FIGURE
	0		2

Released to Imaging: 8/8/2024 1:26:06 PM

MW-22* (3371.26) (3371.15) V-35* MW-38* (3370.67) HV-6 (3365.83) HV-8 (3364.60) Ф MW-10 (3370.22) MW-23 (3366.59) INSET A 3368 SEE INSET A THIS AREA MW-24 (3371.14) 3366. 3362. MW-21 (3353.62) 3334 3332 MW-19 (3348.82) 3356 3352 3342 3338 3336~ 3334 322 LEGEND NOTE(S) LOCATION OF PLUGGED MONITORING WELL MW-17 AND TARGA MIDSTREAM SERVICES LLC SECURITY FENCE MONITORING WELLS MW-25, MW-27 AND MW-29 ARE APPROXIMATE. MONITORING WELL LOCATION * LNAPL PRESENT HIGH VACUUM EXTRACTION WELL LOCATION **EUNICE GAS PLANT** LEA COUNTY, NEW MEXICO

RECOVERY WELL LOCATION

MONITORING WELL LOCATION - PLUGGED

(3352.08) GROUNDWATER POTENTIOMETRIC SURFACE (FT MSL) GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR (CONTOUR INTERVAL = 2 FT) 3350 -

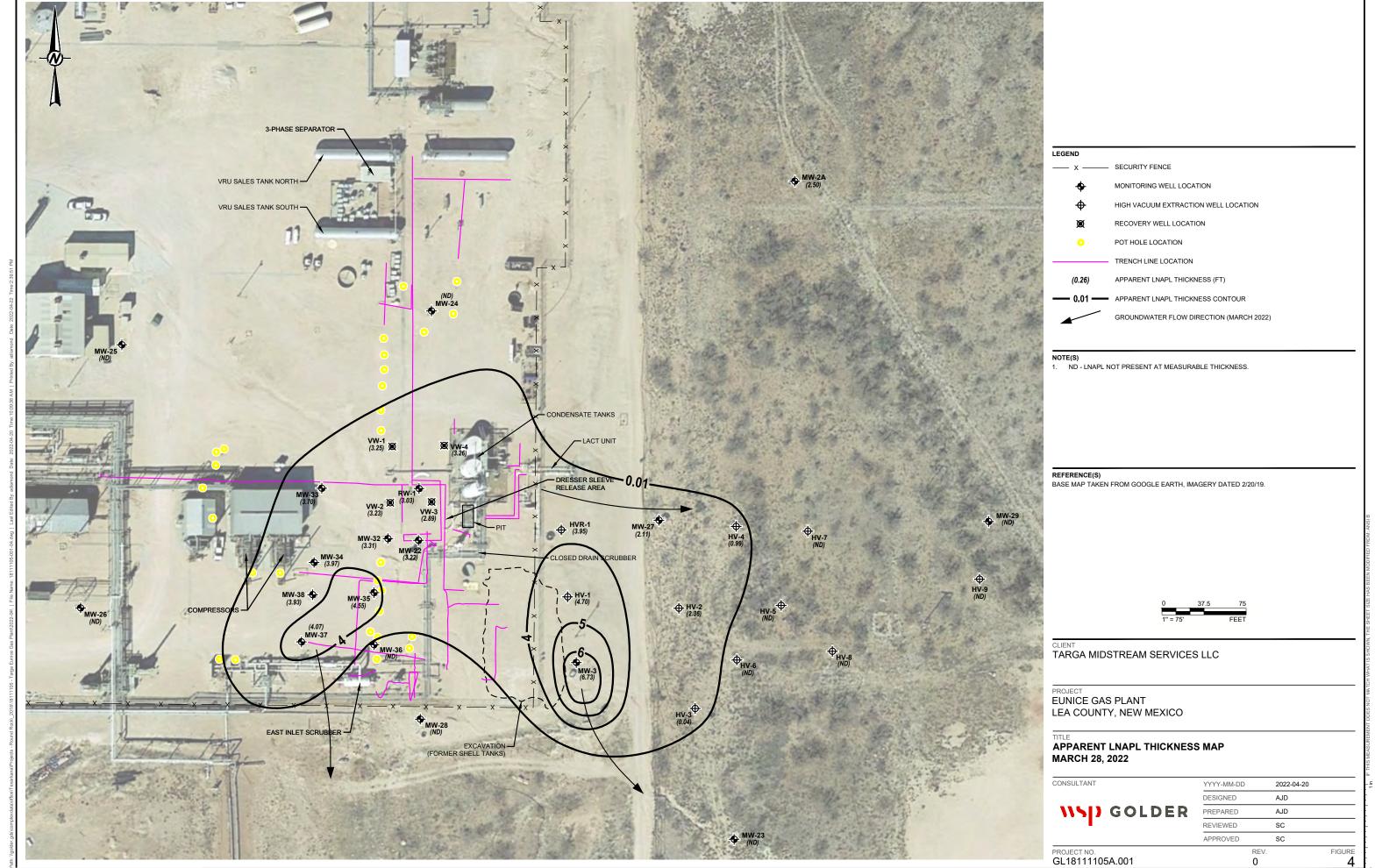
GROUNDWATER FLOW DIRECTION

GROUNDWATER GRADIENT MAP MARCH 28, 2022

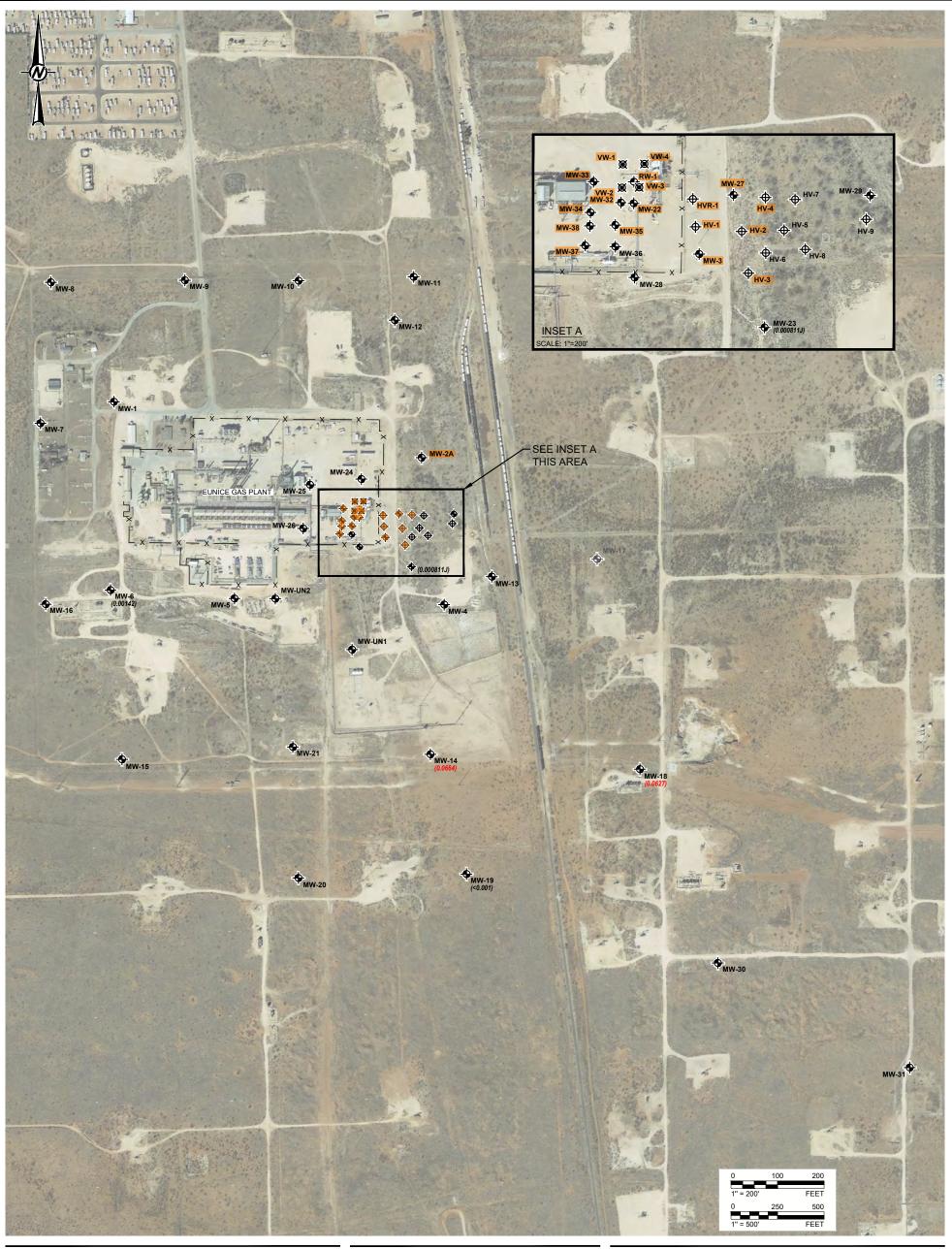
CONSULTANT

GL18111105A.001

YYYY-MM-DD 2022-04-19 DESIGNED AJD PREPARED AJD REVIEWED SC APPROVED SC


0

REFERENCE(S)
BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 2/20/19.


Released to Imaging: 8/8/2024 1:26:06 PM

Received by OCD: 10/25/2022 9:30:27 AM

Page 67 of 118

Released to Imaging: 8/8/2024 1:26:06 PM

LEGEND

SECURITY FENCE

- MONITORING WELL LOCATION
- HIGH VACUUM EXTRACTION WELL LOCATION
- RECOVERY WELL LOCATION
- MONITORING WELL LOCATION PLUGGED

BENZENE CONCENTRATION IN GROUNDWATER (mg/L) (0.130)

- NOTE(S) LOCATION OF PLUGGED MONITORING WELL MW-17 AND MONITORING WELLS MW-25, MW-27 AND MW-29 ARE APPROXIMATE.
- RED NUMBER SIGNIFIES BENZENE CONCENTRATION EXCEEDS NMWQCC HUMAN HEALTH STANDARD (0.010 mg/L). ORANGE HIGHLIGHTING DENOTES A LOCATION WHERE MEASURABLE THICKNESS OF LNAPL WAS PRESENT.

TARGA MIDSTREAM SERVICES LLC

PROJECT EUNICE GAS PLANT LEA COUNTY, NEW MEXICO

CONSULTANT

PROJECT NO. GL18111105A.001

BENZENE IN GROUNDWATER CONCENTRATION MAP **MARCH 2022**

IISI) GOLDER

YYYY-MM-DD 2022-04-20 DESIGNED AJD AJD PREPARED REVIEWED sc APPROVED SC

0

REFERENCE(S)
BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 2/20/19.

LEGEND

SECURITY FENCE

- MONITORING WELL LOCATION
- HIGH VACUUM EXTRACTION WELL LOCATION
- RECOVERY WELL LOCATION
- MONITORING WELL LOCATION PLUGGED
- CHLORIDE CONCENTRATION IN GROUNDWATER (mg/L) (127)

- NOTE(S) LOCATION OF PLUGGED MONITORING WELL MW-17 AND MONITORING WELLS MW-25, MW-27 AND MW-29 ARE APPROXIMATE.
- RED NUMBER SIGNIFIES CHLORIDE CONCENTRATION EXCEEDS NMWQCC HUMAN HEALTH STANDARD (250 mg/L).

TARGA MIDSTREAM SERVICES LLC

EUNICE GAS PLANT LEA COUNTY, NEW MEXICO

CONSULTANT

CHLORIDE IN GROUNDWATER CONCENTRATION MAP **MARCH 2022**

IIS) GOLDER

YYYY-MM-DD	2022-04-20
DESIGNED	AJD
PREPARED	AJD
REVIEWED	SC
APPROVED	SC

6

GL18111105A.001 0

REFERENCE(S)
BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 2/20/19.

APPENDIX A

Notification of Groundwater Sampling Event

Crowley, Steven

From: Billings, Bradford, EMNRD < Bradford.Billings@state.nm.us>

Sent: Thursday, March 17, 2022 9:10 AM

To: Crowley, Steven

Subject: RE: [EXTERNAL] Notice of Upcoming Groundwater Sampling Event - Targa Gas Plant, Lea County, NM

March 28-30, 2022

EXTERNAL EMAIL

EXTERNAL EMAIL - We could not verify the authenticity of this message. Please be cautious when clicking on links or opening attachments.

Hi,

Thanks for the notification. Please copy this communication to associated report for data files. Thank you.

Bradford Billings

EMNRD/OCD

From: Crowley, Steven <Steven Crowley@golder.com>

Sent: Wednesday, March 16, 2022 12:32 PM

To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>

Cc: Christina Higginbotham <chigginbotham@targaresources.com>; Klein, Cynthia S.

<cynthiaklein@targaresources.com>; 'Woodell, Rebecca F.' <RebeccaWoodell@targaresources.com>; Mason, Zac T.

<zmason@targaresources.com>; Schuehle, Zachary <Zachary Schuehle@golder.com>

Subject: [EXTERNAL] Notice of Upcoming Groundwater Sampling Event - Targa Gas Plant, Lea County, NM March 28-30, 2022

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Mr. Billings,

Golder Associates USA Inc., on behalf of Targa Midstream Services, LLC is providing New Mexico Oil Conservation Division with notice of groundwater sampling scheduled for March 28-30, 2022 at the Eunice Gas Plant located in Lea County, NM. The groundwater monitoring event will include sampling of 14 monitoring wells along with a sitewide fluid gauging event.

The Golder representative on site will be Zach Schuehle who can be reached at (432) 315-0405 (office) or (830) 305-3959 (cell) and can provide details as to expected time of arrival on site each day.

Please contact me with any questions regarding this work or for more detail on the field schedule.

Regards,

Steve Crowley

Steven S. Crowley, P.G. (TX, GA), ARSM

Senior Lead Consulting Geologist

T+ 1 512-220-7469 M+ 1 512-740-2982

2201 Double Creek Dr., Suite 4004 Round Rock, Texas 78664

wsp.com | golder.com

WSP and Golder have joined together to form the premier environmental consultancy in the industry. Together we are 14,000 strong, future ready and delivering innovative solutions to our clients around the globe.

NOTICE: This communication and any attachments ("this message") may contain information which is privileged, confidential, proprietary or otherwise subject to restricted disclosure under applicable law. This message is for the sole use of the intended recipient(s). Any unauthorized use, disclosure, viewing, copying, alteration, dissemination or distribution of, or reliance on, this message is strictly prohibited. If you have received this message in error, or you are not an authorized or intended recipient, please notify the sender immediately by replying to this message, delete this message and all copies from your e-mail system and destroy any printed copies.

-LAEmHhHzdJzBITWfa4Hgs7pbKI

APPENDIX B

Laboratory Analytical Reports

Pace Analytical® ANALYTICAL REPORT

April 06, 2022

Ss

Cn

`Tr

Śr Qc

Ğl

Αl

Golder Associates, Inc. - Midland, TX

L1476948 Sample Delivery Group: Samples Received: 03/31/2022

Project Number: 18111105

Description: Eunice Gas Plant Ann. GW

Site: EUNICE, NM TARGA GAS PLANT

Report To: Steven S. Crowley

602 N. Baird, Suite 227

Midland, TX 79701

Entire Report Reviewed By:

Mark W. Beasley Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Tr: TRRP Summary	6
TRRP form R	7
TRRP form S	8
TRRP Exception Reports	9
Sr: Sample Results	10
MW-23 L1476948-01	10
MW-6 L1476948-02	11
MW-18 L1476948-03	12
MW-28 L1476948-04	13
DUP-01 L1476948-05	14
EB-01 L1476948-06	15
MW-14 L1476948-07	16
MW-19 L1476948-08	17
Qc: Quality Control Summary	18
Wet Chemistry by Method 9056A	18
Volatile Organic Compounds (GC/MS) by Method 8260B	20
GI: Glossary of Terms	21
Al: Accreditations & Locations	22

Sc: Sample Chain of Custody

23

SAMPLE SUMMARY

MW 22 11476049 01 CW			Collected by Zachary Schuehle	Collected date/time 03/29/22 14:05	Received da 03/31/22 08:	
MW-23 L1476948-01 GW	D	D.1 .:				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1841218	5	03/31/22 20:52	03/31/22 20:52	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1842385	1	04/02/22 19:52	04/02/22 19:52	ACG	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-6 L1476948-02 GW			Zachary Schuehle	03/29/22 12:35	03/31/22 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Wet Chemistry by Method 9056A	WG1841218	20	03/31/22 22:06	03/31/22 22:06	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1842385	1	04/02/22 20:11	04/02/22 20:11	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
MW-18 L1476948-03 GW			Zachary Schuehle	03/29/22 17:05	03/31/22 08:	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1841218	200	03/31/22 22:24	03/31/22 22:24	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1842385	1	04/02/22 20:30	04/02/22 20:30	ACG	Mt. Juliet, Ti
			Collected by	Collected data/time	Dosoivad da	to/time
NAVA 00 14470040 04 0VV			Collected by Zachary Schuehle	Collected date/time 03/29/22 15:45	03/31/22 08:	
MW-28 L1476948-04 GW						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1841218	1	03/31/22 22:42	03/31/22 22:42	LBR	Mt. Juliet, TN
, ,						
			Collected by	Collected date/time	Received da	te/time
DUP-01 L1476948-05 GW			Zachary Schuehle	03/29/22 14:05	03/31/22 08	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1841780	5	04/01/22 19:44	04/01/22 19:44	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1842385	1	04/02/22 20:49	04/02/22 20:49	ACG	Mt. Juliet, TN
			Callantad by	Callantad databas	Described de	h = /h:
			Collected by Zachary Schuehle	Collected date/time 03/29/22 17:05	03/31/22 08:	
EB-01 L1476948-06 GW			Zachary Schaeme	03/23/22 17.03	03/31/22 00.	.10
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
W. C. C. J. M. H. 1005CA	W040 44040		date/time	date/time	1.00	14: 1 P : T
Wet Chemistry by Method 9056A	WG1841218	1	03/31/22 23:54	03/31/22 23:54	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1842385	1	04/02/22 19:14	04/02/22 19:14	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-14 L1476948-07 GW			Zachary Schuehle	03/29/22 11:25	03/31/22 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Baten	2	date/time	date/time	, and you	23641011
Wet Chemistry by Method 9056A	WG1841218	500	04/01/22 00:11	04/01/22 00:11	LBR	Mt. Juliet, TN
Valatila Organic Compounds (CC/MC) by Mathad 92COD	WC104220F	1	04/02/22 24:00	0.4/0.2/2.2 24-0.0	100	MA LUIS A TA

Volatile Organic Compounds (GC/MS) by Method 8260B

WG1842385

1

04/02/22 21:08

04/02/22 21:08

ACG

Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Mt. Juliet, TN

Collected date/time Received date/time

ACG

04/02/22 21:27

SAMPLE SUMMARY

Collected by

04/02/22 21:27

MW-19 L1476948-08 GW			Zachary Schuehle	03/29/22 09:50	03/31/22 08:15	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1841218	100	04/01/22 00:29	04/01/22 00:29	LBR	Mt. Juliet, TN

WG1842385

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Mark W. Beasley

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. preparation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

Revised May 2010 Laboratory Review Checklist: Reportable Data

Lab	orato	ry Name: Pace Analytical National	LRC Date: 04/06/2022 19:09					
Project Name: Eunice Gas Plant Ann. GW Laboratory Job Number: L1476948-01, 02, 03, 04, 05, 06, 07 and 08								
Rev	iewe	r Name: Mark W. Beasley	Prep Batch Number(s): WG1841218, WG1841780 and V	/G1842	385			
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
R1	OI	Chain-of-custody (C-O-C)				1		
		Did samples meet the laboratory's standard conditions	of sample acceptability upon receipt?	Х		I	T	I
		Were all departures from standard conditions describe				Х	 	
R2	OI	Sample and quality control (QC) identification	a in an exception report.	<u> </u>				_
	10.	Are all field sample ID numbers cross-referenced to the	P laboratory ID numbers?	X		I	Т	1
		Are all laboratory ID numbers cross-referenced to the o		X			 	
R3	OI	Test reports	some open amig are actual			1		
	10.	Were all samples prepared and analyzed within holding	n times?	X		I	Т	1
		Other than those results < MQL, were all other raw value		 ^	Х	1		1
		Were calculations checked by a peer or supervisor?	les bracketed by cambration standards:	X			 	+
			upon icar?	X		+	 	
		Were all analyte identifications checked by a peer or sulvers sample detection limits reported for all analytes r		X		1	 	+
		Were all results for soil and sediment samples reported		X	-	1	\vdash	
			, ,	 ^		· ·	 	+
		Were % moisture (or solids) reported for all soil and sec	·			X	-	
		Were bulk soils/solids samples for volatile analysis extr	acted with methanol per SW846 Method 5035?			X	├	
	Τ	If required for the project, are TICs reported?		<u> </u>		X	<u> </u>	<u> </u>
R4	0	Surrogate recovery data				ı	_	1
		Were surrogates added prior to extraction?		X			-	-
		Were surrogate percent recoveries in all samples within	n the laboratory QC limits?	X			<u> </u>	
R5	OI	Test reports/summary forms for blank samples				1	_	
		Were appropriate type(s) of blanks analyzed?		X				
		Were blanks analyzed at the appropriate frequency?		Х			ļ	
		Were method blanks taken through the entire analytical cleanup procedures?	al process, including preparation and, if applicable,	×				
		Were blank concentrations < MQL?		X				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		X				
		Was each LCS taken through the entire analytical process	edure, including prep and cleanup steps?	X				
		Were LCSs analyzed at the required frequency?		X				
		Were LCS (and LCSD, if applicable) %Rs within the labor	ratory QC limits?	Х				
		Does the detectability check sample data document th used to calculate the SDLs?	e laboratory's capability to detect the COCs at the MDL	Х				
		Was the LCSD RPD within QC limits?		X				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data	3					
		Were the project/method specified analytes included in	n the MS and MSD?	X				
		Were MS/MSD analyzed at the appropriate frequency?		Х			i i	
		Were MS (and MSD, if applicable) %Rs within the labora			Х	1		2
		Were MS/MSD RPDs within laboratory QC limits?	•	Х		1	i –	
R8	OI	Analytical duplicate data					•	
		Were appropriate analytical duplicates analyzed for ea	ch matrix?	Ιx				
		Were analytical duplicates analyzed at the appropriate		X			<u> </u>	
		Were RPDs or relative standard deviations within the la	•	X			†	<u> </u>
R9	OI	Method quantitation limits (MQLs):	were the second					1
11.5	1 0.	Are the MQLs for each method analyte included in the	laboratory data package?	X	I	Т	T	1
		Do the MQLs correspond to the concentration of the lo	,	X			 	+
		Are unadjusted MQLs and DCSs included in the labora		X		+	\vdash	+
R10	OI	Other problems/anomalies	tory data package:					1
KIU	101	Are all known problems/anomalies/special conditions r	poted in this LPC and ED2	X			Г	
		Was applicable and available technology used to lower			 	+	\vdash	+
		the sample results?		Х				<u> </u>
		and methods associated with this laboratory data pack	-	Х				
1 1+0	ملم: مصد	national build a latter "D" nation in all latter in all a de la barrate	ny data packago submitted in the TPPP required report(s)	14		حالا ، حالم ،	- 1-44	"C"

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
3. NA = Not applicable;
4. NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Revised May 2010 P.30:27 AM Laboratory Review Checklist: Supporting Data

Lab	orato	ry Name: Pace Analytical National	LRC Date: 04/06/2022 19:09								
Proj	ject N	lame: Eunice Gas Plant Ann. GW	Laboratory Job Number: L1476948-01, 02, 03, 04,	, 05, 06, 0	7 and	08					
Rev	viewe	r Name: Mark W. Beasley	Prep Batch Number(s): WG1841218, WG1841780 and WG1842385								
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER# ⁵			
S1	OI	Initial calibration (ICAL)									
		Were response factors and/or relative response factors	s for each analyte within QC limits?	X							
		Were percent RSDs or correlation coefficient criteria m	et?	X							
		Was the number of standards recommended in the me	thod used for all analytes?	Х							
		Were all points generated between the lowest and high	hest standard used to calculate the curve?	Х							
		Are ICAL data available for all instruments used?		Х							
		Has the initial calibration curve been verified using an	appropriate second source standard?	Х							
S2	OI	Initial and continuing calibration verification (ICCV and	CCV) and continuing calibration blank (CCB):								
		Was the CCV analyzed at the method-required frequer	ncy?	Х							
		Were percent differences for each analyte within the m	nethod-required QC limits?	Х							
		Was the ICAL curve verified for each analyte?		Х							
		Was the absolute value of the analyte concentration in	the inorganic CCB < MDL?	Х							
S3	0	Mass spectral tuning									
		Was the appropriate compound for the method used for	or tuning?	Х							
		Were ion abundance data within the method-required	QC limits?	X							
S4	0	Internal standards (IS)									
		Were IS area counts and retention times within the met	thod-required QC limits?	Х							
S5	OI	Raw data (NELAC Section 5.5.10)									
		Were the raw data (for example, chromatograms, speci	or example, chromatograms, spectral data) reviewed by an analyst?								
		Were data associated with manual integrations flagged	on the raw data?	Х							
S6	0	Dual column confirmation									
		Did dual column confirmation results meet the method-	-required QC?			X					
S7	0	Tentatively identified compounds (TICs)									
		If TICs were requested, were the mass spectra and TIC	data subject to appropriate checks?			Х					
S8	I	Interference Check Sample (ICS) results									
		Were percent recoveries within method QC limits?				Х					
S9	I	Serial dilutions, post digestion spikes, and method of s	tandard additions								
		Were percent differences, recoveries, and the linearity	within the QC limits specified in the method?			X					
S10	OI	Method detection limit (MDL) studies									
		Was a MDL study performed for each reported analyte	?	Х							
		Is the MDL either adjusted or supported by the analysis	s of DCSs?	Х							
S11	OI	Proficiency test reports									
		Was the laboratory's performance acceptable on the a	pplicable proficiency tests or evaluation studies?	Х							
S12	OI	Standards documentation									
		Are all standards used in the analyses NIST-traceable of	or obtained from other appropriate sources?	Х							
S13	OI	Compound/analyte identification procedures									
		Are the procedures for compound/analyte identification	n documented?	Х							
S14	OI	Demonstration of analyst competency (DOC)									
		Was DOC conducted consistent with NELAC Chapter 5	?	Х							
		Is documentation of the analyst's competency up-to-da	te and on file?	Х							
S15	OI	Verification/validation documentation for methods (NEI	AC Chapter 5)								
		Are all the methods used to generate the data docume	ented, verified, and validated, where applicable?	Х							
S16	OI	Laboratory standard operating procedures (SOPs)									
		Are laboratory SOPs current and on file for each metho	od performed	Х							

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

4. NR = Not reviewed;

5. EPH = Exception Proport identification number (an Exception Numbe

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Revised May 2010 Laboratory Review Checklist: Exception Reports

Laboratory Name: Pace Analytical National		LRC Date: 04/06/2022 19:09				
Project Name: Eunice Gas Plant Ann. GW		Laboratory Job Number: L1476948-01, 02, 03, 04, 05, 06, 07 and 08				
Reviewer Name: Mark W. Beasley		Prep Batch Number(s): WG1841218, WG1841780 and WG1842385				
ER #1	Description					
1	9056A WG1841780 R3776888-6 and 7: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).					
2	9056A WG1841218 Chloride: Percent Recovery is outside of established control limits.					

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
3. NA = Not applicable;
4. NR = Not reviewed;
5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

SAMPLE RESULTS - 01

Page 83 of 118

Collected date/time: 03/29/22 14:05

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	98.8		1.90	1.00	5.00	5	03/31/2022 20:52	WG1841218

3	<u></u>	٦

05
⁴ Cn

Analyte	mg/l	mg/l	mg/l	mg/l		date / time	
Chloride	98.8	1.90	1.00	5.00	5	03/31/2022 20:52	WG1841218
Volatile Organic	c Compounds (GC/MS)	by Method 82	260B				

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Benzene	0.000811	J	0.0000941	0.00100	0.00100	1	04/02/2022 19:52	WG1842385
Toluene	0.000634	<u>J</u>	0.000278	0.00100	0.00100	1	04/02/2022 19:52	WG1842385
Ethylbenzene	U		0.000137	0.00100	0.00100	1	04/02/2022 19:52	WG1842385
Total Xylenes	0.000386	<u>J</u>	0.000174	0.00300	0.00300	1	04/02/2022 19:52	WG1842385
(S) Toluene-d8	116				80.0-120		04/02/2022 19:52	WG1842385
(S) 4-Bromofluorobenzene	93.1				77.0-126		04/02/2022 19:52	WG1842385
(S) 1,2-Dichloroethane-d4	83.5				70.0-130		04/02/2022 19:52	WG1842385

Page 84 of 118

SAMPLE RESULTS - 02

Collected date/time: 03/29/22 12:35

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	1020		7 58	100	20.0	20	03/31/2022 22:06	WG1841218	

² Cp

	l
⁴ Cn	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Benzene	0.00142		0.0000941	0.00100	0.00100	1	04/02/2022 20:11	WG1842385
Toluene	U		0.000278	0.00100	0.00100	1	04/02/2022 20:11	WG1842385
Ethylbenzene	U		0.000137	0.00100	0.00100	1	04/02/2022 20:11	WG1842385
Total Xylenes	U		0.000174	0.00300	0.00300	1	04/02/2022 20:11	WG1842385
(S) Toluene-d8	114				80.0-120		04/02/2022 20:11	WG1842385
(S) 4-Bromofluorobenzene	96.5				77.0-126		04/02/2022 20:11	WG1842385
(S) 1,2-Dichloroethane-d4	93.6				70.0-130		04/02/2022 20:11	WG1842385

Volatile Organic Compounds (GC/MS) by Method 8260B

Qualifier

SDL

mg/l

0.0000941

0.000278

0.000137

0.000174

Result

0.0627

mg/l

U

U

U

109

101

101

Page 85 of 118

SAMPLE RESULTS - 03

Collected date/time: 03/29/22 17:05

Analyte

Benzene

Toluene

Ethylbenzene

Total Xylenes

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	16700		75.8	1.00	200	200	03/31/2022 22:24	WG1841218

3	Ss	
_		

⁴ Cn	
CII	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	16700		75.8	1.00	200	200	03/31/2022 22:24	WG1841218	

Unadj. MQL

mg/l

0.00100

0.00100

0.00100

0.00300

MQL

mg/l

0.00100

0.00100

0.00100

0.00300

80.0-120

77.0-126

70.0-130

Dilution

Analysis

date / time

04/02/2022 20:30

04/02/2022 20:30

04/02/2022 20:30

04/02/2022 20:30

04/02/2022 20:30

04/02/2022 20:30

04/02/2022 20:30

Batch

WG1842385

WG1842385

WG1842385

WG1842385

WG1842385 WG1842385

WG1842385

Released to Imaging: 8/8/2024 1:26:06 PM Golder Associates, Inc. - Midland, TX

57.1

Page 86 of 118

WG1841218

SAMPLE RESULTS - 04

1.00

03/31/2022 22:42

Collected date/time: 03/29/22 15:45

Wet Chemistry by Method 9056A

Chloride

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	

1.00

0.379

SAMPLE RESULTS - 05

Collected date/time: 03/29/22 14:05

Analyte

Benzene

Toluene

Ethylbenzene

Total Xylenes

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	96.0		1.90	1.00	5.00	5	04/01/2022 19:44	WG1841780	

4	ı
Cn	

Volatile Organic Compounds (GC/MS) by Method 8260B

Qualifier

SDL

mg/l

0.0000941

0.000278

0.000137

0.000174

Result

0.00109

0.000908

0.000260

0.000524

115

96.3

94.4

mg/l

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	96.0		190	100	5.00	5	04/01/2022 19:44	WG1841780

Unadj. MQL

mg/l

0.00100

0.00100

0.00100

0.00300

MQL

mg/l

0.00100

0.00100

0.00100

0.00300

80.0-120

77.0-126

70.0-130

Dilution

Analysis

date / time

04/02/2022 20:49

04/02/2022 20:49

04/02/2022 20:49

04/02/2022 20:49

04/02/2022 20:49

04/02/2022 20:49

04/02/2022 20:49

Batch

WG1842385

WG1842385

WG1842385

WG1842385

WG1842385 WG1842385

WG1842385

Released to Imaging: 8/8/2024 1:26:06 PM Golder Associates, Inc. - Midland, TX

Volatile Organic Compounds (GC/MS) by Method 8260B

Qualifier

SDL

mg/l

0.0000941

0.000278

0.000137

0.000174

Result

mg/l

U

U

U

U

111

98.3

98.9

Page 88 of 118

SAMPLE RESULTS - 06

Wet Chemistry by Method 9056A

Collected date/time: 03/29/22 17:05

Analyte

Benzene

Toluene

Ethylbenzene

Total Xylenes

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	0.535	BJ	0.379	1.00	1.00	1	03/31/2022 23:54	WG1841218	

Unadj. MQL

mg/l

0.00100

0.00100

0.00100

0.00300

MQL

mg/l

0.00100

0.00100

0.00100

0.00300

80.0-120

77.0-126

70.0-130

Dilution

Analysis

date / time

04/02/2022 19:14

04/02/2022 19:14

04/02/2022 19:14

04/02/2022 19:14

04/02/2022 19:14

04/02/2022 19:14

04/02/2022 19:14

Batch

WG1842385

WG1842385

WG1842385

WG1842385

WG1842385 WG1842385

WG1842385

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	0.535	R I	0.379	100	100	1	03/31/2022 23:54	WG1841218	

Released to Imaging: 8/8/2024 1:26:06 PM Golder Associates, Inc. - Midland, TX

Page 89 of 118

SAMPLE RESULTS - 07

L1476948

Wet Chemistry by Method 9056A

Collected date/time: 03/29/22 11:25

Analyte

Benzene

Toluene

Ethylbenzene

Total Xylenes

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	29500		190	1.00	500	500	04/01/2022 00:11	WG1841218	

Unadj. MQL

mg/l

0.00100

0.00100

0.00100

0.00300

MQL

mg/l

0.00100

0.00100

0.00100

0.00300

80.0-120

77.0-126

70.0-130

Dilution

1

Analysis

date / time

04/02/2022 21:08

04/02/2022 21:08

04/02/2022 21:08

04/02/2022 21:08

04/02/2022 21:08

04/02/2022 21:08

04/02/2022 21:08

Batch

WG1842385

WG1842385

WG1842385

WG1842385

WG1842385 WG1842385

WG1842385

Cp

4	ı
Cn	

Volatile Organic Compounds (GC/MS) by Method 8260B

Qualifier

SDL

mg/l

0.0000941

0.000278

0.000137

0.000174

Result

0.0664

0.000238

mg/l

U

U

114

95.2

91.9

SAMPLE RESULTS - 08

Collected date/time: 03/29/22 09:50

Qualifier

SDL

mg/l

0.0000941

0.000278

0.000137

0.000174

Volatile Organic Compounds (GC/MS) by Method 8260B

Result

mg/l

U

U

U

U

109

96.4

103

Analyte

Benzene

Toluene

Ethylbenzene

Total Xylenes

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	7340		37.9	1.00	100	100	04/01/2022 00:29	WG1841218

⁴ Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	7340		37.9	1.00	100	100	04/01/2022 00:29	WG1841218

Unadj. MQL

mg/l

0.00100

0.00100

0.00100

0.00300

MQL

mg/l

0.00100

0.00100

0.00100

0.00300

80.0-120

77.0-126

70.0-130

Dilution

1

Analysis

date / time

04/02/2022 21:27

04/02/2022 21:27

04/02/2022 21:27

04/02/2022 21:27

04/02/2022 21:27

04/02/2022 21:27

04/02/2022 21:27

Batch

WG1842385

WG1842385

WG1842385

WG1842385

WG1842385 WG1842385

WG1842385

QUALITY CONTROL SUMMARY

Page 91 of 118

Wet Chemistry by Method 9056A

L1476948-01,02,03,04,06,07,08

Method Blank (MB)

(MR) P3776551-1 03/31/22 10:28

(11111) 1137703311 03/31/22	2 10.20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	0.633	J	0.379	1.00

L1476879-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1476879-04 03/31/22 18:11 • (DUP) R3776551-3 03/31/22 18:29

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	625	632	20	1.20		15

Cn

(OS) L1476948-01 03/31/22 20:52 • (DUP) R3776551-6 03/31/22 21:10

(03) 21470340 01 03/31/2.	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	98.8	96.5	5	2.41		15

(LCS) R3776551-2 03/31/22 10:46

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.5	98.7	80.0-120	

L1476879-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1476879-04 03/31/22 18:11 • (MS) R3776551-4 03/31/22 18:47 • (MSD) R3776551-5 03/31/22 19:05

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	625	642	654	34.7	59.2	20	80.0-120	V	V	1.89	15

L1476948-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1476948-01_03/31/22_20:52 • (MS) R3776551-7_03/31/22_21:30 • (MSD) R3776551-8_03/31/22_21:48

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	98.8	145	145	92.9	92.6	5	80.0-120			0.111	15

QUALITY CONTROL SUMMARY

Page 92 of 118

L1476948-05

Method Blank (MB)

Chloride

Wet Chemistry by Method 9056A

(MB) R3776888-1	04/01/22	10:19	
		MB Result	MB Qualifier

MB RDL MB MDL mg/l Analyte mg/l mg/l

L1477337-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1477337-01 04/01/22 14:42 • (DUP) R3776888-3 04/01/22 15:01

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	3.34	3.34	1	0.162		15

0.379

1.00

Sr

Ss

L1476935-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1476935-01_04/01/22_21:38 • (DUP) R3776888-6_04/01/22_21:57

(00)	21470333-01 04/01/22	Original Result				DUP Qualifier	DUP RPD Limits
Anal	yte .	mg/l	mg/l		%		%
Chlo	ride	103	104	1	0.108	<u>E</u>	15

Laboratory Control Sample (LCS)

(LCS) R3776888-2 04/01/22 10:38

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.3	98.4	80.0-120	

Sc

L1477337-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1477337-01 04/01/22 14:42 • (MS) R3776888-4 04/01/22 15:57 • (MSD) R3776888-5 04/01/22 16:16

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	3.34	53.9	54.2	101	102	1	80.0-120			0.622	15	

L1476935-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1476935-01 04/01/22 21:38 • (MS) R3776888-7 04/01/22 22:16

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	103	149	91.2	1	80.0-120	<u>E</u>

Page 93 of 118

QUALITY CONTROL SUMMARY

L1476948-01,02,03,05,06,07,08

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

Ethylbenzene

Xylenes, Total

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

(MB) R3777804-3 04/02/22 18:36									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/l		mg/l	mg/l					
Benzene	U		0.0000941	0.00100					
Toluene	U		0.000278	0.00100					

U

U

109

98.0

104

Sr

0.000137

0.000174

0.00100

0.00300

80.0-120

77.0-126

70.0-130

(LCS) R3777804-1 04/02/22 17:02 • (LCSD) R3777804-2 04/02/22 17:22

(/		,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.00500	0.00420	0.00499	84.0	99.8	70.0-123			17.2	20
Toluene	0.00500	0.00451	0.00535	90.2	107	79.0-120			17.0	20
Ethylbenzene	0.00500	0.00482	0.00559	96.4	112	79.0-123			14.8	20
Xylenes, Total	0.0150	0.0144	0.0167	96.0	111	79.0-123			14.8	20
(S) Toluene-d8				107	107	80.0-120				
(S) 4-Bromofluorobenzene				97.1	101	77.0-126				
(S) 1,2-Dichloroethane-d4				100	102	70.0-130				

L1476948-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1476948-01 04/02/22 19:52 • (MS) R3777804-4 04/03/22 01:15 • (MSD) R3777804-5 04/03/22 01:34

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.00500	0.000811	0.00680	0.00707	120	125	1	17.0-158			3.89	27
Toluene	0.00500	0.000634	0.00697	0.00751	127	138	1	26.0-154			7.46	28
Ethylbenzene	0.00500	U	0.00739	0.00765	148	153	1	30.0-155			3.46	27
Xylenes, Total	0.0150	0.000386	0.0216	0.0228	141	149	1	29.0-154			5.41	28
(S) Toluene-d8					107	108		80.0-120				
(S) 4-Bromofluorobenzene					100	103		77.0-126				
(S) 1,2-Dichloroethane-d4					101	101		70.0-130				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
MDL	Method Detection Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace Analytical National	12065 Lebanon Rd Mount Julie	ot TN 37122
i ace Analytical National		5L, IIN 0/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Golder Associates, Inc. 602 N. Baird, Suite 227 Midland, TX 79701	Golder Associates, Inc Midland, TX 602 N. Baird, Suite 227			ormation: ts Payable Baird, Suite 227 I, TX 79701		Pres Chk			Analys	sis / Conta	iner / Pre	servative			Chain of Custody	Pageof Pageof Pageofofofofofofofo
Report to: Steven S. Crowley			Email To: chris_kakolewski@golder.com;steven_crowley												2065 Lebanon Rd Mo	
Project Description: Eunice Gas Plant Ann. GW		City/State Collected:	Please Circle: PT MT CT ET										, C	constitutes acknowled Pace Terms and Conditators://info.pacelabs.co	a this chain of custody gment and acceptance of the ions found at: om/hubfs/pas-standard-	
Phone: 512-220-7469	Client Project # 18111105			Lab Project # GOLDMTX-18111105		oPres								SDG #	176948	
Collected by (print): Zachary Schuehle	Site/Facility ID# Evrice, NM Targa Gas Plant			P.O. #			DPE-N	nb-HC							Table	4219
Collected by (signature): 3ad Shum Immediately Packed on Ice N Y	Rush? (L Same Da Next Day	ab MUST Be By 5 Day 10 Da	Notified) Day (Rad Only)	Quote #	s Needed	No. of	RIDE 125mlHDPE-NoPres	60BTEX 40mlAmb-H						F	Acctnum: GO emplate:T19 Prelogin: P91 PM: 134 - Mar PB:	7802 1734
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CHLORIDE	82						S	hipped Via:	Sample # (lab only)
MW-23	6	GW		3-29	1405	H	X	> X								-0
MW-23 MS	G	GW		3-29	1405	4	X	X								101-8
MW-23 MSD	6	GW		3-29	1405	4	X	X								101-0
MW-6	6	GW		3 - 29	1235	14	X	X								- 92 -0
MW-18	6	GW		3-29	1705	4	X	X								-83 -4
MW-28	6	GW		3-29	1545	1	X									- 04 Q
DUP-01	6	GW		3-29	1403	4	V	/								- 05
EB-01	6	GW		3-29	1705	14	X	V					BSSN NO.			-06
MW-14	6	GW		3-29	1125	4	X	$\frac{\lambda}{\chi}$		7 MEE						-07
NW-19	6	GW		3-29	950	4	X	X								-08
***	emarks:								pł Flo	H	_ Temp		COC Si Bottle	al Pres gned/Ac s arriv	Receipt Ch ent/Intact: curate: e intact: es used:	ecklist AP Y N Y N Y N
OT - Other	amples returned v _ UPS FedEx			Trackin	g#										lume sent: f Applicabl space:	e Y N
Relinquished by : (Signature) 3ach Sylwylush	Date	3-29	Time:	4S Receive	ed by: (Signatu	ure)			Trip Bl	lank Recei	н	CL/MeoH	Preser	vation	Correct/Che	cked: N
Relinquished by : (Signature)		130/2	110	50 Sh	- 7				Temp:	1		s Received:		rvation re	quired by Log	in: Date/Time
Relinquished by : (Signature) Sed to Imaging: 8/8/2024 1:26	.06 PM	e:	Time:	Receive	d for leb by: (Signatu	ire)	1	Date:	31/2	Time	185	Hold:			NCF / OK

Pace Analytical® ANALYTICAL REPORT

April 06, 2022

Ss

Cn

`Tr

Śr

Qc

Ğl

Αl

Golder Associates, Inc. - Midland, TX

L1477693 Sample Delivery Group:

Samples Received: 04/01/2022

Project Number: 18111105

Description: Eunice Gas Plant Ann. GW

Site: TARGA GAS PLANT

Report To: Steven S. Crowley

602 N. Baird, Suite 227

Midland, TX 79701

Entire Report Reviewed By:

Mark W. Beasley Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Tr: TRRP Summary	5
TRRP form R	6
TRRP form S	7
TRRP Exception Reports	8
Sr: Sample Results	9
MW-8 L1477693-01	9
MW-1 L1477693-02	10
MW-15 L1477693-03	11
MW-20 L1477693-04	12
MW-30 L1477693-05	13
MW-31 L1477693-06	14
MW-5 L1477693-07	15
MW-13 L1477693-08	16
Qc: Quality Control Summary	17
Wet Chemistry by Method 9056A	17
GI: Glossary of Terms	18
Al: Accreditations & Locations	19

Sc: Sample Chain of Custody

20

SAMPLE SUMMARY

MW-8 L1477693-01 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 10:20	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1842578	100	04/04/22 00:28	04/04/22 00:28	LBR	Mt. Juliet, TN
MW-1 L1477693-02 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 09:10	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1842578	10	04/04/22 00:41	04/04/22 00:41	LBR	Mt. Juliet, TN
MW-15 L1477693-03 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 16:10	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1842578	10	04/04/22 00:54	04/04/22 00:54	LBR	Mt. Juliet, TN
MW-20 L1477693-04 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 13:50	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1842578	100	04/04/22 01:08	04/04/22 01:08	LBR	Mt. Juliet, TN
MW-30 L1477693-05 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 12:30	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1842578	500	04/04/22 01:21	04/04/22 01:21	LBR	Mt. Juliet, TN
MW-31 L1477693-06 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 11:35	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1842578	100	04/04/22 01:35	04/04/22 01:35	LBR	Mt. Juliet, TN
MW-5 L1477693-07 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 15:05	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1842578	10	04/04/22 01:48	04/04/22 01:48	LBR	Mt. Juliet, TN
MW-13 L1477693-08 GW			Collected by Zachary Schuehle	Collected date/time 03/30/22 17:10	Received da: 04/01/22 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Wet Chemistry by Method 9056A

WG1842578

100

04/04/22 02:01

04/04/22 02:01

LBR

Mt. Juliet, TN

Mark W. Beasley

Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

This data package consists of this signature page, the laboratory review checklist, and the following reportable data as applicable:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. preparation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
- R10 Other problems or anomalies.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Mark W. Beasley Project Manager

Lab	orato	ry Name: Pace Analytical National	LRC Date: 04/06/2022 19:09										
Pro	ject N	lame: Eunice Gas Plant Ann. GW	Laboratory Job Number: L1477693-01, 02, 03, 04, 05, 06, 07 and 08										
Rev	viewe	r Name: Mark W. Beasley	Prep Batch Number(s): WG1842578										
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵					
R1	OI	Chain-of-custody (C-O-C)				_	,						
		Did samples meet the laboratory's standard conditions	of sample acceptability upon receipt?	Х									
		Were all departures from standard conditions describe	ed in an exception report?			X							
R2	OI	Sample and quality control (QC) identification											
		Are all field sample ID numbers cross-referenced to the	e laboratory ID numbers?	Х									
		Are all laboratory ID numbers cross-referenced to the	corresponding QC data?	Χ									
R3	OI	Test reports											
		Were all samples prepared and analyzed within holdin	g times?	Х									
		Other than those results < MQL, were all other raw value	ues bracketed by calibration standards?		Х			1					
		Were calculations checked by a peer or supervisor?		Х									
		Were all analyte identifications checked by a peer or s	upervisor?	Х									
		Were sample detection limits reported for all analytes		Х									
		Were all results for soil and sediment samples reported		Х				1					
		Were % moisture (or solids) reported for all soil and see	, ,			Х							
		Were bulk soils/solids samples for volatile analysis ext				X	i –	1					
		If required for the project, are TICs reported?	F			X		1					
R4	0	Surrogate recovery data		<u> </u>		1		1					
IXT	1 -	Were surrogates added prior to extraction?		1		Ιx	Π	T .					
		Were surrogate percent recoveries in all samples within	in the laboratory OC limits?	X	\vdash	+ ^	\vdash	1					
R5	Toi	Test reports/summary forms for blank samples	in the laboratory &c limits:										
KS	J	Were appropriate type(s) of blanks analyzed?		X		T	Г	I					
				X	├	+	\vdash	 					
		Were blanks analyzed at the appropriate frequency?		 ^	-	+	┝	+					
		Were method blanks taken through the entire analytical cleanup procedures?	al process, including preparation and, it applicable,	X	ļ								
		Were blank concentrations < MQL?		Х									
R6	OI	Laboratory control samples (LCS):											
		Were all COCs included in the LCS?		Х									
		Was each LCS taken through the entire analytical proc	edure, including prep and cleanup steps?	Х									
		Were LCSs analyzed at the required frequency?		Х									
		Were LCS (and LCSD, if applicable) %Rs within the labor	oratory QC limits?	Χ									
		Does the detectability check sample data document the used to calculate the SDLs?	ne laboratory's capability to detect the COCs at the MDL	×									
		Was the LCSD RPD within QC limits?		Х									
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) dat	a			1							
		Were the project/method specified analytes included i		Х		T	T	T					
		Were MS/MSD analyzed at the appropriate frequency?		X		1		1					
		Were MS (and MSD, if applicable) %Rs within the labor		X		1							
		Were MS/MSD RPDs within laboratory QC limits?	,	X									
R8	OI	Analytical duplicate data		<u> </u>									
		Were appropriate analytical duplicates analyzed for ea	ch matrix?	Ιx	I	T	Π						
		Were analytical duplicates analyzed at the appropriate		X		1	\vdash	 					
		Were RPDs or relative standard deviations within the la	· •	X		+	 	 					
R9	OI	Method quantitation limits (MQLs):	^										
11.3	J 01	Are the MQLs for each method analyte included in the	lahoratory data package?	Ιx		Т	П	T					
		Do the MQLs correspond to the concentration of the lo	, ,	X		1	 	1					
		Are unadjusted MQLs and DCSs included in the labora		X	 	+-	\vdash	+					
R10	loı		nory data package:	^_				1					
KIU	UI	Other problems/anomalies	noted in this LPC and EP2	- V		T	Т						
		Are all known problems/anomalies/special conditions		X	 	+	\vdash	+					
		the sample results?	r the SDL to minimize the matrix interference effects on	Х			<u> </u>						
		Is the laboratory NELAC-accredited under the Texas Land methods associated with this laboratory data pack	aboratory Accreditation Program for the analytes, matrices (age?	Х				<u>L</u>					
4 14 -			ny data na akaga submittad in the TDDD required report(s)										

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Revised May 2010 25/2022 9:30:27 AM Revised May 2010 Laboratory Review Checklist: Supporting Data

Lab	orato	ory Name: Pace Analytical National	LRC Date: 04/06/2022 19:09									
Pro	ject N	lame: Eunice Gas Plant Ann. GW	Laboratory Job Number: L1477693-01, 02, 03, 04, 05, 06, 07 and 08									
Rev	viewe	r Name: Mark W. Beasley	Prep Batch Number(s): WG1842578									
# ¹	A ²	Description	•	Yes	No	NA ³	NR⁴	ER# ⁵				
S1	OI	Initial calibration (ICAL)										
		Were response factors and/or relative response factors	s for each analyte within QC limits?			Х						
		Were percent RSDs or correlation coefficient criteria m	et?	X								
		Was the number of standards recommended in the me	thod used for all analytes?	X								
		Were all points generated between the lowest and hig	hest standard used to calculate the curve?	X								
		Are ICAL data available for all instruments used?		X								
		Has the initial calibration curve been verified using an	X									
S2	OI	Initial and continuing calibration verification (ICCV and										
		Was the CCV analyzed at the method-required frequer	X									
		Were percent differences for each analyte within the m	nethod-required QC limits?	X			ļ					
		Was the ICAL curve verified for each analyte?		X								
<u> </u>		Was the absolute value of the analyte concentration in	the inorganic CCB < MDL?	X								
S3	0	Mass spectral tuning					,					
		Was the appropriate compound for the method used for				X	ļ					
		Were ion abundance data within the method-required	QC limits?			X						
S4	0	Internal standards (IS)				1	т					
		Were IS area counts and retention times within the me	thod-required QC limits?	X			<u> </u>					
S5	OI	Raw data (NELAC Section 5.5.10)				1						
		Were the raw data (for example, chromatograms, speci	, , ,	X	ļ		-					
		Were data associated with manual integrations flagged	d on the raw data?			X	<u> </u>					
S6	0	Dual column confirmation			1	1	т					
		Did dual column confirmation results meet the method	-required QC?			X	<u> </u>					
S7	0	Tentatively identified compounds (TICs)				1	1					
	1.	If TICs were requested, were the mass spectra and TIC	C data subject to appropriate checks?			X						
S8		Interference Check Sample (ICS) results		_								

Were percent recoveries within method QC limits?

Was a MDL study performed for each reported analyte?

Was DOC conducted consistent with NELAC Chapter 5?

Is the MDL either adjusted or supported by the analysis of DCSs?

Are the procedures for compound/analyte identification documented?

Is documentation of the analyst's competency up-to-date and on file?

Verification/validation documentation for methods (NELAC Chapter 5)

Are laboratory SOPs current and on file for each method performed

Method detection limit (MDL) studies

Compound/analyte identification procedures

Demonstration of analyst competency (DOC)

Laboratory standard operating procedures (SOPs)

Proficiency test reports

Standards documentation

Serial dilutions, post digestion spikes, and method of standard additions

Were percent differences, recoveries, and the linearity within the QC limits specified in the method?

Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?

Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?

S9

S10

S11

S12

S13

S14

S15

S16

OI

OI

OI

OI

OI

OI

OI

Are all the methods used to generate the data documented, verified, and validated, where applicable?

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;
 NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Revised May 2010 Laboratory Review Checklist: Exception Reports

Laborat	tory Name: Pace Analytical National	LRC Date: 04/06/2022 19:09						
Project	Name: Eunice Gas Plant Ann. GW	Laboratory Job Number: L1477693-01, 02, 03, 04, 05, 06, 07 and 08						
Reviewer Name: Mark W. Beasley		Prep Batch Number(s): WG1842578						
ER #1	Description							
1	9056A WG1842578 R3777882-3, 4 and 5: The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).							

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
 NA = Not applicable;
 NR = Not reviewed;
 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Page 105 of 118

SAMPLE RESULTS - 01

Collected date/time: 03/30/22 10:20

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1780		37.9	1.00	100	100	04/04/2022 00:28	WG1842578

Page 106 of 118

SAMPLE RESULTS - 02

Collected date/time: 03/30/22 09:10

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	312		3.79	1.00	10.0	10	04/04/2022 00:41	WG1842578	

Page 107 of 118

SAMPLE RESULTS - 03

Collected date/time: 03/30/22 16:10

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	361		3.79	1.00	10.0	10	04/04/2022 00:54	WG1842578

Page 108 of 118

SAMPLE RESULTS - 04

Collected date/time: 03/30/22 13:50

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	2420		37.9	1.00	100	100	04/04/2022 01:08	WG1842578

ĞI

Page 109 of 118

SAMPLE RESULTS - 05

L14776

Wet Chemistry by Method 9056A

Collected date/time: 03/30/22 12:30

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	11000		190	1.00	500	500	04/04/2022 01:21	WG1842578

Page 110 of 118

SAMPLE RESULTS - 06

Collected date/time: 03/30/22 11:35

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chloride	3660		37.9	1.00	100	100	04/04/2022 01:35	WG1842578	

SAMPLE RESULTS - 07

Collected date/time: 03/30/22 15:05

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	241		3.79	1.00	10.0	10	04/04/2022 01:48	WG1842578

Page 111 of 118

Page 112 of 118

SAMPLE RESULTS - 08

Collected date/time: 03/30/22 17:10

L1477693

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	6560		37.9	1.00	100	100	04/04/2022 02:01	WG1842578

QUALITY CONTROL SUMMARY

Page 113 of 118

Wet Chemistry by Method 9056A

L1477693-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3777882-1 04/03/	22 19:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

L1477325-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1477325-04 04/03/22 22:00 • (DUP) R3777882-3 04/03/22 22:14

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	175	173	1	0.906	Е	15

Cn

(OS) I 1477924-05 04/04/22 03:35 • (DUP) R3777882-6 04/04/22 03:48

(03) EIH77324-03 04/04/2	Original Result	,			DUP Qualifier	DUP RPD .imits
yte .	mg/l	mg/l		%		6
Chloride	9.29	9.13	1	1.69		5

(LCS) R3777882-2 04/03/22 19:14

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	38.6	96.5	80.0-120	

L1477325-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1477325-04 04/03/22 22:00 • (MS) R3777882-4 04/03/22 22:27 • (MSD) R3777882-5 04/03/22 22:41

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	175	219	216	88.3	82.9	1	80.0-120	E	E	1.24	15

L1477924-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1477924-05 04/04/22 03:35 • (MS) R3777882-7 04/04/22 04:02

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	9.29	59.8	101	1	80.0-120	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
MDL	Method Detection Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Е

The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

D A	Athen Nieutenan	100CF alaman	- Dal Marria	. I. J	U 27122
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	: Juliet, 11	N 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

602 N. Baird, Suite 227	- Midland	I, TX		s Pavahle	was for										A COLUMN TO THE REAL PROPERTY.	
Golder Associates, Inc Midland, TX 602 N. Baird, Suite 227 Midland, TX 79701		Accounts Payable 602 N. Baird, Suite 227 Midland, TX 79701			Pres Chk								PEOP	Pace* PEOPLE ADVANCING SCIENCE		
Report to: Steven S. Crowley	Email To: chris_kakolewski@golder.com;steven_crowley											MT JULIET, TN 12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the				
Project Description: Eunice Gas Plant Ann. GW		City/State Collected:	Eunice	, NM	Please Ci									Pace Terms and Cond	dgment and acceptance of the litions found at: .com/hubfs/pas-standard-	
Phone: 512-220-7469	Client Project # 18111105		Lab Project # GOLDMTX-18111105		70	CHLORIDE 125mlHDPE-NoPres	Amb-HCI						SDG # LIL	14120163		
Collected by (print): Zachary Schuehle	Site/Facility ID# Torga Gas Pl		an+ P.O.#										and the same of th			
Collected by (signature): 3ab Shundle Immediately Packed on Ice N Y	Same D	C (Lab MUST Be Notified) P Day Five Day Day 5 Day (Rad Only) Day 10 Day (Rad Only)		Quote # Date Result	Quote # Date Results Needed		RIDE 125ml	V8260BTEX 40mlAmb-						Prelogin: P9	Template:T197802 Prelogin: P911734 PM: 134 - Mark W. Beasley PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CHLO	/8260						Shipped Via: Remarks	Sample # (lab only)	
MW-8	6	GW		3-30	1020	11	X							1.1.4	1-01	
MW-1	6	GW		3-30	910	1	X								-cz	
MW-15	G	GW		3-30	1610	1	X							Page Section 1	-03	
MW-20	G	GW		3-30	1350	1	X							570	-04	
MW-30	G	GW	A CONTRACTOR	3-30	1230	1	X				1			The state of the s	-05	
MW-31		GW		3-30	1135	1	X								1-06	
MW-19		GW										100				
MW-14	200	GW						4.1.								
MW-5	6	GW		3-30	1505	1	X							1	1-07	
MW-13	G	GW		3-30	1710	l	X		1						-08	
* Matrix: Rough SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Temp Flow Other			Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: N Bottles arrive intact: N Correct bottles used: N			
OT - Other	amples returned UPSFedEx	Courier		Tracki					-	dia Dia-La			Sufficient VOA Zero	nt volume sent: If Applical Headspace: tion Correct/Ch	ole Y N	
Relinquished by: (Signature)		3 - 30		1:20 1 2	yed by: (Signat	\sim					ТВ	R MeoH	RAD Scree	en <0.5 mR/hr:	Y N	
Relinquished by : (Signature)		3 3\ 2 ate:	Time	00 51	red by: (Signat		ofe)			3.21(Southern South Street South Str	8	Hold:	tion required by Lo	Conditions NCF / OK	

golder.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 153313

CONDITIONS

Operator:	OGRID:				
TARGA MIDSTREAM SERVICES LLC	24650				
811 Louisiana Street	Action Number:				
Houston, TX 77002	153313				
	Action Type:				
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)				

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the 2022 Annual Groundwater Monitoring Report for Eunice Gas Plant, Targa Midstream: content satisfactory 1. Groundwater sampling for the site has been conducted for 2023/2022 on a subsequent seasonal schedule as prescribed by OCD. Samples were analyzed for chloride and BTEX. 2. Plans for 2023 were to investigate LNAPL plume source which is still under review. 3. Site has been in compliance for this annual reporting period; subsequent reports have also been submitted through the OCD portal.	8/8/2024