Received by OCD: 8/22/2023 10:49:18 AM

December 1,

2022

Prepared for:

TARGA

1RP-4664 (Incident NO. nOY1709044723)

Groundwater Abatement Plan

Epperson 16-Inch Pipeline Release, Lea County, New Mexico

Targa Midstream Services LLC P.O. Box 1689 Lovington, New Mexico 88269 Prepared by: arson & ssociates, Inc. 507 N. Marienfeld Street, Suite 202 Midland, Texas 79701 (432)687-0901 Mark J Larson Certified Professional Geologist #10490 MIMIMIN AIPG ROFESSIONAL

Project No. 16-0120-01

This Page Intentionally Left Blank

.

Page 3 of 158 1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release January 20, 2022

Table of Contents

1.0	INTRO	DUCTION
1.1 Background1		
2.0	STAGE	1 GROUNDWATER ABATEMENT PLAN
2.1	Physica	I Site Setting2
2.1.	1 Торо	graphy2
2	.1.2	Soil2
2	.1.3	Geology2
2	.1.4	Groundwater2
2	.1.5	Water Wells
2	.1.6	Surface Water
2	.1.7	Flood Plain
2	.1.8	Karst
2	.1.9	Aquifers
2.2	Ground	water Investigation
2	.2.1	Monitoring Wells
2	.2.4	Aquifer (Slug) Testing
2	.2.5	Groundwater Samples4
3.0	STAGE	1 GROUNDWATER ABATEMENT PLAN
3.1	Abatem	ent Options5
3	.1.1	Passive Extraction6
3	.1.2	Total Fluids Extraction (Pump and Dispose)6
3	.1.3	High Vacuum Extraction
3.2	Propose	ed Abatement Option7
3.3 Proposed Abatement Option Design7		
3.4 Monitoring and Maintenance Plan7		
3.5 Groundwater Monitoring7		
3.6 Progress Reports		
3.7 Abatement Schedule		
3.8 Notification8		
3.10 Public Notice		
4.0	CON	ICLUSION9

.

Page 4 of 158 1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release January 20, 2022

List of Tables

Table 1	Monitoring Well Completion Details and Gauging Summary
Table 2	Horizontal Hydraulic Conductivity Test Summary
Table 3	Groundwater Sample Analytical Data Summary

List of Figures

Figure 1	Topographic Map
Figure 1a	Detailed Topographic Map
Figure 2	Aerial Drawing Showing Monitoring Well Locations
Figure 3a	Groundwater Potentiometric Surface Map, July 18-19, 2019
Figure 3b	Groundwater Potentiometric Surface Map, August 8, 2019
Figure 3c	Groundwater Potentiometric Surface Map, February 24, 2020
Figure 3d	Groundwater Potentiometric Surface Map, September 3, 2021

List of Appendices

Appendix A	Regulatory Communications
Appendix B	USGS Karst Risk Potential Data
Appendix C	NMOSE Well Permits
Appendix C	Geologic Logs and Monitoring Well Completion Records
Appendix E	Intertek Laboratory Report
Appendix F	Horizontal Hydraulic Conductivity Test Data and Calculations
Appendix G	Laboratory Groundwater Reports
Appendix H	Historical (1968) Aerial Photograph
Appendix I	Public Notice

1.0 INTRODUCTION

This groundwater abatement plan is submitted to the State of New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, LLC (Targa) for remediation of phase-separated hydrocarbons (condensate) and dissolved organic compounds benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater due to a release from the Epperson 16-inch gas pipeline (Site) which is located about 15 miles west of Tatum, in Lea County, New Mexico. The legal description is Unit F (SE/4, NW/4), Section 24, Township 11 South, Range 33 East. The geodetic position is North 33.346925° and West -103.574597°. Figure 1 presents a topographic map. Figure 2 presents an aerial map.

1.1 Background

Between June 10, 2016, and February 9, 2017, LAI personnel investigated the release by collecting and analyzing soil samples from eight (8) hand auger borings (HA-1 through HA-8), seven (7) direct push borings (SB-1 through SB-7) and eight (8) air rotary drilled borings (SB-8 through SB-15). The soil samples were collected and analyzed according to NMOCD guidelines (Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993) which allowed substituting a headspace vapor reading less than 100 parts per million (ppm) using a calibrated photoionization detector (PID) in lieu of laboratory analysis of BTEX. Laboratory analysis for BTEX was only performed on samples with a PID reading greater than 100 ppm. Samples were analyzed for total petroleum hydrocarbons (TPH) by EPA SW-846 Method 8015 including gasoline range organics (C6-C12), diesel range organics (>C12-C28) and oil range organics (>C28-C35) and chloride by Method 300.

On March 29, 2017, Targa submitted an initial C-141 for the release to the New Mexico Oil Conservation Division (NMOCD) District 1, which assigned the release remediation permit number 1RP-4664 (Incident Number nOY1709044723). The spill delineation was documented in reports dated March 7, 2017 (1RP-4664 Spill Delineation Report, Epperson 16 Inch Pipeline Release Site #1, Lea County, New Mexico) and May 30, 2017 (1RP-4664 Addendum Spill Delineation Report, Epperson 16 Inch Pipeline Release Site #1, Lea County, New Mexico). On July 13, 2017, NMOCD District 1 (Ms. Olivia Yu) approved the addendum delineation report and the proposed remediation plan. Appendix A presents regulatory communications.

Between October 13, 2017, and November 20, 2020, Gandy Corporation (Gandy), Lovington, New Mexico, excavated soil to about 26 feet below ground surface (BGS). Approximately 4,930 cubic yards of soil was excavated from an area measuring approximately 15,076 square feet or about 0.35 acre. All but about 500 cubic yards of soil that was confirmed "clean" through laboratory analysis was disposed at the Gandy Marley (GM) Landfill located west of Tatum, New Mexico. The clean soil was retained at the Site for backfilling the excavation.

On July 7, 2020, and November 20,2020, LAI collected composite samples for about every 200 square feet following removal of additional soil from the west sidewall and east bottom of the excavation. The samples were analyzed for BTEX Permian Basin Environmental Lab (PBEL) in Midland, Texas, analyzed the samples for BTEX, TPH and chloride by EPA SW-846 Methods 8021B, 8014 and Method 300, respectively. The laboratory reported BTEX, TPH, and chloride concentrations below the NMOCD closure criteria (Table 1, 19.15.29 NMAC) in the final samples.

On February 9, 2021, Targa provided written notification to NMOCD prior to backfilling the excavation. OCD acknowledged the notification and approved excavation backfilling on February 18, 2021. Between

May 20, 2021, and June 2, 2021, LTP Enterprises (LTP) backfilled the excavation with caliche confirmed clean by laboratory analysis to within 1 foot of ground surface. The upper 1-foot bgs of the excavation was filled with topsoil. On July 9, 2021, the Site was seeded with a seed mix specified by the surface owner. LAI prepared the closure report that Targa uploaded to the NMOCD web portal on August 9, 2021.

2.0 STAGE 1 GROUNDWATER ABATEMENT PLAN

2.1 Physical Site Setting

2.1.1 Topography

The surveyed elevation is 4,228.40 feet above mean sea level (MSL). The topography slopes gently to the east and southeast. Figure 1a presents a detailed topographic map.

2.1.2 Soil

The soil underlying the Site is Kimbrough-Lea complex, dry, 0 to 3 percent slopes, consisting of three (3) inches of gravelly loam, underlain by seven (7) inches of loam and 70 inches of cemented material (caliche) in descending order. The soil originates from loamy eolian deposits derived from sedimentary rock. The soil is not considered prime farmland.

2.1.3 Geology

The surface geology underlying the Site is comprised of Holocene to mid-Pleistocene age eolian and piedmont-slope deposits that were derived mostly from reworking the underlying Blackwater Draw and Ogallala Formations, in descending order. The Blackwater Draw Formation contained fine to very-fine grained red eolian quartz sand and sandstone that rests on the resistant caprock "caliche" of the Ogallala Formation is comprised of fluvial sand, silt, clay, and localized gravel, with indistinct to massive cross beds. The Ogallala sand is generally fine- to medium-grained quartz sand.

Monitoring well boring logs for the Site indicate a general lithology of unconsolidated eolian sand over carbonate-indurated sand commonly referred to as "caliche" between about 17 and 22 feet thick. Beneath the caliche unit is a thickness of fine-grained pink quartz sand. Locally this sand is lithified into sandstone with clayey sand. The sandstone layer most likely represents an *in-situ* deposition layer at the interaction zone during former higher-standing water table conditions. The Ogallala Formation overlies the Triassic-age Chinle Formation of the Dockum group which is comprised of interbedded sand, clay, and mudstone. The monitoring wells terminated in sand above the Chinle Formation for monitoring light non-aqueous phase liquid (LNAPL).

2.1.4 Groundwater

Groundwater occurs in the Ogallala Formation between about 29 feet BGS (TMW-2 and TMW-3) and 31 feet BGS (TMW-1) with the groundwater flow direction to the east at a gradient of about 0.003 feet per foot on September 3, 2021. The groundwater flow direction appears consistent between sampling events.

2.1.5 Water Wells

No water wells were observed or identified on the New Mexico State Engineer (NMOSE) Water Rights Reporting System (NMWRRS) within 0.5 miles of the Site. A stock well (windmill) is located about 2,040 feet east and southeast (down gradient) from the Site. No NMOSE records are available for this well.

2.1.6 Surface Water

A stock pond is located near the stock well (windmill) approximately 2,040 feet east and southeast from the Site. There is no apparent hydraulic connection between the stock pond and Site.

2.1.7 Flood Plain

The Site is not located in a flood plain.

2.1.8 Karst

Karst data provided by the USGS describes the Site as "low risk" potential. Appendix B presents USGS data depicting karst risk potential.

2.1.9 Aquifers

Groundwater occurs in the Ogallala aquifer between about 29 and 31 feet BGS. The Triassic-age Dockum Group represented by the Chinle Formation forms the base of the Ogallala aquifer. The Chinle Formation is comprised of interbedded sand, clay, and mudstone.

2.2 Groundwater Investigation

2.2.1 Monitoring Wells

Targa installed three (3) monitoring wells (TMW-1, TMW-2, and TMW-3). Monitoring well TMW-1 was installed immediately downgradient (east) for the excavation about 30 feet east from the pipelines. Monitoring well TMW-2 was installed about 380 feet east and southeast from TMW-1. Monitoring well TMW-3 was installed about 360 feet south from TMW-2. Scarborough Drilling, Inc., Lamesa, Texas (License No. WD-1188) advanced borings with an air rotary rig between thirty-six (36) feet BGS (TMW-02 and TMW-03) and thirty-nine (39) feet BGS (TMW-01). The monitoring wells are constructed with 2-inch schedule 40 PVC casing and 20 feet of factory slotted (0.010 inch) screen. Graded silica sand was placed around the well screens to about 2 feet above the screens. The remainder of the borehole annulus above the sand was filled with hydrated sodium bentonite chips to about 1-foot BGS. The wells are secured with locking steel covers anchored in concrete. Table 1 presents the monitoring well completion details and gauging summary. Figure 1a presents the monitoring well locations. Appendix C presents NMOSE well permits. Appendix D presents the geologic logs and monitoring well completion records.

2.2.2 LNAPL

LAI personnel gauged LNAPL and groundwater in the monitoring wells during eight (8) gauging events on March 14, 2018, January 31, 2019, April 18, 2019, July 18-19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021. Measurements were collected at the top of the PVC casing that was surveyed for elevation referenced to U.S.G.S. datum. LNAPL in the form of natural gas condensate was recorded in well

TMW-01 on July 19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021, with apparent thicknesses of 0.60, 0.86, 0.55, and 0.57 feet, respectively. The Epperson 16-inch gas pipeline release is the suspected source for the LNAPL. Table 1 presents the LNAPL and groundwater gauging summary.

On July 22, 2019, LAI personnel collected a sample of LNAPL from monitoring well TMW-01 for detailed fingerprint analysis by Intertek Laboratory in Midland, Texas. The predominant carbon numbers reported by Intertek were C1 through C14 (86.28%) with C6, C7 and C8 (69.44%) as the predominant hydrocarbons which is consistent with natural gas condensate. Appendix E presents the Intertek Laboratory report.

2.2.3 Groundwater

Depth to groundwater was gauged on July 18-19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021. Depth to groundwater ranged from 32.05 feet below TOC (29.54 feet BGS) in well TMW-03 on February 24, 2020, and 34.07 feet below TOC (31.17 feet BGS) in well TMW-01 on July 18, 2019. The groundwater elevation for monitoring well TMW-01 was corrected for LNAPL assuming 0.7 specific gravity. The groundwater flow direction on July 18-19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021, was from west to east at gradients between about 0.0023 feet per foot (ft/ft) on September 3, 2021, and 0.0029 ft/ft on February 24, 2020, and September 3, 2021. The groundwater potentiometric surface elevation fluctuated between 0.12 feet (TMW-03) and 0.82 feet (TMW-1). The groundwater fluctuation in well TMW-01 may have been due to the excavation which was open at the time of measurement and recharge from precipitation. Figures 3a, 3b, 3c, and 3d present groundwater potentiometric maps for July 18-19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021, respectively.

2.2.4 Aquifer (Slug) Testing

On April 18, 2018, LAI personnel performed horizontal hydraulic conductivity (slug testing) in monitoring well TMW-1. The slug testing was performed using a sand-fill PVC pipe (slug) to simulate falling and rising head conditions in the well. The slug was lowered (falling head) and raised (rising head) while changes in aquifer head were measured by a pressure transducer placed below that slug that is connected to a laptop computer to record data. The data was evaluated with the Bouwer-Rice slug test solution (1976) for an unconfined aquifer using a partially penetrating well.

The falling head conductivity ranged from $1.765E^{-6}$ feet per second (ft/s) or 55.66104 ft/year and 1.098^{-5} ft/s or 346.2653 ft/year. The average falling head hydraulic conductivity was 7.6763⁻⁶ ft/s 242.1019 ft/year. The rising head conductivity ranged from 1.9740^{-6} ft/s or 62.25206 ft/year to 1.063^{-5} ft/s or 335.2277 ft/yr. The average rising head hydraulic conductivity was 6.111^{-6} ft/2 or 192.6593 ft/year. The mean hydraulic conductivity was 6.8937^{-6} ft/s, or 217.3806 feet/yr. Table 2 presents the horizontal hydraulic conductivity (slug) test data and calculations.

2.2.5 Groundwater Samples

Groundwater samples were collected from monitoring well TMW-01 on March 14, 2018, and January 31, 2019. Groundwater samples were not collected from well TMW-01 on February 24, 2020, and September 3, 2021, due to LNAPL in the well. Groundwater samples were collected from TMW-02 and MW-03 on July

22, 2019, February 24, 2020, and September 3, 2021. Groundwater samples were collected using the low stress or low flow method, according to EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low rate until environmental parameters stabilize. Groundwater samples were collected from the discharge of the disposable Tygon[®] tubing which was discarded after each use. The environmental pump was thoroughly cleaned with a solution potable water and laboratory grade detergent (Alconox[®]) and rinsed with distilled water. The samples were carefully transferred to laboratory containers that were labeled, sealed with custody labels, packed in an ice filled chest and delivered under chain of custody control to PBEL or DHL Analytical, Inc. (DHL), both NELAP accredited laboratories located in Midland, Texas and Round Rock, Texas, respectively. A duplicate sample was collected from well MW-1 in March 2018 and January 2019 for laboratory quality assurance and quality control (QA/QC). The samples were analyzed for BTEX according to EPA SW-846 Method SW-8021B and chloride by EPA Method 300. Table 3 presents the laboratory analytical data summary. Appendix G presents the laboratory groundwater reports.

Benzene and toluene were reported at concentrations above the New Mexico Water Quality Control Commission (NMWQCC) human health standards of 0.005 mg/L and 1.0 mg/L, respectively, in groundwater samples from well TMW-01 on March 14, 2018, and January 31, 2019. Ethylbenzene, and xylenes were reported at concentrations above the NMWQCC human health standards of 0.7 mg/L and 0.62 mg/L, respectively, in groundwater samples from well TMW-01 on January 31, 2019. BTEX compounds were not reported above the analytical method reporting limits in groundwater samples from TMW-03 and TMW-04 during the groundwater sampling events. Chloride was less than the NMWQCC domestic water quality stand of 250 mg/L in groundwater samples from monitoring wells TMW-01 and TMW-02. Chloride was reported above 250 mg/L in groundwater samples from well TMW-03 and ranged from 265 mg/L (February 24, 2020) to 305 mg/L (September 03, 2021. A disposal pit and/or tank battery located on the adjacent property to the west of the Site is suspected as a possible source for the chloride. Appendix H presents a historical (1968) aerial photograph showing the location of the tank battery and disposal pit.

3.0 STAGE 1 GROUNDWATER ABATEMENT PLAN

The problem statement identified for this abatement plan is recovering LNAPL on groundwater and remediating dissolved benzene in groundwater at TMW-01. LNAPL and dissolved benzene are only present at wells TMW-01. A historic disposal pit located on an adjacent property to the west is the suspected source for chloride in groundwater samples from TMW-03. Chloride is not part of this Stage 2 groundwater abatement plan.

3.1 Abatement Options

LAI has considered multiple abatement options to develop the most effective strategy for remediating LNAPL and dissolved benzene. Option 1 is passive recovery of LNAPL from well TMW-01 using absorbent material (i.e., socks) to wick the LNAPL from the well or bailing the well to remove LNAPL. Option 2 is active recovery using an electric submersible pump to remove total fluids (LNAPL and water). Option 3 is active recovery using high vacuum extraction to remove total fluids (water and LNAPL) and soil vapors using the existing monitoring well, TMW-01, to extract LNAPL, groundwater and soil vapors using mobile (truck mounted) technology to provide hydraulic control for the dissolved phase hydrocarbons.

3.1.1 Passive Extraction

Passive extraction is an option however this technology is slowest for recovering LNAPL and does not address the dissolved phased hydrocarbons (BTEX) in groundwater or provide hydraulic control for capturing BTEX compounds in groundwater. For these reasons and others, including handling and disposal of oil saturated absorbents, is not a viable option.

3.1.2 Total Fluids Extraction (Pump and Dispose)

Total fluids extraction is an option that uses an electric submersible pump and controls to extract LNAPL, groundwater and provide hydraulic controls for dissolved contaminant (BTEX) capture. This technology will require installing a 6-inch diameter recovery well at a suitable depth to develop the capture radius (cone of depression) and accommodate downhole equipment (i.e., submersible pump, safety cable, electric lead, and discharge pipe). Further, this technology requires a stable source of electricity to provide electrical power to the pump and controls as well as freeze protection during freezing weather. Options for electricity vary from solar (passive) power and battery storage, portable diesel generator or stable power from an electric service provider. Drilling and completing a 6-inch diameter recovery well will require a permit from NMOSE and cost for materials and drilling rig. Solar power may not be suitable for powering the submersible pump and controls. A portable generator will require a tank and fuel for to power the electric submersible pump and controls. Electric service from a service provider may require an easement from the surface owner to bring electric service (i.e., multiple poles, wire, and transformer) from the nearest stable electric power source located about 0.89 mile east of the Site. Another cost may be to acquire an easement from NMOSE to pump water from the well, frac tank to contain liquids for offsite disposal. The following results may apply to the Site although a pumping test may be required to verify:

Recovery Well: RW-1 Duration: 72 hours Assume average flow rate: 2.25 gpm Radius of influence: 120 feet (conservative) Approximate total fluids recovered (1 Year): 1,182,600 gallons/28,157 barrels Approximate drawdown: 9.267 feet Disposal Cost: recovered fluids in permitted SWD: \$56,314.28*. Requirements: stable or portable electricity and frac tanks for liquid containment.

3.1.3 High Vacuum Extraction

This option would involve using high vacuum and the existing 2-inch monitoring well (TMW-01) to remove liquids (LNAPL and groundwater) and vapors. The following results from a near-by site using a lower flow rate (110 CFM) and treating vapors with activated granular carbon (GAC):

Duration: 72 Hours Average Flow rate: 110 CFM Average Air concentration: 113ppmv (417 mg/m³) Average ROI: 30 feet Total hydrocarbons recovered: 12.35 pounds of BTEX (4.117 lbs BTEX/day equivalent to approximately 1,503 lbs/year)

Requirements: stable or portable electricity and frac tank for liquid containment Disposal Cost: depleted and replenish GAC

The ROI using a higher vacuum truck mounted SVE (EcoVac) system is expected to be at least 150 feet or greater with air flow between about 180 and 200 CFM and vapor destruction using internal combustion engines augmented with propane for vapor destruction. An example from a near-by Site in January 2022 showed the following results:

Duration: 34.25 Hours Air Flow: 180 - 200 CFM Air concentration: >100,000ppmv (beginning) to 48,000 ppmv (ending) Average ROI: 220 feet Volume Recovered:

- Vapor recovered: 2,662 lbs.
- Vapor Equivalent gallons: 439.2 gal.
- LNAPL recovered: 260 gal.
- Groundwater recovered: 709 gal.
- > Total hydrocarbons recovered: 699.2 gal.

Requirements: mobilizing SVE system and frac tanks for liquid containment. Disposal cost: recovered fluid (23 bbl) in permitted SWD: \$46.14*

* Cost may vary by location and pricing.

3.2 Proposed Abatement Option

Based on the results of the scenarios presented above the most effective option is high vacuum extraction using a mobile truck mounted high vacuum (EcoVac) system to remove total fluids (LNAPL and groundwater) and vapors and provide hydraulic control. The SVE system is expected to operate one (1) week (2 - 3 days) per month for three (3) months to evaluate abatement progress and additional SVE events, if necessary.

3.3 Proposed Abatement Option Design

The proposed abatement option will use the existing monitoring well (TMW-01) as the extraction well and monitoring the downgradient wells (TMW-02 and TMW-03) for vacuum and drawdown to monitor the ROI and minimize potential for drawing in the chloride plume from TMW-03.

3.4 Monitoring and Maintenance Plan

Monitoring well TMW-01 for LNAPL thickness will be performed weekly following each SVE event. No maintenance plan is necessary since there will be no component to maintain, monitor or replace.

3.5 Groundwater Monitoring

Semi-annual (twice yearly) groundwater monitoring will be performed to monitor progress during abatement and for two (2) years following abatement. Three (3) monitoring wells (TMW-1, TMW-2, and

TMW-3) will be gauged for LNAPL and depth to groundwater and groundwater samples will be collected during each semi-annual (6 month) and analyzed for BTEX by EPA SW-846 Method 8021B and chloride.

3.6 Progress Reports

Abatement progress, including groundwater monitoring results, will be reported to the OCD semiannually. The report will include the following:

- Description of all work performed for the reporting period.
- Results of groundwater monitoring data, including all procedures, field and laboratory data and documentation.
- Groundwater potentiometric map.
- Results of SVE abatement and volume (vapor, LNAPL and groundwater) recovered.
- An evaluation of cumulative abatement progress.
- Evaluation of the abatement progress during the applicable monitoring period; and
- Proposed changes or future activity.

3.7 Abatement Schedule

The following timeline is proposed for abatement activities:

Task Description	Timeline
Baseline LNAPL and groundwater monitoring event	30 days after plan approval
Initiate abatement plan (1 st 2 – 3 – days) SVE event)	45 days after plan approval
2 nd (2 – 3 days) SVE event	75 days after plan approval
3 rd (2 – 3 days) SVE event	105 days after plan approval
Evaluate SVE progress	135 – 180 days after plan approval
LNAPL and groundwater monitoring event	180 days after plan approval

3.8 Notification

Notification will be submitted via email to NMOCD (Artesia and Santa Fe, New Mexico) at least 5 days, excluding weekends, before initiating any major field activity (i.e., groundwater sampling and SVE extraction) excluding routine monitoring such as weekly extraction well monitoring following SVE event, for NMOCD representative at the Site to observe scheduled activity. Notification will be provided to NMOCD as soon as possible to report any significant changes in LNAPL thickness and/or contaminant concentrations in groundwater.

3.10 Public Notice

Upon NMOCD approval of the proposed groundwater abatement plan, public notice will be published according to NMOCD requirements, in the Lovington Leader and Albuquerque Journal. Appendix I presents the public notice.

4.0 CONCLUSION

Based upon consideration of site-specific information and conditions, high vacuum SVE is the selected abatement option for extracting vapors and total fluids (LNAPL and groundwater), with two (2) internal combustion engines augmented with propane fuel for vapor destruction, to recover contaminants and provide hydraulic control for promoting the protection of public health, welfare, and the environment in the State of New Mexico. A final abatement report will be submitted to NMOCD as required by 19.15.30.19 NMAC.

.

Table of Contents

1.0	INTRODUCTION	1
1.1	Background	1
2.0	PHYSICAL SETTING	2
2.1	Topography	2
2.2	Soil	2
2.3	Geology	2
2.4	Groundwater	2
2.5	Water Wells	2
2.6	Surface Water	.3
2.7	Flood Plain	3
2.8	Karst	.3
2.9	Aquifers	3
3.0	GROUNDWATER INVESTIGATION	.3
3.1	Monitoring Wells	.3
3.2	LANAPL	.3
3.3	Depth to Groundwater and Groundwater Flow	.4
3.4	Aquifer Slug Testing	.4
3.5	Groundwater Samples	.4
4.0	GROUNDWATER ABATEMENT PLAN	.5
4.1	Abatement Option	.5
4.2	Additional Monitoring Well	.6
4.3	Groundwater Monitoring	.6
4.4	Schedule	.6
4.5	Reports	.7
4.6	Notification	.7

List of Tables

Table 1	Monitoring Well Completion Details and Gauging Summary
Table 2	Horizontal Hydraulic Conductivity Test Summary
Table 3	Groundwater Sample Analytical Data Summary

List of Figures

Figure 1	Topographic Map
Figure 1a	Focused Topographic Map
Figure 2	Aerial Map
Figure 2a	Focused Aerial Map
Figure 3	LNAPL Thickness Map, September 3, 2021
Figure 4	Groundwater Potentiometric Surface Map, September 3, 2021
Figure 5	Chloride Concentration in Groundwater Map, September 3, 2021
Figure 6	Proposed Monitoring Well (TMW-4) Location Map

List of Appendices

Appendix A	Regulatory Communications
Appendix B	USGS Karst Risk Potential Data
Appendix C	NMOSE Well Permits

•

Appendix C	Geologic Logs and Monitoring Well Completion Records
Appendix E	Intertek Laboratory Report
Appendix F	Horizontal Hydraulic Conductivity Test Data and Calculations
Appendix G	Laboratory Groundwater Reports
Appendix H	Historical (1968) Aerial Photograph

1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release December 1, 2022

1.0 INTRODUCTION

This groundwater abatement plan (Plan) is submitted to the State of New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, LLC (Targa) for remediation of phase-separated hydrocarbons (condensate) and dissolved BTEX (benzene, toluene, ethylbenzene, and xylenes) in groundwater due to a release from the Epperson 16-inch gas pipeline (Site) which is located about 15 miles west of Tatum, in Lea County, New Mexico. The Plan is submitted under the emergency abatement provision in 19.15.30.12A(7) NMAC (New Mexico Administrative Code). The legal description is Unit F (SE/4, NW/4), Section 24, Township 11 South, Range 33 East. The geodetic position is North 33.346925° and West -103.574597°. Figure 1 presents a topographic map. Figure 1a presents a focused topographic map. Figure 2 presents an aerial map. Figure 2a presents a focused aerial map.

1.1 Background

Between June 10, 2016, and February 9, 2017, LAI personnel investigated the release by collecting and analyzing soil samples from eight (8) hand auger borings (HA-1 through HA-8), seven (7) direct push borings (SB-1 through SB-7) and eight (8) air rotary drilled borings (SB-8 through SB-15). The soil samples were collected and analyzed according to NMOCD guidelines (Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993) which allowed substituting a headspace vapor reading less than 100 parts per million (ppm) using a calibrated photoionization detector (PID) in lieu of laboratory analysis of BTEX. Laboratory analysis for BTEX was only performed on samples with a PID reading greater than 100 ppm. Samples were analyzed for total petroleum hydrocarbons (TPH) by EPA SW-846 Method 8015 including gasoline range organics (C6-C12), diesel range organics (>C12-C28) and oil range organics (>C28-C35) and chloride by Method 300.

On March 29, 2017, Targa submitted an initial C-141 for the release to the New Mexico Oil Conservation Division (NMOCD) District 1, which assigned the release remediation permit number 1RP-4664 (Incident Number nOY1709044723). The spill delineation was documented in reports dated March 7, 2017 (1RP-4664 Spill Delineation Report, Epperson 16 Inch Pipeline Release Site #1, Lea County, New Mexico) and May 30, 2017 (1RP-4664 Addendum Spill Delineation Report, Epperson 16 Inch Pipeline Release Site #1, Lea County, New Mexico). On July 13, 2017, NMOCD District 1 (Ms. Olivia Yu) approved the addendum delineation report and the proposed remediation plan. Appendix A presents regulatory communications.

Between October 13, 2017, and November 20, 2020, Gandy Corporation (Gandy), Lovington, New Mexico, excavated soil to about 26 feet below ground surface (BGS). Approximately 4,930 cubic yards of soil was excavated from an area measuring approximately 15,076 square feet or about 0.35 acre. All but about 500 cubic yards of soil that was confirmed "clean" through laboratory analysis was disposed at the Gandy Marley (GM) Landfill located west of Tatum, New Mexico. The clean soil was retained at the Site for backfilling the excavation.

On July 7, 2020, and November 20,2020, LAI collected composite samples for about every 200 square feet following removal of additional soil from the west sidewall and east bottom of the excavation. The samples were analyzed for BTEX Permian Basin Environmental Lab (PBEL) in Midland, Texas, analyzed the samples for BTEX, TPH and chloride by EPA SW-846 Methods 8021B, 8014 and Method 300, respectively. The laboratory reported BTEX, TPH, and chloride concentrations below the NMOCD closure criteria (Table 1, 19.15.29 NMAC) in the final samples.

1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release

December 1, 2022

On February 9, 2021, Targa provided written notification to NMOCD prior to backfilling the excavation. OCD acknowledged the notification and approved excavation backfilling on February 18, 2021. Between May 20, 2021, and June 2, 2021, LTP Enterprises (LTP) backfilled the excavation with caliche confirmed clean by laboratory analysis to within 1 foot of ground surface. The upper 1-foot bgs of the excavation was filled with topsoil. On July 9, 2021, the Site was seeded with a seed mix specified by the surface owner. LAI prepared the closure report that Targa uploaded to the NMOCD web portal on August 9, 2021.

2.0 PHYSICAL SETTING

2.1 Topography

The surveyed elevation is 4,228.40 feet above mean sea level (MSL). The topography slopes gently to the east and southeast. Figure 1a presents a detailed topographic map.

2.2 Soil

The soil underlying the Site is Kimbrough-Lea complex, dry, 0 to 3 percent slopes, consisting of three (3) inches of gravelly loam, underlain by seven (7) inches of loam and 70 inches of cemented material (caliche) in descending order. The soil originates from loamy eolian deposits derived from sedimentary rock. The soil is not considered prime farmland.

2.3 Geology

The surface geology underlying the Site is comprised of Holocene to mid-Pleistocene age eolian and piedmont-slope deposits that were derived mostly from reworking the underlying Blackwater Draw and Ogallala Formations, in descending order. The Blackwater Draw Formation contained fine to very-fine grained red eolian quartz sand and sandstone that rests on the resistant caprock "caliche" of the Ogallala Formation is comprised of fluvial sand, silt, clay, and localized gravel, with indistinct to massive cross beds. The Ogallala sand is generally fine- to medium-grained quartz sand.

Monitoring well boring logs for the Site indicate a general lithology of unconsolidated eolian sand over carbonate-indurated sand commonly referred to as "caliche" between about 17 and 22 feet thick. Beneath the caliche unit is a thickness of fine-grained pink quartz sand. Locally this sand is lithified into sandstone with clayey sand. The sandstone layer most likely represents an *in-situ* deposition layer at the interaction zone during former higher-standing water table conditions. The Ogallala Formation overlies the Triassic-age Chinle Formation of the Dockum group which is comprised of interbedded sand, clay, and mudstone. The monitoring wells terminated in sand above the Chinle Formation for monitoring light non-aqueous phase liquid (LNAPL).

2.4 Groundwater

Groundwater occurs in the Ogallala Formation between about 29 feet BGS (TMW-2 and TMW-3) and 31 feet BGS (TMW-1) with the groundwater flow direction to the east at a gradient of about 0.003 feet per foot on September 3, 2021. The groundwater flow direction appears consistent between sampling events.

2.5 Water Wells

No water wells were observed or identified on the New Mexico State Engineer (NMOSE) Water Rights Reporting System (NMWRRS) within 0.5 miles of the Site. A stock well (windmill) is located about 2,040 feet east and southeast (down gradient) from the Site. No NMOSE records are available for this well.

1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release December 1, 2022

2.6 Surface Water

A stock pond is located near the stock well (windmill) approximately 2,040 feet east and southeast from the Site.

2.7 Flood Plain

The Site is not located in a flood plain.

2.8 Karst

Karst data provided by the USGS describes the Site as "low risk" potential. Appendix B presents USGS data depicting karst risk potential.

2.9 Aquifers

Groundwater occurs in the Ogallala aquifer between about 29 and 31 feet BGS. The Triassic-age Dockum Group represented by the Chinle Formation forms the base of the Ogallala aquifer. The Chinle Formation is comprised of interbedded sand, clay, and mudstone.

3.0 GROUNDWATER INVESTIGATION

3.1 Monitoring Wells

Targa installed three (3) monitoring wells (TMW-1, TMW-2, and TMW-3). Monitoring well TMW-1 was installed immediately downgradient (east) for the excavation about 30 feet east from the pipelines. Monitoring well TMW-2 was installed about 380 feet east and southeast from TMW-1. Monitoring well TMW-3 was installed about 360 feet south from TMW-2. Scarborough Drilling, Inc., Lamesa, Texas (License No. WD-1188) advanced borings with an air rotary rig between thirty-six (36) feet BGS (TMW-02 and TMW-03) and thirty-nine (39) feet BGS (TMW-01). The monitoring wells are constructed with 2-inch schedule 40 PVC casing and 20 feet of factory slotted (0.010 inch) screen. Graded silica sand was placed around the well screens to about 2 feet above the screens. The remainder of the borehole annulus above the sand was filled with hydrated sodium bentonite chips to about 1-foot BGS. The wells are secured with locking steel covers anchored in concrete. Table 1 presents the monitoring well drilling and completion details, and gauging summary. Figure 2a presents the monitoring well locations. Appendix C presents NMOSE well permits. Appendix D presents the geologic logs and monitoring well completion records.

3.2 LNAPL

LAI personnel gauged LNAPL and groundwater in the monitoring wells during eight (8) gauging events on March 14, 2018, January 31, 2019, April 18, 2019, July 18-19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021. Measurements were collected at the top of the PVC casing that was surveyed for elevation referenced to U.S.G.S. datum. LNAPL in the form of natural gas condensate was recorded in well TMW-01 on July 19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021, with apparent thicknesses of 0.60, 0.86, 0.55, and 0.57 feet, respectively. The Epperson 16-inch gas pipeline release is the suspected source for the LNAPL. Table 1 presents the LNAPL and groundwater gauging summary. Figure 3 presents an LNAPL thickness map for September 3, 2021.

On July 22, 2019, LAI personnel collected a sample of LNAPL from monitoring well TMW-01 for detailed fingerprint analysis by Intertek Laboratory in Midland, Texas. The predominant carbon numbers reported

1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release December 1, 2022 by Intertek were C1 through C14 (86.28%) with C6, C7 and C8 (69.44%) as the predominant hydrocarbons which is consistent with natural gas condensate. Appendix E presents the Intertek Laboratory report.

3.3 Depth to Groundwater and Groundwater Flow

Depth to groundwater was gauged on July 18 and 19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021. Depth to groundwater ranged from 32.05 feet below TOC (29.54 feet BGS) in well TMW-03 on February 24, 2020, and 34.07 feet below TOC (31.17 feet BGS) in well TMW-01 on July 18, 2019. The groundwater elevation for monitoring well TMW-01 was corrected for LNAPL assuming 0.7 specific gravity. The groundwater flow direction on July 18-19, 2019, August 8, 2019, February 24, 2020, and September 3, 2021, was from west to east at gradients between about 0.0023 feet per foot (ft/ft) on September 3, 2021, and 0.0029 ft/ft on February 24, 2020, and September 3, 2021. The groundwater potentiometric surface elevation fluctuated between 0.12 feet (TMW-03) and 0.82 feet (TMW-1). The groundwater fluctuation in well TMW-01 may have been due to the excavation which was open at the time of measurement and recharge from precipitation. Figure 4 presents the groundwater potentiometric map for September 3, 2021.

3.4 Aquifer Slug Testing

On April 18, 2018, LAI personnel performed horizontal hydraulic conductivity (slug testing) in monitoring well TMW-1. The slug testing was performed using a sand-fill PVC pipe (slug) to simulate falling and rising head conditions in the well. The slug was lowered (falling head) and raised (rising head) while changes in aquifer head were measured by a pressure transducer placed below that slug that is connected to a laptop computer to record data. The data was evaluated with the Bouwer-Rice slug test solution (1976) for an unconfined aquifer using a partially penetrating well.

The falling head conductivity ranged from 1.765E⁻⁶ feet per second (ft/s) or 55.66104 ft/year and 1.098⁻⁵ ft/s or 346.2653 ft/year. The average falling head hydraulic conductivity was 7.6763⁻⁶ ft/s 242.1019 ft/year. The rising head conductivity ranged from 1.9740⁻⁶ ft/s or 62.25206 ft/year to 1.063⁻⁵ ft/s or 335.2277 ft/yr. The average rising head hydraulic conductivity was 6.111⁻⁶ ft/s or 192.6593 ft/year. The mean hydraulic conductivity was 6.8937⁻⁶ ft/s, or 217.3806 feet/yr. Table 2 presents the horizontal hydraulic conductivity (slug) test data and calculations.

3.5 Groundwater Samples

Groundwater samples were collected from monitoring well TMW-01 on March 14, 2018, and January 31, 2019. Groundwater samples were not collected from well TMW-01 on February 24, 2020, and September 3, 2021, due to LNAPL in the well. Groundwater samples were collected from TMW-02 and MW-03 on July 22, 2019, February 24, 2020, and September 3, 2021. Groundwater samples were collected using the low stress or low flow method, according to EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low rate until environmental parameters stabilize. Groundwater samples were collected from the discharge of the disposable Tygon[®] tubing which was discarded after each use. The environmental pump was thoroughly cleaned with a solution potable water and laboratory grade detergent (Alconox[®]) and rinsed with distilled water. The samples were carefully transferred to laboratory containers that were labeled, sealed with custody labels, packed in an ice filled chest and delivered under chain of custody

1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release

December 1, 2022

control to PBEL or DHL Analytical, Inc. (DHL), both NELAP accredited laboratories located in Midland, Texas and Round Rock, Texas, respectively. A duplicate sample was collected from well MW-1 in March 2018 and January 2019 for laboratory quality assurance and quality control (QA/QC). The samples were analyzed for BTEX according to EPA SW-846 Method SW-8021B and chloride by EPA Method 300. Table 3 presents the laboratory analytical data summary. Appendix G presents the laboratory groundwater reports.

Benzene and toluene were reported at concentrations above the New Mexico Water Quality Control Commission (NMWQCC) human health standards of 0.005 mg/L and 1.0 mg/L, respectively, in groundwater samples from well TMW-01 on March 14, 2018, and January 31, 2019. Ethylbenzene, and xylenes were reported at concentrations above the NMWQCC human health standards of 0.7 mg/L and 0.62 mg/L, respectively, in groundwater samples from well TMW-01 on January 31, 2019. BTEX compounds were not reported above the analytical method reporting limits in groundwater samples from TMW-03 and TMW-04 during the groundwater sampling events.

Chloride was less than the NMWQCC domestic water quality stand of 250 mg/L in groundwater samples from monitoring wells TMW-01 and TMW-02. Chloride was reported above 250 mg/L in groundwater samples from well TMW-03 and ranged from 265 mg/L (February 24, 2020) to 305 mg/L (September 03, 2021. A disposal pit and/or tank battery located on the adjacent property to the west of the Site is suspected as a possible source for the chloride. Figure 5 presents the chloride concentration in groundwater map for September 3, 2021. Appendix H presents a historical (1968) aerial photograph showing the location of the tank battery and disposal pit.

4.0 GROUNDWATER ABATEMENT PLAN

Abatement will be performed under the emergency abatement provision in 19.15.30.12A(7) NMAC. LNAPL on groundwater and dissolved BTEX in groundwater is limited to the area around the excavation and monitoring wells TMW-01. A historic disposal pit located on the adjacent property to the west is the suspected source for chloride in groundwater samples from TMW-03. Therefore, chloride will not be addressed as part of this groundwater abatement plan.

4.1 Abatement Option

Abatement will be performed using high vacuum extraction to remove total fluids (LNAPL and groundwater) and soil vapors. Liquid (LNAPL and groundwater) and vapor will be extracted using a truck mounted (EcoVac®) system with an anticipated radius of influence (ROI) of at least 150 feet and air flow between about 180 and 200 CFM. Vapors will be managed using an internal combustion engine augmented with propane for vapor destruction. An example from a near-by Site (January 2022) showed the following results:

Duration: 34.25 Hours Air Flow: 180 - 200 CFM Organic Vapor (Air) Concentration: >100,000 ppmv (beginning) to 48,000 ppmv (ending) Average ROI: 220 feet Volume Recovered:

Vapor recovered: 2,662 lbs.

1RP-4664 (Incident No. nOY1709044723) Groundwater Abatement Plan Epperson 16 Inch Pipeline Release December 1, 2022

- Vapor Equivalent gallons: 439.2 gal.
- LNAPL recovered: 260 gal.
- Groundwater recovered: 709 gal.
- > Total hydrocarbons recovered: 699.2 gal.

Requirements: mobilizing SVE system and frac tanks for liquid containment.

Disposal cost: recovered fluid (23 bbl) in permitted SWD: \$46.14*

(truck mounted) technology to provide hydraulic control for the dissolved phase hydrocarbons.

The abatement will use existing monitoring well TMW-01 to remove liquids (LNAPL and groundwater) and vapors. Liquid will be transferred from a tank on the SVE truck to a portable (frac) tank and disposed in a NMOCD permitted saltwater (Class 2) disposal well. The SVE system is expected to operate one (1) week (2 - 3 days) per month for three (3) months to evaluate abatement progress and assess if additional SVE events are necessary.

4.2 Additional Monitoring Well

Targa will install an additional monitoring well (TMW-4) between TMW-1 and TMW-2. The monitoring well will be used to evaluate the ROI and for collecting groundwater samples. A State of New Mexico licensed driller will drill the well with an air rotary rig between approximately 35 and 40 feet bgs. A competent geologist will log the boring according to the Unified Soil Classification System (ASTM D2487). The well will be completed with 2-inch schedule 40 PVC threaded casing and 20 feet of 0.01-inch factory slotted screen installed above and below groundwater between about 20 and 40 feet bgs. Graded silica sand will be placed around the screen to about 2 feet above the screen. The remainder of the annulus, between the screen and borehole, will be filled with cement and bentonite grout. The well will be permitted by the State of New Mexico Office of the State Engineers (NMOSE) and secured with locking steel cover anchored in concrete. A State of New Mexico licensed professional land surveyor (LPLS) will survey the well for elevation and location. Figure 6 presents the proposed location for monitoring TMW-4.

4.3 Groundwater Monitoring

Semi-annual (twice yearly) groundwater monitoring will be performed to monitor SVE progress and for two (2) years following abatement. Four (4) monitoring wells (TMW-1, TMW-2, TMW-3, and TMW-4) will be gauged for LNAPL and depth to groundwater and samples for groundwater during each semi-annual (6 month) event. The groundwater samples will be analyzed for BTEX by EPA SW-846 Method 8021B and chloride by EPA Method 300.

4.4 Schedule

The following timeline is proposed for the LNAPL/groundwater abatement:

Task Description	<u>Timeline</u>
Additional Monitoring Well Installation	30 days after plan approval
Baseline LNAPL and groundwater monitoring event	30 days after plan approval
1 st (2 – 3 – days) SVE event	60 days after plan approval

	Groundwater Abatement Plan Epperson 16 Inch Pipeline Release December 1, 2022
2 nd (2 – 3 days) SVE event	90 days after plan approval
3 rd (2 – 3 days) SVE event	120 days after plan approval
Evaluate SVE progress	140 – 180 days after plan approval
1 st LNAPL and groundwater monitoring event	180 days after plan approval
2 nd LNAPL and groundwater monitoring event	360 days after plan approval
3 rd LNAPL and groundwater monitoring event	540 days after plan approval
4 th LNAPL and groundwater monitoring event	720 days after plan approval

4.5 Reports

A report will be submitted to the NMOCD on an annual (one yearly) schedule. The report will include the following:

- Description of all work performed for the reporting period.
- Results of groundwater monitoring data, including all procedures, field and laboratory data and documentation.
- Groundwater potentiometric map.
- Results of SVE abatement and volume (vapor, LNAPL and groundwater) recovered.
- An evaluation of cumulative abatement progress.
- Evaluation of the abatement progress during the applicable monitoring period; and
- Proposed changes or future activity.

A final report will be submitted to the NMOCD upon completion of the abatement.

4.6 Notification

Notification will be provided to NMOCD (District 2 and Santa Fe) via email at least 5 days, excluding weekends and holidays, before initiating any major field activity (i.e., monitoring well installation, groundwater sampling and SVE extraction) for an NMOCD representative to observe the activity. Notification will also be provided to NMOCD as soon as possible to report any significant changes in LNAPL thickness and/or contaminant concentrations in groundwater.

Tables

Table 1

Monitoring Well Completion and Gauging Summary Targa Midstream Services, L.P., Epperson 16" Pipeline Release Lea County, New Mexico

Well Information		Groundwater Data						
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Corrected Water Elevation (feet AMSL)	Depth to Water (feet BGS)	
TMW-01		03/14/2018			33.25	4,198.17	30.35	
Date Drilled:	03/13/2018	04/18/2019			33.31	4,198.11	30.41	
Drilled Depth BGS (feet):	39	01/31/2019			33.45	4,197.97	30.55	
Well Depth from TOC (feet):	40.55	07/18/2019			34.07	4,197.35	31.17	
Well Diameter (inches):	2	07/19/2019	33.24	0.60	33.84	4,198.00	30.34	
Screen Interval BGS (feet):	36.97 to 27.32	08/08/2019	33.17	0.86	34.03	4,197.99	30.27	
Casing Stickup (feet):	2.9	02/24/2020	33.19	0.55	33.74	4,198.06	29.98	
Ground Elevation AMSL (feet)	4,228.40	09/03/2021	33.33	0.57	33.90	4,197.92	31.00	
TOC Elevation AMSL (feet)	4,231.42							
Notes:								
TMW-02		07/18/2019			32.29	4,197.01	29.76	
Date Drilled:	07/16/2019	07/19/2019			32.22	4,197.08	29.69	
Drilled Depth BGS (feet):	36	08/08/2019			32.21	4,197.09	29.68	
Well Depth from TOC (feet):	38.31	02/24/2020			32.16	4,197.14	29.63	
Well Diameter (inches):	2	09/03/2021			32.29	4,197.01	29.76	
Screen Interval BGS (feet):	35.10 to 15.47							
Casing Stickup (feet):	2.53							
Ground Elevation AMSL (feet)	4,226.78							
TOC Elevation AMSL (feet)	4,229.30							
Notes:								
TMW-03		07/18/2019			32.13	4,197.01	29.62	
Date Drilled:	07/16/2019	08/08/2019			32.13	4,197.01	29.62	
Drilled Depth BGS (feet):	36	02/24/2020			32.05	4,197.09	29.54	
Well Depth from TOC (feet):	38.34	09/03/2021			32.20	4,196.94	29.69	
Well Diameter (inches):	2							
Screen Interval BGS (feet):	35.83 to 15.82							
Casing Stickup (feet):	2.51							
Ground Elevation AMSL (feet)	4,226.55							
TOC Elevation AMSL (feet)	4,229.14							
Notes:								
Notoc: Wolls drilled and installed								

Notes: Wells drilled and installed by Scarborough Drilling, Inc., Lamesa, Texas, using 2 inch schedule 40 threaded PVC casing and screen

and screen.

Groundwater elevation corrected for LNAPL thickness assuming 0.7 specific gravity

bgs: below ground surface

TOC: top of casing

Elevations are above mean sea level referenced to 1984 Geodetic Datum.

All values are in feet, unless otherwise noted.

•

Tab1e 2

Summary of Horizontal Hydraulic Conductivity from Slug Tests

Targa Midstream Services, LLC, Epperson 16" Pipeline Release

Lea County, New Mexico

Test Name	K_r Value (ft/s) m/s ft per year	Notes
Epperson Falling Head 1	1.765E-06 5.37972E-07 55.66104	
Epperson Falling Head 2	1.098E-05 3.3467E-06 346.2653	
Epperson Falling Head 3	6.714E-06 2.04643E-06 211.7327	
Epperson Falling Head 4	9.464E-06 2.88463E-06 298.4567	
Epperson Falling Head 5	8.733E-06 2.66182E-06 275.4039	
Epperson Falling Head 6	8.406E-06 2.56215E-06 265.0916	
Epperson Rising Head 1	1.063E-05 3.24002E-06 335.2277	
Epperson Rising Head 2	2.594E-06 7.90651E-07 81.80438	
Epperson Rising Head 3	Missed Missed Missed	
Epperson Rising Head 4	1.974E-06 6.01675E-07 62.25206	
Epperson Rising Head 5	7.691E-06 2.34422E-06 242.5434	
Epperson Rising Head 6	7.666E-06 2.3366E-06 241.755	
Average Hydraulic Conductivity (ft/s)	6.965E-04	
feet per day:	6.018E+01	
Kd	0.18 Calculated from EPA factors for Benzene	
Bulk Porosity of Soil	0.283 back-calculate from bulk density (1.9 g/cm^3) typical for calic	che
Rf	2.208512367	
ground slope (vertical drop/horizontal distance)	0.003125	
Average Linear velocity (feet per day)	6.645E-01	convert all to yards:
Diffusivity Coefficient (Benzene-water)	0.0009486 10.2*10^-6 cm^2/s, converted to ft^2/day	Velocity: 0.221508
Number of releasing days (assumption	1500	Diffusivity: 0.000105
Concentration at boundary	0.01	
Time since release (t) (assumption) (days)	1500	
Release Concentration (C_0) (assumption) (ppm)	20	
$\xi = (velocity*time/distance) (dimensionless)$		
$\eta = (Diffusivity/(velocity*distance) (dimensionless)$	$- (4/1) \times - (5/1/2) \times - (1/2)$	
Solution to Function: C = C_0/2*(erfc((1-ξ)/(2*sqrt(ξ*η)))+ ξ/sqrt(ξ*η)	exp(1/ŋ)*erfc((1+է)/(2*sqrt(է*ŋ))) 835.6296776	

Table 2

Groundwater Sample Analytical Data Summary Targa Midstream Services, LLC, Epperson 16" Pipeline Release Lea County, New Mexico 33°20'49.08" North and 103°34'28.98" West

						Page 1of 1		
Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride		
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
NMWQCC Standard:		0.005	1	0.7	0.62	250		
TMW-1	03/14/2018	12.4	9.76	0.48	0.425	66.3		
	01/31/2019	11.6	9.45	1.3	3.51	150		
	02/24/2020	D2/24/2020 LNAPL Present - No Sample Collected						
	09/03/2021	LNAPL Present - No Sample Collected						
TMW-2	07/22/2019	<0.00100	<0.00100	<0.00100	<0.00300	47.0		
	02/24/2020	<0.00100	<0.00100	<0.00100	<0.00300	47.7		
	09/03/2021	<0.00100	<0.00100	<0.00100	<0.00300	52.8		
TMW-3	07/22/2019	<0.00100	<0.00100	<0.00100	<0.00300	276		
	02/24/2020	<0.00100	<0.00100	<0.00100	<0.00300	265		
	09/03/2021	<0.00100	<0.00100	<0.00100	<0.00300	305		
QA/QC (Duplicate)								
TMW-3	09/03/2021	<0.00100	<0.00100	<0.00100	<0.00300	301		

Notes: Analysis performed by Permian Basin Environmental Lab, Midland, Texas

Samples analyzed by EPA method SW-8021B (BTEX) and E-300 (chloride)

mg/L: milligrams per liter - equivalent to parts per million (ppm)

--: no data available

Bold and highlighted denotes analyte concentration exceeds NMWQCC human health standard

Bold and highlighted denotes analyte concentration exceeds NMWQCC domestic water quality standard

Figures

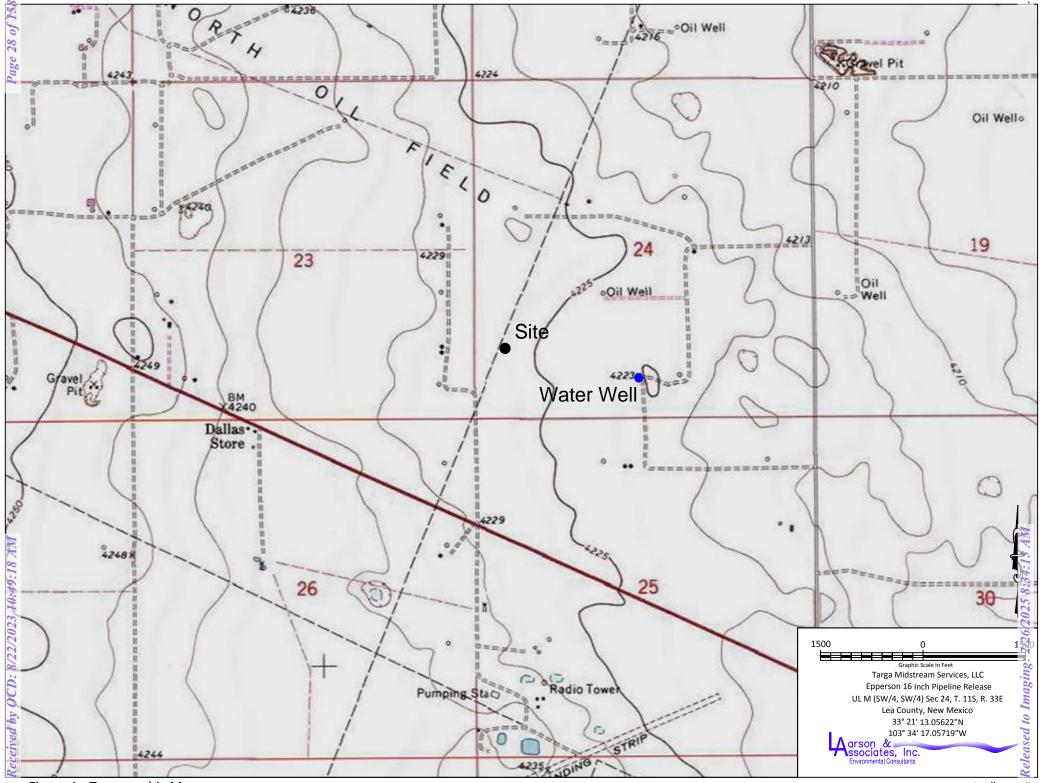
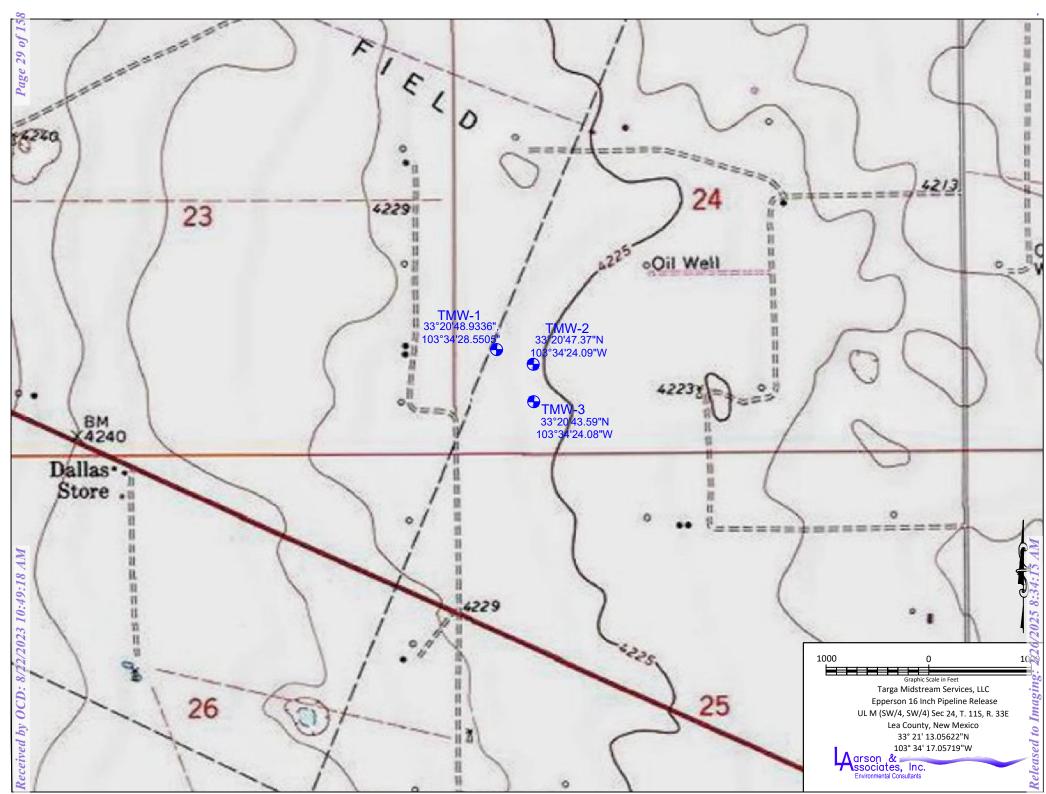



Figure 1 - Topographic Map

8.5" x 11"

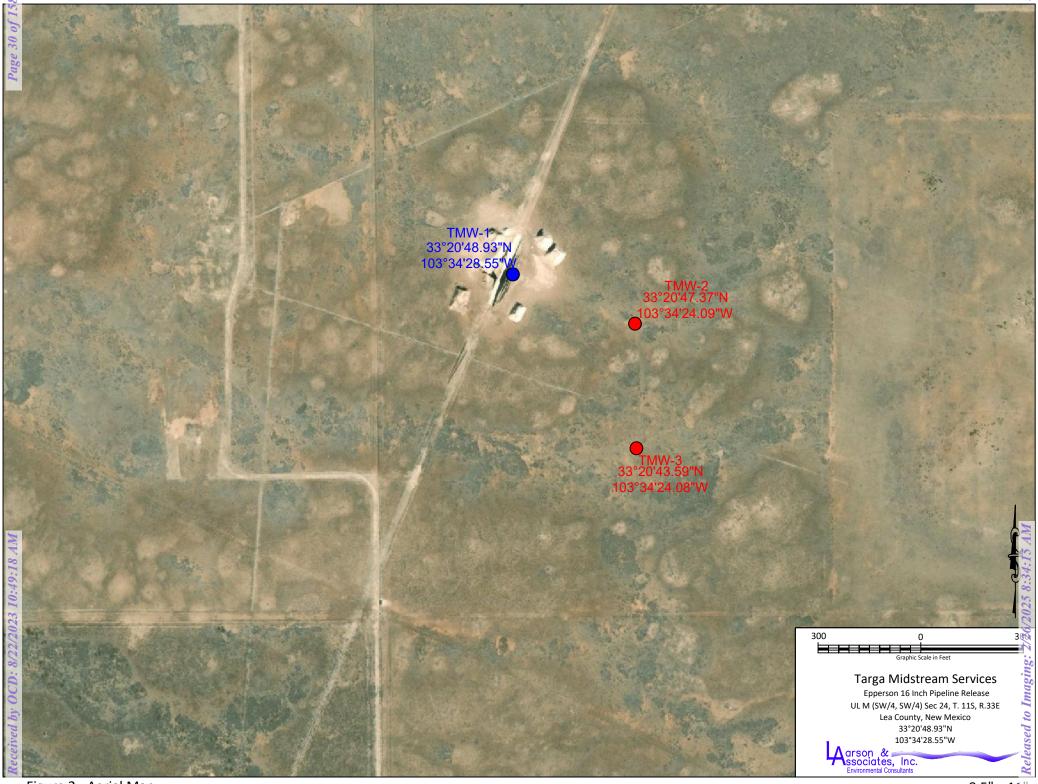


Figure 2 - Aerial Map

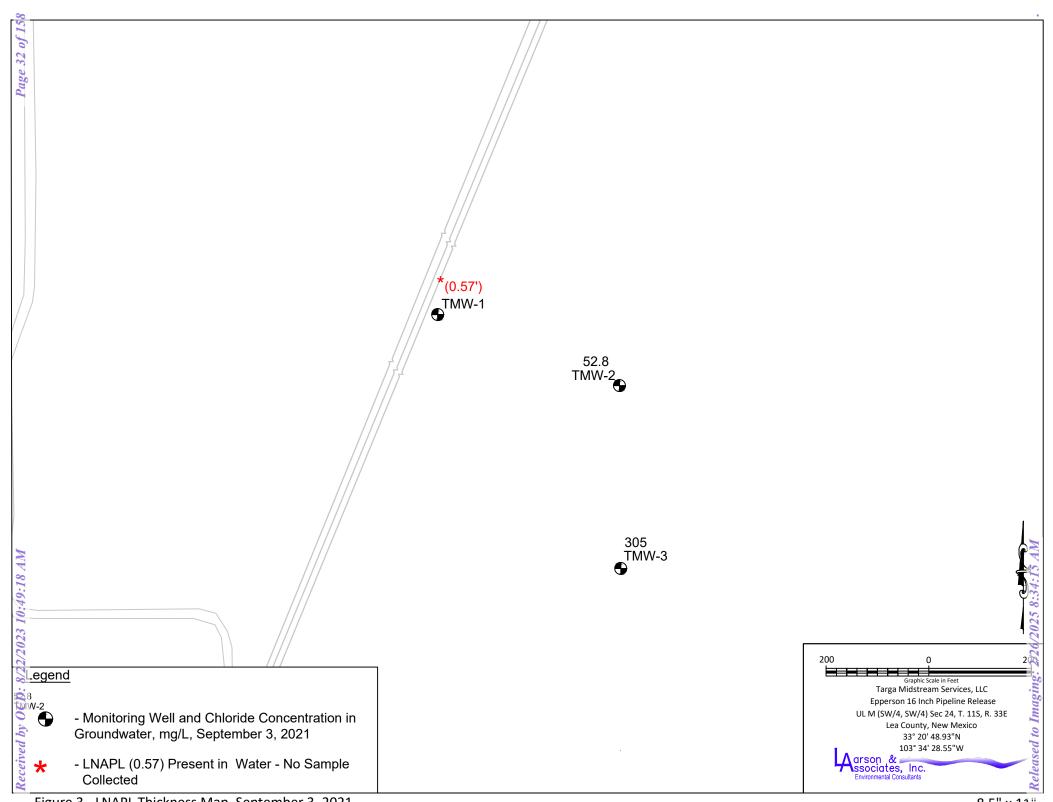


Figure 3 - LNAPL Thickness Map, September 3, 2021

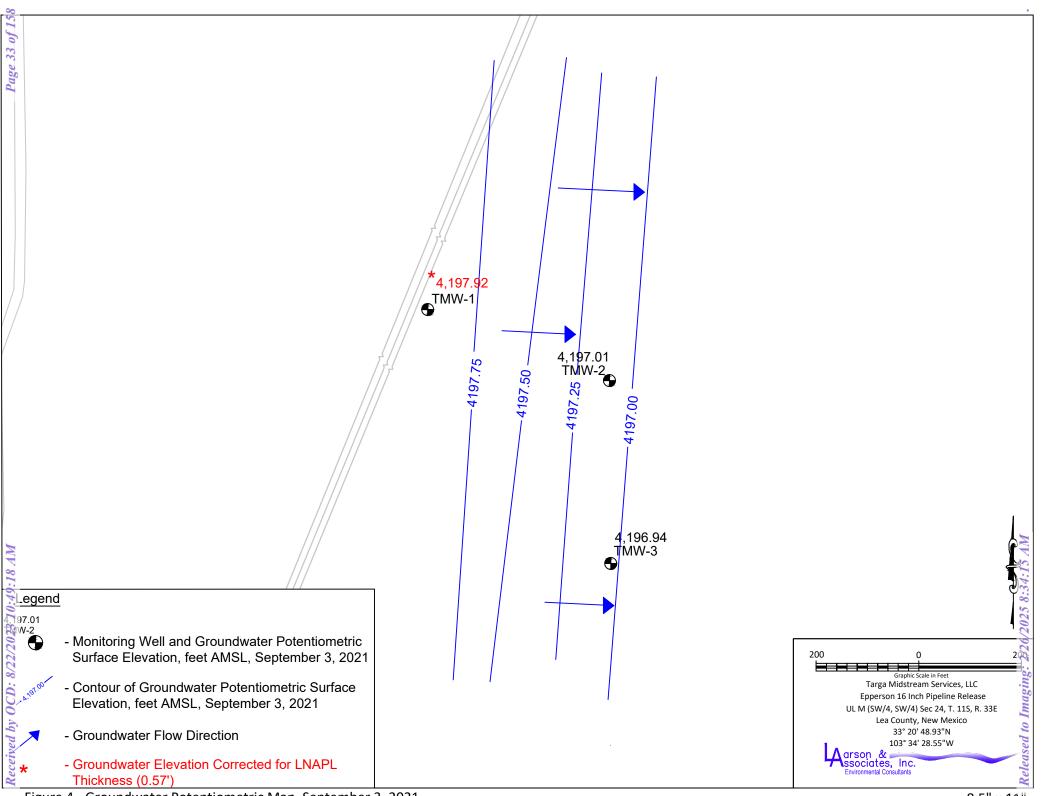


Figure 4 - Groundwater Potentiometric Map, September 3, 2021

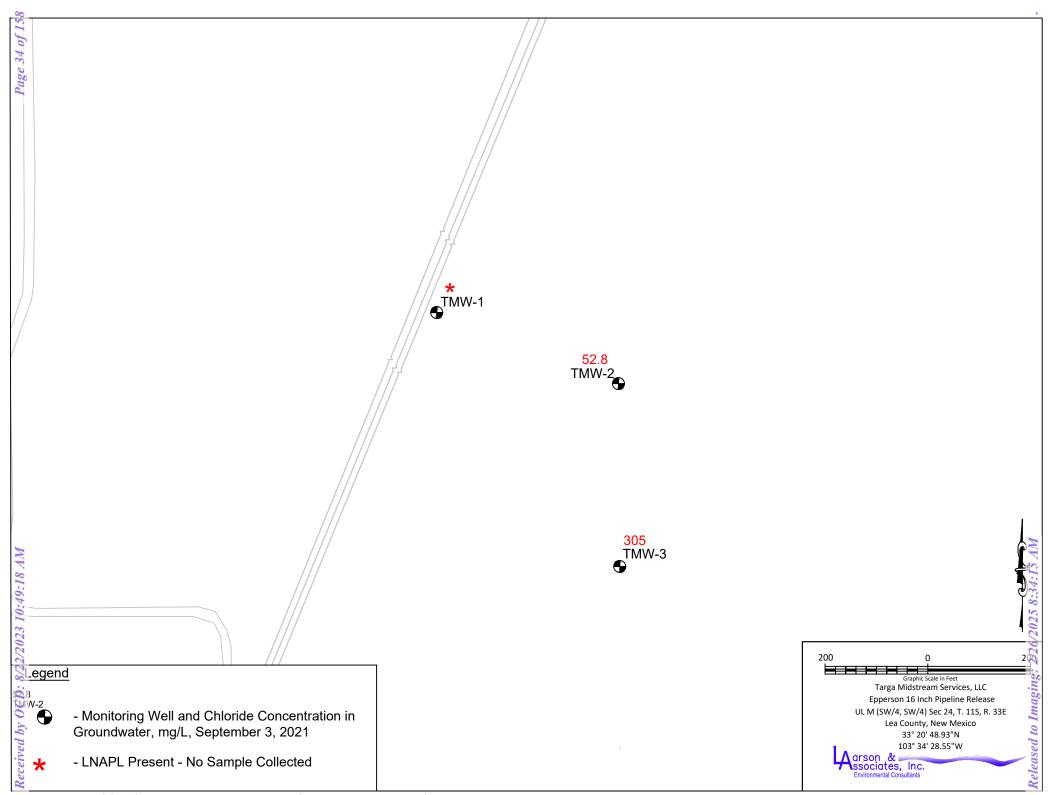
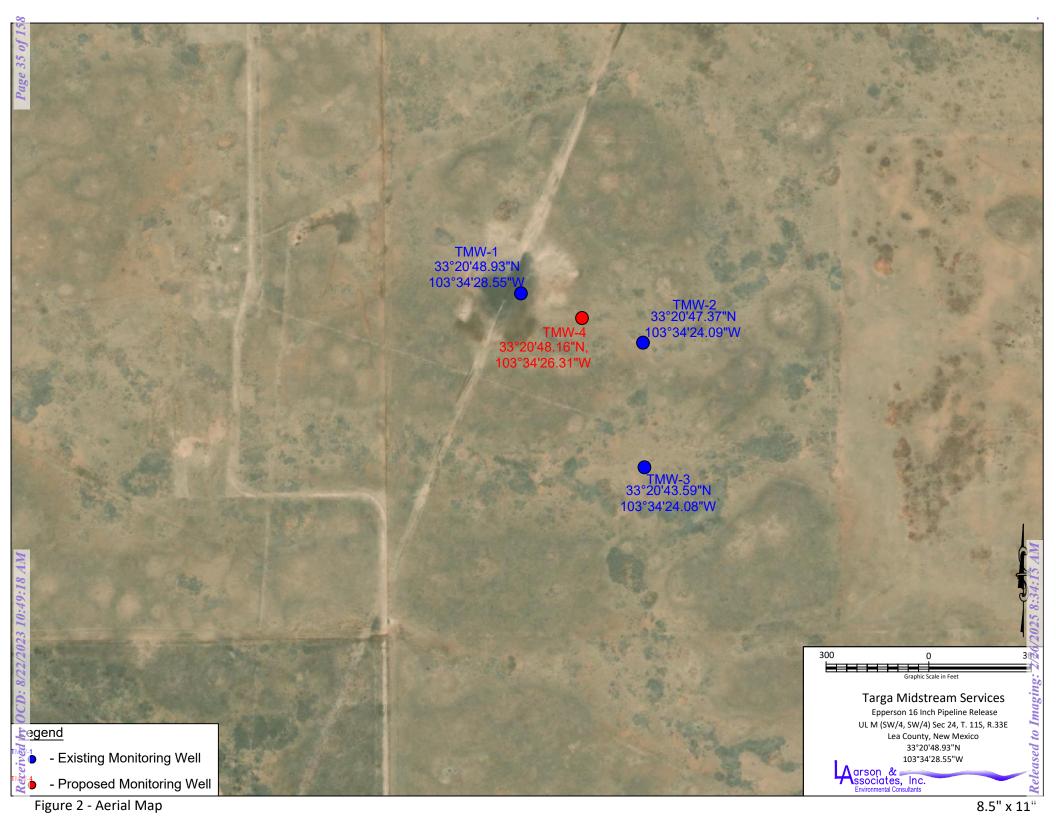



Figure 5 - Chloride Concentration in Groundwater Map, September 3, 2021

Appendix A

Regulatory Communications

Received by OCD: 8/22/2023 10:49:18 AM

From:	Yu, Olivia, EMNRD [Olivia.Yu@state.nm.us]
Sent:	Thursday, July 13, 2017 4:28 PM
То:	Mark Larson; Oberding, Tomas, EMNRD
Cc:	'Higginbotham, Christina'; 'Duncan, Randy'; 'England, Ralph E.'; 'Klein, Cindy D.'
Subject:	RE: 1RP-4665 - Addendum Spill Delineation Report, Epperson 16" Pipeline Release Site #2
Attachments:	Approved_1RP-4665 Addendum Delineation Report, Epperson 16 Inch Pipeline Release Site 2, May
	30, 2017.pdf

Dear Mr. Larson:

Based on the provided data in the addendum dated May 30, 2017 for 1RP-4665, NMOCD approves of the proposed remediation of no further action, although several locations 2-3 ft. bgs are above permissible chloride levels of 600 mg/kg. Please be advised that exceedance of permissible levels are evaluated on a case-by-case basis. The approved addendum is attached.

Please submit a concise closure report and final C-141 for 1RP-4665.

Thanks,

Olivia Yu Environmental Specialist NMOCD, District I <u>Olivia.yu@state.nm.us</u> 575-393-6161 x113

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Mark Larson [mailto:Mark@laenvironmental.com]
Sent: Tuesday, June 27, 2017 12:41 PM
To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Oberding, Tomas, EMNRD <<u>Tomas.Oberding@state.nm.us</u>>
Cc: 'Higginbotham, Christina' <<u>chigginbotham@targaresources.com</u>>; 'Duncan, Randy' <<u>RDuncan@targaresources.com</u>>; 'England, Ralph E.' <<u>REngland@targaresources.com</u>>; 'Klein, Cindy D.' <<u>CynthiaKlein@targaresources.com</u>>;
Subject: Re: 1RP-4664 - Addendum Spill Delineation Report, Epperson 16" Pipeline Release Site #1, May 30, 2017 and 1RP-4665 - Addendum Spill Delineation Report, Epperson 16" Pipeline Release Site #2

Olivia/Tomas,

On behalf of Traga Midstream Services, LLC (Targa) please use the link below to download the above referenced reports for 1RP-4664 9Epperson 16" Pipeline Release #1) and 1RP-4665 (Epperson 16" Pipeline Release #2). Targa requests OCD approval to commence remediation at 1RP-4664 and closure with no further action for 1RP-4665. Please contact Christina Higginbotham with Targa at (713) 584-1396 or me f you have questions.

Link: https://files.acrobat.com/a/preview/ec1deccd-256d-4710-a534-4bb079c9d97c

Received by OCD: 8/22/2023 10:49:18 AM Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

Logo

"Serving the Permian Basin Since 2000"

?

From: Mark Larson
Sent: Wednesday, May 03, 2017 1:00 PM
To: 'Yu, Olivia, EMNRD'; 'Oberding, Tomas, EMNRD'; 'Higginbotham, Christina'
Subject: RE: Spill Delineation Report for 1RP-4664 (Epperson 16" Pipeline Release Site #1) and Spill Delineation Report for 1RP-4665 (Epperson 16" Pipeline Release Site #2)

That will work! I am assuming 10:00 AM in New Mexico and 11:00AM in Texas? Call in number: 1-877-411-9748 Access Code: 3669914

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Wednesday, May 03, 2017 12:48 PM
To: Mark Larson
Cc: 'Higginbotham, Christina'; Oberding, Tomas, EMNRD
Subject: RE: Spill Delineation Report for 1RP-4664 (Epperson 16" Pipeline Release Site #1) and Spill Delineation Report for 1RP-4665 (Epperson 16" Pipeline Release Site #2)

Mr. Larson:

Does tomorrow, May 4, 2017, at 10 a.m. work? Dr. Oberding will also be calling in. Please provide a teleconference call number and code.

Thanks, Olivia

From: Mark Larson [mailto:Mark@laenvironmental.com]
Sent: Wednesday, May 3, 2017 10:54 AM
To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>

Cc: 'Higginbotham, Christina' < chigginbotham@targaresources.com >

Subject: RE: Spill Delineation Report for 1RP-4664 (Epperson 16" Pipeline Release Site #1) and Spill Delineation Report for 1RP-4665 (Epperson 16" Pipeline Release Site #2)

Olivia,

Would be available for a conference call to discuss the questions you have concerning the delineation reports for 1RP-4664 and

Received by OCD: 8/22/2023 10:49:18 AM

1RP-4665? Christina Higginbotham with Targa would like to be on the call. Please let me know a convenient date/time for you. Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

Logo

?

"Serving the Permian Basin Since 2000"

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Monday, May 01, 2017 4:34 PM
To: Mark Larson
Cc: 'England, Ralph E.'; 'Higginbotham, Christina'
Subject: RE: Spill Delineation Report for 1RP-4664 (Epperson 16" Pipeline Release Site #1)

Mr. Larson:

Please address the following concerns regarding the delineation workplan for 1RP-4664. Please confirm.

- Given that depth to groundwater is < 50 ft. bgs, additional vertical delineation is required at SB 1, 8 and 12 for chlorides. Obtain and maintain 250 mg/kg chloride levels for 10 more ft. below. At SB1, if the groundwater table is expected to be breached, a temporary monitoring well may be required.
- The remediation plan requires a revision with consideration to chlorides.

Thanks,

Olivia Yu Environmental Specialist NMOCD, District I <u>Olivia.yu@state.nm.us</u> 575-393-6161 x113

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

file:///Z/...4665%20-%20Addendum%20Spill%20Delineation%20Report%20Epperson%2016%20Pipeline%20Release%20Site%20%232.htm[12/30/2020 4:35:59 PM]

From: Mark Larson [mailto:Mark@laenvironmental.com]

Sent: Thursday, April 20, 2017 8:01 AM

To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>

Cc: 'England, Ralph E.' <<u>REngland@targaresources.com</u>>; 'Higginbotham, Christina' <<u>chigginbotham@targaresources.com</u>> **Subject:** RE: Spill Delineation Report for 1RP-4664 (Epperson 16" Pipeline Release Site #1)

Olivia,

I apologize for the oversight. The GPS coordinates on the C-141 and drawings are correct. The GPS coordinates on the report cover and on Page 1 have been corrected. The investigation was performed to understand the extent of the release and based on the evaluation of the data it was determined it was appropriate to report the release to OCD. The remediation plan is included as Section 3 Recommendations. Please contact Ralph England with Targa at (575) 396-3221 Ext. 224 or REngland@targaresources.com or me if you have questions.

Link to 1RP-4664: https://files.acrobat.com/a/preview/d450c1c6-5a08-4d35-8929-029e8d1a9026

Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

cid:image001.jpg@01D2C273.FE86F250

"Serving the Permian Basin Since 2000"

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Tuesday, April 18, 2017 11:41 AM
To: Mark Larson
Cc: 'England, Ralph E.'; 'Higginbotham, Christina'
Subject: Spill Delineation Report for 1RP-4664 (Epperson 16" Pipeline Release Site #1)

Dear Mr. Larson:

Please address these concerns regarding the delineation report for 1RP-4664:

- 1. The GPS location of the release on the C-141 and on Figure 2 does not correspond to the coordinates written on pg. 1, which refer to Site #2 release. Please correct or inform otherwise.
- 2. I overlooked the discovery date upon review of the initial C141. What is the rationale for submitting an initial C141 and delineation workplan in March 2017, when work began in June 2016?

Thanks,

Received by OCD: 8/22/2023 10:49:18 AM

Olivia Yu Environmental Specialist NMOCD, District I <u>Olivia.yu@state.nm.us</u> 575-393-6161 x113

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Yu, Olivia, EMNRD
Sent: Tuesday, April 11, 2017 3:56 PM
To: 'Mark Larson' <<u>Mark@laenvironmental.com</u>>
Cc: 'England, Ralph E.' <<u>REngland@targaresources.com</u>>; 'Higginbotham, Christina' <<u>chigginbotham@targaresources.com</u>>
Subject: RE: Spill Delineation Reports for 1RP-4664 (Epperson 16" Pipeline Release Site #1) and 1RP-4665 (Epperson 16" Pipeline Release Site #2), Lea County, New Mexico

Mr. Larson:

Yes. I was able to download the 2 pdfs for 1RP-4664 and 1RP-4665, but I have not review them. They will be assessed in the order in which I received them. ETA is probably mid next week.

Olivia

From: Mark Larson [mailto:Mark@laenvironmental.com]
Sent: Tuesday, April 11, 2017 2:39 PM
To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>
Cc: 'England, Ralph E.' <<u>REngland@targaresources.com</u>>; 'Higginbotham, Christina' <<u>chigginbotham@targaresources.com</u>>
Subject: Re: Spill Delineation Reports for 1RP-4664 (Epperson 16" Pipeline Release Site #1) and 1RP-4665 (Epperson 16" Pipeline Release Site #2), Lea County, New Mexico

Hello Olivia,

I'm following up to make confirm that you received and were able to down load and review the delineation reports for 1RP-4664 (Epperson 16" Pipeline Release Site #1) and 1RP-4665 (Epperson 16" Pipeline Release #2) that were submitted on April 5, 2017? Please contact Ralph England with Targa at (575) 396-3221 Ext. 224 or <u>REngland@targaresources.com</u> or me if you have questions.

Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901

file:///Z/...4665%20-%20Addendum%20Spill%20Delineation%20Report%20Epperson%2016%20Pipeline%20Release%20Site%20%232.htm[12/30/2020 4:35:59 PM]

Received by OCD: 8/22/2023 10:49:18 AM

Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

Logo

"Serving the Permian Basin Since 2000"

?

From: Mark Larson
Sent: Wednesday, April 05, 2017 11:37 AM
To: 'Yu, Olivia, EMNRD'
Cc: 'England, Ralph E.'; 'Higginbotham, Christina'
Subject: RE: DSpill Delineation Reports for 1RP-4664 (Epperson 16" Pipeline Release Site #1) and 1RP-4665 (Epperson 16" Pipeline Release Site #2) , Lea County, New Mexico

Dear Ms. Yu,

Please use the links below to download electronic copies of the spill delineation reports for 1RP-4664 and 1RP-4665 submitted on behalf of Targa Midstream Services, LLC. Please contact Ralph England with Targa at (575) 396-3221 Ext. 224 or <u>REngland@targaresources.com</u> or me if you have questions.

Link to 1RP-4664: https://files.acrobat.com/a/preview/1cba9ad8-322b-40a5-957c-6e1e37f93dda Link to 1RP-4665: https://files.acrobat.com/a/preview/e83e9e5f-3410-4309-9548-4bedd03d580d

Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

Logo

"Serving the Permian Basin Since 2000"

?

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Friday, March 31, 2017 2:35 PM
To: Mark Larson
Cc: 'England, Ralph E.'
Subject: RE: Initial C-141 - Targa Midstream Services, Epperson 16" Pipeline Release Site #1 and Release Site #2, Lea County, New Mexico

Released to Imaging: 2/26/2025 8:34:15 AM file:///Z/...4665%20-%20Addendum%20Spill%20Delineation%20Report%20Epperson%2016%20Pipeline%20Release%20Site%20%232.htm[12/30/2020 4:35:59 PM]

Page 43 of 158

Received by OCD: 8/22/2023 10:49:18 AM

Dear Mr. England:

NB: The PLSS for the releases were adjusted based on the GPS coordinates provided. Please confirm.

The RPs for these incidents are

			Targa Midstream	Epperson 16" pipeline	11S-33E-	
4664	3/31/2017	А	Srvcs.	(release site #1)	24F	unknown
			Targa Midstream	Epperson 16" pipeline	11S-33E-	
4665	3/31/2017	А	Srvcs.	(release site #2)	24M	unknown

Please note that a release characterization/delineation workplan as detailed in the attachment must be approved by NMOCD BEFORE any remediation work.

Thanks,

Olivia Yu Environmental Specialist NMOCD, District I <u>Olivia.yu@state.nm.us</u> 575-393-6161 x113

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Mark Larson [mailto:Mark@laenvironmental.com]
Sent: Wednesday, March 29, 2017 2:24 PM
To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>
Cc: 'England, Ralph E.' <<u>REngland@targaresources.com</u>>
Subject: Re: Initial C-141 - Targa Midstream Services, Epperson 16" Pipeline Release Site #1 and Release Site #2, Lea County, New Mexico

Dear Ms. Yu,

Please find attached initial C-141 for Targa Midstream Services, LLC. The C-141s are for two (2) releases (Release Site #1 and Release Site #2) from the Epperson 16" pipeline located west of Tatum, in Lea County, New Mexico. Please contact Ralph England (<u>REngland@targaresources.com</u>) or call (575) 396-3221, Ext. 224 or me if you have questions.

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 (432) 687-0901 (O) (432) 556-8656 (C) ?

Logo

www.LAEnvironmental.com

"Serving the Permian Basin Since 2000"

From:	Billings, Bradford, EMNRD
To:	Mark Larson
Cc:	Higginbotham, Christina
Subject:	RE: 1RP-4664, Backfill Notification, Targa Midstream Services, LLC, Epperson 16 Inch Pipeline Release, Lea County, New Mexico
Date:	Thursday, February 18, 2021 1:43:33 PM

02/18/2021

Chistina Higginbotham – TARGA Mark Larson – LAE

RE; Backfill request on areas associated with 1RP-4664

After review of the supplied data and information, the following: Approval is given by the Oil Conservation Division (OCD) to proceed with backfill operations as requested. OCD thanks you for your efforts. Please make OCD aware of timing for backfill and completion.

Sincerely,

Bradford G. Billings EMNRD/OCD

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations

From: Mark Larson <Mark@laenvironmental.com>

Sent: Tuesday, February 9, 2021 8:51 AM

To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>; Eads, Cristina, EMNRD <Cristina.Eads@state.nm.us>

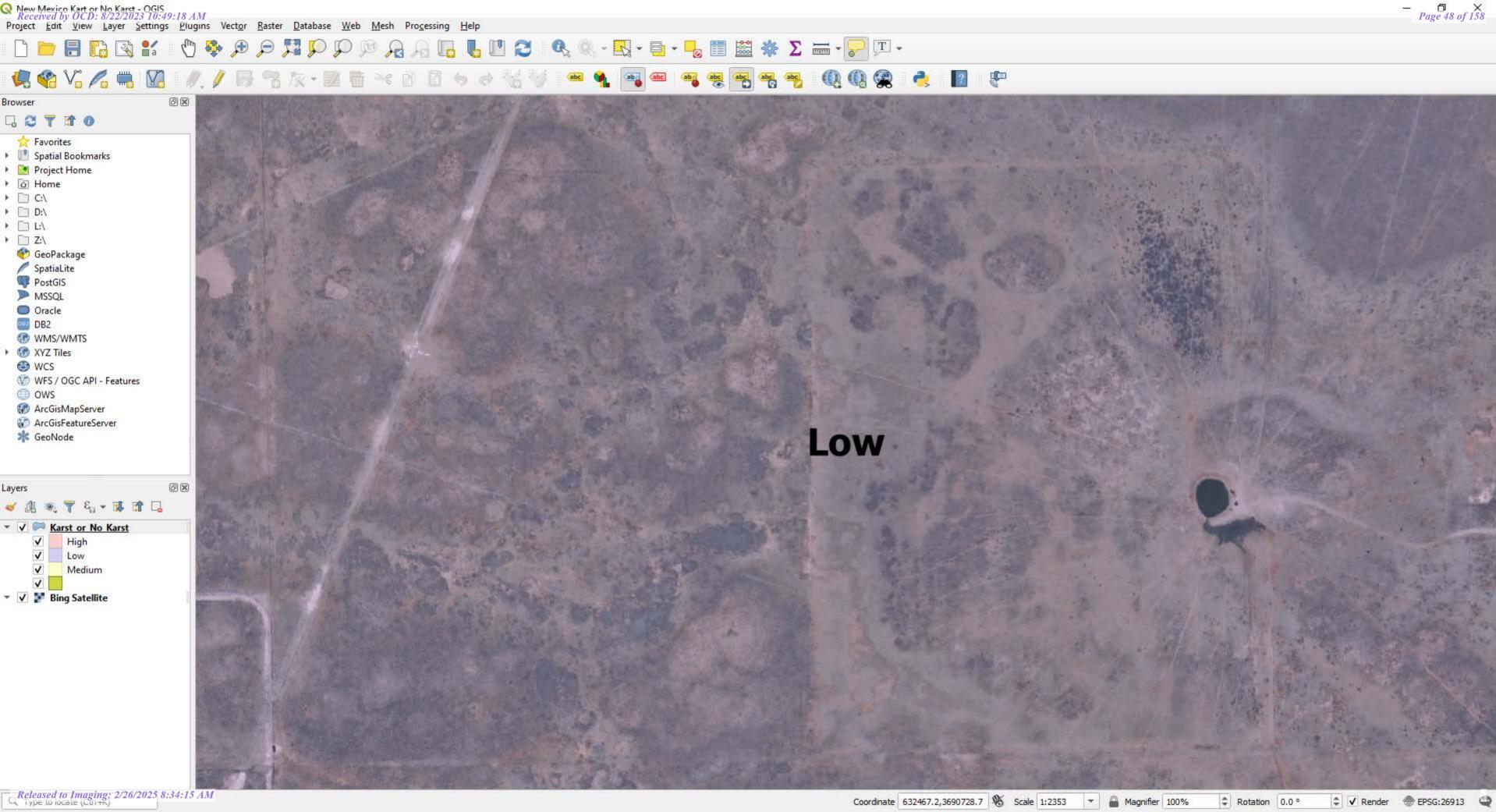
Subject: [EXT] Re: 1RP-4664, Backfill Notification, Targa Midstream Services, LLC, Epperson 16 Inch Pipeline Release, Lea County, New Mexico

Hello Mr. Billings and Ms. Eads,

This message is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, LLC (Targa) to provide notification as required by 19.15.29.12D(1)(a) NMAC for backfilling the excavation at the Epperson 16 inch pipeline (1RP-4664) located in Lea County, New Mexico. Between October 2017 and November 2020, Gandy Marley Inc. (GMI), under supervision from Larson & Associates, Inc. (LAI), excavated approximately 4,432 cubic yards of soil that was disposed at the Gandy Marly Landfill located between Tatum and Roswell, New Mexico. LIA personnel collected confirmation soil samples from the excavation bottom and sidewalls that were analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX), total petroleum hydrocarbons (TPH) and chloride by EPA SW-846 Methods 8021B/8260, 8015 and 300, respectively. The final laboratory results are below the closure standards in Table 1 of <u>19.15.29.12</u> NMAC, therefore, Targa will backfill the excavation with clean material meeting the requirements by 19.15.29.13D(1). Please refer to

the attached analytical data tables and drawings. The closure report will be submitted upon completion of excavation backfilling. A remediation plan will be submitted separately for the groundwater impact. Please contact Christina Higginbotham with Targa Resources at (713) 584-1396 or email chigginbotham@targaresources.com_or me if you have any questions.

Thank you,


Mark J. Larson, P.G. President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

arson & ciates, Inc.

"Serving the Permian Basin Since 2000"

Appendix B

U.S.G.S Karst Information

Appendix C

NMOSE Well Permits

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER DISTRICT 11 OFFICE

TELEPHONE: (575) 622-6521 FAX: (575) 623-8559

TOM BLAINE, P.E. STATE ENGINEER Mailing Address: 1900 West Second Street Roswell, NM 88201-1712

August 2, 2018

ATTN Mark Larson Larson & Associates (for Targa Resources [c/o Ms. Christina Higginbotham]) 507 North Marienfeld, Suite 205 Midland, TX 79701

RE: Application for Permit to Drill a Monitoring Well Land on Private Land (Pearce Trust)

File: None (no water right)

Receipt Number: 2-39290

Greetings:

Enclosed herein are the original forms for an Application to a Monitoring Well (with No Water Right), received in this office on <u>April 13, 2018</u>.

These forms are being returned without being processed for the following reasons:

--The coordinates provided on the application indicated that the well was to be completed on private property in the name of the Pearce Trust, but the filing did not include documentation from the landowner confirming that access had been granted to drill the requested well.

--When plotted, the coordinates provided resulted in a different legal description for the proposed well location than what was provided on the application.

Christina Higginbotham of Targa Resources was contacted via e-mail (enclosed) on April 19, 2018, and asked to confirm and/or correct the coordinates and/or legal description provided, and to provide proof of permission to access the private property for well construction. Christina replied to the e-mail on the same date, indicating that she would provide follow up. However, to date, no contact or subsequent actions appear to have been completed by the applicant or agents regarding this filing.

Therefore, the application is being returned to you for disposal with no further action by the State Engineer. The filing fee that accompanied the application is considered as earned and is nonrefundable.

Sincerely

Bill Duemling OSE District II Water Resources Manager I (575) 291-2396 Enclosures (Returned Application for Monitoring Permit)

INTERSTATE STREAM COMMISSION – ROSWELL OFFICE	FILE NO: L- Basin DOLLARS CHECK NO: 14552 CASH: 3366TN: Nidlard STATE: TX	inal to payor; pink copy to Program Support/ASD; and yellow copy sit.	C. Well Driller Fees \$ 50.00 1. Application for Well Driller's License \$ 50.00 2. Application for Renewal of Well \$ 50.00 3. Application to Amend Well Driller's License \$ 50.00 3. Application to Amend Well Driller's License \$ 50.00 0.126 \$ 0.254 \$ 50.00 Papelication \$ 1000 \$ 50.00 0.254 \$ 50.00 \$ 50.00 Papelication \$ 50.00 \$ 50.00	
	PATE: 4/13/18 FILE 1 Five dis non Root Son Sou	INSTRUCTIONS: Indicate the number of actions to the left of the appropriate type of filing. Complete the receipt information. Original to payor; pink copy to Program Support/ASD; and yellow copy for Water Rights. If a mistake is made, void the original and all copies and submit to Program Support/ASD as part of your daily deposit.	B. Surface Water Filing Fees 1. Change of Ownership of a Water Right \$ 5.00 2. Declaration of Water Right \$ 10.00 3. Amended Declaration \$ 25.00 4. Application to Change Point of Diversion \$ 25.00 and Place and/or Purpose of Use from \$ 200.00 5. Application to Change Point of Diversion \$ 200.00 6. Application to Change Point of Diversion \$ 200.00 6. Application to Change Point of Diversion \$ 200.00 7. Application to Change Point of Diversion \$ 200.00 8. Application to Change Point of Diversion \$ 200.00 9. Notice Of Intent to Surface Water \$ 200.00 9. Notice of Use \$ 200.00 9. Notice of Intent to Appropriate \$ 25.00 9. Notice of Intent to Appropriate \$ 25.00 10. Application of Water to Beneficial Use \$ 100.00 11. Supplemental Well to a Surface Right \$ 100.00 13. Proof of Completion of Works \$ 25.00 14. Proof of Application of Water to Beneficial Use \$ 100.00 15. Water Development Plan \$ 100.00 16. Declaration of Livestock Water \$ 100.00 17. Application of Nater to Beneficial Use	All fees are non-refundable.
OFFICE OF THE STATE ENGINEER	OFFICIAL RECEIPT NUMBER: 2-39290 TOTAL: 500 RECEIVED: PAYOR: CALGLOS TOTOL	INSTRUCTIONS: Indicate the number of actions to the left of t for Water Rights. If a mistake is made, void the original and all	 A. Ground Water Filing Fees 1. Change of Ownership of Water Right \$ 2.00 2. Application to Appropriate or Supplement 3. Application to Repair or Deepen 3. Application for Replacement 5. Application for Replacement 5. Application to Change Purpose of Use 72-12-1 Well 5. Application for Stock Well/Temp. Use 5. 75.00 6. Application for Stock Well/Temp. Use 5. 25.00 6. Application for Stock Well/Temp. Use 72-12-1 Well 7. Application for Stock Well/Temp. Use 5. 25.00 6. Application for Supplemental Non 72-12-1 Well 8. Declaration of Water Right 9. Application for Supplemental Non 72-12-1 Well 8. Declaration of Supplemental Non 72-12-1 Well 8. 25.00 9. Application to Change Place or Non 10. Application to Change Place or Place or Purpose of Use from 11. Application to Change Place of Use from 12. Application to Change Point of Diversion and Place and/or Purpose of Use from 13. Application to Change Point of Diversion 14. Application to Change Point of Diversion 14. Application to Repair or Deepen 5.000 	 15. Application for Test, Expl. Observ. Well \$ 5.00 16. Application for Extension of Time \$ 25.00 17. Proof of Application to Beneficial Use \$ 25.00 18. Notice of Intent to Appropriate \$ 25.00

Released to Imaging: 2/26/2025 8:34:15 AM

Duemling, Bill, OSE

Higginbotham, Christina [chigginbotham@targaresources.com] Thursday, April 19, 2018 10:16 AM Duemling, Bill, OSE RE: [EXTERNAL] Proposed Permit for Monitor Well TMW-1 on Pearce Trust Land located in Section 24 T 11S R 33E NMPM
Section 24, T. 11S, R.33E, NMPM

Thanks Bill. We will jump on this.

Christina Higginbotham, P.G. | Targa Resources | Sr. Environmental Specialist 811 Louisiana Street, Suite 2100, Houston, TX 77002 | office: (713) 584-1396| cell: (281) 620-7835 email: chigginbotham@targaresources.com

From: Duemling, Bill, OSE [mailto:bill.duemling@state.nm.us]
Sent: Thursday, April 19, 2018 10:28 AM
To: Higginbotham, Christina <chigginbotham@targaresources.com>
Subject: [EXTERNAL] Proposed Permit for Monitor Well TMW-1 on Pearce Trust Land located in Section 24, T. 11S, R.33E, NMPM

Hello Christina

In reviewing the subject application, a couple of items arose:

- 1. Documentation is needed from the owner of the land (Pearce Trust) where the monitor well is to be drilled to confirm that Targa Resources has permission to access the property for such use. A simple letter from Ricky Pearce e-mailed back to me would suffice.
- In plotting the coordinates provided for proposed TMW-1, the resulting legal description was the NW/4 SE/4 NW/4 of Section 24, Township 11S, Range 33E, NMPM. (map attached) However, the application describes the proposed location as the SW/4 SW/4 of said Section 24. Please confirm the coordinates and/or legal description and advise of any changes needed.

Thank You

Bill Duemling Office of the State Engineer, District II Water Resources Manager I 1900 West Second Street; Roswell, NM 88201-1712 (575) 291-2396

Attention: This message was sent from someone outside of Targa Resources. Always use caution when opening unsolicited attachments or links, even if they appear to have been sent by someone you know.

This email (including any attachments and accompanying emails) may contain proprietary and confidential information. If you are not the intended recipient, please telephone the sender and immediately delete this e-mail (including any attachments and accompanying emails). Please do not replicate, disclose, distribute, forward, or retain this e-mail or any part of this email. Thank you.

Interstate Stream Commission	WITH NO CONSUMP	F THE STATE EN RMIT TO DRILL A WELL TIVE USE OF WATER	San Canada
	For fees, see State Engineer we	bsite: http://www.ose.state.nm.u	si
Purpose:	Pollution Control And / Or Recovery	Geo-Thermal	
Exploratory	Construction Site De-Watering	Other (Describe):	
Monitoring	Mineral De-Watering		
A separate permit will be	required to apply water to beneficial use.		
Temporary Request -	Requested Start Date:	Requested	End Date:
Plugging Plan of Operation	ons Submitted? 🗌 Yes 🗌 No		0
			ZIII RC
1. APPLICANT(S)			
Name: Targa Respource	es, Inc.	Name:	
Contact or Agent: Christina Higginbotham	check here if Agent	Contact or Agent:	check here if Agent
Mailing Address: 811 Lou	uisiana, Suite 2100	Mailing Address:	
City: Houston		City:	
State: TX	Zip Code: 77002	State:	Zip Code:
Phone: (281) 620-7835 Phone (Work): (713) 584-	-1396	Phone: Phone (Work):	Home Cell
E-mail (optional): chiggin	botham@targaresources.com	E-mail (optional):	

FOR OSE INTERNAL USE	Application for Permit, Form wr-07, Rev 4/12/12
File Number:	Trn Number:
Trans Description (optional)	
Sub-Basin:	
PCW/LOG Due Date:	

File No.

Page 1 of 3

.

2. WELL(S) Describe the well(s) applicable to this application.

(Lat/Long - WGS84).			ate Plane (NAD 83), UTM (NAD 83), <u>or</u> Latitude/Longitude a PLSS location in addition to above.
NM State Plane (NAD83) NM West Zone NM East Zone NM Central Zone		JTM (NAD83) (Meter]Zone 12N]Zone 13N	rs) ⊠ Lat/Long (WGS84) (to the nearest 1/10 th of second)
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (<i>Quarters or Halves</i> , Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name
TMW-1	103°34'17.06''w	33°21'13.06''n	SW/4, SW4 S24 T11S R33E
NOTE: If more well location Additional well descriptions Other description relating well	s are attached:	Yes 🛛 No	WR-08 (Attachment 1 – POD Descriptions) V1
Well is on land owned by: Ric Well Information: NOTE: If n		ell needs to be desc	cribed, provide attachment. Attached? Yes No
Approximate depth of well (fee	et): 35.00	0	utside diameter of well casing (inches): 2.00
Driller Name: Layne Scarbor	ough	D	riller License Number: WD-1188

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

Wells will be used to delineate and monitor groundwater contamination for up to 2 years.

FOR OSE INTERNAL USE

Application for Permt, Form wr-07

File Number:

Trn Number:

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application:

Exploratory: Include a description of any proposed pump test, if applicable. Monitoring: Include the reason for the monitoring well, and, The duration of the planned monitoring.	Pollution Control and/or Recovery: Include a plan for pollution control/recovery, that includes the following: A description of the need for the pollution control or recovery operation. The estimated maximum period of time for completion of the operation. The annual diversion amount. The annual consumptive use amount. The maximum amount of water to be diverted and injected for the duration of the operation. The method and place of discharge. The method of measurement of water produced and discharged. The method of measurement of water injected. The method of determining the resulting annual consumptive use of water and depletion from any related stream system. Proof of any permit required from the New Mexico Environment Department. An access agreement if the	Construction De-Watering: Include a description of the proposed dewatering operation, The estimated duration of the operation, The maximum amount of water to be diverted, A description of the need for the dewatering operation, and, A description of how the diverted water will be disposed of. Geo-Thermal: Include a description of the geothermal heat exchange project, The amount of water to be diverted and re-injected for the project, The time frame for constructing the geothermal heat exchange project, and, The duration of the project. Preliminary surveys, design data, and additional	Mine De-Watering:	udes the fo eed for mine um period of ration. vater to be of racteristics of water to of water to of water to of water to of water to of water to of the opera r. rement of w to the aquif nated area roject. of discharg fects on sur ound water project. athods emp ce water rig wells, river	e of time diverted. of the be be ation. vater fer. of ge. rface rights bloyed to aths and rs,
	applicant is not the owner of the land on which the pollution plume control or	information shall be included to provide all essential facts	springs, and wetlands with hydrologic effect.	Intruie area	a Ur
	recovery well is to be located.	relating to the request.	injuiciogio chechi	23	
I We (name of	AC	CKNOWLEDGEMENT		ddif a	NOS .
i, we (name of a		int Name(s)		W	
affirm that the fo	pregoing statements are true to the best of				
Chit.	Hosport	ing, our knowledge and belief.			INEXIO
Applicant Signat	ure	Applicant Signature	Э	-5-	OH
	ACTION	OF THE STATE ENGINEER			
		This application is:			
	approved		denied		
	ot exercised to the detriment of any others rimental to the public welfare and further su	having existing rights, and is not o		of water in	New

 Witness my hand and seal this ______day of ______20 ____, for the State Engineer, ______.

 ________.State Engineer

 By: ________.State Engineer

 Signature
 Print

 Title: _______Print

 FOR OSE INTERNAL USE
 Application for Permit, Form wr-07

 File Number:
 Trn Number:

April 10, 2018

Office of the New Mexico State Engineer 1900 W 2nd Street Roswell, NM 88201

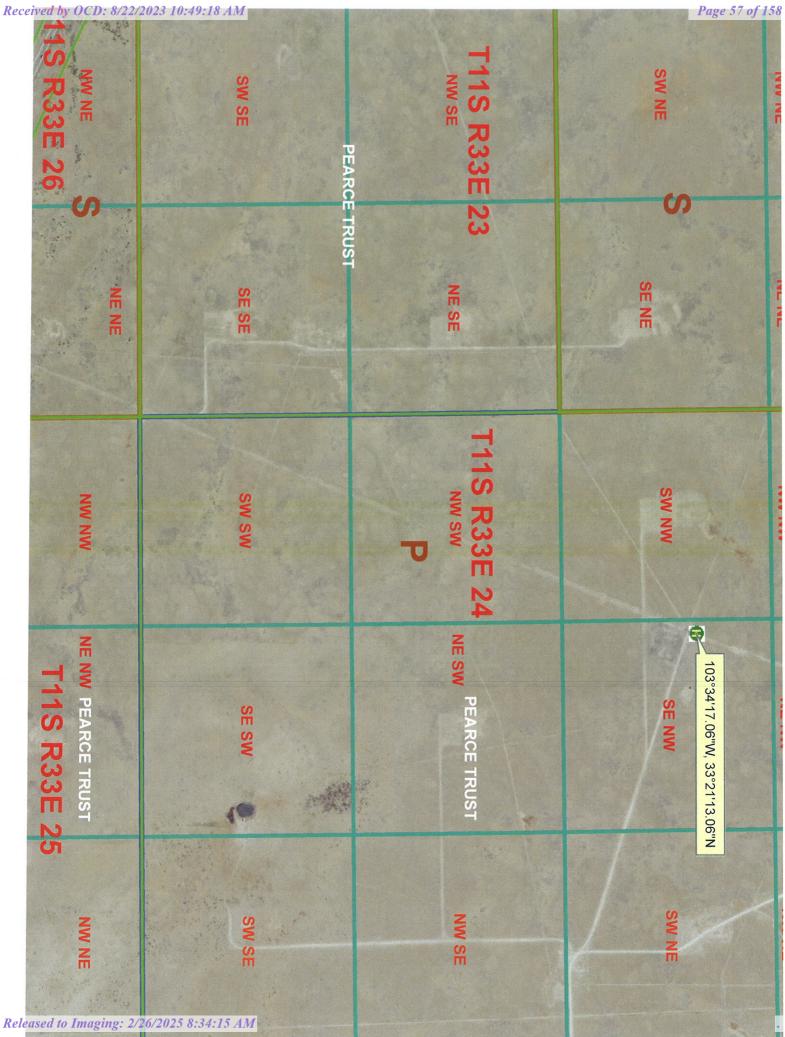
ATT: Monitoring Well Permit Application

Dear NMOSE,

Larson & Associates, Inc. (LIA), on behalf of Targa Resources, submits the enclosed application and fee (\$5.00) for monitoring well. Please contact Ms. Christina Higginbotham with Targa at (713) 584-1396 or chigginbotham@targaresources.com or me at (432) 687-0901, if you have questions.

Sincerely,

Larson & Associates, Inc.


Mark J. Larson, P.G. President/Sr. Hydrogeologist

Encl.

cc: Christina Higginbotham

2010	RO
lou'	
Ū	
272	
• •	$\geq =$
04	SR

507 North Marienfeld, Suite 205 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

Locator Tool Report

General Information:

Application ID:30 Date: 04-19-2018

Time: 09:19:09

WR File Number: L Purpose: PLACE OF USE

Applicant First Name: TARGA RESOURCES Applicant Last Name: MONITOR WELL APPLICATION

> GW Basin: LEA COUNTY County: LEA

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

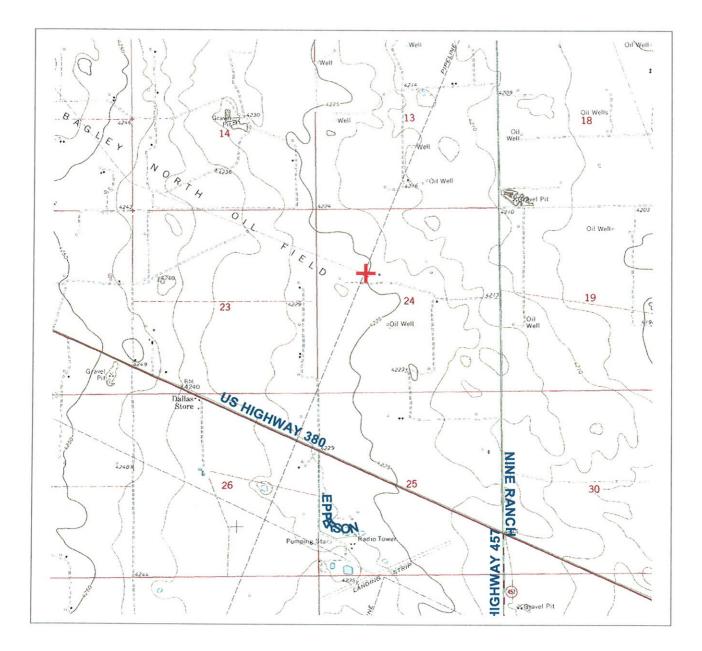
SW 1/4 of NW 1/4 of SE 1/4 of NW 1/4 of Section 24, Township 11S, Range 33E.

Coordinate System Details:

Geographic Coordinates:

Latitude: 33 Degrees 21 Minutes 13.1 Seconds N Longitude: 103 Degrees 34 Minutes 17.1 Seconds W

Universal Transverse Mercator Zone: 13N


NAD 1983(92) (Meters)	N: 3,691,402	E: 632,924
NAD 1983(92) (Survey Feet)	N: 12,110,876	E: 2,076,518
NAD 1927 (Meters)	N: 3,691,199	E: 632,974
NAD 1927 (Survey Feet)	N: 12,110,208	E: 2,076,684

State Plane Coordinate System Zone: New Mexico East

NAD 1983(92) (Meters)	N: 261,229	E: 235,914
NAD 1983(92) (Survey Feet)	N: 857,050	E: 773,993
NAD 1927 (Meters)	N: 261,209	E: 223,363
NAD 1927 (Survey Feet)	N: 856,984	E: 732,817

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report

WR File Number: L Sc	ale: 1:33,169		
Northing/Easting: UTM83(92) (Meter):	N: 3,691,402	E: 632,924	
Northing/Easting: SPCS83(92) (Feet):	N: 857,050	E: 773,993	
GW Basin: Lea County			
Dana 0 af 0		Drivet Dates 04/40/0040	

Page 2 of 2

Print Date: 04/19/2018

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER DISTRICT 11 OFFICE

TELEPHONE: (575) 622-6521 FAX: (575) 623-8559

TOM BLAINE, P.E. STATE ENGINEER Mailing Address: 1900 West Second Street Roswell, NM 88201-1712

August 2, 2018

ATTN Mark Larson Larson & Associates (for Targa Resources [c/o Ms. Christina Higginbotham]) 507 North Marienfeld, Suite 205 Midland, TX 79701

RE: Application for Permit to Drill a Monitoring Well Land on Private Land (Pearce Trust)

File: None (no water right)

Receipt Number: 2-39290

Greetings:

Enclosed herein are the original forms for an Application to a Monitoring Well (with No Water Right), received in this office on <u>April 13, 2018</u>.

These forms are being returned without being processed for the following reasons:

--The coordinates provided on the application indicated that the well was to be completed on private property in the name of the Pearce Trust, but the filing did not include documentation from the landowner confirming that access had been granted to drill the requested well.

--When plotted, the coordinates provided resulted in a different legal description for the proposed well location than what was provided on the application.

Christina Higginbotham of Targa Resources was contacted via e-mail (enclosed) on April 19, 2018, and asked to confirm and/or correct the coordinates and/or legal description provided, and to provide proof of permission to access the private property for well construction. Christina replied to the e-mail on the same date, indicating that she would provide follow up. However, to date, no contact or subsequent actions appear to have been completed by the applicant or agents regarding this filing.

Therefore, the application is being returned to you for disposal with no further action by the State Engineer. The filing fee that accompanied the application is considered as earned and is nonrefundable.

Sincerely

Bill Duemling OSE District II Water Resources Manager I (575) 291-2396 Enclosures (Returned Application for Monitoring Permit)

INTERSTATE STREAM COMMISSION – ROSWELL OFFICE	FILE NO .: L- Basin DOLLARS CHECK NO .: 14552 CASH: 506077: Nidlard STATE: TX	intermed to payor; prink copy to Program Support/ASD; and yellow copy sti. c. Well Driller Fees \$ 50.00 Application for Well Driller's License \$ 50.00 3. Application for Renewal of Well \$ 50.00 Driller's License \$ 50.00 3. Application to Amend Well Driller's License \$ 50.00 3. Application to Amend Well Driller's License \$ 50.00 Application to Amend Well Driller's License \$ 50.00 Application to Amend Well Driller's License \$ 50.00 Application to Amend Well Driller's License \$ 50.00 Application to Amend Well Driller's License \$ 50.00 \$ 50.00 Map(s) \$ 50.00 \$ 50.00 Map(s) \$ 50.00 \$ 50.00 Map(s) \$ 50.00 \$ 50.00 Map(s) \$ 50.00 \$ 50.00 Map(s) \$ 50.00 \$ 50.00 .	
	PATE: 4/13/18 FILE Five dils	INSTRUCTIONS: Indicate the number of actions to the left of the appropriate type of filing. Complete the receipt information. Original to parts: If a miscle is made, wold the original and all copies and submit to Program Support/ASDs and yellow copy. A. Ground Water Right: Is miscle is made, wold the original and all copies and submit to Program Support/ASDs as part of your daily depest. C. Well Dirtile Fees Support A. Ground Water Right: 2. Obmesting 7. State Water Right: 2. Operation of womership of Water Right: 5.000 3. Application for Well Dirtile's Litense 5.000 3. Application to Appropriate to Change Print of Diversion 3. Application to Appropriate scale when to Change Print of Diversion 3. Application for Kellel Dirtile's Litense 5.000 3. Application for Replacement 5.75.00 4. Application for Kelle ment 5.000 3. Application for Well Dirtile's Litense 5.000 4. Application for Keplacement 5.75.00 5. Application for Keplacement 5.000 3. Application for Well Dirtile's Litense 5.000 5. Application for Keplacement 5.75.00 5. Application for Well Dirtile's Litense 5.000 6. Application for Keplacement 5.75.00 5. Application for Well Dirtile's Litense 5.000 7. Application for Keplacement 5.75.00 5. Application for Keplacement 5.000 7. Appl	All fees are non-refundable.
OFFICE OF THE STATE ENGINEER/	OFFICIAL RECEIPT NUMBER: 2-39290 TOTAL: 5.00 RECEIVED: PAYOR: COLSDA & ASSOCIALES TOU ZIP: 79710 RECEIVED BY: 0.6	INSTRUCTIONS: Indicate the number of actions to the left of for Water Rights. If a mistake is made, void the original and all an A Ground Water Filing Fees A. Ground Water Filing Fees 1. Change of Ownership of Water Right \$ 2.00 2. Application to Appropriate or Supplement Domestic 72-12-1 Well 5. Application to Replacement \$ 75.00 5. Application for Replacement \$ 75.00 5. Application to Change Purpose of Use \$ 75.00 5. Application to Change Purpose of Use \$ 75.00 6. Application for Stock Well/Temp. Use \$ 75.00 6. Application for Stock Well/Temp. Use \$ 2.00 7. Publication for Stock Well/Temp. Use \$ 25.00 9. Application of Water Right \$ 25.00 10. Application to Change Purpose of Use \$ 75.00 11. Application for Stock Well/Temp. Use \$ 25.00 12. 12.1 Well 13. Application to Change Place or \$ 25.00 10. Application to Change Place or \$ 25.00 11. Application to Change Place or \$ 25.00 12. Application to Change Place or \$ 25.00 13. Application to Change Place or \$ 25.00 10. Application to Change Place or \$ 25.00 11. Application to Change Place or \$ 25.00 13. Application to Change Place or \$ 25.00 13. Application to Change Place or \$ 25.00 14. Application to Change Place or \$ 25.00 15. Application to Change Place or \$ 25.00 16. Application to Change Place or \$ 25.00 17. Application to Change Place or \$ 25.00 18. Declaration of Water \$ 25.00 19. Application to Change Place or \$ 25.00 10. Application to Change Place or \$ 25.00 11. Application to Change Point of Diversion 12. Application to Change Point of Diversion 13. Application to Change Point of Diversion 13. Application to Change Point of Diversion 14. Application to Change Point of Diversion 15. Application to Repair or Deepen 16. Application to Repair or Deepen 17. 12. Application to Change Point o	 15. Application for Test, Expl. Observ. Well \$ 5.00 16. Application for Extension of Time \$ 25.00 17. Proof of Application to Beneficial Use \$ 25.00 18. Notice of Intent to Appropriate \$ 25.00

Released to Imaging: 2/26/2025 8:34:15 AM

Duemling, Bill, OSE

Higginbotham, Christina [chigginbotham@targaresources.com] Thursday, April 19, 2018 10:16 AM Duemling, Bill, OSE RE: [EXTERNAL] Proposed Permit for Monitor Well TMW-1 on Pearce Trust Land located in
Section 24, T. 11S, R.33E, NMPM

Thanks Bill. We will jump on this.

Christina Higginbotham, P.G. | Targa Resources | Sr. Environmental Specialist 811 Louisiana Street, Suite 2100, Houston, TX 77002 | office: (713) 584-1396| cell: (281) 620-7835 email: chigginbotham@targaresources.com

From: Duemling, Bill, OSE [mailto:bill.duemling@state.nm.us]
Sent: Thursday, April 19, 2018 10:28 AM
To: Higginbotham, Christina <chigginbotham@targaresources.com>
Subject: [EXTERNAL] Proposed Permit for Monitor Well TMW-1 on Pearce Trust Land located in Section 24, T. 11S, R.33E, NMPM

Hello Christina

In reviewing the subject application, a couple of items arose:

- 1. Documentation is needed from the owner of the land (Pearce Trust) where the monitor well is to be drilled to confirm that Targa Resources has permission to access the property for such use. A simple letter from Ricky Pearce e-mailed back to me would suffice.
- In plotting the coordinates provided for proposed TMW-1, the resulting legal description was the NW/4 SE/4 NW/4 of Section 24, Township 11S, Range 33E, NMPM. (map attached) However, the application describes the proposed location as the SW/4 SW/4 of said Section 24. Please confirm the coordinates and/or legal description and advise of any changes needed.

Thank You

Bill Duemling Office of the State Engineer, District II Water Resources Manager I 1900 West Second Street; Roswell, NM 88201-1712 (575) 291-2396

Attention: This message was sent from someone outside of Targa Resources. Always use caution when opening unsolicited attachments or links, even if they appear to have been sent by someone you know.

This email (including any attachments and accompanying emails) may contain proprietary and confidential information. If you are not the intended recipient, please telephone the sender and immediately delete this e-mail (including any attachments and accompanying emails). Please do not replicate, disclose, distribute, forward, or retain this e-mail or any part of this email. Thank you.

Interstate Stream Commission	WITH NO CONSUMP	F THE STATE EN RMIT TO DRILL A WELL PTIVE USE OF WATER	GINEER		
	For fees, see State Engineer we	bsite: http://www.ose.state.nm.us	s/		
Purpose:	Pollution Control And / Or Recovery	Geo-Thermal			
Exploratory	Construction Site De-Watering	Other (Describe):			
Monitoring	Mineral De-Watering				
A separate permit will be	required to apply water to beneficial use.				
Temporary Request - Requested Start Date: Requested End Date:					
Plugging Plan of Operations Submitted?					
			7818 RC		
1. APPLICANT(S)					
Name: Targa Respource	es, Inc.	Name:			
Contact or Agent: Christina Higginbotham	check here if Agent	Contact or Agent:	check here if Agent		
Mailing Address: 811 Lou	uisiana, Suite 2100	Mailing Address:			
City: Houston		City:			
State: TX	Zip Code: 77002	State:	Zip Code:		
Phone: (281) 620-7835 Phone (Work): (713) 584-	-1396	Phone: Phone (Work):	Home Cell		
E-mail (optional): chiggin	botham@targaresources.com	E-mail (optional):			

FOR OSE INTERNAL USE	Application for Permit, Form wr-07, Rev 4/12/12
File Number:	Trn Number:
Trans Description (optional)	
Sub-Basin:	
PCW/LOG Due Date:	

File No.

Page 1 of 3

2. WELL(S) Describe the well(s) applicable to this application.

(Lat/Long - WGS84).			itate Plane (NAD 83), UTM (NAD 83), <u>or</u> Latitu a PLSS location in addition to above.	de/Longitude
NM State Plane (NAD83) NM West Zone NM East Zone NM East Zone NM Central Zone	(Feet)	JTM (NAD83) (Mete]Zone 12N		o the nearest
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves, Section, Township, - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name	<i>Range)</i> OR
TMW-1	103°34'17.06''w	33°21'13.06''n	°21'13.06''n SW/4, SW4 S24 T11S R33E	
TMW-2	103° 34' 24.0909"w	33° 20' 47.3733"n	SW/4 SW4 S24 T11S R33E	V.D
TMW-3	103° 34′ 24.0792″ w	33° 20′ 43.5942"n	SW/4 SW4 S24 T11S R33E	ROS.
				Ū.
				TEXICO
			n WR-08 (Attachment 1 – POD Descriptions) If yes, how many	V III
Other description relating well to common landmarks, streets, or other:				
Well is on land owned by: Ric	ky Pierce			
Well Information: NOTE: If n If yes, how many	nore than one (1) we	Il needs to be des	cribed, provide attachment. Attached?	Yes 🗌 No
Approximate depth of well (fee	SS84). well) and District VII (Cimarron) customers, provide a PLSS location in addition to above. lane (NAD83) (Feet) UTM (NAD83) (Meters) Zone Zone 12N Zone Zone 13N (if known): X or Easting or Longitude: Y or Northing Y or Northing (if known): X or Easting or Longitude: Y or Northing -Public Land Survey System (PLSS) ((if known): X or Easting or Longitude: 103*34'17.06"w 33*21'13.06"n SW/4, SW4 S24 T11S R33E -Land Carna Name 103* 34' 24.0999"w 33* 20' 47.3733"n SW/4 SW4 S24 T11S R33E -Land Survey Map & Tact; OR 103* 34' 24.0792"w 33* 20' 43.5942"n SW/4 SW4 S24 T11S R33E			
Driller Name: Layne Scarbor	ough		Driller License Number: WD-1188	

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

Wells will be used to delineate and monitor groundwater contamination for up to 2 years.

FOR OSE INTERNAL USE

Application for Perm t, Form wr-07

File Number:

Trn Number:

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application:

Exploratory: Include a description of any proposed pump test, if applicable. Monitoring: Include the reason for the monitoring well, and, The duration of the planned monitoring.	Pollution Control and/or Recovery: Include a plan for pollution control/recovery, that includes the following: A description of the need for the pollution control or recovery operation. The estimated maximum period of time for completion of the operation. The annual diversion amount. The annual consumptive use amount. The maximum amount of water to be diverted and injected for the duration of the operation. The method and place of discharge. The method of measurement of water produced and discharged. The source of water to be injected. The method of measurement of water injected. The characteristics of the aquifer. The method of determining the resulting annual consumptive use of water and depletion from any related stream system. Proof of any permit required from the	Construction De-Watering: Include a description of the proposed dewatering operation, The estimated duration of the operation, The maximum amount of water to be diverted, A description of the need for the dewatering operation, and, A description of how the diverted water will be disposed of. Geo-Thermal: Include a description of the geothermal heat exchange project, The amount of water to be diverted and re-injected for the project, The time frame for constructing the geothermal heat exchange project, and, The duration of the project.	Mine De-Watering:	mine od of time be diverted. stics of the er to be peration. of water aquifer. rea of harge. n surface ater rights t. employed to
	New Mexico Environment Department.	Preliminary surveys, design data, and additional	underground water rights.	rivers,
	applicant is not the owner of the land on	information shall be included to	springs, and wetlands within the	area of
	which the pollution plume control or recovery well is to be located.	provide all essential facts relating to the request.	hydrologic effect.	(D
	receively well is to be located.	relating to the request.	2000 2000 2000	205
	AC	KNOWLEDGEMENT	Vol.	C
I. We (name of a	applicant(s)), Christina Higginbotham		2°	
		int Name(s)	L.	-
affirm that the fo	pregoing statements are true to the best of ((my, our) knowledge and belief.	1.2	
Clit	theight			EXIC
Applicant Signat	lure	Applicant Signature		OC
	ACTION	OF THE STATE ENGINEER		
		This application is:		
	approved		denied	
	ot exercised to the detriment of any others rimental to the public welfare and further su	having existing rights, and is not o	ontrary to the conservation of wate	er in New

 Witness my hand and seal this ______day of ______20 ____, for the State Engineer, ______.

 ________.State Engineer

 By: ________.State Engineer

 Signature
 Print

 Title: _______Print

 FOR OSE INTERNAL USE
 Application for Permit, Form wr-07

 File Number:
 Trn Number:

April 10, 2018

Office of the New Mexico State Engineer 1900 W 2nd Street Roswell, NM 88201

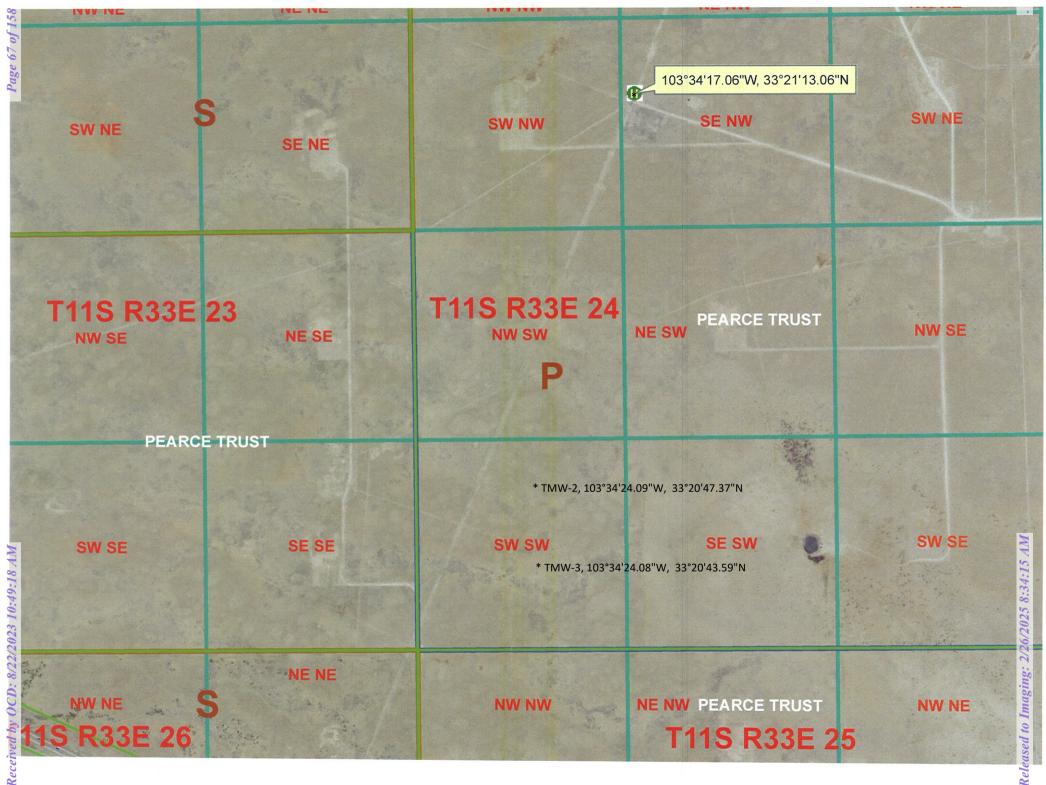
ATT: Monitoring Well Permit Application

Dear NMOSE,

Larson & Associates, Inc. (LIA), on behalf of Targa Resources, submits the enclosed application and fee (\$5.00) for monitoring well. Please contact Ms. Christina Higginbotham with Targa at (713) 584-1396 or chigginbotham@targaresources.com or me at (432) 687-0901, if you have questions.

Sincerely,

Larson & Associates, Inc.


Mark J. Larson, P.G. President/Sr. Hydrogeologist

Encl.

cc: Christina Higginbotham

2010	RO
lou'	
Ū	
111	
• •	$\geq =$
04	SR

507 North Marienfeld, Suite 205 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

Locator Tool Report

General Information:

Application ID:30 Date: 04-19-2018

Time: 09:19:09

WR File Number: L Purpose: PLACE OF USE

Applicant First Name: TARGA RESOURCES Applicant Last Name: MONITOR WELL APPLICATION

> GW Basin: LEA COUNTY County: LEA

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

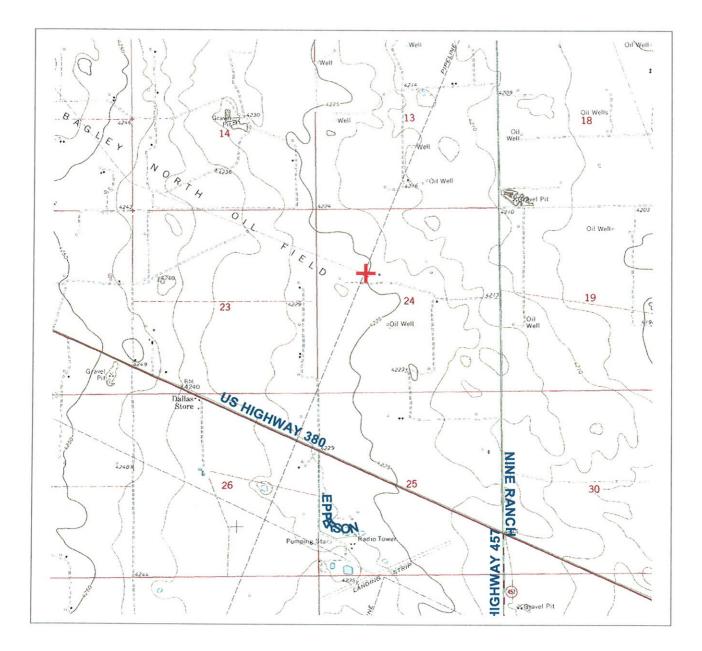
SW 1/4 of NW 1/4 of SE 1/4 of NW 1/4 of Section 24, Township 11S, Range 33E.

Coordinate System Details:

Geographic Coordinates:

Latitude: 33 Degrees 21 Minutes 13.1 Seconds N Longitude: 103 Degrees 34 Minutes 17.1 Seconds W

Universal Transverse Mercator Zone: 13N

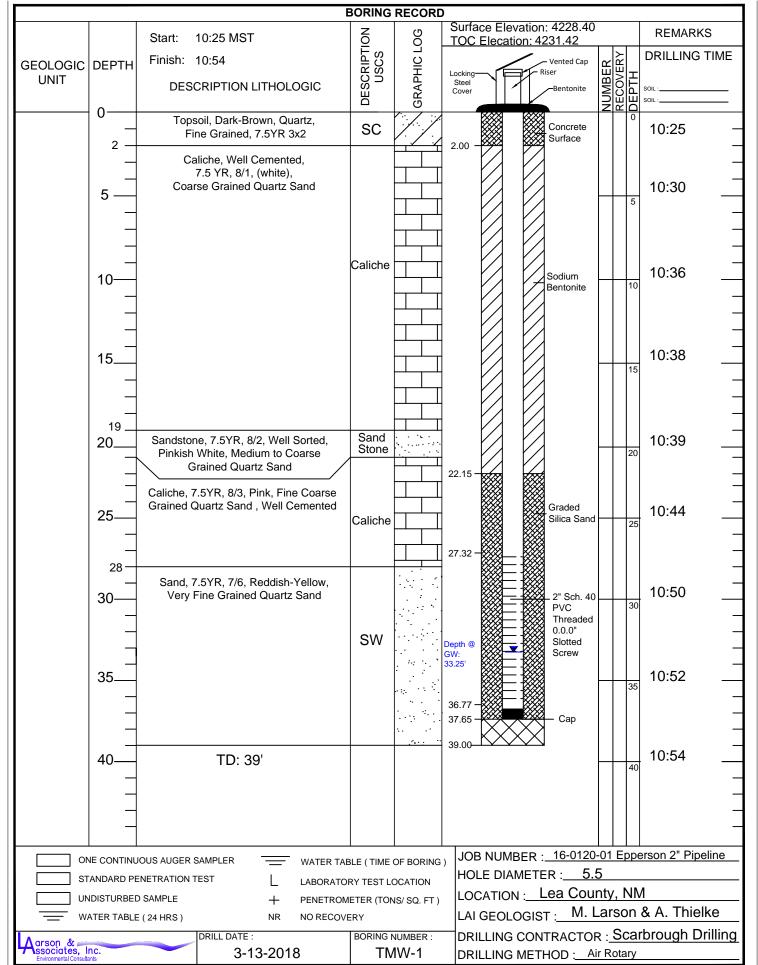

NAD 1983(92) (Meters)	N: 3,691,402	E: 632,924
NAD 1983(92) (Survey Feet)	N: 12,110,876	E: 2,076,518
NAD 1927 (Meters)	N: 3,691,199	E: 632,974
NAD 1927 (Survey Feet)	N: 12,110,208	E: 2,076,684

State Plane Coordinate System Zone: New Mexico East

NAD 1983(92) (Meters)	N: 261,229	E: 235,914
NAD 1983(92) (Survey Feet)	N: 857,050	E: 773,993
NAD 1927 (Meters)	N: 261,209	E: 223,363
NAD 1927 (Survey Feet)	N: 856,984	E: 732,817

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report


WR File Number: L Se	cale: 1:33,169		
Northing/Easting: UTM83(92) (Meter)	: N: 3,691,402	E: 632,924	
Northing/Easting: SPCS83(92) (Feet)	: N: 857,050	E: 773,993	
GW Basin: Lea County			
Dana 0 st 0		Drive Datas 04/40/0040	

Page 2 of 2

Print Date: 04/19/2018

Appendix D

Geologic Logs and Well Completion Records

	r			RECORD		
		Start: 10:15 MST	DESCRIPTION USCS	8	Surface Elevation: 4226.78 TOC Elecation: 4227.13	REMARKS
GEOLOGIC	DEPTH	Finish: 10:57 MST	IPTI SO	GRAPHIC LOG		BACKGROUND
UNIT			U SCR	E I	Locking Steel	
•••••		DESCRIPTION LITHOLOGIC	DES	RA	Locking Steel Cover Bentonite	SOIL :
	0	Silty Clay EVD 2/2 Tanaail				 0.00 ppm
	-	Silty Clay, 5YR, 3/2, Topsoil Dark Reddish Brown,	CL			0.00 ppm
	-	Dark Reduisit Brown,				
	-					
	5	Caliche, 5YR, 8/1, Well				0.00 ppm
	5	Cemented, Sub-angular Clas Inclusions, White	۱			
					Bentonite	
	_					
	10—	5YR, 7/2, Loosely Cemented,		$\left \frac{1}{1} + \frac{1}{1} \right $		0.00 ppm _
		Pinkish Aray				
	$- $					
	$- $			╟╌╌┤	13.47	
		White, Well Cemented, 5YR,	Caliaha			0.00 ppm
	15	8/1	Caliche		15.47	
	-					
					Graded Silica	
	20				Sand	0.00 ppm
	_					
	_					
	_			$\left \frac{1}{1} + \frac{1}{1} \right $		0.00 mm
	25				2" Sch. 40	0.00 ppm _
	_	Sand, 5YR, 7/4, Very Fine,			Threaded 0.0.0"	
	Quartz			Slotted		
	-				Screw	
	30		sw		29.76 Water	0.00 ppm
			_		23.70 Level, 7/18/19	
Initial Water						
Level : 33.5'		Subangular Lithics, 0.5mm -		····		
_		7mm in Diameter		L'AL		
	35			K A	35.1 -	0.00 ppm _
	4				35.78Cap	
	$- $	TD: 36'				
	$- $					
	$- $					
					JOB NUMBER : Targa/ 16-C	120-01
				OF BORING	HOLE DIAMETER : 5.5	
			ORY TEST L		LOCATION : Epperson 16	- Tatum, NM
	ATER TABLE	1	OMETER (TO OVERY	190/ SQ. FI)	LAI GEOLOGIST : R. Ower	
		DRILL DATE :		NUMBER :	DRILLING CONTRACTOR :	SDI
arson & 🚎 ssociates, li		07-16-2019		ЛW-2	DRILLING METHOD : Air Rota	

	I			RECORD		
		Start: 12:06 MST	DESCRIPTION USCS	8	Surface Elevation: 4226.55 TOC Elecation: 4226.14	REMARKS
GEOLOGIC	рерти	Finish: 12:24 MST	LTI SS	C		➢ BACKGROUND
UNIT	DEFIN		U S C R	H	Locking Riser	
		DESCRIPTION LITHOLOGIC	DES	GRAPHIC LOG	Cover Bentonite	
	0	Cilty Clay EVD 2/2 Tangai				<u>∞ </u>
	-	Silty Clay, 5YR, 3/2, Topsoi Dark Reddish Brown,	CL			
	-	Dark Reddish Brown,				
	+				Bentonite	
		Caliche, 5YR, 8/1, Well	a t			0.00 ppm
	5—	Cemented, Sub-angular Cla Inclusions, White	151			
	_					
	10—	5YR, 7/2, Pinkish Gray				0.00 ppm _
	_			$\left \begin{array}{c} \downarrow \\ \downarrow $		
	_	5YR, 8/1, White, Well			13.82	0.00 ppm
	15	Cemented	Caliche			
	-				15.82	
	_				Graded	
					Silica Sand	
	20					0.00 ppm
	20					
	_					
	_					
	_				2" Sch. 40 PVC	
	25				Threaded 0.0.0"	0.00 ppm _
	_	Sand, 5YR, 7/4, Very Fine,			Slotted	
	_	Quartz, Pink				
	_					
	30		sw		29.62 Water	0.00 ppm
	30				23.02 Level, 7/18/19	
Initial Water						
Level : 33.6'		Subangular Lithics,		····		
		Inclusions 0.5mm - 7mm in		y y		
	35	Diameter		R X	35.14	0.00 ppm _
	-			52	35.83 Cap	
	_	TD: 36'				
	$- $					
	$- $					
					JOB NUMBER : Targa/ 16	 6-0120-01
			R TABLE (TIME		HOLE DIAMETER : 5.5	
		_	RATORY TEST L		LOCATION : Epperson 1	16" - Tatum, NM
	IDISTURBED ATER TABLE		FROMETER (TO	NS/ SQ. FT)	LAI GEOLOGIST :R. Ow	
		DRILL DATE :		NUMBER :	DRILLING CONTRACTOR :	
Aarson & J ssociates, II			DOKING	INUMBER :	UNILLING CONTRACTOR :_	

Appendix E

Interek Laboratory Report

Detailed Hydrocarbon Analysis Summary Report -	Report Date: 7/26/2019 2:28:46 PM				
RawFile: C:\Chem32\2\DATA\2019-07-23 2019-07-23 15-52-12\EPPERSON 16.D\EPPERSON 16.CDF	Acquired: 07/24/19 00	:37:00			
Sample: Epperson 16" Analyzed: 7/26/2019 2:28:46 PM					
Processed 159 Peaks					
Reference File: C:\Dragon Software\Dragon DHA\References\ITM_6008\04-26-2019\ITM_6008_REF.DHA	L .				
Location: DEFAULT	Yield: 84.16				
	Int Std: MEK				
	Int Std Amt: 0.15				
	Sample Wt: 5.01	Sample Den: 0.75			

		SU	SUMMARY REPORT			
<u>G</u>	roup Type	<u>Total(Mass%)</u>	<u>Total(V</u>	<u>′ol%)</u>	<u>Total(Mol%)</u>	
I	Paraffins:	18.69	20.59		18.73	
I-	Paraffins:	24.16	26.30		22.79	
	Olefins:	1.64	1.79		1.36	
Nap	hthenes:	33.92	33.31		34.26	
A	romatics:	4.94	4.29		5.05	
То	tal C15+:	0.00	0.00		0.00	
Total U	nknowns:	**	**		**	
**	* 0.30% Unkn	owns were normalized i	into Iso-Paraffins	, Aromat	ics, Napthenes a	
					•	
Oxygenates:						
Total:		0.82(Mass%)	0.82(Vol%)			
Total Oxygen C	Content:	0.13(Mass%)				
Multisubstituted Aromatics:		1.62(Mass%)	1.41(Vol%)			
Average Molecular Weight: 9	7.50					
Relative Density: 0.70						
Reid Vapor Pressure @ 100F	- : 0.39psi - 2.	72kPa				
Calculated Octane Number: 6	61.4					
Motor Octane Number (Jenki	ns Calculatior	ר): 58.4				
	IBP	T10	T50	T90	FBP	
BP by Mass (Deg F)	120.65	161.24	242 12	T00	EBD	

	IBP	110	150	190	FBP
BP by Mass (Deg F)	120.65	161.24	242.13	Т90	FBP
BP by Vol (Deg F)	121.51	161.24	242.13	T90	FBP

Percent Carbon: 85.14	Percent Hydrogen: 14.73

```
Bromine Number (Calc): 0.53
```

	FORMULA RESULTS:
Formula Name	Result
Methane	0.00
Ethane	0.00
Propane	0.00
C4's	0.00
C5 Iso	0.09
C5 Paraffins	0.29
ITM_6008	0.47

Detailed Hydrocarbon Analysis Detail Report -	Report Date: 7/26/2019 2:28:46 PM
RawFile: C:\Chem32\2\DATA\2019-07-23 2019-07-23 15-52-12\EPPERSON 16.D\EPPE	ERSON 16.CDF Acquired: 07/24/19 00:37:00
Sample: Epperson 16"	Analyzed: 7/26/2019 2:28:46 PM
Processed 159 Peaks	
Reference File: C:\Dragon Software\Dragon DHA\References\ITM_6008\04-26-2019\ITM	/_6008_REF.DHA
Comments:	Yield: 84.10%
comments.	Int Std: MEK
	Int Std Amt: 0.1537
	Sample Wt: 5.0063 Sample Den: 0.75

Totals by Group Type & Carbon Number (in Mass Percent)

	Paraffins 199	I-Paraffins	<u>Olefins</u>	Naphthenes	Aromatics	<u>Unknowns</u>	<u>Total</u>
C1	0.00	0.00	0.00	0.00	0.00	**	0.00
C2	0.00	0.00	0.00	0.00	0.00	**	0.00
C3	0.00	0.00	0.00	0.00	0.00	**	0.00
C4	0.00	0.00	0.00	0.00	0.00	**	0.00
C5	0.29	0.09	0.00	0.11	0.00	**	0.50
C6	4.69	3.74	0.01	6.94	0.43	**	15.81
C7	7.62	7.48	0.15	15.21	2.60	**	33.05
C8	4.12	7.78	0.15	8.04	0.49	**	20.58
C9	1.37	3.41	1.32	2.12	1.31	**	9.67
C10	0.59	1.65	0.01	1.46	0.12	**	3.99
C11	0.00	0.00	0.00	0.03	0.00	**	0.03
C12	0.00	0.00	0.00	0.00	0.00	**	0.00
C13	0.00	0.00	0.00	0.00	0.00	**	0.00
C14	0.00	0.00	0.00	0.00	0.00	**	0.00
Total:	18.69	24.16	1.64	33.92	4.94	**	83.34
	Oxygenates	0.82		Total C15+:	0.00		
	Total Unknow	ns: **		Grand Total:	84.16		
	** 0.30	% Unknowns w	ere normalized	d into Iso-Paraffins	s, Aromatics, Nap	othenes and Olefins	

Totals by Group Type & Carbon Number (in Volume Percent)

	Paraffins	I-Paraffins	<u>Olefins</u>	Naphthenes	Aromatics	<u>Unknowns</u>	<u>Total</u>
C1	0.00	0.00	0.00	0.00	0.00	**	0.00
C2	0.00	0.00	0.00	0.00	0.00	**	0.00
C3	0.00	0.00	0.00	0.00	0.00	**	0.00
C4	0.00	0.00	0.00	0.00	0.00	**	0.00
C5	0.35	0.11	0.00	0.11	0.00	**	0.58
C6	5.36	4.29	0.01	6.83	0.37	**	16.85
C7	8.40	8.25	0.16	15.04	2.26	**	34.12
C8	4.42	8.36	0.16	7.86	0.42	**	21.22
C9	1.44	3.58	1.46	2.04	1.14	**	9.80
C10	0.61	1.70	0.01	1.40	0.10	**	4.01
C11	0.00	0.00	0.00	0.02	0.00	**	0.02
C12	0.00	0.00	0.00	0.00	0.00	**	0.00
C13	0.00	0.00	0.00	0.00	0.00	**	0.00
C14	0.00	0.00	0.00	0.00	0.00	**	0.00
Total:	20.59	26.30	1.79	33.31	4.29	**	86.28
	Oxygenates	0.82		Total C15+:	0.00		
	Total Unknov	vns: **		Grand Total:	87.10		
	** 0.32	2% Unknowns we	ere normalized	d into Iso-Paraffins	, Aromatics, Na	othenes and Olefins	

Detailed Hydrocarbon Analysis Detail Report -	Report Date: 7/26/2019 2:28:46 PM
RawFile: C:\Chem32\2\DATA\2019-07-23 2019-07-23 15-52-12\EPPERSON 16.D\EPPERSON 1	16.CDF Acquired: 07/24/19 00:37:00
Sample: Epperson 16"	Analyzed: 7/26/2019 2:28:46 PM
Processed 159 Peaks	
Reference File: C:\Dragon Software\Dragon DHA\References\ITM_6008\04-26-2019\ITM_6008_F	REF.DHA
Comments:	Yield: 84.10%
Sonnondo.	Int Std: MEK
	Int Std Amt: 0.1537
	Sample Wt: 5.0063 Sample Den: 0.75

Totals by Group Type & Carbon Number (in Mol Percent)

	Paraffins	I-Paraffins	<u>Olefins</u>	Naphthenes	Aromatics	<u>Unknowns</u>	<u>Total</u>
C1	0.00	0.00	0.00	0.00	0.00	**	0.00
C2	0.00	0.00	0.00	0.00	0.00	**	0.00
C3	0.00	0.00	0.00	0.00	0.00	**	0.00
C4	0.00	0.00	0.00	0.00	0.00	**	0.00
C5	0.41	0.13	0.00	0.16	0.00	**	0.70
C6	5.50	4.39	0.01	8.33	0.55	**	18.77
C7	7.68	7.53	0.15	15.64	2.85	**	33.85
C8	3.64	6.88	0.13	7.24	0.46	**	18.35
C9	1.08	2.69	1.06	1.70	1.11	**	7.76
C10	0.42	1.17	0.01	1.17	0.09	**	2.98
C11	0.00	0.00	0.00	0.02	0.00	**	0.02
C12	0.00	0.00	0.00	0.00	0.00	**	0.00
C13	0.00	0.00	0.00	0.00	0.00	**	0.00
C14	0.00	0.00	0.00	0.00	0.00	**	0.00
Total:	18.73	22.79	1.36	34.26	5.05	**	82.18
	Oxygenates	0.81		Total C15+:	0.00		
	Total Unknow	vns: **		Grand Total:	82.99		
	** • •						1

** 0.24% Unknowns were normalized into Iso-Paraffins, Aromatics, Napthenes and Olefins

Detailed Hydrocarbon Analysis Detail Report -							Report Date: 7/26/2019 2:28:46 PM		
	RawFile: C:\Chem32\2\DATA\2019-07-23 2019-07-23 15-52-12\EPPERSON 16.D\EPPERSON 16.CDF Sample: Epperson 16"							37:00	
Sample: Ep Processed						Analyze	ed: 7/26/2019 2	28:46 PM	
		on Softwa	re\Dragon DHA\References\ITM_6008	\04-26-2019\IT	M 6008 REF.D	НА			
Comments:	-					Yield: 8	4.10%		
						Int Std	: MEK		
						Int Std	Amt: 0.15		
Hold						Sample	e Wt: 5.01	Sample Den: 0.75	
			Components Listed	in Chroma	tographic C	rder		Page: 4	
<u>Minutes</u>	Index	Group	<u>Component</u>	Mass %	Volume %	<u>Mol %</u>	<u>BP(F)</u>	BP(C)	
4.045	<u>397.970</u>	P4	n-butane	0.00	0.00	0.00	<u>31.100</u>	-0.500	
5.324	474.590	I5	i-pentane	0.09	0.11	0.13	82.112	27.840	
5.976	498.700	P5	n-pentane	0.29	0.35	0.41	96.908	36.060	
7.019	537.630	16	2,2-dimethylbutane	0.03	0.04	0.04	121.514	49.730	
7.973	565.620	N5	cyclopentane	0.00	0.11	0.16	120.650	49.250	
8.054	567.750	16	2,3-dimethylbutane	0.24	0.27	0.28	136.364	57.980	
8.228	572.210	16	2-methylpentane	1.95	2.25	2.29	140.468	60.260	
8.228	572.210	16	2-methylpentane	1.95	2.25	2.29	140.468	60.260	
8.758	584.930	16	3-methylpentane	1.52	1.73	1.78	145.886	63.270	
9.456	600.000	P6	n-hexane	4.69	5.36	5.50	155.714	68.730	
9.450 9.666	605.440	Р0 Об	t-hexene-2	4.09 0.01	0.01	0.01	154.184	67.880	
10.441	624.200	17			0.18	0.16	174.542	79.190	
10.526	626.120		2,2-dimethylpentane	0.16	2.68	3.19	161.240	79.190	
10.526	630.590	N6	methylcyclopentane	2.66	2.08 0.45	0.41	176.882	80.490	
10.725	635.100	17 17	2,4-dimethylpentane	0.40	0.45	0.41	170.882	80.880	
11.661	650.090		2,2,3-trimethylbutane	0.04	0.04	0.55	176.162	80.090	
11.897	654.670	A6		0.43	0.37	0.55	183.020	83.900	
		07	3-methylhexene-1	0.11					
12.081 12.603	658.170 667.710	N6	cyclohexane	4.28	4.15 3.38	5.14 3.06	177.296 194.090	80.720 90.050	
12.605	668.980	17 N7	2-methylhexane	3.04	1.00	1.03	189.464	87.480	
		N7	1,1-dimethylcyclopentane	1.00				91.000	
12.813		X6	t-amylmethylether	0.82	0.82	0.81	195.800		
12.955	673.840	07	5-methyl-t-hexene-2	0.00	0.00	0.00	190.598	88.110	
13.083	676.020	17	3-methylhexane	3.56	3.91	3.59	197.330	91.850	
13.428	681.780	N7	1c,3-dimethylcyclopentane	1.26	1.28	1.30	195.386	90.770	
13.592	684.450	N7	1t,3-dimethylcyclopentane	1.16	1.17	1.19	197.096	91.720	
13.681	685.860	17	3-ethylpentane	0.28	0.30	0.28	200.246	93.470	
13.758	687.090	N7	1t,2-dimethylcyclopentane	1.94	1.94	1.99	197.366	91.870	
14.602	700.000	P7	n-heptane	7.62	8.40	7.68	209.156	98.420	
14.934	704.600	07	t-heptene-2	0.01	0.01	0.01	208.310	97.950	
15.135	707.310	07	3-ethylpentene-2	0.01	0.01	0.01	204.818	96.010	
15.960	718.050	N7	methylcyclohexane	9.33	9.14	9.59	213.674	100.930	
16.181	720.800	18	2,2-dimethylhexane	0.80	0.87	0.71	224.312	106.840	
16.468	724.320	07	07-[1]	0.01	0.01	0.01	32.000	0.000	
16.871	729.130	N7	ethylcyclopentane	0.52	0.52	0.54	218.246	103.470	
16.978	730.380	18	2,5-dimethylhexane	0.41	0.45	0.37	228.398	109.110	
17.133	732.180	18	2,4-dimethylhexane	0.55	0.59	0.49	228.974	109.430	
17.591	737.390	N8	1c,2t,4-trimethylcyclopentane	0.72	0.71	0.65	242.132	116.740	
17.708	738.690	18	3,3-dimethylhexane	0.14	0.14	0.12	233.546	111.970	

Detailed Hydrocarbon Analysis Detail Report -					Report D	Report Date: 7/26/2019 2:28:46 PM		
Sample: Ep	RawFile: C:\Chem32\2\DATA\2019-07-23 2019-07-23 15-52-12\EPPERSON 16.D\EPPERSON 16.CDF Acquired: 07/24/19 00:37:00 Sample: Epperson 16" Analyzed: 7/26/2019 2:28:46 PM							
Processed		on Softwa	ro) Dragon DHA) Roferongoo) ITM 6009			цл		
Comments:	-	UII SUIIWA	re\Dragon DHA\References\ITM_6008\	04-20-2019\11	WI_0000_REF.D	Yield: 84	.10%	
001111011101						Int Std: I		
						Int Std A		
Hold						Sample	Wt: 5.01	Sample Den: 0.75
			Components Listed	in Chroma	tographic C	Order		Page: 5
Minutes	Index	Group	<u>Component</u>	Mass %	Volume %	Mol %	BP(F)	BP(C)
18.242	744.510	<u>0100p</u> N8	1t,2c,3-trimethylcyclopentane	0.68	0.67	0.61	230.738	<u>110.410</u>
18.492	747.160	18	2,3,4-trimethylpentane	0.08	0.08	0.07	236.246	113.470
18.939	751.810	A7	toluene	2.60	2.26	2.85	231.134	110.630
19.592	758.360	18	2,3-dimethylhexane	0.59	0.63	0.52	240.098	115.610
19.699	759.410	18	2-methyl-3-ethylpentane	0.14	0.15	0.13	240.098	115.610
19.953	761.880	08	08-[1]	0.01	0.01	0.01	32.000	0.000
20.238	764.600	18	2-methylheptane	2.53	2.74	2.24	243.770	117.650
20.392	766.050	18	4-methylheptane	0.83	0.89	0.73	243.878	117.710
20.540	767.430	18	3,4-dimethylhexane	0.14	0.14	0.12	243.914	117.730
20.798	769.810	N8	1c,3-dimethylcyclohexane	0.09	0.09	0.08	246.848	119.360
21.057	772.180	18	3-methylheptane	1.57	1.68	1.39	246.074	118.930
21.159	773.090	N8	1c,2t,3-trimethylcyclopentane	2.23	2.18	2.01	243.500	117.500
21.368	774.960	N8	1t,4-dimethylcyclohexane	0.84	0.83	0.75	246.848	119.360
21.992	780.420	N8	1,1-dimethylcyclohexane	0.29	0.28	0.26	247.190	119.550
22.307	783.100	19	2,2,5-trimethylhexane	0.02	0.02	0.02	255.362	124.090
22.453	784.330	N8	3c-ethylmethylcyclopentane	0.19	0.19	0.17	249.980	121.100
22.715	786.510	N8	3t-ethylmethylcyclopentane	0.16	0.16	0.14	249.980	121.100
22.871	787.800	N8	2t-methylethylcyclopentane	0.33	0.33	0.30	249.980	121.100
23.116	789.810	08	octene-1	0.05	0.05	0.04	256.100	124.500
23.454	792.530	N8	2t-ethylmethylcyclopentane	0.81	0.79	0.73	250.160	121.200
24.211	798.460	N8	1c,2c,3-trimethylcyclopentane	0.01	0.01	0.01	253.400	123.000
24.411	800.000	P8	n-octane	4.12	4.42	3.64	258.224	125.680
25.411	806.890	N8	i-propylcyclopentane	0.09	0.09	0.08	259.574	126.430
26.288	812.700	08	c-octene-2	0.04	0.04	0.03	32.000	0.000
26.726	815.520	08	O8-[2]	0.05	0.05	0.05	32.000	0.000
26.946	816.910	19	2,3,4-trimethylhexane	0.04	0.04	0.03	282.308	139.060
27.317	819.240	N8	N8-[1]	0.05	0.05	0.05	32.000	0.000
27.837	822.430	N8	1c,2-dimethylcyclohexane	0.12	0.12	0.11	265.532	129.740
27.995	823.390	19	2,3,5-trimethylhexane	0.12	0.22	0.16	268.430	131.350
28.243	824.890	19	2,2-dimethylheptane	0.21	0.03	0.02	270.860	132.700
28.724	827.740	N8	ethylcyclohexane	1.40	1.34	1.26	269.222	131.790
28.920	828.890	N9	*1c,3c,5-trimethylcyclohexane	0.02	0.02	0.02	281.174	138.430
20.320	830.090	19	2,2,3-trimethylhexane	0.54	0.57	0.43	271.220	132.900
29.618	832.910	19 19	4,4-dimethylheptane	0.54 0.52	0.55	0.43	271.220	132.900
30.024	835.200	19 N9	1,1,4-trimethylcyclohexane	0.52	0.33	0.41	275.000	135.000
30.276	836.600	19 19	2,5-dimethylheptane	0.11	0.33	0.09	276.800	136.000
30.493	837.800				0.33	0.25	278.636	137.020
		19 10	3,3-&3,5-dimethylheptane	0.11	0.12			
30.843	839.710	19	2,6-dimethylheptane	0.08	0.06	0.06	275.396	135.220

Detailed Hydrocarbon Analysis Detail Report -					Report D	Report Date: 7/26/2019 2:28:46 PM		
Sample: Ep	RawFile: C:\Chem32\2\DATA\2019-07-23 2019-07-23 15-52-12\EPPERSON 16.D\EPPERSON 16.CDF Acquired: 07/24/19 00:37:00 Sample: Epperson 16" Analyzed: 7/26/2019 2:28:46 PM Processed 159 Peaks Processed 159 Peaks							
		on Softwa	re\Dragon DHA\References\ITM_6008\	04-26-2010\IT		НΔ		
Comments:	-	UII SUIIWA		04-20-2019\11	IVI_0000_REF.D	Yield: 84	1.10%	
Commento.						Int Std:		
							Amt: 0.15	
Hold							Wt: 5.01	Sample Den: 0.75
			Components Listed	in Chroma	tographic (rdor		Page: 6
N 4:	lus al a s	0	-					-
<u>Minutes</u> 31.140	<u>Index</u> 841.320	Group	Component	<u>Mass %</u>	<u>Volume %</u> 0.04	<u>Mol %</u> 0.03	<u>BP(F)</u> 295.862	<u>BP(C)</u> 146.590
		N9	1,1,3-trimethylcyclohexane	0.04				
31.893	845.320	09	2,4-dimethylheptene-1	0.03	0.03	0.02	32.000	0.000
32.139	846.590	N10	N10-[1]	0.70	0.68	0.63	32.000	0.000
32.431	848.110	N9	1c,3c,5c-trimethylcyclohexane	0.32	0.31	0.26	32.000	0.000
32.806	850.020	N8	N8-[1]	0.03	0.03	0.03	32.000	0.000
33.265	852.330	19	19-[1]	0.03	0.03	0.02	32.000	0.000
33.892	855.430	O9	2-methyloctene-1	1.09	1.20	0.87	32.000	0.000
34.119	856.540	A8	1,3-dimethylbenzene	0.31	0.27	0.29	282.416	139.120
34.367	857.740	A8	1,4-dimethylbenzene	0.18	0.16	0.17	281.048	138.360
34.367	857.740	A8	1,4-dimethylbenzene	0.18	0.16	0.17	281.048	138.360
34.924	860.400	19	3,4-dimethylheptane	0.04	0.04	0.03	285.080	140.600
35.138	861.410	19	3,4 -dimethylheptane	0.02	0.02	0.02	285.080	140.600
35.491	863.060	19	19-[2]	0.07	0.07	0.06	32.000	0.000
36.245	866.530	19	4-methyloctane	0.30	0.32	0.24	288.392	142.440
36.509	867.740	19	2-methyloctane	0.44	0.46	0.34	289.904	143.280
37.229	870.950	19	4-ethylheptane	0.07	0.08	0.06	288.392	142.440
37.705	873.040	N9	1c,2t,3c-trimethylcyclohexane	0.10	0.10	0.08	304.160	151.200
38.072	874.630	19	3-ethylheptane	0.48	0.50	0.38	289.400	143.000
38.072	874.630	19	3-ethylheptane	0.48	0.50	0.38	289.400	143.000
38.668	877.180	19	3-methyloctane	0.05	0.05	0.04	291.614	144.230
38.907	878.190	N9	1,1,2-trimethylcyclohexane	0.50	0.47	0.40	293.360	145.200
40.516	884.820	N9	N9-[1]	0.46	0.44	0.37	32.000	0.000
40.741	885.730	N9	N9-[2]	0.07	0.07	0.05	32.000	0.000
41.011	886.800		N9-[3]	0.15	0.15	0.12	32.000	0.000
41.705	889.540	19	19-[3]	0.01	0.01	0.01	32.000	0.000
42.079	891.000	O9	nonene-1	0.05	0.05	0.04	274.100	134.500
42.836			N9-[4]	0.02	0.02	0.02	32.000	0.000
43.451	896.220	N9	N9-[5]	0.02	0.02	0.02	32.000	0.000
44.051	898.450	19	19-[4]	0.03	0.03	0.02	32.000	0.000
44.473	900.000		n-nonane	1.37	1.44	1.08	303.476	150.820
44.718	901.970		N9-[6]	0.05	0.05	0.04	32.000	0.000
44.980	904.060	09	t-nonene-3	0.03	0.03	0.04	32.000	0.000
45.984	904.000 911.960		i-propylbenzene	0.04	0.04	0.03	306.338	152.410
46.176	911.900 913.450				0.08	0.08	32.000	0.000
46.666	913.450 917.220	09 N0	c-nonene-2	0.12	0.14 0.09	0.10	32.000 32.000	0.000
			N9-[7]	0.09				
46.841	918.560	N9	i-propylcyclohexane	0.02	0.02	0.02	310.622	154.790
47.166		110	l10-[1]	0.02	0.02	0.01	32.000	0.000
47.326	922.240	110	2,4-dimethyloctane	0.05	0.05	0.04	312.620	155.900

•

Detailed Hydrocarbon Analysis Detail Report -					Report D	Report Date: 7/26/2019 2:28:46 PM		
Sample: Ep	RawFile: C:\Chem32\2\DATA\2019-07-23 2019-07-23 15-52-12\EPPERSON 16.D\EPPERSON 16.CDF Acquired: 07/24/19 00:37:00 Sample: Epperson 16" Analyzed: 7/26/2019 2:28:46 PM							
Processed		o "						
Reference Comments:	-	on Softwa	re\Dragon DHA\References\ITM_6008\04	4-26-2019\11	M_6008_REF.D	HA Yield: 84.	10%	
Comments.						Int Std: N		
						Int Std. M		
Hold						Sample \		Sample Den: 0.75
			A					
			Components Listed in		• •			Page: 7
<u>Minutes</u>	<u>Index</u>	<u>Group</u>	<u>Component</u>	<u>Mass %</u>	Volume %	<u>Mol %</u>	<u>BP(F)</u>	<u>BP(C)</u>
47.630	924.520	l10	2,2-dimethyloctane	0.03	0.04	0.02	314.420	156.900
47.871	926.320	N9	N9-[8]	0.05	0.05	0.04	32.000	0.000
48.112	928.110	N9	N9-[9]	0.04	0.04	0.03	32.000	0.000
48.566	931.460	l10	2,6-dimethyloctane	0.31	0.33	0.22	320.738	160.410
49.047	934.970	l10	2,5-dimethyloctane	0.07	0.08	0.05	317.300	158.500
49.374	937.340	N9	n-butylcyclopentane	0.05	0.04	0.04	313.916	156.620
49.737	939.940	N10	N10-[1]	0.11	0.10	0.08	32.000	0.000
50.395	944.620	l10	3,3-dimethyloctane	0.30	0.31	0.21	322.160	161.200
50.591	945.990	N10	N10-[2]	0.04	0.04	0.03	32.000	0.000
50.767	947.230	A9	n-propylbenzene	0.13	0.11	0.11	318.632	159.240
51.110	949.620	110	3,6-dimethyloctane	0.05	0.05	0.03	321.440	160.800
51.364	951.380	110	3-methyl-5-ethylheptane	0.13	0.14	0.09	316.760	158.200
51.364	951.380	110	3-methyl-5-ethylheptane	0.13	0.14	0.09	316.760	158.200
51.701	953.700	N10	N10-[3]	0.02	0.02	0.00	32.000	0.000
51.936	955.310	A9	1,3-methylethylbenzene	0.30	0.26	0.25	322.394	161.330
52.185	957.010	A9	1,4-methylethylbenzene	0.30	0.20	0.20	323.618	162.010
52.339	958.050	N10		0.12	0.06	0.05	32.000	0.000
53.020	962.640		N10-[4]		0.00	0.05	328.532	164.740
		A9	1,3,5-trimethylbenzene	0.19				
53.241	964.110	110	2,3-dimethyloctane	0.09	0.09	0.06	327.812	164.340
53.465	965.600	N10	N10-[5]	0.09	0.08	0.06	32.000	0.000
53.906	968.510	110	5-methylnonane	0.02	0.02	0.01	329.180	165.100
54.220	970.560	A9	1,2-methylethylbenzene	0.13	0.11	0.11	329.324	165.180
54.323	971.230	l10	2-methylnonane	0.17	0.18	0.12	332.654	167.030
54.676	973.530	l10	3-ethyloctane	0.14	0.14	0.10	331.700	166.500
54.676	973.530	l10	3-ethyloctane	0.14	0.14	0.10	331.700	166.500
54.676		l10	3-ethyloctane	0.14	0.14	0.10	331.700	166.500
55.265	977.320	N10	N10-[6]	0.04	0.04	0.03	32.000	0.000
55.476	978.660	N10	N10-[7]	0.11	0.11	0.08	32.000	0.000
55.704	980.110	l10	I10-[2]	0.02	0.02	0.01	32.000	0.000
56.143	982.880	A9	1,2,4-trimethylbenzene	0.35	0.30	0.29	336.884	169.380
56.318	983.990	I10	110-[3]	0.10	0.10	0.07	32.000	0.000
56.318	983.990	I10	110-[3]	0.10	0.10	0.07	32.000	0.000
56.633	985.960		i-butylcyclohexane	0.12	0.11	0.08	340.340	171.300
56.862	987.380	110	110-[4]	0.02	0.02	0.02	32.000	0.000
57.046	988.520	110	110-[5]	0.03	0.03	0.02	32.000	0.000
57.306	990.130	O10	decene-1	0.01	0.01	0.01	339.080	170.600
57.700	992.540	N10	1t-methyl-2-n-propylcyclohexane	0.03	0.03	0.02	339.800	171.000
57.849	993.450		i-butylbenzene	0.05	0.04	0.02	343.022	172.790
51.043	333.400	AIU	I-DULYIDEHZEHE	0.05	0.04	0.04	J7J.UZZ	112.130

1011.190 N11

N11-[1]

:37:00
:28:46 PM
Sample Den: 0.75
Page: 8
<u>BP(C)</u>
172.790
0.000
174.150
0.000

0.03

0.02

0.02

32.000

Appendix F

Slug Test Data and Calculations

1RP-4664

Summary of Horizontal Hydraulic Conductivity from Slug Tests

Targa Midstream Services, LLC, Epperson 16" Pipeline Release

Lea County, New Mexico

Test Name	K_r Value (ft/s)	m/s ft per year	Notes	
Epperson Falling Head 1	1.765E-06	5.37972E-07 55.66104		
Epperson Falling Head 2	1.098E-05	3.3467E-06 346.2653		
Epperson Falling Head 3	6.714E-06	2.04643E-06 211.7327		
Epperson Falling Head 4	9.464E-06	2.88463E-06 298.4567		
Epperson Falling Head 5	8.733E-06	2.66182E-06 275.4039		
Epperson Falling Head 6	8.406E-06	2.56215E-06 265.0916		
Epperson Rising Head 1	1.063E-05	3.24002E-06 335.2277		
Epperson Rising Head 2	2.594E-06	7.90651E-07 81.80438		
Epperson Rising Head 3	Missed	Missed Missed		
Epperson Rising Head 4	1.974E-06	6.01675E-07 62.25206		
Epperson Rising Head 5	7.691E-06	2.34422E-06 242.5434		
Epperson Rising Head 6	7.666E-06	2.3366E-06 241.755		
Average Hydraulic Conductivity (ft/s)	6.965E-04			
feet per day:	6.018E+01			
Kd	0.18	Calculated from EPA factors for Ben	izene	
Bulk Porosity of Soil	0.283	back-calculate from bulk density (1.	9 g/cm^3) typical for caliche	
Rf	2.208512367			
ground slope (vertical drop/horizontal distance)	0.003125			
Average Linear velocity (feet per day)	6.645E-01		convert all to yards:	
Diffusivity Coefficient (Benzene-water)	0.0009486	10.2*10^-6 cm^2/s, converted to ft	^2/day Velocity:	0.221508
Number of releasing days (assumption	1500		Diffusivity:	0.000105
Concentration at boundary	0.01			
Time since release (t) (assumption) (days)	1500			
Release Concentration (C_0) (assumption) (ppm)	20			
ξ = (velocity*time/distance) (dimensionless)				
η = (Diffusivity/(velocity*distance) (dimensionless)				
Solution to Function: $C = C_0/2^* (erfc((1-\xi)/(2^* sqrt(\xi^* \eta)))+$	exp(1/n)*erfc((1+{)/(2*sart({*n))))		
£/sqrt({*ŋ)	835.6296776	··		

Report Date: Report User Name: Report Computer Name: Application: Application Version:	4/19/2018 10:27 Larry LARRY-LAPTOP WinSitu.exe 5.6.25.0	7		
Log File Properties File Name Create Date	Epperson Falling H 4/18/2018 11:49		8_11-49-05-859.wsl	
Device Properties Device Site Device Name	Level TROLL 700 Default Site			
Serial Number Firmware Version Hardware Version Device Address		1 L L	0 F	1
Device Comm Cfg Used Memory Used Battery	1920(22 1814(L	8 Even	1
Log Configuration	Log Name Created By Computer Name Application Application Versio Create Date Log Setup Time Zo Notes Size(bytes) Overwrite when fu	4/18/2018 11:36 r Central Daylight	6:53 AM Central Daylig	3ht Time
	Scheduled Start Ti Scheduled Stop Tir Type Max Interval	n Manual Start r No Stop Time True Logarithmi	c nins: 01 secs: 00	
Level Reference Settings At Log Creation	Level Measur Specific Gr		0.999	
Other Log Settings	Pressure Offset:	-0.304317 (PSI)		

Log Notes:

106161 Pressure/Temp 30 PSIC

Depth of Probe:	3.93175 (ft)
Head Pressure:	1.70282 (PSI)
Temperature:	18.3021 (C)

1

Date and Time	Note
	4/18/2018 11:36 Sensor SN: 106161 Factory calibration has expired.: 6/15/2016 8:
	4/18/2018 11:36 Used Battery: 18140% Used Memory: 23% User Name: Larry
	4/18/2018 11:37 Manual Start Command
	4/18/2018 11:48 Used Battery: 0% Used Memory: 23% User Name: Larry
	4/18/2018 11:48 Manual Stop Command
Log Data:	
Record Count	106
Sensors	1

Time Zone: Central Daylight Time

Elapsed Time SN#: 10611 SN#: 10612 SN#:					Sensor: Pres(G)	69ft	Sensor: Pre Sen	sor: Pre
4/18/2018 11:370.0001.92818.1864.4524/18/2018 11:370.2511.83518.2074.2374/18/2018 11:370.8571.74418.2044.0264/18/2018 11:371.0611.73418.2214.0044/18/2018 11:371.2651.73318.2364.0014/18/2018 11:371.6611.73418.2243.9984/18/2018 11:371.66711.7318.2543.9944/18/2018 11:371.6711.7318.2563.9914/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.0791.72718.2633.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.5011.72318.273.9794/18/2018 11:373.0011.72318.2693.9774/18/2018 11:373.5011.72218.2693.9774/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2733.9764/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0011.72218.2753.9724/18/2018 11:374.9131.71918.2443.969			Elapsed Time		SN#: 106161		SN#: 10616 SN#	t: 10616
4/18/2018 11:370.2511.83518.2074.2374/18/2018 11:370.8571.74418.2044.0264/18/2018 11:371.0611.73418.2214.0044/18/2018 11:371.2651.73318.2364.0014/18/2018 11:371.4681.73218.2443.9984/18/2018 11:371.6711.7318.2543.9944/18/2018 11:371.6711.7318.2563.9914/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9774/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.5011.72218.273.9714/18/2018 11:373.5011.72218.273.9714/18/2018 11:373.5011.72218.273.9714/18/2018 11:373.5011.72218.273.9764/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0511.7218.2753.9724/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969	Date and Time		Seconds		Pressure (PSI)		Temperatu Dep	oth (ft)
4/18/2018 11:370.8571.74418.2044.0264/18/2018 11:371.0611.73418.2214.0044/18/2018 11:371.2651.73318.2364.0014/18/2018 11:371.4681.73218.2443.9984/18/2018 11:371.6711.7318.2543.9944/18/2018 11:371.8751.72818.2563.9914/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9774/18/2018 11:373.5011.72218.2693.9774/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.5011.72218.273.9714/18/2018 11:373.7511.7218.2733.9764/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0011.72218.2753.9724/18/2018 11:374.0511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	(0.000		1.928	18.186	4.452
4/18/2018 11:371.0611.73418.2214.0044/18/2018 11:371.2651.73318.2364.0014/18/2018 11:371.4681.73218.2443.9984/18/2018 11:371.6711.7318.2543.9944/18/2018 11:371.8751.72818.2633.9874/18/2018 11:372.0791.72718.2633.9864/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9774/18/2018 11:373.5011.72218.2693.9774/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.7511.7218.2713.9714/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	(0.251		1.835	18.207	4.237
4/18/2018 11:371.2651.73318.2364.0014/18/2018 11:371.4681.73218.2443.9984/18/2018 11:371.6711.7318.2543.9944/18/2018 11:371.8751.72818.2563.9914/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.5011.72318.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.2511.72218.2693.9774/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0011.72218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	(0.857		1.744	18.204	4.026
4/18/2018 11:371.4681.73218.2443.9984/18/2018 11:371.6711.7318.2543.9944/18/2018 11:371.8751.72818.2563.9914/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.0011.72218.2693.9774/18/2018 11:373.5011.72218.273.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0011.72218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	-	1.061		1.734	18.221	4.004
4/18/2018 11:371.6711.7318.2543.9944/18/2018 11:371.8751.72818.2563.9914/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.0011.72218.2693.9774/18/2018 11:373.5011.72218.2733.9714/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0011.72218.2753.9724/18/2018 11:374.0311.71918.2443.969		4/18/2018 11:37	-	1.265		1.733	18.236	4.001
4/18/2018 11:371.8751.72818.2563.9914/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.0011.72218.2693.9774/18/2018 11:373.5011.72218.2693.9774/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.7511.72218.2733.9764/18/2018 11:374.0011.72218.2733.9724/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	2	1.468		1.732	18.244	3.998
4/18/2018 11:372.0791.72718.2633.9874/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.2511.72218.2693.9774/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.5011.72218.2713.9714/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.0511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	-	1.671		1.73	18.254	3.994
4/18/2018 11:372.2821.72618.2683.9864/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.2511.72218.2693.9774/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.7511.7218.2713.9714/18/2018 11:373.7511.7218.2733.9764/18/2018 11:374.0011.72218.2733.9724/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	-	1.875		1.728	18.256	3.991
4/18/2018 11:372.5011.72318.273.9794/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.2511.72218.2693.9774/18/2018 11:373.5011.72218.273.9714/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	-	2.079		1.727	18.263	3.987
4/18/2018 11:372.7511.72418.2713.9824/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.2511.72218.2693.9774/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	2	2.282		1.726	18.268	3.986
4/18/2018 11:373.0011.72318.2693.9794/18/2018 11:373.2511.72218.2693.9774/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	2	2.501		1.723	18.27	3.979
4/18/2018 11:373.2511.72218.2693.9774/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	2	2.751		1.724	18.271	3.982
4/18/2018 11:373.5011.72218.273.9774/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	3	3.001		1.723	18.269	3.979
4/18/2018 11:373.7511.7218.2713.9714/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	3	3.251		1.722	18.269	3.977
4/18/2018 11:374.0011.72218.2733.9764/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	3	3.501		1.722	18.27	3.977
4/18/2018 11:374.2511.7218.2753.9724/18/2018 11:374.9131.71918.2443.969		4/18/2018 11:37	3	3.751		1.72	18.271	3.971
4/18/2018 11:37 4.913 1.719 18.244 3.969		4/18/2018 11:37	2	4.001		1.722	18.273	3.976
		4/18/2018 11:37	2	4.251		1.72	18.275	3.972
4/18/2018 11:37 5.116 1.717 18.258 3.965		4/18/2018 11:37	4	4.913		1.719	18.244	3.969
		4/18/2018 11:37	I.	5.116		1.717	18.258	3.965

4/18/2018 11:37	5.321	1.719	18.27	3.97
4/18/2018 11:37	5.527	1.72	18.272	3.971
4/18/2018 11:37	5.731	1.719	18.346	3.97
4/18/2018 11:37	6.324	1.716	18.327	3.963
4/18/2018 11:37	6.529	1.717	18.319	3.965
4/18/2018 11:37	6.734	1.719	18.316	3.968
4/18/2018 11:37	6.939	1.718	18.313	3.966
4/18/2018 11:37	7.143	1.718	18.312	3.966
4/18/2018 11:37	7.56	1.718	18.298	3.966
4/18/2018 11:37	7.98	1.719	18.281	3.969
4/18/2018 11:37	8.461	1.716	18.265	3.962
4/18/2018 11:37	9	1.715	18.254	3.961
4/18/2018 11:37	9.48	1.717	18.253	3.964
4/18/2018 11:37	10.081	1.716	18.244	3.963
4/18/2018 11:37	10.681	1.716	18.238	3.962
4/18/2018 11:37	11.28	1.717	18.232	3.964
4/18/2018 11:37	11.94	1.717	18.231	3.966
4/18/2018 11:37	12.66	1.713	18.224	3.956
4/18/2018 11:37	13.441	1.716	18.221	3.962
4/18/2018 11:37	14.22	1.717	18.216	3.963
4/18/2018 11:37	15.06	1.716	18.214	3.963
4/18/2018 11:37	15.96	1.717	18.223	3.965
4/18/2018 11:37	16.92	1.715	18.213	3.961
4/18/2018 11:37	17.88	1.716	18.209	3.962
4/18/2018 11:37	18.96	1.717	18.203	3.965
4/18/2018 11:37	20.101	1.717	18.201	3.964
4/18/2018 11:37	21.3	1.718	18.212	3.966
4/18/2018 11:37	22.56	1.716	18.199	3.962
4/18/2018 11:38	24.06	1.717	18.205	3.964
4/18/2018 11:38	25.321	1.717	18.196	3.964
4/18/2018 11:38	26.821	1.717	18.187	3.964
4/18/2018 11:38	28.38	1.714	18.184	3.957
4/18/2018 11:38	30.06	1.717	18.187	3.964
4/18/2018 11:38	31.86	1.716	18.181	3.962
4/18/2018 11:38	33.8	1.717	18.193	3.964
4/18/2018 11:38	35.76	1.717	18.176	3.963
4/18/2018 11:38	37.86	1.716	18.168	3.962
4/18/2018 11:38 4/18/2018 11:38	40.08	1.715	18.17	3.959
	42.48 45	1.714	18.163	3.957
4/18/2018 11:38		1.717	18.164	3.964
4/18/2018 11:38 4/18/2018 11:38	47.64	1.716 1.717	18.158	3.962
4/18/2018 11:38	50.46 52 521		18.26 18 150	3.964
4/18/2018 11:38	53.531 56.64	1.714 1.717	18.159 18.15	3.958 3.966
4/18/2018 11:38	56.64	1.717		3.966
4/18/2018 11:38			18.148	
4/18/2018 11:38	63.6 67.2	1.716 1.716	18.163 18.136	3.962 3.961
4/10/2010 11.30	07.2	1./10	10.120	2.901

4/18/2018 11:38	71.4	1.716	18.132	3.962
4/18/2018 11:38	75.6	1.717	18.13	3.964
4/18/2018 11:38	79.8	1.717	18.124	3.963
4/18/2018 11:39	84.6	1.716	18.122	3.963
4/18/2018 11:39	90	1.717	18.118	3.965
4/18/2018 11:39	94.8	1.718	18.113	3.966
4/18/2018 11:39	100.8	1.717	18.105	3.964
4/18/2018 11:39	106.8	1.717	18.099	3.963
4/18/2018 11:39	112.8	1.716	18.093	3.962
4/18/2018 11:39	119.4	1.716	18.097	3.963
4/18/2018 11:39	126.6	1.717	18.082	3.965
4/18/2018 11:39	134.4	1.716	18.084	3.963
4/18/2018 11:39	142.2	1.717	18.071	3.965
4/18/2018 11:40	150.6	1.718	18.066	3.966
4/18/2018 11:40	159.6	1.717	18.066	3.965
4/18/2018 11:40	169.2	1.717	18.064	3.965
4/18/2018 11:40	178.815	1.719	18.063	3.968
4/18/2018 11:40	189.6	1.717	18.049	3.964
4/18/2018 11:40	201	1.718	18.039	3.966
4/18/2018 11:41	213	1.716	18.029	3.962
4/18/2018 11:41	225.6	1.716	18.026	3.963
4/18/2018 11:41	238.822	1.719	18.037	3.97
4/18/2018 11:41	253.2	1.717	18.014	3.964
4/18/2018 11:42	268.2	1.717	18.01	3.965
4/18/2018 11:42	283.821	1.717	18.021	3.964
4/18/2018 11:42	300.6	1.715	18.002	3.96
4/18/2018 11:42	318.6	1.718	18.021	3.966
4/18/2018 11:43	337.2	1.717	17.989	3.965
4/18/2018 11:43	357.6	1.717	17.985	3.964
4/18/2018 11:43	378.6	1.716	18.007	3.962
4/18/2018 11:44	400.8	1.718	17.979	3.967
4/18/2018 11:44	424.8	1.718	17.978	3.967
4/18/2018 11:45	450	1.715	17.972	3.961
4/18/2018 11:45	476.4	1.717	17.966	3.966
4/18/2018 11:46	504.6	1.717	17.969	3.964
4/18/2018 11:46	534.6	1.717	17.966	3.964
4/18/2018 11:47	566.4	1.718	17.959	3.968
4/18/2018 11:47	600	1.718	17.956	3.966
4/18/2018 11:48	636	1.719	17.952	3.968

00:03 PM

3 (21m/69ft)

s(G) 69ft

1

_ Depth (cm)	Elapsed Tin Depth (cm)
135.697	0 135.697
129.1438	0.251 129.1438
122.7125	0.857 122.7125
122.0419	1.061 122.0419
121.9505	1.265 121.9505
121.859	1.468 121.859
121.7371	1.671 121.7371
121.6457	1.875 121.6457
121.5238	2.079 121.5238
121.4933	2.282 121.4933
121.2799	2.501 121.2799
121.3714	2.751 121.3714
121.2799	3.001 121.2799
121.219	3.251 121.219
121.219	3.501 121.219
121.0361	3.751 121.0361
121.1885	4.001 121.1885
121.0666	4.251 121.0666
120.9751	4.913 120.9751
120.8532	5.116 120.8532

MIN	MAX	Range
120.5789	135.697	15.11808

121.0056	5.321	121.0056
121.0361	5.527	121.0361
121.0056	5.731	
120.7922	6.324	
120.8532	6.529	120.8532
120.9446	6.734	120.9446
120.8837	6.939	120.8837
120.8837	7.143	
120.8837	7.56	120.8837
120.9751	7.98	120.9751
120.7618	8.461	120.7618
120.7313	9	120.7313
120.8227	9.48	120.8227
120.7922	10.081	
120.7618	10.681	120.7618
120.8227	11.28	120.8227
120.8837	11.94	120.8837
120.5789	12.66	120.5789
120.7618	13.441	
120.7922	14.22	120.7922
120.7922	15.06	120.7922
120.8532	15.96	120.8532
120.7313	16.92	120.7313
120.7618	17.88	
120.8532	18.96	120.8532
120.8227	20.101	120.8227
120.8837	21.3	120.8837
120.7618	22.56	120.7618
120.8227	24.06	120.8227
120.8227	25.321	
120.8227	26.821	120.8227
120.6094	28.38	120.6094
120.8227	30.06	120.8227
120.7618	31.86	120.7618
120.8227	33.8	120.8227
120.7922	35.76	
120.7618	37.86	
120.6703	40.08	120.6703
120.6094	42.48	120.6094
120.8227	45	120.8227
120.7618	47.64	120.7618
120.8227	50.46	120.8227
120.6398	53.531	120.6398
120.8837	56.64	120.8837
120.8837	60	120.8837
120.7618	63.6	120.7618
120.7313	67.2	
	07.2	

120.7618	71.4	120.7618
120.8227	75.6	120.8227
120.7922	79.8	120.7922
120.7922	84.6	120.7922
120.8532	90	120.8532
120.8837	94.8	120.8837
120.8227	100.8	120.8227
120.7922	106.8	120.7922
120.7618	112.8	120.7618
120.7922	119.4	120.7922
120.8532	126.6	120.8532
120.7922	134.4	120.7922
120.8532	142.2	120.8532
120.8837	150.6	120.8837
120.8532	159.6	120.8532
120.8532	169.2	120.8532
120.9446	178.815	120.9446
120.8227	189.6	120.8227
120.8837	201	120.8837
120.7618	213	120.7618
120.7922	225.6	120.7922
121.0056	238.822	121.0056
120.8227	253.2	120.8227
120.8532	268.2	120.8532
120.8227	283.821	120.8227
120.7008	300.6	120.7008
120.8837	318.6	120.8837
120.8532	337.2	120.8532
120.8227	357.6	120.8227
120.7618	378.6	120.7618
120.9142	400.8	120.9142
120.9142	424.8	120.9142
120.7313	450	120.7313
120.8837	476.4	120.8837
120.8227	504.6	120.8227
120.8227	534.6	120.8227
120.9446	566.4	120.9446
120.8837	600	120.8837
120.9446	636	120.9446

Report [###### Report Larry Report (LARRY-LAPTOP Applicat WinSitu.exe Applicat 5.6.25.0

Log File Properties File Nar Epperson Rising Head 1_2018-04-18_12-03-06-640.wsl Create E ######

Device Properties Device Level TROLL 700 Site **Default Site** Device N Serial Ni 106161 Firmwar 2.04 Hardwai 1 Device A 1 Device (19200 8 Even 1 (Modbus-RTU) Used Me 23 Used Ba 0

Log Configuration Log Nan Epperson Rising Head 1 Created Larry Comput LARRY-LAPTOP Applicat WinSitu.exe Applicat 5.6.25.0 Create E 4/18/2018 11:51:12 AM Central Daylight Time Log Setu Central Daylight Time Notes Si 4096 Overwri Disabled Schedul: Manual Start Schedul: No Stop Time Type True Logarithmic Max Inte Days: 0 hrs: 00 mins: 01 secs: 00

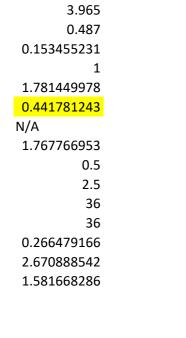
Level Reference Settings At Log Creation Lev Depth : 0.999

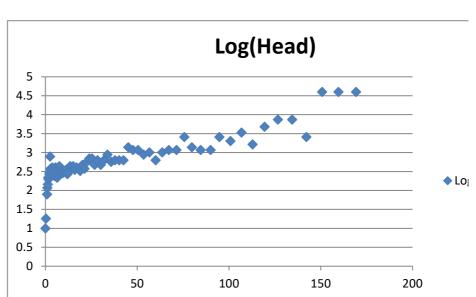
Other Log Settings Pressure -0.304317 (PSI)

Depth o 3.95894 (ft) Head Pr 1.71459 (PSI)	
Temper: 17.9674 (C)	F50
	Fixed Values
	Aquifer Level (ft)
	H*_0 Expected Magnitude of Displacement (ft)
Log Notes:	y intercept of log(head) vs time graph
Date ani Note	H^+_0 Apparent Magnitude of Displacement (ft)
###### Sensor SN: 106161 Factory calibr	rar_nc (in)
###### Used Battery: 0% Used Memory:	2r_c (in)
###### Manual Start Command	K_r (in/s)
###### Used Battery: 0% Used Memory:	2 R_e (Effective Radius Parameter, ft)
###### Manual Stop Command	r*_w (r_w*(K_z/K_r)^0.5
	K_z/K_r
	r_w (Effective Radius of Well Screen, in)
Log Data:	b (Screen Length, in)
Record (105	d (z position of end of screen closest to water table, in)
	T_0 (Basic Time Lag, s) - Where normalized head = 0.386
Sensors 1	ln(R_e/r*_w) Estimate (Fn(d,b,r*_w,C)
	C (Empirical Coefficient, b, r*_w)
1 106161 Pressure/Temp	30 PSIG (21m/69ft)

Time Zone: Central Daylight Time

	Sensor:	Sensor:	Sensor: Pres(G) 69ft	
Elapsed	SN#: 10(SN#: 10(SN#: 106161	
in Seconds	Pressure	Tempera	Depth (f Head (ft)	


Date an Seconds Pressure Temper: Depth (f Head (ft)					
######	0	1.621	17.928	3.742	0.223
######	0.251	1.651	17.952	3.813	0.152
######	0.858	1.692	17.953	3.907	0.058
######	1.063	1.698	17.968	3.92	0.045
######	1.266	1.7	17.982	3.926	0.039
######	1.471	1.704	17.992	3.935	0.03
######	1.674	1.703	17.998	3.933	0.032
######	1.878	1.704	18.004	3.935	0.03
######	2.082	1.706	18.01	3.939	0.026
######	2.285	1.707	18.017	3.941	0.024
######	2.501	1.711	18.018	3.952	0.013
######	2.751	1.708	18.017	3.944	0.021
######	3.001	1.708	18.017	3.943	0.022
######	3.251	1.707	18.019	3.942	0.023
######	3.501	1.708	18.019	3.944	0.021
######	3.751	1.709	18.022	3.945	0.02
######	4.001	1.708	18.021	3.943	0.022
######	4.251	1.708	18.025	3.943	0.022
######	4.912	1.705	17.995	3.937	0.028
######	5.118	1.707	18.011	3.94	0.025


######	5.322	1.705	18.021	3.937
######	5.528	1.709	18.025	3.945
######	5.731	1.707	18.105	3.942
######	6.38	1.704	18.085	3.935
######	6.584	1.706	18.079	3.939
#######	6.788	1.707	18.071	3.942
######	6.994	1.707	18.07	3.941
######	7.234	1.708	18.066	3.944
######	7.561	1.709	18.05	3.946
######	7.981	1.707	18.035	3.941
######	8.461	1.707	18.021	3.941
######	9.001	1.707	18.01	3.942
######	9.481	1.707	18.01	3.94
######	10.081	1.707	18.001	3.942
######	10.681	1.707	17.997	3.942
######	11.281	1.708	17.995	3.943
######	11.941	1.706	18.014	3.939
######	12.66	1.707	17.996	3.941
#######	13.441	1.709	17.99	3.946
#######	14.221	1.709	17.986	3.945
#######	14.221	1.709	18.011	3.945
######	15.961	1.708	17.988	3.943
######	16.921	1.709	17.98	3.945
######	17.88	1.708	17.981	3.944
######	18.961	1.707	17.979	3.942
######	20.138	1.71	18.001	3.947
######	21.301	1.708	17.981	3.944
######	22.561	1.71	17.974	3.949
######	23.88	1.711	17.97	3.951
######	25.387	1.711	17.986	3.951
######	26.821	1.709	17.976	3.947
######	28.38	1.711	17.97	3.95
######	30.129	1.709	17.996	3.947
######			17.971	3.95
	33.721		17.967	
	35.761		17.973	
#######			17.967	
	40.139		17.995	
			17.995	
	42.481			3.95
	45.135		17.991	
	47.64		17.967	
	50.461		17.976	
######			17.962	
######	56.64		17.967	
######	60	1.711	17.962	3.95
######	63.6	1.712	17.961	3.954
######	67.2	1.713	17.965	3.955

0.028
0.02
0.023
0.03
0.026
0.023
0.024
0.021
0.019
0.024
0.024
0.023
0.025
0.023
0.023
0.022
0.026
0.024
0.019
0.015
0.019
0.022
0.02
0.021
0.023
0.018
0.021
0.016
0.010
0.014
0.018
0.015
0.018
0.015
0.012
0.016
0.015
0.015
0.015
0.009
0.01
0.01
0.012
0.011
0.015
0.011
0.01
0.01

######	71.4	1.713	17.965	3.955
######	75.667	1.715	17.974	3.959
######	79.8	1.713	17.958	3.956
######	84.6	1.713	17.958	3.955
######	90	1.713	17.955	3.955
######	94.8	1.715	17.954	3.959
######	100.8	1.714	17.966	3.958
######	106.8	1.715	17.959	3.96
######	112.8	1.714	17.954	3.957
######	119.4	1.715	17.949	3.961
######	126.6	1.716	17.954	3.962
######	134.4	1.716	17.945	3.962
######	142.2	1.715	17.949	3.959
######	150.68	1.717	17.956	3.964
######	159.6	1.717	17.943	3.964
######	169.2	1.717	17.943	3.964
######	178.8	1.719	17.954	3.969
######	189.6	1.717	17.937	3.963
######	201	1.717	17.942	3.964
######	213	1.717	17.935	3.965
######	225.69	1.719	17.944	3.97
######	238.8	1.717	17.93	3.966
######	253.2	1.719	17.928	3.969
######	268.2	1.717	17.924	3.966
######	283.8	1.719	17.926	3.969
######	300.69	1.72	17.932	3.971
######	318.6	1.717	17.919	3.965
######	337.2	1.719	17.918	3.97
######	357.6	1.718	17.917	3.966
######	378.6	1.718	17.913	3.966
######	400.8	1.718	17.921	3.967
######	424.8	1.719	17.907	3.968
######	450	1.719	17.91	3.969
######	476.4	1.716	17.915	3.963
######	504.6	1.717	17.908	3.965
######	534.6	1.717	17.906	3.964
######	566.4	1.718	17.912	3.967
######	600	1.717	17.906	3.966

0.01
0.006
0.009
0.01
0.01
0.006
0.007
0.005
0.008
0.004
0.003
0.003
0.006
0.001
0.001
0.001
-0.004
0.002
0.001
0
0 -0.005
•
-0.005
-0.005 -0.001
-0.005 -0.001 -0.004
-0.005 -0.001 -0.004 -0.001
-0.005 -0.001 -0.004 -0.001 -0.004
-0.005 -0.001 -0.004 -0.001 -0.004 -0.006
-0.005 -0.001 -0.004 -0.001 -0.004 -0.006 0
-0.005 -0.001 -0.004 -0.004 -0.006 0 -0.005 -0.001 -0.001
-0.005 -0.001 -0.004 -0.004 -0.006 -0.006 -0.005 -0.001
-0.005 -0.001 -0.004 -0.004 -0.006 0 -0.005 -0.001 -0.001
-0.005 -0.001 -0.004 -0.004 -0.004 -0.006 -0.005 -0.001 -0.001 -0.002
-0.005 -0.001 -0.004 -0.004 -0.006 -0.005 -0.001 -0.001 -0.002 -0.003
-0.005 -0.001 -0.004 -0.004 -0.006 -0.005 -0.001 -0.001 -0.002 -0.003 -0.003 -0.004
-0.005 -0.001 -0.004 -0.004 -0.006 -0.005 -0.001 -0.001 -0.002 -0.003 -0.004 0.002
-0.005 -0.001 -0.004 -0.004 -0.006 -0.005 -0.001 -0.001 -0.002 -0.003 -0.004 0.002 0

Log(Head)	Normalized Head
1	1
1.255428138	0.6816
1.897470054	0.2601
2.066591278	0.2018
2.161954744	0.1749
2.336796239	0.1345
2.293787289	0.1435
2.336796239	0.1345
2.432159705	0.1166
2.48550076	0.1076
2.894078137	0.0583
2.574487072	0.0942
2.543485788	0.0987
2.513862803	0.1031
2.574487072	0.0942
2.6070012	0.0897
2.543485788	0.0987
2.543485788	0.0987
2.382773602	0.1256
2.45829668	0.1121

2.382773602	0.1256
2.6070012	0.0897
2.513862803	0.1031
2.336796239	0.1345
2.432159705	0.1166
2.513862803	0.1031
2.48550076	0.1076
2.574487072	0.0942
2.641183433	0.0852
2.48550076	0.1076
2.48550076	0.1076
2.513862803	0.1031
2.45829668	0.1121
2.513862803	0.1031
2.513862803	0.1031
2.543485788	0.0987
2.432159705	0.1166
2.48550076	0.1076
2.641183433	0.0852
2.6070012	0.0897
2.641183433	0.0852
2.543485788	0.0987
2.6070012	0.0897
2.574487072	0.0942
2.513862803	0.1031
	0.0807
2.677214231	
2.574487072	0.0942
2.755705721	0.0717
2.844692033	0.0628
2.844692033	0.0628
2.677214231	0.0807
2.798714671	0.0673
2.677214231	0.0807
2.798714671	0.0673
2.947419192	0.0538
2.755705721	0.0717
2.798714671	0.0673
2.798714671	0.0673
2.798714671	0.0673
3.139132663	0.0404
3.068919632	0.0448
3.068919632	0.0448
2.947419192	0.0538
3.00540422	0.0493
2.798714671	0.0673
3.00540422	0.0493
3.068919632	0.0448

3.068919632 0.0448

0.000010002	010110
3.409337624	0.0269
3.139132663	0.0404
3.068919632	0.0448
3.068919632	0.0448
3.409337624	0.0269
3.306610465	0.0314
3.530838064	0.0224
3.217624153	0.0359
3.679542585	
3.871256056	0.0135
3.871256056	0.0135
3.409337624	0.0269
4.603379448	0.0045
4.603379448	0.0045
4.603379448	0.0045
#NUM!	-0.018
4.141461017	0.009
4.603379448	0.0045
#NUM!	0
#NUM!	-0.022
#NUM!	-0.004
#NUM!	-0.018
#NUM!	-0.004
#NUM!	-0.018
#NUM!	-0.027
#NUM!	0
#NUM!	-0.022
#NUM!	-0.004
#NUM!	-0.004
#NUM!	-0.009
#NUM!	-0.013
#NUM!	-0.018
4.141461017	0.009
#NUM!	0
4.603379448	0.0045

Appendix G

Laboratory Groundwater Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Targa Epperson 1 Project Number: 16-0120-01 Location:

Lab Order Number: 8C15002

NELAP/TCEQ # T104704516-17-8

Report Date: 03/19/18

Larson & Associates, Inc.	Project: Targa Epperson 1	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 16-0120-01	
Midland TX, 79710	Project Manager: Mark Larson	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TMW-1	8C15002-01	Water	03/14/18 12:35	03-15-2018 08:40
TMW-1	8C15002-02	Water	03/14/18 12:35	03-15-2018 08:40

Larson & Associates, Inc.	Project:	Targa Epperson 1	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

TMW-1

		8C1500	02-01 (Wa	iter)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Paramete	rs by EPA / Standard Methods								
Chloride	66.3	5.00	mg/L	10	P8C1605	03/16/18	03/18/18	EPA 300.0	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proje Project Numb Project Manag	er: 16-012					Fax: (432) 68	37-0456
			MW-1 2-02 (Wa	iter)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	nvironme	ental Lab, l	L .P.				
Organics by GC									
Benzene	12.4	0.100	mg/L	100	P8C1505	03/15/18	03/16/18	EPA 8021B	
Toluene	9.76	0.100	mg/L	100	P8C1505	03/15/18	03/16/18	EPA 8021B	
Ethylbenzene	0.480	0.100	mg/L	100	P8C1505	03/15/18	03/16/18	EPA 8021B	
Xylene (p/m)	ND	2.00	mg/L	100	P8C1505	03/15/18	03/16/18	EPA 8021B	
Xylene (o)	0.425	0.100	mg/L	100	P8C1505	03/15/18	03/16/18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-	120	P8C1505	03/15/18	03/16/18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	80-	120	P8C1505	03/15/18	03/16/18	EPA 8021B	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project: Targa Epperson 1	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 16-0120-01	
Midland TX, 79710	Project Manager: Mark Larson	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P8C1505 - General Preparation (C	GC)									
Blank (P8C1505-BLK1)				Prepared &	Analyzed:	03/15/18				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.0200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0709		"	0.0600		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.0680		"	0.0600		113	80-120			
LCS (P8C1505-BS1)				Prepared &	Analyzed:	03/15/18				
Benzene	0.0845	0.00100	mg/L	0.100		84.5	80-120			
Toluene	0.0944	0.00100	"	0.100		94.4	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.210	0.0200	"				80-120			
Xylene (o)	0.113	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.0584		"	0.0600		97.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.0491		"	0.0600		81.9	80-120			
LCS Dup (P8C1505-BSD1)				Prepared &	Analyzed:	03/15/18				
Benzene	0.0963	0.00100	mg/L	0.100		96.3	80-120	13.1	20	
Toluene	0.108	0.00100	"	0.100		108	80-120	13.1	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120	8.09	20	
Xylene (p/m)	0.208	0.0200	"				80-120		20	
Xylene (o)	0.112	0.00100	"				80-120		20	
Surrogate: 4-Bromofluorobenzene	0.0676		"	0.0600		113	80-120			
Surrogate: 1,4-Difluorobenzene	0.0546		"	0.0600		91.0	80-120			

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Targa Epperson 1	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P8C1605 - *** DEFAULT PREP ***										
Blank (P8C1605-BLK1)				Prepared: ()3/16/18 A	nalyzed: 03	/18/18			
Chloride	ND	0.500	mg/L							
LCS (P8C1605-BS1)				Prepared: (03/16/18 At	nalyzed: 03	/18/18			
Chloride	40.1	0.500	mg/L	40.0		100	85-115			
LCS Dup (P8C1605-BSD1)				Prepared: (03/16/18 A	nalyzed: 03	/18/18			
Chloride	40.3	0.500	mg/L	40.0		101	85-115	0.503	20	
Duplicate (P8C1605-DUP1)	Sour	-ce: 8C13010-	01	Prepared: (03/16/18 A	nalyzed: 03	/18/18			
Chloride	58.4	25.0	mg/L		78.1			28.8	20	
Matrix Spike (P8C1605-MS1)	Sour	-ce: 8C13010-	01	Prepared: (03/16/18 A	nalyzed: 03	/18/18			
Chloride	558	25.0	mg/L	500	78.1	96.0	80-120			

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Targa Epperson 1	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Notes and Definitions

BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Report Approved By:

Dup Duplicate

un Barron

Date: 3/19/2018

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

eceivea by	, OCD: 8/	(22/2)	023 1	<u>10:49</u>	<u>:18</u>	<u>4M</u>		_	,			 				·					Pag	<u>e 10</u> 1	7 of 1
RELINQUISHED BY:(Signature)	RELINQUISHED BY:(Signature)		PBEL											TMW-1	TMW-1	Fieid Sample I.D.	Time zone/State:		report?	Data Reported to:	Aarson & . Associates, Inc.		
gnature)	gnature)	nnatiine)							-	-				بن	3	Lab #		A=AIR	S=SOIL W=WATER	Consultant			-
	3/10		And so the second se												3/14/18 11	Date		OT=OTHER	P=PAINT SL=SLUDGE	S			•
DATE/TIME	114118 DATE/TIME													12:35 V	12:35 1	Time		IER	DGE				
														٤	٤	Matrix							
RECEN	RECEIV	RECEIV												ŝ			ontainer	S			507 N. Mi		
بچ	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)												×		HCI HNO3			PRESERVATION	432-087-0901	507 N. Marienfeld, Ste. Midland, TX 79701		
BY: (Signatur	(Signati	(Signati												\times	Х	H ₂ SO ₄ ICE	🗆 NaC		RVATI	57-090	nfeld, (TX 797		-
Ch8 8/15/1	Jire)	Jre)				_	+							\times	X				2 2	Ste. 200			
					—									-		ALL AND	ster.	Sr.S					
																N70/9.	NON.			AI PR		DATE:	
2 DAY LI OTHER LI	NORMAL D															1 12 12 12 12 12 12 12 12 12 12 12 12 12	1 10 00 00 15 10 00 00 15 10 00 00 00 00 00 00 00 00 00 00 00 00		\mathbf{X}			3-15	
																			10000	[#:		3	
								_											\backslash	10-01			
							_									2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ALS RCP		AN THE	0120-0(NAM		-
CARRIER BILL # HAND DELIVERED	LABORATORY USE ONLY: RECEIVING TEMP: 2004 THERM # CUSTODY SEALS - D BROKEN D INTA													-									
	ory u: 3 temp Seals			+																	LAB WORK ORDER #		
<u>m</u> ,**					_			-						X							KOR		Ť
				<u></u>	+											X		AR CO		LLEC			Ż
				\square	\rightarrow												AN ONS		C ANDRO	COLLECTOR:		פו	HAIN-OF-C
	M #								ļ								\backslash	ALC A		Ashon	Tora D		Ϋ́.
Ĺ	BROKEN DINTACT DINOT LISED												·			FIELD NOTES	\backslash	\backslash	×>	for 1 - or			S
																OTES			\searrow			<u>, 1</u>	<u> </u>
	J Imaging	. 2/2/	/20	25 8-3	31.14	5 1 14	-												\mathbf{n}		Page 8	ot 8	<u>_</u>

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Epperson 16" Pipeline Project Number: 16-0120-01 Location: None Given

Lab Order Number: 9G24008

NELAP/TCEQ # T104704516-18-9

Report Date: 07/30/19

Larson & Associates, Inc.	Project: E	Epperson 16" Pipeline	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 10	6-0120-01	
Midland TX, 79710	Project Manager: M	Mark Larson	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TMW-3	9G24008-01	Water	07/22/19 14:24	07-24-2019 11:55
TMW-2	9G24008-02	Water	07/22/19 14:44	07-24-2019 11:55

Larson & Associates, Inc.	Project: Epperson 16" Pipeline	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 16-0120-01	
Midland TX, 79710	Project Manager: Mark Larson	

TMW-3

9G24008-01 (Water)										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
Organics by GC										
Benzene	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B		
Toluene	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B		
Ethylbenzene	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B		
Xylene (p/m)	ND	0.00200	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B		
Xylene (o)	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		104 %	80-1	20	P9G2602	07/26/19	07/26/19	EPA 8021B		
Surrogate: 1,4-Difluorobenzene		106 %	80-1	20	P9G2602	07/26/19	07/26/19	EPA 8021B		
General Chemistry Parameters by EPA /	Standard Method	ls								
Chloride	276	5.00	mg/L	10	P9G2410	07/24/19	07/24/19	EPA 300.0		

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proje Project Numb Project Manag	er: 16-012		line			Fax: (432) 68	37-0456
		-	MW-2						
		9G2400	8-02 (Wa	iter)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin Ei	ıvironme	ntal Lab, l	L. P.				
Organics by GC				,					
Benzene	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P9G2602	07/26/19	07/26/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		115 %	80-	120	P9G2602	07/26/19	07/26/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.8 %	80-	120	P9G2602	07/26/19	07/26/19	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	47.0	5.00	mg/L	10	P9G2410	07/24/19	07/24/19	EPA 300.0	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project: Epperson 16" Pipeline	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 16-0120-01	
Midland TX, 79710	Project Manager: Mark Larson	

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9G2602 - General Preparation (G	C)									
Blank (P9G2602-BLK1)				Prepared &	Analyzed:	07/26/19				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.5	80-120			
LCS (P9G2602-BS1)				Prepared &	Analyzed:	07/26/19				
Benzene	0.112	0.00100	mg/L	0.100		112	80-120			
Toluene	0.110	0.00100	"	0.100		110	80-120			
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120			
Xylene (p/m)	0.219	0.00200	"	0.200		110	80-120			
Xylene (o)	0.120	0.00100	"	0.100		120	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.7	80-120			
LCS Dup (P9G2602-BSD1)				Prepared &	Analyzed:	07/26/19				
Benzene	0.117	0.00100	mg/L	0.100		117	80-120	4.84	20	
Toluene	0.107	0.00100	"	0.100		107	80-120	2.54	20	
Ethylbenzene	0.113	0.00100	"	0.100		113	80-120	3.25	20	
Xylene (p/m)	0.209	0.00200	"	0.200		105	80-120	4.78	20	
Xylene (o)	0.116	0.00100	"	0.100		116	80-120	3.37	20	
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		93.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.0	80-120			
Calibration Blank (P9G2602-CCB1)				Prepared &	Analyzed:	07/26/19				
Benzene	0.00		mg/L							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.4	80-120			

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project: Epperson 16" Pipeline	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 16-0120-01	
Midland TX, 79710	Project Manager: Mark Larson	

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9G2602 - General Preparation (G	C)									
Calibration Blank (P9G2602-CCB2)				Prepared: 0	07/26/19 A	nalyzed: 07	/29/19			
Benzene	0.00		mg/L							
Toluene	0.00									
Ethylbenzene	0.00									
Xylene (p/m)	0.00									
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		99.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.5	80-120			
Calibration Check (P9G2602-CCV1)				Prepared &	Analyzed:	07/26/19				
Benzene	0.111	0.00100	mg/L	0.100		111	80-120			
Toluene	0.106	0.00100		0.100		106	80-120			
Ethylbenzene	0.105	0.00100	"	0.100		105	80-120			
Xylene (p/m)	0.228	0.00200	"	0.200		114	80-120			
Xylene (o)	0.112	0.00100		0.100		112	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.140		"	0.120		117	80-120			
Calibration Check (P9G2602-CCV2)				Prepared &	Analyzed:	07/26/19				
Benzene	0.117	0.00100	mg/L	0.100	5	117	80-120			
Toluene	0.114	0.00100		0.100		114	80-120			
Ethylbenzene	0.113	0.00100		0.100		113	80-120			
Xylene (p/m)	0.225	0.00200		0.200		113	80-120			
Xylene (o)	0.113	0.00100		0.100		113	80-120			
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
Matrix Spike (P9G2602-MS1)	Sou	rce: 9G24008-	01	Prepared &	Analyzed:	07/26/19				
Benzene	0.110	0.00100	mg/L	0.100	ND	110	80-120			
Toluene	0.112	0.00100	"	0.100	ND	112	80-120			
Ethylbenzene	0.0990	0.00100		0.100	ND	99.0	80-120			
Xylene (p/m)	0.214	0.00200		0.200	ND	107	80-120			
Xylene (o)	0.115	0.00100		0.100	ND	115	80-120			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.149		"	0.120		124	80-120			S-G

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Epperson 16" Pipeline	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9G2602 - General Preparation (GC)										

Source: 9G24008-01 Prepared & Analyzed: 07/26/19 Matrix Spike Dup (P9G2602-MSD1) Benzene 0.109 0.00100 mg/L 0.100 ND 109 80-120 1.20 20 .. Toluene 0.108 0.00100 0.100 ND 108 80-120 4.24 20 Ethylbenzene 0.107 0.00100 " 0.100 ND 107 80-120 8.15 20 " Xylene (p/m) 0.228 0.00200 0.200 ND 114 80-120 6.69 20 Xylene (o) 0.117 0.00100 ... 0.100 ND 117 80-120 1.96 20 " 80-120 Surrogate: 4-Bromofluorobenzene 0.128 0.120 106 " Surrogate: 1,4-Difluorobenzene 0.116 0.120 96.8 80-120

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Epperson 16" Pipeline	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared &	Analyzed:	07/24/19				
ND	0.500	mg/L							
			Prepared &	Analyzed:	07/24/19				
20.5	0.500	mg/L	20.0		103	85-115			
			Prepared &	Analyzed:	07/24/19				
20.1	0.500	mg/L	20.0		100	85-115	2.23	20	
			Prepared &	Analyzed:	07/24/19				
0.00		mg/L							
			Prepared &	Analyzed:	07/24/19				
9.47		mg/L	10.0		94.7	80-120			
Sou	-ce: 9G19020-	-01	Prepared &	Analyzed:	07/24/19				
368	12.5	mg/L	250	139	91.5	80-120			
Sou	-ce: 9G19020-	-01	Prepared &	Analyzed:	07/24/19				
403	12.5	mg/L	250	139	105	80-120	8.92	20	
	ND 20.5 20.1 0.00 9.47 Som 368 Som	Result Limit ND 0.500 20.5 0.500 20.1 0.500 0.00 0.500 9.47 Source: 9G19020- 368 12.5 Source: 9G19020-	Result Limit Units ND 0.500 mg/L 20.5 0.500 mg/L 20.1 0.500 mg/L 0.00 mg/L mg/L 9.47 mg/L mg/L 368 12.5 mg/L Source: 9G19020-01 mg/L 10.500	Result Limit Units Level ND 0.500 mg/L Prepared & 20.5 0.500 mg/L 20.0 20.5 0.500 mg/L 20.0 20.1 0.500 mg/L 20.0 20.1 0.500 mg/L 20.0 0.00 mg/L 20.0 Prepared & 9.47 mg/L 10.0 Prepared & 9.47 mg/L 10.0 Prepared & 368 12.5 mg/L 250 Source: 9G19020-01 Prepared & 250	Result Limit Units Level Result ND 0.500 mg/L Prepared & Analyzed: ND 0.500 mg/L Prepared & Analyzed: 20.5 0.500 mg/L 20.0 20.5 0.500 mg/L 20.0 20.1 0.500 mg/L 20.0 20.1 0.500 mg/L 20.0 0.00 mg/L 20.0 Prepared & Analyzed: 0.00 mg/L 10.0 10.0 9.47 mg/L 10.0 10.0 Source: 9G19020-01 mg/L 250 139 Source: 9G19020-01 Prepared & Analyzed: 139	ResultLimitUnitsLevelResult%RECND0.500mg/LPrepared & Analyzed: 07/24/19ND0.500mg/LPrepared & Analyzed: 07/24/1920.50.500mg/L20.010320.10.500mg/L20.010320.10.500mg/L20.010020.10.500mg/L20.01009.00mg/L20.01009.47mg/LPrepared & Analyzed: 07/24/199.47mg/LPrepared & Analyzed: 07/24/1936812.5mg/L25013936812.5mg/LPrepared & Analyzed: 07/24/19	Result Limit Units Level Result %REC Limits Prepared & Analyzed: $07/24/19$ ND 0.500 mg/L Prepared & Analyzed: $07/24/19$ 20.5 0.500 mg/L 20.0 103 85-115 20.1 0.500 mg/L 20.0 100 85-115 Prepared & Analyzed: $07/24/19$ 20.1 0.500 mg/L 20.0 100 85-115 Prepared & Analyzed: $07/24/19$ 20.1 0.500 mg/L 20.0 100 85-115 Prepared & Analyzed: $07/24/19$ 0.00 mg/L 20.0 100 85-115 Prepared & Analyzed: $07/24/19$ 9.47 mg/L 10.0 94.7 80-120 Source: $9G19020-U$ Prepared & Analyzed: $07/24/19$ 368 12.5 mg/L 250 139 91.5 80-120 Source: $9G19020-U$ Prepared & Analyzed: $07/24/19$	Result Limit Units Level Result %REC Limits RPD ND 0.500 mg/L Prepared & Analyzed: 07/24/19 20.5 0.500 mg/L Prepared & Analyzed: 07/24/19 20.5 0.500 mg/L 20.0 103 85-115 20.1 0.500 mg/L 20.0 100 85-115 2.23 0.00 mg/L 20.0 100 85-115 2.23 Prepared & Analyzed: 07/24/19 Prepared & Analyzed: 07/24/19 2.23 0.00 mg/L 10.0 94.7 80-120 9.47 mg/L 10.0 94.7 80-120 368 12.5 mg/L 250 139 91.5 80-120 Source: 9G19020-01 Prepared & Analyzed: 07/24/19 Prepared & Analyzed: 07/24/19	ResultLimitUnitsLevelResult%RECLimitsRPDLimitResultLimitVertexVertexVertexVertexVertexVertexVertexND0.500mg/LPrepared & Analyzed: 07/24/19VertexVertexVertexVertexVertex20.50.500mg/L20.010385-1152.232020.10.500mg/L20.010085-1152.232020.10.500mg/L20.010085-1152.23200.00mg/L20.010085-1152.23209.47mg/L10.094.780-120VertexVertex9.47mg/L10.094.780-120VertexVertex36812.5mg/L25013991.580-120VertexSource: 9G19020-UPrepared & Analyzed: 07/24/19Prepared & Analyzed: 07/24/19Prepared & Analyzed: 07/24/19Source: 9G19020-UPrepared & Analyzed: 07/24/19Prepared & Analyzed: 07/24/19

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Epperson 16" Pipeline	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

un Barron

Report Approved By:

Date: 7/30/2019

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Re	ceive	ed by C)CD:	<u>8/22</u>	/ <u>202</u> 3	10:4	<u>49;18</u>	<u>AM</u>			 								T			age	117 о	f 158
LABORATORY:	RELINQUISHED BY:(Signature)		GELINOVISHEDEX:(Signature)	TOTAL						~					TMM-2	TMW-3	Field Sample I.D.	Time zone/State:	TRRP report?	Environmenta Data Reported to:	Aarson & ssociates, Inc.		~	
TERd	(Signature)	(Signature)	(Signature) {√√√¶												2		Lab #		S=SOIL W=WATER A=AIR	1 Consultar	es, Ind			
															HJ24/H	PVCC/F	Date			Tr	2			
	DATE/TIME	DATE/TIME	UL-19/11:55												14:44	14:04	Time		P=PAINT SL=SLUDGE OT=OTHER					
		Ē	ME } :55(٤	Ł	Matrix					E O.		
	문	REC													μ	J	# of C	ontainers			Mic	Ż		
	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	CEIVED BY (Signature)												3	Ś	HCI		PR	432-687-0901	Midland, TX 79701			
	BY	BY															HNO ₃			- /80	d, T) h t		
	(Sign	(Sign	Reisig									-			67	J J	H ₂ SO ₄	🗆 NaOł		090	X 79	Σ		
	lature	lature	18 ature								 			-+				ESSERV		-	701	5		
																\bigtriangledown	A		II			300		
1.											-							AL STS			<u></u>			
				┡—				<u> </u>			 		-					\sim		ĮΣ	PO#	DATE:		
				·		-							_	+		+				PR		Ē		
	-UT	2 0	S Z						1								N.V.					1.1		
	OTHER		TURN AROUND TIME														100 000 00 100 000 00 100 000 00			LAI PROJECT #:	DOCATION OD NAME	4		
			Ro				_	_			 			<u> </u>			-	ŶŇ				AH/		
			T CIN				_	+			 							$\langle O \rangle > \langle V \rangle$			ž	1		
			IN I	-		+								+						0-0120	ŏ	120		
		<u>0</u> 2																				19		
HAN	CARRIER BILL #	CUSTODY SEALS -	BOF																1688 345					
	RIEF	DY S	ATO										_	\rightarrow	+ -		1422 2	1.61.19	$\mathcal{N} \otimes \mathcal{N} \otimes$	₩Ĕ	€ B			
	(BILI	EAL									 		_				Ŵ	+	Sent CO		ŧ		0	
HAND DELIVERED	/# #	י יי	N C										·				1×XX				R R C		Ť	·
		Ц Щ	LABORATORY USE ONLY:												×	\mathbf{X}		to a long			AB WORK ORDE		All	
		οĸΕ Ι	0												:		N &				₩.		Z.	
				<u> </u>				_									\sim			COLLECTOR	عًا ﴿	, I	Q	,
																				16		ÅGE	Ľ.	N
			Sr.														FIEL	$\backslash /$		R	LAB WORK ORDER# 4024008	·	CHAIN-OF-CUSTO	2120 BN
			ÉG														FIELD NOTES		$\langle \rangle \rangle$	图			S	~~]
		UT US	1														TES		//			ч Г	0	\sim
		Ŭ,													:					╢└	Page	10 0	of 10	

•

.

February 07, 2019

Mark Larson Larson & Associates 507 N. Marienfeld #200 Midland, TX 79701 TEL: (432) 687-0901 FAX (432) 687-0456 RE: Targa Epperson

Order No.: 1902005

Dear Mark Larson:

DHL Analytical, Inc. received 1 sample(s) on 2/1/2019 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-19-22

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Targa Epperson 16" Project Number: 16-0120-01 Location:

Lab Order Number: 0B25003

NELAP/TCEQ # T104704516-17-8

Report Date: 03/09/20

Larson & Associates, Inc.	Project:	Targa Epperson 16"	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2	0B25003-01	Water	02/24/20 10:50	02-25-2020 09:06
MW-3	0B25003-02	Water	02/24/20 10:27	02-25-2020 09:06

Larson & Associates, Inc.	Project:	Targa Epperson 16"	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

MW-2 0B25003-01 (Water)

				,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	iian Basin Ei	nvironme	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.8 %	80-1	20	P0B2704	02/27/20	02/27/20	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.9 %	80-1	20	P0B2704	02/27/20	02/27/20	EPA 8021B	
General Chemistry Parameters by EPA / S	tandard Method	ls							
Chloride	47.7	5.00	mg/L	10	P0C0401	03/04/20	03/04/20	EPA 300.0	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.		-		Epperson 16	5"			Fax: (432) 68	37-0456
P.O. Box 50685		Project Numb							
Midland TX, 79710		Project Manag	er: Mark	Larson					
		Γ	MW-3						
		0B2500	3-02 (Wa	ter)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result	Liint	Onits	Dilution	Dateii	Tiepareu	Anaryzeu	Wethod	Notes
	Pern	nian Basin Ei	nvironme	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P0B2704	02/27/20	02/27/20	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.4 %	80-	120	P0B2704	02/27/20	02/27/20	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.7 %	80-	120	P0B2704	02/27/20	02/27/20	EPA 8021B	
General Chemistry Parameters by EPA	A / Standard Metho	ds							
Chloride	265	25.0	mg/L	50	P0C0401	03/04/20	03/04/20	EPA 300.0	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Targa Epperson 16"	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P0B2704 - General Preparation (C	GC)									
Blank (P0B2704-BLK1)				Prepared &	Analyzed:	02/27/20				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	80-120			
LCS (P0B2704-BS1)				Prepared &	Analyzed:	02/27/20				
Benzene	0.104	0.00100	mg/L	0.100		104	80-120			
Toluene	0.100	0.00100	"	0.100		100	80-120			
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120			
Xylene (p/m)	0.211	0.00200	"	0.200		105	80-120			
Xylene (o)	0.0984	0.00100	"	0.100		98.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		95.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		101	80-120			
LCS Dup (P0B2704-BSD1)				Prepared &	Analyzed:	02/27/20				
Benzene	0.101	0.00100	mg/L	0.100		101	80-120	3.28	20	
Toluene	0.0985	0.00100	"	0.100		98.5	80-120	1.61	20	
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120	4.77	20	
Xylene (p/m)	0.206	0.00200	"	0.200		103	80-120	2.28	20	
Xylene (o)	0.0982	0.00100	"	0.100		98.2	80-120	0.275	20	
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
Calibration Blank (P0B2704-CCB1)				Prepared &	Analyzed:	02/27/20				
Benzene	0.00		mg/L		-					
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.6	80-120			

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Targa Epperson 16"	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P0B2704 - General Preparation (G	C)									
Calibration Blank (P0B2704-CCB2)				Prepared &	Analyzed:	02/27/20				
Benzene	0.00		mg/L	1	2					
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		98.8	80-120			
Calibration Check (P0B2704-CCV1)				Prepared &	Analyzed:	02/27/20				
Benzene	0.0992	0.00100	mg/L	0.100		99.2	80-120			
Toluene	0.0955	0.00100	"	0.100		95.5	80-120			
Ethylbenzene	0.0968	0.00100	"	0.100		96.8	80-120			
Xylene (p/m)	0.195	0.00200	"	0.200		97.6	80-120			
Xylene (o)	0.0986	0.00100	"	0.100		98.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		101	80-120			
Calibration Check (P0B2704-CCV2)				Prepared &	Analyzed:	02/27/20				
Benzene	0.105	0.00100	mg/L	0.100	•	105	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.104	0.00100	"	0.100		104	80-120			
Xylene (p/m)	0.206	0.00200	"	0.200		103	80-120			
Xylene (o)	0.0998	0.00100	"	0.100		99.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		98.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	80-120			
Calibration Check (P0B2704-CCV3)				Prepared &	Analyzed:	02/27/20				
Benzene	0.106	0.00100	mg/L	0.100		106	80-120			
Toluene	0.0964	0.00100	"	0.100		96.4	80-120			
Ethylbenzene	0.0966	0.00100	"	0.100		96.6	80-120			
Xylene (p/m)	0.189	0.00200	"	0.200		94.7	80-120			
Xylene (o)	0.0980	0.00100	"	0.100		98.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		102	80-120			

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Targa Epperson 16"	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P0B2704 - General Preparation (GC)

Matrix Spike (P0B2704-MS1)	Sour	rce: 0B25003-0	01	Prepared &			
Benzene	0.113	0.00100	mg/L	0.100	ND	113	80-120
Toluene	0.106	0.00100	"	0.100	ND	106	80-120
Ethylbenzene	0.102	0.00100	"	0.100	ND	102	80-120
Xylene (p/m)	0.213	0.00200	"	0.200	ND	106	80-120
Xylene (o)	0.105	0.00100	"	0.100	ND	105	80-120
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.6	80-120
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Targa Epperson 16"	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

			-											
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes					
Prepared & Analyzed: 03/04/20														
ND	0.500	mg/L												
			Prepared &	Analyzed:	03/04/20									
37.9	0.500	mg/L	40.0		94.9	85-115								
			Prepared &											
38.0	0.500	mg/L	40.0		94.9	85-115	0.0790	20						
			Prepared &	Analyzed:	03/04/20									
0.00		mg/L												
			Prepared &	Analyzed:	03/04/20									
16.4		mg/L	20.0		82.1	80-120								
Sou	rce: 0C04004-	-02	Prepared &	Analyzed:	03/04/20									
181	2.50	mg/L	100	84.6	96.8	80-120								
Matrix Spike Dup (P0C0401-MSD1) Source: 0C04004-02						Prepared & Analyzed: 03/04/20								
182	2.50	mg/L	100	84.6	97.1	80-120	0.129	20						
	37.9 38.0 0.00 16.4 Sou 181 Sou	ND 0.500 37.9 0.500 38.0 0.500 0.00 0.00 16.4 Source: 0C04004- 181 2.50 Source: 0C04004-	Result Limit Units ND 0.500 mg/L 37.9 0.500 mg/L 38.0 0.500 mg/L 0.00 mg/L mg/L 16.4 mg/L Source: 0C04004-02 181 2.50 mg/L	Result Limit Units Level ND 0.500 mg/L Prepared & 37.9 0.500 mg/L 40.0 38.0 0.500 mg/L 40.0 38.0 0.500 mg/L 40.0 0.00 mg/L 40.0 Prepared & 16.4 mg/L 20.0 Prepared & 181 2.50 mg/L 100 Source: 0C04004-02 Prepared & Prepared &	ResultLimitUnitsLevelResultPrepared & Analyzed:ND0.500mg/LND0.500mg/L37.90.500mg/L38.00.500mg/L38.00.500mg/L0.00mg/L40.0Prepared & Analyzed:38.00.500mg/L16.4mg/L20.0Prepared & Analyzed:16.4mg/L20.01812.50mg/L1812.50mg/LPrepared & Analyzed:1812.50mg/LPrepared & Analyzed:1812.50mg/LPrepared & Analyzed:1812.50mg/LPrepared & Analyzed:2.50mg/L10084.6Prepared & Analyzed:	ResultLimitUnitsLevelResult%RECND0.500mg/LPrepared & Analyzed: 03/04/20ND0.500mg/LPrepared & Analyzed: 03/04/2037.90.500mg/L40.094.938.00.500mg/L40.094.938.00.500mg/L40.094.90.00mg/LPrepared & Analyzed: 03/04/2094.90.00mg/L94.994.916.4mg/LPrepared & Analyzed: 03/04/2016.4mg/L20.082.1Source: 0C04004-02Prepared & Analyzed: 03/04/201812.50mg/L10084.6Source: 0C04004-02Prepared & Analyzed: 03/04/20	ResultLimitUnitsLevelResult%RECLimitsPrepared & Analyzed: 03/04/20ND0.500mg/LPrepared & Analyzed: 03/04/2037.90.500mg/L40.094.985-115Prepared & Analyzed: 03/04/2038.00.500mg/L40.094.985-115Prepared & Analyzed: 03/04/2038.00.500mg/L40.094.985-115Prepared & Analyzed: 03/04/200.00mg/LPrepared & Analyzed: 03/04/2016.4mg/L20.082.180-120Source: 0C04004-0EPrepared & Analyzed: 03/04/201812.50mg/L10084.696.880-120	ResultLimitUnitsLevelResult%RECLimitsRPDResultLimitsUnitsLevelResult%RECLimitsRPDND0.500mg/LPrepared & Analyzed: 03/04/20 37.9 0.500mg/L40.094.985-11537.90.500mg/L40.094.985-1150.079038.00.500mg/L40.094.985-1150.079038.00.500mg/L40.094.985-1150.07900.00mg/L40.094.985-1150.079016.4mg/L20.082.180-120100Source: 0C94004-02Prepared & Analyzed: 03/04/201812.50mg/L10084.696.880-120Source: 0C94004-02Prepared & Analyzed: 03/04/20	ResultLimitUnitsLevelResult%RECLimitsRPDLimitResultLimitLimitsLimitsLimitsRPDLimitsLimitsLimitsND0.500mg/LPrepared & Analyzed: 03/04/20Image: 03/04/20Image: 03/04/20Image: 03/04/20Image: 03/04/2037.90.500mg/L40.094.985-115Image: 03/04/2038.00.500mg/L40.094.985-1150.07902038.00.500mg/L40.094.985-1150.0790200.00mg/L40.094.985-1150.07902016.4mg/L20.082.180-120Image: 01/04/2016.4mg/L20.082.180-120Image: 01/04/201812.50mg/L10084.696.880-120Source: $0C04004-02$ Prepared & Analyzed: $03/04/20$					

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Targa Epperson 16"	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	16-0120-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Notes and Definitions

ROI	Received on Ice
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
dry RPD	Sample results reported on a dry weight basis Relative Percent Difference
5	
RPD	Relative Percent Difference

Dup Duplicate

un Barron

Report Approved By:

Date: 3/9/2020

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

				8/22 	202	310):49	:18.	4 <i>M</i>			T		ľ		r		5			<u> </u>						Page	_128, of 158
LABORATORY:	RELINQUISHED BY:(Signature)	RELINQUISHED BY:(Signature)	RELINQUISHED BY: (Signature)	TOTAL														~~~	1-1-1	Sam	5	TIME ZONE: Time zone/State:		Data Nepoted to		为	>	P
TORY:	JISHEI																	ι.	5	Field Sample I.D	55T	TIME ZONE: me zone/Stat	2		Enviro	arson & ssociates, Inc.		
PBEL	O BY:(s	s):Xar	D BY:(·		ate:	No No		nment	<u>ci</u> ∧ at∝) D	
2	òignatu	Signatu	Signat																	Lab#			X=XXII W=WAT A=AIR	0	a Cor	les,		
	re)	lre)	Ire)			-		<u> </u>									 			*			A=AIR		hsultan	n l		
		· ·	J.								ĺ							all the	2/24/2	Date					ts	¥ [
			sha			-		-															OT=OTHER				4	
	DATE/TIME	DATE/TIME	DATE/TIME															10:12	10:50	Time			HER	Ŧ		Å		
	TIME	TIME							-			-								~								
			h															3	3	Matrix		•				ر	л	
	RECE	RECE	医 過						1									6	2	# of C	ontai	ners	V			Midland, TX 79701		
	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)						1									2	~	НСІ			况		432	Midland, TX 79701		
	BY: (S	BY: (S	BY				<u> </u>		<u> </u>										·	HNO ₃		laOH [PRESERVATION		432687-0901)d, T)	j.	
	ignatur	ignatur	inatu Inatu															6	5	ICE					1060	(797(2	
	e	e)	€®®	<u> </u>														X	×			ERVED	z			01 e	ວ່ ວ	
								·												41111111111111	k, Xog			-		Č	5	
																				78774 6450 6		s.		[ר אר אר	PO#	DATE:	
	<u>9</u>	L ? ≓ ;	⊥ ≷ ∃						_											K W	X				PRUJECI LUCA	, [
			TURN AROL																				ATT TOPS				212	
	Ļ	Į	ROUN		<u> </u>																ŶŶ	\sim					5	
			Turn Around Time																		X				LUCATION OR NAME:		125/2020	9
		<u>л</u>		<u> </u>										_						(2).4K							0	
HAND DELIVERED	CARRIER BILL #	RECEIVING TEMP: CUSTODY SEALS -	LABORATORY USE ONLY:																		No.							
D DEL	RIERE	ING T	ATOR			-									-				—H	$\langle 0 \rangle \langle 0 \rangle$	$\langle \rangle \rangle$			Ì	la			
NERE	BILL #	EMP:	Y USE																						laiga	NOR		0
Ū			ONL						-				_		\rightarrow	\dashv	_	\mathbf{x}	- 11	$\mathcal{N}\mathcal{N}$	\otimes	Ser 67		Nr		к Р		HA
		ROKE																	\square						Efferson 16	LAB WORK ORDER#: 06/5005		Ż
		THERM#:										_		_		_		-			N.			١				ģ
		NTACT ∦	G																		\mathbb{N}	16 70				215(PAGE	[™] N ₀
			\tilde{t}														.			FIELD NOTES		\backslash		ال		202	-	<u> </u>
															•					IOTES			\backslash	15	2		ទ្ព	0883 JSTO[
												_											\backslash			Page	 9 10	of 10
Re	elease	d to I	magin	g: 2	/26/2	2025	5 8:3	84:1	5 AN	1					_													` .

.

Table of Contents

Miscellaneous Documents	
CaseNarrative 1902005	6
WorkOrderSampleSummary 1902005	7
PrepDatesReport 1902005	
AnalyticalDatesReport 1902005	
Analytical Report 1902005	10
AnalyticalQCSummaryReport 1902005	

																					- N	<u>⁰</u> ()/	179	
DHL																(CH	łΑ	IN	-C)F-(CUS	STO	DY
Aarson & ssociates, Ir Environmental Consult Data Reported to:	IC. ants	50		arienf and, 1 2-687	X 797	701	200	PO#:		I/ TLOC			NA }	ME:	lab 	wc wc	DRK چە	OR , COI		₹#:_ <u>р-е</u> сто	190	200	_ OF _	
TRRP report? S=SOIL Ves No TIME ZONE: Time zone/State: MST Field Sample I.D. Lab #	e Matrix		PRESE Sand	1		AMAL S									_					150 150 150 150 150 150 150 150 150 150	2 / 11 2 / 11 2 / 11	NOTES		
TMW-1 01			5 ×																				Τροί	
TOTAL RELINQUISHED BY:(Signature Jender Olem RELINQUISHED BY:(Signature Here Le. RELINQUISHED BY:(Signature LABORATORY: D 1-1 L	2/1/14 DATE	E/TIME 9 1 3 (0) E/TIME E/TIME	RECEIV RECEIV RECEIV	L GZ ED BY:	(Signa	ture)		3	- N 1 - 2	TURN A NORMAI DAY DAY	- X	D TIM			ODY RRIE	G TEI SEA R BI	MP: LS - LL #	<u>3</u> . De	∬⊂ 3ROł	(EN)	PINT/	<u>#</u> Аст 🗆	7 <i>8</i> Not Us	SED

1

÷

Page 130 of 158

Received by OCD: 8/22/2023 10:49:18 AM

į

-

ceived by OCD: 8/22/2023 10:49

	Sample	Receipt Check	dist		
Client Name Larson & Associates			Date Recei	ved: 2/1/20	019
Work Order Number 1902005			Received by	/ EL	
Checklist completed by:	2/1/2019)	Reviewed by	y AL	2/1/2019
Signature	Date		·	Initials	Date
	Carrier name	<u>FedEx 1day</u>			
Shipping container/cooler in good condition	?	Yes 🗹	No	Not Present	
Custody seals intact on shippping container	/cooler?	Yes 🗹	No 🗋	Not Present	
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🔽	No 🗔		
Chain of custody signed when relinquished	and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels	?	Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	Νο		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?) .	Yes 🔽	No 🛄		
All samples received within holding time?		Yes 🗹	No []]		
Container/Temp Blank temperature in comp	bliance?	Yes 🗹	No 🗌	3.0 °C	
Water - VOA vials have zero headspace?		Yes 🔽	No	No VOA vials subm	itted
Water - pH<2 acceptable upon receipt?		Yes	Νο	NA 🗹 LOT #	
		Adjusted?		Checked by	
Water - ph>9 (S) or ph>10 (CN) acceptable	upon receipt?	Yes	No	NA 🗹 LOT #	
		Adjusted?		Checked by	• ···· · • -····
Any No response must be detailed in the co	mments section below.	.	~		
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding:				
Comments:					
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
Corrective Action					

Page 1 of 1

Date: 07-Feb-19

CLIENT:Larson & AssociatesProject:Targa EppersonLab Order:1902005

CASE NARRATIVE

Sample was analyzed using the methods outlined in the following references:

Method SW8260C - Volatile Aromatics by GCMS Analysis Method E300 - Anions Analysis

LOG IN

The samples were received and log-in performed on 2/1/2019. A total of 1 sample was received and analyzed. The sample arrived in good condition and was properly packaged. The samples were collected in Mountain Standard Time Zone.

ANIONS ANALYSIS

For Anions Analysis, the recovery of Chloride for the Matrix Spike and Matrix Spike Duplicate (1901297-02 MS/MSD) was below the method control limits. This is flagged accordingly in the QC Summary Report. This anion was within method control limits in the associated LCS. No further corrective action was taken.

.

DHL Analytical, Inc.

Date: 07-Feb-19

CLIENT: Project: Lab Order:	Larson & Associates Targa Epperson 1902005		Work Order Sample	ple Summary			
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved			
1902005-01	Г M W-1		01/31/19 12:31 PM	2/1/2019			

Page 1 of 1

PREP DATES REPORT

-	• • • •						
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1902005-01A	TMW-1	01/31/19 12:31 PM	Aqueous	SW5030C	Purge and Trap Water GC/MS	02/05/19 09:15 AM	89331
	TMW-1	01/31/19 12:31 PM	Aqueous	SW5030C	Purge and Trap Water GC/MS	02/05/19 09:15 AM	89331
1902005-01B	TMW-1	01/31/19 12:31 PM	Aqueous	E300	Anion Preparation	02/01/19 09:45 AM	89286

Received by OCD: 8/22/2023 10:49:18 AM

Lab Order: 1902005 **Client:** Larson & Associates **Project:**

Targa Epperson

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1902005-01A	TMW-1	Aqueous	SW8260C	Volatile Aromatics by GC/MS	89331	100	02/05/19 05:01 PM	GCMS3_190205A
	TMW-1	Aqueous	SW8260C	Volatile Aromatics by GC/MS	89331	10	02/05/19 01:15 PM	GCMS3_190205A
1902005-01B	TMW-1	Aqueous	E300	Anions by IC method - Water	89286	100	02/01/19 07:27 PM	IC2_190201A

Received by OCD: 8/22/2023 10:49:18 AM

Date: 07-Feb-19

CLIENT:	Larson & Associates			Cli	ent Sampl	e ID: TMV	V-1			
Project:	Targa Epperson				La	b ID: 1902	005-01			
Project No:	16-0120-01	Collection Date: 01/31/19 12:31 PM								
Lab Order:	1902005				Ma	atrix: AQU	JEOUS			
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed		
VOLATILE AR	OMATICS BY GC/MS		SW82	60C				Analyst: BTJ		
Benzene		11.6	0.0800	0.200		mg/L	100	02/05/19 05:01 PN		
Ethylbenzene										
Ethylbenzene		1.30	0.200	0.600		mg/L	100	02/05/19 05:01 PM		
Toluene		1.30 9.45	0.200 0.200	0.600 0.600		mg/L mg/L	100 100	02/05/19 05:01 PM 02/05/19 05:01 PM		
2						0		02/05/19 05:01 PM		
Toluene Total Xylenes	hloroethane-d4	9.45	0.200	0.600		mg/L	100	02/05/19 05:01 PM 02/05/19 05:01 PM		
Toluene Total Xylenes Surr: 1,2-Dic	hloroethane-d4 oofluorobenzene	9.45 3.51	0.200 0.200	0.600 0.600		mg/L mg/L	100 100	02/05/19 05:01 PM 02/05/19 05:01 PM 02/05/19 05:01 PM		
Toluene Total Xylenes Surr: 1,2-Dic Surr: 4-Brom		9.45 3.51 103	0.200 0.200 0	0.600 0.600 72-119		mg/L mg/L %REC	100 100 100			

Chloride	150	30.0	100	mg/L	100	02/01/19 07:27 PM
ANIONS BY IC METHOD - WATE	R	E3	00			Analyst: JL
Surr: Toluene-d8	101	0	81-120	%REC	100	02/05/19 05:01 PM
Surf. Dibromonuoromethane	102	0	60-110	%REC	100	02/05/19 05:01 PIVI

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

E TPH pattern not Gas or Diesel Range Pattern

- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

.

.

alytical I

Date: 07-Feb-19

CLIENT: Laison & Associates ANALYTICAL QC SUMMARY REPOR Work Order: 1902005 RunID: GCMS3_190265A The QC data in batch 8633 taptiles to the following samples: 1902005-014 Semiplicitic CS Willing CMS3_190205A Sample ID LCS 98331 Batch ID: 89331 TestNo: SW8280C Units: mg/L Sample ID LCS 9831 Batch ID: 89331 CMS3_190205A Analysis Date: 2/5/2019 10:17:00 AM Prep Date: 2/5/2019 Analysis Date: 2/5/2019 10:17:00 AM Prep Date: 2/5/2019 No 81 2/2 Analysis Date: 2/5/2019 10:17:00 AM Prep Date: 2/5/2019 1/2 1/2 1/2 Analysis Date: 2/5/2019 10:17:00 AM Prep Date: 2/5/2019 1/2 1/2 1/2 Sample ID LSCHARDER: 0.0450 0.0464 0 97.7 77 1/2 1/2 Sur: 12-Dichloroethane=d4 50.6 50.00 1/3 0/2 1/2 1/2 Sample ID MeB4331 Batch ID: 89331 TestNo: SW8280C Units: mg/L	CLIENT:	Larson &	Associates			ΔΝ	JALVT	ICAL (IIMMAR	Y REPORT
The QC data in batch 8331 applies to the following samples: 1902005-01A Units: mg/L Sample ID LCS-89331 Batch ID: 89331 applies to the following samples: 1902005-01A Units: mg/L SampType: LCS Run ID: GCMS3_190205A Analysis Date: 2/5/2019 10:17:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Benzene 0.0445 0.00600 0.0464 0 97.0 73 127 Toluane 0.04450 0.00600 0.0464 0 97.7 71 121 Surr: 2-Dichoroethane-d4 50.6 50.00 101 72 119 Surr: 2-Dichoroethane-d4 50.00 103 85 115 Surr: 2-Dichoroethane-d4 50.00 103 85 115 Surr: 2-Dichoroethane-d4 50.00 103 85 115 SampType: MBLK Run ID: 6CMS3_190205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 SampTope: MBLK Run ID: GCMS3	Work Order:	1902005							-		
Sample ID LCS-99331 Batch ID: 89331 TestNo: SW8280C Units: mg/L SampType: LCS Run ID: GCMS3_190205A Analysis Date: 2/5/2019 10:17:00 AM Prep Date: 2/5/2019 Analysis Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Queblic Banzane 0.0445 0.00200 0.0464 0 97.0 73 127 Toluene 0.0453 0.00600 0.0464 0 97.7 77 122 Tolal Xipenes 0.134 0.00600 0.139 0 96.6 80 121 Surr: 2-Dichloroethane-d4 50.0 99.7 76 119 5000 99.7 120 SampType: MBLK Run ID: GCMS3_190205A Analysis Date: 2/5/2019 101:15: mg/L Analyste Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Queblication SampType: MBLK <th>Project:</th> <th>Targa Epp</th> <th>person</th> <th></th> <th></th> <th></th> <th></th> <th>RunII</th> <th>):</th> <th>GCMS3_19</th> <th>00205A</th>	Project:	Targa Epp	person					RunII):	GCMS3_19	00205A
SampType: LCS Run ID: GCMS3_190205A Analysis Date: 25/2019 10:17:00 AM Prep Date: 25/2019 Analyse Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Queen Benzene 0.0445 0.00600 0.0464 0 97.0 73 127 Toluene 0.0453 0.00600 0.0464 0 97.7 77 122 Surr: 12-Dichloroethane-d4 50.6 50.00 101 72 119 50.00 99.7 76 119 50.00 99.7 78 120 Surr: Dibromofluoromethane 51.4 60.00 103 85 115 50.00 99.7 78 120 SampType: MBLK Run ID: GCMS3_190205A Analysis Date: 2/5/2019 10:4/2:00 AM Prep Date: 2/5/2019 SampType: MBLK Run ID: GCMS3_190205A Analysis Date: 2/5/2019 10:4/2:00 AM Prep Date: 2/5/2019 SampType: MBLK Run ID: SGMS3_190205A	The QC data in ba	tch 89331 app	lies to the fo	llowing sa	mples: 1902	005-01A					
Analyte Result RL SPK value Ret Val %REC LowLimit HighLimit %RPD RPDLimit Queen Benzene 0.0445 0.00200 0.0464 0 96.0 81 122 Toluene 0.0453 0.00600 0.0464 0 97.0 73 127 Toluene 0.0453 0.00600 0.0464 0 97.7 71 122 Toluene 0.0453 0.00600 0.0464 0 97.7 71 122 Surr: 12-Dichloroethane-d4 50.6 50.00 103 85 115 Surr: Dizomofluoromentane 49.9 50.00 99.7 81 120 Sampl ID MB489331 Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MBLK Run ID: GCMS3_190205A Analytsis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Queen SampType: MBLK	Sample ID LCS-8	9331	Batch ID:	89331		TestNo	: SW8	3260C		Units:	mg/L
Benzene 0.0445 0.00200 0.0464 0 96.0 81 122 Ethylbenzene 0.0450 0.00600 0.0464 0 97.0 73 127 Toluene 0.0453 0.00600 0.0464 0 97.7 77 122 Toluene 0.0453 0.00600 0.0464 0 97.7 77 122 Surr: 12-Dichloroethane-d4 50.6 50.00 101 72 119 Surr: 12-Dichloroethane-d4 50.6 50.00 99.7 81 120 Surr: Dicromofluoromethane 51.4 50.00 99.7 81 120 Sample ID MB-89331 Batch ID: 8331 TestNo: SW8260C Units: mg/L Samply pe: MBLK Ru ID: GCMS3_190205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Surr: 12-bichioroethana-d4 50.	SampType: LCS		Run ID:	GCMS3	_190205A	Analys	is Date: 2/5/2	2019 10:17:	00 AM	Prep Date:	2/5/2019
Ethylbenzene 0.0450 0.00600 0.0464 0 97.0 73 127 Toluene 0.0453 0.00600 0.0464 0 97.7 77 122 Toluene 0.0453 0.00600 0.139 0 96.6 80 121 Surr: 12-Dichloroethane-44 50.6 50.00 99.7 76 119 Surr: 12-Dichloroethane-68 49.9 50.00 99.7 81 120 Surr: 10-monfluoronethane 51.4 50.00 99.7 81 120 Sample ID MB-89331 Batch ID: 89331 TestNo: SW8260C LowLinit HighLinit % RPD RPDLinit Qu Analyte Result RL SPK value Ref Val % REC LowLinit HighLinit % RPD RPDLinit Qu Benzene <0.00200	Analyte			Result	RL	SPK value	Ref Val	%REC	LowLir	nit HighLimit %	6RPD RPDLimit Qua
Toluene 0.0453 0.00600 0.0464 0 97.7 77 122 Total Xjenes 0.134 0.00600 0.139 0 96.6 80 121 Surr: 12-Dichloroethane-d4 50.6 50.00 101 7.7 119 Surr: 14-Bromofluorobenzene 49.9 50.00 99.7 76 119 Surr: Toluene-d8 49.9 50.00 99.7 81 120 Surr: Toluene-d8 49.9 50.00 99.7 81 120 Analysis Date: 2f/2019 10-42:00 MM Prep Date: 2f/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quence Benzene <0.00200	Benzene		().0445	0.00200	0.0464	0	96.0	81	122	
Total Xylenes 0.134 0.00600 0.139 0 96.6 80 121 Surr. 1,2-Dichloroethane-d4 50.6 50.00 101 72 119 Surr. 1,2-Dichloroethane-d4 50.6 50.00 99.7 76 119 Surr. Dibromofluoromethane 51.4 50.00 99.7 81 120 Sample ID MB-89331 Batch ID: 89331 TestNo: SW8260C Vmlits: mg/L SampType: MBLK Run ID: GCMS3_190205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quebrate Benzene <0.00600	Ethylbenzene		().0450	0.00600	0.0464	0	97.0	73	127	
Surr. 1,2-Dichloroethane-d4 50.6 50.00 101 72 119 Surr. 4Bromofluorobenzene 49.9 50.00 99.7 76 119 Surr. 10uene-d8 49.9 50.00 99.7 76 119 Surr. Toluene-d8 49.9 50.00 99.7 76 119 Sample ID MB-89331 Batch ID: 89331 TestNo: SW260C Units: mg/L SampType: MBLK Run ID: GCMS3_190205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quence Benzene <0.00600	Toluene		().0453	0.00600	0.0464	0	97.7	77	122	
Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane 49.9 50.00 99.7 76 119 Surr: Toluene-d8 49.9 50.00 90.7 81 120 Sample ID MB-89331 Batch ID: 89331 TestNo: SW2800C Vinits: mg/L SampType: MBLK Run ID: 6CMS3_190205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Benzene <0.00600	Total Xylenes			0.134	0.00600	0.139	0	96.6	80	121	
Surr: Dibromofluoromethane 51.4 50.00 103 85 115 Surr: Toluene-d3 Batch ID: 833.1 TestNo: SW2260C Units: mg/L Sample ID MB-89331 Batch ID: 833.1 TestNo: SW2260C Units: mg/L SampType: MBLK Run ID: GCMS3_100205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quebrate Benzene <0.00600	Surr: 1,2-Dichlor	oethane-d4		50.6		50.00		101	72	119	
Surr: Toluene-d8 49.9 50.00 99.7 81 120 Sample ID MB-89331 Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MBLK Run ID: GCM53_190205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quee Benzene <0.00200	Surr: 4-Bromoflu	iorobenzene		49.9		50.00		99.7	76	119	
Sample ID MB-89331 Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MBLK Run ID: GCMS3_190205A Analysis Date: 2/5/2019 10:42:00 AM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Benzene <0.00200	Surr: Dibromoflu	oromethane		51.4		50.00		103	85	115	
SampType: MBLK Run ID: GCMS3_190205A Analysis Date: 2/5/2019 Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Benzene <0.00200	Surr: Toluene-da	3		49.9		50.00		99.7	81	120	
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quee Benzene <0.00200	Sample ID MB-89	9331	Batch ID:	89331		TestNo	SW8	3260C		Units:	mg/L
Benzene <0.00200 0.00200 Ethylbenzene <0.00600	SampType: MBLK	ζ.	Run ID:	GCMS3	_190205A	Analys	is Date: 2/5/2	2019 10:42:	00 AM	Prep Date:	2/5/2019
Ethylbenzene <0.00600	Analyte			Result	RL	SPK value	Ref Val	%REC	LowLir	nit HighLimit %	6RPD RPDLimit Qu
Toluene <0.00600	Benzene		<	0.00200	0.00200						
Total Xylenes <0.00600	Ethylbenzene		<	0.00600	0.00600						
Surr: 1,2-Dichloroethane-d4 50.9 50.00 102 72 119 Surr: 1,2-Dichloroethane 50.3 50.00 101 76 119 Surr: Dibromofluoromethane 51.1 50.00 102 85 115 Surr: Toluene-d8 49.9 50.00 99.8 81 120 Sample ID 1902005-01AMS Batch ID: 89331 TestNo: SW8260C Units: mg/L Analyte Run ID: GCMS3_190205A Analysis Date: 2/5/2019 52.7:00 PM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Benzene 15.4 0.200 4.64 11.6 81.9 81 122 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 121 Surr: 1,2-Dichloroethane-d4 5080 5000 103 72 119 121 Surr: 1,2-Dichloroethane-d	Toluene		<	0.00600	0.00600						
Surr: 4-Bromofluorobenzene 50.3 50.00 101 76 119 Surr: Dibromofluoromethane 51.1 50.00 102 85 115 Surr: Toluene-d8 49.9 50.00 99.8 81 120 Sample ID 1902005-01AMS Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MS Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:27:00 PM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Benzene 15.4 0.200 4.64 11.6 81.9 81 122 Toluene 13.5 0.600 4.64 1.30 95.2 73 127 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 119 Surr: Toluene-d8 5020 5000 100 76 119 120 115 S	Total Xylenes		<	0.00600	0.00600						
Surr: Dibromofluoromethane Surr: Toluene-d8 51.1 49.9 50.00 50.00 102 99.8 85 81 115 120 Sample ID 1902005-01AMS SampType: MS Batch ID: 89331 TestNo: SW8260C Units: mg/L Analysis Date: 2/5/2019 5:27:00 PM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quitability Benzene 15.4 0.200 4.64 11.6 81.9 81 122 Toblene 13.5 0.600 4.64 13.0 95.2 73 127 Toblene 13.5 0.600 4.64 9.45 87.8 77 122 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 1,2-Dichloroethane-d4 5160 5000 102 85 115 Surr: 1,2-Dichloroethane 5080 5000 100 76 119 Surr: 120 Surr: 1,2-Dichloroethane 5020	Surr: 1,2-Dichlor	oethane-d4		50.9		50.00		102	72	119	
Surr: Toluene-d8 49.9 50.00 99.8 81 120 Sample ID 1902005-01AMS Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MS Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:27:00 PM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPD Interval Benzene 15.4 0.200 4.64 11.6 81.9 81 122 Ethylbenzene 5.72 0.600 4.64 1.30 95.2 73 127 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 2,2-Dichloroethane-d4 5160 5000 100 76 119 Surr: 1,2-Dichloroethane-d4 5020 5000 100 81 120 Surr: Toluene-d8 5	Surr: 4-Bromoflu	orobenzene		50.3		50.00		101	76	119	
Surr: Toluene-d8 49.9 50.00 99.8 81 120 Sample ID 1902005-01AMS Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MS Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:27:00 PM Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPD Intervalue QCMS3_102 Benzene 15.4 0.200 4.64 11.6 81.9 81 122 127 Toluene 5.72 0.600 4.64 1.30 95.2 73 127 122 127 121 122 121 122 121 121 121 122 121 122 121 122 121 122 121 122 121 122 121 122 121 122 121 121 122 121 121 121 121 121 121 121 121 <td></td>											
SampType: MS Run ID: GCMS3_190205A Analysis Date: 2/5/2019 Prep Date: 2/5/2019 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu Benzene 15.4 0.200 4.64 11.6 81.9 81 122 Ethylbenzene 5.72 0.600 4.64 1.30 95.2 73 127 Toluene 13.5 0.600 4.64 9.45 87.8 77 122 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 1,2-Dichloroethane 5020 5000 100 81 120 Surr: 1,2-Dichloroethane 5020 5000 100 81 120 Surr: 1,2-Dichloroethane 5020 5000 100 81 120 Surr:											
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Que Benzene 15.4 0.200 4.64 11.6 81.9 81 122 Ethylbenzene 5.72 0.600 4.64 1.30 95.2 73 127 Toluene 13.5 0.600 4.64 9.45 87.8 77 122 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 4-Bromofluorobenzene 5010 5000 100 76 119 Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	Sample ID 19020	05-01AMS	Batch ID:	89331		TestNo	: SW 8	3260C		Units:	mg/L
Benzene 15.4 0.200 4.64 11.6 81.9 81 122 Ethylbenzene 5.72 0.600 4.64 1.30 95.2 73 127 Toluene 13.5 0.600 4.64 9.45 87.8 77 122 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 4-Bromofluorobenzene 5010 5000 100 76 119 Surr: Dibromofluoromethane 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	SampType: MS		Run ID:	GCMS3	_190205A	Analys	is Date: 2/5/2	2019 5:27:0	0 PM	Prep Date:	2/5/2019
Ethylbenzene 5.72 0.600 4.64 1.30 95.2 73 127 Toluene 13.5 0.600 4.64 9.45 87.8 77 122 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 4-Bromofluorobenzene 5010 5000 100 76 119 Surr: Dibromofluoromethane 5080 5000 102 85 115 Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: <mg td=""> mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019</mg>	Analyte			Result	RL	SPK value	Ref Val	%REC	LowLir	nit HighLimit %	6RPD RPDLimit Qu
Toluene 13.5 0.600 4.64 9.45 87.8 77 122 Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 4-Bromofluorobenzene 5010 5000 100 76 119 Surr: Dibromofluoromethane 5080 5000 102 85 115 Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: <mg td=""> mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019</mg>				15.4	0.200	4.64	11.6	81.9	81	122	
Total Xylenes 16.7 0.600 13.9 3.51 94.9 80 121 Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 4-Bromofluorobenzene 5010 5000 100 76 119 Surr: Dibromofluoromethane 5080 5000 102 85 115 Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	Benzene					4.04			72	127	
Surr: 1,2-Dichloroethane-d4 5160 5000 103 72 119 Surr: 4-Bromofluorobenzene 5010 5000 100 76 119 Surr: Dibromofluoromethane 5080 5000 102 85 115 Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019				5.72	0.600	4.64	1.30	95.2	75		
Surr: 4-Bromofluorobenzene 5010 5000 100 76 119 Surr: Dibromofluoromethane 5080 5000 102 85 115 Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	Ethylbenzene										
Surr: Dibromofluoromethane 5080 5000 102 85 115 Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	Ethylbenzene Toluene			13.5	0.600	4.64	9.45	87.8	77	122	
Surr: Toluene-d8 5020 5000 100 81 120 Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	Ethylbenzene Toluene Total Xylenes	oethane-d4		13.5 16.7	0.600	4.64 13.9	9.45	87.8 94.9	77 80	122 121	
Sample ID 1902005-01AMSD Batch ID: 89331 TestNo: SW8260C Units: mg/L SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	Ethylbenzene Toluene Total Xylenes Surr: 1,2-Dichlor			13.5 16.7 5160	0.600	4.64 13.9 5000	9.45	87.8 94.9 103	77 80 72	122 121 119	
SampType: MSD Run ID: GCMS3_190205A Analysis Date: 2/5/2019 5:52:00 PM Prep Date: 2/5/2019	Ethylbenzene Toluene Total Xylenes Surr: 1,2-Dichlor Surr: 4-Bromoflu	iorobenzene		13.5 16.7 5160 5010	0.600	4.64 13.9 5000 5000	9.45	87.8 94.9 103 100	77 80 72 76	122 121 119 119	
	Ethylbenzene Toluene Total Xylenes Surr: 1,2-Dichlor Surr: 4-Bromoflu Surr: Dibromoflu	iorobenzene ioromethane		13.5 16.7 5160 5010 5080	0.600	4.64 13.9 5000 5000 5000	9.45	87.8 94.9 103 100 102	77 80 72 76 85	122 121 119 119 115	
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	Ethylbenzene Toluene Total Xylenes Surr: 1,2-Dichlor Surr: 4-Bromoflu Surr: Dibromoflu Surr: Toluene-da	iorobenzene ioromethane 3	Batch ID:	13.5 16.7 5160 5010 5080 5020	0.600	4.64 13.9 5000 5000 5000 5000	9.45 3.51	87.8 94.9 103 100 102 100	77 80 72 76 85	122 121 119 119 115 120	mg/L
	Ethylbenzene Toluene Total Xylenes Surr: 1,2-Dichlor Surr: 4-Bromoflu Surr: Dibromoflu Surr: Toluene-da Sample ID 19020	iorobenzene ioromethane 3		13.5 16.7 5160 5010 5080 5020 89331	0.600	4.64 13.9 5000 5000 5000 5000 TestNc	9.45 3.51	87.8 94.9 103 100 102 100 3260C	77 80 72 76 85 81	122 121 119 119 115 120 Units:	-

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

Page 2 of 5

CLIENT: Larson & Associates Work Order: 1902005

ANALYTICAL QC SUMMARY REPORT

Project: Targa Epperson

_

RunID: GCI

GCMS3_190205A

Sample ID 1902005-01AMSD	Batch ID:	89331		TestNo	: SW	8260C		Units:	mg/L	-
SampType: MSD	Run ID:	GCMS3	_190205A	Analysi	s Date: 2/5/	2019 5:52:0	0 PM	Prep Date	e: 2/5/2	2019
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Benzene		15.6	0.200	4.64	11.6	85.6	81	122	1.09	20
Ethylbenzene		5.83	0.600	4.64	1.30	97.5	73	127	1.81	20
Toluene		13.6	0.600	4.64	9.45	90.5	77	122	0.946	20
Total Xylenes		17.1	0.600	13.9	3.51	97.8	80	121	2.43	20
Surr: 1,2-Dichloroethane-d4		5160		5000		103	72	119	0	0
Surr: 4-Bromofluorobenzene		5060		5000		101	76	119	0	0
Surr: Dibromofluoromethane		5090		5000		102	85	115	0	0
Surr: Toluene-d8		5000		5000		100	81	120	0	0

Qualifi	ers:
---------	------

Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

В

Page 3 of 5

CLIENT: Larson & Associates Work Order: 1902005

ANALYTICAL QC SUMMARY REPORT

Project: Targa Epperson

_

RunID: GCMS

GCMS3_19	90205A
----------	--------

Sample ID ICV-190205	Batch ID:	R10222	4	TestNo	: SW	8260C		Units:	mg/L
SampType: ICV	Run ID:	GCMS3	_190205A	Analys	s Date: 2/5/	2019 9:52:0	0 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Benzene		0.0920	0.00200	0.0928	0	99.2	80	120	
Ethylbenzene		0.0939	0.00600	0.0928	0	101	80	120	
Toluene		0.0936	0.00600	0.0928	0	101	80	120	
Total Xylenes		0.281	0.00600	0.278	0	101	80	120	
Surr: 1,2-Dichloroethane-d4		49.8		50.00		99.7	72	119	
Surr: 4-Bromofluorobenzene		50.2		50.00		100	76	119	
Surr: Dibromofluoromethane		50.9		50.00		102	85	115	
Surr: Toluene-d8		49.2		50.00		98.4	81	120	

iers

Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDLMethod Detection LimitRRPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

В

Work Order:	Larson & A 1902005 Targa Epp				AN	ALYTIO	CAL Q RunID	-	U MMAR C2_190201	Y REPO	RT
The QC data in batch	• • • •		llowing sampl	es: 19020	005-01B						
Sample ID MB-8928	86	Batch ID:	89286		TestNo:	E300			Units:	mg/L	
SampType: MBLK		Run ID:	IC2_190201	Α	Analysis	Date: 2/1/20	19 11:03:4	15 AM	Prep Date:	2/1/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit	Qual
Chloride			<1.00	1.00							
Sample ID LCS-892	286	Batch ID:	89286		TestNo:	E300			Units:	mg/L	
SampType: LCS		Run ID:	IC2_190201	Α	Analysis	Date: 2/1/20	19 11:16:4	15 AM	Prep Date:	2/1/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit	Qual
Chloride			9.96	1.00	10.00	0	99.6	90	110		
Sample ID LCSD-8	9286	Batch ID:	89286		TestNo:	E300			Units:	mg/L	
SampType: LCSD		Run ID:	IC2_190201	Α	Analysis	Date: 2/1/20	19 11:29:4	15 AM	Prep Date:	2/1/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit	Qual
Chloride			9.57	1.00	10.00	0	95.7	90	110	3.95 20	
Sample ID 1901270	0-05AMS	Batch ID:	89286		TestNo:	E300			Units:	mg/L	
SampType: MS		Run ID:	IC2_190201	Α	Analysis	Date: 2/1/20	19 3:07:16	6 PM	Prep Date:	2/1/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit	Qual
Chloride			395	10.0	200.0	192.7	101	90	110		
Sample ID 1901270	0-05AMSD	Batch ID:	89286		TestNo:	E300			Units:	mg/L	
SampType: MSD		Run ID:	IC2_190201	Α	Analysis	Date: 2/1/20	19 3:20:16	6 PM	Prep Date:	2/1/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit	Qual
Chloride			395	10.0	200.0	192.7	101	90	110	0.015 20	
Sample ID 1901297	-02AMS	Batch ID:	89286		TestNo:	E300			Units:	mg/L	
SampType: MS		Run ID:	IC2_190201	Α	Analysis	Date: 2/1/20	19 3:46:16	6 PM	Prep Date:	2/1/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit	Qual
Chloride			649	10.0	200.0	477.4	85.8	90	110		S
Sample ID 1901297	-02AMSD	Batch ID:	89286		TestNo:	E300			Units:	mg/L	
SampType: MSD		Run ID:	IC2_190201	Α	Analysis	Date: 2/1/20	19 3:59:16	6 PM	Prep Date:	2/1/2019	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit %	RPD RPDLimit	Qual
Chloride			652	10.0	200.0	477.4	87.1	90	110	0.414 20	S

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 4 of 5 J Analyte detected between MDL and RL MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits Analyte detected between SDL and RL

Ν Parameter not NELAC certified

Released to Imaging: 2/26/2025 8:34:15 AM

J

.

CLIENT: Work Order: Project:	Larson & . 1902005 Targa Epp				AN	ALYT	ICAL (RunII	C	UMMA] [C2_1902(RY REPORT
Sample ID ICV-19	0201	Batch ID:	R102165		TestNo:	E300)		Units:	mg/L
SampType: ICV		Run ID:	IC2_19020 ²	1A	Analysis	a Date: 2/1/2	2019 10:24:	45 AM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPDLimit Qual
Chloride			25.4	1.00	25.00	0	101	90	110	
Sample ID CCV1-	190201	Batch ID:	R102165		TestNo:	E300)		Units:	mg/L
SampType: CCV		Run ID:	IC2_19020 ²	1A	Analysis	a Date: 2/1/2	2019 6:22:1	5 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110	
Sample ID CCV2-	190201	Batch ID:	R102165		TestNo:	E300)		Units:	mg/L
SampType: CCV		Run ID:	IC2_19020 ⁻	1A	Analysis	a Date: 2/1/2	2019 8:06:1	5 PM	Prep Date:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPDLimit Qual
Chloride			9.66	1.00	10.00	0	96.6	90	110	

Qualifiers:	В	Analyte detected in the associated Method Blank	DF	Dilution Factor	
	J	Analyte detected between MDL and RL	MDL	Method Detection Limit	Page 5 of 5
	ND	Not Detected at the Method Detection Limit	R	RPD outside accepted control limits	C
	RL	Reporting Limit	S	Spike Recovery outside control limits	
	J	Analyte detected between SDL and RL	Ν	Parameter not NELAC certified	

15

Released to Imaging: 2/26/2025 8:34:15 AM

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Epperson 16" Pipeline Project Number: 16-0120-01 Location: Lea County, NM

Lab Order Number: 1107006

Current Certification

Report Date: 09/13/21

Larson & Associates, Inc.	Project:	Epperson 16" Pipeline
P.O. Box 50685	Project Number:	16-0120-01
Midland TX, 79710	Project Manager:	Mark Larson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TMW-2	1107006-01	Water	09/03/21 00:00	09-07-2021 08:21
TMW-3	1107006-02	Water	09/03/21 00:00	09-07-2021 08:21
DUP-1	1107006-03	Water	09/03/21 00:00	09-07-2021 08:21

Larson & Associates, Inc.	Project:	Epperson 16" Pipeline
P.O. Box 50685	Project Number:	16-0120-01
Midland TX, 79710	Project Manager:	Mark Larson

TMW-2

1107006-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental I	Lab, L.P.			
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:06	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:06	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:06	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:06	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.4 %	80-120		P110903	09/09/21 09:43	09/10/21 05:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		103 %	80-120		P110903	09/09/21 09:43	09/10/21 05:06	EPA 8021B	
General Chemistry Parameters by H	EPA / Stand	lard Metl	hods						
Chloride	52.8	10.0	mg/L	10	P1I1302	09/13/21 10:01	09/13/21 11:38	EPA 300.0	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710				t Number:	Epperson 16" 16-0120-01 Mark Larson	Pipeline			
					W-3 2 (Water)				
			-	1107000	- (() ater)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental I	ab. L.P.			
Organics by GC		-							
Benzene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:27	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:27	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:27	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:27	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:27	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-120		P110903	09/09/21 09:43	09/10/21 05:27	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	80-120		P110903	09/09/21 09:43	09/10/21 05:27	EPA 8021B	
General Chemistry Parameters b			hods _{mg/L}	25	D111202	00/12/21 10:01	00/12/21 12:25	EDA 200.0	
Chloride	305	25.0	mg/L	25	P1I1302	09/13/21 10:01	09/13/21 12:35	EPA 300.0	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710			-	t Number:	Epperson 16" 16-0120-01 Mark Larson	•			
			-	DU	P-1 3 (Water)				
			-	1107000-0	5 (water)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental I	ab. L.P.			
Organics by GC		_							
Benzene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:48	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:48	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:48	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:48	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P1I0903	09/09/21 09:43	09/10/21 05:48	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-120		P110903	09/09/21 09:43	09/10/21 05:48	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	80-120		P110903	09/09/21 09:43	09/10/21 05:48	EPA 8021B	
General Chemistry Parameters b	y EPA / Stan	dard Met	hods						
Chloride	301	25.0	mg/L	25	P1I1302	09/13/21 10:01	09/13/21 12:54	EPA 300.0	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Epperson 16" Pipeline
P.O. Box 50685	Project Number:	16-0120-01
Midland TX, 79710	Project Manager:	Mark Larson

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P110903 - *** DEFAULT PREP ***										
Blank (P110903-BLK1)				Prepared &	Analyzed:	09/09/21				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		96.7	80-120			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		103	80-120			
LCS (P110903-BS1)				Prepared &	Analyzed:	09/09/21				
Benzene	0.104	0.00100	mg/L	0.100		104	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.105	0.00100	"	0.100		105	80-120			
Xylene (p/m)	0.210	0.00200	"	0.200		105	80-120			
Xylene (o)	0.0944	0.00100	"	0.100		94.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.120		90.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.2	80-120			
LCS Dup (P110903-BSD1)				Prepared &	Analyzed:	09/09/21				
Benzene	0.106	0.00100	mg/L	0.100		106	80-120	2.14	20	
Toluene	0.109	0.00100	"	0.100		109	80-120	3.25	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120	4.09	20	
Xylene (p/m)	0.218	0.00200	"	0.200		109	80-120	3.75	20	
Xylene (o)	0.0981	0.00100		0.100		98.1	80-120	3.80	20	
Surrogate: 4-Bromofluorobenzene	0.108		"	0.120		89.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.8	80-120			
Calibration Blank (P110903-CCB1)				Prepared &	Analyzed:	09/09/21				
Benzene	0.00		mg/L							
Toluene	0.00									
Ethylbenzene	0.500		"							
Xylene (p/m)	1.64		"							
Xylene (o)	0.660									
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		95.5	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		104	80-120			

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project:	Epperson 16" Pipeline
P.O. Box 50685	Project Number:	16-0120-01
Midland TX, 79710	Project Manager:	Mark Larson

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1I0903 - *** DEFAULT PREP ***										
Calibration Blank (P110903-CCB2)				Prepared: (09/09/21 Ar	nalyzed: 09	/10/21			
Benzene	0.00		mg/L							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.860		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		104	80-120			
Calibration Check (P1I0903-CCV1)				Prepared &	Analyzed:	09/09/21				
Benzene	0.107	0.00100	mg/L	0.100		107	80-120			
Toluene	0.108	0.00100	"	0.100		108	80-120			
Ethylbenzene	0.104	0.00100	"	0.100		104	80-120			
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120			
Xylene (o)	0.0954	0.00100	"	0.100		95.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.7	80-120			
Calibration Check (P1I0903-CCV2)				Prepared: ()9/09/21 Ar	nalyzed: 09	/10/21			
Benzene	0.102	0.00100	mg/L	0.100		102	80-120			
Toluene	0.101	0.00100	"	0.100		101	80-120			
Ethylbenzene	0.0970	0.00100	"	0.100		97.0	80-120			
Xylene (p/m)	0.196	0.00200	"	0.200		98.1	80-120			
Xylene (o)	0.0900	0.00100	"	0.100		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		85.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.3	80-120			
Calibration Check (P1I0903-CCV3)				Prepared: ()9/09/21 Ar	nalyzed: 09	/10/21			
Benzene	0.107	0.00100	mg/L	0.100		107	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120			
Xylene (p/m)	0.204	0.00200	"	0.200		102	80-120			
Xylene (o)	0.0944	0.00100	"	0.100		94.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.120		89.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	80-120			

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project: Epperson 16" Pipeline	
P.O. Box 50685	Project Number: 16-0120-01	
Midland TX, 79710	Project Manager: Mark Larson	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
										-

Batch P1I0903 - *** DEFAULT PREP ***

Matrix Spike (P1I0903-MS1)	Sour	ce: 1101012-0	1	Prepared:	09/09/21 An	alyzed: 09	/10/21			
Benzene	0.107	0.00100	mg/L	0.100	0.00272	104	80-120			
Toluene	0.104	0.00100	"	0.100	0.000520	104	80-120			
Ethylbenzene	0.101	0.00100	"	0.100	ND	101	80-120			
Xylene (p/m)	0.201	0.00200	"	0.200	ND	100	80-120			
Xylene (o)	0.0915	0.00100	"	0.100	0.000600	90.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.106		"	0.120		88.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.0	80-120			
Matrix Spike Dup (P1I0903-MSD1)	Sour	ce: 1101012-0)1	Prepared:	09/09/21 An	alyzed: 09	/10/21			
Benzene	0.104	0.00100	mg/L	0.100	0.00272	101	80-120	2.61	20	
Toluene	0.104	0.00100	"	0.100	0.000520	103	80-120	0.454	20	
Ethylbenzene	0.101	0.00100	"	0.100	ND	101	80-120	0.416	20	
Xylene (p/m)	0.202	0.00200	"	0.200	ND	101	80-120	0.779	20	
Xylene (o)	0.0920	0.00100	"	0.100	0.000600	91.4	80-120	0.559	20	
Surrogate: 4-Bromofluorobenzene	0.105		"	0.120		87.1	80-120			-
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.4	80-120			

Permian Basin Environmental Lab, L.P.

La	rson & Associates, Inc.	Project:	Epperson 16" Pipeline
P.C). Box 50685	Project Number:	16-0120-01
Mi	dland TX, 79710	Project Manager:	Mark Larson

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1I1302 - *** DEFAULT PREP ***										
Blank (P1I1302-BLK1)				Prepared &	Analyzed:	09/13/21				
Chloride	ND	1.00	mg/L							
LCS (P111302-BS1)				Prepared &	Analyzed:	09/13/21				
Chloride	40.4	1.00	mg/L	40.0		101	90-110			
LCS Dup (P1I1302-BSD1)				Prepared &	Analyzed:	09/13/21				
Chloride	40.4	1.00	mg/L	40.0		101	90-110	0.0594	10	
Calibration Blank (P1I1302-CCB1)				Prepared &	Analyzed:	09/13/21				
Chloride	-0.0170		mg/L							
Calibration Check (P1I1302-CCV1)				Prepared &	Analyzed:	09/13/21				
Chloride	19.8		mg/L	20.0		99.2	90-110			
Calibration Check (P1I1302-CCV2)				Prepared &	Analyzed:	09/13/21				
Chloride	20.1		mg/L	20.0		100	90-110			
Matrix Spike (P1I1302-MS1)	Sou	rce: 1107006-0)1	Prepared &	Analyzed:	09/13/21				
Chloride	152	10.0	mg/L	100	52.8	98.9	80-120			
Matrix Spike Dup (P1I1302-MSD1)	Sou	rce: 1107006-0)1	Prepared &	Analyzed:	09/13/21				
Chloride	154	10.0	mg/L	100	52.8	101	80-120	1.67	20	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.	Project: Epperson 16" Pipeline
P.O. Box 50685	Project Number: 16-0120-01
Midland TX, 79710	Project Manager: Mark Larson

Notes and Definitions

ROI Received on Ice

pH1 The Regulatory Holding time for pH is < 1 Hour, Analysis should be done in the field.

- BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Report Approved By:

Dup Duplicate

Sun Barron

9/13/2021

Date:

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Rei	eived	l by O	ÇD: (8 /22/	2023	10:	<u>49:</u>	18 A	M	1		1 -	L	in ter	T		1		· · ·		<u> </u>				P	Page	153 0	of 158
LABORATORY: PEEL		RELINQUISHED BY:(Signature)	RELINOPISHED BY (Signature)	TOTAL 3												DUP-1	TMW-3	TMW-2	Field Sample I.D.		TIME ZONE:	TRRP report?	Data Reported to:	Environmental Consultants				
7:	ŝignature)	signature)	signature)													62	2		Lab #			S=SOIL W=WATER A=AIR		al Consultar				
	9/17				 											4		9/3/21	Date					St.	Ì			
	ATE/TIME 2	DATE/TIME	BATE/TIME								-								Time	×7		P=PAINT SL=SLUDGE OT=OTHER						
																1-		٤	Matrix						۲ د	507		
	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)												-				# of Cor			*		4	Midland, TX 79701			
	N ED BY:	ED BY:	ED BY:				-									×	X	*	HCI HNO ₃	20	< \	PRESERVATION		432-687-0901	Midland, TX 79701			
	(Signa	: (Signa	: (Signa													X	X	*) Na(ERVA		7-090	וופוע, TX 79	5		
	ture)	ature)	ature)																UNPRE	SSER	VED	TION		Ξ	אסן 107י	ct>		
						1										X	×	<u>×</u>	AN AL	L.					202	3		
						•													ANN	STS .			5		PC	Ď		
																			CIES AVEN			`	LAI PROJECT #:	PROJECT	PO#:	DATE: _		
																	_		140 80 400 80 50 80 80 50 80 50 80 50 80 50 80 50 50 50 50 50 50 50 50 50 50 50 50 50	5 40 75 5 50 75	Ň		い こ に つ			16		
	õĽ	ן ק																					 #	LOCATION OR NAME:		17		
			JND T				_							_			_		Nº/XV/	V /	$ \ \ \ \ \ \ \ \ \ \ \ \ \$		16-	NO		N		
			IME																2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2				0	ORN				
		REC	LAB			-									_				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		87574 14		20-0	AME				
HAND DELIVERED	CARRIER BILL #	RECEIVING TEMP: CUSTODY SEALS -	LABORATORY USE ONLY: 7.0				-						 _	_			+	-+	10 10 10 10 10 10 10 10 10 10 10 10 10 1			Sec.	10.	1	5			
DELIV	ER BI	IG TE	'ORY								_													Errecson	LAB WORK ORDER#:			
ERE	12	LS-	USE			-+	_						 			_	_		44 X 38	× n	X		I	501	ORK		P	
							-		\neg		_	_	 -			$\overline{\mathbf{x}}$	$\overline{}$	$\overline{}$		100 A			õ		OR		¥	
		Å I	-																CH SIL			XX	COLLECTOR:	16"	DER		Ż	
			0		_								 _		-			\square				C-TH	TOF	Pir			Ò	
		RW#:																		Notes and the second se	X		ĥ	Pipeline	HO	PAGE		Z
		ļ	>																	$\overline{\ }$	No.		TJ4	õ			S	0 #
			-																FIELD NOTES		$\overline{\ }$		E		1006	о Г	CHAIN-OF-CUSTO	Nº 1824
			د																ËS			\searrow	ס			₽	Ö	4
					26/2							·											1	╶┥	Pag	je 1	1 of 1	1

Released to Imaging: 2/26/2025 8:34:15 AM

Appendix H

Historical (1968) Aerial Photograph

Epperson Site USGS 02/03/1968

Appendix I

Public Notice

Draft Public Notice

PUBLIC NOTICE OF 30-DAY PUBLIC COMMENT PERIOD FOR STAGE 2 ABATEMENT PLAN FOR THE EPPERSON 16-INCH PIPELINE RELEASE

Targa Midstream Services, LLC, a subsidiary of Targa Resources Corp., has issued for public comment a Stage 2 Abatement Plan for the Epperson 16-Inch Pipeline release located about 15-milez west of Tatum, in Lea County, New Mexico. On March 31, 2017, the New Mexico Oil Conservation Division (NMOCD) issued the release incident number nOY17709044723 and remediation permit number 1RP-4664. The Stage 2 Abatement Plan summarizes environmental investigations, monitoring, soil remediation, describes current conditions, and need for abatement, as wells as the proposed abatement plan and implementation details.

The NMOCD Director has reviewed the Stage 2 Abatement Plan and determined that the Plan is administratively complete. The NMOCD Director has complied with Subsection B of 19.15.30.15 of the New Mexico Administrative Code by reviewing the document and concluding that it satisfies the requirements of Subsection C of 19.15.30.13.

The public may view the Stage 2 Abatement Plan electronically on the NMOCD public database at https://wwwapps.emnrd.nm.gov/OCD/ OCDPermitting/Data/Incidents/Incidents.aspx. Enter nOY1709044723 in the Incident ID box, then scroll to the bottom of the page and click on Continue. To find the Stage 2 Abatement Plan, click on application ID 78564 dated March 30, 2023. The Stage 2 Abatement Plan can also be viewed by contacting the NMOCD office listed below.

NMOCD is accepting written comments and requests for public hearing that include reasons why a hearing should be held. Before approving the Stage 2 Abatement Plan, NMOCD will consider comments and requests if received within 30 days after publication of this public notice.

Please submit written comments by _____, 2023 to Nelson Velez, Environmental Specialist, New Mexico Oil Conservation Division, 5200 Oakland Avenue, NE Suite 100, Albuquerque, NM 87113 or via email at nelson.velez@emnrd.nm.gov. The responsible party's address is Targa Resources Corp., Christina Higginbotham, 811 Louisiana Street, Suite 2100, Houston, Texas 77002.

This notice was published on or near _____, 2023 in the Albuquerque Journal and Hobbs News-Sun newspapers.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
TARGA MIDSTREAM SERVICES LLC	24650
811 Louisiana Street	Action Number:
Houston, TX 77002	255450
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS		
Created By		Condition Date
michael.buchanan	Determination Letter of Approval submitted to Targa, dated 08/29/2023.	2/26/2025

CONDITIONS

Action 255450