

June 9, 2025

Devon Energy 4134 7 Rivers Highway Carlsbad, New Mexico, 88220

Attention: Jim Raley

Re: Laguna Salado 22 Federal #005 Incident: nAB1914043668

Mr. Raley,

Vertex Resource Group (Vertex) has prepared a sampling report for the sampling activities for Devon Energy on the Laguna Salado 22 Federal #005 located in Eddy County, New Mexico.

Below is the scope of work, respectively.

- Collected background samples 11/5/2024
- Sample SS23-27 and SS23-28 were collected near point of release 4/4/2025 at 0' and 1' with refusal
- Samples were analyzed by laboratory to provide assurance that the spill occurred in an area with naturally high chloride concentrations.

Closure

All data collected by Vertex is proprietary information of Devon Energy. and will not be shared without express consent of client representatives.

We trust this document meets your present requirements. Should you have any questions regarding its content, please do not hesitate to contact the undersigned at 575.200-6167 or chensley@vertexresource.com.

11 3

Sincerely, Chad Hensley

List of Appendices

Appendix A.	Figures
Appendix B.	Data Tables
Appendix C.	Daily Field Report
Appendix D.	Laboratory Results and COC
Appendix E.	Notifications
Appendix F.	Research

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

Appendix A.

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

Appendix B.

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

Client Name: Devon Energy Company Site Name: Laguna Salada 22 Federal #005H NMOCD Tracking #:NAB1914043668 Project #: 22E-01927 Lab Reports: E411152,E504046

	Table 1. Init	ial Characterization Sa	mple and	Laborator	y Results	- Depth to	Groundw	ater <50 f	eet bgs	
	Sample Des	cription			Petrole	eum Hydroo	carbons			
		Vola	atile			Extractable	9		Inorganic	
Sample ID	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SS23-27	0	April 4, 2025	ND	ND	ND	ND	ND	ND	ND	31300
SS23-27	1R	April 4, 2025	ND	ND	ND	ND	ND	ND	ND	10,500
SS23-28	0	April 4, 2025	ND	ND	ND	ND	ND	ND	ND	45,200
SS23-28	1R	April 4, 2025	ND	ND	ND	ND	ND	ND	ND	8,450
BG24-03	0	November 5, 2024	ND	ND	ND	ND	ND	ND	ND	67100
BG24-04	0	November 5, 2024	ND	ND	ND	ND	ND	ND	ND	54100
BG24-05	0	November 5, 2024	ND	ND	ND	ND	ND	ND	ND	63600
BG24-06	0	November 5, 2024	ND	ND	ND	ND	ND	ND	ND	28800
BG24-07	0	November 5, 2024	ND	ND	ND	ND	ND	ND	ND	32600
BG24-08	0	November 5, 2024	ND	ND	ND	ND	ND	ND	ND	26400

"R" indicates Refusal

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

Bold and green shaded indicates exceedance outside of NM OCD Reclamation Criteria (off-pad)

Appendix C.

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

Client:	Devon Energy Corporation	Inspection Date:	11/5/2024
Site Location Name:	Laguna Salado 22 Federal #005H	Report Run Date:	4/17/2025 5:53 PM
Client Contact Name:	Jim Raley	API #:	
Client Contact Phone #:	575-748-0176		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of T	Times
Arrived at Site	11/5/2024 2:10 PM		
Departed Site	11/5/2024 4:30 PM		
		Field Note	25
12:53 Background sam	ples collected		
12:54 Samples titrated	and petro flagged		

Next Steps & Recommendations

1 Coc for samples, send to lab for further analysis

Site Photos Viewing Direction: Northwest Viewing Direction: Southwest BG24-02 BG24-01 Viewing Direction: West Viewing Direction: West BG24-04 BG24-03

Viewing Direction: Northwest	Viewing Direction: Northwest
BG24-05	BG24-06
Viewing Direction: Northwest	Viewing Direction: West
Pennon er Phot Pennon	Surflagtive Sitester S Surflagtive
BG24-07	BG24-08

•

Daily Site Visit Signature

Inspector: Riley Arnold K_{1} Signature:

•

Client:	Devon Energy Corporation	Inspection Date:	4/4/2025
Site Location Name:	Laguna Salado 22 Federal #005H	Report Run Date:	4/7/2025 1:53 AM
Client Contact Name:	Jim Raley	API #:	
Client Contact Phone #:	575-748-0176		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of T	Fimes
Arrived at Site	4/4/2025 9:00 AM		
Departed Site	4/4/2025 1:00 PM		
		Field Note	es

9:47 BH23-27 and 28 were collected at surface and 1'/ refusal

Next Steps & Recommendations

1 Coc and send to lab

Site Photos Viewing Direction: West Image: Site Photos Viewing Direction: Northwest Image: Site Photos Viewing Direction: Northwest Image: Site Photos Viewing Direction: Northwest Image: Site Photos Site Photos Image: Site Photos Image

Daily Site Visit Signature

Inspector: Riley Arnold

Signature:

MA

•

Appendix D.

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Vertex Resource Services Inc.

Project Name:

Laguna Salado 22 Federal #005H

Work Order: E411152

Job Number: 01058-0007

Received: 11/15/2024

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 11/21/24

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 11/21/24

Chad Hensley 3101 Boyd Drive Carlsbad, NM 88220

Page 16 of 128

Project Name: Laguna Salado 22 Federal #005H Workorder: E411152 Date Received: 11/15/2024 6:30:37AM

Chad Hensley,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 11/15/2024 6:30:37AM, under the Project Name: Laguna Salado 22 Federal #005H.

The analytical test results summarized in this report with the Project Name: Laguna Salado 22 Federal #005H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices: Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com

Michelle Gonzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
BG24-01 @ 0'	5
BG24-02 @ 0'	6
BG24-03 @ 0'	7
BG24-04 @ 0'	8
BG24-05 @ 0'	9
BG24-06 @ 0'	10
BG24-07 @ 0'	11
BG24-08 @ 0'	12
QC Summary Data	13
QC - Volatile Organics by EPA 8021B	13
QC - Nonhalogenated Organics by EPA 8015D - GRO	14
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	15
QC - Anions by EPA 300.0/9056A	16
Definitions and Notes	17
Chain of Custody etc.	18

BG24-02 @ 0'

BG24-03 @ 0'

BG24-04 @ 0'

BG24-05 @ 0'

BG24-06 @ 0'

BG24-07 @ 0'

BG24-08 @ 0'

Received by OCD: 6/9/2025 11:3	2:38 AM				Pag
		Sample Sum	mary		
Vertex Resource Services Inc.		Project Name:	Laguna Salado 22	Federal #005H	Reported:
3101 Boyd Drive		Project Number:	01058-0007		Reporteu.
Carlsbad NM, 88220		Project Manager:	Chad Hensley		11/21/24 14:54
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
BG24-01 @ 0'	E411152-01A	Soil	11/5/24	11/15/24	Glass Jar, 2 oz.

E411152-02A

E411152-03A

E411152-04A

E411152-05A

E411152-06A

E411152-07A

E411152-08A

Soil

Soil

Soil

Soil

Soil

Soil

Soil

11/5/24

11/5/24

11/5/24

11/5/24

11/5/24

11/5/24

11/5/24

11/15/24

11/15/24

11/15/24

11/15/24

11/15/24

11/15/24

11/15/24

Glass Jar, 2 oz.

	25	imple D	ลเล			
Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220	Project Name: Project Numbe Project Manag	er: 010	una Salado 22 Fed 58-0007 d Hensley	eral #005H		Reported: 11/21/2024 2:54:03PM
	В	G24-01 @ 0	,			
	-	E411152-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: BA		Batch: 2446147
Benzene	ND	0.0250	1	11/15/24	11/20/24	
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24	
Toluene	ND	0.0250	1	11/15/24	11/20/24	
p-Xylene	ND	0.0250	1	11/15/24	11/20/24	
o,m-Xylene	ND	0.0500	1	11/15/24	11/20/24	
Fotal Xylenes	ND	0.0250	1	11/15/24	11/20/24	
Surrogate: 4-Bromochlorobenzene-PID		98.1 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	Analyst: BA		Batch: 2446147
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.2 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	Analyst: AF		Batch: 2446158
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24	
Dil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24	
Surrogate: n-Nonane		96.3 %	50-200	11/15/24	11/16/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: JM		Batch: 2447014
Chloride	33800	1000	50	11/18/24	11/19/24	

Sample Data

	5	ampie D	ala			
Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220	Project Name Project Numb Project Manaş	er: 010:	una Salado 22 Fec 58-0007 d Hensley	Reported: 11/21/2024 2:54:03PM		
	В	G24-02 @ 0	,			
		E411152-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: BA		Batch: 2446147
Benzene	ND	0.0250	1	11/15/24	11/20/24	
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24	
Toluene	ND	0.0250	1	11/15/24	11/20/24	
p-Xylene	ND	0.0250	1	11/15/24	11/20/24	
o,m-Xylene	ND	0.0500	1	11/15/24	11/20/24	
Total Xylenes	ND	0.0250	1	11/15/24	11/20/24	
Surrogate: 4-Bromochlorobenzene-PID		98.6 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: BA			Batch: 2446147
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.6 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: AF			Batch: 2446158
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24	
Dil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24	
Surrogate: n-Nonane		98.8 %	50-200	11/15/24	11/16/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: JM		Batch: 2447014
Chloride	4210	100	5	11/18/24	11/19/24	

	5	ample D	ala			
Vertex Resource Services Inc.	Project Name:	: Lag	una Salado 22 Fed	eral #005H		
3101 Boyd Drive	Project Numb	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Cha	d Hensley			11/21/2024 2:54:03PM
	В	G24-03 @ 0	,			
		E411152-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: BA		Batch: 2446147
Benzene	ND	0.0250	1	11/15/24	11/20/24	
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24	
oluene	ND	0.0250	1	11/15/24	11/20/24	
-Xylene	ND	0.0250	1	11/15/24	11/20/24	
,m-Xylene	ND	0.0500	1	11/15/24	11/20/24	
Total Xylenes	ND	0.0250	1	11/15/24	11/20/24	
urrogate: 4-Bromochlorobenzene-PID		99.3 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: BA			Batch: 2446147
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24	
urrogate: 1-Chloro-4-fluorobenzene-FID		89.3 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: AF			Batch: 2446158
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24	
Dil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24	
urrogate: n-Nonane		96.8 %	50-200	11/15/24	11/16/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: JM		Batch: 2447014
Chloride	67100	2000	100	11/18/24	11/20/24	

	5	ampie D	ala			
Vertex Resource Services Inc.	Project Name:	: Lag	una Salado 22 Fed	leral #005H		
3101 Boyd Drive	Project Numb	er: 010	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Cha	d Hensley			11/21/2024 2:54:03PM
	В	G24-04 @ 0	1			
		E411152-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	t: BA		Batch: 2446147
Benzene	ND	0.0250	1	11/15/24	11/20/24	
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24	
Toluene	ND	0.0250	1	11/15/24	11/20/24	
p-Xylene	ND	0.0250	1	11/15/24	11/20/24	
o,m-Xylene	ND	0.0500	1	11/15/24	11/20/24	
Total Xylenes	ND	0.0250	1	11/15/24	11/20/24	
Surrogate: 4-Bromochlorobenzene-PID		99.5 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: BA			Batch: 2446147
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.9 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: AF			Batch: 2446158
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24	
Dil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24	
Surrogate: n-Nonane		107 %	50-200	11/15/24	11/16/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	t: JM		Batch: 2447014
Chloride	54100	2000	100	11/18/24	11/20/24	

	50	ample D	ala					
	Project Name:		una Salado 22 Fed	eral #005H				
3101 Boyd Drive	Project Numbe		58-0007			Reported:		
Carlsbad NM, 88220	Project Manag	er: Cha	d Hensley			11/21/2024 2:54:03PM		
	В	G24-05 @ 0	1					
		E411152-05						
		Reporting						
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes		
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: BA		Batch: 2446147		
Benzene	ND	0.0250	1	11/15/24	11/20/24			
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24			
Toluene	ND	0.0250	1	11/15/24	11/20/24			
p-Xylene	ND	0.0250	1	11/15/24	11/20/24			
p,m-Xylene	ND	0.0500	1	11/15/24	11/20/24			
Total Xylenes	ND	0.0250	1	11/15/24	11/20/24			
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	11/15/24	11/20/24			
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: BA		Batch: 2446147		
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24			
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.6 %	70-130	11/15/24	11/20/24			
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: AF		Batch: 2446158		
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24			
Oil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24			
Surrogate: n-Nonane		99.4 %	50-200	11/15/24	11/16/24			
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: JM		Batch: 2447014		
Chloride	63600	2000	100	11/18/24	11/20/24			

	50	ample D	ala					
Vertex Resource Services Inc.	Project Name:	Lag	una Salado 22 Fed	eral #005H				
3101 Boyd Drive	Project Numbe	er: 0103	58-0007			Reported:		
Carlsbad NM, 88220	Project Manag	er: Cha	d Hensley			11/21/2024 2:54:03PM		
	B	G24-06 @ 0	,					
		E411152-06						
		Reporting						
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes		
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: BA		Batch: 2446147		
Benzene	ND	0.0250	1	11/15/24	11/20/24			
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24			
Toluene	ND	0.0250	1	11/15/24	11/20/24			
p-Xylene	ND	0.0250	1	11/15/24	11/20/24			
o,m-Xylene	ND	0.0500	1	11/15/24	11/20/24			
Fotal Xylenes	ND	0.0250	1	11/15/24	11/20/24			
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	11/15/24	11/20/24			
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: BA		Batch: 2446147		
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24			
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.3 %	70-130	11/15/24	11/20/24			
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: AF		Batch: 2446158		
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24			
Dil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24			
Surrogate: n-Nonane		93.6 %	50-200	11/15/24	11/16/24			
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: JM		Batch: 2447014		
Chloride	28800	1000	50	11/18/24	11/20/24			

	5	ample D	ala				
Vertex Resource Services Inc.	Project Name	: Lag	una Salado 22 Fed	eral #005H			
3101 Boyd Drive	Project Numb	oer: 0103	58-0007			Reported:	
Carlsbad NM, 88220	Project Manag	ger: Cha	d Hensley			11/21/2024 2:54:03P	
	В	G24-07 @ 0	1				
		E411152-07					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: BA		Batch: 2446147	
Benzene	ND	0.0250	1	11/15/24	11/20/24		
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24		
oluene	ND	0.0250	1	11/15/24	11/20/24		
o-Xylene	ND	0.0250	1	11/15/24	11/20/24		
p,m-Xylene	ND	0.0500	1	11/15/24	11/20/24		
Fotal Xylenes	ND	0.0250	1	11/15/24	11/20/24		
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	11/15/24	11/20/24		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	:: BA		Batch: 2446147	
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24		
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.7 %	70-130	11/15/24	11/20/24		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: AF		Batch: 2446158	
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24		
Dil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24		
Surrogate: n-Nonane		99.9 %	50-200	11/15/24	11/16/24		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: JM		Batch: 2447014	
Chloride	32600	1000	50	11/18/24	11/20/24		

	56	ample D	ala			
Vertex Resource Services Inc.	Project Name:	Lag	una Salado 22 Fed	leral #005H		
3101 Boyd Drive	Project Numbe	er: 0103	58-0007			Reported:
Carlsbad NM, 88220	Project Manag	er: Cha	d Hensley			11/21/2024 2:54:03PM
	B	G24-08 @ 0	,			
		E411152-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: BA		Batch: 2446147
Benzene	ND	0.0250	1	11/15/24	11/20/24	
Ethylbenzene	ND	0.0250	1	11/15/24	11/20/24	
Toluene	ND	0.0250	1	11/15/24	11/20/24	
p-Xylene	ND	0.0250	1	11/15/24	11/20/24	
p,m-Xylene	ND	0.0500	1	11/15/24	11/20/24	
Total Xylenes	ND	0.0250	1	11/15/24	11/20/24	
Surrogate: 4-Bromochlorobenzene-PID		99.9 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: BA		Batch: 2446147
Gasoline Range Organics (C6-C10)	ND	20.0	1	11/15/24	11/20/24	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.6 %	70-130	11/15/24	11/20/24	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: AF		Batch: 2446158
Diesel Range Organics (C10-C28)	ND	25.0	1	11/15/24	11/16/24	
Oil Range Organics (C28-C36)	ND	50.0	1	11/15/24	11/16/24	
Surrogate: n-Nonane		103 %	50-200	11/15/24	11/16/24	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: JM		Batch: 2447014
Chloride	26400	1000	50	11/18/24	11/20/24	

QC Summary Data

Vertex Resource Services Inc.		Project Name:		Laguna Salado 2	22 Federal	#005H		Reported: 11/21/2024 2:54:03PM		
3101 Boyd Drive		Project Number:	(01058-0007						
Carlsbad NM, 88220		Project Manager:	(Chad Hensley						
		Analyst: BA								
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2446147-BLK1)	Prepared: 1	1/15/24	Analyzed: 11/19/24							
Benzene	ND	0.0250								
Ethylbenzene	ND	0.0250								
Toluene	ND	0.0250								
o-Xylene	ND	0.0250								
o,m-Xylene	ND	0.0500								
Total Xylenes	ND	0.0250								
Surrogate: 4-Bromochlorobenzene-PID	7.59		8.00		94.9	70-130				
LCS (2446147-BS1)							Prepared: 1	1/15/24	Analyzed: 11/20/24	
Benzene	5.37	0.0250	5.00		107	70-130				
Ethylbenzene	5.18	0.0250	5.00		104	70-130				
Foluene	5.29	0.0250	5.00		106	70-130				
p-Xylene	5.19	0.0250	5.00		104	70-130				
p,m-Xylene	10.6	0.0500	10.0		106	70-130				
Total Xylenes	15.7	0.0250	15.0		105	70-130				
Surrogate: 4-Bromochlorobenzene-PID	8.14		8.00		102	70-130				
LCS Dup (2446147-BSD1)							Prepared: 1	1/15/24	Analyzed: 11/19/24	
Benzene	5.19	0.0250	5.00		104	70-130	3.38	20		
Ethylbenzene	4.98	0.0250	5.00		99.5	70-130	4.07	20		
Toluene	5.09	0.0250	5.00		102	70-130	3.91	20		
p-Xylene	4.99	0.0250	5.00		99.8	70-130	4.04	20		
p,m-Xylene	10.1	0.0500	10.0		101	70-130	4.11	20		
Total Xylenes	15.1	0.0250	15.0		101	70-130	4.08	20		
Surrogate: 4-Bromochlorobenzene-PID	7.60		8.00		95.0	70-130				

QC Summary Data

		L - 1							
Vertex Resource Services Inc.		Project Name:		Laguna Salado	22 Federal	#005H			Reported:
3101 Boyd Drive		Project Number	:	01058-0007					•
Carlsbad NM, 88220		Project Manage	r:	Chad Hensley					11/21/2024 2:54:03PM
	No		Analyst: BA						
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2446147-BLK1)							Prepared: 1	1/15/24 A	nalyzed: 11/19/24
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.18		8.00		89.7	70-130			
LCS (2446147-BS2)							Prepared: 1	1/15/24 A	nalyzed: 11/21/24
Gasoline Range Organics (C6-C10)	42.1	20.0	50.0		84.2	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.34		8.00		91.7	70-130			
LCS Dup (2446147-BSD2)							Prepared: 1	1/15/24 A	nalyzed: 11/20/24
Gasoline Range Organics (C6-C10)	46.4	20.0	50.0		92.8	70-130	9.72	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.38		8.00		92.3	70-130			

QC Summary Data

		QC DI		lary Data	L				
Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220		Project Name: Project Number: Project Manager:		Laguna Salado 2 01058-0007 Chad Hensley	2 Federal	#005H			Reported: 11/21/2024 2:54:03PM
	Nonha		Analyst: AF						
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2446158-BLK1)							Prepared: 1	1/15/24 A	nalyzed: 11/16/24
Diesel Range Organics (C10-C28)	ND	25.0					-		-
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	54.3		50.0		109	50-200			
LCS (2446158-BS1)							Prepared: 1	1/15/24 A	analyzed: 11/16/24
Diesel Range Organics (C10-C28)	269	25.0	250		108	38-132			
Surrogate: n-Nonane	55.8		50.0		112	50-200			
Matrix Spike (2446158-MS1)				Source: I	E 411152-	04	Prepared: 1	1/15/24 A	analyzed: 11/16/24
Diesel Range Organics (C10-C28)	274	25.0	250	ND	110	38-132			
Surrogate: n-Nonane	59.3		50.0		119	50-200			
Matrix Spike Dup (2446158-MSD1)				Source: I	E411152-	04	Prepared: 1	1/15/24 A	analyzed: 11/16/24
Diesel Range Organics (C10-C28)	278	25.0	250	ND	111	38-132	1.30	20	
Surrogate: n-Nonane	57.7		50.0		115	50-200			

QC Summary Data

		-		v					
Vertex Resource Services Inc.		Project Name:]	Laguna Salado 2	22 Federal		Reported:		
3101 Boyd Drive		Project Number:		01058-0007					
Carlsbad NM, 88220		Project Manager	: (Chad Hensley					11/21/2024 2:54:03PM
		Anions	by EPA	300.0/9056A	A Contraction of the second se				Analyst: JM
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2447014-BLK1)							Prepared: 1	1/18/24 <i>A</i>	Analyzed: 11/19/24
Chloride	ND	20.0							
LCS (2447014-BS1)							Prepared: 1	1/18/24 A	Analyzed: 11/19/24
Chloride	258	20.0	250		103	90-110			
LCS Dup (2447014-BSD1)							Prepared: 1	1/18/24 A	Analyzed: 11/19/24
Chloride	257	20.0	250		103	90-110	0.239	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Vertex Resource Services Inc.	Project Name:	Laguna Salado 22 Federal #005H	
3101 Boyd Drive	Project Number:	01058-0007	Reported:
Carlsbad NM, 88220	Project Manager:	Chad Hensley	11/21/24 14:54

ND	Analyte NOT DETECTED at or above the reporting limit	
----	--	--

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Chain of Custody

	Clie	nt Inform	nation					Invo	ice Info	ormation					La	b Us	e Or	ly				T	AT			State	!
Client: V	ertex (bill to	Devon)					Co	mpany	: Devo	n Energy		l	ab W	/Q#			Job	Num	ber		1D	2D	3D	Std	NM CC) UT	ТХ
Project N	<u>lame:_Lagun</u>	a Salado	22 Federa	al #005H_						uena Vista			.ab W E 4		54	2	OC	<u>51</u>	. 00	\mathbf{v}				x	×		
	<u> Manager: Ch</u>		ey 🛛			City				<u>ad , NM, 8</u>	3220		_														
	<u>_3101 Boyd</u>						Phone	<u>e:57</u>	75-689-	7597			L				Ana	lysis	and	Met	hod				EPA F	Progra	m
	e, Zip: Carls		88220				<u> </u>	ail: J	im.Rale	ey@dvn.co	<u></u>														SDWA C	WA	RCR/
	575-200-61					Misc	ellanec	ous:			i															_	
<u>Email: R</u>	arnold@vert	exresourc	<u>ce.com, R</u>	plogger@	<u>⊉vert</u>									8015	015			_							Compliance	Y	or
•	· · · · · · · · · · · · · · · · · · ·			C	anla Infai				· · · · ·			_	_	à	۶¢	021	8	80.0	Σ	Ĕ	etals	A R			PWSID #		
				San	nple Infor	matio	<u>n</u>					Lak		8	8	by 8	¥ 8.	de 3	<u>.</u>	80	8	/Ank			Ba		
Time Sampled	Date Sampled	Matrix	No. of Containers				Sample	ID			Field Filter	Lab Numi) Der	DRO/ORO by	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Chloride 300.0	BGDOC - NM	TCEQ 1005 - TX	RCRA 8 Metals	Cation/Anion Pkg			Kei	marks	
9:00	11.13.24	Soil	1			BG	24-01	@ 0'			,	l	3	X	x	x		х									
9:15	11.13.24	Soil	1			BG	24-02	@ 0'				2		X	x	x		x									
0.6315	11.13.24	Soil	1			BG	24-03	@ 0'				3		X	x	x		x									
9:36	11.13.24	Soil	1			BG	24-04	@ 0'				4		×	x	x		x									
9:52	11.13.24	Soil	1			BG	24-05	@ 0'				5		X	x	x		x							<u> </u>		
10:08	11.13.24	Soil	1			BG	24-07	@ 0'	-			(0		X	x	x		x									
10:22	11.13.24	Soil	1			BG	24-07	@ 0'				7	;	×	x	x		x									
10:42	11.13.24	Soil	1			BG	24-08	@ 0'				8)	X	x	x		x									
		-																									
							· · · · ·																				
Addition	al Instruction	ıs: WO:	22E-019	27 Jim	Raley																	I					
	eler), attest to the	validity and	authenticity	of this sampl	le. I am awai	re that tai	mpering	with or in	ntentional	ily mislabeling	the samp	e locatio	on, date	e or ti	me of	collec	tion is	consid	lered f	raud ai	nd may	y be gr	oundsi	for lega	action.		
ampled by: Relinquishe	ed by: (Signature	<u> </u>	Date		Time		Ranoiver	1.00.152	anature)		Date		177	me					Samp!e	s requi	ring the	malo	eservati	ion mus	t be received on ice	the day th	nev are
$R \gg$	h and the second com	-1		14.24	10:0	zľ	Whe	hall	e Gi	onsale	1	142	4 [``	In	22										temp above 0 but les		
Relinquish	d by Signature	e) naale	Date	14-24		F	Rective	by: Sie		- 0	Date	<u></u> .							Rece	eived	on i	-e.		ib Us / N	e Only		
Relinquiche	ed by: (Signature		Date		Time		Received	I by:/Sig	enature)	mar	Date	15.2	<u>u</u> 17	me ^!	20				T1		011 1		57	, 14	T 3		
lelinquishe	ed by: (Signature	2)	Date	4.24	Time	1 2	Received	J by: (Sig	gnature)		Date	1.0	1 <u>C</u>	me	$\overline{\mathbf{w}}$				<u>14</u>	.	. 90	-4	<u>14</u>		<u></u>		
					1														IAVG	Tem	D C	- 1					

Note: Samples are discarded 14 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at the client expense. The report for the analysis of the above samples envirotech is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for on the report.

Received by OCD: 6/9/2025 11:32:38 AM

Chain of Custody

	Clie	nt Inform	ation			Invoice Informatio	on		1		La	b Use	Only	,			TA	T	State
	ertex (bill to ame: Lagun		22 Feder	al #005H		Company: Devon Energy Address: 5315 Buena Vi			Lab	N9#	15	2 1	b Nu	mbe	m	1D	2D	3D Std	
roject N	lanager: Cha	ad Hensle			Cit	ty, State, Zip: Carlsbad , NM													
	3101 Boyd o e, Zip: Carlsl		88220		_	Phone: 575-689-7597				- 1	-		Analy	isis ar	d Me	hod		-	EPA Program SDWA CWA RCR
	575-200-616		00220		Mis	Email: Jim.Raley@dvi cellaneous:	n.com	-											SDWA CWA RCR
mail: Ra	arnold@vert	exresourc	e.com, R	plogger@						015	015				-				Compliance Y or
			-	Cam	ple Informatio	0.0		_		py 8	by 8	021	99	000 W	×1.	etals	on Pkg		PWSID #
Time Sampled	Date Sampled	Matrix	No. of Containers	Jain	pie mormati	Sample ID	Field	L	ab nber	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Chloride 300.0	TCEQ 1005 - TX	RCRA 8 Metals	Cation/Anion		Remarks
9:00	11.13.24	Soil	1		В	G24-01 @ 0'	1		1	X	x	x		x					Corrected
9:15	11.13.24	Soil	1		В	G24-02 @ 0'		2	?	X	x	x		x					Sample time
0.6315	11.13.24	Soil	1		В	G24-03 @ 0'		2 N	5	X	x	x	1	x					and sample
9:36	11.13.24	Soil	1			G24-04 @ 0'		L	6	×	x	x	3	x					name to
9:52	11.13.24	Soil	1			G24-05 @ 0'		5	>	X	x	x		x					Match Contail
10:08	11.13.24	Soil	1	1.44		G24- 07 -@ 0'	1	4)	X	x	x		x					Per Client.
10:22	11.13.24	Soil	1			G24-07 @ 0'		7		×	x	x	1	x					11/15/24 CM
10:42	11.13.24	Soil	1		B	G24-08 @ 0'		8		×	x	x	1	x					
						and the second second		-	-										
dditiona	al Instruction	15: WO:	22E-019	27 Jim	Raley									_					
		validity and a	authenticity	of this sample	. I am aware that I	tampering with or intentionally mislabe	eling the samp	ole loca	tion, da	te or ti	ime of	collectio	n is co	nsidere	l fraud a	nd ma	be gro	unds for lega	al action.
elinquishe	d by: (Signature	:)	Date	14.24	Time 10:02	Breived by: (Signature) Michaele Gonza	lec II-	.14.	14	Time	02			1000					st be received on ice the day they are temp above 0 but less than 6 °C on
elinquishe	d by Signature	nzale	Date	14.14	Time	Rectives by: (Signature)	Date	14.	24	Time	200			Re	ceived	oni	ce:	Y/N	e Only
elinquiche	doy: (Signature	.) 0	Date	4.24	Time	Received by: (Signature)	~ Date	15	211	Time	20								тз

Container Type: g - glass, p - poly/plastic, ag - amber glass, v - VOA Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other Note: Samples are discarded 14 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at the client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for on the report.

Page _____ of ____

Page 33 of 128

envirotech

AVG Temp °C

C

Released to Imaging: 6/9/2025 4:48:32 PM

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

lient:	Vertex Resource Services Inc. D	ate Received:	11/15/24 0	6:30	Work Order ID: E411152	
Phone:	(575) 748-0176 D	ate Logged In:	11/14/24 14	4:30	Logged In By: Caitlin Mars	
Email:		Due Date:	11/21/24 1	7:00 (4 day TAT)		
Chain o	of Custody (COC)					
1. Does	the sample ID match the COC?		No			
2. Does	the number of samples per sampling site location match	the COC	Yes			
3. Were samples dropped off by client or carrier?		Yes	Carrier: C	Courier		
4. Was t	he COC complete, i.e., signatures, dates/times, requested	d analyses?	No			
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution	
<u>Sample</u>	<u>Turn Around Time (TAT)</u>					
6. Did th	he COC indicate standard TAT, or Expedited TAT?		Yes		Sampled by not provided on COC.	
Sample	Cooler				Sampled time for #3 incorrect. Duplicate	
7. Was a	a sample cooler received?		Yes		sample names for #6 & #7. Corrected both	
8. If yes	, was cooler received in good condition?		Yes		to match containers per client.	
9. Was t	he sample(s) received intact, i.e., not broken?		Yes		to make of the original for the original	
10. Were	e custody/security seals present?		No			
11. If ye	es, were custody/security seals intact?		NA			
12. Was 1	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re- minutes of sampling		Yes			
13. If no	o visible ice, record the temperature. Actual sample ter	mperature: 4°	С			
	Container		<u> </u>			
	aqueous VOC samples present?		No			
	VOC samples collected in VOA Vials?		NA			
	e head space less than 6-8 mm (pea sized or less)?		NA			
	a trip blank (TB) included for VOC analyses?		NA			
	non-VOC samples collected in the correct containers?		Yes			
19. Is the	e appropriate volume/weight or number of sample container	s collected?	Yes			
Field La	abel					
20. Were	e field sample labels filled out with the minimum inform	nation:				
	Sample ID?		Yes			
	Date/Time Collected?		Yes			
	Collectors name?		No			
	<u>Preservation</u> s the COC or field labels indicate the samples were prese	erved?	No			
	sample(s) correctly preserved?		NA			
	b filteration required and/or requested for dissolved meta	als?	No			
	nase Sample Matrix	÷				
	s the sample have more than one phase, i.e., multiphase?	•	No			
	es, does the COC specify which phase(s) is to be analyze		NA			
-	tract Laboratory		117			
	samples required to get sent to a subcontract laboratory?	,	No			
	samples required to get sent to a subcontract (aboratory)		TAO			
	a subcontract laboratory specified by the client and if so		NA	Subcontract Lab	n NA	

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Vertex Resource Services Inc.

Project Name:

Laguna Salado 22 Federal #005H

Work Order: E504046

Job Number: 01058-0007

Received: 4/8/2025

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 4/14/25

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 4/14/25

Chad Hensley 3101 Boyd Drive Carlsbad, NM 88220

Page 36 of 128

Project Name: Laguna Salado 22 Federal #005H Workorder: E504046 Date Received: 4/8/2025 8:00:00AM

Chad Hensley,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 4/8/2025 8:00:00AM, under the Project Name: Laguna Salado 22 Federal #005H.

The analytical test results summarized in this report with the Project Name: Laguna Salado 22 Federal #005H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices: Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com

Michelle Gonzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com
•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SS23-27 @ 0'	5
SS23-27 @ 1' R	6
SS23-28 @ 0'	7
SS23-28 @ 1' R	8
QC Summary Data	9
QC - Volatile Organics by EPA 8021B	9
QC - Nonhalogenated Organics by EPA 8015D - GRO	10
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	11
QC - Anions by EPA 300.0/9056A	12
Definitions and Notes	13
Chain of Custody etc.	14

Sample	Summary
Sample	Summery

		Sample Sum	mai y		
Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220		Project Name: Laguna Salado 22 Fed Project Number: 01058-0007 Project Manager: Chad Hensley		leral #005H	Reported: 04/14/25 08:24
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SS23-27 @ 0'	E504046-01A	Soil	04/04/25	04/08/25	Glass Jar, 2 oz.
SS23-27 @ 1' R	E504046-02A	Soil	04/04/25	04/08/25	Glass Jar, 2 oz.
SS23-28 @ 0'	E504046-03A	Soil	04/04/25	04/08/25	Glass Jar, 2 oz.
SS23-28 @ 1' R	E504046-04A	Soil	04/04/25	04/08/25	Glass Jar, 2 oz.

	25	imple D	ลเล			
Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220	Project Name: Project Numbe Project Manage	er: 010:	una Salado 22 Fed 58-0007 d Hensley	Reported: 4/14/2025 8:24:15AM		
Carisbau NM, 88220	, ,					4/14/2023 6.24.13AM
	S	S23-27 @ 0'				
]	E504046-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	Analyst: BA		Batch: 2515030
Benzene	ND	0.0250	1	04/08/25	04/09/25	
Ethylbenzene	ND	0.0250	1	04/08/25	04/09/25	
Toluene	ND	0.0250	1	04/08/25	04/09/25	
p-Xylene	ND	0.0250	1	04/08/25	04/09/25	
o,m-Xylene	ND	0.0500	1	04/08/25	04/09/25	
Total Xylenes	ND	0.0250	1	04/08/25	04/09/25	
Surrogate: 4-Bromochlorobenzene-PID		97.9 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: BA		Batch: 2515030
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/08/25	04/09/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.0 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: NV		Batch: 2515036
Diesel Range Organics (C10-C28)	ND	25.0	1	04/08/25	04/08/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/08/25	04/08/25	
Surrogate: n-Nonane		110 %	61-141	04/08/25	04/08/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: JM		Batch: 2515034
Chloride	31300	2000	100	04/08/25	04/08/25	

Sample Data

Sample Data

	5	ampic D	ala			
Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220	Project Name Project Numb Project Mana	ber: 010	Reported: 4/14/2025 8:24:15AM			
	S	823-27 @ 1' I	R			
		E504046-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	g/kg Analyst: BA			Batch: 2515030
Benzene	ND	0.0250	1	04/08/25	04/09/25	
Ethylbenzene	ND	0.0250	1	04/08/25	04/09/25	
Toluene	ND	0.0250	1	04/08/25	04/09/25	
p-Xylene	ND	0.0250	1	04/08/25	04/09/25	
o,m-Xylene	ND	0.0500	1	04/08/25	04/09/25	
Total Xylenes	ND	0.0250	1	04/08/25	04/09/25	
urrogate: 4-Bromochlorobenzene-PID		98.3 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: BA			Batch: 2515030
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/08/25	04/09/25	
urrogate: 1-Chloro-4-fluorobenzene-FID		88.0 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	: NV		Batch: 2515036
Diesel Range Organics (C10-C28)	ND	25.0	1	04/08/25	04/08/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/08/25	04/08/25	
urrogate: n-Nonane		109 %	61-141	04/08/25	04/08/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: JM		Batch: 2515034
Chloride	10500	400	20	04/08/25	04/08/25	

Sample Data

	5	ample D	ata			
Vertex Resource Services Inc.	Project Name:	Lag	una Salado 22 Fed			
3101 Boyd Drive	Project Number	er: 0103	01058-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Cha	d Hensley			4/14/2025 8:24:15AM
	S	S23-28 @ 0'				
		E504046-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	/kg Analyst: BA			Batch: 2515030
Benzene	ND	0.0250	1	04/08/25	04/09/25	
Ethylbenzene	ND	0.0250	1	04/08/25	04/09/25	
Toluene	ND	0.0250	1	04/08/25	04/09/25	
o-Xylene	ND	0.0250	1	04/08/25	04/09/25	
o,m-Xylene	ND	0.0500	1	04/08/25	04/09/25	
Fotal Xylenes	ND	0.0250	1	04/08/25	04/09/25	
Surrogate: 4-Bromochlorobenzene-PID		98.2 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: BA			Batch: 2515030
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/08/25	04/09/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.3 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: NV		Batch: 2515036
Diesel Range Organics (C10-C28)	ND	25.0	1	04/08/25	04/08/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/08/25	04/08/25	
Surrogate: n-Nonane		111 %	61-141	04/08/25	04/08/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: JM		Batch: 2515034
Chloride	45200	2000	100	04/08/25	04/08/25	

Sample Data

		ample D	ata			
Vertex Resource Services Inc.	Project Name:	Lag	una Salado 22 Fed	leral #005H		
3101 Boyd Drive	Project Numbe	er: 010:	01058-0007			Reported:
Carlsbad NM, 88220	Project Manag	ger: Cha	d Hensley			4/14/2025 8:24:15AM
	SS	23-28 @ 1']	R			
		E504046-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	g/kg Analyst: BA			Batch: 2515030
Benzene	ND	0.0250	1	04/08/25	04/09/25	
Ethylbenzene	ND	0.0250	1	04/08/25	04/09/25	
Toluene	ND	0.0250	1	04/08/25	04/09/25	
p-Xylene	ND	0.0250	1	04/08/25	04/09/25	
o,m-Xylene	ND	0.0500	1	04/08/25	04/09/25	
Fotal Xylenes	ND	0.0250	1	04/08/25	04/09/25	
Surrogate: 4-Bromochlorobenzene-PID		98.4 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: BA			Batch: 2515030
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/08/25	04/09/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.4 %	70-130	04/08/25	04/09/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: NV		Batch: 2515036
Diesel Range Organics (C10-C28)	ND	25.0	1	04/08/25	04/08/25	
Oil Range Organics (C28-C36)	ND	50.0	1	04/08/25	04/08/25	
Surrogate: n-Nonane		109 %	61-141	04/08/25	04/08/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: JM		Batch: 2515034
Chloride	8450	400	20	04/08/25	04/08/25	

QC Summary Data

Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220		Project Name: Project Number: Project Manager:	0	aguna Salado 1058-0007 Thad Hensley	22 Federal	#005H			Reported: 4/14/2025 8:24:15AM
		Volatile Or			Analyst: BA				
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2515030-BLK1)							Prepared: 0	4/08/25 A	analyzed: 04/08/25
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.49		8.00		93.6	70-130			
LCS (2515030-BS1)							Prepared: 0	4/08/25 A	analyzed: 04/08/25
Benzene	4.83	0.0250	5.00		96.5	70-130			
Ethylbenzene	4.85	0.0250	5.00		97.0	70-130			
Toluene	4.92	0.0250	5.00		98.5	70-130			
p-Xylene	4.82	0.0250	5.00		96.5	70-130			
p,m-Xylene	9.84	0.0500	10.0		98.4	70-130			
Total Xylenes	14.7	0.0250	15.0		97.7	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.52		8.00		94.0	70-130			
Matrix Spike (2515030-MS1)				Source:	E504045-	05	Prepared: 0	4/08/25 A	analyzed: 04/08/25
Benzene	5.22	0.0250	5.00	ND	104	70-130			
Ethylbenzene	5.25	0.0250	5.00	ND	105	70-130			
Toluene	5.33	0.0250	5.00	ND	107	70-130			
p-Xylene	5.23	0.0250	5.00	ND	105	70-130			
p,m-Xylene	10.6	0.0500	10.0	ND	106	70-130			
Total Xylenes	15.9	0.0250	15.0	ND	106	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.54		8.00		94.3	70-130			
Matrix Spike Dup (2515030-MSD1)				Source:	E504045-	05	Prepared: 0	4/08/25 A	analyzed: 04/08/25
Benzene	5.10	0.0250	5.00	ND	102	70-130	2.37	27	
Ethylbenzene	5.17	0.0250	5.00	ND	103	70-130	1.42	26	
Toluene	5.23	0.0250	5.00	ND	105	70-130	1.88	20	
p-Xylene	5.15	0.0250	5.00	ND	103	70-130	1.41	25	
p,m-Xylene	10.5	0.0500	10.0	ND	105	70-130	1.35	23	
Total Xylenes	15.6	0.0250	15.0	ND	104	70-130	1.37	26	
Surrogate: 4-Bromochlorobenzene-PID	7.55		8.00		94.3	70-130			

QC Summary Data

		QU N	, u	ary Data					
Vertex Resource Services Inc. 3101 Boyd Drive		Project Name: Project Number:		aguna Salado 1058-0007	22 Federal	#005H			Reported:
Carlsbad NM, 88220		Project Manager	:: C	had Hensley					4/14/2025 8:24:15AM
	Nor	nhalogenated (Organics	by EPA 80	15D - Gl	RO			Analyst: BA
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2515030-BLK1)							Prepared: 04	4/08/25 A	nalyzed: 04/08/25
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.05		8.00		88.1	70-130			
LCS (2515030-BS2)							Prepared: 04	4/08/25 A	nalyzed: 04/08/25
Gasoline Range Organics (C6-C10)	40.6	20.0	50.0		81.3	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.27		8.00		90.9	70-130			
Matrix Spike (2515030-MS2)				Source:	E504045-	05	Prepared: 04	4/08/25 A	nalyzed: 04/08/25
Gasoline Range Organics (C6-C10)	44.3	20.0	50.0	ND	88.5	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.35		8.00		91.9	70-130			
Matrix Spike Dup (2515030-MSD2)				Source:	E504045-	05	Prepared: 0	4/08/25 A	nalyzed: 04/08/25
Gasoline Range Organics (C6-C10)	42.7	20.0	50.0	ND	85.4	70-130	3.58	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.21		8.00		90.1	70-130			

QC Summary Data

		QC DI		lary Data	L				
Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad NM, 88220		Project Name: Project Number: Project Manager:		Laguna Salado 2 01058-0007 Chad Hensley	2 Federal	#005H			Reported: 4/14/2025 8:24:15AM
	Nonh	alogenated Orga	anics b	y EPA 8015D	- DRO	/ORO			Analyst: NV
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2515036-BLK1)							Prepared: 04	4/08/25 A	analyzed: 04/08/25
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	54.5		50.0		109	61-141			
LCS (2515036-BS1)							Prepared: 04	4/08/25 A	analyzed: 04/08/25
Diesel Range Organics (C10-C28)	288	25.0	250		115	66-144			
Surrogate: n-Nonane	56.7		50.0		113	61-141			
Matrix Spike (2515036-MS1)				Source: I	E 504045 -	04	Prepared: 04	4/08/25 A	analyzed: 04/08/25
Diesel Range Organics (C10-C28)	298	25.0	250	ND	119	56-156			
Surrogate: n-Nonane	59.2		50.0		118	61-141			
Matrix Spike Dup (2515036-MSD1)				Source: I	E 504045 -	04	Prepared: 04	4/08/25 A	analyzed: 04/08/25
Diesel Range Organics (C10-C28)	290	25.0	250	ND	116	56-156	2.55	20	
Surrogate: n-Nonane	56.9		50.0		114	61-141			

QC Summary Data

		•		v					
Vertex Resource Services Inc.		Project Name:	L	aguna Salado	22 Federal	#005H			Reported:
3101 Boyd Drive		Project Number:	0	1058-0007					•
Carlsbad NM, 88220		Project Manager:	C	had Hensley					4/14/2025 8:24:15AM
		Anions	by EPA	300.0/9056	4				Analyst: JM
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2515034-BLK1)							Prepared: 0	4/08/25 A	nalyzed: 04/08/25
Chloride	ND	20.0							
LCS (2515034-BS1)							Prepared: 0	4/08/25 A	nalyzed: 04/08/25
Chloride	255	20.0	250		102	90-110			
Matrix Spike (2515034-MS1)				Source:	E504034-0	02	Prepared: 0	4/08/25 A	nalyzed: 04/08/25
Chloride	746	20.0	250	460	114	80-120			
Matrix Spike Dup (2515034-MSD1)				Source:	E504034-0	02	Prepared: 0	4/08/25 A	nalyzed: 04/08/25
Chloride	606	20.0	250	460	58.3	80-120	20.7	20	M2, R3

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Vertex Resource Services Inc.	Project Name:	Laguna Salado 22 Federal #005H						
3101 Boyd Drive	Project Number:	01058-0007	Reported:					
Carlsbad NM, 88220	Project Manager:	Chad Hensley	04/14/25 08:24					

M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.

R3 The RPD exceeded the acceptance limit. LCS spike recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite
- DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

avode adt to sizylene adt	ioj nodal s	et The	uədx;	a Inail	o aqui								other arrangements are made. Hatardous y with this COC. The liability of the laborato					
		- A 'SS	el g la	gup	- 3e *						iner Type						05 - PS 105 - S N	
		5	D°q	məT	DVA					əuij		aleQ	(eintengi?) :yd beviece)	auiiT	Date		ə intengi2) :yd bi	əqsinbui
ET	71				11			1.3	0	Qg	52.5	· h	m man and a	42 Sr.	6.3	K	aunieusis) :Aq p	Inbui
	NO	:00	ouio	bəvi	Rece	0		09	L	1	Sul	·n ·1	5 50 mm 2049	1571	h	7	0	1
	esU deJ		57	ati Inte	to average			-	11	anni	51/1	Dard	(anse are de la	217	1 Pro	1 ma	anteusis) : Age	arsinbui
oo 3° a nait yab adi a a no bavia sarad t a ni yadi yab adi a a no bavia sarad t								0	0	lauli	14	Theo	(austeuse) : (agestine)	1 aug -9	Josed	(aunieu 8(5) : Aq pa	aysinbur
the second s																		:¥d beign
noithe level .	of spanora a	d vam i	hus hi	ied ba	apisus	23 41 00	otraile	or for al	00)1.10	ateb	nditectol elde	nse stranija	deizim yllenoitnatni toittiw gnitaqinet terit atew	n me i alqmes sidt i	o vibituedine	bus vibiles	edi or retrest to the	ames blait
							_							yalea mit 7	22E-0192	OM :s	nolfountent le	uoitibt
						1.1										1.00		1.1
		-		-					-									1
					_	-			-									
															1.1		1.1	1
		1	111	-		-	-		-							-	-	-
			-	-		_	-											
																100		
									-						-			-
		-	-			_	-	-	_	N					-			
						×		x	×	X	h		2253-58 @ 1, K		T.	lios	52.40.40	05:01
						x		x	x	X	5		6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T	lios		1
		-	-	-	-	1	-			V			2253-58 @ 0,				52.40.40	51:01
						x		×	×	A	5		8,T @ LZ-8255		τ	lios	52'40'40	25:6
						x		x	x	X	1		,0 @ LZ-EZSS		ť	lios	52.40.40	05:6
		Catic	RCR	TCEQ	BGD	Chic	VDC	BTEX	GRC	DRC	Vumber Lab	Filt	01 elgme2		rranetria.	KINEW	belgme2 sted	pajdure
Remarks		ation/Anion Pkg	RCRA 8 Metals	1005	BGDOC-	Chloride 300.0	VOC by 8260	2	GRO/DRO by	DRO/DRO by 8015	deJ	er		ouu aidune	To oN		helowed eved	amil
# disma		ake no	etals	17	NW	300.0	260	8021	by 8	B Aq C	-		uniterus	ofnl slqme2			_	
Compliance Y or N									2108	015				nev@yelsne	dD ,mop.e.	xresourc	en ev@blonie	A :lien
ARDA AWD AWD2												шо	:nvb@yəls8.mil suoənsliəzsiM		07700		575-200-616 e, Zip: Carlsb	
mergorg A93			pou	Meth	pue	siski	enA		-				7627-688-272 :snort9		00000		a 2101 Boyd d	
1 1 1 1 1				_				-	1.0	-			City, State, Zip: Carlsbad, NM, 8			alznaH b	edD_negenet	M Joelo
X IN CO UT TX	x DIS DE	50	at	4		- AS	ab	0)	10	+0 #0/\	den		Zanenz neven : Devon Energy Izi Vadress: 2315 Buena Vist	HS00#	Istederal		ertex (billito l enuael :eme	
State		AT	1.01	-				1	-				and meening			1- minut	-+ 11: 41 00+16	11

VbotsuD to nisdD

Page 1 of 1

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Vertex Resource Services Inc.	Date Received:	04/08/25 0	08:00	Work Order II	D: E504046
Phone:	(575) 748-0176 D	Date Logged In:	04/07/25 1	4:01	Logged In By:	Caitlin Mars
Email:	chensley@vertexresources.com D	Due Date:	04/14/25	17:00 (4 day TAT)		
Chain of	f Custody (COC)					
1. Does t	the sample ID match the COC?		Yes			
2. Does t	the number of samples per sampling site location match	the COC	Yes			
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: Courie	<u>er</u>	
4. Was th	ne COC complete, i.e., signatures, dates/times, requester	d analyses?	Yes			
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.		Yes		Comm	ents/Resolution
Sample '	<u>Turn Around Time (TAT)</u>					
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes			
Sample (
7. Was a	sample cooler received?		Yes			
8. If yes,	was cooler received in good condition?		Yes			
9. Was th	ne sample(s) received intact, i.e., not broken?		Yes			
10. Were	e custody/security seals present?		No			
11. If yes	s, were custody/security seals intact?		NA			
12. Was tl	he sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are re-		Yes			
13 If no	minutes of sampling visible ice, record the temperature. Actual sample te	mnerature: 4º	C			
		inperature. <u>1</u>	<u> </u>			
	Container_ aqueous VOC samples present?		No			
	VOC samples collected in VOA Vials?		NA			
	e head space less than 6-8 mm (pea sized or less)?		NA			
	a trip blank (TB) included for VOC analyses?		NA			
	non-VOC samples collected in the correct containers?		Yes			
	appropriate volume/weight or number of sample container	s collected?	Yes			
Field La						
	e field sample labels filled out with the minimum inform	nation:				
	Sample ID?		Yes			
	Date/Time Collected?		Yes	L		
	Collectors name?		No			
-	Preservation	10				
	s the COC or field labels indicate the samples were pres	erved?	No			
	sample(s) correctly preserved?	1-9	NA Na			
	o filtration required and/or requested for dissolved meta	15 /	No			
	ase Sample Matrix					
	s the sample have more than one phase, i.e., multiphase		No			
27. If yes	s, does the COC specify which phase(s) is to be analyze	ed?	NA			
	ract Laboratory_					
28. Are s	samples required to get sent to a subcontract laboratory? a subcontract laboratory specified by the client and if so		No NA			

Signature of client authorizing changes to the COC or sample disposition.

Appendix E.

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

From:	Wells, Shelly, EMNRD
То:	Chad Hensley
Cc:	Bratcher, Michael, EMNRD; Raley, Jim
Subject:	RE: [EXTERNAL] RE: Laguna Salado 5 nAB1914043668
Date:	Thursday, April 3, 2025 3:04:50 PM

Caution: This email is from an external sender. Please take care when clicking links or opening attachments. When in doubt, contact your IT Department

Sounds great Chad!

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520 <u>Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Chad Hensley <CHensley@vertexresource.com>
Sent: Thursday, April 3, 2025 2:46 PM
To: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>
Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Raley, Jim <Jim.Raley@dvn.com>
Subject: RE: [EXTERNAL] RE: Laguna Salado 5 nAB1914043668

I will collect them as close to the POR as possible. I will get that report in as soon as possible.

From: Wells, Shelly, EMNRD <<u>Shelly.Wells@emnrd.nm.gov</u>>
Sent: Thursday, April 3, 2025 2:39 PM
To: Chad Hensley <<u>CHensley@vertexresource.com</u>>
Cc: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>; Raley, Jim <<u>Jim.Raley@dvn.com</u>>
Subject: RE: [EXTERNAL] RE: Laguna Salado 5 nAB1914043668

Caution: This email is from an external sender. Please take care when clicking links or opening attachments. When in doubt, contact your IT Department

Hi Chad,

I do remember this one. Can you collect the confirmation samples as close to the POR as possible? Or is there a reason you are suggesting they be collected at BG24-07 and BG24-08? They can be discrete samples at surface, then 1', etc until you meet refusal.

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520 <u>Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Chad Hensley <<u>CHensley@vertexresource.com</u>>
Sent: Thursday, April 3, 2025 2:29 PM
To: Wells, Shelly, EMNRD <<u>Shelly.Wells@emnrd.nm.gov</u>>
Cc: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>; Raley, Jim <<u>Jim.Raley@dvn.com</u>>
Subject: [EXTERNAL] RE: Laguna Salado 5 nAB1914043668

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

My apologies map was not correct on first send off.

From: Chad Hensley
Sent: Thursday, April 3, 2025 2:25 PM
To: 'Wells, Shelly, EMNRD' <<u>Shelly.Wells@emnrd.nm.gov</u>>
Cc: <u>Mike.Bratcher@state.nm.us;</u> Raley, Jim <<u>Jim.Raley@dvn.com</u>>
Subject: Laguna Salado 5 nAB1914043668

Shelly & Mike,

Hello and salutations. I was going to write a work plan for this, but I am requesting that in lieu of a work plan can I just submit a simple closure report due to the nature of where this release took place (chlorides spilled into the brine lake), the location of where the spill happened (narrow strip of lease road surrounded by a brine lake), and the high chlorides throughout the area.

I suggest, if possible, to take confirmation samples at BG24-07 and BG24-08 to 1 foot (refusal is an issue here with a hand auger) and send them off and wrap this incident up if allowed.

From:	Wells, Shelly, EMNRD
То:	Chad Hensley
Cc:	Raley, Jim
Subject:	RE: [EXTERNAL] Laguna Salado 5 nAB1914043668 sampling variance.
Date:	Friday, April 25, 2025 9:43:09 AM

Caution: This email is from an external sender. Please take care when clicking links or opening attachments. When in doubt, contact your IT Department

Hi Chad,

Your request for a sampling variance to use discrete grab samples collected on 4/4/25 for closure is approved for NAB1914043668 LAGUNA SALADO 22 FEDERAL #005H. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Kind regards,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520 <u>Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Chad Hensley <CHensley@vertexresource.com>
Sent: Friday, April 25, 2025 9:07 AM
To: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>
Cc: Raley, Jim <jim.raley@dvn.com>
Subject: [EXTERNAL] Laguna Salado 5 nAB1914043668 sampling variance.

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Ms. Wells,

I respectfully request a sampling variance for the Laguna Salado 22 #5 for incident number nAB1914043668 for sampling conducted on April 4^{t,}, 2025. A conversation with

you was conducted on April 3rd, 2025, with approval given to gather discrete grab samples closest the point of release. I misunderstood your approval of sampling method as approval to proceed. In error I failed to submit a sampling notice. The variance will not impact any fresh water, public health and the environment due to the proximity of the brine lake and the spill was only of produced water.

Cheers,

Chad Hensley Senior Project Manager

Vertex Resource Services Inc.

Carlsbad, NM 88220

P C 575.200.6167 F

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

Appendix F.

vertex.ca

3101 Boyd Drive, Carlsbad, New Mexico 88220, USA | P 575.725.5001

•

	riteria Worksheet		
	e: LAGUNA SALADO 22 FEDERAL #005H rdinates: 32.290278,-103.973056	X: 596491	Y: 3573292
-	ific Conditions	Value	Unit
1	Depth to Groundwater	<50	feet
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	13,569	feet
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	4,648	feet
4	Within 300 feet from an occupied residence, school, hospital, institution or church	18,850	feet
5	 i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 	1,312	feet
	ii) Within 1000 feet of any fresh water well or spring		feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	(Y/N)
7	Within 300 feet of a wetland	13,569	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
9	Within an unstable area (Karst Map)	Medium	Critical High Medium Low
10	Within a 100-year Floodplain	500	year
11	Soil Type	Cottonwood-Reeves Loams	100%
12	Ecological Classification	R042XC006NM — Gyp Upland	100%
13	Geology	CR	
	NMAC 19.15.29.12 E (Table 1) Closure Criteria		<50' 51-100' >100'

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)						2=NE (3=SW 4=SE gest) (N/) AD83 UTM in me	eters)	(n feet)	
POD Number	POD Sub- Code basin (Q	QQ				x	Y	Distance	Depth	Depth	Water Column
C 02797	CUB	ED				23S		596540	3572895* 🌍	400	200		
<u>C 02716</u>	CUB	ED	4	44	16	23S	29E	595818	3574002* 🌍	978	400		
<u>C 02715</u>	CUB	ED	4	13	15	23S	29E	596221	3574411* 🌍	1151	400		
<u>C 02717</u>	CUB	ED	4	24	16	23S	29E	595817	3574407* 🌍	1302	400		
<u>C 01217 S</u>	CUB	ED	4	14	16	23S	29E	595413	3574403* 🌍	1548	350		
<u>C 02721</u>	CUB	ED		23	21	23S	29E	594915	3572879* 🌍	1629	150		
<u>C 02720</u>	CUB	ED		2 1	21	23S	29E	594911	3573690* 🌍	1629	150		
<u>C 02718</u>	CUB	ED	4	42	16	23S	29E	595816	3574812* 🌍	1663	400		
<u>C 02707</u>	С	ED		2	28	23S	29E	595535	3571868* 🌍	1715	40	18	22
C 04326 POD14	CUB	ED	4	23	23	23S	29E	598191	3572765 🌍	1779	58	54	4
C 04326 POD16	CUB	ED	2	43	23	23S	29E	598209	3572664 🌍	1829	64	54	10
C 03057 EXPLORE	CUB	ED	4	1 1	21	23S	29E	594605	3573586* 🌍	1908	150		
<u>C 02808</u>	CUB	ED		23	16	23S	29E	594909	3574501* 🌍	1991	100		
<u>C 02809</u>	CUB	ED		23	16	23S	29E	594909	3574501* 🌍	1991	100		
<u>C 02613</u>	CUB	ED	4	42	20	23S	29E	594203	3573176* 🌍	2290	400		
<u>C 02794</u>	CUB	ED		43	10	23S	29E	596518	3575731* 🌍	2439	100		
<u>C 02795</u>	CUB	ED		43	10	23S	29E	596518	3575731* 🌍	2439	200		
<u>C 01627</u>	С	ED	1	44	28	23S	29E	595649	3570959* 🌍	2480	170		
C 03058 EXPLORE	CUB	ED	4	1 1	16	23S	29E	594605	3575206* 🥃	2687	150		
C 02608	CUB	ED	3	14	17	23S	29E	593598	3574387* 🌍	3093	400		
C 02705	С	ED		2	17	23S	29E	593902	3575093* 🥌	3153	68	28	40
C 03059 EXPLORE	CUB	ED	4	13	17	23S	29E	592993	3574378* 🥌	3662		65	
C 03587 POD1	CUB	ED	1	43	29	23S	29E	593338	3570754 🥌	4047	99	44	55
C 02806	CUB	ED		1 1	09	23S	29E	594473	3576927* 🥌	4157	100		
C 02807	CUB	ED		1 1	09	23S	29E	594473	3576927* 🥌	4157	100		
C 02706	С	ED		4	18	23S	29E	592302	3574291* 🥌	4306	17	10	7
*UTM location was derived fr	om PLSS - see H	lelp											

8/9/22 11:02 AM

(A CLW##### in the
POD suffix indicates the
POD has been replaced
& no longer serves a
water right file.)

been replaced, O=orphaned, C=the file is

(R=POD has

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

Page 60 of 128

	POD Sub-		-			-	-	Y	v	5.			Water
POD Number C 03587 POD2	Code basin (CUB	ED				23S		X 592213	Y 3572706 🌄	Distance 4317	77	16	Column 61
C 04472 POD1	CUB	ED		2 4		235		600639	3574619 🌍	4355		37	
<u>C 02792</u>	CUB	ED		43	04	23S	29E	594868	3577336* 🌍	4357	200		
<u>C 02793</u>	CUB	ED		43	04	23S	29E	594868	3577336* 🌍	4357	100		
C 04594 POD2	CUB	ED	4	2 2	13	23S	29E	600604	3575232 🌍	4547	42	34	8
C 04594 POD5	CUB	ED	4	22	13	23S	29E	600626	3575236 🌍	4569	30	30	0
C 04594 POD1	CUB	ED	4	2 2	13	23S	29E	600629	3575241 🌍	4574	36	31	5
C 04594 POD7	CUB	ED	4	22	13	23S	29E	600659	3575217 🌍	4590	34	28	6
C 04594 POD6	CUB	ED	4	2 2	13	23S	29E	600659	3575220 🌍	4592	34	28	6
C 04594 POD3	CUB	ED	4	22	13	23S	29E	600645	3575280 🌍	4605	38	27	11
C 04594 POD4	CUB	ED	4	2 2	13	23S	29E	600704	3575224 🌍	4635	45	28	17
<u>C 02182</u>	С	ED		4	30	23S	29E	592328	3571048* 🌍	4729	75	30	45
C 02486	С	ED	3	23	19	23S	30E	601304	3572832* 🌍	4834	350		
<u>C 02804</u>	CUB	ED		2 1	08	23S	29E	593262	3576905* 🌍	4845	100		
C 02805	CUB	ED		2 1	08	23S	29E	593262	3576905* 🌍	4845	100		
<u>C 02704</u>	С	ED		1	19	23S	29E	591531	3573493* 🌍	4964	174		
									Avera	ge Depth to	Water:	33	feet

Record Count: 42

UTMNAD83 Radius Search (in meters):

Easting (X): 596491

Northing (Y): 3573292

Radius: 5000

Minimum Depth:

Maximum Depth:

10 feet

65 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/9/22 11:02 AM

Page 61 of 128

ceived by OCD: 6/9/2025 11:32:38 AM

USGS 321742103552601 23S.30E.19.123421

Released to Imaging: 6/9/2025 4:48:32 PM Period of approved data

Page 62 of 128

Received by OCD: 6/9/2025 11:32:38 AM

USGS 321717103561001 23S.29E.24.41321

Released to Imaging: 6/9/2025 4:48:32 PM Period of approved data

Received by OCD 0/2025 11.22.20 114

U.S. Fish and Wildlife Service

National Wetlands Inventory

Page 63 of 128 LAGUNA SALADO 22 FED #005H Wetland

August 9, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 6/9/2025 4:48:32 PM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Page 64 of 128

esri

Released to Imaging: 6/9/2025 4:48:32 PM

U.S. Geological Survey, National Geospatial Technical Operations Center | New Mexico Environment Department Surface Wate....

0/2025 11.22.20 114 Received by OCD

U.S. Fish and Wildlife Service

National Wetlands Inventory

Page 65 of 128 LAGUNA SALADO 22 FEDERAL #005H La

August 9, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 6/9/2025 4:48:32 PM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

New Mexico Office of the State Engineer Currently Active Points of Diversion

(with Well Drill Dates & Depths)

	(IW 2=NE 3=SW 4=SE)					(
	(acre r	t per annu	im)		Well	(quarters	are smallest to largest)	(NAD83 C	JTM in meters)			(in feet)
WR File Nbr		version	Count	y POD Number	Tag Grant	Source	qqq 6416 4 Sec Tws Rng	х	Y	Distance Start Date	Finish Date	Depth Depth Well Water
C 02797	CUB MON	0	ED	<u>C 02797</u>			2 3 22 23S 29E	596540	3572895* 🌍	400		200
<u>C 02716</u>	CUB MON	0	ED	<u>C 02716</u>			4 4 4 16 23S 29E	595818	3574002* 🌍	978		400
<u>C 04326</u>	CUB MON	0	ED	C 04326 POD49	NA		2 4 3 23 23S 29E	597378	3572591 🌍	1130		
<u>C 02715</u>	CUB MON	0	ED	<u>C 02715</u>			4 1 3 15 23S 29E	596221	3574411* 🌍	1151		400
<u>C 02717</u>	CUB MON	0	ED	<u>C 02717</u>			4 2 4 16 23S 29E	595817	3574407* 🌍	1302		400
<u>C 01217</u>	CUB COM	150	ED	<u>C 01217 S</u>		Shallow	4 1 4 16 23S 29E	595413	3574403* 🌍	1548 12/21/1998	01/12/1999	350
<u>C 02622</u>	CUB COM	0	ED	<u>C 01217 S</u>		Shallow	4 1 4 16 23S 29E	595413	3574403* 🌍	1548 12/21/1998	01/12/1999	350
<u>C 04326</u>	CUB MON	0	ED	C 04326 POD50	NA		3 2 3 23 23S 29E	597992	3572782 🌍	1585		
Record Count	: 8											
UTMNAD	83 Radius Seard	ch (in m	eters)	:								
Easting	g (X) : 596491			Northing (Y):	3573292	Radius:	1610					

Sorted by: Distance

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD 0/2025 11.22.20 114

U.S. Fish and Wildlife Service

National Wetlands Inventory

Page 68 of 128 LAGUNA SALADO 22 FED #005H Wetland

August 9, 2022

Wetlands

- Estuarine and Marine Deepwater

 - Estuarine and Marine Wetland

- Freshwater Emergent Wetland Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 6/9/2025 4:48:32 PM

Received by OCD: 6/9/2025 11:32:38,AM National Flood Hazard Layer FIRMette

Legend

Page 70 of 128

Releaseato Imaging: 6/9/2025 4:989.32 PM 1,500

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Eddy Area, New Mexico	13
CR—Cottonwood-Reeves loams, overflow, 0 to 3 percent slopes	
UG—Upton gravelly loam, 0 to 9 percent slopes	14
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic classes has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Released to Imaging: 6/9/2025 4:48:32 PM

•

•

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Area of Interest (AOI)Soils○Soil Map Unit Polygons△Soil Map Unit Lines○Soil Map Unit PointsSpecial FeaturesOØBorrow Pit∅Borrow Pit∅Gravel Pit◊Clay Spot◊Gravel Pit↓Gravel Pit↓Lava Flow↓Marsh or swamp∅Mine or Quarry◎Miscellaneous Water○Perennial Water	 Stony Spot Very Stony Spot Very Stony Spot Other Special Line Features Water Features Streams and Canals Transportation FFF Rails Interstate Highways Interstate Highways Scoal Roads Local Roads Backgrout Field Rail Photography	 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
 Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 		Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CR	Cottonwood-Reeves loams, overflow, 0 to 3 percent slopes	21.7	98.9%
UG	Upton gravelly loam, 0 to 9 percent slopes	0.2	1.1%
Totals for Area of Interest	·	21.9	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the

development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

CR—Cottonwood-Reeves loams, overflow, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w47 Elevation: 3,000 to 4,300 feet Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 200 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Cottonwood and similar soils: 60 percent Reeves and similar soils: 35 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cottonwood

Setting

Landform: Ridges, hills Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, crest, nose slope, head slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Typical profile

H1 - 0 to 9 inches: loam H2 - 9 to 60 inches: bedrock

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 3 to 12 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Gypsum, maximum content: 20 percent
Maximum salinity: Moderately saline to strongly saline (8.0 to 16.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: R042XC006NM - Gyp Upland Hydric soil rating: No

Description of Reeves

Setting

Landform: Plains, ridges, hills

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Typical profile

- H1 0 to 8 inches: loam
- H2 8 to 32 inches: clay loam
- H3 32 to 60 inches: gypsiferous material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: OccasionalNone
Frequency of ponding: None
Calcium carbonate, maximum content: 25 percent
Gypsum, maximum content: 20 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6w Hydrologic Soil Group: B Ecological site: R042XC006NM - Gyp Upland Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent *Hydric soil rating:* No

UG—Upton gravelly loam, 0 to 9 percent slopes

Map Unit Setting

National map unit symbol: 1w64 *Elevation:* 1,100 to 4,400 feet

Custom Soil Resource Report

Mean annual precipitation: 7 to 15 inches Mean annual air temperature: 60 to 70 degrees F Frost-free period: 200 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Upton and similar soils: 96 percent *Minor components:* 4 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Upton

Setting

Landform: Ridges, fans Landform position (three-dimensional): Side slope, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

H1 - 0 to 9 inches: gravelly loam
H2 - 9 to 13 inches: gravelly loam
H3 - 13 to 21 inches: cemented
H4 - 21 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 9 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 75 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R042XC025NM - Shallow Hydric soil rating: No

Minor Components

Atoka

Percent of map unit: 1 percent Ecological site: R042XC007NM - Loamy Hydric soil rating: No

Reagan

Percent of map unit: 1 percent *Ecological site:* R042XC007NM - Loamy

.

Hydric soil rating: No

Upton

Percent of map unit: 1 percent Ecological site: R042XC025NM - Shallow Hydric soil rating: No

Atoka

Percent of map unit: 1 percent Ecological site: R042XC007NM - Loamy Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

USDA United States Department of Agriculture

> Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
Eddy Area, New Mexico	13
CR—Cottonwood-Reeves loams, overflow, 0 to 3 percent slopes	13
UG—Upton gravelly loam, 0 to 9 percent slopes	14
W—Water	
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Page 95 of 128

.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Page 97 of 128

.

•

Area of Interest (AOI) Area of Interest (AOI)
Area of Interest (AOI)SoilsSoil Map Unit Polygons✓Soil Map Unit Polytons✓Soil Map Unit PointsSpecial > Dorow PitBorrow Pit✓Clay Spot✓Closed Depression✓Gravel Pit✓Area Flow✓Marsh or swamp✓Mine or Quarry✓Perennial Water✓Saline Spot✓Saline Spot✓Saline Spot✓Saline Spot✓Sinkhole४Sinkhole४Slide or Slip

Map Unit Legend

		1	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CR	Cottonwood-Reeves loams, overflow, 0 to 3 percent slopes	57.4	80.1%
UG	Upton gravelly loam, 0 to 9 percent slopes	13.9	19.4%
W	Water	0.4	0.5%
Totals for Area of Interest	·	71.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

CR—Cottonwood-Reeves loams, overflow, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w47 Elevation: 3,000 to 4,300 feet Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 200 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Cottonwood and similar soils: 60 percent Reeves and similar soils: 35 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cottonwood

Setting

Landform: Ridges, hills Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, crest, nose slope, head slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Typical profile

H1 - 0 to 9 inches: loam H2 - 9 to 60 inches: bedrock

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 3 to 12 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Gypsum, maximum content: 20 percent
Maximum salinity: Moderately saline to strongly saline (8.0 to 16.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: R042XC006NM - Gyp Upland Hydric soil rating: No

Description of Reeves

Setting

Landform: Plains, ridges, hills

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Typical profile

- H1 0 to 8 inches: loam
- H2 8 to 32 inches: clay loam
- H3 32 to 60 inches: gypsiferous material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: OccasionalNone
Frequency of ponding: None
Calcium carbonate, maximum content: 25 percent
Gypsum, maximum content: 20 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6w Hydrologic Soil Group: B Ecological site: R042XC006NM - Gyp Upland Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent *Hydric soil rating:* No

UG—Upton gravelly loam, 0 to 9 percent slopes

Map Unit Setting

National map unit symbol: 1w64 *Elevation:* 1,100 to 4,400 feet

Custom Soil Resource Report

Mean annual precipitation: 7 to 15 inches Mean annual air temperature: 60 to 70 degrees F Frost-free period: 200 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Upton and similar soils: 96 percent *Minor components:* 4 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Upton

Setting

Landform: Ridges, fans Landform position (three-dimensional): Side slope, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

H1 - 0 to 9 inches: gravelly loam
H2 - 9 to 13 inches: gravelly loam
H3 - 13 to 21 inches: cemented
H4 - 21 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 9 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 75 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R042XC025NM - Shallow Hydric soil rating: No

Minor Components

Atoka

Percent of map unit: 1 percent Ecological site: R042XC007NM - Loamy Hydric soil rating: No

Reagan

Percent of map unit: 1 percent Ecological site: R042XC007NM - Loamy

Custom Soil Resource Report

Hydric soil rating: No

Upton

Percent of map unit: 1 percent Ecological site: R042XC025NM - Shallow Hydric soil rating: No

Atoka

Percent of map unit: 1 percent *Ecological site:* R042XC007NM - Loamy *Hydric soil rating:* No

W-Water

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE ECOLOGICAL SITE DESCRIPTION

ECOLOGICAL SITE CHARACTERISTICS

Site Type: Rangeland

Site Name: Gyp Upland (SD-3, SD-2)

Site ID: R042XC006NM

Major Land Resource Area: 042 - Southern Desertic Basins, Plains, and Mountains

Physiographic Features

This site occurs on plains and terraces between desert drainageways. Slopes range from level to gently sloping, usually less than 9 percent. Direction of slope varies and is usually not significant. Elevations range from 2,500 to 3,800 feet.

Land Form: (1) Valley side
---------------	---------------

- (2) Plain
- (3) Terrace

	Minimum	Maximum
Elevation (feet):	2500	3800
Slope (percent):	1	9
Water Table Depth (inches):	N//A	N/A
Flooding:		
Frequency:	None	None
Duration:	None	None
Ponding:		
Depth (inches):	N/A	N/A
Frequency:	None	None
Duration:	None	None
Runoff Class:	Low	High
Aspect:		

<u>Climatic Features</u>

<u>Climatic Features</u>

Narrative:

The climate of the area is "semi-arid continental". The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost free season is 207 to 220 days. The last killing frost is late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. The vegetation on this site can take advantage of moisture at any time of year or amount of precipitation. Because of the soil texture and profile, water cannot be stored for long periods of time. Strong winds from the southwest blow from January through June which accelerates soil drying at a critical time for cool season plant growth.

	Minimum	Maximum
Frost-free period (days):	180	221
Freeze-free period (days):	199	240
Mean annual precipitation (inches):	10.0	13.0
Monthly moisture (inches) and temperature (⁰F) distribution:

·	Precip. Min.	Precip. Max.	Temp. Min.	Temp. Max.
January	0.40	0.42	20.6	59.7
February	0.40	0.41	25.2	65.6
March	0.41	0.43	31.4	72.7
April	0.58	0.63	40.4	81.5
May	1.28	1.35	49.6	88.7
June	1.40	1.46	59.1	95.4
July	1.62	1.64	63.3	96.4
August	1.79	1.84	61.6	94.8
September	1.81	2.20	54.1	88.5
October	1.16	1.41	40.7	80.4
November	0.43	0.47	28.4	68.7
December	0.48	0.51	20.9	61.1

Climate Stations:

(1) NM0600, Artesia, NM - Period of record 1961 - 1990

- (2) NM0992, Bitter Lakes WL Refuge, NM Period of record 1961 1990
- (3) NM1469, Carlsbad, NM Period of record 1961 1990
- (4) NM293792, Hagerman, NM Period of record 1961 1990
- (5) NM299563, Waste Isolation Plant, NM Period of record 1961 1990
- (2) NM4346, Jal, NM Period of record 1961 1990

Influencing Water Features

This site is not influenced by water from wetlands or streams.

Wetland Description:	<u>System</u>	<u>Subsystem</u>	Class
(Cowardin System)			

Representative Soil Features

The soils of this site are very shallow and well drained. The surface layers are loam and fine sandy loam overlying dense layers of soft or cemented gypsum material and gypsiferous earth at depths less than 8 inches. The gypsum materials commonly outcrop to the surface as inclusions of raw gypsumland, which are void of vegetation and not part of the ecological site. In the lower part of the profile the semi indurated gypsum and caliche make up about 75 percent of the mass and are restrictive to root development. The soils have moderate permeability. Water holding capacity is very low. The plant, soil, air, water relationship is poor. The site has a droughty appearance because of the soils inability to support a dense stand of vegetation. If unprotected by plant cover or organic residue, the soil becomes easily wind blown and water eroded.

Predominant Parent Materials:				
Kind: Marine deposits				
Origin: Gypsum				
Surface Texture:	(1)	Gypsiferous Fine sandy loam		
	(2)	Loam		
Subsurface Texture Group:		Loamy		
Surface Fragments <=3" (% Cover):		1		
Surface Fragments > 3" (% Cover):		1		
Subsurface Fragments <=3" (% Vol	ume):	8		
Subsurface Fragments > 3" (% Cove	<u>er):</u>	0		
Drainage Class:		Moderately well drained	l To Well drained	
Permeability Class:		Moderately slow To Mo	oderate	
			<u>Minimum</u>	<u>Maximum</u>
Depth (inches):			25	72
Electrical Conductivity (mmhos/cm	<u>):</u>		2	16
Sodium Absorption Ratio:			0	0
Calcium Carbonate Equivalent (per	ent):		0	0
Soil Reaction (1:1 Water):			7.4	8.4
Soil Reaction (0.01M CaCl2):			N/A	N/A
Available Water Capacity (inches):			4.0	8.0

Plant Communities

Ecological Dynamics of the Site

Overview

The vegetation of this site often intergrades with that of Loamy sites, depending on the amounts of gypsum, soil texture, and depths of gypsic horizons. Low-lying areas where run-in water occurs behave like draws. Areas where gypsum outcrops are exposed harbor little vegetation. Gyp Uplands may intergrade with the Salt Flats site depending on salinity levels. Thus, the vegetation of this site is very patchy, variable, and difficult to characterize. The historic plant community types that are likely to be associated with the gyp uplands site include 1) an alkali sacaton (Sporobolus airoides) and black grama (Bouteloua eriopoda) or blue grama (B. gracilis)dominated community associated with soils having relatively deep (> 10 ") gypsic horizons and 2) a gyp grama (Bouteloua breviseta) and gyp dropseed (Sporobolus neallevi)-dominated community on soils with shallow (< 10") gypsic horizons. Tobosa (*Pleuraphis mutica*), burrograss (Scleropogon brevifolius), and/or saltbush (Atriplex canescens) may also dominate depending on texture, land-use history, or other features. The subshrub Coldenia (*Coldenia* spp) increasingly dominates sites with very shallow gypsic horizons as grasses decline. Gyp upland sites are susceptible to erosion when vegetation cover is reduced due to drought and overgrazing. Mesquite (Prosopis glandulosa) may invade soils with deeper gypsic horizons within the site that are dominated by tobosa or burrograss. Erosion of A horizons bring gypsic horizons closer to the surface and can shift community composition to dominance by gyp dropseed, coldenia, and bare soil.

State-Transition model: MLRA 42, SD-2 & 3, Gyp Upland

- 1a. Erosion and loss of soil fertility
- 1b. Soil addition
- 2a. Reduced fire or heavy grazing with shrub seed addition
- 2b. Shrub removal

MLRA 42; SD-2 and 3; Gyp Upland

Mixed grass state

Mixed grass state-run-in setting

Gyp dropseed state

•Gyp dropseed, coldenia, gyp grama, small patches of alkali sacaton and tobosa in depressions.
•Similar ground cover to communities With more palatable grasses
•Hollomex-Milner-Reeves association, Chaves Co. NM

Gyp grama, gyp dropseed
Alkali sacaton and other grasses absent, may be degraded community
Normally has patches of open ground, often covered with lichen crust
Hollomex-Milner-Reeves association,

•Alkali sacaton, silver bluestem •Draw-like setting, abundant cover and

•Hollomex-Milner-Reeves association,

Chaves Co. NM

Chaves Co. NM

litter

Gypsum outcrop

- Coldenia, gyp dropseed
- Very low vegetative cover, note high cover of biological crust
 Inclusion within Malargo series Otero Co. NM

Plant Community Name:	Historic C	limax Plant C	Community	
Plant Community Sequence	Number:	1	Narrative Label:	HCPC

Plant Community Narrative:

State Containing Historic Climax Plant Community

Mixed grassland State: Alkali sacaton, black grama, and blue grama (only in SD-3) dominate soils that have relatively deep gypsic horizons that are deeper than 10" (e.g. Reeves series). Saltbush may be an abundant shrub. Alkali sacaton cover may be continuous in run-in settings surrounded by sparsely vegetated areas (alkali sacaton community). On fine-silty or fine loamy calcareous gypsid soils (e.g. Milner or Reeves series), tobosa or burrograss may be dominant. Dominance by burrograss or tobosa might represent grazing-induced retrogression from an alkali sacaton-grama community type on these soils, but this has not been confirmed. In some cases, saltbush may be extremely dominant, (e.g. Malargo series) but it is not clear why. Gyp grama, black grama, and gyp dropseed dominate soils with shallow gypsic horizons and gyp dropseed, mormon tea (*Ephedra* spp.), and coldenia tend to dominate where the gypsic horizon is shallowest (< 3"). These communities exhibit low production, perhaps due to the comparatively shallow infiltration in gypsic soil and other chemical properties (Campbell and Campbell 1938). Outcrops of gypsum, often revealing a whitish floury mass at the surface, may be devoid of vegetation. Heavy grazing may reduce grama grasses and increase the dominance of gyp dropseed and coldenia, but it is important to recognize that these plants may dominate some patches without heavy grazing. Soil degradation due to surface compaction and reduced infiltration may be important on this site and result in reduced grass cover. Slight variations in the depth to the gypsic horizon, whether human induced or not, exert a powerful control on plant community composition. Where gypsic horizons are deep, soil texture or soil chemistry may govern composition.

Diagnosis: Soils with deeper gypsic horizons should have continuous grass cover with a high representation of alkali sacaton and black grama. Shallower soils should have gyp grama and black grama but gyp outcrops will be dominated by gyp dropseeds or coldenia. Depending upon the depths to a gypsic horizon, large (< 1 m) bare patches may be common but they should not be common where the depth to gypsic horizon is greater than 5". This site has a grassland aspect with patches of bare or lichen covered soil surface exposed between patches of vegetation. The potential plant community is dominated by alkali sacaton, short and mid grass perennials and forbs, with half shrubs and shrubs sparsely and evenly distributed.

Ground Cover (Average Percent of Surface Area).	
Grasses & Forbs	25
Bare ground	57
Surface gravel	1
Surface cobble and stone	1
Litter (percent)	16
Litter (average depth in cm.)	1

Plant Community Annual Production (by plant type):

Annual Production (lbs/ac)									
Plant Type	Low	RV	High						
Grass/Grasslike	300	470	640						
Forb	45	71	96						
Tree/Shrub/Vine	30	47	64						
Lichen									
Moss									
Microbiotic Crusts									
Totals	375	588	800						

•

<u>Mixed Grassland Plant Species Composition:</u> Plant species are grouped by annual production **not** by functional groups.

groups.			Annual Production	on
	Grass/Grasslike		in Pounds Per Ac	
Group	Common Name	Scientific Name	Low Hig	<u>zh</u>
1	alkali sacaton	Sporobolus airoides	266 32	.3
2	black grama	Bouteloua eriopoda	29 88	3
3	gypsum grama	Bouteloua breviseta	6 59)
4	bush muhly bristle panicum plains bristlegrass	Muhlenbergia porteri Setaria ramisetum Setaria vulpiseta	18 88	3
5	gyp dropseed	Sporobolus nealleyi	6 18	3
6	sand dropseed	Sporobolus cryptandrus		
7	blue grama	Bouteloua gracilis		
8	threeawn fluffgrass ear muhly burrograss	Aristida Dasyochloa pulchella Muhlenbergia arenacea Scleropogon brevifolius	18 88	3
			Annual Production	
Group	Shrub/Vine Common Name	Scientific Name	in Pounds Per Ac Low Hig	
<u>Group</u> 9			-	-
9	fourwing saltbush Morman-tea littleleaf sumac	Atriplex canescens Ephedra Rhus microphylla	18 41	L
10	javelin bush knifeleaf condalia (squawbush) crown of thorns	Condalia ericoides Condalia spathulata Koeberlinia spinosa	6 18	3
11	pricklypear yucca	Opuntia Yucca	6 18	3
	Forb		Annual Production in Pounds Per Ac	
	Common Name	Scientific Name	Low Hig	<u>gh</u>
12	Coldenia	Condalia	29 59	
13	Forb, annual trailing four-oçlock daisy golden tickseed leatherweed gyp wild buckwheat woolly gaura blazingstar fiddleleaf whitest evening-primrose beardtongue scoprionweed white milkwort devils claw whitestem paperflower threadleaf ragwort Hopi tea greenthread	Allionia incarnata Chrysanthemum Coreopsis tinctoria Croton pottsii var. pottsii Eriogonum gypsophilum Gaura villosa Mentzelia Nama Oenothera albicaulis Penstemon Phacelia integrifolia var. texana Polygala alba Proboscidea althaeifolia Psilostrophe cooperi Senecio flaccidus var. flaccidus Thelesperma megapotamicum	6 88	5

Plant C	Growth C	urve:									
Growth Curve Number: NM2806											
Growt	h Curve N	Name:			Historic Climax Plant Community						
Growt	h Curve I	Descriptio	<u>n:</u>	SD-3 Warm Season Plant Community							
				Per	rcent Pro	duction b	<u>y Month</u>				
Jan	Feb	Mar	Apr	May	Jun	<u>Jul</u>	Aug	Sep	Oct	Nov	Dec
0	0	0	5	10	10	25	30	15	5	0	0

Additional States:

Transition to gyp dropseed state (1a): Reduced grass cover caused by poor grazing management and/or drought may result in erosion of surface horizons. As the depth to the gypsic horizon decreases, plant communities will become increasingly dominated by gyp dropseed and/or coldenia. Mechanical disturbance of the soil surface and soil degradation may contribute to this effect.

Key indicators of approach to transition: Increased bare ground, pedestalling, water flow patterns, blowouts, and eventually the loss of the A horizon.

Transition to shrub-invaded state (2a): Reduced grass cover in deep gypsic soils may result in mesquite invasion.

Key indicators of approach to transition: Increasing bare ground, presence of mesquite seedlings.

Shrub-invaded: On deep gypsic soils and soils with less strong gypsic horizons (i.e. have a lower percentage of gypsum) within this site, mesquite may invade and cause some reduction in grass cover due to competition with grasses. These communities are dominated by tobosa or burrograss. Saltbush may also be an important component. It is not known if shrub presence and resulting erosion may result in the loss of dominant perennial grasses across broad areas on gypsic soils. As soil characteristics grade toward those of the loamy ecological site, widespread grass loss may be increasingly probable.

Diagnosis: Moderate densities of mesquite, bare ground patches associated with mesquite patches.

Transition to mixed grassland (2b): Shrub removal may result in the eventually recovery of perennial grasses.

Gyp dropseed: These communities are dominated by gyp dropseed or coldenia, and often exhibit high amounts of bare ground and exposed gypsum at the surface. Gyp grama, black grama, and alkali sacaton may persist in small patches, especially in low-lying spots receiving run-in water and/or in which soils are protected from erosion. The frequency with which these community types represent degradation from mixed grassland due to poor management versus "natural" is unknown. The conditions under which gyp dropseed and coldenia dominate are unknown.

Diagnosis: Dominance by gyp dropseed or coldenia, high amounts of bare ground, sometimes associated with a high cover of microbiotic crusts.

Transition to mixed grassland (1b): Restoration or recovery of a non-gypsic A horizon would be required.

Information sources and theoretical background: Communities, states, and transitions are based upon information in the ecological site description and observations by Brandon Bestelmeyer, Jornada Experimental Range and David Trujillo, NRCS. Information on the the role of gypsum in concert with soil chemical features in determining plant composition is sorely needed.

Ecological Site Interpretations

Animal Community:

This site provides habitats which support a resident animal community that is characterized by coyote, hooded skunk, desert cottontail, whitethroated woodrat, sparrow hawk, cactus wern, scaled quail, logggerhead shrike, mourning dove, Texas horned lizard, lesser earless lizard, and western diamondback rattlesnake.

Fourwing saltbush, littleleaf sumac, spiny allthorn, common javilinabush, and knifeleaf condalia provide protective cover for scaled quail. Seed, green herbage and fruit from a variety of grasses, forbs and shrubs provide food for a number of birds and mamals, including scaled and Gambel's quail, mourning dove and prairie dogs. The fruit of tesajo cactus is relished by quail.

Hydrology Functions:

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations					
Soil Series Hydrologic Group					
Cottonwood	С				
Holloman	С				
McCarran	С				
Yesum	В				
Alamogordo	В				

Recreational Uses:

This site offers recreation potential for hiking, horseback riding, rock, gem, and mineral collecting, nature observation and photography, relic hunting, and quail, dove, and predator hunting. During years of abundant moisture, a colorful array of wildflowers can be observed from spring through fall.

Wood Products:

This site provides little or no wood products other than curiosities and small furniture which can be made from the roots and stems of mesquite where it has invaded the site. The woody pods of devils claw are also used in curiosities.

Other Products:

This site is suitable for grazing during all seasons of the year. Care must be taken to leave enough vegetation cover for soil protection during windy and rainy periods or severe soil erosion will result. About 300 pounds per acre of total vegetation and litter is minimal for soil protection. This site is best suited and most efficiently utilized by cattle. It can also be utilized by small numbers of goats and sheep in combination with cattle where control or protection from predators can be provided.

Other Information:		
Similarity Index	Guide to Suggested Initial Stocking	Rate Acres per Animal Unit Month Ac/AUM
100 - 76		5.5 - 8.0
75 – 51		7.5 – 11.0
50-26		11.0 – 15.0
25 – 0		25.0 +

Plant Preference by Animal Kind:

	Code	Species Preference	Code	
Stems	S	None Selected	N/S	
Leaves	L	Preferred	Р	
Flowers	F	Desirable	D	
Fruit/Seeds	F/S	Undesirable	U	
Entire Plant	EP	Not Consumed	NC	
Underground Parts	UP	Emergency	E	
		Toxic	Т	

			To	oxic					Т					
Animal Kind:	Livestock													
Animal Type:	Cattle													
		Plant	Fora	ge Pr	efere	nces			•	•		-		
Common Name	Scientific	Part	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
	Name													
Alkali Sacaton	Sporobolus	EP	U	U	U	D	D	D	Р	Р	D	D	U	U
	airoides													
fourwing saltbush	Atriplex canescens	EP	Р	Р	Р	Р	Р	D	D	D	D	D	Р	Р
gyp grama	Bouteloua	EP	N/S	N/S	N/S	N/S	N/S	D	D	D	D	D	N/S	N/S
	breviseta													
black grama	Bouteloua	EP	Р	Р	Р	D	D	D	D	D	D	D	Р	Р
	eriopoda													
blue grama	Bouteloua gracilis	EP	D	D	D	D	D	Р	Р	Р	Р	Р	D	D
redstem stork's bill	Erodium	EP	N/S	Р	Р	Р	N/S							
	cicutarium													
winterfat	Krascheninnikovia	Р	Р	Р	Р	Р	Р	D	D	D	D	Р	Р	Р
	lanata													
bush muhly	Muhlenbergia	EP	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
-	porteri													
plains bristlegrass	Setaria vulpiseta	EP	D	D	D	D	D	Р	Р	Р	Р	D	D	D
Mormon tea	Ephedra spp.	D	D	D	D	D	N/S	N/S	N/S	N/S	N/S	D	D	D
soaptree yucca	Yucca elata	F	N/S	N/S	N/S	N/S	Р	Р	N/S	N/S	N/S	N/S	N/S	N/S

Supporting Information

<u>Associated Sites:</u> <u>Site Name</u>	Site ID	Site Narrative
<u>Similiar Sites:</u> <u>Site Name</u>	Site ID	Site Narrative
State Correlation: This site has been correlated with the follo	wing states: Texas	

Data Source	Number of Records	Sample Period	State	<u>County</u>

Type Locality:

Eddy County, New Mexico – center of N.W. ¼, Sec. 27, T. 26 S., R. 24 E., NMPM. 2 ½ miles N. E. of the Texas – New Mexico State line, on the west side of Highway 180. A. M. Leeman Ranch. GC Mapping Unit, Cottonwood component. Map Sheet 148 insert, Eddy Area New Mexico Soil Survey Report.

Relationship to Other Established Classifications:

Other References:

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County. Characteristic soils are:

Cottonwood loam, very shallow, less than 8 inches thick

Holloman loam, very shallow, less than 8 inches thick McCarran loam, very shallow, less than 8 inches thick

Viccarran Ioani, very shanow, less than 8 inches thi

Yesum fine sandy loam, less than 8 inches thick

Alamogordo fine sandy loam, less than 8 inches thick

<u>Site Description Approval:</u> <u>Author</u> Don Sylvester	<u>Date</u> 07/12/1979	<u>Approval</u> Don Sylvester	<u>Date</u> 07/12/1979

Site Description Revision:
Author
Dr. Brandon Bestelmeyer
George Chavez

<u>Date</u> 02/27/03 02/27/03 <u>Approval</u> George Chavez <u>Date</u> 02/27/03

Laguna Salado 22 Federal #005H

Qe—Eolian deposits (Holocene to middle Pleistocene)

Released the Longer Land Management | New Mexico Bureau of Geology and Mineral Resources | NMBGMR | NMBGMR, BLM | Earthstar Geographics | New Mexico State University, Texas Parks & Wildlife, CONANP,

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 121 of 128

QUESTIONS

Action 472085

QUESTIONS	
	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	472085
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAB1914043668
Incident Name	NAB1914043668 LAGUNA SALADO 22 FEDERAL #005H @ 30-015-36738
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received
Incident Well	[30-015-36738] LAGUNA SALADO 22 FEDERAL #005H

Location of Release Source

Please answer all the questions in this group.		
	Site Name	LAGUNA SALADO 22 FEDERAL #005H
	Date Release Discovered	04/27/2019
	Surface Owner	Private

Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.	
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Equipment Failure Pump Produced Water Released: 11 BBL Recovered: 11 BBL Lost: 0 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 122 of 128

QUESTIONS, Page 2

Action 472085

QUESTIONS	(continued)	
dorono 10	(oon an aca)	

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	472085
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remedi	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of	
actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 06/09/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	472085
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)	
What method was used to determine the depth to ground water	Estimate or Other	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1 and 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Between 1 and 5 (mi.)	
A wetland	Between 1 and 5 (mi.)	
A subsurface mine	Between 1 and 5 (mi.)	
An (non-karst) unstable area	Between ½ and 1 (mi.)	
Categorize the risk of this well / site being in a karst geology	Medium	
A 100-year floodplain	Zero feet, overlying, or within area	
Did the release impact areas not on an exploration, development, production, or storage site	Yes	

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation	plan approval with this submission	Yes
Attach a comprehensive report der	nonstrating the lateral and vertical extents of soil contamination as	ssociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertica	l extents of contamination been fully delineated	Yes
Was this release entirely co	ontained within a lined containment area	No
Soil Contamination Sampling	: (Provide the highest observable value for each, in millig	rams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	45200
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	0
GRO+DRO	(EPA SW-846 Method 8015M)	0
BTEX	(EPA SW-846 Method 8021B or 8260B)	0
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date wil	I the remediation commence	04/01/2025
On what date will (or did) th	e final sampling or liner inspection occur	04/01/2025
On what date will (or was) t	he remediation complete(d)	04/01/2025
What is the estimated surfa	ce area (in square feet) that will be reclaimed	0
What is the estimated volur	ne (in cubic yards) that will be reclaimed	0
What is the estimated surfa	ce area (in square feet) that will be remediated	0
What is the estimated volur	ne (in cubic yards) that will be remediated	0
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.		

QUESTIONS, Page 3

Page 123 of 128

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	124	of	128
1 450	1.4.1	y	

QUESTIONS, Page 4

QUESTI	ONS (continued)	
Operator: DEVON ENERGY PRODUCTION COMPANY, LP 333 West Sheridan Ave. Oklahoma City, OK 73102	OGRID: 6137 Action Number: 472085 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	No	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Yes	
Other Non-listed Remedial Process. Please specify	Soils to be left in place	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efi which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by dequately investigate and remediate contamination that pose a threat to groundwater, surface does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 06/09/2025	
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in according significantly deviate from the remediation plan proposed, then it should consult with the division to deviate the termination of termination of the termination of	rdance with the physical realities encountered during remediation. If the responsible party has any need to etermine if another remediation plan submission is required.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS	(continued)
QUESTIONS	(Continueu)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	472085
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο	

Page 125 of 128

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 472085

Page 126 of 128

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	472085
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	472092
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	04/04/2025
What was the (estimated) number of samples that were to be gathered	0
What was the sampling surface area in square feet	0

Remediation Closure Request	
Only answer the questions in this group if seeking remediation closure for this release because all i	remediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	0
What was the total volume (cubic yards) remediated	0
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	0
What was the total volume (in cubic yards) reclaimed	0
Summarize any additional remediation activities not included by answers (above)	Remediation Complete
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents o
L baraby partify that the information given above is true and complete to the best of my	knowledge and understand that purculant to OCD rules and regulations all operators are required
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 repo	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or tially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete.
	Names James Delay

I hereby agree and sign off to the above statement	Name: James Raley
	Title: EHS Professional
	Email: jim.raley@dvn.com
	Date: 06/09/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	472085
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

QUESTIONS

Reclamation Report		
Only answer the questions in this group if all reclamation steps have been completed.		
Requesting a reclamation approval with this submission	No	

Action 472085

Page 127 of 128

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	472085
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By		Condition Date
scwells	None	6/9/2025

CONDITIONS

Page 128 of 128