February 1,

2024

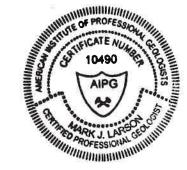
Tracking Number: nRM2031146817

2023 Fourth (4th) Quarter Groundwater Monitoring Report Northeast Drinkard Unit (NEDU) #829, #830, #922, #928, and #929 Lea County, New Mexico

Prepared for:

Apache

303 Veterans Airpark Lance Midland, TX 79701


Prepared by:

A arson & ssociates, Inc.

507 North Marienfeld Street, Suite 202 Midland, Texas 79701 (432) 687-0901

(1)

Mark J. Larson Certified Professional Geologist #10490

Robert Nelson Project Manager

LAI Project No: 19-0112-22

This Page Intentionally Left Blank

C	O	n	t	e	n	t	S
•	v			◡			•

1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTON	
2.1 Background	
3.0 GROUNDWATER INVESTIGATION	
3.1 Monitoring Well Installations	
4.0 GROUNDWATER MONITORING	
4.1 Depth to Groundwater and Groundwater Potentiometric Surface Elevation	
4.2 Groundwater Samples and Analysis	
4.2.1 Organic Analysis	
4.2.2 Inorganic Analysis	
5.0 CONCLUSIONS	
6.0 RECOMMENDATIONS	

List of Tables

Table 1 Monitor Well Completion and Gauging Summary

Table 2 Groundwater Analytical Data Summary

List of Figures

Figure 1 Topographic Map

Figure 2 Aerial Map

Figure 3 Site Map

Figure 4 Groundwater Potentiometric Map, December 28, 2023

Figure 5 Chloride Concentration in Groundwater, December 28, 2023

Figure 6 TDS Concentration in Groundwater, December 28, 2023

List of Appendices

Appendix A Monitoring Well Completion Records

Appendix B Laboratory Report

1.0 EXECUTIVE SUMMARY

Larson & Associates, Inc. (LAI) has prepared this report on behalf of the Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District I in Hobbs and Santa Fe, New Mexico. This report presents 2023 fourth (4th) quarter (October – December) groundwater monitoring results for the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites). The Sites are located in Section 22, Township 21 South, Range 37 East, in Lea County, New Mexico. The approximate geodetic position is North 32.46294° and West -103.15153°.

The following activities occurred on December 28, 2023:

- Gauged depth to groundwater and collected groundwater samples from monitoring wells MW-1 through MW-4.
- Analyzed groundwater samples for benzene, toluene, ethylbenzene, and xylenes (BTEX), chloride, and total dissolved solids (TDS).

The following observations are documented in this report for September 8, 2023:

- Depth to groundwater was 54.41 feet below ground surface (bgs) in MW-1, 52.31 feet bgs (MW-2), 51.86 feet bgs (MW-3) and 40.50 feet bgs (MW-4).
- Groundwater elevation ranged between 3,371.44 feet above mean sea level (MSL) at MW-4 (upgradient) and 3,354.86 feet above MSL at MW-3 (downgradient).
- The groundwater flow was from northwest to southeast at a gradient of about 0.013 feet per foot (ft/ft).
- BTEX compounds were below the analytical method reporting limit (RL) and New Mexico Water Quality Control Commission (NMWQCC) human health standards in groundwater samples from monitoring wells MW-1 through MW-4.
- Chloride was 1,040 milligrams per liter (mg/L) in the groundwater sample collected from MW-1 and was above the NMWQCC domestic water quality standard of 250 mg/L.
- Chloride concentrations in samples from MW-2 (248 mg/L), MW-3 (124 mg/L) and MW-4 (160 mg/L) were below the NMWQCC standard.
- TDS concentrations in groundwater samples from MW-1 (3,210 mg/L) and MW-2 (1,130 mg/L) were above the NMWQCC domestic water quality standard of 1,000 mg/L.
- TDS concentrations in groundwater samples from MW-3 (700 mg/L) and MW-4 (810 mg/L) were below the NMWQCC standard.

Apache proposes the following:

- Apache will continue groundwater monitoring on a quarterly (4 times per year) schedule.
- Gauge all monitoring wells for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Analyze samples for BTEX, chloride and TDS.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.

• Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 7 working days prior to each monitoring event.

2.0 INTRODUCTON

Larson & Associates, Inc. (LAI) has prepared this report on behalf of Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District I in Hobbs and Santa Fe, New Mexico. This report presents 2023 quarterly groundwater monitoring results for the fourth (4th) quarter on December 28, 2023. During the quarterly event, groundwater samples were collected from four (4) monitor wells (MW-1 through MW-4) at the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites) located in Lea County, New Mexico. The legal description is Section 22, Township 21 South, Range 37 East. The geodetic coordinates are as follows:

Site	North (°)	West (°)
NEDU #829	32.462947	-103.151539
NEDU #830	32.463967	-103.155761
NEDU #922	32.457803	-103.151181
NEDU #928	32.458019	-103.155831
NEDU #929	32.458022	-103.151450

The NMOCD was notified via web portal on December 13, 2023, prior to the groundwater monitoring event. Figure 1 presents a topographic map. Figure 2 presents an aerial map. Figure 3 presents a site map.

2.1 Background

On April 6, 2001, the landowner reported to the NMOCD that an Apache contractor was closing drilling pits at the Sites by disposing pit fluid in open trenches adjacent to the drilling pits. Apache was notified and submitted the initial C-141 on April 23, 2001. NMOCD assigned the trenches remediation permit 1RP-313.

On April 23, 2001, Apache submitted a work plan for remediating the trenches. NMOCD approved the work plan on May 8, 2001. The work plan stated that the trenches at wells #829, #830 and #929 would be excavated to approximately 19 feet bgs and to approximately 13 feet bgs at #928. There is no evidence that the trench was excavated at #922. An Apache contractor collected bottom and composite samples from the excavations and found chloride above the remediation closure limits in all excavations. Total petroleum hydrocarbons (TPH) were reported above the NMOCD closure limits in the excavation at #928. No documentation is available in NMOCD files to confirm the remediation.

On October 31, 2019, Apache submitted an administrative summary and path forward for remediating and closing the trenches. The plan requested approval from the NMOCD for a variance to excavate soil to a depth of approximately four (4) feet bgs at each trench and install a 20-mil polyethylene liner in the bottom of the excavations. Additionally, Apache committed to installing monitoring wells hydraulically down gradient (east - southeast) approximately 50 feet from the trench. On May 19, 2021, the NMOCD

approved the administrative summary and path forward for remediation but stated that "preapproval for monitoring well locations on map before installation" was required. On July 14, 2021, NMOCD approved the monitor well locations.

3.0 GROUNDWATER INVESTIGATION

3.1 Monitoring Well Installations

On July 19 and 20, 2021, Scarborough Drilling, Inc. (SDI), under the supervision of LAI, installed monitoring wells MW-1, MW-2, MW-3, and MW-4 utilizing an air rotary drilling rig at locations specified in the New Mexico Office of the State Engineer (OSE) permits. The wells were completed in 5-inch diameter borings advanced between about 65 and 76 feet below ground surface (bgs). Monitoring wells MW-1, MW-2, MW-3, and MW-4 were completed at depths of 74.08, 74.86, 65.35 and 76.01 feet bgs, respectively. The monitoring wells are completed with a 2-inch schedule 40 threaded PVC casing and 20 feet of 0.010-inch factory slotted screen installed above and below the groundwater level observed during drilling. Graded silica sand is positioned around the well screens to a depth about 2 feet above the screen. Sodium bentonite chips extend around the PVC riser and above the sand to about 1-foot bgs. The wells are secured with locking steel sleeves anchored in concrete.

On July 27 through 30, 2021, the wells were developed by pumping with an electric submersible pump to remove sediment disturbed drilling and well installation. Approximately 40 gallons of water were removed from each well and disposed in 55-gallon drums.

West Company, a State of New Mexico licensed Professional Land Surveyor (PLS Number 23263) surveyed the monitoring wells for location and elevation including top of casing and natural ground surface. Figure 3 presents Site drawing showing the monitoring well locations. Table 1 presents the monitoring well completion and gauging summary. Appendix A presents the boring logs and well completion records.

4.0 GROUNDWATER MONITORING

4.1 Depth to Groundwater and Groundwater Potentiometric Surface Elevation

On December 28, 2023, LAI personnel gauged monitoring wells MW-1 through MW-4 for depth to groundwater. Groundwater was gauged in monitoring well MW-1 (54.51 feet bgs), MW-2 (52.31 feet bgs), MW-3 (51.86 feet bgs), and MW-4 (40.50 feet bgs). The groundwater potentiometric surface elevation was recorded 3,371.44 feet above mean sea level (MSL) in well MW-4 (upgradient) and at 3,354.86 feet above MSL at well MW-3 (downgradient). The groundwater flow direction was from northwest to southeast at a gradient of about 0.013 ft/ft. Figure 4 presents the groundwater potentiometric surface map for December 28, 2023.

4.2 Groundwater Samples and Analysis

On December 28, 2023, LAI personnel collected groundwater samples from monitoring wells MW-1 through MW-4, using the low stress or low flow method following EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low flow rate until environmental parameters stabilize.

Samples were collected from the discharge of dedicated disposable Tygon® tubing. The tubing was discarded after each use and the pump was thoroughly cleaned with a solution of potable water and laboratory grade detergent (Alconox®) and rinsed with distilled water. The samples were transferred to labeled laboratory containers and delivered under chain of custody control and preservation to Euro-Xenco Laboratories (Xenco), a National Environmental Laboratory Accreditation Conference (NELAC) accredited laboratory, in Midland, Texas. A duplicate sample was collected from MW-2 for laboratory quality assurance and quality control (QA/QC).

Xenco analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8260D, total dissolved solids (TDS) by Method SM 2540C, and chloride by EPA Method 300. Table 2 presents the laboratory analytical summary. Appendix B presents the laboratory report.

4.2.1 Organic Analysis

BTEX concentrations were below the laboratory analytical reporting limit (RL) and NMWQCC human health standards in all groundwater samples. The results are consistent with previous groundwater monitoring events.

4.2.2 Inorganic Analysis

Chloride concentrations were reported below the NMWQCC domestic water quality standard of 250 mg/L in monitoring wells MW-2 (248 mg/L), MW-3 (124 mg/L), and MW-4 (160 mg/L). The chloride concentrations in the groundwater sample collected from monitoring well MW-1 (1,040 mg/L) was above the NMWQCC domestic water quality standard. The chloride concentration in the QA/QC sample (Dup-1) collected from monitoring well MW-2 was 248 mg/L and within 1.2 percent of the original chloride value for MW-2 (251 mg/L). No data exceptions were noted in the laboratory report case narratives. Figure 5 presents the chloride concentration map for December 28, 2023.

TDS concentrations were reported above the NMWQCC domestic water quality standard of 1,000 mg/L in groundwater samples collected from monitoring wells MW-1 (3,210 mg/L) and MW-2 (1,130 mg/L). TDS concentrations were below the NMWQCC domestic water quality standard in groundwater samples from MW-3 (700 mg/L) and MW-4 (792 mg/L). The TDS concentration in the QA/QC sample (Dup-1) collected from monitoring well MW-2 was reported 1,100 mg/L and within 2.7 percent of the original chloride value for MW-2 (1,130 mg/L). No data exceptions were noted in the laboratory case narratives. Figure 6 presents the TDS concentration map for December 28, 2023.

5.0 CONCLUSIONS

The following observations are documented in this report:

- Groundwater elevation ranged between 3,371.44 feet above MSL at well MW-4 (upgradient) and 3,354.86 (MSL) at well MW-3 (downgradient).
- The groundwater flow direction was from northwest to southeast at a gradient of about 0.013 feet per foot (ft/ft).
- BTEX concentrations were below the analytical method RL and NMWQCC human health standards in all groundwater samples collected from monitoring wells MW-1 through MW-4.
- Chloride concentrations were above the NMWQCC domestic water quality standard (250 mg/L) in samples from MW-1 (1,040 mg/L).
- Chloride concentrations were below the MNWQCC standard in samples from MW-2 (248 mg/L), MW-3 (124 mg/L) and MW-4 (160 mg/L).
- TDS concentrations were above the NMWQCC domestic water quality standard (1,000 mg/L) in the groundwater samples MW-1 (3,210 mg/L) and MW-2 (1,130 mg/L) and below the MNWQCC standard in samples from MW-3 (700 mg/L) and MW-4 (792 mg/L).

6.0 RECOMMENDATIONS

Apache proposes the following:

- Continue groundwater monitoring on a quarterly (4 times per year).
- Gauge each well (MW-1 through MW-4) for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.
- Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 4 working days prior to each monitoring event.

Tables

Table 1 1RP-313 Monitoring Well Completion and Gauging Summary Apache Corportaion, NEDU Drill Pits Lea County, New Mexico

			Well	Information							Groundwa	iter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)
MW-1	07/19/2021	74.08	71.08	2	3417.34	70.85-50.85	3.00	3,417.34	07/29/2021	57.40	54.40	16.68	3,359.94
									11/08/2021	57.40	54.40	16.68	3,359.94
									03/02/2022	57.36	54.36	16.72	3,359.98
									05/24/2022	57.32	54.32	16.76	3,360.02
									08/17/2022	57.40	54.40	16.68	3,359.94
									12/14/2022	57.39	54.39	16.69	3,359.95
									03/10/2023	57.41	54.41	16.67	3,359.93
									06/05/2023	57.41	54.41	16.67	3,359.93
									09/08/2023	57.48	54.48	16.60	3,359.86
									12/28/2023	57.51	54.51	16.57	3,359.83
MW-2	07/19/2021	74.86	71.86	2	3408.43	71.68-51.68	3.00	3,411.66	07/29/2021	54.81	51.81	20.05	3,356.85
									11/08/2021	54.85	51.85	20.01	3,356.81
									03/02/2022	54.91	51.91	19.95	3,356.75
									05/24/2022	54.91	51.91	19.95	3,356.75
									08/17/2022	55.04	52.04	19.82	3,356.62
									12/14/2022	55.08	52.08	19.78	3,356.58
									, , -				
									03/10/2023	55.18	52.18	19.68	3,356.48
									06/05/2023	55.25	52.18	19.61	3,356.41
									09/08/2023	55.27	52.27	19.59	3,356.39
									12/28/2023	55.31	52.31	19.55	3,356.35

Table 1
1RP-313
Monitoring Well Completion and Gauging Summary
Apache Corportaion, NEDU Drill Pits
Lea County, New Mexico

			Well	Information							Groundwa	iter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)
MW-3	07/20/2021	65.35	62.75	2	3406.01	65.15-45.15	2.60	3,409.32	07/29/2021	53.55	50.95	11.80	3,355.77
									11/08/2021	53.67	51.07	9.68	3,355.65
									03/02/2022	53.83	51.23	11.52	3,355.49
									05/24/2022	53.88	51.28	11.47	3,355.44
									08/17/2022	54.08	51.48	11.27	3,355.24
									12/14/2022	54.21	51.61	11.14	3,355.11
									03/10/2023	54.30	51.70	11.05	3,355.02
									06/05/2023	54.37	51.77	10.98	3,354.95
									09/08/2023	54.39	51.79	10.96	3,354.93
									12/28/2023	54.46	51.86	10.89	3,354.86
MW-4	07/20/2021	76.01	72.93	2	3412.51	75.81-55.81	3.08	3,415.02	07/30/2021	44.38	41.30	31.63	3,370.64
									11/08/2021	43.44	40.36	32.57	3,371.58
									03/02/2022	43.44	40.36	32.57	3,371.58
									05/24/2022	43.50	40.42	32.51	3,371.52
									08/17/2022	42.63	39.55	33.38	3,372.39
									12/14/2022	43.64	40.56	32.37	3,371.38
									03/10/2023	43.62	40.54	32.39	3,371.40
									06/05/2023	43.71	40.63	32.30	3,371.31
									09/08/2023	43.76	40.68	32.25	3,371.26
									12/28/2023	43.58	40.50	32.43	3,371.44

Table 1 1RP-313

Monitoring Well Completion and Gauging Summary Apache Corportaion, NEDU Drill Pits Lea County, New Mexico

I		Well Information									Groundwater Data							
	Well No.	Date Drilled	Well Depth (Feet TOC)	Depth (Feet	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)				

Notes: monitoring wells installed by Scarborough Drilling, Inc. Lamesa, Texas with 2 inch schedule 40 PVC casing and screen

bgs: below ground surface

TOC: top of casing

AMSL: denotes elevation in feet above mean sea level

19 AM Table 2
Groundwater Sample Analytical Data Summary
Apache Corporation, NEDU #830, 922, 928, and 929
Lea County, New Mexico

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
NMWQCC Standard	d:	*0.005	* 1	*0.7	*0.62	**250	**1,000
MW-1	07/29/2021	<0.00200	<0.00200	<0.00200	< 0.00400	446	2,510
(NEDU #830)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	1,270	2,490
	1 1						
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	1,250	2,500
	05/24/2022	<0.00200	<0.00200	<0.00200	<0.00400	912	2,500
	08/17/2022 12/14/2022	<0.00200	<0.00200 <0.00200	<0.00200 <0.00200	<0.00400 <0.00400	1,070 893	2,670
	12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	693	2,520
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	1,210	2,600
	06/05/2023	< 0.00200	< 0.00200	< 0.00200	< 0.00400	1,140	2,950
	09/08/2023	<0.00200	< 0.00200	<0.00200	< 0.00400	1,010	3,000
	12/28/2023	<0.00100	< 0.00100	<0.00100	<0.0100	1,040	3,210
						-	
MW-2	07/29/2021	0.0391	<0.00200	<0.00219	<0.00400	268	1,170
(NEDU #922)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	279	1,100
	02/02/2022	0.0000	0.0000		0.00400	252	4.440
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	253	1,110
	05/24/2022	<0.00200	<0.00200 <0.00200	<0.00200	<0.00400 <0.00400	200	1,100
	08/17/2022 12/14/2022	<0.00200 <0.00200	<0.00200	<0.00200 <0.00200	<0.00400	239 167	1,080 983
	12/14/2022	<0.00200	<0.00200	<0.00200	\0.00400	107	903
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	282	1,030
	06/05/2023	<0.00200	<0.00200	<0.00200	< 0.00400	303	1,160
	09/08/2023	<0.00200	<0.00200	<0.00200	<0.00400	232	1,110
	12/28/2023	<0.00100	< 0.00100	<0.00100	<0.0100	248	1,130
MW-3	07/29/2021	0.00407	<0.00200	<0.00200	<0.00400	128	663
(NEDU #929)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	122	644
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	114	664
	05/24/2022	<0.00200	<0.00200	<0.00200	<0.00400	114	647
	08/17/2022	<0.00200	<0.00200	< 0.00200	< 0.00400	111	645
	12/14/2022	<0.00200	<0.00200	<0.00200	< 0.00400	97.9	381
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	121	635
	06/05/2023	<0.00200	<0.00200	<0.00200	<0.00400	151	778
	09/08/2023	<0.00200	<0.00200	<0.00200	<0.00400	117	708
	12/28/2023	<0.00100	<0.00100	<0.00100	<0.0100	124	700
	07/00/000	0.00000	0.000	0.000	0.00:55		4.000
MW-4	07/30/2021	<0.00200	<0.00200	<0.00200	<0.00400	559	1,030
(NEDU #928)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	203	832
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	182	836
	05/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	171	827
	08/17/2022	<0.00200	<0.00200	<0.00200	<0.00400	165	797
l l	12/14/2022	< 0.00200	< 0.00200	< 0.00200	< 0.00400	134	327
	' '						
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	176	810

Table 2

Groundwater Sample Analytical Data Summary Apache Corporation, NEDU #830, 922, 928, and 929 Lea County, New Mexico

	06/05/2023 09/08/2023 12/28/2023	<0.00200 <0.00200 <0.00100	<0.00200 <0.00200 <0.00100	<0.00200 <0.00200 <0.00100	<0.00400 <0.00400 <0.0100	194 160 160	864 825 792
Dup-1 (MW-2)	07/29/2021	<0.00200	<0.00200	<0.00200	<0.00400	244	1,160
Dup-2 (MW-4)	07/30/2021	<0.00200	<0.00200	<0.00200	<0.00400	235	1,030
Dup-1 (MW-2)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	270	1,100
Dup-1 (MW-2)	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	268	1,090
Dup-1 (MW-2)	05/24/2022	<0.00200	<0.00200	<0.00200	<0.00400	189	1,100
Dup-1 (MW-2)	08/17/2022	<0.00200	<0.00200	<0.00200	<0.00400	246	1,090
Dup-1 (MW-2)	12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	171	1,100
Dup-1 (MW-2)	03/10/2023	< 0.00100	<0.00100	<0.00100	< 0.00100	217	1,000
Dup-1 (MW-2)	06/05/2023	<0.00200	<0.00200	<0.00200	< 0.00400	242	1,270
Dup-1 (MW-2)	09/08/2023	<0.00200	<0.00200	<0.00200	< 0.00400	229	1,180
Dup-1 (MW-2)	12/28/2023	<0.00100	<0.00100	<0.00100	<0.0100	251	1,100

Notes:

analysis performed by Xenco-Eurofins Laboratories, Midland, Texas by EPA SW-846 Method 8021B (BTEX), Method 300 (chloride), Method 2540C

All values reported in milligrams per liter (mg/L); equivalent to parts per million (ppm)

- < concentration is less than analytical method reporting limit (RL).
- * NMWQCC human health standard
- ** NMWQCC domestic water quality standard

bgs - below ground surface

Figures

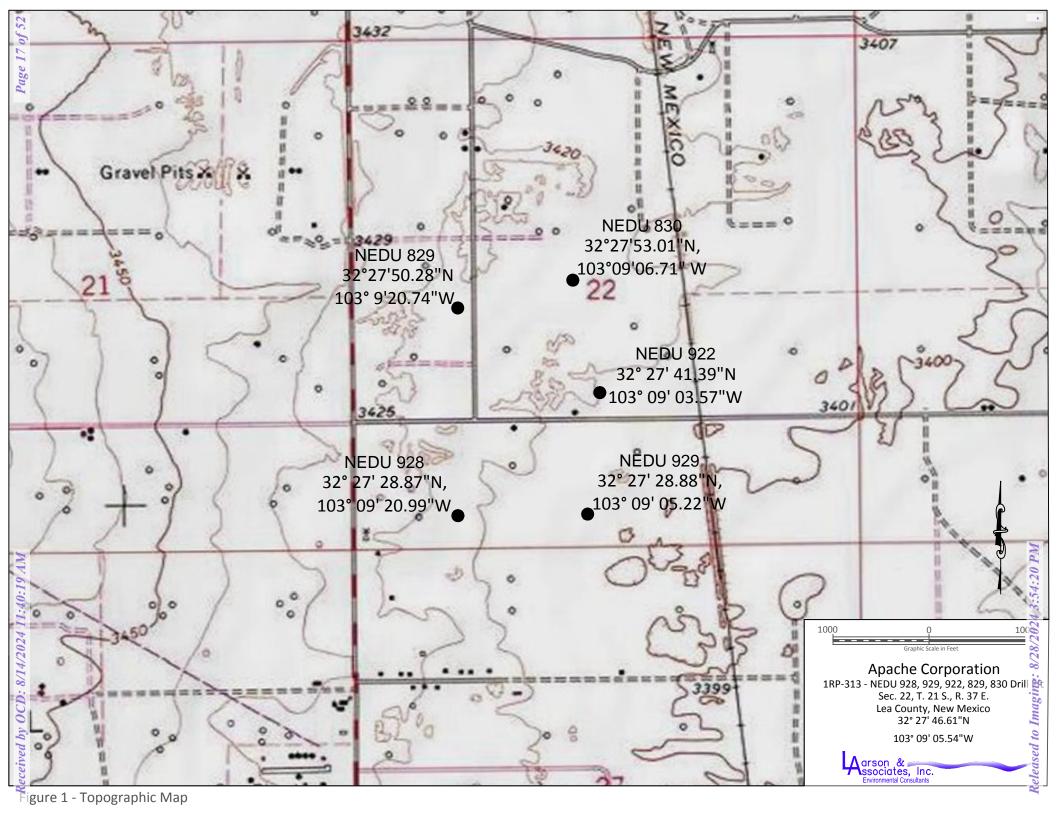
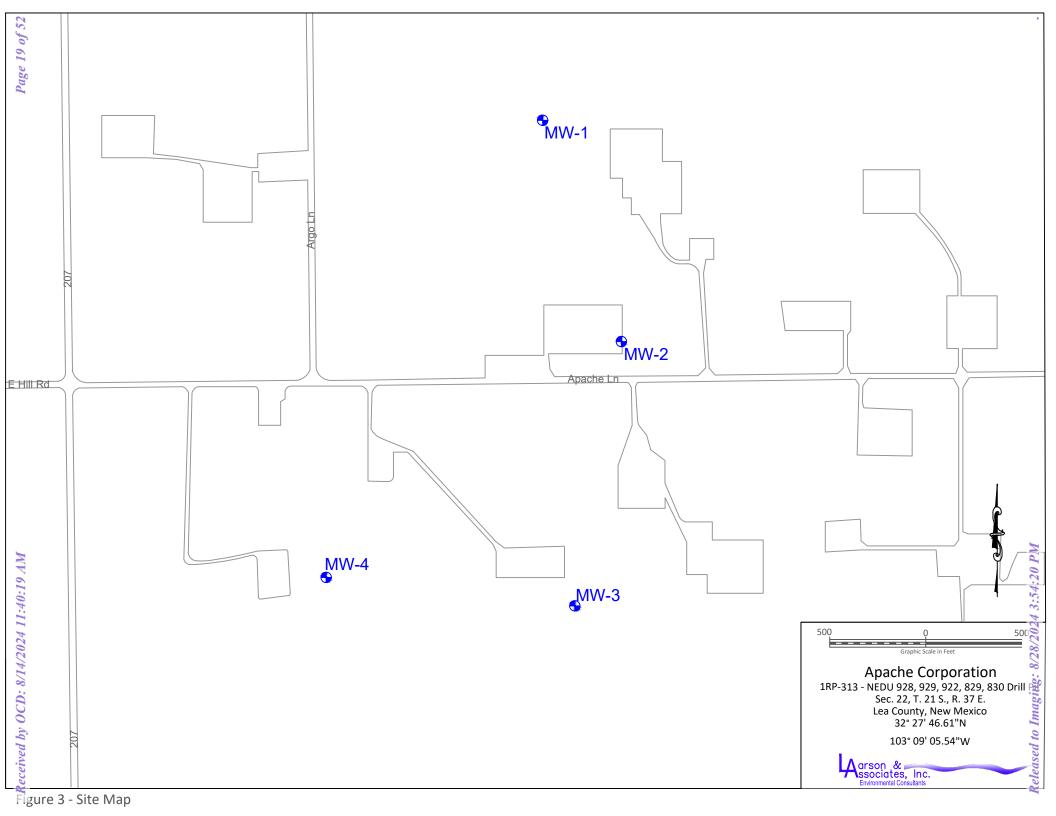



Figure 2 - Aerial Map

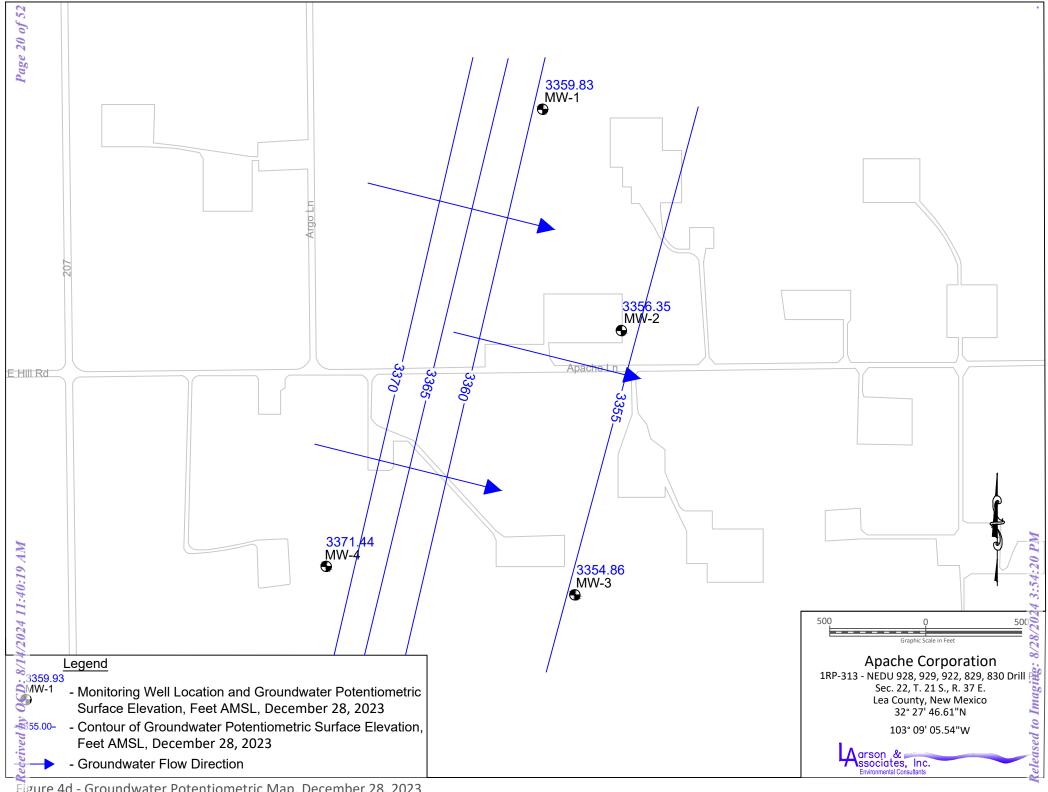


Figure 4d - Groundwater Potentiometric Map, December 28, 2023

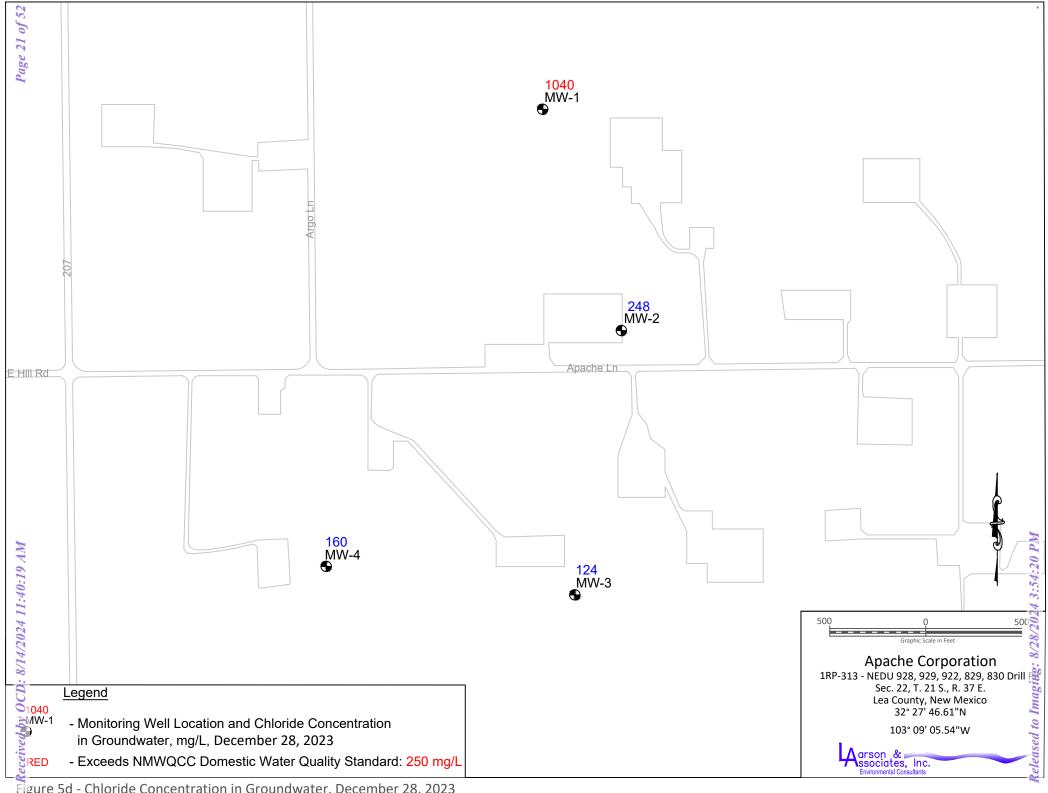


Figure 5d - Chloride Concentration in Groundwater, December 28, 2023

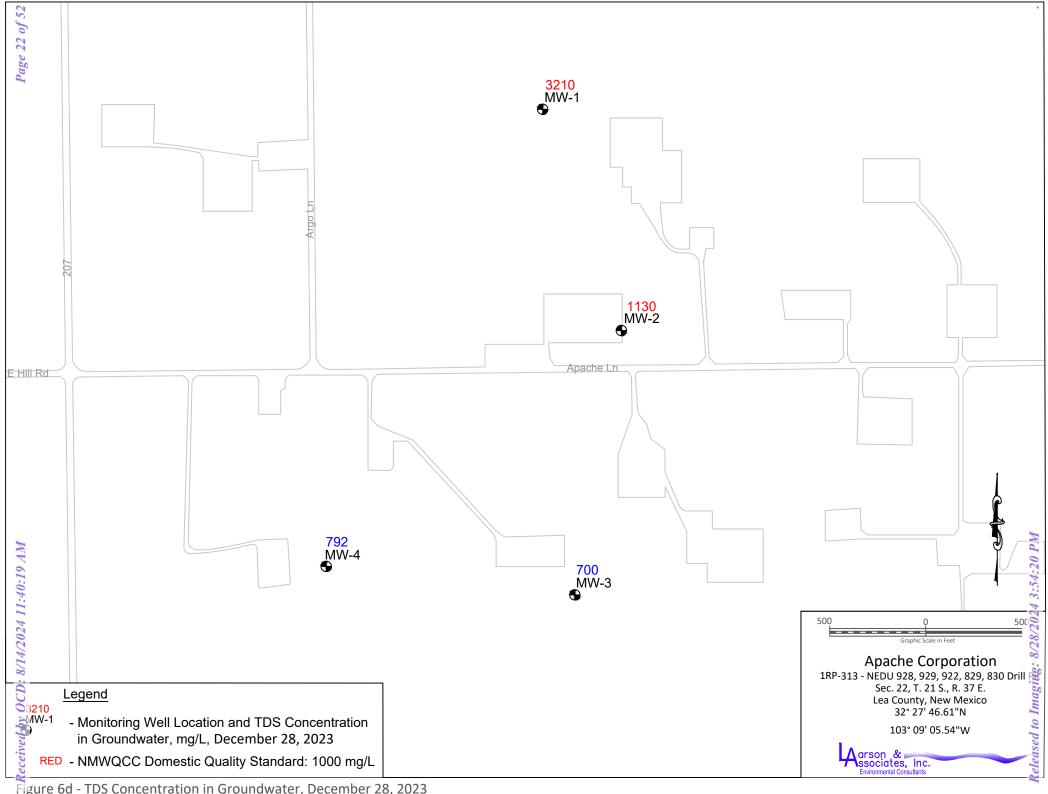
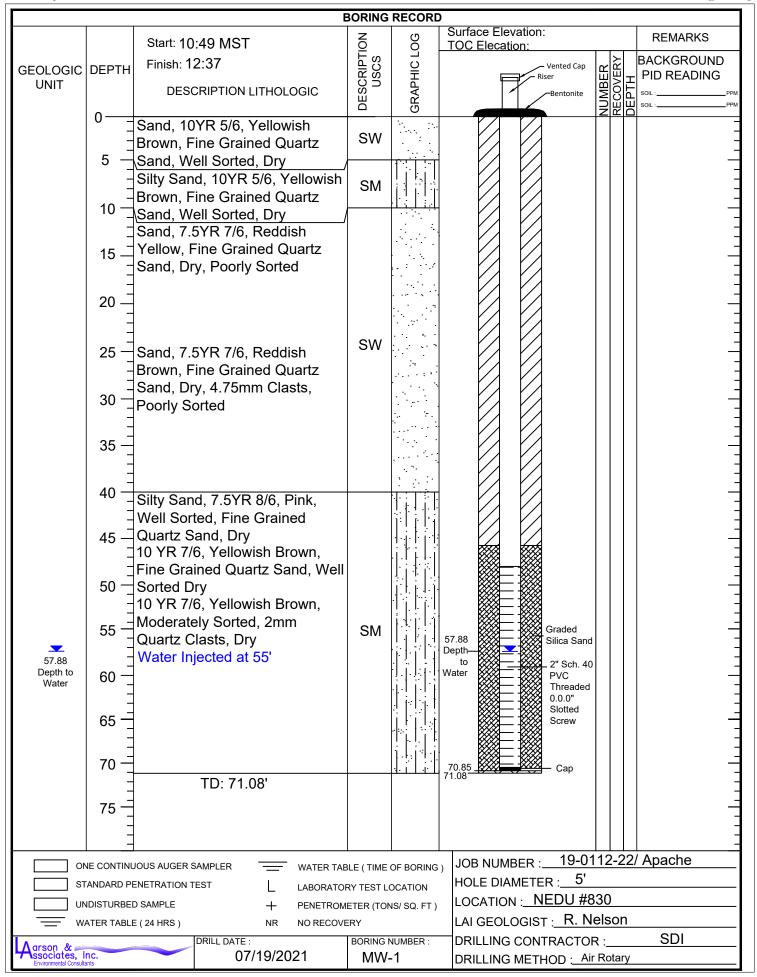



Figure 6d - TDS Concentration in Groundwater, December 28, 2023

Appendix A

Monitoring Well Completion Records

		E	BORING	RECORD							
		Start: 13:17 MST	NO	90	Surface Elevation: TOC Elecation:	_	REMARKS				
05010010	DEPTH	Finish: 14:40	DESCRIPTION USCS	GRAPHIC LOG	Vented Cap	7/2	-	BACKGROUND			
GEOLOGIC UNIT	DEPIH		SCRIPT	H	Riser	NUMBER RECOVERY	ᇍ	PID READING			
		DESCRIPTION LITHOLOGIC	DES	3RA	Bentonite			SOIL :PPI			
	0 —	Sand, 7.5YR 4/6, Strong Brown,		·							
		Fine Grained Quartz Sand, Well									
	5 —	Sorted, Dry	SW					_			
	_										
	10 -	Silty Sand, 7.5YR 7/4, Pink,						_			
	_	Fine Grained Quartz Sand,									
		Moderately Sorted, Dry, Quartz	SM					_			
	- 10	Clasts 2mm						_			
		7.5YR 6/6, Reddish Yellow, Fine									
		Grained Quartz Sand,						-			
		Moderately Sorted, Dry, Fine to Medium Quartz Clasts									
		Sand, 7.5YR 7/6, Reddish						-			
	_	Yellow, Fine Grained Quartz									
	30 —	Sand, Dry	0)4/					_			
		7.5YR 7/6, Reddish Yellow, Fine Grained Quartz Sand, Quartz	SW								
	25 -	Clasts									
	35 —							-			
	40 _	Silty Sand, 7.5YR 5/6, Strong		Hilit				-			
	_	Brown, Fine Grained Quartz									
	45 —	Sand, Well Sorted, Dry						-			
	_										
	50 -	7.5YR 5/6, Strong Brown, Fine									
	-	Grained Quartz Sand, Well									
	55 -	Sorted, Dry, Quartz Clasts	014								
_	55	Medium to Coarse Grained	SM		57.88 Graded Silica Sand						
57.88 Depth to	_	Water Injected at 55'			Depth 2" Sch. 40						
Water	60 _				Water PVC Threaded						
				用针针	0.0.0" Slotted						
	65 _				Screw						
	70 —				71.68 Cap						
		TD: 71.86'			71.60						
	75 -										
	_										
	IE CONTINI	JOUS AUGER SAMPLER ——— WATER TAB		OE PORING	JOB NUMBER : 19-01	12-:	<u>1</u> 22/	/ Apache			
		ENETRATION TEST LABORATO	•	OF BORING	HOLE DIAMETER : 5'			•			
	IDISTURBEI	_ EADOIVATOR			LOCATION: NEDU #9	22					
		E (24 HRS) NR NO RECOVE	•	/	LAI GEOLOGIST : R. No	<u>elso</u>	n				
orson .& ≠		DRILL DATE :		NUMBER :	DRILLING CONTRACTOR			SDI			
arson & ssociates, In Environmental Consulta	nc.	07/19/2021	MW	-2	DRILLING METHOD : Air	Rota	ıry				

				BORING	RECORD										
		Start: 13	NO	90		PID	RE	ADI	NG	S	AMP	LE	REMAR	KS	
GEOLOGIC	DEPTH	Finish: 14	4:50	DESCRIPTION USCS	GRAPHIC LOG	PPI	M)	<			_ မှု	PID READING	RECOVERY	BACKGRO PID REAL	
UNIT		DESC	CRIPTION LITHOLOGIC	SCI	XAP	2 4	6 8	3 10	12 14	16 1	NUMBER	REA	SOL	SOIL:	PPM
	0	0.5/0.4/	O. D. d. Fine One in a d		8						Z		<u> </u>	SOIL:	PPM
	5 —	Quartz R Sorted, V Unconso									1		5	13:50	
	10 —	Remains to 2.5YR	in Depth Lithology Same Color Changes 7/3 to 7/4 Light Brown at 13'	SM							2		10	13:54	- - -
	15 <u> </u>										3		15	13:58	-
	20	EVD 7/4	Dink Fine to Marting								4		20	14:03	-
	25 —	Grained Moderate	Pink, Fine to Medium Quartz Rich Sand, ely Sorted, Rounded to	SM							5		25	14:10	-
	30 —	Sub Rou	nded								6		30	14:13	1
	35 —										7		35	14:20	
	40 —	Very Fine	2, Pale Yellowish Pink, e to Fine Grained rained Sand, Well								8		40	14:22	1111
	45 <u> </u>	Sorted, V Rounded	Vell Rounded to Sub								9		45	14:25	<u>-</u>
Depth to Water: 53.71	50 —	Very Fine	e to Fine Grained and, Well Sorted, Well	SM							10		50	14:30	<u>-</u>
_	55 <u>-</u> - - -										11		55	14:42	
	60 —										12	:	60	14:44	-
	65 —		TD: 65.35'		1						13		65	14:50	-
							N	LL UME		 > .	An	 ach		 -0112-22	
		JOUS AUGER S			OF BORING)					ι : ΓΕR :	-		5"	, J 12-22	
	ANDARD PI	ENETRATION T D SAMPLE	E EABOTATE		OCATION NS/ SQ. FT)					NE					
		E (24 HRS)	NR NO RECOV	•	NO/ OQ. FI)					ST :_			icks	on	
IDRIII DATE				BORING	NUMBER :					NTR	ACT	OR :		SDI	
Agrson & T/20/2021 Ssociates, Inc. Environmental Consultaris			MW- 3 DRILLING METHOD : Air Rotary					1							

	BORING RECORD																
		Start: 9:	35		NO	96	ļ	PID	RE	AD	ING		SA	AMP	LE	REMARK	3
GEOLOGIC UNIT	DEPTH	F:			DESCRIPTION USCS	GRAPHIC LOG	PPN	M >	<				3ER	PID READING	RECOVERY	BACKGROU PID READI	
OINII		DESC	CRIPTION LITHO	LOGIC)ES(J SRAF	2 4	6 8	10	12 1	14 16	18	NUMBER	ID RE		SOIL:	PPM
	5 -	Grained Sorted, V Unconso Sand	SYR 4/6, Red, Quart Sand, V Vell Rounded, lidated, Quart	ery Well Z Rich	SM								1		5	9:38 9:40	
Depth to Water: 41.05	20 — 25 — 30 — 35 —	Brown, V Grained Moderate to Sub R Decrease Rich San 7.5YR 8/ Grained Rounded Sand 7.5YR 6/ Grained Sorted, F Rounded in Conso	FYR 7/4, Light fery Fine to Fir Quartz Sand, ely Sorted, Sul ounded, with I e in Grain Size Well Sorted, d 3, Pink, Fine to Quartz Sand, to Sub Angul ely Sorted, Qu 4, Light Brown Quartz Sand, Rounded to Su , with Depth In lidation and tion, Quartz R	ne b Angular Depth e and Quartz o Medium Sub ar, artz Rich n, Fine Well ub ncrease	SM								3 4 5 7		25 25 30 30 34 40 44 44 44 44 44 44 44 44 44 44 44 44	9:42 9:45 10:30 10:35 10:38	
	50 -	7.5YR 7/ Brown, P Coarse (Rounded Consolid Sandstor	4, Light Reddi oorly Sorted, I Grained Quartz to Angular, V ated with Red ne Fragments Quartz Rich S	sh Fine to z Sand, ery													
	65 -	ـــــــــا ا	ed Water with		SM												- - - - - - - -
	75														<u>-</u>		
TE	ONE CONTINUOUS AUGER SAMPLER WATER TO STANDARD PENETRATION TEST LABORATE UNDISTURBED SAMPLE + PENETRO WATER TABLE (24 HRS) NR NO RECO						HOI LOC LAI DRI	LE CAT GE ILLI	DIAI FION EOLG ING	ME 1 :_ CC	TEF <u>N</u> IST	R : NEC : RAC	DU T.	928 Jac DR :	5" 3 cksc	SDI	
7\ssociates, Environmental Consult	arson & Sociates, Inc. 7/20/2021					MW-4			DRILLING METHOD : Air Rotary								

Appendix B

Laboratory Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 1/5/2024 8:37:01 AM

JOB DESCRIPTION

NEDU Pits 19-0112-22

JOB NUMBER

880-37351-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 1/5/2024 8:37:01 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Laboratory Job ID: 880-37351-1 SDG: 19-0112-22

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	22

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-37351-1 Project/Site: NEDU Pits SDG: 19-0112-22

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. .I

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this repor	t.
		_

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDI Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Larson & Associates, Inc.

Project: NEDU Pits

Job ID: 880-37351-1

Job ID: 880-37351-1

Eurofins Midland

Job Narrative 880-37351-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/29/2023~8:45~AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was $3.9^{\circ}C$

The following samples were submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): Dup-1 (880-37351-5) Per Daniel St. Germain, the lab was instructed to analyze this additional sample.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-139067 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) recovery was within acceptance limits.

Method 300_ORGFM_28D: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-1 (880-37351-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

2

3

4

5

7

8

10

13

Job ID: 880-37351-1 SDG: 19-0112-22

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

Client Sample ID: MW-1 Lab Sample ID: 880-37351-1 Date Collected: 12/28/23 12:30 Date Received: 12/29/23 08:45

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			01/02/24 18:13	1
Toluene	<0.00100	U	0.00100	mg/L			01/02/24 18:13	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			01/02/24 18:13	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			01/02/24 18:13	1
o-Xylene	<0.00100	U	0.00100	mg/L			01/02/24 18:13	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			01/02/24 18:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		63 - 144		-		01/02/24 18:13	1
4-Bromofluorobenzene (Surr)	102		74 - 124				01/02/24 18:13	1
Dibromofluoromethane (Surr)	108		75 - 131				01/02/24 18:13	1
Toluene-d8 (Surr)	101		80 - 120				01/02/24 18:13	1
Method: TAL SOP Total BT	EX - Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0100	U	0.0100	mg/L			01/02/24 18:13	1
Method: EPA 300.0 - Anion	s, Ion Chroma	tography						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1040		5.00	mg/L			01/04/24 02:40	10

Lab Sample ID: 880-37351-2 Client Sample ID: MW-2 Date Collected: 12/28/23 11:40

RL

40.0

Unit

mg/L

Prepared

Result Qualifier

3210

Matrix: Water

Analyzed

01/02/24 09:55

Date Received: 12/29/23 08:45 Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared <0.00100 U Benzene 0.00100 01/02/24 18:32 mg/L Toluene <0.00100 U 0.00100 01/02/24 18:32 mg/L Ethylbenzene <0.00100 U 0.00100 mg/L 01/02/24 18:32 m,p-Xylenes <0.0100 U 01/02/24 18:32 0.0100 mg/L o-Xylene <0.00100 U 0.00100 mg/L 01/02/24 18:32 Xylenes, Total <0.0100 U 0.0100 mg/L 01/02/24 18:32 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 110 63 - 144 01/02/24 18:32 4-Bromofluorobenzene (Surr) 100 74 - 124 01/02/24 18:32 Dibromofluoromethane (Surr) 110 01/02/24 18:32 75 - 131 80 - 120 Toluene-d8 (Surr) 104 01/02/24 18:32 **Method: TAL SOP Total BTEX - Total BTEX Calculation** Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Total BTEX <0.0100 U 0.0100 mg/L 01/02/24 18:32 Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier Unit RL D Prepared Analyzed Dil Fac 0.500 mg/L 01/04/24 02:02 **Chloride** 248

Eurofins Midland

General Chemistry

Total Dissolved Solids (SM 2540C)

Job ID: 880-37351-1 SDG: 19-0112-22

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Client Sample ID: MW-2

Lab Sample ID: 880-37351-2

Date Collected: 12/28/23 11:40 Date Received: 12/29/23 08:45 Matrix: Water

General Chemistry

Analyte Result Qualifier RL Unit mg/L D Prepared Analyzed Dil Fac 01/02/24 09:55 1

Total Dissolved Solids (SM 2540C) 1130 10.0 mg/L 01/02/24 09:55 1

Client Sample ID: MW-3 Lab Sample ID: 880-37351-3

Date Collected: 12/28/23 10:00 Date Received: 12/29/23 08:45 Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

<0.0100 U

112

102

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			01/02/24 18:51	1
Toluene	<0.00100	U	0.00100	mg/L			01/02/24 18:51	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			01/02/24 18:51	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			01/02/24 18:51	1
o-Xylene	<0.00100	U	0.00100	mg/L			01/02/24 18:51	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			01/02/24 18:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		63 - 144				01/02/24 18:51	1
4-Bromofluorobenzene (Surr)	99		74 - 124				01/02/24 18:51	1
Dibromofluoromethane (Surr)	108		75 - 131				01/02/24 18:51	1

Toluene-d8 (Surr)	103	80 - 120				01/02/24 18:51		1
Method: TAL SOP Total BTEX -	· Total BTEX Calculatio	n						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa	ас

0.0100

mg/L

Method: EPA 300.0 - Anions	s, Ion Chromatography	1					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	124	0.500	mg/L			01/04/24 01:23	1
=							

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	700		10.0	mg/L			01/02/24 09:55	1

Client Sample ID: MW-4

Date Collected: 12/28/23 10:55

Lab Sample ID: 880-37351-4

Matrix: Water

Date Received: 12/29/23 08:45

Total BTEX

Method: SW846 8260C - Vo	latile Organic	Compoun	ds by GC/MS					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			01/02/24 19:10	1
Toluene	<0.00100	U	0.00100	mg/L			01/02/24 19:10	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			01/02/24 19:10	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			01/02/24 19:10	1
o-Xylene	<0.00100	U	0.00100	mg/L			01/02/24 19:10	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			01/02/24 19:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		63 - 144			-1	01/02/24 19:10	
4-Bromofluorobenzene (Surr)	101		74 - 124				01/02/24 19:10	1

Eurofins Midland

01/02/24 19:10

01/02/24 19:10

75 - 131

80 - 120

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

3

5

0

10

12

14

0 27251 4

01/02/24 18:51

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Lab Sample ID: 880-37351-4

Matrix: Water

Job ID: 880-37351-1

SDG: 19-0112-22

Client Sample ID: MW-4 Date Collected: 12/28/23 10:55 Date Received: 12/29/23 08:45

Method: TAL SOP Total	BTEX - Total BTEX Calculation
Analyte	Result Qualifier

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0100	U	0.0100	mg/L			01/02/24 19:10	1

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	160		0.500	mg/L			01/04/24 02:14	1

General Chemistry

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	792	10.0	mg/L			01/02/24 09:55	1

Lab Sample ID: 880-37351-5 **Client Sample ID: Dup-1** Date Collected: 12/28/23 00:00

Date Received: 12/29/23 08:45

Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

	Tolumb Organio	- opou	20 27 CO					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			01/02/24 19:29	1
Toluene	<0.00100	U	0.00100	mg/L			01/02/24 19:29	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			01/02/24 19:29	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			01/02/24 19:29	1
o-Xylene	<0.00100	U	0.00100	mg/L			01/02/24 19:29	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			01/02/24 19:29	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		63 - 144	_		01/02/24 19:29	1
4-Bromofluorobenzene (Surr)	104		74 - 124			01/02/24 19:29	1
Dibromofluoromethane (Surr)	110		75 - 131			01/02/24 19:29	1
Toluene-d8 (Surr)	107		80 - 120			01/02/24 19:29	1

Method: T	AL SOP	Total I	BTEX -	Total	BTEX	Calculation	n

Method. IAL SOF Total DILA	- IOIAI DIEX C	Jaiculation						
Analyte	Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTFX	<0.0100 U	0.0100	ma/l			01/02/24 19:29	1	

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	251	0.500	mg/L			01/04/24 04:49	1

Ge	neral	Che	mistry

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1100	10.0	mg/L			01/02/24 09:55	1

Eurofins Midland

Surrogate Summary

Client: Larson & Associates, Inc. Job ID: 880-37351-1 SDG: 19-0112-22 Project/Site: NEDU Pits

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)
880-37351-1	MW-1	106	102	108	101
880-37351-2	MW-2	110	100	110	104
880-37351-3	MW-3	110	99	108	103
880-37351-4	MW-4	111	101	112	102
880-37351-5	Dup-1	110	104	110	107
LCS 860-138854/3	Lab Control Sample	96	99	98	99
LCSD 860-138854/4	Lab Control Sample Dup	88	97	96	97
MB 860-138854/9	Method Blank	106	102	106	102

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: Larson & Associates, Inc. Job ID: 880-37351-1 Project/Site: NEDU Pits SDG: 19-0112-22

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-138854/9

Matrix: Water

Analysis Batch: 138854

Client Sample ID: Method Blank
Prep Type: Total/NA

-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			01/02/24 13:10	1
Toluene	<0.00100	U	0.00100	mg/L			01/02/24 13:10	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			01/02/24 13:10	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			01/02/24 13:10	1
o-Xylene	<0.00100	U	0.00100	mg/L			01/02/24 13:10	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			01/02/24 13:10	1

	MB I	MB					
Surrogate	%Recovery (Qualifier	Limits	1	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		63 - 144			01/02/24 13:10	1
4-Bromofluorobenzene (Surr)	102		74 - 124			01/02/24 13:10	1
Dibromofluoromethane (Surr)	106		75 - 131			01/02/24 13:10	1
Toluene-d8 (Surr)	102		80 - 120			01/02/24 13:10	1

Lab Sample ID: LCS 860-138854/3

Matrix: Water

Analysis Batch: 138854

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Benzene	0.0500	0.05234		mg/L		105	75 - 125	
	Toluene	0.0500	0.05230		mg/L		105	75 - 130	
	Ethylbenzene	0.0500	0.05450		mg/L		109	75 - 125	
	m,p-Xylenes	0.0500	0.05517		mg/L		110	75 - 125	
	o-Xylene	0.0500	0.05497		mg/L		110	75 - 125	
ı									

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		63 - 144
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	99		80 - 120

Lab Sample ID: LCSD 860-138854/4

Matrix: Water

Analysis Batch: 138854

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.04867		mg/L		97	75 - 125	7	25
Toluene	0.0500	0.04860		mg/L		97	75 - 130	7	25
Ethylbenzene	0.0500	0.04976		mg/L		100	75 - 125	9	25
m,p-Xylenes	0.0500	0.05039		mg/L		101	75 - 125	9	25
o-Xylene	0.0500	0.05119		mg/L		102	75 - 125	7	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		63 - 144
4-Bromofluorobenzene (Surr)	97		74 - 124
Dibromofluoromethane (Surr)	96		75 - 131
Toluene-d8 (Surr)	97		80 - 120

QC Sample Results

Client: Larson & Associates, Inc. Job ID: 880-37351-1 SDG: 19-0112-22 Project/Site: NEDU Pits

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 860-139067/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 139067

MB MB Result Qualifier RL Unit Analyzed Dil Fac Analyte D Prepared 0.500 01/03/24 17:12 Chloride <0.500 U mg/L

Lab Sample ID: MB 860-139067/38 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 139067

MB MB Result Qualifier RL Unit Prepared Analyzed Dil Fac Analyte 0.500 01/04/24 00:44 Chloride <0.500 U mq/L

Lab Sample ID: LCS 860-139067/39 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 139067

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec Chloride 5.00 4.944 99 90 - 110 mg/L

Lab Sample ID: LCSD 860-139067/40 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 139067

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 4.942 5.00 mg/L 90 - 110

Lab Sample ID: LLCS 860-139067/7 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 139067

LLCS LLCS Spike %Rec Analyte Added Result Qualifier Limits Unit %Rec Chloride 0.500 0.4543 J 91 50 - 150 mg/L

Lab Sample ID: 880-37351-3 MS Client Sample ID: MW-3 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 139067

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits 5.00 Chloride 124 124.5 4 mg/L 90 - 110

Lab Sample ID: 880-37351-3 MSD Client Sample ID: MW-3 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 139067

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Analyte Result Qualifier D Limits RPD Limit Unit %Rec Chloride 124 5.00 124.5 4 mg/L 16 90 - 110 0

Lab Sample ID: 880-37351-5 MS Client Sample ID: Dup-1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 139067

Spike MS MS %Rec Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride 251 90 - 110 5.00 250.9 mg/L

Eurofins Midland

Released to Imaging: 8/28/2024 3:54:20 PM

QC Sample Results

Client: Larson & Associates, Inc. Job ID: 880-37351-1 Project/Site: NEDU Pits SDG: 19-0112-22

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-37351-5 MSD **Client Sample ID: Dup-1** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 139067

•	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	251		5.00	250.9	4	mg/L		3	90 - 110	0	15

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 860-138840/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 138840

MR MR

	IVID IV	IID					
Analyte	Result Q	Qualifier F	RL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<5.00 U	5.0	00 mg/L			01/02/24 09:55	1

Lab Sample ID: LCS 860-138840/2 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 138840 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit Limits D %Rec Total Dissolved Solids 1000 1111 mg/L 111 80 - 120

Lab Sample ID: LCSD 860-138840/3 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 138840

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids	1000	1111		mg/L		111	80 - 120	0	10

Lab Sample ID: LLCS 860-138840/26 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 138840

	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	 5.00	5.500		mg/L		110	50 - 150	

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-37351-1

SDG: 19-0112-22

GC/MS VOA

Analysis Batch: 138854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37351-1	MW-1	Total/NA	Water	8260C	
880-37351-2	MW-2	Total/NA	Water	8260C	
880-37351-3	MW-3	Total/NA	Water	8260C	
880-37351-4	MW-4	Total/NA	Water	8260C	
880-37351-5	Dup-1	Total/NA	Water	8260C	
MB 860-138854/9	Method Blank	Total/NA	Water	8260C	
LCS 860-138854/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-138854/4	Lab Control Sample Dup	Total/NA	Water	8260C	

Analysis Batch: 139031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37351-1	MW-1	Total/NA	Water	Total BTEX	-
880-37351-2	MW-2	Total/NA	Water	Total BTEX	
880-37351-3	MW-3	Total/NA	Water	Total BTEX	
880-37351-4	MW-4	Total/NA	Water	Total BTEX	
880-37351-5	Dup-1	Total/NA	Water	Total BTEX	

HPLC/IC

Analysis Batch: 139067

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37351-1	MW-1	Total/NA	Water	300.0	
880-37351-2	MW-2	Total/NA	Water	300.0	
880-37351-3	MW-3	Total/NA	Water	300.0	
880-37351-4	MW-4	Total/NA	Water	300.0	
880-37351-5	Dup-1	Total/NA	Water	300.0	
MB 860-139067/3	Method Blank	Total/NA	Water	300.0	
MB 860-139067/38	Method Blank	Total/NA	Water	300.0	
LCS 860-139067/39	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-139067/40	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-139067/7	Lab Control Sample	Total/NA	Water	300.0	
880-37351-3 MS	MW-3	Total/NA	Water	300.0	
880-37351-3 MSD	MW-3	Total/NA	Water	300.0	
880-37351-5 MS	Dup-1	Total/NA	Water	300.0	
880-37351-5 MSD	Dup-1	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 138840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37351-1	MW-1	Total/NA	Water	SM 2540C	
880-37351-2	MW-2	Total/NA	Water	SM 2540C	
880-37351-3	MW-3	Total/NA	Water	SM 2540C	
880-37351-4	MW-4	Total/NA	Water	SM 2540C	
880-37351-5	Dup-1	Total/NA	Water	SM 2540C	
MB 860-138840/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 860-138840/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 860-138840/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
LLCS 860-138840/26	Lab Control Sample	Total/NA	Water	SM 2540C	

Eurofins Midland

_

3

5

7

10

12

13

14

Lab Sample ID: 880-37351-1

Matrix: Water

Client Sample ID: MW-1 Date Collected: 12/28/23 12:30 Date Received: 12/29/23 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138854	01/02/24 18:13	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			139031	01/02/24 18:13	KLV	EET HOU
Total/NA	Analysis	300.0		10			139067	01/04/24 02:40	W1N	EET HOU
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	138840	01/02/24 09:55	SA	EET HOU

Client Sample ID: MW-2 Lab Sample ID: 880-37351-2 Date Collected: 12/28/23 11:40 **Matrix: Water**

Date Received: 12/29/23 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138854	01/02/24 18:32	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			139031	01/02/24 18:32	KLV	EET HOU
Total/NA	Analysis	300.0		1			139067	01/04/24 02:02	W1N	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	138840	01/02/24 09:55	SA	EET HOU

Lab Sample ID: 880-37351-3 **Client Sample ID: MW-3 Matrix: Water**

Date Collected: 12/28/23 10:00

Date Received: 12/29/23 08:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138854	01/02/24 18:51	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			139031	01/02/24 18:51	KLV	EET HOU
Total/NA	Analysis	300.0		1			139067	01/04/24 01:23	W1N	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	138840	01/02/24 09:55	SA	EET HOU

Client Sample ID: MW-4 Lab Sample ID: 880-37351-4 Date Collected: 12/28/23 10:55 **Matrix: Water**

Date Received: 12/29/23 08:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138854	01/02/24 19:10	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			139031	01/02/24 19:10	KLV	EET HOU
Total/NA	Analysis	300.0		1			139067	01/04/24 02:14	W1N	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	138840	01/02/24 09:55	SA	EET HOU

Client Sample ID: Dup-1 Lab Sample ID: 880-37351-5 Date Collected: 12/28/23 00:00 **Matrix: Water**

Date Received: 12/29/23 08:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138854	01/02/24 19:29	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			139031	01/02/24 19:29	KLV	EET HOU
Total/NA	Analysis	300.0		1	0 mL	1.0 mL	139067	01/04/24 04:49	W1N	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	138840	01/02/24 09:55	SA	EET HOU

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 880-37351-1 SDG: 19-0112-22

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-37351-1 SDG: 19-0112-22

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas	Progra		Identification Number T104704215-23-53	Expiration Date 06-30-24	
The following analyte	s are included in this reno	rt but the laboratory is r	not certified by the governing authori	ity. This list may incl	
0 ,	does not offer certification	,	lot certified by the governing authori	ity. This list may inclu	
0 ,	•	,	Analyte	ity. This list may more	

Method Summary

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

Job ID: 880-37351-1

SDG: 19-0112-22

Protocol	Laboratory
SW846	EET HOU
TAL SOP	EET HOU
EPA	EET HOU
SM	EET HOU

EET HOU

SW846

Protocol References:

Method

Total BTEX

SM 2540C

8260C

300.0

5030C

EPA = US Environmental Protection Agency

Purge and Trap

Method Description

Total BTEX Calculation

Anions, Ion Chromatography

Solids, Total Dissolved (TDS)

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Volatile Organic Compounds by GC/MS

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Larson & Associates, Inc.

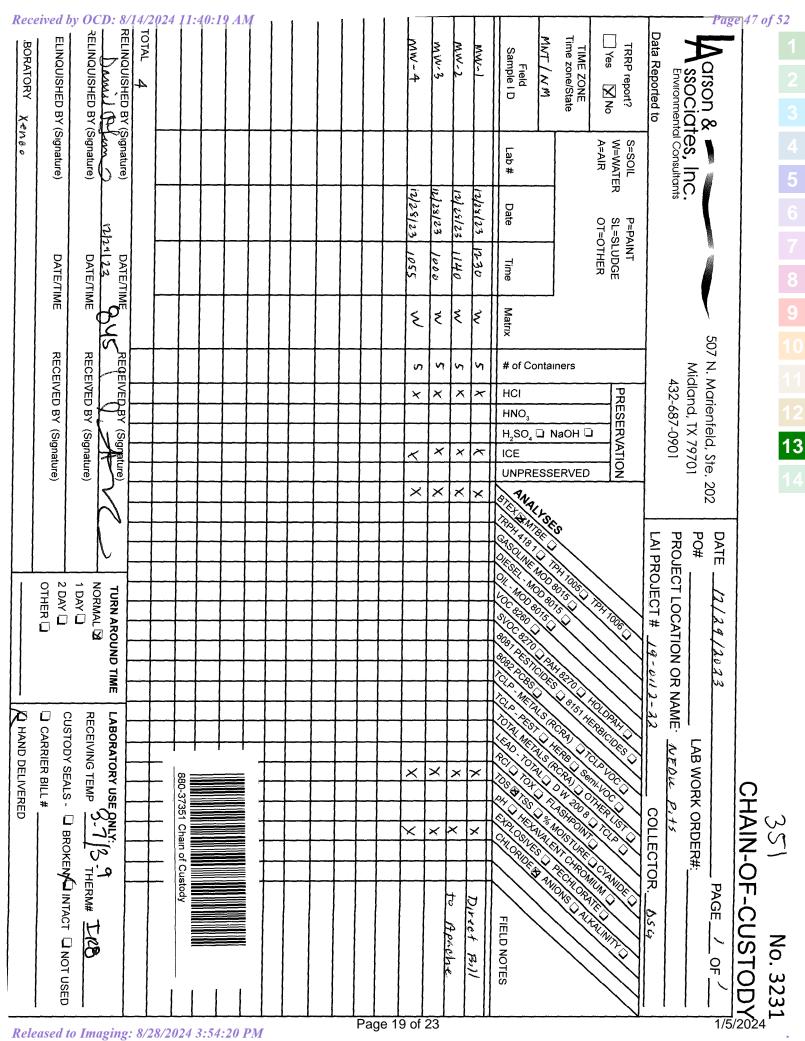
Project/Site: NEDU Pits

Job ID: 880-37351-1 SDG: 19-0112-22

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-37351-1	MW-1	Water	12/28/23 12:30	12/29/23 08:45
880-37351-2	MW-2	Water	12/28/23 11:40	12/29/23 08:45
880-37351-3	MW-3	Water	12/28/23 10:00	12/29/23 08:45
880-37351-4	MW-4	Water	12/28/23 10:55	12/29/23 08:45
880-37351-5	Dup-1	Water	12/28/23 00:00	12/29/23 08:45

Л

6


9

10

12

13

114

Released to Imaging: 8/28/2024 3:54:20 PM

Chain of Custody Record

Ver 06/08/2021						Δ Yes Δ No
	Remarks:	Cooler Temperature(s) °C and Other Remarks:	Coo		-	Custody Seals Intact Custody Seal No.
	(Date/Tir	Received by:	Company		Date/Time:	Relinquished by:
122023 9:54° Einstry	(Received by:			Date/Time:	Reinquished by:
, ,		Neuelved by.			Date: Hire.	Communication by:
	moutou or empirem.	To the second se		Dale,		Delicalists for
ment:	Method of Shins		Timo:) a+6;		Emphy Kit Bolina lished by
	ents:	Requirem	Specia	ble Rank: 2	Primary Deliverable Rank:	Deliverable Requested I, II III, IV Other (specify)
may be assessed it samples are retained longer than 1 month) Disposal By Lab Archive For Months	Disposal By Lab	Sample Disposal (A fee may be Return To Client	Sampi 			Possible Hazaro Identification Unconfirmed
compliance to Euroans Environment Tesang South Central, LLC.	ustody attesting to said o	date, return the signed chain of ci	ad acca editamons are current to	mediately. In all requesti	תמו כפוזמצו, בבל אנפוזמטוו זיי	der en leitet i segen steam de en anglit to calonité city lost lieurs les anils se
Clabor anges to	sting South Central, LLC	ck to the Eurofins Environment Te	he samples must be shipped ba	matrix being analyzed, t	sted above for analysis/tests	laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/rests/matrix being analyzed, the samples must be shipped back to the Euroffins Formal LLC above.
his sar Corrected Terms: 1	contract laboratories. To	editation compliance upon our subr	ship of method language & according	al LLC places the owner	nment Testing South Cent	Note: Since laboratory accreditations are subject to change. Furofins Envir
C/F-00 - 3 IX ID HOU-369						
				-		
N A ST						
	_					
100						
34						
				-		
S		x x x	Water	Mountain	12/28/23	Dup-1 (880-37351-5)
X				(4)		1113
Special Instructions/Note:		Total	BT-Tissue, A-Air) E	Sample (C=comp, Time G=grab)	Sample Date	Sample Identification Client ID (Lab ID)
Numb		C/6030C BTEX	Filtere			
127 x s6unio			d Sar MSD			
Other		Chle	_		SSOW#	Site:
L EDA		ride			Project #:	Project Name:
<u> </u>	-		_		WO #	mail
= - 4			_		9	281-240-4200(Tel)
MeOH R					5 *	1X, 7/4/7
D Nitric Acid			<u> </u>			State, Zip:
B NaOH N None C Zn Acerste O AsNaO2				ys):	TAT Requested (days):	City
≤ des	Requested	Analysis Re			1/8/2024	4145 Greenbriar Dr
860-37351 1		NELAP Texas	NELAP .			Eurofins Environment Testing South Centr
Page 1 of 1	New Mexico	Holly Taylor@et.eurofinsus.com	Holly Taylor@e			Shipping/Receiving
Page:	State of Origin		E-Mail:		Phone:	Client Contact
s): COC No: 880-8781 1	Carrier Tracking No(s)		∐ab PM: Taylor Holly		Sampler	Client Information (Sub Contract Lab)
Environment Testing			Chain of Custody Record	nain of Cu	ر	Midland TX 79701 Phone: 432-704-5440
ik errofine	歌歌	_)	EUROTINS MICIANO
						! !! :: :

Eurofins Midland

Widland, TX 79701 1211 W Florida Ave

13 14

Chain of Custody Record

eurofins | Environment Testing

State, Zlp: TX, 77477 Project Name: NEDU Pits Stafford Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample ship aboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to E WW-3 (880-37351-3) WW-2 (880-37351-2) MW-1 (880-37351-1) 281-240-4200(Tel) 1145 Greenbriar Dr Phone: 432-704-5440 MW-4 (880-37351-4) ossible Hazard Identification sample Identification eliverable Requested: I, If III, IV Other (specify) lient Information linquished by: elinquished by: mpty Kit Relinquished by linguished by: rofins Environment Testing South Centr ipping/Receiving Custody Seals Intact ğ ₹ Client ID (Lab ID) (Sub Contract Lab) Custody Seal No. Project #: 88000515 ¥ Phone: Due Date Requested; 1/8/2024 Sampler Date/Time Date/Time: Primary Deliverable Rank: 2 TAT Requested (days): 12/28/23 12/28/23 12/28/23 12/28/23 Date: Mountain 10:00 Mountain 11:40 Mountain Sample (C=comp, Sample Preservation Code: Type Company Company Water Matrix Water Water Water Lab PM: Taylor Holly Holly Taylor@et.eurofinsus.com Field Filtered Sample (Yes or No) Time: NELAP Texas Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month Perform MS/MSD (Yes or Ñò) Special Instructions/QC Requirements × 2640C_Calcd/ TDS × × × Cooler Temperature(s) °C and Other Remarks: ns Required (See note) 8260C/5030C BTEX × × × × × × Fotal_BTEX × × × × 300_ORGFM_28D/ Chloride Analysis Requested State of Origin: New Mexico Carrier Tracking No(s): Method of Shipment Date/Time Ç J DI Water
K EDTA 🧸 தி தேர் கு கு 🗴 Total Number of containers 🖫 A HCL
B NaOH
C Zn Acetate
C Nibric Acid
E NaHSO4
F MeOH
G Amchlor
H Ascorbic Acid Page 1 of 1 Corrected Temp. COC No: 880-8779.1 Temp. C/F -0.0 880-37351 1 Preservation Codes: 2 Special Instructions/Note: W Company IR ID HOU-369 Ver 06/08/2021 A None
NazO4S
NazO503
NazSO3
N Months other (specify) 9

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-37351-1

SDG Number: 19-0112-22

Login Number: 37351 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Released to Imaging: 8/28/2024 3:54:20 PM Page 22 of 23

9 02

3

4

6

8

10

10

13

14

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-37351-1

SDG Number: 19-0112-22

Login Number: 37351 **List Source: Eurofins Houston** List Number: 2 List Creation: 12/30/23 11:34 AM

Creator: Torres, Sandra

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 373819

CONDITIONS

Operator:	OGRID:
APACHE CORPORATION	873
303 Veterans Airpark Ln	Action Number:
Midland, TX 79705	373819
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
michael.buchanan	NEDU Drill Pits 2023 4th Quarter Groundwater Monitoring Report, submitted for the record on 08/14/2024 by Apache, App ID:373819	8/28/2024